In Full Color
John Ray

Figures and
code appear as
they do in Xcode 4.2+

Covers |08 S, Xcode 4.2+,
s iPhone.

SamsTeach Yourself oryboard, iPhoss,

i0S5 =
Application
Development

FREE SAMPLE CHAPTER
£

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335761
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335761
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335761
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335761
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335761/Free-Sample-Chapter

John Ray

10S 5
Application
Development

N“NNN““NN“N““NNN“NNN““\\\“\\\“\\\\\“\“\N\NNN““NNWW\

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself i0S® 5 Application Development in 24 Hours

Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33576-1

ISBN-10: 0-672-33576-X

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America
Second Printing: September 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearson.com

Associate
Publisher

Greg Wiegand

Acquisitions Editor

Laura Norman
Development
Editor

Keith Cline

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Larry Sweazy

Proofreader
Karen Gill

Technical Editor
Anne Groves

Publishing
Coordinator

Cindy Teeters

Designer
Gary Adair

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction
HOUR 1 Preparing Your System and iDevice for Development 5
2 Introduction to Xcode and iOS Simulator 25
3 Discovering Objective-C: The Language of Apple Platforms 59
4 Inside Cocoa Touch 89
5 Exploring X-code’s Interface Builder 117
6 Model-View-Controller Application Design 147
7 Working with Text, Keyboards, and Buttons 175
8 Handling Images, Animation, Sliders, and Steppers 205
9 Using Advanced Interface Objects and Views 231
10 Getting the User’s Attention 261
11 Introducing Multiple Scenes and Popovers 291
12 Making Choices with Toolbars and Pickers 337
13 Advanced Storyboards Using Navigation and
Tab Bar Controllers 385
14 Navigating Information Using Table Views and
Split View Controllers 421
15 Reading and Writing Application Data 463
16 Building Rotatable & Resizable User Interfaces 503
17 Using Advanced Touches and Gestures 531
18 Sensing Orientation and Motion 557
19 Working with Rich Media 583
20 Interacting with Other Applications 629
21 Implementing Location Services 661
22 Building Background-Aware Applications 691
23 Building Universal Applications 717
24 Application Tracing and Debugging 735

Index 755

Table of Contents

Introduction
Who Can Become an iOS Developer?
Who Should Use This Book?
What Is (and Isn’t) in This Book?

HOUR 1: Preparing Your System and iDevice for Development
Welcome to the iOS Platform
Becoming an iOS Developer
Creating and Installing a Development Provisioning Profile
Running Your First iOS App
Developer Technology Overview
Further Exploration
Summary
Q&A
Workshop

HOUR 2: Introduction to Xcode and the iOS Simulator
Using Xcode
Using the iOS Simulator
Further Exploration
Summary
Q&A
Workshop

HOUR 3: Discovering Objective-C: The Language of Apple Platforms
Object-Oriented Programming and Objective-C
Exploring the Objective-C File Structure
Objective-C Programming Basics
Memory Management and ARC

Further Exploration

w NN

ol

14
19
20
22
23
23
24

25
25
51
56
57
57
58

59
59
64
73
83
86

\

Table of Contents

Summary 86
Q&A 87
Workshop 88
HOUR 4: Inside Cocoa Touch 89
What Is Cocoa Touch? 89
Exploring the iOS Technology Layers 91
Tracing the iOS Application Life Cycle 97
Cocoa Fundamentals 99
Exploring the iOS Frameworks with Xcode 108
Further Exploration 113
Summary 113
Q&A 114
Workshop 114
HOUR 5: Exploring Xcode’s Interface Builder 117
Understanding Interface Builder 117
Creating User Interfaces 123
Customizing the Interface Appearance 129
Connecting to Code 133
Further Exploration 142
Summary 143
Q&A 144
Workshop 144
HOUR 6: Model-View-Controller Application Design 147
Understanding the Model-View-Controller Paradigm 147
How Xcode Implements MVC 149
Using the Single View Application Template 154
Further Exploration 171
Summary 172
Q&A 172

Workshop 172

vi

Sams Teach Yourself i0S 5 Application Development in 24 Hours

HOUR 7: Working with Text, Keyboards, and Buttons 175
Basic User Input and Output 175
Using Text Fields, Text Views, and Buttons 177
Further Exploration 200
Summary 201
Q&A 202
Workshop 202

HOUR 8: Handling Images, Animation, Sliders, and Steppers 205
User Input and Output 205
Creating and Managing Image Animations, Sliders, and Steppers 207
Further Exploration 227
Summary 228
Q&A 228
Workshop 229

HOUR 9: Using Advanced Interface Objects and Views 231
User Input and Output (Continued) 231
Using Switches, Segmented Controls, and Web Views 236
Using Scrolling Views 252
Further Exploration 258
Summary 259
Q&A 259
Workshop 260

HOUR 10: Getting the User’s Attention 261
Alerting the User 261
Exploring User Alert Methods 271
Further Exploration 288
Summary 289
Q&A 289

Workshop 290

vii

Table of Contents

HOUR 11: Implementing Multiple Scenes and Popovers 291
Introducing Multiscene Storyboards 292
Understanding the iPad Popover 309
Using a Modal Segue 319
Using a Popover 328
Further Exploration 334
Summary 335
Q&A 335
Workshop 336

HOUR 12: Making Choices with Toolbars and Pickers 337
Understanding the Role of Toolbars 337
Exploring Pickers 341
Using the Date Picker 349
Using a Custom Picker 364
Further Exploration 380
Summary 381
Q&A 381
Workshop 382

HOUR 13: Advanced Storyboards Using Navigation and Tab Bar Controllers 385

Advanced View Controllers 386
Exploring Navigation Controllers 388
Understanding Tab Bar Controllers 393
Using a Navigation Controller 398
Using a Tab Bar Controller 407
Further Exploration 417
Summary 417
Q&A 418

Workshop 419

viii

Sams Teach Yourself i0S 5 Application Development in 24 Hours

HOUR 14: Navigating Information Using Table Views and
Split View Controllers

Understanding Tables

Exploring the Split View Controller (iPad Only)
A Simple Table View Application

Creating a Master-Detail Application

Further Exploration

Summary

Q&A

Workshop

HOUR 15: Reading and Writing Application Data
iOS Applications and Data Storage
Data Storage Approaches
Creating Implicit Preferences
Implementing System Settings
Implementing File System Storage
Further Exploration
Summary
Q&A
Workshop

HOUR 16: Building Rotatable and Resizable User Interfaces
Rotatable and Resizable Interfaces
Creating Rotatable and Resizable Interfaces with Interface Builder
Reframing Controls on Rotation
Swapping Views on Rotation
Further Exploration
Summary
Q&A
Workshop

421
422
430
433
443
460
460
461
461

463
463
465
473
479
492
500
501
501
502

503
503
508
513
521
527
527
528
529

ix

Table of Contents

HOUR 17: Using Advanced Touches and Gestures 531
Multitouch Gesture Recognition 532
Using Gesture Recognizers 534
Further Exploration 553
Summary 554
Q&A 554
Workshop 554

HOUR 18: Sensing Orientation and Motion 557
Understanding Motion Hardware 558
Accessing Orientation and Motion Data 560
Sensing Orientation 564
Detecting Tilt and Rotation 568
Further Exploration 579
Summary 580
Workshop 581

HOUR 19: Working with Rich Media 583
Exploring Rich Media 583
The Media Playground Application 598
Further Exploration 625
Summary 626
Q&A 627
Workshop 627

HOUR 20: Interacting with Other Applications 629
Extending Application Integration 629
Using Address Book, Email, Twitter, and Maps... Oh My 641
Further Exploration 658
Summary 659
Q&A 659

Workshop 660

X

Sams Teach Yourself i0S 5 Application Development in 24 Hours

HOUR 21: Implementing Location Services 661
Understanding Core Location 661
Creating a Location-Aware Application 668
Using the Magnetic Compass 678
Further Exploration 686
Summary 687
Q&A 687
Workshop 688

HOUR 22: Building Background-Aware Applications 691
Understanding iOS Backgrounding 692
Disabling Backgrounding 696
Handling Background Suspension 697
Implementing Local Notifications 698
Using Task-Specific Background Processing 701
Completing a Long-Running Background Task 708
Further Exploration 714
Summary 715
Q&A 715
Workshop 716

HOUR 23: Building Universal Applications 717
Universal Application Development 717
Creating a Universal Application (Take 1) 722
Creating a Universal Application (Take 2) 726
Using Multiple Targets 730
Further Exploration 732
Summary 733
Q&A 733

Workshop 734

Xi

Table of Contents

HOUR 24: Application Tracing and Debugging 735
Instant Feedback with NSLog 736
Using the Xcode Debugger 738
Further Exploration 752
Summary 753
Q&A 753
Workshop 753

Index 755

About the Author

John Ray is currently serving as a Senior Business Analyst and Development Team
Manager for the Ohio State University Research Foundation. He has written numerous
books for Macmillan/Sams/Que, including Using TCP/IP: Special Edition, Teach Yourself
Dreamweaver MX in 21 Days, Mac OS X Unleashed, and Teach Yourself iPad Development in 24
Hours. As a Macintosh user since 1984, he strives to ensure that each project presents the
Macintosh with the equality and depth it deserves. Even technical titles such as Using TCP/IP
contain extensive information about the Macintosh and its applications and have garnered
numerous positive reviews for their straightforward approach and accessibility to beginner
and intermediate users.

You can visit his website at http://teachyourselfios.com or follow him on Twitter at
#10SIn24.

http://teachyourselfios.com

Dedication

To the crazy ones.
Thank you, Steve Jobs.

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Anne Groves—for
not giving up on this book, despite the changes, delays, and other challenges that we
encountered along the way. I'm not sure how you manage to keep all of the files, figures,
and information straight, but on this end it looks like magic.

As always, thanks to my family and friends for feeding me and poking me with a stick to
keep me going.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or email address. I will carefully review your comments and share them with the
author and editors who worked on the book.

E-mail: feedback@quepublishing.com

Mail: Greg Wiegand
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

In less than half a decade, the iOS platform has changed the way that we, the public, think
about our mobile computing devices. Only a few years ago, we were thrilled by phones with
postage-stamp-sized screens, tinny audio, built-in tip calculators, and text-based web brows-
ing. Times have indeed changed. With full-featured applications, an interface architecture
that demonstrates that small screens can be effective workspaces, and touch controls unri-
valed on any platform, the iPhone brings us the convenience of desktop computing within
our pockets.

When Steve Jobs introduced the iPad, people laughed at the name and the idea that “a big
iPod Touch” could be magical. In the 2 years that have passed since its introduction, the
iPad has become the de facto standard for tablet computing and shows no signs of slowing
down. Rarely a week goes by when I don’t read a review of a new app that is described as
“magical” and that could only have been created on the iPad. The excitement and innova-
tion surrounding iOS and the sheer enjoyment of using the iOS devices has led it to become
the mobile platform of choice for users and developers alike.

With Apple, the user experience is key. The iOS is designed to be controlled with your fin-
gers rather than by using a stylus or keypad. The applications are “natural” and fun to use,
instead of looking and behaving like a clumsy port of a desktop app. Everything from inter-
face to application performance and battery life has been considered. The same cannot be
said for the competition.

Through the App Store, Apple has created the ultimate digital distribution system for devel-
opers. Programmers of any age or affiliation can submit their applications to the App Store
for just the cost of a modest yearly Developer Membership fee. Games, utilities, and full-
feature applications have been built for everything from pre-K education to retirement liv-
ing. No matter what the content, with a user base as large as the iPhone, iPod Touch, and
iPad, an audience exists.

Each year, Apple introduces new devices—bringing larger, faster, and higher-resolution
capabilities to the iOS family. With each new hardware refresh come new development
opportunities and new ways to explore the boundaries between software and art.

2

Sams Teach Yourself i0S 5 Application Development in 24 Hours

My hope is that this book will bring iOS development to a new generation of developers.
Teach Yourself iOS 5 Development in 24 Hours provides a clear natural progression of skills
development, from installing developer tools and registering your device with Apple, to sub-
mitting an application to the App Store. It’s everything you need to get started in 24 one-
hour lessons.

Who Can Become an iOS Developer?

If you have an interest in learning, time to invest in exploring and practicing with Apple’s
developer tools, and an Intel Macintosh computer running Lion, you have everything you
need to begin creating software for iOS.

Developing an app won’t happen overnight, but with dedication and practice, you can be
writing your first applications in a matter of days. The more time you spend working with
the Apple developer tools, the more opportunities you'll discover for creating new and excit-
ing projects.

You should approach iOS application development as creating software that you want to
use, not what you think others want. If you're solely interested in getting rich quick, you're
likely to be disappointed. (The App Store is a crowded marketplace—albeit one with a lot of
room—and competition for top sales is fierce.) However, if you focus on building apps that
are useful and unique, you’re much more likely to find an appreciative audience.

Who Should Use This Book?

This book targets individuals who are new to development for the iPhone and iPad and
have experience using the Macintosh platform. No previous experience with Objective-C,
Cocoa, or the Apple developer tools is required. Of course, if you do have development
experience, some of the tools and techniques may be easier to master, but the authors do
not assume that you've coded before.

That said, some things are expected of you, the reader. Specifically, you must be willing to
invest in the learning process. If you just read each hour’s lesson without working through
the tutorials, you will likely miss some fundamental concepts. In addition, you need to
spend time reading the Apple developer documentation and researching the topics pre-
sented in this book. There is a vast amount of information on iOS development available,
and only limited space in this book. This book covers what you need to forge your own
path forward.

3

Introduction

What Is (and Isn’t) in This Book?

The material in this book specifically targets iOS release 5 and later on Xcode 4.2 and later.
Much of what you'll be learning is common to all the iOS releases, but this book also covers
several important areas that have only come about in iOS 4 and 5, such as gesture recog-
nizers, embedded video playback with AirPlay, Core Image, multitasking, universal
(iPhone/iPad) applications, and more!

Unfortunately, this is not a complete reference for the iOS APIs; some topics just require
much more space than this book allows. Thankfully, the Apple developer documentation is
available directly within the free tools you’ll be installing in Hour 1, “Preparing Your System
and iDevice for Development.” In many hours, you'll find a section titled “Further
Exploration.” This identifies additional related topics of interest. Again, a willingness to
explore is an important quality in becoming a successful developer.

Each coding lesson is accompanied by project files that include everything you need to com-
pile and test an example or, preferably, follow along and build the application yourself. Be
sure to download the project files from the book’s website at http://teachyourselfios.com. If
you have issues with any projects, view the posts on this site to see whether a solution has
been posted.

In addition to the support website, you can follow along on Twitter! Search for #10SIn24 on
Twitter to receive official updates and tweets from other readers. Use the hashtag #iOSIn24
in your tweets to join the conversation. To send me messages via Twitter, begin each tweet
with @johnemeryray.

http://teachyourselfios.com

This page intentionally left blank

HOUR 5

Exploring Xcode’s Interface
Builder

What You’ll Learn in This Hour:

> Where Xcode’s Interface Builder fits in the development process

The role of storyboards and scenes

How to build a user interface using the Object Library

Common attributes that can be used to customize interface elements
Ways to make your interface accessible to the visually impaired

vV v vYVvyy

How to link interfaces to code with outlets and actions

Over the past few hours, you've become familiar with the core iOS technologies, Xcode
projects, and iOS Simulator. Although these are certainly important skills for becoming a
successful developer, there’s nothing quite like laying out your first iOS application inter-
face and watching it come to life in your hands.

This hour introduces you to Interface Builder: the remarkable user interface editor inte-
grated into Xcode. Interface Builder provides a visual approach to application interface
design that is fun, intuitive, and deceptively powerful.

Understanding Interface Builder

Let’s get it out of the way up front: Yes, Interface Builder (or IB for short) does help you
create interfaces for your applications, but it isn’t a just a drawing tool for GUIs; it helps
you symbolically build application functionality without writing code. This translates to
fewer bugs, less development time, and easier-to-maintain projects.

118

HOUR 5: Exploring Xcode’s Interface Builder

If you read through Apple’s developer documentation, you'll see Interface Builder
referred to as an “editor” within Xcode. This is a bit of an oversimplification of a
tool that previously existed as a standalone application in the Apple Developer
Suite. An understanding of IB and its use is as fundamentally important to iOS
development as Objective-C. Without Interface Builder, creating the most basic inter-
active applications would be an exercise in frustration.

This hour focuses on navigating Interface Builder and will be key to your success in
the rest of the book. In Hour 6, “Model-View-Controller Application Design,” you
combine what you've learned about Xcode projects, the code editor, Interface
Builder, and iOS Simulator for the first time. So, stay alert and keep reading.

The Interface Builder Approach

Using Xcode and the Cocoa toolset, you can program iOS interfaces by hand—
instantiating interface objects, defining where they appear on the screen, setting any
attributes for the object, and finally, making them visible. For example, in Hour 2,
“Introduction to Xcode and the iOS Simulator,” you entered this listing into Xcode to
make your iDevice display the text Hello Xcode in the corner of the screen:

UILabel *myMessage;
myMessage=[[UILabel alloc]

initWithFrame:CGRectMake(30.0,50.0,300.0,50.0)];
myMessage.font=[UIFont systemFontOfSize:48];
myMessage.text=@"Hello Xcode";
myMessage.textColor = [UIColor colorWithPatternImage:

[UIImage imageNamed:@"Background.png"]l];

[self.window addSubview:myMessage];

Imagine how long it would take to build interfaces with text, buttons, images, and
dozens of other controls, and think of all the code you'd need to wade through just
to make small changes.

Over the years, there have been many different approaches to graphical interface
builders. One of the most common implementations is to enable the user to “draw”
an interface but, behind the scenes, create all the code that generates that interface.
Any tweaks require the code to be edited by hand (hardly an acceptable situation).

Another tactic is to maintain the interface definition symbolically but attach the
code that implements functionality directly to interface elements. This, unfortu-
nately, means that if you want to change your interface or swap functionality from
one Ul element to another, you have to move the code as well.

Interface Builder works differently. Instead of autogenerating interface code or tying
source listings directly to interface elements, IB builds live objects that connect to
your application code through simple links called connections. Want to change how

Understanding Interface Builder 119

a feature of your app is triggered? Just change the connection. As you'll learn a bit
later this hour, changing how your application works with the objects you create in
Interface Builder is, quite literally, a matter of connecting or reconnecting the dots
as you see fit.

The Anatomy of an Interface Builder Storyboard

Your work in Interface Builder results in an XML file called a storyboard, containing
a hierarchy of objects for each unique screen that your application is going to dis-
play. The objects could be interface elements—buttons, toggle switches, and so
forth—but might also be other noninterface objects that you will need to use. The
collection of objects for a specific display is called a scene. Storyboards can hold as
many scenes as you need, and even link them together visually via segues.

For example, a simple recipe application might have one scene that consists of a list
of recipes the user can choose from. A second scene may contain the details for
making a selected recipe. The recipe list could be set to segue to the detail view with
a fancy fade-out/fade-in effect when the name of a recipe is touched. All of this
functionality can be described visually in an application’s storyboard file.

Storyboards aren'’t just about cool visuals, however. They also help you create usable
objects without having to allocate or initialize them manually. When a scene in a
storyboard file is loaded by your application, the objects described in it are instanti-
ated and can be accessed by your code.

Instantiation, just as a quick refresher, is the process of creating an instance of an BJLWL
object that you can work with in your program. An instantiated object gains all the ay
functionality described by its class. Buttons, for example, automatically highlight
when clicked, content views scroll, and so on.

The Storyboard Document Outline

What do storyboard files look like in IB? Open the Hour 5 Projects folder and double-
click the file Empty.storyboard to open Interface Builder and display a barebones sto-
ryboard file. The contents of the file are shown visually in the IB Editor area, and
hierarchically by scene in the Document Outline area located in the column to the
left of the Editor area (see Figure 5.1).

If you do not see the Document Outline area in your Xcode workspace, choose B;LWL
Editor, Show Document Outline from the menu bar. You can also click the disclo- ay

sure arrow in the lower-left corner of the Xcode Editor area.

120 HOUR 5: Exploring Xcode’s Interface Builder

FIGURE 5.1 Interface Builder Editor
A storyboard
scene’s objects €08 Emphy stor/boud]
are represented | - %i "'—:.B,..‘%.
by icons. = : 3 [oima+eo
Scene B} View Conmraties Scane B
. — almlnpwdn
ObjeCtS " l_m.—::«-nm - No Quick Help

Document]
Outline Area

bk

) Text Field - Diipkays edubic text s
Taxt | vands an ason mesiage 16 4 g
bt Rt i e

e T —
T vahes and aliwn the dtottion of o
gt vkt
St Dt s e shein
@ Sl
e L
P

Sneciback pn the progress of 3 ik or
presiavi of sninows deration.

Fresgeess View - Deges the srogeess
S sk over time.

| o ool g g o st
i A A
-

Note that there is only a single scene in the file: view controller scene. Single-scene
storyboards will be the starting place for much of your interface work in this book
because they provide plenty of room for collecting user input and displaying output.
We explore multi-scene storyboards beginning in Hour 11, “Implementing Multiple

Scenes and Popovers.”

Three icons are visible in the view controller scene: First Responder, View Controller,
and View. The first two are special icons used to represent unique noninterface
objects in our application; these will be present in all storyboard scenes that you

work with:

First Responder: The first responder stands for the object that the user is cur-
rently interacting with. When a user works with an iOS application, multiple

objects could potentially respond to the various gestures or keystrokes that the
user creates. The first responder is the object currently in control and interact-
ing with the user. A text field that the user is typing into, for example, would

be the first responder until the user moves to another field or control.

View Controller: The View Controller denotes the object that loads and inter-
acts with a storyboard scene in your running application. This is the object

that effectively instantiates all the other objects described within a scene. You'll
learn more about the relationship between user interfaces and view controllers

in Hour 6.

Understanding Interface Builder 121

View: The View icon is an instance of the object UIView and represents the
visual layout that will be loaded by the view controller and displayed on the
iOS device’s screen. Views are hierarchical in nature. This means that as you
add controls to your interface they will be contained within the view. You can
even add views within views to cluster controls or create visual elements that
can be shown or hidden as a group.

The storyboard shown in this example is about as “vanilla” as you can get. In ,BJL‘”LE_
larger applications with multiple scenes, you may want to either name your view ay

controller class to better describe what it is actually controlling or set a descriptive
label, such as Recipe Listing.

Using unique view controller names/labels also benefits the naming of scenes.
Interface Builder automatically sets scene names to the name of the view con-
troller or its label (if one is set) plus the suffix scene. If you label your view con-
troller as Recipe Listing, for example, the scene name changes to Recipe Listing
Scene. We'll worry about multiple scenes later in the book; for now, our projects
will contain a generic class called View Controller that will be in charge of interact-
ing with our single view controller scene.

As you build your user interfaces, the list of objects within your scenes will grow
accordingly. Some user interfaces may consist of dozens of different objects, leading
to rather busy and complex scenes, as demonstrated in Figure 5.2.

[E:XE) Empty.storyboand o FIGU RE 5-2
[=] ue (OO (@ Storyboard
TR | Mo SeSecion [DB awo | scenes and their
151 View Compote scene associated views
¢ can grow quite
=3
o Corvd = Mg o large and
Ma Seluction
Rocket complex.
Label - Asgle
Label - Initlal Vielocity: 2
Label - Welght Speed: P—
Label - Shieids e s ! .
Label - Aueo-Pilox Angle 0D (| & =
Label - 3D View: . m =)
e g Initial Velocity: | cseats
=] e o S e
Swinch
e Shialds: [on @) ot Aot Buon = MERGEsE tovch
: s 4 il A Ao i
s et Au o L o @ kbbb e
e it - Passesrd J— _ m‘_ 12 %‘i?ﬁ'ﬁ.&&ﬂ
Pasgword; Pazsward === Text Field - Displays editable text and
Toxt | undi an sction meiiage 5 4 Mgt
abject whis Batum g Eappad
Run Simulation _ Slider - Disaliys & contintas rarge of
- walutt and alows Ihe eiestion of &
frssirios

Switeh - Diaplays an elemern shawing
tale o & vl Alkw

U Ot
“ s b

Activity Indicator View - Frovides
Boedhath on the progress of a tusk &
Brocr of uskngen duation,

. IProgress View - Depicts the progress
= oha e e time

| 7o Comrol - Dapays 3 dos for each
= |

122

ﬂnow?

HOUR 5: Exploring Xcode’s Interface Builder

You can collapse or expand your hierarchy of views within the Document Outline
area to help manage the information overload that you are bound to experience as
your applications become more advanced.

At its most basic level, a view (UIView) is a rectangular region that can contain
content and respond to user events (touches and so forth). All the controls (but-
tons, fields, and so on) that you’ll add to a view are, in fact, subclasses of
UIView. This isn’'t necessarily something you need to be worried about, except
that you’ll be encountering documentation that refers to buttons and other inter-
face elements referred to as subviews and the views that contain them as
superviews.

Just keep in mind that pretty much everything you see onscreen can be consid-
ered a “view” and the terminology will seem a little less alien.

Working with the Document Outline Area Objects

The Document Outline area shows icons for objects in your application, but what
good are they? Aside from presenting a nice list, do they provide any functionality?

Absolutely! Each icon gives you a visual means of referring to the objects they repre-
sent. You interact with the icons by dragging to and from them to create the connec-
tions that drive your application’s features.

Consider an onscreen control, such as a button, that needs to be able to trigger an
action in your code. By dragging from the button to the View Controller icon, you
can create a connection from the GUI element to a method that you want it to acti-
vate. You can even drag from certain objects directly to your code, quickly inserting a
variable or method that will interact with that object.

Xcode provides developers with a great deal of flexibility when working with objects
in Interface Builder. You can interact with the actual UI elements in the IB Editor, or
with the icons that represent them in the Document Outline area. In addition, any
object that isn’t directly visible in the user interface (such as the first responder and
view controller objects) can be found in an icon bar directly below the user interface
design in the Editor, as shown in Figure 5.3.

If the icon bar below your view does not show any icons and is displaying the text
View Controller instead, just click it. The icon bar frequently defaults to the name
of a scene’s view controller until it is clicked.

We go through a hands-on example later this hour so that you can get a feel for
how interacting with and connecting objects works. Before we do that, however, let’s
look at how you go about turning a blank view into an interface masterpiece.

Creating User Interfaces

il Soretyvhybosl _ o
[Gathering Clais information EoalooE Gl
(e Veew Ceganizer |
0B 2|® =+ 0

=<« B T 3 il 1

B

Tt Color | SN | Oufault
Shadow Cplor| B Defaut

udon O olf:] o
i

& righighed Adjusts wmage
& Evsabiied Adpasts irasge
ine Break [Trencane Meccie :
et (16 [15
Ton S

First Responder

ofz) of:

Left B Mgt e

Mgresent|] WD [B
Horizsenal

View Controller
N

) e 0@
veries
e
o ilje s
Ll oo & [2T)

f Label - A varasy sk amot of

Creating User Interfaces

In Figures 5.1 and 5.2, you've seen an empty view and a fully fleshed-out interface.
Now, how do we get from one to the other? In this section, we explore how interfaces
are created with Interface Builder. In other words, it’s time for the fun stuff.

If you haven’t already, open the Empty.storyboard file included in this hour’s Projects
folder. Make sure the Document Outline area is visible and that the view can be seen
in the Editor; you're ready to start designing an interface.

The Object Library

Everything that you add to a view, from buttons and images to web content, comes
from the Object Library. You can view the Library by choosing View, Utilities, Show
Object Library from the menu bar (Control+Option+Command+3). If it isn’t already
visible, the Utility area of the Xcode interface opens, and Object Library is displayed
in the lower right. Make sure that the Objects item is selected in the pop-up menu at
the top of the library so that all available options are visible.

123

FIGURE 5.3
You will interact
with objects
either in the
Editor or in the
Document
Outline area.

124

ut!

FIGURE 5.4

The library
contains a
palette of
objects that can
be added to your
views.

ﬂnow?

HOUR 5: Exploring Xcode’s Interface Builder

Libraries, Libraries, Everywhere!

Xcode has more than one library. The Object Library contains the Ul elements
you’ll be adding in Interface Builder, but there are also File Template, Code
Snippet, and Media libraries that can be activated by clicking the icons immedi-
ately above the Library area.

If you find yourself staring at a library that doesn’t seem to show what you're
expecting, click the cube icon above the library or reselect the Object Library from
the menu to make sure you're in the right place.

When you click and hover over an element in the library, a popover is displayed
with a description of how the object can be used in the interface, as shown in Figure
5.4. This provides a convenient way of exploring your Ul options without having to
open the Xcode documentation.

- Empey.storyboard =
Gty Caismaion | Eloz ool @

___Object
Library

Birget shieet when K4 uaased.

Segmented Contred - Cisian
1| 2 | molipie segmaene, sach of whick
Ranctiond 31§ datrots Bosson.

o e ommemmanws| Selected
ol Object

[@ity

Object
Description i T

Progress View - e tne progeras
of 2 sk over e,

Tabla View Call - Defans 1ha
iriatrs 4nd Besavior of oo (o) i
st v

Using view buttons at the top of the library, you can switch between list and icon
views of the available objects. You can also focus in on specific Ul elements using
the pop-up menu above the library listing. If you know the name of an object but
can’t locate it in the list, use the filter field at the bottom of the library to quickly
find it.

Creating User Interfaces 125

Adding Objects to a View

To add an object to a view, just click and drag from the library to the view. For
example, find the label object (UILabel) in the Object Library and drag it into the
center of the view in the Editor. The label should appear in your view and read
Label. Double-click the label and type Hello. The text will update, as shown in
Figure 5.5, just as you would expect.

FIGURE 5.5
= If an object
contains text, in
many cases, just
double-click to
edit it.
Double-click to edit text
Hallo
.—— Zoom in/out
With that simple action, you've almost entirely replicated the functionality imple-
mented by the code fragment earlier in the lesson. Try dragging other objects from
the Object Library into the view (buttons, text fields, and so on). With few excep-
tions, the objects should appear and behave just the way you'd expect.
To remove an object from the view, click to select it, and then press the Delete key.
You may also use the options under the Edit menu to copy and paste between views
or duplicate an element several times within a view.
The +/- magnifying glasses in the lower right of the Editor area will zoom in and B;LWL
out on your interface for fine-tuning a scene. This will be useful when creating sto- ay

ryboards with multiple scenes. Unfortunately, you cannot edit a scene when
zoomed out, so Apple provides the = button to quickly jump back and forth
between a 100% view and your last chosen zoom setting.

126

FIGURE 5.6
Guides help
position your
objects within a
view.

ﬂnow?

HOUR 5: Exploring Xcode’s Interface Builder

Working with the IB Layout Tools

Instead of relying on your visual acuity to position objects in a view, Apple has
included some useful tools for fine-tuning your layout. If you've ever used a drawing
program like OmniGraffle or Adobe Illustrator, you'll find many of these familiar.

Guides

As you drag objects in a view, you'll notice guides (shown in Figure 5.6) appearing to
help with the layout. These blue, dotted lines will be displayed to align objects along
the margins of the view, to the centers of other objects in the view, and to the base-
line of the fonts used in the labels and object titles.

Hsllc~

Guides

As an added bonus, guides automatically appear to indicate the approximate spac-
ing requirements of Apple’s interface guidelines. If you're not sure why it’s showing
you a particular margin guide, it’s likely that your object is in a position that
Interface Builder considers “appropriate” for something of that type and size.

You can manually add your own guides by choosing Editor, Add Horizontal Guide or
by choosing Editor, Add Vertical Guide.

Creating User Interfaces 127

Selection Handles

In addition to the layout guides, most objects include selection handles to stretch an
object horizontally, vertically, or both. Using the small boxes that appear alongside
an object when it is selected, just click and drag to change its size, as demonstrated
using a button in Figure 5.7.

FIGURE 5.7

= Use the resize
handles around
the perimeter of
an object to
change its size.

: A Button :
e . 5

Selection Handles

Note that some objects constrain how you can resize them; this preserves a level of
consistency within iOS application interfaces.

Alignment

To quickly align several objects within a view, select them by clicking and dragging a
selection rectangle around them or by holding down the Shift key, and then choose
Editor, Align and an appropriate alignment type from the menu.

For example, try dragging several buttons into your view, placing them in a variety
of different positions. To align them based on their horizontal center (a line that runs
vertically through each button’s center), select the buttons, and then choose Editor,
Align, Horizontal Centers. Figure 5.8 shows the before and after results.

To fine-tune an object’s position within a view, select it, and then use the arrow Diﬂ_mu,,_
keys to position it left, right, up, or down, 1 pixel at a time. now:

128

FIGURE 5.8

Use the Align
menu to quickly
align a group of
items to an edge
or center.

HOUR 5: Exploring Xcode’s Interface Builder

l Bullon 1

| {
[_fl [Button 1

;, Butlon 2 : :; Butlon 2

—
: Butlon 3 | : Bullon 3
\ i N

| Butlon 4 |

f
I Butlon &

Button 4

|) (|
[Bullon 6 f [

: Button 7 :

——, —_—

Before

The Size Inspector

Another tool that you may want to use for controlling your layout is the Size
Inspector. Interface Builder has a number of “inspectors” for examining the attrib-
utes of an object. As the name implies, the Size Inspector provides information about
sizes, but also position and alignment. To open the Size Inspector, first select the
object (or objects) that you want to work with, and then click the ruler icon at the
top of the Utility area in Xcode. Alternatively, choose View, Utilities, Show Size
Inspector or press Option+Command+5 (see Figure 5.9).

Using the fields at the top of the inspector, you can view or change the size and posi-
tion of the object by changing the coordinates in the Height/Width and X/Y fields.
You can also view the coordinates of a specific portion of an object by clicking one of
the black dots in the size and grid to indicate where the reading should come from.

Within the Size and Position settings, notice a drop-down menu where you can
choose between Frame Rectangle and Layout Rectangle. These two settings will
usually be similar, but there is a slight difference. The frame values represent the
exact area an object occupies onscreen, whereas the layout values take into
account spacing around the object.

The Autosizing settings of the Size Inspector determine how controls resize/reposition
themselves when the device changes orientation. You'll learn more about these in
Hour 16, “Building Rotatable and Resizable User Interfaces.”

Customizing the Interface Appearance 129

. __b_-_ur.\l?v_ulh:_ufn) | FIGURE 5-9
Cataring Clans infsrmation Boz ooE @ B
li-semmrerns s asss | e _ The Size
Scans (| View Controer || Vaw)| stron - A Bsman l.'. !“D 88 v o _SIZe InspeCtOF
v enanse < INSpECtOr enables you to
;) © | - adjust the size
E2 N T R and position of
= one or more
objects.
Ausauirng Taampis
[ABumon |

Finally, the same controls found under Editor, Align can be accessed via the pop-up
menu at the bottom of the inspector. Choose your objects, and then choose an align-
ment from the menu.

Hold down the option after selecting an object in Interface Builder. As you move Diﬁ_lau,_
your mouse around, it will show the distance between the selected object and now:

other objects that you point to.

Customizing the Interface Appearance

How your interface appears to the end user isn’t just a combination of control sizes
and positions. For many kinds of objects, literally dozens of different attributes can

be adjusted. Although you could certainly configure things such as colors and fonts
in your code, it’s easier to just use the tools included in Interface Builder.

Using the Attributes Inspector

The most common place you’ll tweak the way your interface objects appear is
through the Attributes Inspector, available by clicking the slider icon at the top of
the Utility area. You can also choose View, Utilities, Show Attributes Inspector
(Option+Command+4) if the Utility area isn’t currently visible. Let’s run through a
quick example to see how this works.

130

FIGURE 5.10
To change how
an object looks
and behaves,
select it and
then open the
Attributes
Inspector.

ﬂnow?

HOUR 5: Exploring Xcode’s Interface Builder

Make sure the Empty.storyboard file is still open and that you've added a text label
to the view. Select the label, and then open the Attributes Inspector, shown in
Figure 5.10.

- Fupy ool g
[Catharing Clis ifarmasm Hos oolEl @
Bt e Cepasirer
Somma)) View Goomrler | Ve | |Label A tabel | Desweo Attributes
¥ Labw e—
Ton A vatet Inspector
teseres e i
= R Adpa Canter
- Ling opain | Truncane Tail
Agrmart| 3 =

Fast | System 14.0 @
M e 03] o ek o e
Tt Colee| M Drfat
Highighes | m— Oxfa
[
acion Cofat ol -
oripeenal Vet
A Lubo: 7 V=
S E e | Lafe
Top o[}
Ieenicn || Uter iteractien Enabivd
Mutrpie Touth
Mgk 13
=T
Ovaming | Opasue Hdden
& ears Crashies Corsent
B s Sutiews
o dstoresion Satraews

The top portion of the Attributes Inspector will contain attributes for the specific
object. In the case of the text object, this includes settings such as font, size, color,
and alignment (everything you’d expect to find for editing text).

In the lower portion of the inspector are additional inherited attributes. Remember
that onscreen elements are a subclass of a view. Therefore, all the standard view
attributes are also available for the object and for your tinkering enjoyment. In
many cases, you'll want to leave these alone, but settings such as background and
transparency can come in handy.

Don’t get hung up on trying to memorize every attribute for every control now. |
cover interesting and important attributes when they are needed throughout the
book.

Feel free to explore the many different options available in the Attributes Inspector
to see what can be configured for different types of objects. There is a surprising
amount of flexibility to be found within the tool.

Customizing the Interface Appearance 131

The attributes you change in Interface Builder are simply properties of the object’s B,\Lﬁ’l_e_
class. To help identify what an attribute does, use the documentation tool in ay
Xcode to look up the object’s class and review the descriptions of its properties.

Setting Accessibility Attributes

For many years, the “appearance” of an interface meant just how it looks visually.
Today, the technology is available for an interface to vocally describe itself to the
visually impaired. iOS includes Apple’s screen-reader technology: Voiceover.
Voiceover combines speech synthesis with a customized interface to aid users in navi-
gating applications.

Using Voiceover, users can touch interface elements and hear a short description of
what they do and how they can be used. Although you gain much of this functional-
ity “for free” (the iOS Voiceover software will read button labels, for example), you
can provide additional assistance by configuring the accessibility attributes in
Interface Builder.

To access the Accessibility settings, you need to open the Identity Inspector by click-
ing the window icon at the top of the Utility area. You can also choose View, Utilities,
Show Identity Inspector or press Option+Command+3. The Accessibility options have
their own section within the Identity Inspector, as shown in Figure 5.11.

L e st - FIGURE 5.11
[Cathing Cins Wfeemation] Bos oom & Use the
Edmon Ve Orgarser
Foeea |) hew Comoter | |_vam | Toms e e) Accessibility Accessibility
i i B Inspector section in the

Identity
Inspector to
configure how
Voiceover
interacts with
your application.

iy T

132

ﬂnow?

HOUR 5: Exploring Xcode’s Interface Builder

You can configure four sets of attributes within this area:
Accessibility: If enabled, the object is considered accessible. If you create any
custom controls that must be seen to be used, this setting should be disabled.

Label: A simple word or two that serves as the label for an item. A text field
that collects the user’s name might use “your name,” for example.

Hint: A short description, if needed, on how to use the control. This is needed
only if the label doesn’t provide enough information on its own.

Traits: This set of check boxes is used to describe the features of the object—
what it does and what its current state is.

For an application to be available to the largest possible audience, take advantage
of accessibility tools whenever possible. Even objects such as the text labels
you’ve used in this lesson should have their traits configured to indicate that they
are static text. This helps potential users know that they can’t interact with them.

Simulating the Interface

If you've worked with earlier versions of Xcode, you know that you could easily sim-
ulate your user interface. Unfortunately, when Apple introduced Storyboards, they
removed this capability. However, Xcode will now write much of your interface code
for you. This means that when you create an interface and connect it to your appli-
cation classes, you can run the app in the iOS Simulator even though it isn’t done.
We will follow a development pattern throughout the book that takes advantage of
this. Except in a few very unusual instances, you can run your apps at any time to
test the interface and any functionality you've added.

Enabling the i0S Accessibility Inspector

If you are building accessible interfaces, you may want to enable the Accessibility
Inspector in the i0OS Simulator. To do this, start the simulator and click the Home
button to return to the home screen. Start the Settings application and navigate to
General, Accessibility, and then use the toggle button to turn the Accessibility
Inspector on, as shown in Figure 5.12.

Connecting to Code

The Accessibility Inspector adds an overlay to the simulator workspace that dis-
plays the label, hints, and traits that you've configured for your interface elements.
Note that navigating the iOS interface is very different when operating in accessi-
bility mode.

Using the X button in the upper-left corner of the inspector, you can toggle it on
and off. When off, the inspector collapses to a small bar, and the iPhone simulator
will behave normally. Clicking the X button again turns it back on. To disable the
Accessibility Inspector altogether, just revisit the Accessibility setting in the
Settings application.

Accessibility Inspector m_\

Accessibility Inspector

General
Button
e {{5, 27}, {65, 30}

t Change, Layout Change,

Connecting to Code

You know how to make an interface, but how do you make it do something?
Throughout this hour, I've been alluding to the idea that connecting an interface to
the code you write is just a matter of “connecting the dots.” In this last part of the
hour, we do just that: take an interface and connect it to the code that makes it into
a functional application.

133

FIGURE 5.12
Toggle the iOS
Accessibility
Inspector on.

134

FIGURE 5.13
To begin, open
the project in
Xcode.

FIGURE 5.14
The Interface
Builder Editor
displays the
scene and
corresponding
view for the
application.

‘ HOUR 5: Exploring Xcode’s Interface Builder

Opening the Project

To get started, we'll use the project Disconnected contained within this hour’s Projects
folder. Open the folder and double-click the Disconnected.xcodeproj file. This opens
the project in Xcode, as shown in Figure 5.13.

®B00 3 Disconnected - Diconnected. soodepral
....... Indhening | Proussed € of 1 Mas |

») (W) [Disconnected . Phone 5.0 Simuistor | [[e Lt Eloc Eoo (@)

Sumerary | ieha Bt Seriings Bt P ot Rades

Ase koo

[ree—

=

+ I BEEA ad4 Target Vardate Semogs

Once the project is loaded, expand the project code group (Disconnected) and click
the MainStoryboard.storyboard file. This storyboard file contains the scene and view
that this application displays as its interface. Xcode refreshes and displays the scene
in the Interface Builder Editor, as shown in Figure 5.14.

Project
code —
group
S . Lol - Chasen Coler
S Rl e B et m Blue | Yellow Green
ISL Lol z L 1 s
1 Get Flower
Storyboard file
‘Chosen Color: Your Color
+iD@EA -] & [a="1a]

Connecting to Code

Implementation Overview

The interface contains four interactive elements: a button bar (called a segmented
control), a push button, an output label, and a web view (an integrated web browser
component). Together, these controls interface with application code to enable a user
to pick a flower color, touch the Get Flower button, and then display the chosen color
in a text label along with a matching flower photo fetched from the website http:/
/www.floraphotographs.com. Figure 5.15 shows the final result.

Carrier = 11:57 AM

Red mYellow Green
|

Get Flower

Chosen Color: Blue

Unfortunately, right now the application does nothing. The interface isn’t connected
to any application code, so it is hardly more than a pretty picture. To make it work,
we'll be creating connections to outlets and actions that have been defined in the
application’s code.

Outlets and Actions

An outlet is nothing more than a variable by which an object can be referenced. For
example, if you had created a field in Interface Builder intending that it would be
used to collect a user’s name, you might want to create an outlet for it in your code
called userName. Using this outlet and a corresponding property, you could then
access or change the contents of the field.

135

FIGURE 5.15
The finished
application will
enable a user to
choose a color
and have a
flower image
returned that
matches that
color.

http://www.floraphotographs.com
http://www.floraphotographs.com

136

HOUR 5: Exploring Xcode’s Interface Builder

An action, on the other hand, is a method within your code that is called when an
event takes place. Certain objects, such as buttons and switches, can trigger actions
when a user interacts with them through an event, such as touching the screen. If
you define actions in your code, Interface Builder can make them available to the
onscreen objects.

Joining an element in Interface Builder to an outlet or action creates what is generi-
cally termed a connection.

For the Disconnected app to function, we need to create connections to these outlets
and actions:

» ColorChoice: An outlet created for the button bar to access the color the user
has selected

> GetFlower: An action that retrieves a flower from the Web, displays it, and
updates the label with the chosen color

> ChosenColor: An outlet for the label that will be updated by getFlower to
show the name of the chosen color

> FlowerView: An outlet for the web view that will be updated by getFlower to
show the image

Let’s make the connections now.

Creating Connections to Outlets

To create a connection from an interface item to an outlet, Control-drag from a
scene’s View Controller icon (in the Document Outline area or the icon bar below the
view) to either the visual representation of the object in the view or its icon in the
Document Outline area.

Try this with the button bar (segmented control). Pressing Control, click and drag
from the View Controller in the Document Outline area to the onscreen image of the
bar. A line appears as you drag, enabling you to easily point to the object that you
want to use for the connect, as shown in Figure 5.16.

When you release the mouse button, the available connections are shown in a pop-
up menu (see Figure 5.17). In this case, you want to pick colorChoice.

Interface Builder knows what type of object is allowed to connect to a given outlet,
so it displays only the outlets appropriate for the connection you're trying to make.

Repeat this process for the label with the text Your Color, connecting it to the
chosenColor outlet, and the web view, connecting to flowerView.

Connecting to Code

B Disconnected -
Catbasieny Class Indormation

[T

nakpirn.
[=14 » B || M 3 =]

T r—
® Frst Ressancer

b Vew

L]

Gel Flower

Chosen Color: Your Color

Connecting to Actions

[y Disconnected - MainStoryboard. storybasrd o
5.0 Simalator :,[P] o6 ool (=@
Becapeints. — i View Oeganier
|ETEIE =1 : stonyboard | =] i
] View Controter Scane
 Firt Responcer
| view
i
-
m Blue Yell

Connecting to actions is a bit different. An object’s events trigger actions (methods)
in your code. So, the connection direction reverses; you connect from the object
invoking an event to the View Controller of its scene. Although it is possible to
Control-drag and create a connection in the same manner you did with outlets, this

137

FIGURE 5.16
Control-drag
from the View
Controller to the
button bar.

FIGURE 5.17
Choose from the
outlets available
for the targeted
object.

138

FIGURE 5.18
Use the
Connections
Inspector to view
existing
connections and
to make new
ones.

HOUR 5: Exploring Xcode’s Interface Builder

isn’t recommended because you don’t get to specify which event triggers it. Do users
have to touch the button? Release their fingers from a button?

Actions can be triggered by many different events, so you need to make sure that
you're picking exactly the right one, instead of leaving it up to Interface Builder. To
do this, select the object that will be connecting to the action and open the
Connections Inspector by clicking the arrow icon at the top of the Xcode Utility area.
You can also show the inspector by choosing View, Utilities, Show Connections

Inspector (or by pressing Option+Command+6).

The Connections Inspector, in Figure 5.18, shows a list of the events that the object,
in this case a button, supports. Beside each event is an open circle. To connect an
event to an action in your code, click and drag from one of these circles to the
scene’s View Controller icon in the Document Outline area.

"

) B eodupra) — B A
‘m = = Build Succeeded | B/14/11 ar 5:48 FM =
() () (o moresssmmer] (=] | : (= foraifton=) 3 Wicy

4 - | [Diseonnected || |Diseonn. o [B Maiesto. B ManSto.. | EiViewCo.. | |Vewo || Viem | |Buttun - Get Fower | DB =% 20 |

[Wiew Conteater Scene 7.5|
| @ First Responder | ©

(L) ew Conmorery—) k=l

v L ~—_F = —=
| | =

o

o

__ Labal - Your Calar 8

B we view o
- o

o

- o

-— _©

]

o

ol

-

=)

| efuancion Coies Caiac oy |

N Refararceg Dutet Cofecsen ol

s 519 ST= 8) oy i p—|

| often refer to creating connections to a scene’s View Controller or placing inter-
face elements in a scene’s view. This is because Interface Builder storyboards can
contain multiple different scenes, each with its own View Controller and view. In
the first few lessons, there is only a single scene, and therefore, a single View
Controller. That said, you should still be getting used to the idea of multiple View
Controller icons appearing in the Document Outline area and having to correctly
choose the one that corresponds to the scene you are editing.

Connecting to Code 139
For example, to connect the Get Flower button to the getFlower method, select the
button, and then open the Connections Inspector (Option+Command+6). Drag from
the circle beside the Touch Up Inside event to the scene’s View Controller and release,
as demonstrated in Figure 5.18. When prompted, choose the getFlower action,
shown in Figure 5.19.

B Daconracted - Mantoyboad stonboud__ F FIGURE 5.19
ssosminn] [m] [e i oz @EoE @ Choose the
b e e TRl st o0 o e st st i action you want

[T — [T — - the interface
B fed i, element to
([, o invoke.
E::Mmm m Blue | Yellow Green 2
| 0 fije|m
[copcn 3] [HE
Label m‘;mmma
z 12 e segmers e o
After a connection has been made, the inspector updates to show the event and the
action that it calls, demonstrated in Figure 5.20. If you click other already-connected
objects, you'll notice that the Connections Inspector shows their connections to out-
lets and to actions.
e ATl Saciies The Connections
performSegueWithidentifiersender: Inspector

¥ Sent Evenls

Did End On Exit
[diting Changed
Editing Did Bagin
Editing Did End
Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Dray Outside

(Touch Up Inside = View Controlier
| getFlower

Touch Up Outside

Value Changed

OolL ®000C000D0000| |0

updates to show
the actions and
outlets that an
object
references.

140

FIGURE 5.21
Right-click to
quickly inspect
any object
connections.

HOUR 5: Exploring Xcode’s Interface Builder

Well done! You've just linked an interface to the code that supports it. Click Run on
the Xcode toolbar to build and run your application in the iOS Simulator or your

personal iDevice.

Connections Without Code

Although most of your connections in Interface Builder will be between objects and
outlets and actions you’ve defined in your code, certain objects implement built-in
actions that don’t require you to write a single line of code.

The web view, for example, implements actions, including goForward and goBack.
Using these actions, you could add basic navigation functionality to a web view by
dragging from a button’s Touch Up Inside event directly to the web view object
(rather than the view controller). As described previously, you are prompted for the
action to connect to, but this time, it isn’t an action you had to code yourself.

Editing Connections with the Quick Inspector

One of the errors that I commonly make when connecting my interfaces is creating a
connection that I didn’t intend. A bit of overzealous dragging, and suddenly your
interface is wired up incorrectly and won'’t work. To review the connections that are
in place, you select an object and use the Connections Inspector discussed previously,
or you can open the Quick Inspector by right-clicking any object in the Interface
Builder editor or Document Outline area. This opens a floating window that contains
all the outlets and actions either referenced or received by the object, as shown in
Figure 5.21.

] View Controller
¥ Storyboard Segues

performSequewnhidentifier sender:
¥ Outers

henenCibar u Label = Youur Colow

codorChaice * Segmented Control - Red, Blue, Yellow. Green

Tiowerview Web View

searchDisplayControlier

i
¥ Referencing Storyboard Segues

performSequeWithidentifier-sender:
¥ Referencing Oudes

ing Oudler

LI Remove Connection

% Button - Get Flower
Touch Up Invide

Besides viewing the connections that are in place, you can remove a connection by
clicking the X next to a connected object (see Figure 5.21). You can even create new
connections using the same “click-and-drag from the circle to an object” approach
that you performed with the Connections Inspector. Click the X in the upper-left cor-
ner of the window to close the Quick Inspector.

Connecting to Code

Although clicking an object, such as a button, shows you all the connections
related to that object, it doesn’t show you everything you've connected in the
Interface Builder Editor. Because almost all the connections you create will go to
and from a scene’s View Controller, choosing it, then opening the inspector will
give you a more complete picture of what connections you've made.

Writing Code with Interface Builder

You just created connections from user interface objects to the corresponding outlets
and actions that have already been defined in code. In the next hour’s lesson, you

write a full application, including defining outlets and actions and connecting them
to a storyboard scene. What's interesting about this process, besides it bringing all of
the earlier lessons together, is that Interface Builder Editor writes and inserts the nec-

essary Objective-C code to define outlets and actions.

Although it is impossible for Xcode to write your application for you, it does create
the instance variables and properties for your app’s interface objects, as well as
“stubs” of the methods your interface will trigger. All you need to do is drag and
drop the Interface Builder objects into your source code files. Using this feature is
completely optional, but it does help save time and avoid syntax errors.

A method stub (or skeleton) is nothing more than a method that has been
declared but executes no instructions. You can add stubs to your code where you
know what you'll be writing in the future but aren’t yet ready to commit it to code.
This is useful in the initial design stages of an application because it helps you
keep track of the work you have left to do.

Stub methods are also helpful if you have code that needs to use a method that
you haven’t written. By inserting and referencing stubs for your unwritten methods,
your application will compile and run—enabling the code that is complete to be
tested at any stage of the development process.

Object Identity

As we finish up our introduction to Interface Builder, I'd be remiss if I didn't intro-
duce one more feature: the Identity Inspector. You've already accessed this tool to

view the accessibility attributes for interface objects, but there is another reason why

we'll need to use the inspector in the future: setting class identities and labels.

As you drag objects into the interface, you're creating instances of classes that
already exist (buttons, labels, and so on). Throughout this book, however, we build
custom subclasses that we also need to be able to reference with Interface Builder’s

objects. In these cases, we need to help Interface Builder by identifying the subclass it

should use.

141

BJLW;;—

ﬂnow?

142

FIGURE 5.22

If you're using a
custom class,
you’ll need to
manually set the
identity of your
objects in the
Identity
Inspector.

HOUR 5: Exploring Xcode’s Interface Builder

For example, suppose we created a subclass of the standard button class (UIButton)
that we named ourFancyButtonClass. We might drag a button into a scene to rep-
resent our fancy button, but when the storyboard file loads, it would just create the

same old UIButton.

To fix the problem, we select the button we’ve added to the view, open the Identity
Inspector by clicking the window icon at the top of the Xcode Utility area or by
choosing View, Utilities, Show Identity Inspector (Option+Command+3), and then
use the drop-down menu/field to enter the class that we really want instantiated at
runtime (see Figure 5.22).

I Divconnerted - ManStorboird sorvbeand _ «
0 Simulator =
|-

e Soccanded | Today ¢ 1156 A l Fo s EoE =
Beaboomety = - Mo R Organiter
= < » [Dowomecd | Ouwon Buaeth Buwen CivesC | enc

L poee wmmuyg -
Identity Inspector g

L=

[T ———

[.o [P

Got Flower

Segmantnd Conarol - st
1 2 | multipe wgmarns, sack of which
i 3 e bumon,

. ot g s et g
U @b eyl
it Gl

Pracis of ckazen draticn

Page Comtred - Doty & don o it
=ptm e 9 49 ampiepton el

This is something we’ll cover on an as-needed basis, so if it seems confusing, don't
worry. We come back to it later in the book.

Further Exploration

The Interface Builder Editor gives you the opportunity to experiment with many of
the different GUI objects you've seen in iOS applications and read about in the previ-
ous hours. In the next hour, the Xcode code editor is used in conjunction with the
Xcode Interface Builder for your first full project, developed from start to finish.

Summary

To learn even more about what you can do with Interface Builder, I suggest reading
through the following three Apple publications:

Interface Builder Help: Accessed by right-clicking the background in the
Interface Builder Editor, the IB help is more than a simple help document.
Apple’s Interface Builder Help walks you through the intricacies of IB using
video tutorials and covers some advanced topics that will be important as your
development experience increases.

iOS Human Interface Guidelines: The Apple iOS HIG document provides a
clear set of rules for building usable interfaces on the iOS device family. This
document describes when you should use controls and how they should be dis-
played, helping you create more polished, professional-quality applications.

Accessibility Programming Guide for iOS: If you're serious about creating
accessible apps, this is a mandatory read. The Accessibility Programming
Guide describes the accessibility features mentioned in this hour’s lesson as
well as ways to improve accessibility programmatically and methods of testing
accessibility beyond the tips given in this hour.

As a general note, from here on, you do quite a bit of coding in each lesson. So now
is a great time to review the previous hours if you have any questions.

Summary

In this hour, you explored the Xcode Interface Builder Editor and the tools it provides
for building rich graphical interfaces for your iOS applications. You learned how to
navigate IB storyboards and access the GUI elements from the Object Library. Using
the various inspector tools within Interface Builder, you customized the look and feel
of the onscreen controls and how they can be made accessible to the visually
impaired.

More than just a pretty picture, an IB-created interface uses simple outlets and
actions to connect to functionality in your code. You used Interface Builder’s connec-
tion tools to turn a nonfunctioning interface into a complete application. By main-
taining a separation between the code you write and what is displayed to the user,
you can revise your interface to look however you want, without breaking your
application. In Hour 6, you examine how to create outlets and actions from scratch
in Xcode (and thus gain a full toolset to get started developing).

143

144

HOUR 5: Exploring Xcode’s Interface Builder

Q&A

Why do | keep seeing things referred to as NIB/XIB files?

. The origins of Interface Builder trace back to the NeXT Computer, which made

use of NIB files to store individual views. These files, in fact, still bore the same
name when Mac OS X was released. In recent years, however, Apple renamed
the files to have the .xib extension, which has subsequently been replaced by
storyboards and scenes. Unfortunately, Apple’s documentation hasn’t quite
caught up yet and may reference XIB or NIB files. If you encounter these docu-
mentation barnacles, just substitute “storyboard scene” for XIB or NIB in your
head.

. Some of the objects in the Interface Builder Object Library can’t be added to

my view. What gives?

Not all the items in the Object Library are interface objects. Some represent
objects that provide functionality to your application. These can be added to
the scene in the Document Outline area or on the icon bar located below a
scene’s layout in the IB editor.

Q. I've seen controls in applications that aren’t available here. Where are they?

A. Keep in mind that the iOS objects are heavily customizable and frequently

used as a starting point for developers to make their own UI classes or sub-
classes. The end result can vary tremendously from the stock Ul appearance.

Workshop

Quiz

1.

Simulating a scene using IB’s Simulate Document feature also compiles the
project’s code in Xcode. True or false?

. What tool can you use within the iOS Simulator to help review accessibility of

objects in your apps?

. What two connection types can be made in the Xcode Interface Builder?

Workshop 145

Answers

1. False. Simulating a scene does not use the project code at all. As a result, the
interface will not perform any actions that rely on underlying code.

2. The Accessibility Inspector makes it possible to view the accessibility attributes
configured within Interface Builder.

3. Connections to outlets and actions can be created in Interface Builder. A con-
nection to an outlet provides a means of referencing and working with a Ul
element in code. A connection to an action defines a Ul event, such as a but-
ton press, that will execute the action’s method.

Activities
1. Practice using the interface layout tools on the Empty.storyboard file. Add each
available interface object to your view, and then review the Attributes
Inspector for that object. If an attribute doesn’t make sense, remember that
you can review documentation for the class to identify the role of each of its
properties.

2. Revise the Disconnected project with an accessible interface. Review the fin-
ished design using the Accessibility Inspector in the iOS Simulator.

This page intentionally left blank

SYMBOLS

#import directives, 66, 71,
298, 617

// (angle brackets), 67

: (colons), 67

; (semicolons), 67

@class directive, 298

@implementation directives, 71

@interface directives, 66-67

@property directive, 152, 190

@synthesize directive, 71-72,
152, 161, 608

A

About.plist files, 489

Accelerate framework, 96

accelerometers, 558-559
managing, 574-576
reading, 562-564

Index

Accessibility Inspector, enabling,
133

Accessibility settings, 131-132
accessing
Address Book, 630

alert view text fields,
281-283

attributes, 131-132
contacts, 648

direct file systems, 469-473
iPhones, 459

media items, 590

motion data/orientations,
560-564

music libraries, 619-625
properties, 315
Search Navigator, 37

System Sound Services,
269-270

variable lists, 749-750
Accounts framework, 95

accuracy, location managers,
663, 666

756

actions

actions, 137-141
adding, 168-169

animation, formatting,
217-221

application interaction,
644-646

custom pickers, 370
date pickers, 354-355

file system storage, 494-496

formatting, 190-192

gesture recognition, 543-545
implicit preferences, 474-476

media, 601-603

model segues, 326-327
navigation controllers, 403
sheets, 265-268

implementing, 283-286

responding, 284-286

single view application
templates, 165-169

sounds, 273-275

tab bar controllers, 412-413

tilt, 571
triggering, 176

views, web pages, 246-248

activating Quick Help
Inspectors, 111

active devices, detecting, 725
adding
actions, 191, 195-199
AirPlay support, 585

annotations, 652

audio backgrounds, 702-707

AudioToolbox frameworks,
272

buttons, 216, 244

constants, 474, 704

Core Location framework,
669

Core Motion, 569
degrees

to conversion constants,
679

to radian constants, 522
empty files, 32
feedback, 706
frameworks, 599, 643

generic View Controller
classes, 400

gestures, 533-534, 539-543
images
backgrounds, 670
direction resources, 678
resources, 444, 481
tab bar controllers, 408
views, 210
instances, 711

iPad view controllers,
726-727

location constants, 670
media files, 599

navigation controllers,
390, 400

new code files, 31
objects, 163-165

to scroll views, 254

to views, 124-125
outlets, 166-168, 190
pinching, 541-542
pragma marks, 38-39
prototypes, 652
resources, 32, 209

rotation, 542-543

scenes, 294, 320-322,
391-393

segmented controls, 238
segments, 238239
settings bundles, 468
sliders, 213

sounds, 271

speed to output labels, 216

split view controllers,
431-432

steppers, 215
subclasses, 296-298
swiping, 541
switches, 240

tab bar controllers,
395-398, 409

table views, 423-430
tapping, 539-540
text
fields, 179
views, 183-184
variables, 711
views, 523
controllers, 294
web pages, 242

Address Book framework, 95,
630-634

logic implementation,
646-651

Address Book Ul framework,
93, 630-631

advanced view controllers,
386-387

AirPlay, 585
alertBody property, 699

alerts
methods, 271-288
multibutton, 278
playing, 287
sounds, implementing,
286-288

users, 261-270

views, 262-265
fields, 280-283
implementing, 276-283

responding to, 264,
279-280

alertViewsStyle property, 263
aligning objects, 127
allocating

memory, 83

objects, 75-77
alloc messages, 75

allowing rotation, 508. See also
rotation

analyzing applications, 43
anchors, configuring, 369
angle brackets (//), 67
animation
actions, formatting, 217-221
interface design, 210-218
loading, 221
looping, 208-209
outlets, formatting, 217-221
projects, 209-210
speed, configuring, 223-226
starting, 222
stopping, 222

transitions, 302

animationDuration property, 222
annotation, adding, 652

Annotation view, customizing,
640, 654

APIs (application programming
interfaces), 269, 464. See also
interfaces

App IDs, 17
Apple
Developer Program, 10-13
Developer Suite, 21
TV, 6
applicationDidBecomeActive
method, 695

applicationDidEnterBackground
method, 695

application:didFinishLaunching
WithOptions method, 695

applicationlconBadgeNumber
property, 698
application programming
interfaces. See APIs, 269, 464
applications
analyzing, 43
background-aware, 691.
See also background-aware
applications

data sources,
implementation, 450-453

data structures, 450
deleting, 53

Flashlight, 476-479
HelloSimulator, 52

icons, configuring, 48-49
instant feedback, 736-738

757

applications

interaction, 629
Address Book, 630-634

email messages,
634-636, 655-658

Google Maps, 637-641
implementation, 642
mapping, 651-655
Twitter, 636-637
life cycles, 97-99
location services, 668-677
logic
file system storage,
497-499

gesture recognizers,
545-553

implementing, 170,
199-200

implicit preferences,
476-479

location services,
672677

long-running tasks,
710-712

magnetic compasses,
680-686

model segues, 327-328

navigation controllers,
405-407

orientations, 566-568

popovers, 332-334

reframing, 519-520

settings, 490-492

swapping views, 524-527

tab bar controllers,
413416

How can we make this index more useful? Email us at indexes@samspublishing.com

758

applications

table views, 437-442
tilt, 573-579

universal applications,
725, 729-730

Master-Detail Application
template, 443-459

multiscene storyboards,
291-309

MVC (Model-View-Controller)
design, 147
overview, 147-149
objects, 100

orientation, 565. See also
orientations

preferences, 463-465
creating implicit, 473-479
formatting, 483

resource constraints, 8

running, 19-21, 43

simulators, launching, 52-53

single view application
templates, 154-171

storage, 465-473

direct file system access,
469-473

settings bundles, 467-469
user defaults, 466-467
survey, 492-499
suspension, 692
testing, 56
tracing, 735
transferring, 43

universal. See universal
applications

Xcode
building, 42-46
delegate classes, 98

applicationWillEnterForeground
method, 695, 698

applicationWillResignActive
method, 695
applicationWillTerminate
method, 695
applying
Address Book Ul framework,
631

Assistant Editor, 39
Attributes Inspector, 129-131
autosizing to interfaces, 512
AV Audio
Players, 591-592
Recorders, 592-593
Breakpoint Navigator, 750
code completion, 36-37
data detectors, 186
debugging, Xcode, 738-752
Debug Navigator, 750
expressions, 80
filters, 617
gesture recognizers, 534-553
guides, 126
IBAction, 151
IBOutlet, 151
image pickers, 594-596
location manager, 662-666

magnetic compasses,
678-686

media pickers, 587-589

methods, 77-79

modal segues, 319-329
motion managers, 563
movie players, 585-586

multiple targets, universal
applications, 730-732

music players, 589-590
NSLog function, 736-737
pickers, dates, 349-364
popovers, 328-334

Quick Help, 110-113
segmented controls, 236-252
selection handles, 127
simulators, 51-56

Size Inspector, 128-129
styles, buttons, 187
switches, 236-252

tab bar controllers, 407-416
web views, 236-252

Xcode, 25-51

ARC (automatic reference
counting), 84-85, 598

arrays, 102, 437

arrows, configuring directions,
311

Assistant Editor, 39, 166
assistants, Quick Help, 110-113
associating

iPad view controllers, 728

view controllers, 298,
320-322, 400, 409

AT&T, 8

attributes
accessing, 131-132
bar buttons, 340-341

buttons, editing, 188-189
cell prototypes, 424-426
date pickers, 342
items

configuring, 390-391

tab bar controllers,
396-397

modifying, 390

sliders, configuring, 213-215

tables, configuring, 423

text fields, editing, 180-181

views, web pages, 243-244
Attributes Inspector, 184

applying, 129-131

gesture recognizers,

configuring, 541

pickers, 343

rotation, adding, 543

segmented controls,
audio, 9. See also alerts

backgrounds, adding,
702-707

direction implementation,
704-707

feedback, adding, 706
music players, 589-590
playback, 591-593
playing, 607-613
recording, 591, 607-613

AudioToolbox framework, 93,
272,702

autocompletion, applying, 36-37

automatic reference counting.
See ARC, 84-85, 598

Autorepeating, 216

autoresizing, 506
autorotation, 506
autosizing, 510
disabling, 515
interfaces, 512
AVAudioPlayer class, 591

AV Audio Players, applying,
591-592

AVAudioRecorder class, 591

AV Audio Recorders, applying,
592-593

AV Foundation framework, 93,
584, 591-593

axes, measuring, 559

Back Button attribute, 389

background-aware applications,
691

disabling, 696-697
life cycles, 694-696

local notification
implementation, 698-701

long-running tasks, 708-714

overview of, 692-696

suspension, 697-699

tasks, 701-708, 713-714

types of, 692-694
backgrounds

audio, adding, 702-707

customizing, 189

graphics, configuring,

216-218

759

buttons

images, adding, 670
modes key, adding, 707

touch, hiding keyboards
with, 197

badges, tab bar controllers, 415
bars
buttons
attributes, 340-341
items, 339, 389
navigation, 389
batteries, managing power, 666
behavior
popovers, configuring, 312

web views, configuring,
243-244

blocks, 79

Bluetooth, 8

Breakpoint Navigator, applying,
750

breakpoints

debugging, configuring,
739-750

managing, 751
pausing, 744
bugs, correcting, 46

building. See configuring;
formatting

bundles
formatting, 483-490
settings, 467-469

buttons, 105, 176
actions, connecting, 603
adding, 216, 244
attributes, editing, 188-189

customizing, 189

How can we make this index more useful? Email us at indexes@samspublishing.com

760

buttons

styles, applying, 187
templates, implementing,
192-195

C

calculation
distance, 673-675

headings to destinations,
683

logic, implementing, 359-364
cameras, 613-616
cancel buttons, 284
canceling
Address Book contacts, 647
image selections, 596, 616
media selections, 588
case sensitivity, 64
cells
configuring, 440
prototypes, 424-426, 436
tables, 422, 455-456
cellular technology, 8, 661
centering maps, 652
certificates, development, 17
CFNetwork framework, 95
check boxes, 232
chooselmage method, 614
cinema displays, 7
C language, 74
classes, 62
AVAudioPlayer, 591
AVAudioRecorder, 591
core application, 99-101

data types, 101-104

DateChooserViewController,
350

delegate, 98
files, 156-157

GenericViewController, 401,
408-409, 416

interfaces, 104-107

MasterViewController,
454-456

methods, 62
MPMedialtem, 584
MPMedialtemCollection, 584

MPMediaPickerController,
584, 587

MPMoviePlayerController,
584-586

MPMusicPlayerController,
584, 589-590

naming, 297
NSUserDefaults, 466
prefixes, 28

root, 100
UlActionSheet, 265
UlBarButtonltem, 389
UlButton, 176
UlDatePicker, 342
UlDevice, 561-562

UlimagePickerController,
584, 594

UlimageView, 207, 617
UlKit, 92

UlLabel, 176
UINavigationBar, 389
UINavigationController, 388
UINavigationltem, 389

UlScrollView, 235

UlSlider, 206

UlStepper, 207

UlSwitch, 232

UlTableView, 433

UlTableViewController, 422

UlTapGestureRecognizer, 539

UlTextField, 176

UlTextView, 176

UlViewController, 297

ViewController, 296, 395
cleaning

files, 43

image pickers, 615-616

movie playback, 606-607

CLLocationManagerDelegate
protocol, 662

Cocoa, 91. See also Cocoa Touch
fundamentals, 99-107
objects, 648

Cocoa Touch, 6, 89
application life cycles, 97-99
frameworks, 108-113
functionality, 90
history of, 91
layers

Core 0S, 96-97
Core Services, 95-97
Media layer, 93-94
overview of, 89-91
technology layers, 91-97
code
completion, applying, 36-37
Interface Builder
connecting, 133-142
writing with, 141

keyboard-hiding, 198
new code files, adding, 31
paths, 81
stepping through, 745-748
storyboard segues, 387
troubleshooting, 44-46
Xcode. See Xcode
collapsing views, 122
colons (:), 67
colors
configuring, 216-218
text, modifying, 186

commands, 66. See also
directives

Comma Separated Values.
See CSV, 498

completion
email messages, 656
long-running tasks, 693
movie players, 586-587
components
custom pickers, 366
modifying, 376
pickers, 345
Compose view controllers, 635
configureView method, 458
configuring. See also styles
actions, 190-192
anchors, 369
animation, 209-210
animation speed, 223-226
application icons, 48-49

attributes, accessing,
131-132

background graphics,
216-218

bar button items, 340
behavior, web views, 243-244

breakpoints, debugging,
739-750

cells, 440
colors, 216-218
coordinates of objects, 254

Debug build configuration,
739

defaults
images, 210-212
state, 241
detail views, 458
devices
development, 16-18
orientations, 47
image pickers, 594
Interface Builder, 117-122.
See also Interface Builder

items, attributes, 390-391
launch images, 49-50
media pickers, 587
multibutton alerts, 278
popovers, 309-319
projects, 178179
recognizers, 540

Release build configuration,
739

scrolling, 187
segments, 238-239
segues, 301-303

single view application
templates, 155-159

761

connecting

sliders, ranges, 213-215
status bars, displays, 50-51
steppers, ranges, 215

styles, modal displays,
305-306

swiping, 542

tab bar controllers, 396-397
tables, attributes, 423
targets, 731-732

UlPopoverControllerDelegate
protocol, 315-318

universal applications,
720-721

view controller files, 159-160
watchpoints, 748-749
X and Y coordinates, 254

connecting

animation, 209
application interaction, 642

code, Interface Builder,
133-142

custom pickers, 366
date pickers, 351
delegates, 436

file system storage, 493

gesture recognizers,
536, 545

implicit preferences, 473
location services, 670

Master-Detail Application
template, 445

media, 600

navigation controllers,
390, 401

planning, 178
reframing, 514

How can we make this index more useful? Email us at indexes@samspublishing.com

762

connecting

settings, 481

single view application
templates, 159-162,
165-169

tab bar controllers, 409
table views, 434
universal applications, 723
views
swapping, 521
via segues, 403
Connections Inspector, 546
connectivity, 8
constants
adding, 474
custom pickers, 366
locations, adding, 670
radians, 522, 679
settings, 481
sounds, adding, 704
table sections, 434

constraints, application
resource, 8

contacts

Address Book, 647. See also
Address Book framework

selecting, 648
content
support, 234
updating, 8
contentViewController
property, 316

Continuous behavior check, 216
Control-drag, 299

controlHardware method, 574

controllers
advanced view, 386-387
image pickers, 595
media pickers, 588
music players, 589-590
naming, 121

navigation, 388-393. See also
navigation

actions, 403

adding, 400

application logic, 405-407

implementation, 399

interfaces, 403

outlets, 403

push segues, 402

storyboards, 389-393

people picker navigation

controller delegates,
631-633, 646

split view
hierarchies, 444-445
navigation, 430-433

tab bar, 393-398. See also
tab bar controllers

applying, 407-416

scenes, 409

sharing, 398

storyboards, 394-398
View Controllers, 120
views, 101

adding, 294

associating, 298,
320-322, 400, 409

Compose, 635
configuring files, 159-160

identifiers, 304
instantiation, 304-305

multiscene storyboards,
293

MVC (Model-View-
Controller), 150

subclasses, 296-298

universal applications,
726-728

controls
onscreen, 101
positioning, 515
rotation, 513-521
segmented, 105, 233
adding, 238-240
applying, 236-252
modifying, 239
convenience methods, 76
coordinates, configuring objects,
copying
image views, 212
snapshots, managing, 40-42
text, 183
core application classes, 99-101
Core Audio framework, 93
Core Data framework, 95
Core Foundation framework, 95

Core Graphics framework,
92-94, 522

Core Image framework, 94, 584,
596-598, 616-619

Core Location framework, 96,
661-668

adding, 669

location manager, applying,
662-666

preparing, 673
Core Motion framework, 96
adding, 569
initializing, 573-574
reading, 562-564
Core OS layer, 96-97
Core Services layer, 95-97
Core Text framework, 94

corrections, errors, 44-46. See
also errors; troubleshooting

costs of Apple Developer
Programs, 10

counters

displays, implementation,
414

incrementing, 406

initializing, 711

updating, 712

updating, triggering, 416
Cover Vertical transition, 302
crashes, recovering, 56
Cross Dissolve transition, 302

CSV (Comma Separated Values),
498

Cupertino Locator Ul, 672, 677

Current Context presentation
styles, 302

current dates, 359. See also
dates

customizing
Annotation view, 640, 654

attributes, accessing,
131-132

bar button items, 340

buttons, 189

interfaces, 129-133

keyboard displays, 181-183

navigation items, 391

pickers, 347, 364-380

settings bundles, 468

tab bar controllers, 396
Custom style, 300

data models, MVC (Model-View-
Controller), 153

data source outlets, 436. See
also outlets

data sources, implementing
applications, 450-453

data types
classes, 101-104
objects, 74
primitive, 74
DateChooserViewController
class, 350

dates, 103

calculation logic,
implementing, 359-364

formatting, 360
pickers, 342-343, 349-364
Debug build configuration, 739
debugging, 46, 735
breakpoints, configuring,
739-750

Xcode debuggers, applying,
738752

Debug Navigator, applying, 750

763

design

decision making, 79-83
declaring variables, 73-75
defaults
application storage, 466-467
images, configuring, 210-212
segmented controls,
sounds, 611
state, configuring, 241
defining
methods, 69-70, 264
settings Uls, 469

degree conversion constants,
adding, 679

delegates
classes, 98
connecting, 436
image pickers, 595

location managers, 665,
674-677. See also location
managers

media pickers, 588

people picker navigation
controllers, 631-633, 646

pickers, 347-348
properties, 356-357, 371
protocols, 456
deleting
applications, 53
resources, 33-34
describelnteger method, 740
design. See also configuring
applications. See also
applications
MVC (Model-View-
Controller), 147
preferences, 463-465

How can we make this index more useful? Email us at indexes@samspublishing.com

764

design

flexible interfaces, 509-512
interfaces
animation, 210-218
long-running tasks, 710
reframing, 514-518

single view application
templates, 162-165

swapping views, 522-524
text, 179-190

universal applications,
723-724, 729

multiscene storyboards,
291-309

resizable interfaces, 506-507
rotatable interfaces, 506-507

views, location services,
670-672

desiredAccuracy property, 666
desktops, 9

destination headings, calculating,
683

destructive buttons, 284
detail scenes, updating, 446

detail view controllers,
457-459

detecting
active devices, 725
errors and warnings, 46
motion, 568-579
determining orientation, 567
developers
Apple Developer Program,
10-13
Interface Builder, 118.
See also Interface Builder

registration, 10-12

skills, 9-14

technology overview, 20-22

tools, installing, 13-14
development

devices, configuring, 16-18

IDEs, 25

imperative, 60

Interface Builder, 117-122.

See also Interface Builder
multiple devices, 18

multiscene storyboards,
386-387

provisioning profiles, overview
of, 15

universal applications,
717-721

devices, 6
active, detecting, 725
build schemes, selecting, 42
development, configuring,
16-18
gyroscopes, 559-560

motion hardware. See motion
hardware

orientations, configuring, 47
simulators, rotating, 54

universal applications, 719.
See also universal
applications

vibrations, 288
dialog boxes, New File, 483
dictionaries, 102

differences, calculating
dates, 363

direct file system access,
469-473

directions
arrows, configuring, 311

audio, implementation,
704-707

image resources, adding, 678
directives. See also statements

#import, 66, 71, 298, 617

@class, 298

@implementation, 71

@interface, 66-67

@property, 152, 190

@synthesize, 71-72, 152,
161, 608

disabling
autosizing, 515

background-aware
applications, 696-697

upside-down orientation, 522
dismissDateChooser method, 354
dismissing

Mail Compose view, 656

modal scenes, 304, 359

people pickers, 631

popovers, 313-316
displays, 6-8

active devices, 725

counters, implementation,
414

dates and time, 360

keyboards, customizing,
181-183

modal, configuring styles,
305-306

popovers
manual, 313
programming, 316-319

Retina, 212

status bars, configuring,

50-51
updating, 712
distance
calculation codes, 673-675

magnetic compasses,
678-686

distanceFilter property, 666
doAccelerometer method, 577
doActionSheet method, 283
doAlertinput method, 281
doAlert method, 276, 699

documentation, Xcode, 28,
108-110

Documentation pane, 110
Document Outline, 122, 179, 395
doRotation method, 578
doSound method, 287
double type, 74
doVibration method, 288
dragging, 532, 540
drilldown, Address Book

contacts, 647

duration, animation, 222

editing
Back Button text, 391
button attributes, 188-189

How can we make this

methods, 198
Property List Editor, 485
tab bar items, 396
text
fields, 180-181
views, 184-186
Xcode, 34-42
elements
input/output, 191
modal Ul, 262
repositioning, 517
email messages, 634-636
logic, implementation,
655-658
Empty Application template, 27
empty files, adding, 32
empty selections, 623
enabling
Accessibility Inspector, 133
orientations, 505
playback, 268
responding, 551-552
rotation, 504-508,514, 522

scrolling, 257
tasks, 713-714
ending

background processing, 714
interface files, 70
enlarging images, 549. See also
pinching
errors
alerts, 268. See also alerts

Core Location framework,
664

765

files

corrections, 44-46
location manager, 674
Event Kit framework, 96
events
interfaces, rotating, 562
loops, 98
multitouch, generating, 54
navigation, 456
Event Ul frameworks, 93
expanding views, 122
expressions, 79-83

External Accessory framework,
97

F

feedback, 9
adding, 706
instant, 736-738
fetching images, 249-251
FieldButtonFun, 200
fields
alerts, views, 280-283
Placeholder Text, 180
text, 106, 176
adding, 179
editing, 180-181
files. See also resources
About.plist, 489
audio, adding, 702
classes, 156-157
cleaning, 43
deleting, 33-34

index more useful? Email us at indexes@samspublishing.com

766

files

direct file system access,
469-473

editing, 36. See also editing
headers, 65-69
icons, 720
implementation, 70
interfaces

ending, 70

importing, 356, 370
media, adding, 599

movie players, formatting,
586

new code, adding, 31

New File dialog box, 483
Objective-C, navigating, 64-73
paths, 471-472

Root.plst, 469, 488

sounds, adding, 271

storyboards, 119-122,
157-159

Supporting Files folder, 46
ViewController.h, 191, 702
file system storage, 492-499
fireDate property, 699
first responders, 120
flags, visibility, 358
Flashlight application, 476-479
flexible interface design, 509-512
Flip Horizontal transition, 302
float type, 74
flower arrays, populating, 437
folders, 46. See also files

formatting. See also configuring;
styles

animation
actions, 217-221
outlets, 217-221

application preferences, 483

dates, 360

implicit preferences, 473-479

location manager, 673
modal segues, 323-326
movies, 586
multibutton alerts, 278
notifications, 699-701
outlets, 190-192
popovers, 309-319

provisioning profiles, 16-18

recording, 609

relationships, tab bar
controllers, 410

scenes, 294
segues, 299-303

popovers, 310-313,
330-331

push, 402

settings, bundles, 483-490

table cells, 455-456

universal applications,
722-726

user interfaces, 123-129
views, 515-517
Xcode, 26-34

Form Sheet presentation styles,

302

Foundation, 92, 95
foundPinch method, 547
foundRotation method, 550
foundSwipe method, 547
foundTap method, 546
frameworks, 92

Accelerate, 96

Accounts, 95

adding, 599, 643

Address Book, 95, 633-634,
646

Address Book Ul, 93,
630-631

AudioToolbox, 93, 272, 702

AV Foundation, 93, 584,
591-593

CFNetwork, 95

Cocoa Touch, 89-91,
108-113. See also Cocoa
Touch

Core Audio, 93

Core Data, 95

Core Foundation, 95
Core Graphics, 94

Core Image, 94, 584,
596-598, 616-619

Core Location, 96, 661-668
adding, 669
preparing, 673

Core Motion, 96

Core Text, 94

Event Kit, 96

Event Ul, 93

External Accessory, 97

Game Kit, 93

iAd, 93

Image 1/0, 94

Map Kit, 92

Media Player, 584-590

Message Ul, 93, 635, 655

OpenGL ES, 94

Quartz Core, 94

Quick Look, 96

Security, 97

Store Kit, 96

System, 97

System Configuration, 96
Twitter, 93

Full Screen presentation
styles, 302

functionality

Cocoa Touch, 90

Media Player, 585
functions, NSLog, 664, 736-738

fundamentals, Cocoa, 99-107

Game Kit framework, 93
gdb (GNU Debugger), 739
generating multitouch events, 54

GenericViewController class, 401,
408-409, 416

generic View Controller classes,
adding, 400

gestures
adding, 533-534

multitouch recognition,
532-534

recognizers, 534-553
GNU Debugger (gdb), 739
Google Maps, 637-641
GPS, 661
graphics, 6-8, 216-218
gravity, accelerometers, 558-559
groups, 31, 569
guides, applying, 126
gutters, Xcode, 741

gyroscopes, 559-560
managing, 574-576
reading, 562-564

handles, sizing, 127
hardware
GPS, 661
motion, 558-560
accelerometers, 558-559
gyroscopes, 559-560
headers, files, 65-69
headingAvailable property, 667
headings
destinations, calculating, 683
feedback, adding, 706
location manager, 666-668

magnetic compasses,
680-681

returning, 439
updating, 684-686
height
custom pickers, 377
values, 258
HelloSimulator application, 52
HelloXcode, 27, 43
hidden property, 249
hiding
keyboards, 195-199, 497
views, web pages, 248-249

hierarchies, split view controllers,
444-445

high resolution images, 212

history of Cocoa Touch, 91

767

images

iAd framework, 93
IBAction, applying, 151
IBOutlet, applying, 151
icons

applications, configuring,
4849

files, 720
View, 119
identifiers, configuring view
controllers, 304

Identity Inspector, objects,
141-142

IDEs (integrated development
environments), 25

if-then-else statements, 80
Image 1/0 framework, 94
images, 9
backgrounds, adding, 670
buttons, customizing, 189
default, configuring, 210-212
filtering, 618
launch, 49-50, 721
loading, 249-251
modifying, 549
pickers, 594-596
preparing, 614
viewing, 614
resources
adding, 444, 481
directions, 678
gesture recognizers, 536
selecting, 615
tab bar controllers, 397, 408

How can we make this index more useful? Email us at indexes@samspublishing.com

768

images

views, 207
adding, 210
copying, 212

implementing, 208-209

imperative development, 60

implementation

actions, sheets, 283-286

Address Book logic, 646-651

alerts
sounds, 286-288
views, 276-283
applications
data sources, 450-453
interaction, 642
logic, 170, 199-200
audio directions, 704-707

Core Image framework,
616-619

counter displays, 414
custom pickers, 364
date pickers, 349

email message logic,
655-658

files, 70
file system storage, 492
gesture recognizers, 535
implicit preferences, 473
interface, 135
Interface Builder, 508
keyboards, hiding, 195-199
local notifications, 698-701
location services, 661, 668
logic
calculation, 359-364
segues, 370-372

long-running tasks, 708

magnetic compasses, 678

mapping logic, 651-655

Master-Detail Application
template, 443

media, 598

methods, 72, 199

modal segues, 320

movie players, 603-607

music libraries, 619-625

navigation controllers, 399

orientation, 564

Photo Library, 613-616

playback, 611

recording, 608

reframing, 513

scrollviews, 253

segues, logic, 355-359

settings, 479-492

single view application
templates, 154

split view controllers,
431-432

swiping, 551
tab bar controllers, 408
table views, 433

templates, buttons, 192-195

text, 177
tilt, 569

UlPopoverControllerDelegate
protocol, 314-316

universal applications, 722
views
images, 208-209
swapping, 521

implicit preferences

actions, 474-476
application logic, 476-479
constants, adding, 474
formatting, 473-479
interfaces, 474

outlets, 474-476
importing interface files,
356, 370
incrementCount method, 407
incrementing
animation speed, 225-226
counters, 406
indexes, 422
initializing
Core Motion, 573-574
counters, 711
movie players, 604-605
objects, 75-77
recording, 609
sound references, 704
timers, 711

initiating movie playbacks, 605

init messages, 75
input, 9, 175-177
keyboards, 183. See also
input
segmented controls, 233
switches, 232
text, 177. See also text
views, 231
web views, 233-235
installing. See also running
applications, 43
applications, 19-21
developer tools, 13-14

development profiles, 16

instances, 62
adding, 711
location manager, 673-674
methods, 62
movie players, initializing,
604-605
variables, 62, 66
instant feedback, 736-738

instantiation, 62, 119,
304-305, 387

integrated development
environments (IDEs), 25

interaction, applications, 629
Address Book, 630-634

email messages, 634-636,
655-658

Google Maps, 637-641

implementation, 642

mapping, 651-655

Twitter, 636-637

Interface Builder, 117

code
connecting, 133-142
writing, 141

Editor, 162-165

gestures, adding, 533-534

interfaces, customizing,
129-133

layout tools, 126-129
overview of, 117-122

rotatable/resizable
interfaces, 508-512

storyboards, 119-122

user interfaces, creating,
123-129

interfaces

APls, 269, 464

application interaction,
643-644

autosizing, 512
classes, 104-107

Cocoa Touch, 89-91. See also
Cocoa Touch

Cupertino Locator Ul,
672,677

customizing, 129-133
custom pickers, 367-358
date pickers, 351-353
design
animation, 210-218
long-running tasks, 710
resizable, 506-507
rotatable, 506-507

single view application
templates, 162-165

swapping views, 522-524
text, 179-190

universal applications,
723-724, 729

devices, 6. See also devices
files, 65-69

ending, 70

importing, 356, 370
file system storage, 493
flexible design, 509-512
gesture recognizers, 537-539
implementation, 135
implicit preferences, 474
iPads, 446-447
iPhones, 448-450

769
iPads

magnetic compasses,
updating, 679-680

media, 600-601
modal segues, 302-323
navigation controllers, 403
orientation, 565
pickers, 341-348
popovers, 330. See popovers
reframing, 514-519
rotation

enabling, 504-506

events, 562
settings, 481
simulating, 132-133
sliders, 206
sounds, 273-274, 703
steppers, 206-207
tab bar controllers, 411
table views, 435-436
tilt, 570
toolbars, 337-341
user, formatting, 123-129
ViewController.h files, 191
Xcode, navigating, 29-30

Internet connectivity, 8
int type, 74
iPads, 6

gyroscopes, 559-560
interfaces, 446-447

iPhones, multiple targets,
731-732

popovers, 285, 309-319

split view controllers,
430-433

How can we make this index more useful? Email us at indexes@samspublishing.com

770
iPads

universal applications,
717-721, 726-728

WiFi, 661

iPhones, 6
accessing, 459
gyroscopes, 559-560
interfaces, 448-450

iPads, multiple targets,
731-732

universal applications,
development, 717-721

iPods, 6. See also music players
Issue Navigator, 44-46
items
attributes
configuring, 390-391

tab bar controllers,
396-397

badges, 415

bar buttons, 339, 389
images, 408

media, 589, 590
navigation, 389-391
tab bar, 393

jumping through code, 35-36

keyboards

displays, customizing,
181-183

hiding, 195-199, 497
keychains, 17

keys, adding to background
modes, 707

L

labels, 104, 176
modifying, 567
output, adding speed to, 216
text, adding, 183-184
views, 296
Landscape orientation, 517
languages
C, 74
Objective-C, 21. See also
Objective-C
laptops, 9
launch images, 49-50, 721

launching applications in
simulators, 52-53

layers, Cocoa Touch, 91-97
Core 0S, 96-97
Core Services, 95-97
Media, 93-94

layout tools, Interface Builder,
126-129

libraries
music players, 619-625
Object Library, 123-124, 395
Photo Library, 613-616
searching, 109-110

life cycles
applications, 97-99
background-aware

applications, 694-696

limitations of screens, 7
Lion, 9
lists
breakpoints, 750
Property List Editor, 485

variables, accessing,
749-750

loadHTMLString: baseURL
method, 235

loading
animation, 221
content into web views, 234
images, 249-251
picker data, 372-374
settings, 492
sounds, 269
local notifications, 692, 698-701
location managers
applying, 662-666
creating, 673
delegates, 674-677
headings, 666-668
instances, 673-674
locations
constants, adding, 670

magnetic compasses,
678686

recent, storing, 681-682

updating, 663, 675
location services

applications, 668-677

Core Location framework,
661-668

implementation, 661, 668
views, design, 670-672

locMan property, 673
logic
Address Book,
implementation, 646-651
applications

file system storage,

497-499

gesture recognizers,
545-553

implementing, 170,
199-200

implicit preferences,
476-479

location services,
672-677

long-running tasks,
710-712

magnetic compasses,
680-686

model segues, 327-328

navigation controllers,
405-407

orientations, 566-568
popovers, 332-334
reframing, 519-520
settings, 490-492
swapping views, 524-527

tab bar controllers,
413-416

table views, 437-442
tilt, 573-579

universal applications,
725, 729-730

calculation, implementing,
359-364

email messages, 655-658
mapping, 651-655

problems, correcting, 44-46

segues, 355-359, 370-372

view-rotation, 525-527
long-running tasks

background-aware
applications, 708-714

completion, 693
loops

animation, 208-209

events, 98

repetition, 82-83

magnetic compasses, 678-686
application logic, 680-686
headings, 680-681
interfaces, updating, 679-680
outlets, 679

Mail Compose view, 655-656

managing
accelerometers, 574-576
breakpoints, 751

Cocoa Touch, 89-91. See also
Cocoa Touch

Core Motion, 562-564
gyroscopes, 574-576

location manager, applying,
662-666

memory, 83-85

power, location manager, 666
snapshots, 40-42
transitions, 388

Xcode, 26-34

771

media

document sets, 110
projects, 26-34
manual displays, popovers, 313
Map Kit framework, 92
maps
Google Maps, 637-641
logic, implementation,
651-655

viewing, 651

Master-Detail Application
template, 432, 443-459

implementation, 443
outlets, 447
variables, 445

master scenes, updating, 446

MasterViewController class,
454-456

measurements
accelerometers, 558-559
gyroscopes, 559-560
points, 6

media
actions, 601-603
audio, playing/recording,

607-613

AV Foundation framework,
591-593

connecting, 600

Core Image framework,
596-598, 616-619

files, adding, 599

image pickers, 594-596
implementation, 598
interfaces, 600-601
items, 589, 590

music libraries, 619-625

How can we make this index more useful? Email us at indexes@samspublishing.com

772

media

outlets, 601-603

Photo Library, 613-616
pickers, applying, 587-589
rich, 583

Media Player framework,
584-590

navigation, 583-598
variables, 600
Media layer, Cocoa Touch, 93-94

Media Player framework,
584-590

memory, 8
allocating, 75, 83
managing, 83-85
warnings, 55

messages, 62
alloc, 75
email, 634-636, 655-658
init, 75
release, 84

Message Ul framework, 93,
635, 655

messaging, 77-79
nested, 78-79
syntax, 77-78
methods
applicationDidBecomeActive,
695
applicationDidEnter
Background, 695
application:didFinish
LaunchingWithOptions, 695
applicationWillEnter
Foreground, 695, 698

applicationWillResignActive,
695

applicationWillTerminate, 695
applying, 77-79
background-aware
applications, 694-696
chooselmage, 614
classes, 62
configureView, 458
controlHardware, 574
convenience, 76
Core Graphics, 522
defining, 69-70, 264
describelnteger, 740
dismissDateChooser, 354
doAccelerometer, 577
doActionSheet, 283
doAlert, 276, 699
doAlertinput, 281
doRotation, 578
doSound, 287
doVibration, 288
editing, 198
foundPinch, 547
foundRotation, 550
foundSwipe, 547
foundTap, 546
implementation, 72, 199
incrementCount, 407
instances, 62

loadHTMLString: baseURL,
235

motionEnded:withEvent, 552
newBFF, 646

NSURL, 234
NSURLRequest, 234

numberOfComponentsinPicker
View, 343

pickerView:didSelectRow:
inComponent, 346

pickerView:numberOfRows
InComponent, 344

playAudio, 612

playMovie, 605

playMusic, 624

popoverControllerDidDismiss
Popover, 316

prepareForSegue: sender,
307-309

recordAudio, 610
requestWithURL, 234
searching, 35
setDateTime, 354, 364
setincrement, 226
setOutput, 170
setSpeed, 224

setValuesFromPreferences,
491

showDateChooser, 339, 354
showResults, 499
storeResults, 497

stubs, 141

toggleAnimation, 223

user alerts, 271-288
viewDidload, 620, 704, 741
viewDidUnload, 161, 252
viewWillAppear:animated, 406

modal displays, configuring
styles, 305-306

modal scenes, dismissing, 359

modal segues, 303-304
applying, 319-329
formatting, 323-326

Modal styles, 300

modal Ul elements, 262

modal views, multiscene
storyboards, 293

models, MVC (Model-View-
Controller), 153

Model-View-Controller. See MVC
modes
backgrounds, 693

keys, adding to backgrounds,
707

landscape, 517
modifying
attributes, 390
components, 376
images, 549
labels, 567
objects, 130
segmented controls, 239
snapshots, managing, 40-42
text colors, 186
views, 122
motion
data, accessing, 560-564
detecting, 568-579
hardware, 558-560
accelerometers, 558-559
gyroscopes, 559-560

orientations, sensing,
564-568

motionEnded:withEvent
method, 552

movie players. See also media
applying, 585-586
completion, 586-587
formatting, 586
implementation, 603-607

moving, Control-drag, 299

MPMedialtem class, 584

MPMedialtemCollection class,
584

MPMediaPickerController class,
584, 587

MPMoviePlayerController class,
584-586

MPMusicPlayerController class,
584, 589-590

multibutton alerts, 278

multiple devices, 18. See also
devices

multiple popovers, 316. See also
popovers

multiple targets, applying to
universal applications, 730-732
multiscene storyboards, 291-309
development, 386-387
overview of, 293-294
preparing, 294-299
segues, formatting, 299-303
multitouch
events, generating, 54

gesture recognition, 532-534

773

navigation

music
players
applying, 589-590
libraries, 619-625
selecting, 623
MVC (Model-View-Controller), 22
application design, 147
data models, 153
overview, 147-149

single view application
templates, 154-171

views, 149-150
Xcode, 149-153

naming
classes, 297
controllers, 121
scenes, 295, 323
navigation
bars, 389-391
controllers, 386-393
actions, 403
adding, 400
application logic, 405-407
applying, 398-407
implementation, 399
interfaces, 403
outlets, 403
push segues, 402
storyboards, 389-393

How can we make this index more useful? Email us at indexes@samspublishing.com

774

navigation

events, 456

files, Objective-C, 64-73
Interface Builder, 117-122
items, 389

people picker navigation
controller delegates,
631-633, 646

pickers, 341-348
rich media, 583-598
scenes, sharing, 393

split view controllers,
430-433

Xcode, 34-42
interfaces, 29-30
projects, 30-31
nested messaging, 78-79
newBFF method, 646
new code files, adding, 31
New File dialog box, 483
NeXTSTEP, 91
notifications, 268. See also alerts
formatting, 699-701
local, 692, 698-701
orientations, 561-562
properties, 698
scheduling, 699-701
NSLog function, 664
instant feedback, 736-738
NSURL method, 234
NSURLRequest method, 234
NSUserDefaults class, 466

numberOfComponentsinPicker
View method, 343

numbers, 103, 367

o

Objective-C, 21-22
files, navigating, 64-73

object-oriented programming,
59-64

programming, 73-83
Object Library, 123-124, 395

pinch gesture recognizers,
542

swipe gesture recognizers,
541

object-oriented programming.
See OOP, 59-64

objects, 62
adding, 163-165
aligning, 127
allocating, 75-77
applications, 100
Attributes Inspector, 130
Cocoa, 648
coordinates, configuring,
data types, 74
Document Outline area, 122
Identity Inspector, 141-142
initializing, 75-77
instantiation, 119
modifying, 130
scroll views, adding, 254
Text Field, 179
views, adding, 124-127
windows, 100

older (i0S) versions, background-
aware applications, 696

onscreen controls, 101

OOP (object-oriented
programming)

Objective-C, 59-64

terminology, 61-63
OpenGL ES framework, 94
opening projects, 134
operating systems. See 0S, 386
options

action sheets, 266

bar button items, 340

filtering, 31

shapes, 189

text, scrolling, 187
Organizer (Xcode), 16
orientations

accessing, 560-564

devices, configuring, 47

enabling, 505

Landscape, 517

rotation, 508. See also
rotation

sensing, 564-568

testing, 509-510

updates, registration, 566

upside-down, disabling, 522
0S (operating systems), 386
outlets, 135-136

animation, formatting,
217-221

application interaction,
644-646

custom pickers, 370
date pickers, 354-355
file system storage, 494-496

formatting, 190-192

gesture recognition, 543-545
implicit preferences, 474-476
location services, 672
long-running tasks, 710

magnetic compasses,
678679

Master-Detail Application
template, 447

media, 601-603

model segues, 326-327

navigation controllers, 403

orientations, 566

popovers, 331

reframing, 518

settings, 482

single view application
templates, 165-169

sounds, 273-275

switches, 237

tab bar controllers, 412-413

table views, 436

theScroller,

tilt, 571

universal applications,
723,729

views
swapping, 524
web pages, 245

outlines, Document Outline, 395

output, 175-177

labels, adding speed to, 216
NSLog function, viewing, 737
segmented controls, 233
switches, 232

views, 231
web views, 233-235

P

Page Sheet presentation
styles, 302

paid developer programs, joining,
11-13

panning, 532
parameters, 62
Partial Curl transition, 302

passing data between scenes,
306-309

passthroughs, views, 311
pasting text, 183
paths

coding, 81

files, 471-472
patterns, Singleton, 466
pausing

audio, 590

breakpoints, 744

people picker navigation
controller delegates, 631-633,
646

peripheral devices, 8. See also
devices

permissions, Core Location
framework, 663

Photo Library, 613-616

pickers, 106, 338
components, 345
customizing, 364-380
dates, 342-343, 349-364

775
playing

delegates, 347-348
images
preparing, 614
viewing, 614
navigating, 341-348
views, 343-348

data source protocol,
343-345, 374-375

delegate protocol,
345-346, 375-376

pickerView:didSelectRow:
inComponent method, 346

pickerView:numberOfRowsIn
Component method, 344

pictures, 9
pinching, 532
adding, 541-542
responding to, 547-549
pixels, 6
Placeholder Text fields, 180
planning
connecting, 178

single view application
templates, variables,
159-162

playAudio method, 612
playback
audio, 590-593
completion, 586-587
enabling, 268
implementation, 611
playing. See also loading
alerts, 287
audio, 607-613
Media Player, 584-590
music libraries, 619-625

How can we make this index more useful? Email us at indexes@samspublishing.com

776
playing

sounds, 269, 287
vibrations, 287
playMovie method, 605
playMusic method, 624
pointers, 74
points, 6
popoverControllerDidDismiss
Popover method, 316

popovers, 107
applying, 328-334
dismissing, 313-316
displays, programming,
316-319

interfaces, 330
iPads, 285, 309-319
manual displays, 313
preparing, 310

segues, formatting, 310-313,
330-331

sizing, 369

viewing, 318

views, sizing, 331
Popover style, 300
populating

data structures, 453

flower arrays, 437
positioning

controls, 515

elements, 517

power management, location
manager, 666

pragma marks, adding, 38-39
preferences
applications, 463-465
creating implicit, 473-479
formatting, 483
types, 468

prefixes, classes, 28

prepareForSegue: sender method,
307-309

preparing
audio players, 611

Core Location framework,
673

custom pickers, 347
date pickers, 350
filters, 617

image pickers, 614
media pickers, 620

Media Player frameworks,
604, 608

multiscene storyboards,
294-299

popovers, 310
Twitter, 657
presentation styles
Current Context, 302
Form Sheet, 302
Full Screen, 302
Page Sheet, 302
segmented controls,
pressing, 532
primitive data types, 74
processing
tasks

background-aware
applications, 701-708

enabling, 713-714
task-specific background, 693
programming
imperative development, 60
Objective-C, 59-64, 73-83
popover displays, 316-319
scene switches, 304-306

Project Navigator, 30, 47
projects
animation, 209-210
configuring, 178-179
opening, 134
resources
adding, 32
deleting, 33-34
Search Navigator, 37
Xcode
adding new code files, 31
managing, 26-34
navigating, 30-31
properties, 46-51
Prompt attribute, 390
properties, 62
accessing, 315
alertBody, 699
alertViewsStyle, 263
animationDuration, 222

applicationlconBadgeNumber,
698

contentViewController, 316
delegates, 356-357, 371
desiredAccuracy, 666
distanceFilter, 666
fireDate, 699
headingAvailable, 667
hidden, 249

Interface Builder, 131
locMan, 673
notifications, 698
pushcount, 405, 413
repeatinterval, 699

searching, 35

soundName, 699

speed, 664

tapping, 540

text, 176

timeZone, 699

touching, 540

Xcode projects, 46-51
Property List Editor, 485
protocols, 67, 264

CLLocationManagerDelegate,
662

delegates, 456
pickers

view data source,
343-345, 374-375

view delegate, 345-346,
375-376

table view data source,
426-430

UlPopoverControllerDelegate,
314-316

UlPopoverControllerDelegate,
configuring, 317-318

prototypes, 69

adding, 652

cells, 424-426, 436
Provisioning Portal, 16
provisioning profiles

creating, 16-18

development, overview of, 15
pushcount property, 405, 413
push segues, 391-393, 402
Push style, 300

Q

Quartz Core framework, 94
Quick Help, Xcode, 110-113

Quick Look framework, 96

radians
constants, 679
degrees, adding to, 522
radio buttons, 232
RAM (random access memory), 8

random access memory
(RAM), 8

ranges
sliders, configuring, 213-215
steppers, configuring, 215
reading. See also viewing
accelerometers, 562-564
data, 472-473
gyroscopes, 562-564
user defaults, 466-467
recent locations, storing, 681-682
recognition
gestures, applying, 534-553
multitouch gesture, 532-534
pinching, adding, 541-542
rotation, adding, 542-543
swiping, adding, 541
tapping, adding, 539-540
recordAudio method, 610

777

requesting

recording
audio, 591, 607-613

AV Audio Recorders, applying,
592-593

implementation, 608
records, selecting, 632
recovering from crashes, 56
references

ARC (automatic reference
counting), 84-85

detail view controllers, 459

sounds, initializing, 704
reframing, 507

application logic, 519-520

interfaces, 514-519

outlets, 518

rotation, 513-521
registration

developers, 10-12

local notifications, 699

orientation updates, 566
relationships

multiscene storyboards, 293

tab bar controllers,
formatting, 410

Release build configuration, 739
release messages, 84
repeatinterval property, 699
repetition, loops, 82-83
Replace style, 300
repositioning elements, 517
requesting
development certificates, 17
heading updates, 681

orientation notifications,
561-562

How can we make this index more useful? Email us at indexes@samspublishing.com

778
requestWithURL method

requestWithURL method, 234

requirements, developers, 9-14

resetting simulators, 53
resizable interfaces
design, 506-507
Interface Builder, 508-512
resizing
autoresizing, 506
autosizing, 512, 515
handles, 127
Size Inspector, 128-129
resolutions, 6
resources
adding, 32
animation, 209

applications, 8. See also
applications

background images, 346
deleting, 33-34
images
adding, 444, 481
directions, 678

gesture recognizers, 536

responders, 100
responding

to action sheets, 267-268,
284-286

to alert views, 264, 279-280

enabling, 551-552
to pinching, 547-549
to rotation, 549-551
to shaking, 552-553
to swiping, 547

to tapping, 546-547

results, viewing, 498
Retina displays, 212
returning

headings, 439

sections, 438

rich media, 583. See also media

AV Foundation framework,
591-593

Core Image framework,
596-598

image pickers, 594-596

Media Player framework,
584-590

navigation, 583-598

roles of toolbars, 341

root classes, 100

Root.plst files, 469, 488

rotatable interfaces
design, 506-507
enabling, 504-506
Interface Builder, 508-512

rotation, 532. See also motion
adding, 542-543
autorotation, 506
detecting, 568-579
enabling, 508, 514, 522
gyroscopes, 559-560
interface events, 562
reframing, 513-521
responding to, 549-551

simulated devices, 54

view-rotation logic, 525-527

views, swapping, 521-527

Rounded Rect button, 187
rows, sizing, 376

running applications, 19-21, 43

S

scaling, 6
images, 548
web pages, 244
scenes

adding, 294, 320-322,
391-393

detail, updating, 446
dismissing modal, 304
master, updating, 446

multiscene storyboards,
291-309

naming, 295, 323
navigation, sharing, 393

navigation items, customizing,
391

passing data between,
306-309

relationships, 410

segue logic, implementing,
355-359, 370-372

segues. See segues

switches, programming,
304-306

tab bar controllers, 394-398,
409

transitions, managing, 388
views, adding, 523
scheduling notifications, 699-701

schemes, selecting build, 42
screens, 6-8
Scroller outlets, 257
scrolling
configuring, 187
enabling, 257
views, 235, 252-258
SDKs (Software Development
Kits), 10, 13, 153, 175
searching libraries, 109-110
Search Navigator, 37
sections
returning, 438
tables, constants, 434
Security framework, 97
security keychains, 17
segmented controls, 105, 233
adding, 238
applying, 236-252
modifying, 239
segments
adding, 238-239
sizing, 240
segues, 387
custom pickers, 369
date pickers, 352-353
formatting, 299-303
logic, implementation,
355-359, 370-372
modal, 303-304, 319-329
multiscene storyboards, 293

popovers, formatting,
310-313, 330-331

push, 391-393
starting, 303

views, connecting, 403

selecting
Address Book records, 632
build schemes, 42
contacts, 648
empty selections, 623
images, 595, 615-616
keyboards, 183
media, 588
music, 623
selection handles, applying, 127
self, 63
semicolons (;), 67
sending tweets (Twitter), 637
sensing orientations, 564-568

services, location. See location
services

setDateTime method, 354, 364
setincrement method, 226
setOutput method, 170
setSpeed method, 224

settings. See also configuring;
formatting

application logic, 490-492
autosizing, 512

bundles, 467-469, 483-490
implementation, 479-492
interfaces, 481

outlets, 482

universal applications,
720-721

Settings application, 464. See
also preferences

setValuesFromPreferences
method, 491

shaking, 532, 552-553

779

Size Inspector

shapes, customizing, 189
sharing

between navigation
scenes, 393

tab bar controllers, 398
sheets, actions

implementing, 283-286

responding, 284-286

showDateChooser method,
339, 354

showResults method, 499
shrinking images, 549. See also
pinching
simulating interfaces, 132-133
Simulators, 42
simulators
applications, launching, 52-53
applying, 51-56
devices, rotating, 54
resetting, 53
testing, 53-56
Singleton pattern, 466
singletons, 62

single view application templates,
154-171, 296

application logic,
implementing, 170
configuring, 155-159
implementation, 154
interface design, 162-165
outlets, 165-169
variables, planning, 159-162
Size Inspector, 128-129,
autosizing, 512

X and Y coordinates,
configuring, 254

How can we make this index more useful? Email us at indexes@samspublishing.com

780

sizing

sizing

autoresizing, 506

autosizing, disabling, 515

handles, 127

popovers, 311, 369

rows, 376

segments,

views, popovers, 331
skills, developers, 9-14
sliders, 105, 206

adding, 213

ranges, configuring, 213-215
snapshots, managing, 40-42
Snow Leopard, 9

Software Development Kits.
See SDKs, 10, 13, 153, 175

soundName property, 699

sounds, 9. See also alerts
actions, 274-275
adding, 271

alerts, implementing,
286-288

constants, adding, 704

defaults, 611

interfaces, 273-274, 703

loading, 269

music players, 589-590

outlets, 274-275

playing, 287

references, initializing, 704
speed

animation, configuring,
223-226

output labels, adding to, 216
properties, 664

split view controllers
hierarchies, 444-445
navigation, 430-433
starting
animation, 222
background processing, 713
segues, 303
statements
if-then-else, 80
switch, 80
states
default, configuring, 241
variables, viewing, 743-745

status bars, configuring displays,
50-51

steppers, 106, 206-207, 215
stepping through code, 745-748
stopping

animation, 222

audio, 590
storage

applications, 465-473

direct file system access,
469-473

settings bundles, 467-469
user defaults, 466-467
file system, 492-499

locations for application data,
470471

recent locations, 681-682
Store Kit framework, 96
storeResults method, 497
storyboards

files, 157-159

Interface Builder, 119-122

multiscene, 291-309,
386-387

navigation controllers,
389-393

tab bar controllers, 394-398
strings, 102
structures

applications, 450

Objective-C files, navigating,
64-73
stub methods, 141
styles
buttons, 187, 340

modal displays, configuring,
305-306

segmented controls,
modifying, 239
segues, 300
tables, 422
subclasses, 62, 296-298
subgroups, 31
Summary view, 720
support
AirPlay, adding, 585
content types, 234
devices, orientations, 47
Supporting Files folder, 46
survey applications, 492-499
suspension
applications, 692

background-aware
applications, 697-699

swapping views, 507, 521-527
swiping, 532
adding, 541
implementation, 551

responding to, 547

switches, 105, 232
adding, 240
applying, 236-252
outlets, 237

scenes, programming,
304-306

statements, 80
Symbol Navigator, 35-36
syntax

expressions, 80

messaging, 77-78
System Configuration

framework, 96

System framework, 97

System Sound Services, 261,
268-270

T

tab bar controllers, 386-387
application logic, 413-416
applying, 407-416
connecting, 409

GenericViewController class,
408

images, 408
implementation, 408
interfaces, 411
items
attributes, 396-397
badges, 415
outlets, 412-413
overview of, 393-398
relationships, formatting, 410

scenes, 397-398, 409
sharing, 398
storyboards, 394-398
variables, 409
tables
attributes, configuring, 423
cells, 422, 455-456
overview, 422-430
sections, constants, 434
styles, 422
views, 433-443
adding, 423-430
application logic, 437-442
interfaces, 435-436

table view data source protocol,
426-430

tapping, 532
adding, 539-540
responding to, 546-547
targets
multiple, applying, 730-732
simulators, 51
tasks

background-aware
applications, 701-708,
713-714

enabling, 713-714
long-running, 708-714

task-specific background
processing, 693

technology layers, Cocoa Touch,
91-97

templates

buttons, implementation,
192-195

Empty Application, 27

781

toolbars, role of

Master-Detail Application,
432, 443-459

single view applications,
154-171, 296

universal applications, 719
Xcode, 27
testing
applications, 56
orientations, 509-510
simulators, 53-56
unit, 28
text, 9

copying/pasting, 183
editing, 35. See also editing
fields, 106, 176

adding, 179

editing, 180-181
implementation, 177
interface design, 179-190
projects, configuring, 178-179
scrolling, configuring, 187
Search Navigator, 37
views, 176

adding, 183-184

editing, 184-186

tilt, detecting, 568-579. See also
motion

time, viewing, 360

timers, initializing, 711
timeZone property, 699

Title attribute, 390
toggleAnimation method, 223

toggle switches, 232. See also
switches

toolbars, role of, 337-341

How can we make this index more useful? Email us at indexes@samspublishing.com

782

tools

tools
developers, installing, 13-14
input/output, 175-177
Interface Builder, 126-129
touching, 532

backgrounds, hiding
keyboards with, 197

configuring, 542
tracing applications, 97-99, 735
traits, text input, 181
transferring applications, 43
transitions

animation, 302

managing, 388
triggering

actions, 176

counter updates, 416
troubleshooting

coding, 44-46

Core Location framework,
664

crashes, recovering, 56
detail views, 459
location manager, 674
memory, 83

Twitter, 636-637
frameworks, 93
preparing, 657

typecasting, 76-77

types, 74
of backgrounding, 692-694
of content support, 234
of data classes, 101-104

of preferences, 468

of tasks, 693
of transitions, animation, 302
values, 489

U

UlActionSheet class, 265
UlAlertView class, 262
UlBarButtonltem class, 389
UlButton class, 176
UlDatePicker class, 342
UlDevice class, 561-562

UlimagePickerController class,
584, 594

UllimageView class, 207, 617
UIKit class, 92

UlLabel class, 176
UINavigationBar class, 389
UINavigationController class, 388
UINavigationltem class, 389

UlPopoverControllerDelegate
protocol

configuring, 317-318
implementing, 314-316
UlScrollView class, 235
UlSlider class, 206
UlStepper class, 207
UISwitch class, 232
UlTableView class, 433
UlTableViewController class, 422

UlTapGestureRecognizer
class, 539

UlTextField class, 176
UlTextView class, 176

UlViewController class, 297

uniform resource locators
(URLs), 104

unit testing, 28

universal applications, 717
development, 717-721
formatting, 722-726
interface design, 729
iPads, 726-728
multiple targets, applying,

730-732

updating
accelerometers, managing,
574-576

content, 8

counter, triggering, 416
counters, 712

dates, 363

detail scenes, 446
displays, 712

doAlert method, 699
filtering, 666

gyroscopes, managing,
574-576

headings, 667, 684-686
interfaces, 679

locations, 663, 675

master scenes, 446
operating systems, 386
orientations, registration, 566
sounds, 703

values, counters, 414
ViewController.h file, 702

upside-down orientation,
disabling, 522

URLs (uniform resource locators),

104
users
alerts, 261-270
methods, 271-288

defaults, 466-467. See also
defaults

input/output, 175-177
interfaces. See also
interfaces

creating, 123-129

popovers. See popovers

'}

values
counters, updating, 414
height, 258
types, 489
width, 258

variables, 62
adding, 711
animation, 209
application interaction, 642
custom pickers, 366
date pickers, 351
declaring, 73-75
file system storage, 493
gesture recognizers, 536
implicit preferences, 473
instances, 62, 66
lists, accessing, 749-750
location services, 670

magnetic compasses, 678

Master-Detail Application
template, 445

media, 600

navigation controllers, 401
planning, 178

reframing, 514

settings, 481

single view application
templates, planning,
159-162

states, viewing, 743-745

tab bar controllers, 409

table views, 434

universal applications, 723

views, swapping, 521
Verizon, 8

versions, background-aware
applications, 696

vibrations, 268. See also alerts
devices, 288
playing, 287

video, 9. See also media

ViewController class, 296,
395, 400

ViewController.h files, 191, 702
View Controllers, 120

viewDidload method, 620,
704, 741

viewDidUnload method, 161, 252

View icons, 119

viewing
active devices, 725
contacts, 648
counters, 406
dates and time, 360

email messages, 634

783

views

images, 249-251

local notifications, 701
maps, 651

media pickers, 587, 621
output, NSLog function, 737
popovers, 318

Quick Help Inspectors, 111
segments, 239

snapshots, 41

states, variables, 743-745
survey results, 498

web pages, 248-249

view-rotation logic, 525-527
views, 100, 231

adding, 294, 523

advanced view controllers,
386-387

alerts, 262-265
fields, 280-283
implementing, 276-283
responding, 264, 279-280

Annotation, customizing,
640, 654

controllers, 101
adding, 294

associating, 298,
320-322, 400, 409

Compose, 635
configuring files, 159-160
identifiers, 304
instantiation, 304-305

multiscene storyboards,
293

MVC (Model-View-
Controller), 150

subclasses, 296-298

How can we make this index more useful? Email us at indexes@samspublishing.com

784

views

tables, 422. See also swapping, 507 width

tables

universal applications,
726-728

custom pickers, 372-379
detail, troubleshooting, 459
formatting, 515-517

gesture recognizers, adding,
539-543

images, 207
adding, 210
copying, 212
implementing, 208-209
labels, 296

location service design,
670-672

Mail Compose, 655-656

modifying, 122

MVC (Model-View-Controller),
149-150

Object Library, 123-124
objects, adding, 124-127
passthroughs, 311

pickers, 343-348

popovers, sizing, 331
rotatable interfaces, 508-512
rotation, swapping, 521-527
scrolling, 235, 252-258
segmented controls, 233
segues, connecting, 403

single view application
templates, 154-171

split view controllers,
430-433

Summary, 720

tables, 433-443
adding, 423-430

application logic, 437-442

interfaces, 435-436
text, 176
adding, 183-184
editing, 184-186
web pages, 233-235
actions, 246-248
adding, 242
applying, 236-252
attributes, 243-244
hiding, 248-249
outlets, 245

viewWillAppear:animated
method, 406

visibility flags, 358
VolP (Voice over IP), 693

w

warnings
corrections, 44-46
memory, 55

watchpoints, configuring,
748-749

web page views, 233-235
actions, 246-248
adding, 242
applying, 236-252
attributes, 243-244
hiding, 248-249
outlets, 245

custom pickers, 377

values, 258

WiFi, 8, 661. See also connecting
wildcard App IDs, 17

windows, objects, 100

wireless hot spots, 8

writing

code with Interface Builder,
141

data, 472-473
email messages, 634

tweets (Twitter), 657.
See also Twitter, 93,
636-637

user defaults, 466-467

Xcode, 9, 14

applications

building, 42-46

delegate classes, 98
applying, 25-51
Assistant Editor, applying, 39
debugging, applying, 738-752
documentation, 108-110
editing, 34-42
frameworks, 108-113
gutters, 741

Interface Builder, 117. See
also Interface Builder

interfaces, navigating, 29-30
libraries, 124

785

Y coordinates, configuring

MVC (Model-View-Controller),
149-153

New File dialog box, 483
Organizer, 16
projects
adding new code files, 31
managing, 26-34
navigating, 30-31
properties, 46-51
Property List Editor, 485
Quick Help, 110-113

segues, 387. See also
segues

snapshots, managing, 40-42

storyboards, 387. See also
storyboards

X coordinates, configuring, 254

Y-Z

Y coordinates, configuring, 254

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Introduction
	Who Can Become an iOS Developer?
	Who Should Use This Book?
	What Is (and Isn’t) in This Book?

	HOUR 5: Exploring Xcode’s Interface Builder
	Understanding Interface Builder
	Creating User Interfaces
	Customizing the Interface Appearance
	Connecting to Code
	Further Exploration
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

