Siddhartha Rao SEVENTH
EDITION

Covers

C++11

SamsTeach Yourself

C++

in One Hour a Day

FREE SAMPLE CHAPTER
6 O a d

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335679
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335679
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335679
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335679
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335679/Free-Sample-Chapter

Siddhartha Rao

SamsTeach Yourself

++

in One Hour a Day
Seventh Edition

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself C++ in One Hour a Day,
Seventh Edition

Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33567-9
ISBN-10: 0-672-33567-0

The Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America

Third Printing April 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international @pearsoned.com

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu
Managing Editor
Sandra Schroeder
Project Editor
Mandie Frank
Copy Editor
Charlotte Kughen
Indexer

Tim Wright
Proofreader
Megan Wade
Technical Editor
Jon Upchurch
Publishing
Coordinator
Vanessa Evans
Designer

Gary Adair
Compositor
Studio Galou, LLC

Contents at a Glance

Introduction

PART I: The Basics

1

0 N O g 2 WN

PART II:

9
10
11
12
13
14

Getting Started

The Anatomy of a C++ Program

Using Variables, Declaring Constants

Managing Arrays and Strings

Working with Expressions, Statements, and Operators
Controlling Program Flow

Organizing Code with Functions

Pointers and References Explained

Fundamentals of Object-Oriented C++ Programming
Classes and Objects

Implementing Inheritance

Polymorphism

Operator Types and Operator Overloading

Casting Operators

An Introduction to Macros and Templates

PART lil: Learning the Standard Template Library (STL)

15
16
17
18
19
20

An Introduction to the Standard Template Library
The STL String Class

STL Dynamic Array Classes

STL list and forward_list

STL Set Classes

STL Map Classes

PART IV: More STL

21
22
23
24
25

PART V:

26
27

Understanding Function Objects
C++11 Lambda Expressions

STL Algorithms

Adaptive Containers: Stack and Queue
Working with Bit Flags Using STL

Advanced C++ Concepts
Understanding Smart Pointers
Using Streams for Input and Output

15
29
57
77
105
141
165

203
251
283
311
353
367

393
405
423
445
467
487

511
527
543
579
597

607
621

28
29

Exception Handling
Going Forward

Appendixes

A

m O OO w

Working with Numbers: Binary and Hexadecimal
C++ Keywords

Operator Precedence

Answers

ASCII Codes

Index

643
659

671
677
679
681
723

727

Table of Contents

Introduction

PART I: The Basics

LESSON 1: Getting Started

A Brief History of C++
Connection to C
Advantages of C++
Evolution of the C++ Standard
Who Uses Programs Written in C++?
Programming a C++ Application
Steps to Generating an Executable
Analyzing Errors and Firefighting
Integrated Development Environments

Programming Your First C++ Application

Building and Executing Your First C++ Application

Understanding Compiler Errors
What’s New in C++11
Summary
Q&A
Workshop

LESSON 2: The Anatomy of a C++ Program

Part of the Hello World Program
Preprocessor Directive #include
The Body of Your Program main()
Returning a Value

The Concept of Namespaces

Comments in C++ Code

Functions in C++

Basic Input Using std::cin and Output Using std::cout

Summary

Q&A

Workshop

© ®©® 0 0 I N 9 O

e e e e e
A LW WD DO

15
16
16
17
18
19
20
21
24
26
26
27

vi Sams Teach Yourself C++ in One Hour a Day

LESSON 3: Using Variables, Declaring Constants

What Is a Variable?
Memory and Addressing in Brief
Declaring Variables to Access and Use Memory
Declaring and Initializing Multiple Variables of a Type
Understanding the Scope of a Variable
Global Variables

Common Compiler-Supported C++ Variable Types
Using Type bool to Store Boolean Values
Using Type char to Store Character Values
The Concept of Signed and Unsigned Integers
Signed Integer Types short, int, long, and long long

Unsigned Integer Types unsigned short, unsigned int, unsigned
long, and unsigned long long

Floating-Point Types float and double
Determining the Size of a Variable Using sizeof
Using typedef to Substitute a Variable’s Type
What Is a Constant?

Literal Constants

Declaring Variables as Constants Using const

Declaring Constants Using constexpr

Enumerated Constants

Defining Constants Using #define
Naming Variables and Constants
Keywords You Cannot Use as Variable or Constant Names
Summary
Q&A
Workshop

LESSON 4: Managing Arrays and Strings
What Is an Array?
The Need for Arrays
Declaring and Initializing Static Arrays
How Data Is Stored in an Array
Accessing Data Stored in an Array

Modifying Data Stored in an Array

29
30
30
30
32
33
35
36
37
37
38
39

39
40
40
44
45
45
46
47
48
50
51
52
53
53
55

57
58
58
59
60
61
62

Multidimensional Arrays
Declaring and Initializing Multidimensional Arrays
Accessing Elements in a Multidimensional Array

Dynamic Arrays

C-style Strings

C++ Strings: Using std::string

Summary

Q&A

Workshop

LESSON 5: Working with Expressions, Statements, and Operators
Statements
Compound Statements or Blocks
Using Operators
The Assignment Operator (=)
Understanding 1-values and r-values

Operators to Add (+), Subtract (-), Multiply (¥),
Divide (/), and Modulo Divide (%)

Operators to Increment (++) and Decrement (--)
To Postfix or to Prefix?
Equality Operators (==) and (!=)
Relational Operators
Logical Operations NOT, AND, OR, and XOR
Using C++ Logical Operators NOT (!), AND (&&), and OR (||)
Bitwise NOT (~), AND (&), OR (|), and XOR (*) Operators
Bitwise Right Shift (>>) and Left Shift (<<) Operators
Compound Assignment Operators
Using Operator sizeof to Determine the Memory Occupied by a Variable
Operator Precedence

Summary

Q&A

Workshop

LESSON 6: Controlling Program Flow
Conditional Execution Using if ... else
Conditional Programming Using if ... else

Executing Multiple Statements Conditionally

Contents

65
65
66
68
70
72
75
75
76

77
78
79
79
79
79

80
81
81
84
85
87
88
92
94
96
98
99
101
102
102

105
106
107
109

Vil

viii Sams Teach Yourself C++ in One Hour a Day

Nested if Statements 111
Conditional Processing Using switch-case 115
Conditional Execution Using Operator (?:) 118
Getting Code to Execute in Loops 119
A Rudimentary Loop Using goto 119

The while Loop 121

The do...while loop 123

The for Loop 125
Moditying Loop Behavior Using continue and break 128
Loops That Don’t End, that is, Infinite Loops 129
Controlling Infinite Loops 130
Programming Nested Loops 133
Using Nested Loops to Walk a Multidimensional Array 134

Using Nested Loops to Calculate Fibonacci Numbers 136
Summary 137
Q&A 138
‘Workshop 138
LESSON 7: Organizing Code with Functions 141
The Need for Functions 142
What Is a Function Prototype? 143

What Is a Function Definition? 144

What Is a Function Call, and What Are Arguments? 144
Programming a Function with Multiple Parameters 145
Programming Functions with No Parameters or No Return Values 146
Function Parameters with Default Values 147
Recursion—Functions That Invoke Themselves 149
Functions with Multiple Return Statements 151
Using Functions to Work with Different Forms of Data 152
Overloading Functions 152
Passing an Array of Values to a Function 154
Passing Arguments by Reference 156

How Function Calls Are Handled by the Microprocessor 158
Inline Functions 159
Lambda Functions 161

Summary 162

Contents

Q&A 163
Workshop 163
LESSON 8: Pointers and References Explained 165
What Is a Pointer? 166
Declaring a Pointer 166
Determining the Address of a Variable Using the Reference Operator (&) 167
Using Pointers to Store Addresses 168
Access Pointed Data Using the Dereference Operator (*) 170
What Is the sizeof() of a Pointer? 173
Dynamic Memory Allocation 175
Using Operators new and delete to Allocate and Release
Memory Dynamically 175
Effect of Incrementing and Decrementing Operators (++ and --) on Pointers 179
Using const Keyword on Pointers 181
Passing Pointers to Functions 182
Similarities Between Arrays and Pointers 184
Common Programming Mistakes When Using Pointers 186
Memory Leaks 187
When Pointers Don’t Point to Valid Memory Locations 187
Dangling Pointers (Also Called Stray or Wild Pointers) 189
Pointer Programming Best-Practices 189
Checking If Allocation Request Using new Succeeded 191
What Is a Reference? 193
What Makes References Useful? 194
Using Keyword const on References 196
Passing Arguments by Reference to Functions 196
Summary 198
Q&A 198
Workshop 200
PART II: Fundamentals of Object-Oriented C++ Programming
LESSON 9: Classes and Objects 203
The Concept of Classes and Objects 204
Declaring a Class 204
Instantiating an Object of a Class 205

ix

Sams Teach Yourself C++ in One Hour a Day

Accessing Members Using the Dot Operator . 206
Accessing Members Using the Pointer Operator (->) 206
Keywords public and private 208
Abstraction of Data via Keyword private 210
Constructors 212
Declaring and Implementing a Constructor 212

When and How to Use Constructors 213
Overloading Constructors 215

Class Without a Default Constructor 217
Constructor Parameters with Default Values 219
Constructors with Initialization Lists 220
Destructor 222
Declaring and Implementing a Destructor 222
When and How to Use Destructors 223

Copy Constructor 225
Shallow Copying and Associated Problems 225
Ensuring Deep Copy Using a Copy Constructor 228

Move Constructors Help Improve Performance 233
Different Uses of Constructors and Destructor 235
Class That Does Not Permit Copying 235
Singleton Class That Permits a Single Instance 236

Class That Prohibits Instantiation on the Stack 239

this Pointer 241
sizeof() a Class 242
How struct Differs from class 244
Declaring a friend of a class 245
Summary 247
Q&A 248
‘Workshop 249
LESSON 10: Implementing Inheritance 251
Basics of Inheritance 252
Inheritance and Derivation 252

C++ Syntax of Derivation 254
Access Specifier Keyword protected 256

Base Class Initialization—Passing Parameters to the Base Class 258

Contents Xi

Derived Class Overriding Base Class’ Methods 261
Invoking Overridden Methods of a Base Class 263
Invoking Methods of a Base Class in a Derived Class 264
Derived Class Hiding Base Class’ Methods 266
Order of Construction 268
Order of Destruction 268
Private Inheritance 271
Protected Inheritance 273
The Problem of Slicing 277
Multiple Inheritance 271
Summary 281
Q&A 281
Workshop 281
LESSON 11: Polymorphism 283
Basics of Polymorphism 284
Need for Polymorphic Behavior 284
Polymorphic Behavior Implemented Using Virtual Functions 286
Need for Virtual Destructors 288
How Do virtual Functions Work? Understanding the Virtual Function Table 292
Abstract Base Classes and Pure Virtual Functions 296
Using virtual Inheritance to Solve the Diamond Problem 299
Virtual Copy Constructors? 304
Summary 307
Q&A 307
Workshop 308
LESSON 12: Operator Types and Operator Overloading 311
What Are Operators in C++? 312
Unary Operators 313
Types of Unary Operators 313
Programming a Unary Increment/Decrement Operator 314
Programming Conversion Operators 317
Programming Dereference Operator (*) and Member Selection
Operator (->) 319
Binary Operators 323

Types of Binary Operators 324

Xii Sams Teach Yourself C++ in One Hour a Day

Programming Binary Addition (a+b) and Subtraction (a—b) Operators 325
Implementing Addition Assignment (+=) and Subtraction Assignment
(-=) Operators 327
Overloading Equality (==) and Inequality (!=) Operators 330
Overloading <, >, <=, and >= Operators 332
Overloading Copy Assignment Operator (=) 335
Subscript Operator ([]) 338
Function Operator () 342
Operators That Cannot Be Overloaded 349
Summary 350
Q&A 351
‘Workshop 351
LESSON 13: Casting Operators 353
The Need for Casting 354
Why C-Style Casts Are Not Popular with Some C++ Programmers 355
The C++ Casting Operators 355
Using static_cast 356
Using dynamic_cast and Runtime Type Identification 357
Using reinterpret_cast 360
Using const_cast 361
Problems with the C++ Casting Operators 362
Summary 363
Q&A 364
Workshop 364
LESSON 14: An Introduction to Macros and Templates 367
The Preprocessor and the Compiler 368
Using #define Macros to Define Constants 368
Using Macros for Protection Against Multiple Inclusion 371
Using #define To Write Macro Functions 372
Why All the Parentheses? 374
Using Macro assert to Validate Expressions 375
Advantages and Disadvantages of Using Macro Functions 376
An Introduction to Templates 378
Template Declaration Syntax 378
The Different Types of Template Declarations 379

Template Functions 379

Contents Xiii

Templates and Type Safety 381
Template Classes 381
Template Instantiation and Specialization 383
Declaring Templates with Multiple Parameters 383
Declaring Templates with Default Parameters 384
Sample Template class<> HoldsPair 385
Template Classes and static Members 386
Using Templates in Practical C++ Programming 389
Summary 390
Q&A 390
Workshop 391

PART IlI: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library 393
STL Containers 394
Sequential Containers 394
Associative Containers 395
Choosing the Right Container 396

STL Iterators 399
STL Algorithms 400
The Interaction Between Containers and Algorithms Using Iterators 400
STL String Classes 403
Summary 403
Q&A 403
Workshop 404
LESSON 16: The STL String Class 405
The Need for String Manipulation Classes 406
Working with the STL String Class 407
Instantiating the STL String and Making Copies 407
Accessing Character Contents of a std::string 410
Concatenating One String to Another 412
Finding a Character or Substring in a String 413
Truncating an STL string 415
String Reversal 417

String Case Conversion 418

Xiv Sams Teach Yourself C++ in One Hour a Day

Template-Based Implementation of an STL String 420
Summary 420
Q&A 421
Workshop 421
LESSON 17: STL Dynamic Array Classes 423
The Characteristics of std::vector 424
Typical Vector Operations 424
Instantiating a Vector 424
Inserting Elements at the End Using push_back() 426
Inserting Elements at a Given Position Using insert() 428
Accessing Elements in a Vector Using Array Semantics 431
Accessing Elements in a Vector Using Pointer Semantics 433
Removing Elements from a Vector 434
Understanding the Concepts of Size and Capacity 436
The STL deque Class 438
Summary 441
Q&A 441
‘Workshop 442
LESSON 18: STL list and forward_list 445
The Characteristics of a std::list 446
Basic list Operations 446
Instantiating a std::list Object 446
Inserting Elements at the Front or Back of the List 448
Inserting at the Middle of the List 450
Erasing Elements from the List 453
Reversing and Sorting Elements in a List 455
Reversing Elements Using list::reverse() 455
Sorting Elements 456
Sorting and Removing Elements from a list That Contains Objects of a class 458
Summary 465
Q&A 465

Workshop 465

LESSON 19: STL Set Classes

An Introduction to STL Set Classes

Basic STL set and multiset Operations
Instantiating a std::set Object
Inserting Elements in a set or multiset
Finding Elements in an STL set or multiset
Erasing Elements in an STL set or multiset

Pros and Cons of Using STL set and multiset

Summary

Q&A

Workshop

LESSON 20: STL Map Classes
An Introduction to STL Map Classes
Basic std::map and std::multimap Operations
Instantiating a std::map or std::multimap
Inserting Elements in an STL map or multimap
Finding Elements in an STL map
Finding Elements in an STL multimap
Erasing Elements from an STL map or multimap
Supplying a Custom Sort Predicate
How Hash Tables Work
Using C++11 Hash Tables: unordered_map and unordered_multimap
Summary
Q&A
Workshop

PART IV: More STL

LESSON 21: Understanding Function Objects
The Concept of Function Objects and Predicates
Typical Applications of Function Objects

Unary Functions
Unary Predicate
Binary Functions

Binary Predicate

Contents

467
468
468
469
471
473
475
480
484
484
485

487
488
489
489
491
494
496
497
499
504
504
508
509
510

511
512
512
512
517
519
522

XV

XVi Sams Teach Yourself C++ in One Hour a Day

Summary 524
Q&A 524
‘Workshop 525
LESSON 22: C++11 Lambda Expressions 527
What Is a Lambda Expression? 528
How to Define a Lambda Expression 529
Lambda Expression for a Unary Function 529
Lambda Expression for a Unary Predicate 531
Lambda Expression with State via Capture Lists [...] 532
The Generic Syntax of Lambda Expressions 534
Lambda Expression for a Binary Function 535
Lambda Expression for a Binary Predicate 537
Summary 540
Q&A 541
Workshop 541
LESSON 23: STL Algorithms 543
What Are STL Algorithms? 544
Classification of STL Algorithms 544
Non-Mutating Algorithms 544
Mutating Algorithms 545
Usage of STL Algorithms 547
Finding Elements Given a Value or a Condition 547
Counting Elements Given a Value or a Condition 550
Searching for an Element or a Range in a Collection 552
Initializing Elements in a Container to a Specific Value 554

Using std::generate() to Initialize Elements to a Value Generated at Runtime 556
Processing Elements in a Range Using for_each() 557
Performing Transformations on a Range Using std::transform() 560

Copy and Remove Operations 562
Replacing Values and Replacing Element Given a Condition 565
Sorting and Searching in a Sorted Collection and Erasing Duplicates 567
Partitioning a Range 570
Inserting Elements in a Sorted Collection 572
Summary 575
Q&A 575

Workshop 576

LESSON 24: Adaptive Containers: Stack and Queue
The Behavioral Characteristics of Stacks and Queues
Stacks
Queues
Using the STL stack Class
Instantiating the Stack
Stack Member Functions
Insertion and Removal at Top Using push() and pop()
Using the STL queue Class
Instantiating the Queue
Member Functions of a queue
Insertion at End and Removal at the Beginning of queue via push()
and pop()
Using the STL Priority Queue
Instantiating the priority_queue Class
Member Functions of priority_queue
Insertion at the End and Removal at the Beginning of priority_queue via
push() and pop()
Summary
Q&A
Workshop

LESSON 25: Working with Bit Flags Using STL
The bitset Class
Instantiating the std::bitset
Using std::bitset and Its Members
Useful Operators Featured in std::bitset
std::bitset Member Methods
The vector<bool>
Instantiating vector<bool>
vector<bool> Functions and Operators
Summary
Q&A
Workshop

Contents

579
580
580
580
581
581
582
583
585
585
586

587
589
589
590

591
594
594
594

597
598
598
599
599
600
603
603
604
605
605
606

XVii

xviii Sams Teach Yourself C++ in One Hour a Day

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers 607
What Are Smart Pointers? 608
The Problem with Using Conventional (Raw) Pointers 608

How Do Smart Pointers Help? 608

How Are Smart Pointers Implemented? 609
Types of Smart Pointers 610
Deep Copy 611

Copy on Write Mechanism 613
Reference-Counted Smart Pointers 613
Reference-Linked Smart Pointers 614
Destructive Copy 614
Using the std::unique_ptr 617
Popular Smart Pointer Libraries 618
Summary 619
Q&A 619
Workshop 620
LESSON 27: Using Streams for Input and Output 621
Concept of Streams 622
Important C++ Stream Classes and Objects 623
Using std::cout for Writing Formatted Data to Console 624
Changing Display Number Formats Using std::cout 624
Aligning Text and Setting Field Width Using std::cout 627
Using std::cin for Input 628
Using std::cin for Input into a Plain Old Data Type 628
Using std::cin::get for Input into C-Style char Buffer 629
Using std::cin for Input into a std::string 630
Using std::fstream for File Handling 632
Opening and Closing a File Using open() and close() 632
Creating and Writing a Text File Using open() and operator<< 634
Reading a Text File Using open() and operator>> 635
Writing to and Reading from a Binary File 636
Using std::stringstream for String Conversions 638
Summary 640
Q&A 640

‘Workshop 641

Contents XiX

LESSON 28: Exception Handling 643

What Is an Exception? 644

What Causes Exceptions? 644

Implementing Exception Safety via try and catch 645

Using catch(...) to Handle All Exceptions 645

Catching Exception of a Type 647

Throwing Exception of a Type Using throw 648

How Exception Handling Works 650

Class std::exception 652

Your Custom Exception Class Derived from std::exception 653

Summary 655

Q&A 656

Workshop 656

LESSON 29: Going Forward 659

What’s Different in Today’s Processors? 660

How to Better Use Multiple Cores 661

What Is a Thread? 661

Why Program Multithreaded Applications? 662

How Can Threads Transact Data? 663

Using Mutexes and Semaphores to Synchronize Threads 664

Problems Caused by Multithreading 664

Writing Great C++ Code 665

Learning C++ Doesn’t Stop Here! 667

Online Documentation 667

Communities for Guidance and Help 668

Summary 668

Q&A 668

Workshop 669
Appendixes

APPENDIX A: Working with Numbers: Binary and Hexadecimal 671

Decimal Numeral System 672

Binary Numeral System 672

Why Do Computers Use Binary? 673

XX Sams Teach Yourself C++ in One Hour a Day

What Are Bits and Bytes? 673

How Many Bytes Make a Kilobyte? 674
Hexadecimal Numeral System 674

Why Do We Need Hexadecimal? 674

Converting to a Different Base 675

The Generic Conversion Process 675

Converting Decimal to Binary 675

Converting Decimal to Hexadecimal 676

APPENDIX B: C++ Keywords 677
APPENDIX C: Operator Precedence 679
APPENDIX D: Answers 681
APPENDIX E: ASCII Codes 723
ASCII Table of Printable Characters 724

Index 727

About the Author

Siddhartha Rao is a technologist at SAP AG, the world’s leading supplier of enterprise
software. As the head of SAP Product Security India, his primary responsibilities include
hiring expert talent in the area of product security as well as defining development best
practices that keeps SAP software globally competitive. Awarded Most Valuable
Professional by Microsoft for Visual Studio—Visual C++, he is convinced that C++11
will help you program faster, simpler, and more efficient C++ applications.

Siddhartha also loves traveling and discovering new cultures given an opportunity to. For
instance, parts of this book have been composed facing the Atlantic Ocean at a quaint
village called Plogoff in Brittany, France—one of the four countries this book was
authored in. He looks forward to your feedback on this global effort!

Dedication

This book is dedicated to my lovely parents and my wonderful sister for being
there when I have needed them the most.

Acknowledgments

I am deeply indebted to my friends who cooked and baked for me while I burned the
midnight oil working on this project. I am grateful to the editorial staff for their very
professional engagement and the wonderful job in getting this book to your shelf!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail we receive, we might not be able to reply
to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone number or email address.

E-mail: feedback @samspublishing.com
Mail: Reader Feedback
Sams Publishing

800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

2011 was a special year for C++. With the ratification of the new standard, C++11
empowers you to write better code using new keywords and constructs that increase your
programming efficiency. This book helps you learn C++11 in tiny steps. It has been
thoughtfully divided into lessons that teach you the fundamentals of this object-oriented
programming language from a practical point of view. Depending on your proficiency
level, you will be able to master C++11 one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this
book hands-on and help yourself improve your programming proficiency. These code
snippets have been tested using the latest versions of the available compilers at the time
of writing, namely the Microsoft Visual C++ 2010 compiler for C++ and GNU’s C++
compiler version 4.6, which both offer a rich coverage of C++11 features.

Who Should Read This Book?

The book starts with the very basics of C++. All that is needed is a desire to learn this
language and curiosity to understand how stuff works. An existing knowledge of C++
programming can be an advantage but is not a prerequisite. This is also a book you might
like to refer to if you already know C++ but want to learn additions that have been made
to the language in C++11. If you are a professional programmer, Part III, “Learning the
Standard Template Library (STL),” is bound to help you create better, more practical
C++11 applications.

Organization of This Book

Depending on your current proficiency levels with C++, you can choose the section you
would like to start with. This book has been organized into five parts:

m Part I, “The Basics,” gets you started with writing simple C++ applications. In
doing so, it introduces you to the keywords that you most frequently see in C++
code of a variable without compromising on type safety.

m Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the
concept of classes. You learn how C++ supports the important object-oriented pro-
gramming principles of encapsulation, abstraction, inheritance, and polymorphism.

Sams Teach Yourself C++ in One Hour a Day

Lesson 9, “Classes and Objects,” teaches you the new C++11 concept of move
constructor followed by the move assignment operator in Lesson 12, “Operator
Types and Operator Overloading.” These performance features help reduce
unwanted and unnecessary copy steps, boosting the performance of your applica-
tion. Lesson 14, “An Introduction to Macros and Templates,” is your stepping stone
into writing powerful generic C++ code.

Part III, “Learning the Standard Template Library (STL),” helps you write efficient
and practical C++ code using the STL string class and containers. You learn how
std: :string makes simple string concatenation operations safe and easy and how
you don’t need to use C-style char* strings anymore. You will be able to use STL
dynamic arrays and linked lists instead of programming your own.

Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers
such as vector via iterators. In this part, you find out how C++11 keyword auto
has made a significant reduction to the length of your iterator declarations. Lesson
22, “C++11 Lambda Expressions,” presents a powerful new feature that results in
significant code reduction when you use STL algorithms.

Part V, “Advanced C++ Concepts,” explains language capabilities such as smart
pointers and exception-handling, which are not a must in a C++ application but
help make a significant contribution toward increasing its stability and quality. This
part ends with a note on best practices in writing good C++11 applications.

Conventions Used in This Book

Within the lessons, you find the following elements that provide additional information:

NOTE

C++11

These boxes provide additional information related to material you
read.

These boxes highlight features new to C++11. You may need to use the newer versions
of the available compilers to use these language capabilities.

Introduction

CAUTION These boxes alert your attention to problems or side effects that
can occur in special situations.

TIP These boxes give you best practices in writing your C++ programs.
DO DON’'T

quick summary of a fundamental prin- offered in these boxes.

DO use the “Do/Don’t” boxes to find a ‘ DON’T overlook the useful information
ciple in a lesson.

This book uses different typefaces to differentiate between code and plain English.
Throughout the lessons, code, commands, and programming-related terms appear in a
computer typeface.

Sample Code for this Book

The code samples in this book are available online for download from the publisher’s
website.

This page intentionally left blank

LESSON 2
The Anatomy of a
C++ Program

C++ programs consist of classes, functions, variables, and other
component parts. Most of this book is devoted to explaining these
parts in depth, but to get a sense of how a program fits together, you
must see a complete working program.

In this lesson, you learn
® The parts of a C++ program
m How the parts work together
m What a function is and what it does

m Basic input and output operations

16

LESSON 2: The Anatomy of a C++ Program

Part of the Hello World Program

Your first C++ program in Lesson 1, “Getting Started,” did nothing more than write a
simple “Hello World” statement to the screen. Yet this program contains some of the

most important and basic building blocks of a C++ program. You use Listing 2.1 as a
starting point to analyze components all C++ programs contain.

LISTING 2.1 HelloWorldAnalysis.cpp: Analyze a C++ Program

/| Preprocessor directive that includes header iostream
: #include <iostream>

1

2

3:

4: [/ Start of your program: function block main()
5: int main()
6
7
8

R
: /* Write to the screen */
: std::cout << "Hello World" << std::endl;
9:
10: // Return a value to the 0S
11: return 0;
12: }

This C++ program can be broadly classified into two parts: the preprocessor directives
that start with a # and the main body of the program that starts with int main().

NOTE Lines 1, 4, 7, and 10, which start with a // or with a /*, are com-
ments and are ignored by the compiler. These comments are for
humans to read.

Comments are discussed in greater detail in the next section.

Preprocessor Directive #include

As the name suggests, a preprocessor is a tool that runs before the actual compilation
starts. Preprocessor directives are commands to the preprocessor and always start with a
pound sign #. In Line 2 of Listing 2.1, #include <filename> tells the preprocessor to
take the contents of the file (iostream, in this case) and include them at the line where
the directive is made. iostream is a standard header file that is included because it con-
tains the definition of std: :cout used in Line 8 that prints “Hello World” on the screen.
In other words, the compiler was able to compile Line 8 that contains std: :cout because
we instructed the preprocessor to include the definition of std: :cout in Line 2.

Part of the Hello World Program 17

NOTE In professionally programmed C++ applications, not all includes
are only standard headers. Complex applications are typically pro-
grammed in multiple files wherein some need to include others.
So, if an artifact declared in FileA needs to be used in FileB, you
need to include the former in the latter. You usually do that by
putting the following include statement in FileA:

#include "...relative path to FileB\FileB"

We use quotes in this case and not angle brackets in including a
self-created header. <> brackets are typically used when including
standard headers.

The Body of Your Program main()

Following the preprocessor directive(s) is the body of the program characterized by the
function main (). The execution of a C++ program always starts here. It is a standardized
convention that function main() is declared with an int preceding it. int is the return
value type of the function main().

NOTE In many C++ applications, you find a variant of the main() func-
tion that looks like this:

int main (int argc, char* argv([])
This is also standard compliant and acceptable as main returns
int. The contents of the parenthesis are “arguments” supplied to

the program. This program possibly allows the user to start it with
command-line arguments, such as

program.exe /DoSomethingSpecific

/DoSomethingSpecific is the argument for that program passed
by the OS as a parameter to it, to be handled within main.

Let’s discuss Line 8 that fulfills the actual purpose of this program!
std::cout << "Hello World" << std::endl;

cout (“console-out”, also pronounced see-out) is the statement that writes “Hello World”
to the screen. cout is a stream defined in the standard namespace (hence, std: :cout),
and what you are doing in this line is putting the text "Hello World" into this stream by
using the stream insertion operator <<. std: :endl is used to end a line, and inserting it
into a stream is akin to inserting a carriage return. Note that the stream insertion operator
is used every time a new entity needs to be inserted into the stream.

18

LESSON 2: The Anatomy of a C++ Program

The good thing about streams in C++ is that similar stream semantics used with another
stream type result in a different operation being performed with the same text—for
example, insertion into a file instead of a console. Thus, working with streams gets intu-
itive, and when you are used to one stream (such as cout that writes text to the console),
you find it easy to work with others (such as fstream that helps write text files to the
disk).

Streams are discussed in greater detail in Lesson 27, “Using Streams for Input and
Output.”

NOTE The actual text, including the quotes "Hello World", is called a
string literal.

Returning a Value

Functions in C++ need to return a value unless explicitly specified otherwise. main() is a
function, too, and always returns an integer. This value is returned to the operating sys-
tem (OS) and, depending on the nature of your application, can be very useful as most
OSes provide for an ability to query on the return value of an application that has termi-
nated naturally. In many cases, one application is launched by another and the parent
application (that launches) wants to know if the child application (that was launched) has
completed its task successfully. The programmer can use the return value of main() to
convey a success or error state to the parent application.

NOTE Conventionally programmers return O in the event of success or -1
in the event of error. However, the return value is an integer, and
the programmer has the flexibility to convey many different states
of success or failure using the available range of integer return
values.

CAUTION C++ is case-sensitive. So, expect compilation to fail if you write
Int instead of int, Void instead of void, and Std: :Cout instead
of std: :cout.

The Concept of Namespaces 19

The Concept of Namespaces

The reason you used std: :cout in the program and not only cout is that the artifact
(cout) that you want to invoke is in the standard (std) namespace.

So, what exactly are namespaces?

Assume that you didn’t use the namespace qualifier in invoking cout and assume that

cout existed in two locations known to the compiler—which one should the compiler

invoke? This causes a conflict and the compilation fails, of course. This is where name-

spaces get useful. Namespaces are names given to parts of code that help in reducing the 2
potential for a naming conflict. By invoking std: :cout, you are telling the compiler to

use that one unique cout that is available in the std namespace.

NOTE You use the std (pronounced “standard”) namespace to invoke
functions, streams, and utilities that have been ratified by the ISO
Standards Committee and are hence declared within it.

Many programmers find it tedious to repeatedly add the std namespace specifier to
their code when using cout and other such features contained in the same. The using
namespace declaration as demonstrated in Listing 2.2 will help you avoid this repetition.

LISTING 2.2 The using namespace Declaration

1: // Pre-processor directive

2: #include <iostream>

3:

4: // Start of your program

5: int main()

6: {

7: // Tell the compiler what namespace to search in
8: using namespace std;

9:

10: /* Write to the screen using std::cout */
11: cout << "Hello World" << endl;

12:

13: // Return a value to the 0S

14: return 0;

20

LESSON 2: The Anatomy of a C++ Program

Analysis v

Note Line 8. By telling the compiler that you are using the namespace std, you don’t
need to explicitly mention the namespace on Line 11 when using std: :cout or
std::endl.

A more restrictive variant of Listing 2.2 is shown in Listing 2.3 where you do not include
a namespace in its entirety. You only include those artifacts that you wish to use.

LISTING 2.3 Another Demonstration of the using Keyword

1: // Pre-processor directive

2: #include <iostream>

3:

4: // Start of your program

5: int main()

6: {

7: using std::cout;

8: using std::endl;

9:

10: /* Write to the screen using cout */
11: cout << "Hello World" << endl;
12:

13: // Return a value to the 0S
14: return 0;

15: }

Analysis v

Line 8 in Listing 2.2 has now been replaced by Lines 7 and 8 in Listing 2.3. The differ-
ence between using namespace std and using std::cout is that the former allows all
artifacts in the std namespace to be used without explicitly needing to specify the name-
space qualifier std: :. With the latter, the convenience of not needing to disambiguate the
namespace explicitly is restricted to only std: :cout and std: :end1.

Comments in C++ Code

Lines 1, 4, 10 and 13 in Listing 2.3 contain text in a spoken language (English, in this
case) yet do not interfere with the ability of the program to compile. They also do not
alter the output of the program. Such lines are called comments. Comments are ignored
by the compiler and are popularly used by programmers to explain their code—hence,
they are written in human- (or geek-) readable language.

Functions in C++ 21

C++ supports comments in two styles:

m // indicates that the line is a comment. For example:
// This is a comment

m /* followed by */ indicates the contained text is a comment, even if it spans multi-
ple lines:

/* This is a comment
and it spans two lines */

NOTE It might seem strange that a programmer needs to explain his
own code, but the bigger a program gets or the larger the number
of programmers working on a particular module gets, the more
important it is to write code that can be easily understood. It

is important to explain what is being done and why it is being
done in that particular manner using well-written comments.

DO DON'T

Do add comments explaining the work- Don’t use comments to explain or
ing of complicated algorithms and com- repeat the obvious.
plex parts of your program.

Don’t forget that adding comments will
Do compose comments in a style that not justify writing obscure code.

fellow programmers can understand. Don’t forget that when code is

modified, comments might need to
be updated, too.

Functions in C++

Functions in C++ are the same as functions in C. Functions are artifacts that enable you
to divide the content of your application into functional units that can be invoked in a
sequence of your choosing. A function, when called (that is, invoked), typically returns
a value to the calling function. The most famous function is, of course, main(). It is
recognized by the compiler as the starting point of your C++ application and has to
return an int (i.e., an integer).

You as a programmer have the choice and usually the need to compose your own func-
tions. Listing 2.4 is a simple application that uses a function to display statements on the
screen using std: : cout with various parameters.

22

LESSON 2: The Anatomy of a C++ Program

LISTING 2.4 Declaring, Defining, and Calling a Function That Demonstrates Some
Capabilities of std::cout

#include <iostream>
using namespace std;

// Function declaration
int DemoConsoleQutput();

int main()

{

9: // Call i.e. invoke the function
10: DemoConsoleOutput();

00N O~ WN =

12: return 0;
13: }

15: // Function definition
16: int DemoConsoleOutput()

17: {

18: cout << "This is a simple string literal" << endl;

19: cout << "Writing number five: " << 5 << endl;

20: cout << "Performing division 10 / 5 = " << 10 / 5 << endl;

21: cout << "Pi when approximated is 22 / 7 = " << 22 [/ 7 << endl;
22: cout << "Pi more accurately is 22 / 7 = " << 22.0 / 7 << endl;
23:

24: return 0;

25: }

Output »

This is a simple string literal
Writing number five: 5

Performing division 10 / 5 =
Pi when approximated is 22 /
Pi more accurately is 22 / 7

I~ N
w Il

4286

Analysis »

Lines 5, 10, and 15 through 25 are those of interest. Line 5 is called a function declara-
tion, which basically tells the compiler that you want to create a function called
DemoConsoleOutput () that returns an int (integer). It is because of this declaration that
the compiler agrees to compile Line 10, assuming that the definition (that is, the imple-
mentation of the function) comes up, which it does in Lines 15 through 25.

This function actually displays the various capabilities of cout. Note how it not only
prints text the same way as it displayed “Hello World” in previous examples, but also the

Functions in C++ 23

result of simple arithmetic computations. Lines 21 and 22 both attempt to display the
result of pi (22 / 7), but the latter is more accurate simply because by diving 22.0 by 7,
you tell the compiler to treat the result as a real number (a float in C++ terms) and not
as an integer.

Note that your function is stipulated to return an integer and returns 0. As it did not
perform any decision-making, there was no need to return any other value. Similarly,
main () returns 0, too. Given that main() has delegated all its activity to the function
DemoConsoleOutput (), you would be wiser to use the return value of the function in
returning from main() as seen in Listing 2.5.

LISTING 2.5 Using the Return Value of a Function

1: #include <iostream>
2: using namespace std;
3:
4: // Function declaration and definition
5: int DemoConsoleOutput()
6: {
7: cout << "This is a simple string literal" << endl;
8: cout << "Writing number five: " << 5 << endl;
9: cout << "Performing division 10 / 5 = " << 10 / 5 << endl;
10: cout << "Pi when approximated is 22 / 7 = " << 22 / 7 << endl;
11: cout << "Pi more accurately is 22 / 7 = " << 22.0 / 7 << endl;
12:
13: return 0;
14: }
15:
16: int main()
17: {
18: // Function call with return used to exit
19: return DemoConsoleOutput();
20: }

Analysis »

The output of this application is the same as the output of the previous listing. Yet, there
are slight changes in the way it is programmed. For one, as you have defined (i.e., imple-
mented) the function before main() at Line 5, you don’t need an extra declaration of the
same. Modern C++ compilers take it as a function declaration and definition in one.
main () is a bit shorter, too. Line 19 invokes the function DemoConsoleOutput () and
simultaneously returns the return value of the function from the application.

24 LESSON 2: The Anatomy of a C++ Program

NOTE In cases such as this where a function is not required to make a
decision or return success or failure status, you can declare a
function of return type void:

void DemoConsoleOutput()

This function cannot return a value, and the execution of a func-
tion that returns void cannot be used to make a decision.

Functions can take parameters, can be recursive, can contain multiple return statements,
can be overloaded, can be expanded in-line by the compiler, and lots more. These con-
cepts are introduced in greater detail in Lesson 7, “Organizing Code with Functions.”

Basic Input Using std::cin and Output
Using std::cout

Your computer enables you to interact with applications running on it in various forms
and allows these applications to interact with you in many forms, too. You can interact
with applications using the keyboard or the mouse. You can have information displayed
on the screen as text, displayed in the form of complex graphics, printed on paper using
a printer, or simply saved to the file system for later usage. This section discusses the
very simplest form of input and output in C++—using the console to write and read
information.

You use std::cout (pronounced “standard see-out”) to write simple text data to the con-
sole and use std: :cin (“standard see-in”) to read text and numbers (entered using the
keyboard) from the console. In fact, in displaying “Hello World” on the screen, you have
already encountered cout, as seen in Listing 2.1:

8: std::cout << "Hello World" << std::endl;
The statement shows cout followed by the insertion operator << (that helps insert data

into the output stream), followed by the string literal “Hello World” to be inserted, fol-
lowed by a new line in the form of std: :endl (pronounced “standard end-line”).

The usage of cin is simple, too, and as cin is used for input, it is accompanied by the
variable you want to be storing the input data in:
std::cin >> Variable;

Thus, cin is followed by the extraction operator >> (extracts data from the input stream),
which is followed by the variable where the data needs to be stored. If the user input

Basic Input Using std: :cin and Output Using std: :cout

needs to be stored in two variables, each containing data separated by a space, then you
can do so using one statement:

std::cin >> Variable1 >> Variable2;

Note that cin can be used for text as well as numeric inputs from the user, as shown in
Listing 2.6.

LISTING 2.6 Use cin and cout to Display Number and Text Input by User

1: #include <iostream>

2: #include <string>

3: using namespace std;

4:

5: int main()

6: {

7: // Declare a variable to store an integer
8: int InputNumber;

9:

10: cout << "Enter an integer: ";

11:

12: // store integer given user input

13: cin >> InputNumber;

14:

15: // The same with text i.e. string data
16: cout << "Enter your name: ";

17: string InputName;

18: cin >> InputName;

19:
20: cout << InputName << " entered " << InputNumber << endl;
21:

22: return 0;

23: }

Output »

Enter an integer: 2011
Enter your name: Siddhartha
Siddhartha entered 2011

Analysis »

Line 8 shows how a variable of name InputNumber is declared to store data of type int.
The user is requested to enter a number using cout in Line 10, and the entered number is
stored in the integer variable using cin in Line 13. The same exercise is repeated with
storing the user’s name, which of course cannot be held in an integer but in a different

25

26

LESSON 2: The Anatomy of a C++ Program

type called string as seen in Lines 17 and 18. The reason you included <string> in
Line 2 was to use type string later inside main(). Finally in Line 20, a cout statement
is used to display the entered name with the number and an intermediate text to produce
the output Siddhartha entered 2011.

This is a very simple example of how basic input and output work in C++. Don’t worry
if the concept of variables is not clear to you as it is explained in good detail in the fol-
lowing Lesson 3, “Using Variables, Declaring Constants.”

Summary

This lesson introduced the basic parts of a simple C++ program. You understood what
main () is, got an introduction to namespaces, and learned the basics of console input and
output. You are able to use a lot of these in every program you write.

Q&A
Q What does #include do?

A This is a directive to the preprocessor that runs when you call your compiler. This
specific directive causes the contents of the file named in <> after #include to be
inserted at that line as if it were typed at that location in your source code.

Q What is the difference between // comments and /* comments?

A The double-slash comments (//) expire at the end of the line. Slash-star (/*) com-
ments are in effect until there is a closing comment mark (*/). The double-slash
comments are also referred to as single-line comments, and the slash-star com-
ments are often referred to as multiline comments. Remember, not even the end of
the function terminates a slash-star comment; you must put in the closing comment
mark or you will receive a compile-time error.

()

When do you need to program command-line arguments?

A To allow the user to alter the behavior of a program. For example, the command 1s
in Linux or dir in Windows enables you to see the contents within the current
directory or folder. To view files in another directory, you would specify the path
of the same using command-line arguments, as seen in 1s / or dir \.

Workshop

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. What is the problem in declaring Int main()?

2. Can comments be longer than one line?

Exercises
1. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can

you fix it?
1: #include <iostream>
2: void main()
3: {
4 std::Cout << Is there a bug here?";
5: }

2. Fix the bug in Exercise 1 and recompile, link, and run it.

3. Modify Listing 2.4 to demonstrate subtraction (using —) and multiplication
(using *).

27

This page intentionally left blank

Index

Symbols

+= (addition assignment)
operator, 327-329

{} (braces), executing multiple
statements conditionally,
109-110

= (equality) operator, 84

[] (subscript) operator, 338-
341

-+ (subtraction assighment)
operator, 327-329

+ (addition) operator, 80-81,
325-327

& (AND) operator, 92-94, 167-
168

= (assignment) operator, 79

= (copy assignment) operator,
overloading, 335-338

/ (divide) operator, 80-81
== (equality) operator, 84

% (modulo divide) operator,
80-81

* (multiply operator), 80-81,
170-173

~ (NOT) operator, 92-94
| (OR) operator, 92-94
N (XOR) operator, 92-94
? operator, 118-119
#define directive

constants, defining, 50,
368-371

macro functions, writing,
372-374

A

abstract base classes,
296-298

abstracting data via private
keyword, 210-212

access specifiers, 256
accessing

arrays, zero-based index,
61-62

elements in vectors, 431-434

memory with variables,
30-32

multidimensional array
elements, 66-68

pointed data with dereference
operator, 170-173

STL string classes, 410-411

adaptive containers, 579. See
also containers

queues, 580-581

inserting/removing
elements, 587-589

instantiating, 585-586

member functions, 587

priority queues, 589-594
stacks, 580

inserting/removing
elements, 583-585

instantiating, 581-582
member functions, 582
adaptive function objects, 512

728

addition (+) operator

addition (+) operator, 80-81,
325-327

addressing, 30, 61-62
advantages

of C++, 6

of macro functions, 377
algorithms

containers, 547

STL, 400, 543

classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

aligning text, 627-628
allocating memory
delete operator, 175-178
new operator, 175-176

analyzing null terminator,
70-71

AND operator (&), 88-92
applications
Hello World
compiling, 12
writing, 9-11
multithreaded, 661

problems caused by,
664-665

programming, reasons
for, 662-663

writing, best practices,
665-666

applying

const cast, 361-362

dynamic cast, 357-360

function objects
binary functions, 519-524
unary functions, 512-519

reinterpret cast, 360

static cast, 356

STL string classes
accessing, 410-411
case conversion, 418-419
concatenation, 412

find member function,
413-415

instantiating, 407-409
reversing, 417-418

template-based
implementation, 420

truncating, 415-417
templates, 389
arguments, 144

passing by reference,
156-157

passing to functions, 196-198
arithmetic operators, 80-83
arrays, 47

as function parameters,
154-155

C-style strings, 70-72
characters, declaring, 406
data, accessing, 61-62
dynamic, 68-69
modifying data in, 62-65
multidimensional

accessing elements in,
66-68

declaring, 65-66

iterating with nested
loops, 134-135

need for, 58-59

organization in, 60

pointers, similarity to,
184-186

static, declaring, 59-60
STL dynamic array class

accessing elements in
vectors, 431-434

deleting elements from
vectors, 434-435

inserting elements into
vectors, 426

instantiating vectors,
424-425

need for, 423

size and capacity of
vectors, 436-437

vectors, 424
ASCII codes, 724-726

assert() macro, validating
expressions, 376

assigning values to array
elements, 62-65

assignment operators, 79,
96-98, 327-329

associative containers, 395
auto keyword, 42-44

base classes

abstract base classes, 296-
298

the Diamond Problem, 303
exceptions, 652-655
initialization, 258-261
overridden methods,
invoking, 263
best practices
code, writing, 665-666
for pointers, 189-193
bidirectional iterators, 399
binary files, reading, 636-638
binary functions, 512, 521
binary, 519-520
lambda expressions, 535-537
predicates, 522-524

binary numeral system,
672-673

binary operators
addition/subtraction, 325-327
assignment, 327-329
types, 323-324

binary predicates, 512

elements, removing from
linked lists, 458-462

elements, sorting in linked
lists, 458-462

lambda expressions, 537-540
binary semaphores, 664
bit flags, 597

bitset class, 598-601

vector {bool} class, 603-604
bits, 673
bitset class, 598-601
bitwise operators, 92-94
blocks, 79

multiple statements,
executing conditionally,
109-110

blogs, “C++11 Core Language
Feature Support”, 667

bool data type, 37
Boolean values, storing, 37

braces ({}), executing multiple
statements conditionally,
109-110

break statement, 128-129
bytes, 673

Cc

C++11, new features, 12

“C++11 Core Language
Feature Support” blog, online
documentation, 667

C-style strings, 72
buffer, writing to, 629-630

null terminator, analyzing,
70-71

calculating Fibonacci numbers
with nested loops, 136-137

CALL instruction, 158-159
calling functions, 21-23
calls, 144

capacity of vectors, 436-437

capture lists, maintaining state
in lambda expressions,
532-534

case conversion, STL string
classes, 418-419

casting operators
const cast, 361-362
defined, 353
dynamic cast, 357-360
need for, 354
reinterpret cast, 360
static cast, 356
troubleshooting, 362-363
unpopular styles, 355
catch blocks
exception class
catching exceptions, 652

custom exceptions,
throwing, 653-655

exception handling, 645-648

changing display number
formats, 624-627

char data type, 37
characters
arrays, declaring, 406

STL string classes, accessing,
410-411

values, storing, 38
cin statement, 25
classes

abstract base classes,
296-298

bitset, 598-601
constructors

copy constructors,
228-234

default parameter values,
219-220

classes 729

initialization lists,
220-222

move constructors, 234

order of construction, 268

overloading, 217-219

shallow copying, 226-228
container classes, 467

map and multimap, 487

multiset container class,
deleting elements,
475-480

multiset container class,
inserting elements,
471-473

multiset container class,
locating elements,
473-475

searching elements, 475

set container class,
deleting elements,
475-480

set container class,
inserting elements,
471-473

set container class,
instantiating, 469-471

set container class,
locating elements,
473-475

declaring, 204
destructors
declaring, 222-223

order of destruction,
268-271

private destructors,
239-240

when to use, 223-225
encapsulation, 205

friend classes, declaring,
245-247

inheritance, 252

base class initialization,
258-261

multiple inheritance,
277-280

private inheritance,
271-273

How can we make this index more useful? Email us at indexes@samspublishing.com

730 classes

protected inheritance, versus struct keyword, stacks
256-258, 273-276 244-245 instantiating, 581-582

public inheritance, classification of STL member functions. 582
253-254 algorithms i
. STL algorithms
syntax, 254-256 mutating, 545-547
. . . copy and remove
member variables, initializing nonmutating, 544-545 operations, 562-565

with constructors, 213-214 ClOSing f"es, 632-633 Counting and ﬁndlng
members, accessing

code elements, 550
with dot operator, 206 debugging initializing elements,
with pointer operator, 554-557

exception handling with

206-208 catch blocks, 646-648 inserting elements,

private keyword, 208-212
public keyword, 208-210
sizeof(), 242-244

STL deque, 438-440
STL dynamic array

accessing elements in
vectors, 431-434

deleting elements from
vectors, 434-435

inserting elements into
vectors, 426

instantiating vectors,
424-425

need for, 423

size and capacity of
vectors, 436-437

vectors, 424

STL string, 405
accessing, 410-411
applying, 407

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409
need for, 406-407
reversing, 417-418

template-based
implementation, 420

truncating, 415-417
stream classes, 623
strings, 74
subclasses, 254
templates, 382, 385-389

throwing exceptions,
648-649

writing, best practices,
665-666

code listings

accessing STL strings,
410-411

bitset class
instantiating, 598-599

member methods,
600-601

operators, 599-600
Calendar class, 314
dynamic casting, 358-359
functions

binary, 519-520

unary, 513-514

map and multimap,

customizing sort predicates,

499-503
operators
assignment, 328
binary, 325-326
subscript, 339
queues
instantiating, 585-586
member functions, 587
priority, 589-594
set and multiset, searching
elements, 475
simple smart Pointer class,
321-322

smart pointers,
implementing, 609

572-574

parititioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searchng ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

STL deque class, 440
STL string classes

case conversion, 418-419
concatenation, 412

find member function,
413-415

instantiation, 408-409
reversing, 417-418

template-based
implementation, 420

truncating, 415-417

templates

classes, 385-386
connecting, 400-401

vectors

accessing elements in,
431-434

deleting elements from,
434-435

inserting elements into,
426

instantiating, 424-425

size and capacity of,
436-437

CodeGuru website, 668

collections
elements, inserting, 572-574
ranges, searching, 552
sorting, 567-570

collisions, 504

commands (preprocessor),
#define, 372

comments, 21
comparing
arrays and pointers, 184-186

struct keyword and classes,
244-245

comparison operators,
overloading, 330

compile-time checks,
performing, 388

compilers, determining
variable type with auto
keyword, 42-44

compiling Hello World
application, 12

components of C++ program,
16

body, 17

comments, 21

functions, 21-23

input, 24-26

namespaces, 20

output, 24-26
preprocessor directive, 16
values, returning, 18
variables types, 36-38

compound assignment
operators, 96-98

compound statements, 79

concatenation, STL string
classes, 412

conditional operator, 118-119
conditional statements
if...else, 107-109

multiple statements,
executing conditionally,
109-110

connecting STL, 400-402
const cast, applying, 361-362
const keyword

for pointers, 181-182

for references, 196
constants

defining with #define
directive, 50, 368-371

enumerated, 48-50

literal, 45

naming, 51

variables, declaring as, 46-47
constructors

copy constructors, 228-234

private copy constructors,
235-236

singletons, 236-238
declaring, 212-213
default constructor, 215

default parameter values,
219-220

initialization lists, 220-222
move constructor, 234, 344
order of construction, 268
order of destruction, 268-271
overloading, 215-219
shallow copying, 226-228

virtual copy constructors,
304-307

when to use, 213-214
container adapters, 398

container classes, 467.
See also containers

advantages of set and
multiset, 480

elements, searching, 475
map and multimap, 487

deleting elements,
497-499

inserting elements,
491-494

instantiating, 489-490

locating elements,
494-497

containers

sort predicate,
customizing, 499-503

multiset
advantages of, 480-484

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

set
advantages of, 480-484

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

instantiating, 469-471
unordered map, 504-508

unordered multimap,
504-508

containers
adaptive, 579-580
priority queues, 589-594

queues,
inserting/removing
elements, 587-589

queues, instantiating,
585-586

queues, member
functions, 587

stacks,
inserting/removing
elements, 583-585

stacks, instantiating,
581-582

stacks, member functions,
582

algorithms, 547

elements, initializing,
554-557

searching, 481
STL

associative, 395

How can we make this index more useful? Email us at indexes@samspublishing.com

731

732 containers

selecting, 396-398
sequential, 394
continue statement, 128-129

controlling infinite loops,
130-132

conversion operators, 317-319
converting

decimal to binary numeral
system, 675-676

decimal to hexadecimal
numeral system, 676

strings, 638-640

copy assignment operator (=),
overloading, 335-338

copy constructors, 228-234
private, 235-236
singletons, 236-238

virtual copy constructors,
304-307

copy function, 562-565
copying

algorithms, 546

STL string classes, 407-409
cores (processor), 660-661
counting algorithms, 544
counting elements, 550
cout statement, 17, 24

COW (Copy on Write) smart
pointers, 613

creating text files, 634

custom exceptions, throwing,
648-649, 653-655

customizing map and
multimap template class
predicates, 499-503

dangling pointers, 189

data transaction in threads,
663-664

deallocating memory, 175-178
debugging
exception handling

custom exceptions,
throwing, 648-649

with catch blocks,
646-648

executables, 8

decimal numeral system, 672

ASCII code values, 724-726

converting to binary, 675-676

converting to hexadecimal,
676

displaying numbers in,
624-627

declarations

function declarations, 22

using namespace, 19-20

declaring

arrays
character arrays, 406

multidimensional arrays,
65-66

static arrays, 59-60
classes, 204

friend classes, 245-247
constructors, 212-213
destructors, 222-223
functions, inline, 159-160
pointers, 166
references, 193-194
templates, 379

with default parameters,
384

with multiple parameters,
383-384

variables
as constants, 46-47
bool type, 37
char type, 38
floating point types, 40
global variables, 35-36
memory, accessing, 30-32
multiple, 32-33
signed integer types, 39

type of, substituting,
44-45

types of, 36

unsigned integer types,
39-40

decrementing operators, effect
on pointers, 179-181

deep copy, 228-234, 611-612
default constructor, 215
default parameters

function values, 147-149

templates, declaring, 384
deference operators, 319-323
defining

constants with #define, 50

string substitutions, 372

templates, 378

variables, 30-32

reserved words, 52

delete operator, managing
memory consumption, 175-
178

deleting elements
duplicates, 567-570

in linked lists, 453-454,
458-462

in map and multimap,
497-499

in multiset container class,
475-480

in set container class,
475-480

in vectors, 434-435

deques, STL deque class,
438-440

dereference operator,
accessing pointed data,
170-173

derivation

base class initialization,
258-261

base class methods
invoking, 264-266
overriding, 261-263

hidden methods, 266-268

slicing, 277

syntax, 254-256

destruction order of local
exception objects, 650-652

destructive copy smart
pointers, 614-618

destructors
destructors, 222-223
order of destruction, 268-271
private destructors, 239-240
shallow copying, 226-228
virtual destructors, 288-292
when to use, 223-225
development, IDEs, 8-9
Diamond Problem, 303

disadvantages of macro
functions, 377

displaying simple data types,
628-629

divide operator (/), 80-81
do...while statement, 123-125

documentation, “C++11 Core
Language Feature Support”
blog, 667

dot operator (.), accessing
members, 206

double data type, 37
double precision float, 40

duplicate elements, deleting,
567-570

dynamic arrays, 68-69

dynamic cast, applying,
357-360

dynamic memory allocation,
175-178

elements

characters, accessing,
410-411

collections, searching, 552
counting, 550

finding, 550

initializing, 554-557
inserting, 572-574
processing, 557-559
replacing, 565-567

set or multimultiset,
searching, 475

encapsulation, 205
enumerated constants, 48-50

equality operators, 84,
330-332

erase() function, 453-454,
475-480, 497-499

errors, Fence-Post, 64
exception base class, 652-655
exception handling

custom exceptions, throwing,
648-649

exceptions, causes of, 644

local objects, destruction
order, 650-652

with catch blocks, 645-648
executables, writing, 8

executing multiple statements
conditionally, 109-110

F

Fence-Post error, 64

Fibonacci numbers, 47,
136-137

FIFO (first-in-first-out) systems,
queues, 580

files
binary files, reading, 636-638
opening and closing, 632-633
text files
creating, 634
reading, 635-636

find() function, 473-475,
494-497, 504

find member function, STL
string classes, 413-415

flags (bit), 597
bitset class, 598-601
vector bool, 603-604
float data type, 37

floating point variable
types, 40

for loops, 125-128

functions

forward iterators, 399

forward_list template class,
462-464

for_each algorithm, 557-559

friend classes, declaring,
245-247

function objects
binary, 512, 519-524
unary, 512-519

function operator, 342-345,
348-349

function prototypes, 144
functions, 21-22
arguments, 144

passing by reference,
156-157

passing to, 196-198
binary, 519-521

lambda expressions, 535-
537

predicates, 522-524
CALL instruction, 158-159
calls, 144
constructors

declaring, 212-213

default parameter values,
219-220

initialization lists,
220-222

move constructors, 234
overloading, 215-219
shallow copying, 226-228
when to use, 213-214
copy(), 562-565
definition, 144
destructors
declaring, 222-223

private destructors,
239-240

when to use, 223-225

erase(), 453-454, 475-480,
497-499

find(), 473-475, 494-497, 504
inlining, 159-160

How can we make this index more useful? Email us at indexes@samspublishing.com

733

functions

lambda functions, 161-162
macro functions
advantages of, 377
assert(), 376
writing, 372-374
main(), 17
need for, 142-143
objects, 511
applying, 512, 519-520
overview of, 512
operators. See operators
overloaded, 152-154
parameters

arrays as parameters,
154-155

with default values, 147-
149

pointers, passing to, 182-184
pop_back, 434

queues, 587, 590-594
recursive functions, 149-150
remove(), 562-565

reverse(), 455-456

sort(), 456-462

stacks, 582

template functions, 379-381
unary, 512-516

lambda expressions,
529-530

predicates, 517-519
values, returning, 18, 23-24
virtual functions, 292-296

polymorphic behavior,
implementing, 286-288
with multiple parameters,
145-146

with multiple return
statements, 151-152

with no parameters,
programming, 146-147

with no return value,
programming, 146

G-H

generating executables, 8
global variables, 35-36
goto statement, 119-121

hash tables
collisions, 504
containers, searching in, 481

unordered map class,
504-508

unordered multimap class,
504-508

header files, 371

Hello.cpp file, 10

hello world program
main() function, 17
preprocessor directive, 16
source code, 10

hexadecimal numeral system,
674

ASCII code values, 724-726

displaying integers in,
624-627

hidden methods, 266-268
history of C++, 7

l-values, 80

IDEs (Integrated Development
Environments), 8-9

if...else statements, 107-109
nested if statements, 111-114
implementing
constructors, 212-214
destructors, 222-225
smart pointers, 609-610
include statement, 16

increment operator (++), 81,
179-181

inequality operators, 330-332
infinite loops, 129-132

inheritance, 252
base class methods
initialization, 258-261

invoking in derived class,
264-266

overriding, 261-263
hidden methods, 266-268
multiple inheritance, 277-280
order of construction, 268
order of destruction, 268-271

overridden methods,
invoking, 263

polymorphism, 284-285

abstract base classes,
296-298

implementing with virtual
functions, 286-288

virtual functions, 292-296
private inheritance, 271-273

protected inheritance, 256-
258, 273-276

public inheritance, 253-254

slicing, 277

subclasses, 254

syntax, 254-256

virtual inheritance, 299-303
initialization algorithms, 545
initialization lists, 220-222

base class initialization,
259-261

initializing
arrays, static arrays, 59-60

class member variables via
constructors, 213-214

elements, 554-557
lists, 446-447

multidimensional arrays,
65-66

variables, 31-33
inline functions, 159-160
input, 24-26
input iterators, 399
inserting

elements, 572-574

in linked lists, 448-453

in map and multimap
template classes,
491-494

in multiset container
class, 471-473

in set container class,
471-473

in singly-linked lists,
462-464

in vectors, 426
queue elements, 587-589
stack elements, 583-585
text into strings, 630-632
instantiating
bitset classes, 598-599
map template class, 489-490
queues, 585-590
set objects, 469-471
stacks, 581-582
STL string classes, 407-409
templates, 383
vector {bool} class, 603-604
vectors, 424-425
int data type, 37
integers
signed, 38-39
size of, determining, 40-42
unsigned, 38-40
Intel 8086 processor, 660

intrusive reference counting,
613

invalid pointers, 187-188
invoking

base class methods in
derived class, 264-266

overridden methods, 263

iterating multidimensional
arrays with nested loops,
134-135

iterators
STL, 399

vector elements, accessing,
433-434

J-K
junk value, 166

key-value pairs, hash tables
collisions, 504

unordered map class,
504-508

unordered multimap class,
504-508

keywords, 52, 677-678
auto, 42-44
const, 196
private, 210-212

protected inheritance,
256-258

struct, 244-245

L

lambda expressions, 515
for binary functions, 535-537

for binary predicates,
537-540

state, maintaining, 532-534

syntax, 534-535

for unary functions, 529-530

for unary predicates, 531-532
lambda functions, 161-162
libraries, smart pointers, 618

LIFO (last-in-first-out) systems,
stacks, 580

linked lists, 445. See also lists
list template class
characteristics of, 446

elements, erasing,
453-454, 458-462

elements, inserting, 448-
453

elements, reversing,
455-456

elements, sorting,
456-462

loops

instantiating, 446-447
singly-linked lists, 462-464
list template class

elements
erasing, 453-454,
458- 462

inserting, 448-453
reversing, 455-456
sorting, 456-462
instantiating, 446-447
lists

captures lists, maintaining
state in lambda
expressions, 532-534

elements
erasing, 453-454,
458- 462

inserting, 448-453
reversing, 455-456
sorting, 456-462
initializing, 446-447
singly-linked, 462-464
literal constants, 45
locating elements

in map template class,
494-496

in multimap template class,
496-497

in multiset container class,
473-475

in set container class,
473-475

logical operators, 87-92

long int data type, 37

loops
break statement, 128-129
continue statement, 128-129

do...while statement,
123-125

for loops, 125-128

goto statement, 119-121
infinite loops, 129-132
nested loops, 133

How can we make this index more useful? Email us at indexes@samspublishing.com

735

736 loops

Fibonacci numbers,
calculating, 136-137

multidimensional arrays,
iterating, 134-135

while statement, 121-123

macro functions
advantages of, 377
syntax, 374-375
writing, 372-374
macros

#define, defining constants,
368-371

assert(), validating
expressions, 376

multiple inclusion,
preventing, 371-372

main() function, 17

maintaining state in lambda
expressions, 532-534

managing memory
consumption. See also
memory; smart pointers

delete operator, 175-178
new operator, 175-178
manipulating strings, 72-74

map template class
elements
deleting, 497-499
inserting, 491-494
locating, 494-496
instantiating, 489-490

sort predicate, customizing,
499-503

member functions
queues, 587, 590-594
stacks, 582

member methods, bitset
classes, 600-601

memory, 30

accessing with variables,
30-32

arrays
organization in, 60
zero-based index, 61-62
CALL instruction, 158-159
of classes, sizeof(), 242-244
deep copying, 228-234
dynamic allocation
delete operator, 175-178
new operator, 175-178
I-values, 80

invalid memory locations,
pointing to, 187-188

leaks, 187
pointers
declaring, 166
smart pointers, 608-618
this pointer, 241
shallow copying, 226-228

variables, determining size
of, 40-42

methods

base class, overriding,
261-263

bitset class, 600-601
hidden, 266-268
overridden, invoking, 263
push back(), 426, 448-453
push front(), 448-453

microprocessors, CALL
instruction, 158-159

modifying
algorithms, 546
data in arrays, 62-65

modulo divide operator (%),
80-81

move constructors, 234, 344
multicore processors, 660-661
threads
data transaction, 663-664
synchronization, 664
multidimensional arrays
accessing elements in, 66-68
declaring, 65-66
multimap template class, 487

elements
deleting, 497-499
inserting, 491-494
locating, 496-497
instantiating, 489-490

sort predicate, customizing,
499-503

multiple inclusion, preventing
with macros, 371-372

multiple inheritance, 254,
277-280

multiple parameters

functions, programming,
145-146

templates, declaring, 383-384

multiple return statements for
functions, 151-152

multiple variables, declaring,
32-33

multiply operator (*), 80-81
multiset template class, 467
advantages of, 480-484

elements
deleting, 475-480
inserting, 471-473
locating, 473-475

multithreaded applications,
661-662

problems caused by, 664-665

programming, reasons for,
662-663

mutating algorithms, 545-547

mutexes, thread
synchronization, 664

namespaces, 19-20
naming
constants, 51
variables, 32, 51-52, 677-678
nested if statements, 111-114
nested loops, 133
Fibonacci numbers,
calculating, 136-137
multidimensional arrays,
iterating, 134-135

parameters

new features in C++11, 12 need for, 354 unary
new operator, managing reinterpret cast, 360 conversion operators,
T;smf% consumption, static cast, 356 317-319
definabl . troubleshooting, 362-363 deﬁj“;elf;t operators,
non-redefinable operators, -
349-350 unpopular styles, 355 .
increment operators,
nonmutating algorithms, comparison operators, 314-317 ’
544-545 overloading, 330 ine def
X programming deference,
NOT operator, 87-94 compound assignment 319-323
operators, 96-98
nt data type, 37 types, 313

null terminator, analyzing,
70-71

number formats, changing,
624-627

conditional operators,
118-119

copy assignment (=)
operator, overloading,
335-338

OR operator (] |), 88-92
order of construction, 268
order of destruction, 268-271

737

organization of arrays, 60
output, 24-26
output iterators, 399

decrement operator (—), 81
(0] divide operator (/), 80-81

dot operator, accessing

overflows, 83
members, 206

. overloaded functions, 152-154
equality operators, 84, .
330-332 overloading

objects, function objects, 511
applying, 512, 519-520

binary functions, 519-524
overview of, 512

unary functions, 512-519

online documentation, “C++11

Core Language Feature
Support” blog, 667

opening files, 632-633
operators

AND operator (&),
determining variable
address, 167-168

add operator (+), 80-81
assignment operator (=), 79
binary

addition/subtraction,
325-327

assignment, 327-329
types, 323-324
bitset classes, 599-600
bitwise, 92-94
casting
const cast, 361-362
defined, 353
dynamic cast, 357-360

function operators, 342-349

increment (++) operator, 81

inequality operator, 330-332
logical operators, 87-92

modulo divide operator (%),
80-81

multiply operator (*), 80-81
non-redefinable, 349-350
OR operator (]|), 88-92
overloading, 332-335, 342

pointer operator, accessing
members, 206-208

postfix, 81-84

precedence, 99-101, 679-680
prefix, 81-84

relational operators, 85-87
sizeof(), 98-99

stream extraction operator,
622

subscript, 338-341

subtract operator (-), 80-81
symbols, 312

types, 312-313

binary operators, 324
comparison operators, 330
constructors, 215-219

copy assignment operator,
335-338

hidden methods, 266-268

non-redefinable operators,
349-350

operators, 313, 332-335, 342

overridden methods, invoking,

263

P

parameters

for functions
with default values,
147-149
arrays as parameters,
154-155
multiple parameters,
programming, 145-146

templates, declaring, 383-384

How can we make this index more useful? Email us at indexes@samspublishing.com

738 partitioning

partitioning
algorithms, 547
ranges, 570-572

passing arguments by
reference, 156-157

performance

multicore processors,
660-661

multithreaded applications,
661

problems caused by,
664-665

programming, reasons
for, 662-663

performing compile-time
asserts, 388

pointed data, accessing with
dereference operator,
170-173

pointer operator (->), 206-208

pointers
addresses, storing, 168-170
arrays, similarity to, 184-186
best practices, 189-193
const keyword, 181-182
dangling pointers, 189
declaring, 166

incrementing/decrementing
operators, effect of,
179-181

invalid memory locations,
187-188

memory leaks, 187

passing to functions, 182-184

size of, 173-174

smart pointers, 607-608
COW, 613
deep copy, 611-612
destructive copy, 614-618
implementing, 609-610
libraries, 618

reference counted,
613-614

reference-linked, 614
this pointer, 241

polymorphism

abstract base classes,
296-298

implementing with virtual
functions, 286-288

need for, 284-286

virtual copy constructors,
304-307

virtual functions, 292-296
virtual inheritance, 299-303
pop operation, 158
pop() function, 583-589
pop_back() function, 434
postfix operators, 81-84

precedence, operator
precedence, 99-101,
679-680

predicates
binary, 512, 522-524

elements, removing from
linked lists, 458-462

elements, sorting in
linked lists, 458-462

lambda expressions,
537-540

unary, 517-519, 531-532
prefix operators, 81-84
preprocessor directives, 16

define, defining constants,
50, 368-372

macro functions, writing,
372-374

preventing multiple inclusion
with macros, 371-372

priority queues, 589-594

private copy constructors,
235-236

private destructors, 239-240
private inheritance, 271-273
private keyword, 208-212
processing elements, 557, 559
processors

cores, 660-661

Intel 8086, 660

multithreaded applications,
661

data transaction, 663-664

problems caused by,
664-665

reasons for programming,
662-663

thread synchronization, 664
program flow, controlling

if...else statement, 107-109

nested if statements, 111-114

switch-case statement,
115-117

programming
templates, 389
connecting, 400-402
STL algorithms, 400
STL containers, 394-398
STL iterators, 399
unary operators, 319-323

properties of STL container
classes, 396

protected inheritance,
256-258, 273-276

public inheritance, 253-254
public keyword, 208-210
push() function, 583-589

push back() method, 426,
448-453

push front() method, 448-453
push operation, 158

QR

queues, 580-581

inserting/removing elements,
587-589

instantiating, 585-586

RAM, 30
random access iterators, 399
ranges

elements, processing,
557-559

partitioning, 570-572
searching, 552

transforming, 560-562

values, replacing, 565-567
reading

binary files, 636-638

text files, 635-636

recursion, preventing multiple
inclusion with macros,
371-372

recursive functions, 149-150

reference-counted smart
pointers, 613-614

reference-linked smart
pointers, 614

references, 193

arguments, passing to
functions, 196-198

const keyword, 196

utility of, 194-196
reinterpret cast, applying, 360
relational operators, 85-87
removal algorithms, 546
remove function, 562-565
removing

elements from singly-linked
lists, 462-464

queue elements, 587-589

stack elements, 583-585
repeating code, loops

break statement, 128-129

continue statement, 128-129

do...while statement,
123-125

for statement, 125-128
goto statement, 119-121
infinite loops, 129-132
nested loops, 133-134
while statement, 121-123
replacement algorithms, 546
replacing elements, 565-567
reserved words, 52, 677-678

return statements, multiple,
151-152

returning values, 18, 23-24
reverse() function, 455-456

reversing

elements in linked lists,
455-456

STL string classes, 417-418

RTTI (Run Time Type
Identification), 296

runtime type identification,
357-360

S

scientific notation, displaying
integers in, 626-627

scope of variables, 33-34

sdefine (#define) statement,
string substitutions, 372

searching
algorithms, 544
elements, 550

in map template classes,
494-496

in multimap template
class, 496-497

set or multiset, 475
in containers, 481
ranges, 552
selecting containers, 396-398

semaphores, thread
synchronization, 664

sequential containers, 394
set template class, 467
advantages of, 480-484
elements
deleting, 475-480
inserting, 471-473
locating, 473-475

objects, instantiating,
469-471

shallow copying, 226-228
short int data type, 37
sign-bits, 38

signed integer types, 39
signed integers, 38

statements

simple data types, displaying,
628-629

singletons, 236-238
singly-linked lists, 462-464
sizeof(), 40-42, 98-99

for classes, determining,
242-244

pointers, 173-174
sizing vectors, 436-437
slicing, 277
smart pointers, 607
COW, 613
deep copy, 611-612
destructive copy, 614-618
implementing, 609-610
libraries, 618
overview of, 608
reference counted, 613-614
reference-linked, 614

sort predicate (map/multimap
template classes),
customizing, 499-503

sort() function, 456-462
sorting
algorithms, 546
collections, 567-570

elements in linked lists,
456-462

specialization, templates, 383
stacks, 580

inserting/removing elements,
583-585

instantiating, 581-582

local exception object
destruction order, 650-652

member functions, 582
operations, 158

state, maintaining in lambda
expressions, 532-534

statements

#define, string substitutions,
372

break, 128-129

compound, 79

How can we make this index more useful? Email us at indexes@samspublishing.com

739

740 statements

conditional statements,
if...else, 107-109

continue, 128-129
cout, 17
do...while, 123-125
for, 125-128
goto, 119-121
nested if statements, 111-114
switch-case, 115-117
syntax, 78
while, 121-123
static arrays, declaring, 59-60
static cast, applying, 356

static members of template
classes, 386-389

std nhamespace, 19-20
std::string, 72-74

STL (Standard Template
Library), 389

adaptive containers, 579

instantiating queues,
585-586

instantiating stacks,
581-582

priority queues, 589-594

queue member functions,
587

queues, 580-581

queues,
inserting/removing
elements, 587-589

stack member functions,
582

stack, inserting/removing
elements, 583-585

stacks, 580
algorithms, 400, 543
classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

bit flags, 597-601
connecting, 400-402
container adapters, 398
container classes, 467

advantages of set and
multiset, 480

multiset, 480-484
searching elements, 475
set, 480-484

containers
associative, 395
selecting, 396-398
sequential, 394

deque class, 438-440

dynamic array class

accessing elements,
431-434

deleting elements,
434-435

inserting elements, 426
instantiating, 424-425
need for, 423

size and capacity,
436-437

vectors, 424
exception base class
catching exceptions, 652

custom exceptions,
throwing, 653-655

forward_list template class,
462-464

iterators, 399
linked lists, 445

list template class

elements, erasing,
453-454, 458-462

elements, inserting,
448-453

elements, reversing,
455-456

elements, sorting,
456-462

instantiating, 446-447
map and multimap, 487

deleting elements,
497-499

inserting elements,
491-494

instantiating, 489-490

locating elements,
494-497

sort predicate,
customizing, 499-503

multiset template class,
elements

deleting, 475-480

inserting, 471-473

locating, 473-475
set template class

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

instantiating, 469-471
string class, 405

accessing, 410-411

applying, 407

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409
need for, 406-407
reversing, 417-418

template-based
implementation, 420

truncating, 415-417

unordered map class,
504-508

unordered multimap class,
504-508

vector {bool} class, 603-604
storing

addresses with pointers,
168-170

Boolean values, 37

character values, 38
stray pointers, 189
stream classes, 623

stream extraction operator,
622

streams, 18, 621
binary files, reading, 636-638

files, opening and closing,
632-633

text files, creating, 634
text files, reading, 635-636
string classes, 74
string literals, 18
C-style strings, 70-72

null terminator, analyzing,
70-71

strings

conversion operations,
638-640

manipulating, 72-74

STL string class, 405
accessing, 410-411
applying, 407
case conversion, 418-419
concatenation, 412

find member function,
413-415

instantiating, 407-409
need for, 406-407
reversing, 417-418

template-based
implementation, 420

truncating, 415-417
substitutions, 372
text, inserting, 630-632

struct keyword, 244-245
styles, unpopular casting, 355
subclasses, 254

subscript operators ([]),
338-341

substituting types of variables,
44-45

subtract operator (-), 80-81,
325-327

subtraction assignment
operator (-=), 327-329

switch-case statement,
115-117

synchronization (threads), 664
syntax
inheritance, 254-256
lambda expressions, 534-535
macros, 374-375
statements, 78
templates, 378

T

template classes. See also
templates

bit flags, bitset class, 598
forward_list, 462-464
list

characteristics of, 446

elements, erasing,
453-454, 458-462

elements, inserting,
448-453

elements, reversing,
455-456

elements, sorting,
456-462

instantiating, 446-447
map, instantiating, 489-490

multimap, instantiating,
489-490

multiset container class
advantages of, 480-484

templates

element, deleting,
475-480

element, inserting,
471-473

element, locating,
473-475

set container class
advantages of, 480-484

element, inserting,
471-473

element, locating,
473-475

elements, deleting,
475-480

instantiating, 469-471
vector {bool} class, 603-604
template functions, 379-381
templates
adaptive container, 579

instantiating stacks,
581-582

priority queues, 589-594

queues, instantiating,
580-581, 585-586

queues, member
functions, 587-589

stacks,
inserting/removing
elements, 583-585

stacks, member functions,
580-582

algorithms, 543
classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

How can we make this index more useful? Email us at indexes@samspublishing.com

741

templates

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

applying, 389

bit flags, 597-601
classes, 382, 385-389
container classes, 467

advantages of set and
multiset, 480

map and multimap, 487
searching elements, 475

default parameters, declaring
with, 384

defining, 378
instantiating, 383
linked lists, 445

multiple parameters,
declaring with, 383-384

overview of, 378
specialization, 383
STL
algorithms, 400
connecting, 400-402
containers, 394-398
iterators, 399
string classes, 420
types, declaring, 379
ternary operator, 118-119
text
aligning, 627-628

inserting into strings,
630-632

text files
creating, 634
reading, 635-636
this pointer, 241
threads
data transaction, 663-664

multithreaded applications,
661

problems caused by,
664-665

reasons for programming,
662-663

synchronization, 663-664

throwing custom exceptions,
648-649, 653-655

transforming, 560-562
troubleshooting
casting operators, 362-363
compiling errors, 448-450

truncating STL string classes,
415-417

try blocks, exception handling,
645-647

types
of operators, 312-313
binary, 323-329

programming deference,
319-323

subscript, 338-341
unary, 313-319

runtime identification,
357-360

of STL algorithms
mutating, 545-547
nonmutating, 544-545
of templates declaring, 379
of variables, 36
bool, 37
char, 38

determining with auto
keyword, 42-44

substituting, 44-45

unary functions, 512-516
lambda expressions, 529-530
predicates, 517-519

unary operators

conversion operators,
317-319

decrement operators,
314-317

increment operators, 314-317
programming, 319-323
types, 313

unary predicates in lambda
expressions, 531-532

unhandled exceptions, 644
unordered map class, 504-508

unordered multimap class,
504-508

unpopular casting styles, 355
unsigned integer types, 37-40

unsigned long int data
type, 37

unsigned short int data
type, 37

using namespace declaration,
19-20

v

validating expressions with
assert() macro, 376

values

containers, initializing
elements, 554-557

replacing, 565-567

returning, 18, 23-24
variables

auto keyword, 42-44

bool type, 37

char type, 38

declaring as constants, 46-47

destructors, virtual
destructors, 288-292

global, 35-36
initializing, 31
memory

accessing, 30-32

address, determining,
167-168

usage, determining,
98-99

multiple, declaring, 32-33

names, reserved words, 52,
677-678

naming, 32, 51
pointers

addresses, storing,
168-170

arrays, similarity to,
184-186

best practices, 189-193
const keyword, 181-182
dangling pointers, 189
declaring, 166

incrementing/
decrementing
operators, effect
on, 179-181

invalid memory
locations, 187-188

memory leaks, 187

passing to functions,
182-184

size of, 173-174
this pointer, 241
references, 193

arguments, passing to
functions, 196-198

const keyword, 196
utility of, 194-196
scope, 33-34
size of, determining, 40-42
types, 36
floating point types, 40
signed integer types, 39
substituting, 44-45

unsigned integer types,
39-40

vector {bool} class
instantiating, 603-604
operators, 604
vectors
characteristics of, 424
elements
accessing, 431-434
deleting, 434-435
inserting, 426

zero-based index

instantiating, 424-425
size and capacity of, 436-437

virtual copy constructors,
304-307

virtual destructors, 288-292
virtual functions, 292-296

polymorphic behavior,
implementing, 286-288

virtual inheritance, 299-303

w

websites

“C++11 Core Language
Feature Support” blog, 667

CodeGuru, 668

MSDN, online
documentation, 667

while statement, 121-123

width of fields, setting, 627-
628

wild pointers, 189

writing
code, best practices, 665-666
executables, 8

Hello World application,
9-11

macro functions, 372-374
to binary files, 636-638

to C-style string buffer,
629-630

X-Y-Z
XOR operator, 87-88

zero-based index, 61-62

How can we make this index more useful? Email us at indexes@samspublishing.com

743

	Table of Contents
	Introduction
	LESSON 2: The Anatomy of a C++ Program
	Part of the Hello World Program
	The Concept of Namespaces
	Comments in C++ Code
	Functions in C++
	Basic Input Using std::cin and Output Using std::cout
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

