Ryan Stephens

Ron Plew
Arie D. Jones FIFTH EDITION
Includes Coverage of
Oracle and
Microsoft SQL
Implementations

SamsTeach Yourself

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 9 85 @ W

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335419
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335419
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335419
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335419
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335419/Free-Sample-Chapter

SamsTeach Yourself

Ryan Stephens
Ron Plew
Arie D. Jones

N

ours

FIFTH EDITION

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself SQL in 24 Hours, Fifth Edition
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

ISBN-13: 978-0-672-33541-9
ISBN-10: 0-672-33541-7

The Library of Congress cataloging-in-publication data is on file.

Printed in the United States of America
Fourth Printing: May 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the programs
accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Mark Taub
Acquisitions Editor

Trina MacDonald

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-
Shirley

Copy Editor
The Wordsmithery
LLC

Indexer
Lisa Stumpf

Proofreader
Gill Editorial Services

Technical Editor
Benjamin Schupak
Publishing
Coordinator

Olivia Basegio

Book Designer
Gary Adair

Composition
Gloria Schurick

Contents at a Glance

Part I: An SQL Concepts Overview

HOUR 1 Welcome to the World of SQL 1

Part II: Building Your Database

HOUR 2 Defining Data Structures 21
3 Managing Database Objects 37
4 The Normalization Process 61
5 Manipulating Data 73
6 Managing Database Transactions 87

Part Ill: Getting Effective Results from Queries

HOUR 7 Introduction to the Database Query 99
8 Using Operators to Categorize Data 115

9 Summarizing Data Results from a Query 141

10 Sorting and Grouping Data 153

11 Restructuring the Appearance of Data 169

12 Understanding Dates and Times 191

Part IV: Building Sophisticated Database Queries

HOUR 13 Joining Tables in Queries 207
14 Using Subqueries to Define Unknown Data 225
15 Combining Multiple Queries into One 239

Part V: SQL Performance Tuning

HOUR 16 Using Indexes to Improve Performance 255

17 Improving Database Performance 267

iv

Teach Yourself SQL in 24 Hours

Part VI: Using SQL to Manage Users and Security

HOUR 18 Managing Database Users
19 Managing Database Security

Part VII: Summarized Data Structures

HOUR 20 Creating and Using Views and Synonyms
21 Working with the System Catalog

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22 Advanced SQL Topics
23 Extending SQL to the Enterprise, the Internet, and the Intranet
24 Extensions to Standard SQL

Part IX: Appendixes

A Common SQL Commands

Using the Databases for Exercises

Answers to Quizzes and Exercises

CREATE TABLE Statements for Book Examples
INSERT Statements for Data in Book Examples

Glossary

O m m U O W

Bonus Exercises

Index

285
299

313
329

339
355
367

377
383
391
439
443
451
455

461

Table of Contents

Part I: An SQL Concepts Overview

HOUR 1: Welcome to the World of SQL
SQL Definition and History
SQL Sessions
Types of SQL Commands
The Database Used in This Book
Summary
Q&A
Workshop

Part II: Building Your Database

HOUR 2: Defining Data Structures
What Is Data?
Basic Data Types
Summary
Q&A
Workshop

HOUR 3: Managing Database Objects
What Are Database Obijects?
What Is a Schema?
Tables: The Primary Storage for Data
Integrity Constraints
Summary
Q&A
Workshop

O 0 = B

12

17
18

21
21
22
31
31
32

37
37
37
39
49
54
55
55

vi

Teach Yourself SQL in 24 Hours

HOUR 4: The Normalization Process 61
Normalizing a Database 61
Denormalizing a Database 69
Summary 70
Q&A 70
Workshop 71

HOUR 5: Manipulating Data 73
Overview of Data Manipulation 73
Populating Tables with New Data 74
Updating Existing Data 80
Deleting Data from Tables 82
Summary 83
Q&A 83
Workshop 84

HOUR 6: Managing Database Transactions 87
What Is a Transaction? 87
Controlling Transactions 88
Transactional Control and Database Performance 95
Summary 96
Q&A 96
Workshop 97

Part lll: Getting Effective Results from Queries

HOUR 7: Introduction to the Database Query 99
What Is a Query? 99
Introduction to the SELECT Statement 99
Examples of Simple Queries 108
Summary 112
Q&A 112

Workshop 113

HOUR 8: Using Operators to Categorize Data
What Is an Operator in SQL?
Comparison Operators
Logical Operators
Conjunctive Operators
Negative Operators
Arithmetic Operators
Summary
Q&A
Workshop

HOUR 9: Summarizing Data Results from a Query

What Are Aggregate Functions?
Summary

Q&A

Workshop

HOUR 10: Sorting and Grouping Data
Why Group Data?
The GROUP BY Clause
GROUP BY Versus ORDER BY
CUBE and ROLLUP Expressions
The HAVING Clause
Summary
Q&A
Workshop

HOUR 11: Restructuring the Appearance of Data

ANSI Character Functions
Common Character Functions
Miscellaneous Character Functions
Mathematical Functions

Conversion Functions

vii

Contents

115
115
116
119
126
129
133
136
137
137

141
141
150
150
150

153
153
154
159
161
164
165
166
166

169
169
170
179
183
183

viii

Teach Yourself SQL in 24 Hours

Combining Character Functions
Summary

Q&A

Workshop

HOUR 12: Understanding Dates and Times
How Is a Date Stored?
Date Functions
Date Conversions
Summary
Q&A
Workshop

Part IV: Building Sophisticated Database Queries

HOUR 13: Joining Tables in Queries
Selecting Data from Multiple Tables
Understanding Joins
Join Considerations
Summary
Q&A
Workshop

HOUR 14: Using Subqueries to Define Unknown Data
What Is a Subquery?
Embedded Subqueries
Correlated Subqueries
Subquery Performance
Summary
Q&A
Workshop

186
187
188
188

191
191
193
198
204
204
205

207
207
208
217
221
222
222

225
225
231
233
234
235
235
236

ix

Contents

HOUR 15: Combining Multiple Queries into One 239
Single Queries Versus Compound Queries 239
Compound Query Operators 240
Using ORDER BY with a Compound Query 246
Using GROUP BY with a Compound Query 248
Retrieving Accurate Data 250
Summary 250
Q&A 250
Workshop 251

Part V: SQL Performance Tuning

HOUR 16: Using Indexes to Improve Performance 255
What Is an Index? 255
How Do Indexes Work? 256
The CREATE INDEX Command 257
Types of Indexes 258
When Should Indexes Be Considered? 260
When Should Indexes Be Avoided? 261
Altering an Index 263
Dropping an Index 263
Summary 264
Q&A 264
Workshop 265
HOUR 17: Improving Database Performance 267
What Is SQL Statement Tuning? 267
Database Tuning Versus SQL Statement Tuning 268
Formatting Your SQL Statement 268
Full Table Scans 274
Other Performance Considerations 275
Cost-Based Optimization 279
Performance Tools 280

Summary 280

X

Teach Yourself SQL in 24 Hours

Q&A 281
Workshop 281

Part VI: Using SQL to Manage Users and Security

HOUR 18: Managing Database Users 285
User Management in the Database 285
The Management Process 288
Tools Utilized by Database Users 296
Summary 296
Q&A 297
Workshop 297
HOUR 19: Managing Database Security 299
What Is Database Security? 299
What Are Privileges? 301
Controlling User Access 304
Controlling Privileges Through Roles 308
Summary 310
Q&A 310
Workshop 311

Part VII: Summarized Data Structures

HOUR 20: Creating and Using Views and Synonyms 313
What Is a View? 313
Creating Views 316
WITH CHECK OPTION 320
Creating a Table from a View 321
Views and the ORDER BY Clause 322
Updating Data Through a View 322
Dropping a View 323
Performance Impact of Using Nested Views 323

What Is a Synonym? 324

Summary
Q&A
Workshop

HOUR 21: Working with the System Catalog
What Is the System Catalog?
How Is the System Catalog Created?
What Is Contained in the System Catalog?
System Catalog Tables by Implementation
Querying the System Catalog
Updating System Catalog Obijects
Summary
Q&A
Workshop

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22: Advanced SQL Topics
Cursors
Stored Procedures and Functions
Triggers
Dynamic SQL
Call-Level Interface
Using SQL to Generate SQL
Direct Versus Embedded SQL
Windowed Table Functions
Working with XML
Summary
Q&A
Workshop

HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

SQL and the Enterprise

Accessing a Remote Database

xi

Contents

325
326
326

329
329
331
331
333
334
336
337
337
338

339
339
343
346
348
349
350
351
351
352
353
353
354

355
355
357

xii

Teach Yourself SQL in 24 Hours

SQL and the Internet
SQL and the Intranet
Summary

Q&A

Workshop

HOUR 24: Extensions to Standard SQL
Various Implementations
Example Extensions
Interactive SQL Statements
Summary
Q&A
Workshop

Part IX: Appendixes

APPENDIX A: Common SQL Commands
SQL Statements
SQL Clauses

APPENDIX B: Using the Databases for Exercises
Windows Installation Instructions for MySQL
Windows Installation Instructions for Oracle

Windows Installation Instructions for Microsoft SQL Server
APPENDIX C: Answers to Quizzes and Exercises
APPENDIX D: CREATE TABLE Statements for Book Examples
APPENDIX E: INSERT Statements for Data in Book Examples
APPENDIX F: Glossary
APPENDIX G: Bonus Exercises

INDEX

360
361
362
363
363

367
367
370
373
374
375
375

377
377
381

383
383
386
388

391

439

443

451

455

461

About the Author

For more than 10 years, the authors have studied, applied, and documented the SQL stan-
dard and its application to critical database systems in this book.

Ryan Stephens and Ron Plew are entrepreneurs, speakers, and cofounders of Perpetual
Technologies, Inc. (PTI), a fast-growing IT management and consulting firm. PTI specializes
in database technologies, primarily Oracle and SQL servers running on all UNIX, Linux,
and Microsoft platforms. Starting out as data analysts and database administrators, Ryan
and Ron now lead a team of impressive technical subject matter experts who manage data-
bases for clients worldwide. They authored and taught database courses for Indiana
University-Purdue University in Indianapolis for five years and have authored more than a
dozen books on Oracle, SQL, database design, and high availability of critical systems.

Arie D. Jones is the principal technology manager for Perpetual Technologies, Inc. (PTI) in
Indianapolis, Indiana. Arie leads PTI's team of experts in planning, design, development,
deployment, and management of database environments and applications to achieve the
best combination of tools and services for each client. He is a regular speaker at technical
events and has authored several books and articles pertaining to database-related topics.

Dedication

This book is dedicated to my parents, Thomas and Karlyn Stephens, who always
taught me that I can achieve anything if determined. This book is also dedicated to
my brilliant son, Daniel, and to my beautiful daughters, Autumn and Alivia; don’t

ever settle for anything less than your dreams.

—Ryan

This book is dedicated to my family: my wife, Linda; my mother, Betty; my children,
Leslie, Nancy, Angela, and Wendy; my grandchildren, Andy, Ryan, Holly, Morgan,

Schyler, Heather, Gavin, Regan, Caleigh, and Cameron; and my sons-in-law, Jason

and Dallas. Thanks for being patient with me during this busy time. Love all of you.

—Poppy

I would like to dedicate this book to my wife, Jackie, for being understanding and
supportive during the long hours that it took to complete this book.

—Arie

Acknowledgments

Thanks to all the people in our lives who have been patient during all editions of this
book—mostly to our wives, Tina and Linda. Thanks to Arie Jones for stepping up to the
plate and helping so much with this edition. Thanks also to the editorial staff at Sams for
all of their hard work to make this edition better than the last. It has been a pleasure to
work with each of you.

—Ryan and Ron

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or email address. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taub
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

HOUR 3

Managing Database Objects

What You’ll Learn in This Hour:

» An introduction to database objects

» An introduction to the schema

An introduction to the table

A discussion of the nature and attributes of tables
Examples for the creation and manipulation of tables
A discussion of table storage options

vV v . v.v vy

Concepts on referential integrity and data consistency

In this hour, you learn about database objects: what they are, how they
act, how they are stored, and how they relate to one another. Database
objects are the logical units that compose the building blocks of the data-
base. The majority of the instruction during this hour revolves around the
table, but keep in mind that there are other database objects, many of
which are discussed in later hours of study.

What Are Database Objects?

A database object is any defined object in a database that is used to store or
reference data. Some examples of database objects include tables, views,
clusters, sequences, indexes, and synonyms. The table is this hour’s focus
because it is the primary and simplest form of data storage in a relational
database.

What Is a Schema?

A schema is a collection of database objects normally associated with one
particular database username. This username is called the schema owner, or
the owner of the related group of objects. You may have one or multiple
schemas in a database. The user is only associated with the schema of the

38

HOUR 3: Managing Database Objects

same name, and often the terms are used interchangeably. Basically, any
user who creates an object has just created it in her own schema unless she
specifically instructs it to be created in another one. So, based on a user’s
privileges within the database, the user has control over objects that are cre-
ated, manipulated, and deleted. A schema can consist of a single table and
has no limits to the number of objects that it may contain, unless restricted
by a specific database implementation.

Say you have been issued a database username and password by the data-
base administrator. Your username is USER1. Suppose you log on to the
database and then create a table called EMPLOYEE_TBL. According to the
database, your table’s actual name is USER1.EMPLOYEE_TBL. The schema
name for that table is USER1, which is also the owner of that table. You
have just created the first table of a schema.

The good thing about schemas is that when you access a table that you
own (in your own schema), you do not have to refer to the schema name.
For instance, you could refer to your table as either one of the following:

EMPLOYEE_TBL
USER1.EMPLOYEE_TBL

The first option is preferred because it requires fewer keystrokes. If another
user were to query one of your tables, the user would have to specify the
schema as follows:

USER1.EMPLOYEE_TBL

In Hour 20, “Creating and Using Views and Synonyms,” you learn about
the distribution of permissions so that other users can access your tables.
You also learn about synonyms, which enable you to give a table another
name so you do not have to specify the schema name when accessing a
table. Figure 3.1 illustrates two schemas in a relational database.

There are, in Figure 3.1, two user accounts in the database that own tables:
USER1 and USER2. Each user account has its own schema. Some examples for
how the two users can access their own tables and tables owned by the
other user follow:

USER1 accesses own TABLE1: TABLE1
USER1 accesses own TEST: TEST
USER1 accesses USER2's TABLE10: USER2.TABLE10

USER1 accesses USER2's TEST: USER2.TEST

Tables: The Primary Storage for Data

DATABASE

Schema Owners

Schema Objects

test test

(]
2]

(Tables)
able1 table10
table2 table20

In this example, both users have a table called TEST. Tables can have the
same names in a database as long as they belong to different schemas. If
you look at it this way, table names are always unique in a database
because the schema owner is actually part of the table name. For instance,
USER1.TEST is a different table than USER2.TEST. If you do not specify a
schema with the table name when accessing tables in a database, the data-
base server looks for a table that you own by default. That is, if USER1 tries
to access TEST, the database server looks for a USER1-owned table named
TEST before it looks for other objects owned by USER1, such as synonyms to
tables in another schema. Hour 21, “Working with the System Catalog,”
helps you fully understand how synonyms work.

You must be careful to understand the distinction between objects in your
own schema and those objects in another schema. If you do not provide a
schema when performing operations that alter the table, such as a DROP
command, the database assumes that you mean a table in your own
schema. This could possibly lead to your unintentionally dropping the
wrong object. So you must always pay careful attention as to which user
you are currently logged into the database with.

Object Naming Rules Differ Between Systems

Every database server has rules concerning how you can name objects and
elements of objects, such as field names. You must check your particular imple-
mentation for the exact naming conventions or rules.

Tables: The Primary Storage for Data

The table is the primary storage object for data in a relational database. In
its simplest form, a table consists of row(s) and column(s), both of which
hold the data. A table takes up physical space in a database and can be
permanent or temporary.

39

FIGURE 3.1
Schemas in a
database.

ut!

40

FIGURE 3.2
An example of
a column.

HOUR 3: Managing Database Objects

Columns

A field, also called a column in a relational database, is part of a table that
is assigned a specific data type. The data type determines what kind of
data the column is allowed to hold. This enables the designer of the table
to help maintain the integrity of the data.

Every database table must consist of at least one column. Columns are
those elements within a table that hold specific types of data, such as a
person’s name or address. For example, a valid column in a customer table
might be the customer’s name. Figure 3.2 illustrates a column in a table.

ENE_ID LAST_MANE FIRST_HAME MIODLE_MAME
b 2I7EEE GLASS DRANCON coTT
WA WALLACT MARLH o
NI STOPHENS T, D
NN GLASE 4000 L
HZHEEI PLEW koA, cARoL
HETINZ SPURGEON TFFANY =

Generally, a column name must be one continuous string and can be limit-
ed to the number of characters used according to each implementation of
SQL. It is typical to use underscores with names to provide separation
between characters. For example, a column for the customer’s name can be
named CUSTOMER_NAME instead of CUSTOMERNAME. This is normally done to
increase the readability of database objects. There are other naming con-
ventions that you can utilize, such as Camel Case, to fit your specific pref-
erences. As such, it is important for a database development team to agree
upon a standard naming convention and stick to it so that order is main-
tained within the development process.

The most common form of data stored within a column is string data. This
data can be stored as either uppercase or lowercase for character-defined
fields. The case that you use for data is simply a matter of preference,
which should be based on how the data will be used. In many cases, data
is stored in uppercase for simplicity and consistency. However, if data is
stored in different case types throughout the database (uppercase, lower-
case, and mixed case), functions can be applied to convert the data to
either uppercase or lowercase if needed. These functions are covered in
Hour 11, “Restructuring the Appearance of Data.”

Columns also can be specified as NULL or NOT NULL, meaning that if a col-
umn is NOT NULL, something must be entered. If a column is specified as
NULL, nothing has to be entered. NULL is different from an empty set, such as

Tables: The Primary Storage for Data

an empty string, and holds a special place in database design. As such, you
can relate a NULL value to a lack of any data in the field.

Rows

A row is a record of data in a database table. For example, a row of data in
a customer table might consist of a particular customer’s identification
number, name, address, phone number, and fax number. A row is com-
posed of fields that contain data from one record in a table. A table can
contain as little as one row of data and up to as many as millions of rows
of data or records. Figure 3.3 illustrates a row within a table.

ENE 1) LAST_HANE FIRST HAME MODLE MAME

i LAl
% TLras TRANTAN AT |
ALLALL HANAH !
s STEPHENS ™A DA
TR oLAss e cm
e PLEW Uk cARDL
T2 SPURGEON TRRANY o

The CREATE TABLE Statement

The CREATE TABLE statement in SQL is used to create a table. Although the
very act of creating a table is quite simple, much time and effort should be
put into planning table structures before the actual execution of the CREATE
TABLE statement. Carefully planning your table structure before implemen-
tation saves you from having to reconfigure things after they are in
production.

Types We Use in This Hour

In this hour’'s examples, we use the popular data types CHAR (constant-length
character), VARCHAR (variable-length character), NUMBER (numeric values, decimal,
and nondecimal), and DATE (date and time values).

Some elementary questions need to be answered when creating a table:

» What type of data will be entered into the table?

v

What will be the table’s name?

v

What column(s) will compose the primary key?

v

What names shall be given to the columns (fields)?

41

FIGURE 3.3
Example of a
table row.

42

HOUR 3: Managing Database Objects

» What data type will be assigned to each column?
» What will be the allocated length for each column?

» Which columns in a table can be left as a null value?

Existing Systems Often Have Existing Naming Rules

Be sure to check your implementation for rules when naming objects and other
database elements. Often database administrators adopt a naming convention
that explains how to name the objects within the database so you can easily dis-
cern how they are used.

After these questions are answered, the actual CREATE TABLE statement is
simple.

The basic syntax to create a table is as follows:

CREATE TABLE table_name

(field1 data type [not null],
field2 data_type [not null],
field3 data _type [not null],
field4 data type [not null],
field5 data_type [not null]);

Note that a semicolon is the last character in the previous statement. Also,
brackets indicate portions that are optional. Most SQL implementations
have some character that terminates a statement or submits a statement to
the database server. Oracle, Microsoft SQL Server, and MySQL use the semi-
colon. Although Transact-SQL, Microsoft SQL Server’s ANSI SQL version, has
no such requirement, it is considered best practice to use it. This book uses
the semicolon.

Create a table called EMPLOYEE_TBL in the following example using the syntax
for MySQL:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL);

The following code would be the compatible code for both Microsoft SQL
Server and Oracle:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR (9)
EMP_NAME VARCHAR (40)
EMP_ST ADDR VARCHAR (20)
EMP_CITY VARCHAR (15)
EMP_ST CHAR (2)
EMP_ZIP INTEGER
EMP_PHONE INTEGER
EMP_PAGER INTEGER

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL,

NULL);

Tables: The Primary Storage for Data

Eight different columns make up this table. Notice the use of the underscore
character to break the column names up into what appears to be separate
words (EMPLOYEE 1ID is stored as EMP_ID). This is a technique that is used to
make table or column name more readable. Each column has been
assigned a specific data type and length, and by using the NULL/NOT NULL
constraint, you have specified which columns require values for every row
of data in the table. The EMP_PHONE is defined as NULL, meaning that NULL
values are allowed in this column because there might be individuals with-
out a telephone number. The information concerning each column is sepa-
rated by a comma, with parentheses surrounding all columns (a left paren-
thesis before the first column and a right parenthesis following the infor-

mation on the last column).

Limitations on Data Types Vary

Check your particular implementation for name length limits and characters that
are allowed; they could differ from implementation to implementation.

Each record, or row of data, in this table consists of the following:

EMP_ID, EMP_NAME, EMP_ST_ADDR, EMP_CITY, EMP_ST, EMP_ZIP, EMP_PHONE,

EMP_PAGER

In this table, each field is a column. The column EMP_ID could consist of one
employee’s identification number or many employees’ identification num-
bers, depending on the requirements of a database query or transaction.

Naming Conventions

When selecting names for objects, specifically tables and columns, make
sure the name reflects the data that is to be stored. For example, the name
for a table pertaining to employee information could be named
EMPLOYEE_TBL. Names for columns should follow the same logic. When stor-
ing an employee’s phone number, an obvious name for that column would

be PHONE_NUMBER.

ut!

43

44

HOUR 3: Managing Database Objects

The ALTER TABLE Command

You can modify a table after the table has been created by using the ALTER
TABLE command. You can add column(s), drop column(s), change column
definitions, add and drop constraints, and, in some implementations, mod-
ify table STORAGE values. The standard syntax for the ALTER TABLE command
follows:

alter table table_name [modify] [column column_name][datatype|null not
null]

[restrict | cascade]

[drop] [constraint constraint_name]
[add] [column] column definition

Modifying Elements of a Table

The attributes of a column refer to the rules and behavior of data in a col-
umn. You can modify the attributes of a column with the ALTER TABLE com-
mand. The word attributes here refers to the following:

» The data type of a column
» The length, precision, or scale of a column

» Whether the column can contain NULL values

The following example uses the ALTER TABLE command on EMPLOYEE_TBL to
modify the attributes of the column EMP_ID:
ALTER TABLE EMPLOYEE_TBL MODIFY

EMP_ID VARCHAR(10);
Table altered.

The column was already defined as data type VARCHAR (a varying-length
character), but you increased the maximum length from 9 to 10.

Adding Mandatory Columns to a Table

One of the basic rules for adding columns to an existing table is that the
column you are adding cannot be defined as NOT NULL if data currently
exists in the table. NOT NULL means that a column must contain some value
for every row of data in the table. So, if you are adding a column defined
as NOT NULL, you are contradicting the NOT NULL constraint right off the bat
if the preexisting rows of data in the table do not have values for the new
column.

There is, however, a way to add a mandatory column to a table:

1. Add the column and define it as NULL. (The column does not have
to contain a value.)

Tables: The Primary Storage for Data

2. Insert a value into the new column for every row of data in the
table.

3. Alter the table to change the column’s attribute to NOT NULL.

Adding Auto-Incrementing Columns to a Table

Sometimes it is necessary to create a column that auto-increments itself

to give a unique sequence number for a particular row. You could do this
for many reasons, such as not having a natural key for the data, or
wanting to use a unique sequence number to sort the data. Creating an
auto-incrementing column is generally quite easy. In MySQL, the imple-
mentation provides the SERIAL method to produce a truly unique value for
the table. Following is an example:

CREATE TABLE TEST_INCREMENT (

ID SERIAL,
TEST_NAME VARCHAR(20));

Using NULL for Table Creation

NULL is a default attribute for a column; therefore, it does not have to be entered
in the CREATE TABLE statement. NOT NULL must always be specified.

In Microsoft SQL Server, we are provided with an IDENTITY column type. The
following is an example for the SQL Server implementation:
CREATE TABLE TEST_INCREMENT (

ID INT IDENTITY(1,1) NOT NULL,
TEST_NAME VARCHAR(20));

Oracle does not provide a direct method for an auto-incrementing column.
However, there is one method using an object called a SEQUENCE and a
TRIGGER that simulates the effect in Oracle. This technique is discussed when
we talk about TRIGGERs in Hour 22, “Advanced SQL Topics.”

Now we can insert values into the newly created table without specifying a
value for our auto-incrementing column:

INSERT INTO TEST_INCREMENT (TEST_NAME)

VALUES ('FRED'),('JOE'), ('MIKE'), ('TED');

SELECT * FROM TEST_INCREMENT;

' 1D | TEST_NAME !
b FRED !
Lo JOE !
b3 MIKE !
Lo TED !

45

46

HOUR 3: Managing Database Objects

Modifying Columns

You need to consider many things when modifying existing columns of a
table. Following are some common rules for modifying columns:

» The length of a column can be increased to the maximum length
of the given data type.

» The length of a column can be decreased only if the largest value
for that column in the table is less than or equal to the new length
of the column.

» The number of digits for a number data type can always be
increased.

» The number of digits for a number data type can be decreased only
if the value with the most number of digits for that column is less
than or equal to the new number of digits specified for the column.

» The number of decimal places for a number data type can either
be increased or decreased.

» The data type of a column can normally be changed.

Some implementations might actually restrict you from using certain ALTER
TABLE options. For example, you might not be allowed to drop columns
from a table. To do this, you have to drop the table itself and then rebuild
the table with the desired columns. You could run into problems by drop-
ping a column in one table that is dependent on a column in another table
or dropping a column that is referenced by a column in another table. Be
sure to refer to your specific implementation documentation.

Creating Tables for Exercises

You will create the tables that you see in these examples at the end of this hour
in the “Exercises” section. In Hour 5, “Manipulating Data,” you will populate the
tables you create in this hour with data.

Creating a Table from an Existing Table

Altering or Dropping Tables Can Be Dangerous

Take heed when altering and dropping tables. If you make logical or typing mis-
takes when issuing these statements, you can lose important data.

Tables: The Primary Storage for Data

You can create a copy of an existing table using a combination of the
CREATE TABLE statement and the SELECT statement. The new table has the
same column definitions. You can select any or all columns. New columns
that you create via functions or a combination of columns automatically
assume the size necessary to hold the data. The basic syntax for creating a
table from another table is as follows:

create table new_table_name as

select [*|columni, column2]

from table_name
[where]

Notice some new keywords in the syntax, particularly the SELECT keyword.
SELECT is a database query and is discussed in more detail in Chapter 7,
“Introduction to the Database Query.” However, it is important to know
that you can create a table based on the results from a query.

Both MySQL and Oracle support the CREATE TABLE AS SELECT method of cre-

ating a table based on another table. Microsoft SQL Server, however, uses a

different statement. For that database implementation, you use a SELECT
INTO statement. This statement is used like this:

select [*|column1, columnn2]

into new_table_name

from table_name
[where]

Here you'll examine some examples of using this method.

First, do a simple query to view the data in the PRODUCTS_TBL table:

select * from products_tbl;

PROD_ID PROD_DESC COST
11235 WITCH COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

Next, create a table called PRODUCTS_TMP based on the previous query:

create table products_tmp as
select * from products_tbl;

Table created.

47

48

ﬂnow?

ﬂllOVV?

HOUR 3: Managing Database Objects

In SQL Server, the same statement would be written as such:

select *
into products_tmp
from products_tbl;

Table created.

Now if you run a query on the PRODUCTS_TMP table, your results appear the
same as if you had selected data from the original table.

select *

from products_tmp;

PROD_ID PROD_DESC COST
11235 WITCH COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

What the * Means

SELECT * selects data from all fields in the given table. The * represents a com-
plete row of data, or record, in the table.

Default STORAGE Attributes for Tables

When creating a table from an existing table, the new table takes on the same
STORAGE attributes as the original table.

Dropping Tables

Dropping a table is actually one of the easiest things to do. When the
RESTRICT option is used and the table is referenced by a view or constraint,
the DROP statement returns an error. When the CASCADE option is used, the
drop succeeds and all referencing views and constraints are dropped. The
syntax to drop a table follows:

drop table table name [restrict|cascade]

Integrity Constraints

SQL Server does not allow for the use of the CASCADE option. So for that par-
ticular implementation, you must ensure that you drop all objects that ref-
erence the table you are removing to ensure that you are not leaving an
invalid object in your system.

In the following example, you drop the table that you just created:

drop table products_tmp;

Table dropped.

Be Specific When Dropping a Table

Whenever you're dropping a table, be sure to specify the schema name or owner
of the table before submitting your command. You could drop the incorrect table.
If you have access to multiple user accounts, ensure that you are connected to
the database through the correct user account before dropping tables.

Integrity Constraints

Integrity constraints ensure accuracy and consistency of data in a relation-
al database. Data integrity is handled in a relational database through the
concept of referential integrity. Many types of integrity constraints play a
role in referential integrity (RI).

Primary Key Constraints

Primary key is the term that identifies one or more columns in a table that
make a row of data unique. Although the primary key typically consists of
one column in a table, more than one column can comprise the primary
key. For example, either the employee’s Social Security number or an
assigned employee identification number is the logical primary key for an
employee table. The obijective is for every record to have a unique primary
key or value for the employee’s identification number. Because there is
probably no need to have more than one record for each employee in an
employee table, the employee identification number makes a logical pri-
mary key. The primary key is assigned at table creation.

The following example identifies the EMP_ID column as the PRIMARY KEY for
the EMPLOYEES table:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR (9) NOT NULL PRIMARY KEY,

49

e —

HOUR 3: Managing Database Objects

EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL);

This method of defining a primary key is accomplished during table cre-
ation. The primary key in this case is an implied constraint. You can also
specify a primary key explicitly as a constraint when setting up a table, as
follows:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR (2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL,

PRIMARY KEY (EMP_ID));

The primary key constraint in this example is defined after the column
comma list in the CREATE TABLE statement.

You can define a primary key that consists of more than one column by
either of the following methods, which demonstrate creating a primary key
in an Oracle table:

CREATE TABLE PRODUCT_TST

(PROD_ID VARCHAR2 (10) NOT NULL,
VEND_ID VARCHAR2 (10) NOT NULL,
PRODUCT VARCHAR2 (30) NOT NULL,
cosT NUMBER (8,2) NOT NULL,

PRIMARY KEY (PROD_ID, VEND_ID));

ALTER TABLE PRODUCTS_TST
ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

Unique Constraints

A unique column constraint in a table is similar to a primary key in that the
value in that column for every row of data in the table must have a unique
value. Although a primary key constraint is placed on one column, you
can place a unique constraint on another column even though it is not
actually for use as the primary key.

Integrity Constraints

Study the following example:
CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR (9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER(5) NOT NULL,

EMP_PHONE INTEGER(10) NULL UNIQUE,
EMP_PAGER INTEGER(10) NULL) ;

The primary key in this example is EMP_ID, meaning that the employee
identification number is the column ensuring that every record in the table
is unique. The primary key is a column that is normally referenced in
queries, particularly to join tables. The column EMP_PHONE has been desig-
nated as a UNIQUE value, meaning that no two employees can have the
same telephone number. There is not a lot of difference between the two,
except that the primary key provides an order to data in a table and, in the
same respect, joins related tables.

Foreign Key Constraints

A foreign key is a column in a child table that references a primary key in
the parent table. A foreign key constraint is the main mechanism that
enforces referential integrity between tables in a relational database. A col-
umn defined as a foreign key references a column defined as a primary key
in another table.

Study the creation of the foreign key in the following example:
CREATE TABLE EMPLOYEE_PAY_TST

(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL
(EMP_ID));

The EMP_ID column in this example has been designated as the foreign key
for the EMPLOYEE_PAY_TBL table. This foreign key, as you can see, references
the EMP_ID column in the EMPLOYEE_TBL table. This foreign key ensures that
for every EMP_ID in the EMPLOYEE_PAY_TBL, there is a corresponding EMP_ID in
the EMPLOYEE_TBL. This is called a parent/child relationship. The parent table is
the EMPLOYEE_TBL table, and the child table is the EMPLOYEE_PAY_TBL table.
Study Figure 3.4 for a better understanding of the parent table/child table
relationship.

51

52

FIGURE 3.4
The
parent/child
table relation-
ship.

HOUR 3: Managing Database Objects

EMPLOYEE_TBL EMPLOYEE_PAY_TBL
Primary .) Foreign
Key — emp_id empf|d Key
last_name position
first_name date_hire
mid_name pay_rate
address date_last_raise
city
state Child
zip Table
phone
pager
Parent
Table

In this figure, the EMP_ID column in the child table references the EMP_ID
column in the parent table. For a value to be inserted for EMP_ID in the
child table, a value for EMP_ID in the parent table must exist. Likewise, for a
value to be removed for EMP_ID in the parent table, all corresponding first
values for EMP_ID must be removed from the child table. This is how refer-
ential integrity works.

You can add a foreign key to a table using the ALTER TABLE command, as
shown in the following example:
alter table employee_pay_tbl

add constraint id_fk foreign key (emp_id)
references employee_tbl (emp_id);

ALTER TABLE Variations

The options available with the ALTER TABLE command differ among implementa-
tions of SQL, particularly when dealing with constraints. In addition, the actual
use and definitions of constraints vary, but the concept of referential integrity
should be the same with all relational databases.

NOT NULL Constraints

Previous examples use the keywords NULL and NOT NULL listed on the same
line as each column and after the data type. NOT NULL is a constraint that
you can place on a table’s column. This constraint disallows the entrance of
NULL values into a column; in other words, data is required in a NOT NULL
column for each row of data in the table. NULL is generally the default for a
column if NOT NULL is not specified, allowing NULL values in a column.

Integrity Constraints

Check Constraints

You can utilize check (CHK) constraints to check the validity of data entered
into particular table columns. Check constraints provide back-end database
edits, although edits are commonly found in the front-end application as
well. General edits restrict values that can be entered into columns or
objects, whether within the database or on a front-end application. The
check constraint is a way of providing another protective layer for the data.

The following example illustrates the use of a check constraint in Oracle:
CREATE TABLE EMPLOYEE_CHECK_TST

(EMP_ID CHAR (9) NOT NULL,
EMP_NAME VARCHAR2 (40) NOT NULL,
EMP_ST ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER (5) NOT NULL,
EMP_PHONE NUMBER (10) NULL,

EMP_PAGER NUMBER (10) NULL,

PRIMARY KEY (EM

P_ID),

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = '46234'));

The check constraint in this table has been placed on the EMP_zIP column,
ensuring that all employees entered into this table have a ZIP Code of
‘46234 '. Perhaps that is a little restricting. Nevertheless, you can see how it

works.

If you wanted to use a check constraint to verify that the ZIP Code is within
a list of values, your constraint definition could look like the following:

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP in ('46234','46227','46745'));

If there is a minimum pay rate that can be designated for an employee,
you could have a constraint that looks like the following:

CREATE TABLE EMPLOYEE_PAY_TBL

(EMP_ID CHAR (9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER (4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL

(EMP_ID),

CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

In this example, any employee entered into this table must be paid more
than $12.50 an hour. You can use just about any condition in a check con-
straint, as you can with an SQL query. You learn more about these condi-
tions in Hours 5 and 7.

53

54

ﬂliOVV?

HOUR 3: Managing Database Objects

Dropping Constraints

Using the ALTER TABLE command with the DROP CONSTRAINT option, you
can drop any constraint that you have defined. For example, to drop the
primary key constraint in the EMPLOYEES table, you can use the following
command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Table altered.

Some implementations provide shortcuts for dropping certain constraints. For
example, to drop the primary key constraint for a table in MySQL, you can
use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Table altered.

Other Ways of Dealing with Constraints

Instead of permanently dropping a constraint from the database, some implemen-
tations allow you to temporarily disable constraints and then enable them later.

Summary

You have learned a little about database objects in general, but you have
specifically learned about the table. The table is the simplest form of data
storage in a relational database. Tables contain groups of logical informa-
tion, such as employee, customer, or product information. A table is com-
posed of various columns, with each column having attributes; those attrib-
utes mainly consist of data types and constraints, such as NOT NULL values,
primary keys, foreign keys, and unique values.

You learned the CREATE TABLE command and options, such as storage
parameters, that might be available with this command. You also learned
how to modify the structure of existing tables using the ALTER TABLE com-
mand. Although the process of managing database tables might not be the
most basic process in SQL, if you first learn the structure and nature of
tables, you will more easily grasp the concept of accessing the tables,
whether through data manipulation operations or database queries. In later
hours, you learn about the management of other objects in SQL, such as
indexes on tables and views.

Workshop

Q&A

Q.

A.

When | name a table that | am creating, is it necessary to use a suffix such
as_TBL?

Absolutely not. You do not have to use anything. For example, a table
to hold employee information could be named something similar to
the following, or anything else that would refer to what type of data is
to be stored in that particular table:

EMPLOYEE
EMP_TBL
EMPLOYEE_TBL
EMPLOYEE_TABLE
WORKER

Q. Why is it so important to use the schema name when dropping a table?

A. Here’s a true story about a new DBA who dropped a table. A program-

mer had created a table under his schema with the same name as a
production table. That particular programmer left the company. His
database account was being deleted from the database, but the bropP
USER statement returned an error because he owned outstanding
objects. After some investigation, it was determined that his table was
not needed, so a DROP TABLE statement was issued.

It worked like a charm, but the problem was that the DBA was logged
in as the production schema when the DROP TABLE statement was
issued. The DBA should have specified a schema name, or owner, for
the table to be dropped. Yes, the wrong table in the wrong schema was
dropped. It took approximately eight hours to restore the production
database.

Workshop

The following workshop is composed of a series of quiz questions and practi-
cal exercises. The quiz questions are designed to test your overall under-
standing of the current material. The practical exercises are intended to
afford you the opportunity to apply the concepts discussed during the cur-
rent hour, as well as build upon the knowledge acquired in previous hours
of study. Please take time to complete the quiz questions and exercises
before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”
for answers.

55

56 HOUR 3: Managing Database Objects

Quiz

1.

Does the following CREATE TABLE statement work? If not, what needs to
be done to correct the problem(s)? Are there limitations as to what
database implementation it works in (MySQL, Oracle, SQL Server)?

Create table EMPLOYEE_TABLE as:

(ssn number (9) not null,
last_name varchar2(20) not null,
first_name varchar2(20) not null,
middle_name varchar2(20) not null,
st address varchar2(30) not null,
city char(20) not null,
state char(2) not null,
zip number (4) not null,
date hired date);

. Can you drop a column from a table?

. What statement would you issue to create a primary key constraint on

the preceding EMPLOYEE_TABLE?

What statement would you issue on the preceding EMPLOYEE_TABLE to
allow the MIDDLE_NAME column to accept NULL values?

. What statement would you use to restrict the people added into the

preceding EMPLOYEE_TABLE to only reside in the state of New York
("NY")?

What statement would you use to add an auto-incrementing column
called EMPID to the preceding EMPLOYEE_TABLE using both the MySQL
and SQL Server syntax?

Exercises

In the following exercise, you will be creating all the tables in the database
to set up the environment for later. Additionally, you will be executing sev-
eral commands that will allow you to investigate the table structure in an
existing database. For thoroughness we have provided instructions for each
of the three implementations (MySQL, Microsoft SQL Server, and Oracle)
because each is slightly different in its approach.

MySQL

Bring up a command prompt and use the following syntax to log onto
your local MySQL instance, replacing username with your username
and password with your password. Ensure that you do not leave a
space between -p and your password.

Mysql -h localhost -u username -ppassword

Workshop

At the mysql> command prompt, enter the following command to tell
MySQL that you want to use the database you created previously:

use learnsql;

Now go to Appendix D, “CREATE TABLE Statements for Book Exam-
ples,” to get the DDL for the tables used in this book. At the mysql>
prompt, enter each CREATE TABLE statement. Be sure to include a
semicolon at the end of each CREATE TABLE statement. The tables that
you create are used throughout the book.

At the mysql> prompt, enter the following command to get a list of
your tables:

show tables;

At the mysql> prompt, use the DESCRIBE command (desc for short) to
list the columns and their attributes for each one of the tables you cre-
ated. For

example:

describe employee_tbl;
describe employee pay_ tbl;

If you have errors or typos, simply re-create the appropriate table(s). If
the table was successfully created but has typos (perhaps you did not
properly define a column or forgot a column), drop the table, and
issue the CREATE TABLE command again. The syntax of the DROP TABLE
command is as follows:

drop table orders_tbl;
Microsoft SQL Server

Bring up a command prompt and use the following syntax to log onto
your local SQL Server instance, replacing username with your username
and password with your password. Ensure that you do not leave a
space between -p and your password.

SQLCMD -S localhost -U username -Ppassword

57

HOUR 3: Managing Database Objects

At the 1> command prompt, enter the following command to tell SQL
Server that you want to use the database you created previously.
Remember that with SQLCMD you must use the keyword Go to tell the
command tool that you want the previous lines to execute.

1>use learnsql;
2>G0

Now go to Appendix D to get the DDL for the tables used in this book.
At the 1> prompt, enter each CREATE TABLE statement. Be sure to
include a semicolon at the end of each CREATE TABLE statement and
follow up with the keyword G0 to have your statement execute. The
tables that you create are used throughout the book.

At the 1> prompt, enter the following command to get a list of your
tables. Follow this command with the keyword Go:

Select name from sys.tables;

At the 1> prompt, use the sp_help stored procedure to list the columns
and their attributes for each one of the tables you created. For exam-

ple:

Sp_help_ employee_tbl;
Sp_help employee_pay_tbl;

If you have errors or typos, simply re-create the appropriate table(s). If
the table was successfully created but has typos (perhaps you did not
properly define a column or forgot a column), drop the table and issue
the CREATE TABLE command again. The syntax of the DROP TABLE com-
mand is as follows:

drop table orders_tbl;
Oracle

Bring up a command prompt, and use the following syntax to log
onto your local Oracle instance. You are prompted to enter your user-
name and password.

sqlplus

Workshop

Now go to Appendix D to get the DDL for the tables used in this book.
At the saL> prompt, enter each CREATE TABLE statement. Be sure to
include a semicolon at the end of each CREATE TABLE statement. The
tables that you create are used throughout the book.

At the saL> prompt, enter the following command to get a list of your
tables:

Select * from cat;

At the saL> prompt, use the DESCRIBE command (desc for short) to list
the columns and their attributes for each one of the tables you created.
For example:

describe employee_tbl;
describe employee pay_ tbl;

If you have errors or typos, simply re-create the appropriate table(s). If
the table was successfully created but has typos (perhaps you did not
properly define a column or forgot a column), drop the table, and
issue the CREATE TABLE command again. The syntax of the DROP TABLE
command is as follows:

drop table orders_tbl;

59

This page intentionally left blank

A

ABS (absolute value), 183

accessing remote databases,
357-358

JDBC, 358

ODBC (Open Database
Connectivity), 358

OLE DB, 359

through web interfaces,
359-360

vendor connectivity products,
359

adding

auto-incrementing columns to
tables, 45

columns to tables, 44-45
time to dates, 196-197

addition, arithmetic operators,
133-134

ADMIN OPTION, 305
aggregate functions, 141-142
AVG, 146-147
COUNT, 142-145

Index

creating groups, 155-158

MAX, 147-148

MIN, 148-149

SUM, 145-146
ALL, 124-126
ALTER ANY TABLE, 302
ALTER DATABASE, 302
ALTER TABLE, 44, 264, 377
ALTER USER, 302
altering

indexes, 263

users, 294-295

American National Standards
Institute. See ANSI (American
National Standards Institute)

AND, 126-127

ANSI (American National
Standards Institute), 2

ANSI character functions,
169-170

ANSI SQL, 2
compliance with, 369

ANSI standard, SELECT, 368

462
ANY

ANY, 124-126

arithmetic operators, 133
addition, 133-134
combinations of, 135-136
division, 135
multiplication, 134
subtraction, 134

ASCII, 182-183

asterisks, 101

AUTHORIZATION keyword, 292

auto-incrementing columns,
adding to tables, 45

AVG, 146-147

avoiding
HAVING clause, 277
indexes, 261-263

large sort operations,
277-278

OR operator, performance,
276-277

back-end application, SQL and
enterprise, 356

BACKUP ANY TABLE, 302
BACKUP DATABASE, 301
base tables, joins, 218-219

batch loads, disabling indexes
during, 278-279

BETWEEN, 120-121
BOOLEAN values, 29

C

call-level interface (CLI), 349-350

Cartesian product, joins, 219-221

case sensitivity, 74
SELECT, 106-107

CEILING, 183

character functions, 170
ASCII, 182-183
COALESCE, 181
combining, 186-187
CONCAT, 170-172
DECODE, 178-179
IFNULL, 180
INSTR, 176-177
LENGTH, 179-180
LOWER, 174-175
LPAD, 181-182
LTRIM, 177-178
REPLACE, 173
RPAD, 182
RTRIM, 178
SUBSTR, 175-176
TRANSLATE, 172-173
UPPER, 174

character strings

converting numbers to,
185-186

converting to dates, 203-204

converting to numbers,
184-185

check constraints, 53

CLI (call-level interface), 349-350
client/server model, 5-6

CLOSE, 340

closing cursors, 342-343
COALESCE, 181
collation, 107
columns, 16, 40-41
adding to tables, 44-45

auto-incrementing columns,
adding to tables, 45

limited columns, inserting
data into, 75-76
modifying, 46
representing column names
with numbers, 158-159
updating
multiple columns in one or
more records, 81-82

value of a single column,
80-81

combining character functions,
186-187

comma separated arguments,
100

COMMIT, 11, 89-91, 377
comparison operators, 116
combinations of, 118-119
equality, 116
less than, greater than, 118
non-equality, 117
composite indexes, 259-260
compound queries
GROUP BY clause, 248-250
ORDER BY clause, 246-248

versus single queries,
239-240

compound query operators, 240
EXCEPT, 245-246
INTERSECT, 244-245

retrieving accurate data, 250

UNION, 240-243

UNION ALL, 243-244
CONCAT, 170-172
concatenation, 170
conjunctive operators, 126

AND, 126-127

OR, 127-129
CONNECT, 8, 307
constraints

dropping, 54

integrity constraints. See

integrity constraints

controlling
privileges, 308
CREATE ROLE, 308-309
DROP ROLE, 309
SET ROLE, 309
transactions, 88
COMMIT, 89-91

RELEASE SAVEPOINT,
94-95

ROLLBACK, 91-92

ROLLBACK TO SAVEPOINT,
9394

SAVEPOINT, 92-93

SET TRANSACTION, 95

user access, 304

GRANT, 304-305

GRANT OPTION, 305

groups of privileges,
306-308

on individual columns,
306

PUBLIC database, 306
REVOKE, 305-306

conversion functions, 183-184

converting character strings
to numbers, 184-185

converting numbers to char-
acter strings, 185-186

converting

character strings to dates,
203-204

character strings to numbers,
184-185

dates to character strings,
202-203

numbers to character strings,
185-186

correlated subqueries, 233-234
COS, 183

cost-based optimization, perfor-
mance, 279-280

COUNT, 109, 142-145
COUNT(*), 143

CREATE, 302

CREATE ANY TABLE, 302
CREATE DATABASE, 301
CREATE INDEX257, 377
CREATE PROCEDURE, 301
CREATE ROLE, 308-309, 377
CREATE SCHEMA, 292-293
CREATE TABLE AS, 378

CREATE TABLE statement, 41-43,
301, 378

CREATE TRIGGER, 301, 346-348
CREATE TYPE,378

CREATE USER, 290, 302, 378
CREATE VIEW, 301, 316, 378
CUBE expression, 163-164
CUME_DIST() OVER, 351

current date, 194

463
data

cursors, 339-340
closing, 342-343
fetching data from, 341-342
opening, 340-341

CUSTOMER_TBL, 440-441,
444-445

Oracle,447-448

data
defined, 21
deleting from tables, 82-83
grouping, 153-154
CUBE expression,
163-164

GROUP BY clause,
154-155

GROUP BY clause versus
ORDER BY clause,
159-161

HAVING clause, 164-165

ROLLUP expression,
161-162

inserting

into limited columns of
tables, 75-76

NULL values, 78-80
from other tables, 76-78
into tables, 74-75
manipulating, 10, 73
retrieving, 250
selecting, 10

from multiple tables,
207-208

How can we make this index more useful? Email us at indexes@samspublishing.com

464
data

selecting data from another
user’s table, 110

updating, 80
multiple columns in one or
more records, 81-82
through views, 322-323

value of a single column,
80-81
used in this book, 13-15
data access, simplifying with
views, 314-315
data administration commands,
911
Data Control Language. See DCL
(Data Control Language)

Data Definition Language. See
DDL (Data Definition Language)

Data Manipulation Language. See
DML (Data Manipulation
Language)

Data Query Language. See DQL
(Data Query Language)

data redundancy, logical data-
base design, normalization,
63-64

data types, 22

BOOLEAN values, 29

date and time data types, 27
DATETIME data types, 192
decimal values, 25-26
domains, 30

fixed-length strings, 23
floating-point decimals, 26-27
integers, 26

large object types, 24
limitations on, 43

literal strings, 28

NULL values, 28-29

numeric values, 24-25

user-defined types, 29-30

varying-length strings, 23
database administrator. See DBA

database design information, sys-
tem catalogs, 332

database management system.
See DBMS (database manage-
ment system)

database objects, 37

database performance, transac-
tional control and, 95-96

database security, 299-300

database structures, DDL (Data
Definition Language), 9-10

database tuning versus SQL
statement tuning, 268

database vendors, 7-8
databases

defined, 4-5

relational databases, 5

web-based database sys-
tems, 6-7

date conversions, 198-199

converting character strings
to dates, 203-204

converting dates to character
strings, 202-203
date pictures, 199-202
date functions, 193

adding time to dates,
196-197

current date, 194
miscellaneous, 197-198
time zones, 194-195

date pictures, 199-202
dates, converting to character
strings, 202-203
DATETIME data types, 27, 192
implementation-specific data
types, 193
DATETIME elements, 192
DB_DATAWRITER, 308
DB_DDLADMIN, 307

DBA (database administrator),
21, 300, 307

DBMS (database management
system), 1

DCL (Data Control Language), 9,
10-11
DDL (Data Definition Language),
9-10
decimal values, 25-26
floating-point decimals, 26-27
DECODE, 178-179
default storage, 191
DELETE statements, 82, 379
subqueries, 230
deleting data from tables, 82-83
denormalization, 69-70
DENSE_RANK() OVER, 351

direct SQL versus embedded SQL,
351

disabling indexes during batch
loads, 278-279

DISCONNECT, 89

DISTINCT
aggregate functions, 149
SELECT, 102

division, arithmetic operators,
135

DML (Data Manipulation
Language), 9-10
domains, data types, 30
DQL (Data Query Language),
9-10
DROP, 302
DROP INDEX, 379
DROP ROLE, 309
DROP TABLE, 302, 379
DROP TRIGGER, 348
DROP USER, 302, 379
DROP VIEW, 323, 379
dropping
constraints, 54
indexes, 263
schemas, 293-294
synonyms, 325
tables, 48-49
triggers, 348
views, 323

dynamic SQL, 348-349

embedded SQL versus direct SQL,
351

embedded subqueries, 231-233

EMPLOYEE_PAY_TBL, 439, 441,
444

Oracle, 447
EMPLOYEE_TBL, 439-440, 443
Oracle, 446-447

end user needs, logical database
design, normalization, 63

enterprises, SQL and, 355
back-end applications, 356

front-end applications,
356-357

equality, 116
equality of joins, 208-210
EXCEPT, 245-246
EXEC SQL, 349
EXECUTE, 301
EXISTS, 123-124
EXIT, 89
EXP (exponential values), 183
EXPLAIN PLAN, 280
extensions
implementations, 369-370
MySQL, 372-373
PL/SQL, 371-372
SQL extensions, 370
Transact-SQL, 371

F

FETCH, 340

fetching data from cursors,
341-342

fields, 15

first normal form, 64-65
fixed-length strings, 23

FLOAT, 26

floating-point decimals, 26-27
FLOOR, 183

FOR EACH ROW, triggers, 348
foreign key constraints, 51-52

formatting SQL statements,
268-269

465

functions

arranging tables in FROM
clause, 271

ordering join conditions,
271272

for readability, 269-271

restrictive conditions,
272-273

FROM clause, 381
arranging tables, 271
SELECT, 102

front-end applications, SQL and
enterprise, 356-357

full table scans, 257, 274-275
functions

aggregate functions. See
aggregate functions

ANSI character functions,
169-170

character functions, 170
ASCII, 182-183
COALESCE, 181
CONCAT, 170-172
DECODE, 178-179
IFNULL, 180
INSTR, 176-177
LENGTH, 179-180
LOWER, 174-175
LPAD, 181-182
LTRIM, 177-178
REPLACE, 173
RPAD, 182
RTRIM, 178
SUBSTR, 175-176
TRANSLATE, 172-173
UPPER, 174

conversion functions,
183-184

How can we make this index more useful? Email us at indexes@samspublishing.com

466

functions

date functions, 193

adding time to dates,
196-197

current date, 194

miscellaneous, 197-198

time zones, 194-195
mathematical functions, 183

stored procedures and,
343-346

TRANSLATE, 170

windowed table functions,
351-352

G-H

generating SQL with SQL, 350
GRANT, 302, 379

controlling user access,
304-305

GRANT OPTION, 305

granting privileges, 303-304

GROUP BY clause, 154-155, 381
compound queries, 248-250

creating groups with aggre-
gate functions, 155-158

group functions, 155
grouping selected data, 155
versus ORDER BY, 159-161
representing column names
with numbers, 158-159
group functions, GROUP BY
clause, 155
grouping
data, 153-154

CUBE expression,
163-164

GROUP BY clause,
154-155

GROUP BY clause versus
ORDER BY clause,
159-161

HAVING clause, 164-165

ROLLUP expression,
161-162

queries, 128

selected data, GROUP BY
clause, 155

groups, creating with aggregate
functions, 155-158

groups of privileges, controlling
user access, 306-308

GUI tools, 296

HAVING clause, 164-165, 381
avoiding, 277

IFNULL, 180
implementations, 367

compliance with ANSI SQL,
369

differences between, 367-369
extensions to SQL, 369-370
implementation-specific data
types, 193
implicit indexes, 260
IN, 121-122
indexes, 255-256
altering, 263
avoiding, 261-263
composite indexes, 259-260

considering, 260-261
creating groups, 258-257

creating with CREATE INDEX,
257

disabling indexes during
batch loads, 278-279

dropping, 263

how they work, 256-257

implicit indexes, 260

single-column indexes, 258

unique indexes, 258-259
INSERT, 303, 379

subqueries, 228-229
inserting data

into limited columns of
tables, 75-76

NULL values, 78-80

from other tables, 76-78

into tables, 74-75
INSERT...SELECT, 380
installing

Microsoft SQL Server,
388-390

MySQL, 383-385
Oracle, 386-387

INSTR, 176-177

integers, 26

integrity constraints, 49
check constraints, 53
foreign key constraints, 51-52
NOT NULL constraints, 52
primary key constraints,

49-50

unique constraints, 50-51

interactive SQL statements,
373-374

International Standards
Organization (ISO), 2

Internet, SQL and, 360

making data available to cus-
tomers worldwide, 360-361

making data available to
employees and privileged
customers, 361

INTERSECT, 244-245
intranets, SQL and, 361-362
IS NOT NULL, 132

IS NULL, 120

ISO (International Standards
Organization), 2

J-K

JDBC (Java Database
Connectivity), 358

join conditions, ordering, 271-272
joins, 208
base tables, 218-219
Cartesian product, 219-221

components of a join condi-
tion, 208

equality of, 208-210
multiple keys, 216-217
non-equality, 211-212
outer joins, 212-215
self joins, 215-216

table aliases, 210

keywords
AUTHORIZATION, 292
SELECT, 100

L

large object types, 24
LENGTH, 179-180

less than, greater than, compari-
son operators, 118

LIKE, 122-123, 275-276
limitations on data types, 43
literal strings, 28
logical database design, normal-
ization, 62-63
data redundancy, 63-64
end user needs, 63
logical operators, 119-120
ALL, 124-126
ANY, 124-126
BETWEEN, 120-121
EXISTS, 123-124
IN, 121-122
IS NULL, 120
LIKE, 122-123
SOME, 124-126
LOWER, 174-175
LPAD, 181-182
LTRIM, 177-178

major implementation system
catalog objects, 333-334

managing users, 285-287
manipulating data, 10, 73
mathematical functions, 183

MAX, 147-148

467
MySQL

Microsoft SQL Server
creating users, 290-291
cursors, 340

closing, 343

CUSTOMER_TBL, 441,
444-445

EMPLOYEE_PAY_TBL, 441,
444

EMPLOYEE_TBL, 440, 443
ORDERS_TBL, 441, 445
parameters, 374
PRODUCTS_TBL, 442, 446
SELECT, 368

stored procedures, 344-345
triggers, creating, 346

Windows installation instruc-
tions, 388-390

MIN, 148-149
modifying
columns in tables, 46
elements of tables, 44
multiple keys, joining, 216-217
multiplication, arithmetic opera-
tors, 134
MySQL
creating users, 291
cursors, 340
closing, 343

CUSTOMER_TBL, 440,
444-445

EMPLOYEE_PAY_TBL, 439,
444

EMPLOYEE_TBL, 439, 443
extensions, 372-373
ORDERS_TBL, 440, 445
PRODUCTS_TBL, 440, 446

How can we make this index more useful? Email us at indexes@samspublishing.com

468
MySQL

stored procedures, 344
triggers, creating, 346

Windows installation instruc-
tions, 383-385

naming conventions
normalization, 67
tables, 43

naming objects, 39

negative operators, 129
IS NOT NULL, 132
NOT BETWEEN, 130-131
NOT EQUAL, 130
NOT EXISTS, 133
NOT IN, 131
NOT LIKE, 131-132

nested views, performance,
323-324

non-equality
comparison operators, 117
joins, 211-212
normal forms, 64
first normal form, 64-65
second normal form, 65-66
third normal form, 67
normalization, 61-62
benefits of, 68-69
drawbacks of, 69

logical database design,
62-63

data redundancy, 63-64

end user needs, 63

naming conventions, 67
normal forms, 64
first normal form, 64-65

second normal form,
65-66
third normal form, 67
raw databases, 62
NOT BETWEEN, 130-131
NOT EQUAL, 130
NOT EXISTS, 133
NOT IN, 131
NOT LIKE, 131-132
NOT NULL constraints, 52
NULL value checker, 180
NULL values, 16, 28-29
inserting in tables, 78-80
numbers

converting character strings
to, 184-185

converting to character
strings, 185-186

numeric values, 24-25

o

object privileges, 302-303
objects, naming, 39

ODBC (Open Database
Connectivity), 358

OLE DB, 359
OPEN, 340
opening cursors, 340-341
operators, 115
arithmetic operators, 133
addition, 133-134

combinations, 135-136
division, 135
multiplication, 134
subtraction, 134

comparison operators, 116
combinations of, 118-119
equality, 116

less than, greater than,
118

non-equality, 117
conjunctive operators, 126
AND, 126-127
OR, 127-129
logical operators, 119-120
ALL, 124-126
ANY, 124-126
BETWEEN, 120-121
EXISTS, 123-124
IN, 121-122
IS NULL, 120
LIKE, 122-123
SOME, 124-126
negative operators, 129
IS NOT NULL, 132
NOT BETWEEN, 130-131
NOT EQUAL, 130
NOT EXISTS, 133
NOT IN, 131
NOT LIKE, 131-132
OR, 127-129
avoiding, 276-277
Oracle
creating users, 289-290
cursors, 340

closing, 343

CUSTOMER_TBL,441,
447-448

EMPLOYEE_PAY_TBL, 441,
447

EMPLOYEE_TBL, 440,
446-447

ORDERS_TBL, 441, 448-449
parameters, 373
PRODUCTS_TBL, 442, 449
SELECT, 368-369

stored procedures, 344-345
triggers, creating, 346

Windows installation instruc-
tions, 386-387

Oracle Fusion Middleware, 359
ORDER BY clause,382
compound queries, 246-248

versus GROUP BY clause,
159-161

SELECT, 104-106
views, 322
ordering join conditions, 271-272
ORDERS_TBL, 440-441, 445
Oracle, 448-449
outer joins, 212-215

P

parameters
Microsoft SQL Server, 374
Oracle, 373
PERCENT_RANK() OVER, 351
performance
avoiding
HAVING clause, 277

large sort operations,
277278

OR operator, 276-277

cost-based optimization,
279-280

disabling indexes during
batch loads, 278-279

full table scans, 274-275
LIKE operator, 275-276
nested views, 323-324
SQL statement tuning, 267

versus database tuning,
268

stored procedures, 278
subqueries, 234-235
wildcards, 275-276

performance statistics, system
catalogs, 332-333

performance tools, 280
PL/SQL, 370
extensions, 371-372

populating tables with new data,
74

POWER, 183
primary key constraints, 49-50
primary keys, 16
privileges, 301
controlling, 308
CREATE ROLE, 308-309
DROP ROLE, 309
SET ROLE, 309
granting, 303-304
object privileges, 302-303
revoking, 303-304
system privileges, 301-302

469

querying system catalogs

PRODUCTS_TBL, 440, 442, 446
Oracle, 449
PUBLIC database, 307

Q

queries, 99
compound queries

GROUP BY clause,
248-250

ORDER BY clause,
246-248

compound query operators,
240

EXCEPT, 245-246
INTERSECT, 244-245
UNION, 240-243
UNION ALL, 243-244
grouping, 128
simple queries
column aliases, 111

counting records in tables,
109-110

examples, 108-109
selecting data from anoth-
er user’s table, 110
single versus compound,
239-240
querying system catalogs,
334-336

How can we make this index more useful? Email us at indexes@samspublishing.com

470
RANK() OVER

RANK() OVER, 351
raw databases, normalization, 62

RDBMS (relational database
management system), 2

READ WRITE, 95

readability, formatting SQL state-
ments, 269-271

records, 15-16
counting records in tables,
simple queries, 109-110
REFERENCES, 303

relational database management
system. See RDBMS (relational
database management system)

relational databases, 5
RELEASE SAVEPOINT, 94-95
RELOAD, 302

remote databases, accessing,
357-358

JDBC, 358

ODBC (Open Database
Connectivity), 358

OLE DB, 359

through web interfaces,
359-360

vendor connectivity products,
359

removing user access, 295-296
REPLACE, 173

representing column names with
numbers, 158-159

RESOURCE, 307

restrictive conditions, SQL state-
ments, 272-273

retrieving data, 250
REVOKE, 380

controlling user access,
305-306

revoking privileges, 303-304
ROLLBACK, 11, 91-92, 380
ROLLBACK TO SAVEPOINT, 93-94
ROLLUP expression, 161-162
ROUND, 183

ROW_NUMBER() OVER, 351
rows, 41

rows of data, 15-16

RPAD, 182

RTRIM, 178

S

SAVEPOINT, 11, 92-93, 380
schemas, 37-39
creating, 292-293
dropping, 293-294
versus users, 288
second normal form, 65-66
security
controlling privileges, 308
CREATE ROLE, 308-309
DROP ROLE, 309
SET ROLE, 309
controlling user access, 304
GRANT, 304-305
GRANT OPTION, 305
groups of privileges,
306-308

on individual columns,
306

PUBLIC database, 306
REVOKE, 305-306
database security, 299-300
Internet, 361
privileges, 301
object privileges, 302-303
system privileges,
301-302
views, 315

security information, system cata-
logs, 332

SELECT, 10, 73, 99-102, 303,
380-381

ANSI standard, 368

case sensitivity, 106-107

FROM clause, 102

creating groups, 155-158

DISTINCT, 102

Microsoft SQL Server, 368

Oracle, 368-369

ORDER BY clause, 104-106

subqueries, 227-228

WHERE clause, 103-104
SELECT ANY TABLE, 302
selecting

data, 10

from multiple tables,
207-208

data from another table, 110
self joins, 215-216
SET ROLE, 309
SET TRANSACTION, 11, 95
SHUTDOWN, 302
SIGN (sign values), 183

simple queries
column aliases, 111

counting records in tables,
109-110

examples, 108-109

selecting data from another
user’s table, 110

simplifying data access with
views, 314-315

SIN, 183

single queries versus compound
queries, 239-240

single quotation marks, 74
single-column indexes, 258
SOME, 124-126

sort operations, avoiding,
277-278

SQL (Structured Query
Language), 2
direct versus embedded, 351
enterprises and, 355

back-end applications,
356

front-end applications,
356-357

generating SQL, 350
Internet and, 360
making data available to
customers worldwide,
360-361
making data available to
employees and privi-
leged customers, 361
intranets and, 361-362
SQL commands, 9
data administration com-
mands, 9, 11

DCL (Data Control Language),
10-11

DDL (Data Definition
Language), 9-10

DML (Data Manipulation
Language), 10

DQL (Data Query Language),
10

transaction control com-
mands, 9, 11

SQL extensions, 370
SQL sessions, 8
CONNECT, 8
DISCONNECT, 89
EXIT, 89
SQL statement tuning, 267
versus database tuning, 268
SQL statements
formatting, 268-269

arranging tables in FROM
clause, 271

ordering join conditions,
271-272

for readability, 269-271

restrictive conditions,
272-273

interactive SQL statements,
373-374

SQL-2008, 3-4
SQRT (square root), 183

standards, table-naming stan-
dards, 12-13

storage, default storage, 191
stored procedures
functions and, 343-346

performance, 278

471

system catalogs

strings
fixed-length strings, 23
literal strings, 28
varying-length strings, 23
Structured Query Language. See
SQL (Structured Query
Language)
subqueries, 225-227
correlated, 233-234
DELETE statements, 230
embedded, 231-233
INSERT statements, 228-229
performance, 234-235
SELECT statements, 227-228
UPDATE statements, 229-230
SUBSTR, 175-176
substrings, 170

subtraction, arithmetic operators,
134

SUM, 145-146

summarized data, maintaining
with views, 315-316

synonyms, 324
creating, 324-325
dropping, 325
simple queries, 111

SYS, 331

system catalog objects, updating,
336

system catalogs, 327-330
contents of, 331-332
creating, 331
database design information,

332
performance statistics,
332-333

How can we make this index more useful? Email us at indexes@samspublishing.com

472

system catalogs

querying, 334-336
security information, 332

tables by implementation,
333-334

user data, 332
system privileges, 301-302

T

table aliases, 210
table-naming standards, 12-13
tables, 15, 39

adding

auto-incrementing
columns, 45

columns, 44-45
ALTER TABLE, 44

arranging in FROM clause,
271

columns, 16, 40-41
modifying, 46
CREATE TABLE statement,
41-43

creating from existing tables,
46-48

creating from views, 321-322
data

deleting, 82-83

inserting, 74-75
dropping, 48-49
fields, 15

inserting data from another
table, 76-78

modifying elements of, 44

naming conventions, 43

NULL values, 16

populating with new data, 74

primary keys, 16
records, 15-16
rows, 41
TAN, 183
TEXT data type, 24
third normal form, 67
TIME, 192

time zones, date functions,
194-195

TIMESTAMP, 192
TKPROF, 280
tools, database users, 296
transaction control commands,
9,11
transactional control, database
performance and, 95-96
transactions, 87-88
controlling, 88
COMMIT, 89-91
RELEASE SAVEPOINT,
94-95
ROLLBACK, 91-92

ROLLBACK TO SAVEPOINT,

93-94
SAVEPOINT, 92-93
SET TRANSACTION, 95
Transact-SQL, extensions, 371
TRANSLATE, 172-173
TRANSLATE function, 170
triggers, 346
creating, 346-348
dropping, 348
FOR EACH ROW, 348

U

UNION, 240-243

UNION ALL, 243-244

unique constraints, 50-51
unique indexes, 258-259
UPDATE statements, 303, 380

subqueries, 229-230

updating

data, 80

multiple columns in one or
more records, 81-82

through views, 322-323

value of a single column,
80-81

system catalog objects, 336

UPPER, 174
USAGE, 303

user access, controlling, 304

GRANT, 304-305

GRANT OPTION, 305

groups of privileges, 306-308
on individual columns, 306
PUBLIC database, 306
REVOKE, 305-306

user data, system catalogs, 332

user-defined types, 29-30

user management, 288

creating users, 289

in Microsoft SQL Server,
290-291

in MySQL, 291
in Oracle, 289-290

user sessions, 295

users
altering, 294-295
creating, 289

in Microsoft SQL Server,
290-291

in MySQL, 291

creating groups in Oracle,
289-290

managing, 285-287

place in databases, 287
removing access, 295-296
versus schemas, 288
types of, 286

'}

varying-length strings, 23
vendor connectivity products, 359
vendors, database vendors, 7-8
views, 313-314

creating, 316

from multiple tables,
318-319

from a single table,
316-318

from views, 319-320
creating tables from, 321-322
dropping, 323
as a form of security, 315

maintaining summarized
data, 315-316

nested views, performance,
323-324

ORDER BY clause, 322

How can we make this index more useful? Email us at indexes@samspublishing.com

simplifying data access,
314-315

updating data, 322-323

WITH CHECK OPTION, 320

W-Z

web-based database systems, 6-7

web interfaces, accessing remote
databases, 359-360

WHERE, 82, 381
SELECT, 103-104
wildcards, performance, 275-276

windowed table functions,
351-352

Windows installation instructions

Microsoft SQL Server,
388-390

for MySQL, 383-385
for Oracle, 386-387
WITH CHECK OPTION, views, 320

XML, 352

473
XML

	Table of Contents
	HOUR 3: Managing Database Objects
	What Are Database Objects?
	What Is a Schema?
	Tables: The Primary Storage for Data
	Integrity Constraints
	Summary
	Q&A
	Workshop

	INDEX
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-Z

