

Windows®

Phone 7 for
iPhone®

Developers

Kevin Hoffman

800 East 96th Street, Indianapolis, Indiana 46240 USA

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page i

Windows® Phone 7 for iPhone® Developers
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

Library of Congress cataloging-in-publication data is on file.

Printed in the United States of America

First Printing: August 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson Education, Inc. cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editors
Jovana San
Nicolas-Shirley
and Elaine Wiley

Copy Editor
Barbara Hacha

Indexer
Lisa Stumpf

Proofreader
Seth Kerney

Technical Editors
Bruce Johnson
Nate Dudek

Publishing
Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Senior Compositor
Gloria Schurick

ISBN-13: 978-0-672-33434-4
ISBN-10: 0-672-33434-8

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page ii

❖

I want to dedicate this book to the women in my life:

Angelica, Isabella, and Jerrah.

Behind every good man is an even better woman, and
behind every good author is a woman with the patience of

a saint and a perpetually running coffeemaker.

❖

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page iii

Table of Contents

1 Introduction 1
Who Are You and Why Should I Care? 1
Why Should I Read This Book? 2
What’s in This Book? 3

2 C# and Objective-C: Second Cousins
Twice Removed 9

The Origin of Objective-C 9
The Origin of C# 10
Language Basics 11

Core Syntax 11
Method Calls and Message Passing 14

Memory Management 15
Reference Counting and Object
Ownership 15
Garbage Collection 16
Cleaning Up After Yourself—
Object Finalization 18

3 Object-Oriented Programming 21
Why OOP? 21
Building a Class 22
Encapsulating Data 23
Adding Behavior 26
Inheritance 28
Programming with Contracts 32
Namespaces Versus Naming Conventions 35
Extending Other People’s Classes 35

4 Event-Driven Programming 39
What Is Event-Driven Programming? 39
Using the Delegate Pattern in Objective-C 40
Using Events in C# 42
Global Events and NSNotifications 46

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page iv

vContents

5 Rendering and View System Basics 51
Review of the UIKit View System 51

Displaying Graphics and Rendering
in iOS 52

Introduction to XAML and Silverlight 53
Introduction to Silverlight Layout and
Rendering 55

The Two-Pass Mantra: Measure and
Arrange 55

6 From Xcode to Visual Studio 59
Xcode and iOS Application Development 59
Getting Started with Visual Studio 2010 62
Introduction to Visual Studio 2010 63

7 Introducing Expression Blend 69
Overview of Apple’s Interface Builder 69
Introduction to Expression Blend 72

Blend Tutorial—Working with
Visual States 76

8 Using Basic UI Elements 83
Using the Basic Controls 83

Using Text Blocks 84
Accepting User Input with TextBoxes 86
Working with Buttons 88
Accepting Other Forms of User Input 91
Displaying Images 93
Using a Basic List Box 94
Performing Basic Animations 97

Introduction to Layout in Silverlight 100
Painting on Canvas 100
Working with the StackPanel 101
Using the Grid Control 101

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page v

vi Contents

9 Using Advanced UI Elements 105
Migrating from Navigation Bars 105

Using the Silverlight Navigation
System 107
Spicing Up Navigation Events
with Animation 111

Migrating from Tab Bar Applications 115
Using the Pivot Control 115
Using a Panorama Application 118
Using the Application Bar 120

10 Using Hardware and Device Services 125
Review of Device Capabilities 125
Using Launchers 127

Using the Save Phone Number Task 128
Using the Save Email Address Task 129
Using the Search Task 130
Launching a Web Browser 131
Launching the Media Player 131
Launching the Phone Application 132
Sending a Text Message 132
Composing an Email Message 133

Using Choosers 133
Using the Phone Number Chooser
Task 134
Using the Email Address Chooser
Task 134
Choosing or Capturing Photos on
the Device 135

Using Hardware Services and Sensors 136
Controlling Vibration 136
Accessing a Radio Tuner 137
Using the Accelerometer 138
Using the GPS 141

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page vi

viiContents

11 Introduction to Application Tiles 145
What Is a Tile? 145
Creating Your First Tile 147
Working with Tile Schedules 148
Using Remote Background Images 151

12 Using Push Notifications 153
Review of Apple Push Notification
Services (APNS) 153
WP7 Push Notifications Overview 155
Using Toast Notifications 156
Using Raw Notifications 162
Using Tile Notifications 165

13 The Phone Execution Model 169
Multitasking on iOS 4 169
Introducing the Phone Execution Model 171

Application Life Cycle Walkthrough 171
Managing Application and Page State 175

14 Local Storage on the Phone 181
Core Data on the iPhone 181
Reading and Writing Local Data with WP7 184

Isolated Storage 101 185
Building a Storage-Backed Databound
Application 186

15 Building Smart Clients 197
Consuming RESTful Services 197

Why LINQ to XML Is Your New
Best Friend 198

Consuming WCF Services 204

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page vii

viii Contents

16 Separating Your Concerns 207
A Brief History of MVC 208
Introduction to MVVM 211
Working with MVVM Light for WP7 212

Building a View Model 213
Yes, But Will It Blend? 218
Working with Commands 220
Sending Messages with MVVM Light 223
Look Ma, No Code-Behind! 225
Using Service Providers 227
The AutoMapper 230

17 Unit Testing and TDD 233
What Is Test-Driven Development? 233

Red, Green, Refactor 234
Mocks and Stubs 235

Unit Testing iOS Applications 237
Logic Testing 238
Application Testing 239

Unit Testing Windows Phone 7 Applications 239
Working with nUnit 240
Working with the Silverlight Unit Test
Framework 241
Mocking and Stubbing 246
Arrange,Act,Assert 248
Refactor.Again. 250

18 Building Connected Social Games 253
Features of Connected Mobile Gaming
Platforms 254

Lobbies and Matchmakers 254
Leaderboards and Achievements 255
Turn-Based Game Play 256
Real-Time Multiplayer Gaming 257

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page viii

ixContents

Overview of Apple’s Game Center and
GameKit API 257

Achievements 257
Leaderboards 258
Networking API 258
In-Game Voice Chat 259

Connected Gaming Options for WP7 259
Lobbies and Matchmakers 259
Leaderboards and Achievements 261
Turn-Based Game Play 263
Real-Time Multiplayer Gaming 264

19 Securing WP7 Applications 267
What Is a Secure Application? 267

A Fool and His Money 268
WP7 Secure by Default 269
Protecting Data 270
Protecting Intellectual Property 275

20 Debugging and Troubleshooting 279
Debugging and Tuning iOS Applications 279
Debugging 101 280
Debugging Windows Phone 7 Applications 281

Using Breakpoints 281
Logging and the Debug Class 284

Using Static Analysis 285

21 Deploying Applications to the Marketplace 289
Introducing Zombie Apocalypse Trainer 289
Registering and Deploying to Test Devices 292
Prepping Your Application for Submission 294
Submitting an App to the Marketplace 296
Earning Money with the Mobile
Advertising SDK 300

Index 301

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page ix

About the Author
Kevin Hoffman (Windsor, CT) is an enterprise programmer who has extensive experi-
ence with both Windows Phone 7/Windows Mobile and Apple’s iPhone platforms.
Currently chief systems architect for Oakleaf Waste Management, he specializes in
mobile and cloud development. He writes The .NET Addict’s Blog, served as editor-in-
chief of iPhone Developer’s Journal, presented twice at Apple’s World Wide Developer’s
Conference, and has authored and co-authored several books, including WPF Control
Development Unleashed: Building Advanced User Experiences and ASP.NET 4 Unleashed.

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page x

Acknowledgments
Thanks also go to the staff at Pearson, in particular to Neil Rowe, who has impeccable
taste in beer and has somehow managed to put up with me for years.

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page xi

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

00_9780672334344_FM.qxd 7/13/11 1:06 PM Page xii

3
Object-Oriented Programming

Certainly not every good program is object-oriented, and not every object-oriented program is good.

Bjarne Stroustrup

This chapter will cover some of the core concepts of object-oriented programming
(OOP) and how they apply to both iPhone and Windows Phone 7 programming.
Regardless of the type of application you plan to write, or the platform on which you
plan to write it, you will need to utilize and understand some basic object-oriented prin-
ciples and concepts.

Most developers are already familiar with concepts such as inheritance, contract-based
(interface) programming, members, methods, encapsulation, and more. However, those
concepts each have different implementations and even different terminology on different
platforms.This chapter will help clear things up and show you how the core tenets of
OOP are implemented in iOS and WP7.

Why OOP?
If you’re reading this book, you probably do not need to be convinced that object-
oriented programming is a good thing. However, as the chapter quote from Bjarne
Stroustrup so eloquently puts it—not all OOP is a good thing. Like any tool, if used
inappropriately, it can make a royal mess of any well-intentioned project.

We create classes as a way to group logically related data and behavior that’s all geared
toward performing a certain task.When these classes are written properly, they exemplify
the benefits of OOP: increased reuse and the creation of testable, reliable, predictable
applications that are easy to build, easy to maintain, and easy to change.

On mobile devices, we have classes that encapsulate information and behaviors for all
kinds of things from reading GPS coordinates, to displaying text, to accepting input.
Without a carefully architected suite of classes that abstract all the capabilities of a device,
we would never be able to rapidly and reliably produce software for that device.

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 21

The same is true for the applications we build and the code we write.Without our
own ability to create reusable classes, even the relatively small amount of code we write
for mobile applications would be impossible to maintain and deliver applications on time
and on budget.

Building a Class
Throughout the rest of this chapter we’re going to be building a class that has progres-
sively more functionality.The goal is to walk you through the process of designing and
building a full-featured class for both the iPhone and Windows Phone 7 so that you can
compare and contrast and map your existing iPhone skills (if any) to how classes are cre-
ated in C#.

To demonstrate class creation, we need some behavior and data that we want to
model.Throughout the rest of the chapter we’ll be working on a class that might show
up in a game. Because we are good little programmers that have been following the
advice of those who know better, this class will model just behavior, logic, and data
encapsulation and will not have anything to do with UI. In short, this class is a pure
model and not a view.

The class we’re going to build as a starting point is a class that models the logic, data
encapsulation, and behavior of an object that can participate in combat in a hypothetical
mobile game.We’ll call this class a Combatant.

To start with, we’ll create an empty class. In Listings 3.1 and 3.2, respectively, you can
see the code for the Objective-C header (.h) and implementation (.m) files. Listing 3.3
shows this same (utterly empty, and completely useless up to this point) class in C#.

Listing 3.1 Combatant.h

@interface Combatant : NSObject {

}

@end

In the preceding code, you can see the stock contents of an Objective-C header file as
they would look immediately after creating an empty class using an Xcode template.
There really isn’t much to see here.The important thing to keep in mind when learning
C# is that C# classes do not separate the code into header and implementation files.

Listing 3.2 Combatant.m

#import "Combatant.h"

@implementation Combatant

@end

22 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 22

The preceding code is the implementation file for an Objective-C class.This is where
all the actual implementation code goes, whereas the header file is used to allow other
code that references this class to know how the class behaves and what data it exposes.

Listing 3.3 Combatant.cs

using System;

namespace Chapter3

{

public class Combatant

{

}

}

Finally, Listing 3.3 shows the same empty class implemented in C#. If you created
your own empty class by adding one to a WP7 project, you probably noticed a whole
bunch of extra using statements. For clarity, I removed those from Listing 3.3.There’s not
much to see here, and we haven’t gotten to any of the fun stuff.The purpose of this sec-
tion was to help you get your head around the difference between how classes are stored
on disk in iOS and C#, and we will progressively go through more OOP comparisons
throughout this chapter.

Encapsulating Data
One of the most important things that any class can do is to encapsulate data.This is one
of the main reasons for the original use of object-oriented programming.

Data encapsulation involves a few key concepts that each programming language
implements differently:

n Store member variables
n Provide wrappers around accessing those variables
n Add scope and security (for example, read-only) to member variables

Objective-C in its earlier days had somewhat limited support for what most modern
programming languages call properties, but now has full and robust capabilities for data
encapsulation that rival those of C#.

The best way to see data encapsulation in action is to look at some code with member
variables in it. In these next few code listings, we’re going to add member variables to the
Combatant class that will model some of the properties of a combatant that we know the
game engine might need, such as hit points, armor class, damage class, and a few other
details.

Listing 3.4 shows how we might declare properties in the header file of an iOS
application.

23Encapsulating Data

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 23

Listing 3.4 Combatant.h with Member Variables

@interface Combatant : NSObject {

}

@property(nonatomic, assign) int maxHitPoints;

@property(nonatomic, assign) int currentHitPoints;

@property(nonatomic, assign) int armorClass;

@property(nonatomic, assign) int damageClass;

@property(nonatomic, retain) NSString *combatantName;

This should be fairly familiar to most iOS developers.We have a couple of int-based
properties to store values such as hit points and armor class, and there is a string property
for storing the combatant name. Using the @property syntax, we can specify that the
autogenerated accessor for the combatantName property will automatically retain the
string. In C#, we don’t need to worry about retaining strings as a precaution against
unintended disposal like we do in Objective-C. Listing 3.5 shows the implementation
that automatically synthesizes the getter and setter accessors for the properties declared in
Listing 3.4.

Listing 3.5 Combatant.m with Member Variables

#import "Combatant.h"

@implementation Combatant

@synthesize maxHitPoints, currentHitPoints, armorClass, damageClass,
combatantName;

@end

In the implementation (.m) file, I’m using the @synthesize keyword to instruct
Xcode that it should autogenerate accessors for those properties. How Xcode does so is
governed by the information in the header file in the @property declaration. If I wanted
to, I could manually override this autogeneration process and supply my own accessor for
specific properties, or even replace a get or a set accessor.

Listing 3.6 shows the C# version of the Combatant class, including the automatic
implementation of the property get and set accessors.

Listing 3.6 Combatant.cs with Member Variables

using System;

using System.Net;

using System.Windows;

namespace Chapter3

{

public class Combatant

{

24 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 24

public int MaxHitpoints { get; set; }

public int CurrentHitPoints { get; set; }

public int ArmorClass { get; set; }

public int DamageClass { get; set; }

public string Name { get; set; }|

public Point Location { get; set; }

public int HitPointPercent

{

get

{

double pct =

(double)CurrentHitPoints / (double)MaxHitpoints;

return (int)Math.Floor(pct * 100);

}

}

}

}

Listing 3.6 shows the basic Combatant class with several public properties that use a
shortcut syntax available in C#.This shortcut syntax allows the developer to leave the get
and set implementations blank.When these accessors are left blank, the compiler will
automatically generate a private member variable to back the public property and do all
the required plumbing on behalf of the developer.This type of “automatic property” is
also available in iOS.

The public keyword in front of each of the property names indicates that the prop-
erty is visible and accessible from any class in any assembly. If the keyword were changed
to internal, the properties would be available only to other classes within that assembly.
Finally, the private keyword indicates that only that class has access to those members.
You will learn about the protected keyword later in the chapter when we get into
inheritance and object hierarchies.

The last property, HitPointPercent, shows an example of how you can create a read-
only property that computes its value dynamically based on other properties.This shows
another example of data encapsulation in that it allows the developer to hide the com-
plexity of a calculation behind a simple property. In this example it’s a simple percentage
calculation, but you can imagine how this kind of technique can come in handy when
modeling complex business objects with very detailed rules and logic.Also note that we
have to typecast each of the integer values in the division calculation to a floating point
value; otherwise, the / operator would assume integer division and return 0 instead of a
fractional value.

25Encapsulating Data

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 25

Adding Behavior
Now that you’ve got a class that encapsulates data, you want to add behavior to it. Behav-
ior in classes is added in the form of methods, which are functions that execute within
the scope of an instance of a class.

Methods in Objective-C typically have their signature defined in the header (.h) file
and the implementation defined in the implementation (.m) file. In C#, the method is
defined directly on the class and there is no header used for exposing the method signa-
ture.

Some of the behavior that we want to add to our Combatant class might include
attacking another combatant and moving. Listings 3.7 through 3.9 illustrate how we go
about adding methods to the class to give our class some behavior.A good general rule is
to think of members (or properties) as nouns on a model, whereas behaviors (or methods)
should be considered verbs on a model.

Listing 3.7 Combatant.h with Behavior

@interface Combatant : NSObject {

}

- (void)attack:(Combatant *)target;

@property(nonatomic, assign) int maxHitPoints;

@property(nonatomic, assign) int currentHitPoints;

@property(nonatomic, assign) int armorClass;

@property(nonatomic, assign) int damageClass;

@property(nonatomic, retain) NSString *combatantName;

Listing 3.7 shows the header for the Combatant class, including the property declara-
tions as well as a method signature for the Attack method.

Listing 3.8 Combatant.m with Behavior

#import "Combatant.h"

@implementation Combatant

@synthesize maxHitPoints, currentHitPoints, armorClass, damageClass,
combatantName;

- (void)attack:(Combatant *)target

{

// obviously this should be more complicated...

target.currentHitPoints -= rand() % 20;

}

@end

26 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 26

Listing 3.8 shows the Objective-C implementation of the Attack method.This
method operates on a supplied instance of another combatant to allow it to do damage to
the other target. It’s important to keep in mind here that in Listing 3.8’s Objective-C
code and in Listing 3.9’s C# code, both classes are using encapsulated accessors to manip-
ulate the other objects; they are not modifying internal variables directly.

Listing 3.9 Combatant.cs with Behavior

using System;

using System.Net;

using System.Windows;

using System.Diagnostics;

namespace Chapter3

{

public class Combatant

{

public int MaxHitpoints { get; set; }

public int CurrentHitPoints { get; internal set; }

public int ArmorClass { get; set; }

public int DamageClass { get; set; }

public string Name { get; set; }

public Point Location { get; private set; }

public int HitPointPercent

{

get

{

double pct =

(double)CurrentHitPoints / (double)MaxHitpoints;

return (int)Math.Floor(pct * 100);

}

}

public void MoveTo(Point newLocation)

{

this.Location = newLocation;

Debug.WriteLine("Combatant {0} just moved to ({1},{2})",

this.Name,

this.Location.X,

this.Location.Y);

}

public void Attack(Combatant target)

{

Random r = new Random();

// obviously oversimplified algorithm...

27Adding Behavior

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 27

int damage =

(this.DamageClass - target.ArmorClass) * r.Next(20);

target.CurrentHitPoints -= damage;

}

}

}

In Listing 3.9 there are a couple of minor changes to the access modifiers for some of
the class members, and we have the implementation of the Attack and MoveTo methods.
What you might notice is that the CurrentHitPoints property now has an access modi-
fier of internal for the set accessor.This means that only classes within the same Assem-
bly as Combatant are able to modify that property.This allows your “game engine” to
freely tweak combatant health but does not allow code outside the core engine to modify
that data directly.This forces all changes to hit points to go through only authorized
routes.

Additionally, the Location property now has a private access modifier.This means that
only the Combatant class itself can modify its own location.This forces changes to the
Combatant’s location to go through the MoveTo method, which is the only acceptable
means for moving a Combatant.

The reason I mention these here is because C# has much finer-grained control over
access modifiers for methods and members than Objective-C, allowing you to place
much more firm control over which code can and cannot affect certain pieces of data.
Although this might seem like an unimportant detail, it becomes incredibly important
when you are writing code that other developers will consume.An entire type of “acci-
dental side effect” bugs can be eliminated by preventing unwanted changes to your mem-
ber variables and properties.

Inheritance
In this section of the chapter we’re going to take a look at how we can use inheritance to
create specialized derivatives of the original Combatant class. For example, we might want
to create a particular type of combatant that cannot move, such as an automated turret or
a stationary cannon.Another kind we might want to create might be combatants that get
an extra attack because they are so quick. Finally, we might want to create something
completely unusual, such as a drunken attacker who never hits for more than one point
of damage at a time.

Figure 3.1 shows the class hierarchy diagram that we want to create from the existing
Combatant class.As you can see, we want to create three new classes:

n ReallyDangerousCombatant

n StationaryCombatant

n DrunkenCombatant

28 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 28

Building these classes in either C# or Objective-C is pretty straightforward. C# gives
us a bit more fine-grained control over what the inheriting types can do and see, so we’ll
make more use of the access modifiers than we do in Objective-C.

In Listings 3.10 and 3.11, I show a sample derivative class called
ReallyDangerousCombatant, written in Objective-C, that does double damage.This is
inheritance in its most basic form—creating a child class that provides behavior that
supersedes that of the parent.

Listing 3.10 ReallyDangerousCombatant.h

#import "Combatant.h"

@interface ReallyDangerousCombatant : Combatant {

}

@end

And the implementation of the “really dangerous” combatant class:

Listing 3.11 ReallyDangerousCombatant.m

#import "ReallyDangerousCombatant.h"

@implementation ReallyDangerousCombatant

- (void)attack:(Combatant *)target

{

[super attack:target];

target.currentHitPoints -= 12;

}

29Inheritance

Figure 3.1 Class inheritance hierarchy diagram.

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 29

In Listing 3.11, you can see that the really dangerous combatant first asks its parent
class (indicated by the super keyword) to attack the target.Then it does its own damage
to the target.This really dangerous implementation will always do 12 more damage than a
regular combatant would do because of the inheritance hierarchy.

In the interest of saving space and spending more time focusing on the C# implemen-
tations of these classes, I won’t include the listings for DrunkenCombatant.h, Drunken-
Combatant.m, StationaryCombatant.h, and StationaryCombatant.m.The following three
listings show the C# implementations for the new derived classes.

Listing 3.12 ReallyDangerousCombatant.cs

namespace Chapter3

{

public class ReallyDangerousCombatant : Combatant

{

public override void Attack(Combatant target)

{

base.Attack(target);

// attack again for good measure!

base.Attack(target);

}

}

}

Listing 3.13 shows how we can use inheritance and child classes to make a combatant
that is so drunk it can’t possibly win a fight and has an incredibly hard time moving
where the game tells it to move:

Listing 3.13 DrunkenCombatant.cs

using System;

using System.Windows;

namespace Chapter3

{

public class DrunkenCombatant : Combatant

{

public override void Attack(Combatant target)

{

target.CurrentHitPoints -= 1; // never do any real damage

}

public override void MoveTo(Point newLocation)

{

Random r = new Random();

30 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 30

31Inheritance

Point realLocation =

new Point(r.NextDouble() * 30, r.NextDouble() * 30);

this.Location = realLocation;

}

}

}

And now let’s take a look at using inheritance to create a combatant that refuses to
move at all (such as a stationary turret gun):

Listing 3.14 StationaryCombatant.cs

using System.Windows;

namespace Chapter3

{

public class StationaryCombatant : Combatant

{

public override void MoveTo(Point newLocation)

{

// do nothing

}

}

}

No matter how many times the game engine might ask this combatant to move, it will
do nothing in response.

Inheritance Versus Switching on Data
This is an argument that continues today, no matter your choice of platform or language, so
long as it supports OOP. Take the example of a StationaryCombatant. What we’ve done is
build a child class such that any time it is asked to move, it simply refuses. Another alterna-
tive to this might be to create a Boolean property called IsStationary. Then the base
class can check the status of the IsStationary property in its Move method. This pre-
vents the need for creating an entire subclass for the purpose of stationary objects.

This might seem like a simpler solution at first. But this is the top of a slippery slope. Fairly
quickly, your simple base class becomes little more than a garbage truck filled with proper-
ties and data—a massive storage bin that holds information that might be used only by 1%
of all instances of that object. This is just the beginning of the troubles.

Now your simple Move method has become convoluted and filled with enormous if state-
ments. In many cases, the logic can become nested and nearly impossible to read. When
someone goes to make a change to your Move method, it can potentially break functionality
for specialized instances of your class (such as for Combatants where IsStationary is

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 31

32 Chapter 3 Object-Oriented Programming

Programming with Contracts
Contracts are different from class implementations.A contract merely defines the require-
ments of a particular class; it does not actually control the class implementation.To con-
tinue the combatant analogy:A Combatant base class defines behavior that all child classes
can inherit.A Combatant contract defines the behavior and data that must be imple-
mented by any class wanting to call itself a combatant.

Let’s walk through an example while assuming we’re still building a game engine. If we
go with a straight inheritance hierarchy, we might be limiting the types of interactions we
can model.Assuming single inheritance (which is the case for both Objective-C and
C#), anything that can do damage to a player (via the Attack method) must inherit from
Combatant.This presents us with a problem:What about complex inanimate objects with
a unique inheritance hierarchy but that cannot inherit from Combatant?

Let’s say the player is walking through an alley and is struck by a car.Vehicles in this
game might require their own inheritance hierarchy, probably starting with a base class
such as Vehicle or MovingObject. Given that we don’t have the capability to do multiple
inheritance, how do we allow noncombatant objects to do damage to players without
messing up the Combatant object hierarchy? The answer is contracts.

Contracts are called protocols in Objective-C and interfaces in C#, but they serve identi-
cal purposes. Contracts define a minimum set of required properties or methods that must
be implemented by a particular class.They do not enforce any restrictions on inheritance
hierarchies. It is critically important here to remember that two classes, each with entirely
different inheritance hierarchies, can implement the same interface.

So let’s take a look at the Combatant class.The Attack method does two things
(which might give us a clue that we can start refactoring there): It figures out how much
damage to do to an opponent, and then it asks the other combatant to take that damage.
If we take out the function of taking the actual damage and make that a requirement on
an interface called ITakesDamage, we start getting some real flexibility in our game
engine.This interface has a requirement that anything implementing that interface must
implement a method called TakeDamage.

Listing 3.15 shows the ITakesDamage interface in C#, and Listing 3.16 shows the new
Combatant class, refactored to separate out the concern of doing damage to be something
that satisfies the interface requirement.

true). Several design patterns are violated by these giant if statements, but in the interest
of keeping things simple in this chapter, I won’t go into their names or definitions here.

To sum up: If you can solve your specialization issues with inheritance and interfaces (dis-
cussed in the next section), that is often a much cleaner, more maintainable and reliable
solution than filling a single “bloat master” class with inordinate amounts of properties and
logic.

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 32

Listing 3.15 ITakesDamage.cs

namespace Chapter3

{

public interface ITakesDamage

{

void TakeDamage(int hitPoints);

}

}

Listing 3.16 shows the refactored Combatant class to implement the interface.

Listing 3.16 Combatant.cs (Refactored to Implement IDoesDamage)

using System;

using System.Net;

using System.Windows;

using System.Diagnostics;

namespace Chapter3

{

public class Combatant : ITakesDamage

{

public int MaxHitpoints { get; set; }

public int CurrentHitPoints { get; private set; }

public int ArmorClass { get; set; }

public int DamageClass { get; set; }

public string Name { get; set; }

public Point Location { get; protected set; }

public Combatant()

{

this.CurrentHitPoints = this.MaxHitpoints;

}

public int HitPointPercent

{

get

{

double pct =

(double)CurrentHitPoints / (double)MaxHitpoints;

return (int)Math.Floor(pct * 100);

}

}

public virtual void MoveTo(Point newLocation)

{

33Programming with Contracts

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 33

this.Location = newLocation;

Debug.WriteLine("Combatant {0} just moved to ({1},{2})",

this.Name,

this.Location.X,

this.Location.Y);

}

public virtual void Attack(Combatant target)

{

Random r = new Random();

int damage =

(this.DamageClass - target.ArmorClass) * r.Next(20);

target.TakeDamage(damage);

}

public void TakeDamage(int hitPoints)

{

this.CurrentHitPoints -= hitPoints;

}

}

}

The new Attack method on the Combatant class now determines the amount of
damage to be done and then calls the TakeDamage method to affect the target. Now that
the Combatant class isn’t the only thing in the game engine that can be damaged (any-
thing that implements ITakesDamage can now be harmed), we can create classes like the
PincushionTarget (shown in Listing 3.17), which can be harmed by players but is not a
combatant.

Listing 3.17 PincushionTarget.cs

public class PincushionTarget : ITakesDamage

{

void TakeDamage(int hitPoints)

{

// take points out of pincushion target

}

}

For reference, Listing 3.18 shows what the protocol definition might look like in
Objective-C. Objective-C does not use the uppercase “I” prefix naming convention but
rather uses the word “Protocol” as a postfix.To achieve a similar goal in Objective-C, we
would create a protocol called TakesDamageProtocol like the one shown in Listing 3.19.
I show you this because protocols are used extensively throughout iOS and in UIKit, so
recognizing how those patterns translate into C# patterns can be very useful.

34 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 34

Listing 3.18 TakesDamageProtocol.h

@protocol TakesDamageProtocol

- (void)takeDamage:(int)hitPoints;

@end

Namespaces Versus Naming Conventions
As you have been going through the samples in this chapter, you might have noticed that
the C# classes always exist within a namespace. Namespaces in C# are designed specifi-
cally to avoid naming collisions as well as to aid in organizing hierarchies of logically con-
nected classes, enums, and structs.

In Objective-C and throughout all of Apple’s libraries, either for the iPhone or for tra-
ditional Mac development, you will see that there are no namespaces.The decision was
made for Objective-C to not support the concept of namespaces (which are available in
many OOP languages, including C# and C++). Instead,Apple has opted for a standard
by which classes belonging to a particular family, purpose, product, or company all begin
with a common two-letter prefix in all capital letters.

For example, a combatant class written by someone named Kevin Hoffman might
actually be called KHCombatant rather than simply Combatant. Further, that same class
written by a company called Exclaim Computing might be written as ECCombatant or
XCCombatant.

Naming collisions within iOS applications are rare because you will encounter these
collisions only if your application is making use of a library, framework, or class that con-
tains classes named identically to yours.The rare chances of naming collisions in this situ-
ation are usually eliminated with the use of the two-letter prefix naming convention.

Extending Other People’s Classes
The last topic I want to cover in this chapter is the capability to extend classes written by
other developers or companies without actually having the source code to those classes.
Keep in mind that in both iOS and C#, extensions to third-party classes can access only
class members and methods to which your code would normally have access. In other
words, you cannot use class extensions to circumvent encapsulation methods surrounding
private or protected members.

C# gives us a facility called static extensions, which is roughly analogous to the concept
of categories in the Objective-C world.When a static extension to a specific class is in
scope of the current code block, that code block can invoke methods on the extension
class as if those methods actually belonged to the original class.

Let’s assume that we didn’t write the Combatant class and that it’s sealed and we can-
not inherit from it.We want to be able to add a method to the Combatant class that
makes the object move in a square, as if it was square dancing. Perhaps this effect is a cus-
tom spell that can be cast on our combatants that gives them an irresistible urge to get
their hoedown on.

35Extending Other People’s Classes

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 35

We can accomplish this custom extension to the Combatant class using the code in
Listing 3.19.

Listing 3.19 CombatantSquareDancingExtension.cs

using System;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Ink;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

namespace Chapter3

{

public static class CombatantSquareDancingExtension

{

public static void SquareDance(this Combatant dancer)

{

Point origin = dancer.Location;

Point step1 =

new Point(origin.X, origin.Y - 1); // move forward

Point step2 =

new Point(step1.X - 1, step1.Y); // move left

Point step3 =

new Point(step2.X, step2.Y + 1); // move back

Point step4 =

new Point(step3.X + 1, step3.Y); // move right

}

}

}

Although there are no hard and fast rules about naming conventions used for building
extension classes, I like to follow a simple naming scheme:
[OriginalClass][ExtensionDescription]Extension.The presence of the suffix Extension imme-
diately tells me and any other developer looking at this class that it is not a complete class
on its own; rather, it provides additional functionality to some other class.The class being
extended is the first section of the name of the extension class. So in our example, a class
that extends the Combatant class by providing square dancing capabilities would be called
CombatantSquareDancingExtension.

36 Chapter 3 Object-Oriented Programming

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 36

If the code in Listing 3.19 is in scope, it should be perfectly legal (and possibly amus-
ing) to invoke the SquareDance method of any object that is (directly or through inheri-
tance) of type Combatant.

Summary
In this chapter, you were given a brief overview of some of the core concepts of object-
oriented programming (OOP) and how they apply to the tasks of building iOS and Win-
dows Phone 7 applications using Objective-C and C#, respectively.

Those of you who have been programming for a long time might have found some of
these concepts remedial, but the key here was to introduce you to the syntax required for
day-to-day programming in an object-oriented programming language such as C#.As
you progress through the rest of the book, we will be using things like encapsulation,
inheritance, properties, methods, interfaces, and extensions extensively, and if you don’t
have a firm grasp on those concepts now, the rest of the book will be very difficult to
read.

If you have read through this chapter and feel as though you now have a decent
understanding of how to write OOP code in C#, you are well prepared to dive deeper
into the world of building Windows Phone 7 applications and continue with the rest of
the book.

37Summary

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 37

03_9780672334344_ch03.qxd 7/13/11 10:57 AM Page 38

A
accel_ReadingChanged method, 140

accelerometers, 126, 138-141

accepting user input, 91-92

accessing radio tuners, 137-138

achievements

connected gaming options,Windows
Phone 7 applications, 261-262

connected mobile gaming platforms,
255-256

Game Center (Apple), 257-258
act, 248

activating Windows Phone Execution Model,
173-174

AddBookToList() method, 229

Adding a Label and TextBox, 87

adding behaviors to classes, 26-28

Adding Buttons to the Page, 88

Adding New User Input Elements, 91

address books, 126

AesManaged class, 272

animation, navigation events, 111-115

animations, 97-99

double animations, 114-115
storyboards, 99

annotations, Expression Blend, 75

APIs, networking with Game Center,
258-259

APNS (Apple Push Notification Services),
153-155

App Hub developer accounts, 292-293

AppData and Customer Data Model Classes,
188-189

AppData class, 188-189

Apple, Game Center. See Game Center
(Apple)

Apple Push Notification Services (APNS),
153-155

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 301

application bar, migrating from tab bar
applications, 120-123

application life cycle, Windows Phone
Execution Model, 171-172

activating, 173-174
closing, 174
deactivating, 174
launching, 172-173
running, 173
tombstoned, 175

application testing iOS applications, 239

applications. See also secure applications

prepping for submissions, 294-296
secure applications, 267-269

protecting data, 270-275
storage-backed databound applica-

tions, 186-196
submitting to Marketplace, 296-300
Zombie Apocalypse Trainer. See

Zombie Apocalypse Trainer
arrange, 248

arrange, act, assert, unit testing, Windows
Phone 7 applications, 248-249

assert, 248

Attack method, 27, 34

auto-hide, toggling in Visual Studio 2010, 65

AutoMapper, MVVM Light, 230-231

AvailableFreeSpace, 185

B
background audio, 170

BeginRequestStream, 200

behaviors, adding to classes, 26-28

bindability, 211

Book.cs, 221-222

BookTest.cs—Asynchronous Unit Testing,
244-245

breakpoints, debugging, Windows Phone 7
applications, 281-284

buttons, 88-90

C
C#

core syntax, 11-14
events, 42-46
garbage collection, 16
IDisposable, 18
origins of, 10-11
static extensions, 35

calendars, 127

cameras, 127

CanGoBackward, 107-108

CanGoForward, 107-108

Canvas, Silverlight, 100

capabilities of smartphones, 125-127

CAPTCHAs, 268

CharactersViewModel class, 226

checkboxes, 91

choosers, 133-134

email address chooser task, 134-135
phone number chooser task, 134
PhotoChooserTask, 135-136

class coupling, 288

classes

adding behaviors, 26-28
AesManaged class, 272
AppData class, 188-189
building, 22-23
contracts, 32-35
Customer class, 188-189
encapsulating data, 23-25
extending, 35-37
inheritance, 28-32

302 application bar, migrating from tab bar applications

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 302

IsoStoreHelper class, 186-188
MessageBox class, 85
namespaces versus naming conven-

tions, 35
RelayCommand, 222
TurnAction class, 264
UIElement class, 55
ViewModel class, 178

closing Windows Phone Execution
Model, 174

CLR

garbage collection, 17
root counting, 17

code listings

Adding a Label and TextBox, 87
Adding Buttons to the Page, 88
Adding New User Input Elements, 91
AppData and Customer Data Model

Classes, 188-189
Book.cs, 221-222
BookTest.cs—Asynchronous Unit

Testing, 244-245
Code Responding to a Button Click,

89-90
Combatant.cs, 23
Combatant.cs (Refactored to

Implement IDoesDamage), 33-34
Combatant.cs (Showing Events),

43-44
Combatant.cs with Behavior, 27
Combatant.cs with Member Variables,

24-25
combatant.h, 22
Combatant.h with Behavior, 26
Combatant.h with Member Variables,

24
Combatant.m, 22
Combatant.m with Behavior, 26

Combatant.m with Member Variables,
24

CombatantSquareDancingExtension.
cs, 36

DrunkenCombatant.cs, 30-31
EmptyTest.cs, 243
GameEngine.cs, 45-46
GameEngine.cs (with Static Events),

47-49
GlobalSuppressions.cs, 286
IHypotheticalLobbyService, 260
The IsoStoreHelper Class, 186-188
ITakesDamage.cs, 33
ITurnBasedGameService, 263-264
ListBoxPge.xaml, Modified for

Animation, 97-98
MainPage.xaml, 192-194
MainPage.xaml for the Panorama

Application, 119-120
MainPage.xaml from the Pivot

Control Application Template,
116-117

MainPage.xaml—Animated Page
Transitions, 112-113

MainPage.xaml.cs, 194-195
MainPage.xaml.cs, Using the

Accelerometer Sensor, 138-140
MainPage.xaml.cs, Using the Location

Monitoring API, 141-143
MainPage.xaml.cs—Animated Page

Transitions, 113-114
MainPage.xaml.cs—Injecting the

SLUT Harness UI, 242
MainViewModel.cs, 215-217
MainViewModel.cs and

ItemViewModel.cs, 189-192
MainViewModelTest.cs—Arrange,

Act,Assert, 248-249
MockMnemuseServiceProvider.cs,

246-247

303code listings

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 303

PincushionTarget.cs, 34
Preparing App.xaml for Push

Notifications, 157-159
Reading Text Property of a TextBox,

87-88
ReallyDangerousCombatant.h, 29
ReallyDangerousCombatant.m, 29
ReallyDangerousCombatants.cs, 30
Responding to a Single Tap on a

TextBlock, 85
StationaryCombatant.cs, 31
TakesDamageProtocol.h, 22-35
Text Blocks in XAML, 84
Using Tombstone State during

Activation and Deactivation,
176-178

Code Responding to a Button Click, 89-90

Combatant.cs, 23

Combatant.cs (Refactored to Implement
IDoesDamage), 33-34

Combatant.cs (Showing Events), 43-44

Combatant.cs with Behavior, 27

Combatant.cs with Member Variables, 24-25

combatant.h, 22

Combatant.h with Behavior, 26

Combatant.h with Member Variables, 24

Combatant.m, 22

Combatant.m with Behavior, 26

Combatant.m with Member Variables, 24

commands, MVVM Light, 220-223

composing email messages, 133

condition, breakpoints, 281

conected mobile gaming platforms, lobbies
and matchmakers, 254-255

connected gaming options, Windows Phone
7 applications, 259

leaderboards and achievements,
261-262

lobbies and matchmakers, 259-261

real-time multiplayer gaming, 264-265
turn-based game play, 263-264

connected mobile gaming platforms, 254

leaderboards and achievements,
255-256

real-time multiplayer gaming, 257
turn-based game play, 256-257

constructors, 109

consuming WCF services, smart clients,
204-206

contracts, 32-35

controlling vibration, 136-137

controls, 83-84

buttons, 88-90
list box control, 94-96
text blocks, 84-86

Core Data, 181-184

generating from Objective-C classes,
182

core syntax

C#, 11-14
Objective-C, 11-14

Cox, Brad, 9

CreateDirectory, 185

CreateFile, 185

CryptoStream, 273

Customer class, 188-189

cyclomatic complexity, 287

D
data

encapsulating, 23-25
protecting, 270-275

Data Contract Serializer (WCF), 184

DataContext, 217

DataService, 291

304 code listings

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 304

deactivating Windows Phone Execution
Model, 174

debugging, 280-281

iOS applications, 279-280
logging, 284
Windows Phone 7 applications, 281

breakpoints, 281-284
logging, 284

Debug.WriteLine method, 284

defaultCenter, 46

delegate methods, iOS Table View
Controllers, 41

delegate pattern, Objective-C, 40-42

DeleteDirectory, 185

dependency properties, 99

deploying test devices, 292-294

depth of inheritance, 287

DirectoryExists, 185

displaying graphics in iOS, 52-53

displaying images, 93-94

docking target shortcut icons, Visual Studio
2010, 66-67

double animations, 114-115

DownloadStringAsync method, 199

drawRect: method, 52

DrunkenCombatant.cs, 30-31

E
earning money with Mobile Advertising SDK,

300

email address chooser task, 134-135

email messages, composing, 133

EmptyTest.cs, 243

encapsulating data, classes, 23-25

encryption, 272

EnqueueTestComplete method, 245

Evans, Eric, 234

event-driven programming

defined, 39-40
global events, 46-50
NSNotifications, 46-50
Objective-C (delegate pattern), 40-42

events, C#, 42-46

exchange policies, 270

execution when hit, breakpoints, 282

expanding windows in Visual Studio 2010,
64

Expression Blend, 72-76

annotations, 75
launching, 73
visual states, 76-81

extending classes, 35-37

F
Facebook, games, achievements, 255

fast app switching, 170

FileExits, 185

finalization, object finalization, 18-19

free developer tools download, Visual Studio
2010, 62

G
Game Center (Apple), 257

achievements, 257-258
in-game voice chat, 259
leaderboards, 258
networking APIs, 258-259

Game Center Leaderboard UI, 258

GameEngine.cs, 45-46

GameEngine.cs (with Static Events), 47-49

GameKit API, 258

networking, 258-259
games, 253

connected mobile gaming platforms.
See mobile games

305games

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 305

Gamescore, 261

garbage collection

CLR, 17
memory management, 16-18

generating Objective-C classes from Core
Data, 182

Generics, 49

GeoTrust, 293

GetDirectoryNames, 185

GetFileNames, 185

GetUserStoreForApplication, 185

global events, event-driven programming,
46-50

globally unique ID (GUID), 271

GlobalSuppressions.cs, 286

GPS, 126, 141-143

graphics, displaying in iOS, 52-53

green, 235

Grid Control, 104

Silverlight, 101-103

GUID (globally unique ID), 271

H
hierarchies, class diagrams, 29

Hillegass, Aaron, 280

History view model, Zombie Apocalypse
Trainer, 290

hit count, breakpoints, 282

HitPointPercent, 25

HTTP communication, RESTful services, 198

HTTP GET, 198-199

HTTP POST, 199

HttpNotificationChannel, 159-160

HyperlinkButton, 91

I
IDisposable, C#, 18

IHypotheticalLobbyService, 260

image controls, 94

images, displaying, 93-94

images, remote background images (tiles),
151

in-game voice chat, Game Center (Apple),
259

inheritance, 28-32, 287

versus switching on data, 31-32
InitializeComponent() method, 109

intellectual property, protecting, 275-277

Interface Builder (IB), 69-72

TableViewController, 70-71
iOS

displaying graphics, 52-53
rendering, 52-53

iOS 4 emulator, 61

iOS 4, multitasking, 169-170

iOS application development, Xcode and,
59-61

iOS applications

debugging, 279-280
tuning, 279-280
unit testing, 237-238

application testing, 239
logic testing, 238-239

iOS rendering engine, 53

iOS Table View Controllers, delegate meth-
ods, 41

isolated storage, 184-186

IsoStoreHelper class, 186-188

IsoStoreHelper Class, 186-188

IsoStoreHelper class, 229

ITakesDamage.cs, 33

iTunes Connect, 258

306 Gamescore

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 306

J–K
keywords, public, 25

Kindel, Charlie, 202

L
labeling breakpoints, 282

LastLaunchDate property, 178

launchers, 127-128

SaveEmailAddress task, 129
SavePhoneNumber task, 128-129
search task, 130-131

launching

Expression Blend, 73
media players, 131
phone applications, 132
web browsers, 131
Windows Phone Execution Model,

172-173
layout, Silverlight, 55-57, 100

Grid Control, 101-103
painting on Canvas, 100
StackPanel, 101

leaderboards

connected gaming options,Windows
Phone 7 applications, 261-262

connected mobile gaming platforms,
255-256

Game Center (Apple), 258
LINQ, 184

LINQ to XML, RESTful services, 198-204

list box control, 94-96

LoadBooks(), 231

LoadCharactersFromBook, 226-227

Loaded event, Silverlight navigation system,
109-110

lobbies

connected gaming options,Windows
Phone 7, 259-261

connected mobile gaming platforms,
254-255

local notifications, 170

location, breakpoints, 281

Location property, 28

location/GPS, 126, 170

logging Debug class, 284

logic testing iOS applications, 238-239

Love, Tom, 9

M
Main view model, Zombie Apocalypse

Trainer, 290

MainPage.xaml, 192-194

MainPage.xaml for the Panorama
Application, 119-120

MainPage.xaml from the Pivot Control
Application Template, 116-117

MainPage.xaml—Animated Page Transitions,
112-113

MainPage.xaml.cs, 194-195

MainPage.xaml.cs Encrypting and Decrypting
Data, 273-275

MainPage.xaml.cs—Animated Page
Transitions, 113-114

MainPage.xaml.cs—Injecting the SLUT
Harness UI, 242

MainViewModel, 246

MainViewModel class, 229

MainViewModel.cs, 215-217

MainViewModel.cs and ItemViewModel.cs,
189-192

MainViewModelTest.cs—Arrange, Act, Assert,
248-249

managing Windows Phone Execution Model,
175-179

307managing Windows Phone Execution Model

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 307

Mango, 259

mapper pattern, 230-231

maps, 127

Marketplace, submitting applications to,
296-300

matchmakers

connected gaming options,Windows
Phone 7, 259-261

connected mobile gaming platforms,
254-255

Measure, 55

meat keys, 271

media players, launching, 131

memory management, 15

garbage collection, 16-18
object ownership, 15-16
reference counting, 15-16

message passing, 14-15

MessageBox class, 85

messages, sending with MVVM Light,
223-224

messaging (email), 127

method calls, 14-15

Microsoft Expression Blend for Windows
Phone, 62

Microsoft.Devices, 137

migrating

from navigation bars, 105-107
Silverlight navigation system,

107-108
from tab bar applications, 115

application bar, 120-123
Panorama application, 118-120
Pivot control, 115-117

Mobile Advertising SDK, 300

mobile games, 253

connected mobile gaming platforms,
254

leaderboards and achievements,
255-256

lobbies and matchmakers, 254-255
real-time multiplayer gaming, 257
turn-based game play, 256-257

Game Center (Apple). See Game
Center (Apple)

MockMnemuseServiceProvider.cs, 246-247

mocks

test-driven development (TDD),
235-237

unit testing,Windows Phone 7 appli-
cations, 246-248

Model View Controller. See MVC (Model
View Controller)

Model-View-View-Model. See MVVM (Model-
View-View-Model)

Moq, 248

multimedia, 127

multiplayer games, lobbies and matchmak-
ers, 254-255

multitasking on iOS 4, 169-170

MVC (Model View Controller), 208-210

Passive View pattern, 209-210
MVVM (Model-View-View-Model), 211

MVVM Light, 212-213

AutoMapper, 230
blending, 218-219
building view models, 213-218
commands, 220-223
notification of property changes,

208-227
sending messages, 223-224
service providers, 227-230

N
named parameters, 15

namespaces versus naming conventions, 35

naming collisions, 35

308 Mango

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 308

naming conventions versus namespaces, 35

navigating

to scratch pages, 103-104
to test and scratch pages, 103-104

navigation bars, migrating from, 105-107

Silverlight navigation system, 107-108
navigation events, animation, 111-115

nested layout panels, Silverlight, 57

.NET Framework, 90

.NET Framework v4.0, 62

networking, APIs, Game Center (Apple),
258-259

NeXT, 10

notification of property changes, MVVM
Light, 208-227

NSNotifications, event-driven programming,
46-50

nUnit, Windows Phone 7 applications, 240

O
object finalization, 18-19

object ownership, memory management,
15-16

Objective-C, 23

core syntax, 11-14
event-driven programming, delegate

pattern, 40-42
garbage collection, 16-17
generating classes from Core Data,

182
origins of, 9-10
protocols, 32

object-oriented programming. See OOP
(object-oriented programming)

OnNavigatedFrom method, 110

OnNavigatedTo method, 110

Silverlight navigation system, 110-111
OnNavigatingFrom, 110

OOP (object-oriented programming), 21-22

OOPC (Object-Oriented Programming in C), 9

OpenFile, 185

P
page constructor, Silverlight navigation sys-

tem, 109

Page Loaded event, Silverlight navigation
system, 109-110

page state, managing, 175-179

painting on Canvas, Silverlight, 100

Panorama application, migrating from tab
bar applications, 118-120

Passive View pattern, MVC (Model View
Controller), 209-210

PasswordBox, 91-92

passwords, 271

phone applications, launching, 132

phone calls, 126

phone number chooser task, 134

PhotoChooserTask, 135-136

photos, 127

PincushionTarget.cs, 34

Pivot control, migrating from tab bar appli-
cations, 115-117

Podila, Pavan, 211

Preparing App.xaml for Push Notifications,
157-159

prepping applications for submissions,
294-296

process and thread filter, breakpoints, 282

properties

dependency properties, 99
notification of property changes,

MVVM Light, 208-227
PropertyChanged event, 178

protecting

data, 270-275
intellectual property, 275-277

309protecting

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 309

protocols, 32

public keyword, 25

push notifications, 153, 170

APNS (Apple Push Notification
Services), 153-155

raw notifications, 162-165
tile notifications, 165-167
toast notifications, 156-161
Windows Phone 7, 155

Q
Quartz, 53

Quota, 185

R
radio tuners, accessing, 137-138

RadioButton, 91

raw notifications, 162-165

ReadGraphFromFile, 186

Reading Text Property of a TextBox, 87-88

ReallyDangerousCombatant.h, 29

ReallyDangerousCombatant.m, 29

ReallyDangerousCombatants.cs, 30

real-time multiplayer gaming

connected mobile gaming platforms,
257

Windows Phone 7 applications, con-
nected gaming options, 264-265

red, 234-235

red, green, refactor, test-driven development
(TDD), 234-235

refactor, 235

unit testing,Windows Phone 7 appli-
cations, 250-251

reference counting, memory management,
15-16

registering test devices, 292-294

RelayCommand, 222

remote background images, tiles, 151

RemoteImageUri property, 149

Remove, 185

rendering in iOS, 52-53

Responding to a Single Tap on a TextBlock,
85

RESTful services, 197-198

LINQ to XML, 198-204
root counting, 17

rotation, user interfaces, 80

running Windows Phone Execution Model,
173

S
SaveEmailAddress task, 129

SavePhoneNumber task, 128-129

scratch pages, navigating to, 103-104

SDK, 69

SDK design, 90

search task, 130-131

searches, 127

secure applications, 267-269

encryption, 272
protecting, intellectual property,

275-277
protecting data, 270-275
Windows Phone 7, 269-270

SelectedBook property, 225

SelectedItem property, 225

sending

messages, MVVM Light, 223-224
text messages, 132-133

service providers, MVVM Light, 227-230

ServiceProvider property, 250

SetupDelegates() method, 159

310 protocols

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 310

Silverlight, 11, 53-55, 62

Grid Control, 104
layout, 55-57, 100

Grid Control, 101-103
painting on Canvas, 100
StackPanel, 101

nested layout panels, 57
test and scratch pages, navigating to,

103-104
two-pass method for laying out con-

trols, 55-57
unit testing,Windows Phone 7 appli-

cations, 241-246
Silverlight navigation system, 107-108

OnNavigatedTo method, 110-111
page constructor, 109
Page Loaded event, 109-110

Silverlight Unit Framework, 241-246

sliders, 91-92

smart client applications, 202

smart clients, 197

consuming WCF services, 204-206
RESTful services. See RESTful serv-

ices
smartphones, capabilities of, 125-127

Solution Explorer, Visual Studio 2010, 64

SSL, 269

StackPanel, Silverlight, 101

static analysis, 285-288

static extensions, C#, 35

StationaryCombatant.cs, 31

Stepstone, 9

storage-backed databound applications,
building, 186-196

storyboards, 114-115

animations, 99
submissions, prepping applications for,

294-296

submitting applications, to Marketplace,
296-300

SubscribeToNotifications method, 159

switching versus inheritance, 31-32

T
tab bar applications, migrating from, 115

application bar, 120-123
Panorama application, 118-120
Pivot control, 115-117

TableViewController, Interface Builder (IB),
70-71

TakesDamageProtocol.h, 22-35

target shortcut icons, docking in Visual
Studio 2010, 66-67

task completion, 170

TDD. See test-driven development (TDD)

test devices

deploying, 292-294
registering, 292-294

test messaging, 126

test pages, navigating to, 103-104

test-driven development (TDD), 233-234

mocks and stubs, 235-237
red, green, refactor, 234-235

TestMethod attribute, 243

text blocks, 84-86

Text Blocks in XAML, 84

text boxes, accepting user input, 86-88

text messages, sending, 132-133

tile notifications, 165-167

tile schedules, 148-150

tiles, 145-146

creating, 147-148
remote background images, 151
tile schedules, 148-150

toast notifications, 156-161

311tiles

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 311

Today view model, Zombie Apocalypse
Trainer, 290-291

toggling auto-hide, Visual Studio 2010, 65

tombstone state, 175

tombstoned, Windows Phone Execution
Model, 175

ToModelArray() method, 229

ToViewModel() method, 291

tuning iOS applications, 279-280

TurnAction class, 264

turn-based game play

connected gaming options,Windows
Phone 7 applications, 263-264

connected mobile gaming platforms,
256-257

Tusser, Thomas, 268

two-pass method for laying out controls,
Silverlight, 55-57

U
UIElement class, 55

UIKit view system, 51-52

displaying graphics and rendering in
iOS, 52-53

UITableViewController, 210

unit testing

iOS applications, 237-238
application testing, 239
logic testing, 238-239

Windows Phone 7 applications,
239-240

arrange, act, assert, 248-249
mocks and stubs, 246-248
nUnit, 240
refactor, 250-251
Silverlight, 241-246

URI (Unique Resource Identifier), 198

user experience (UX), 268

user input

accepting, 91-92
accepting with text boxes, 86-88

user interfaces, rotation, 80

Using Tombstone State during Activation
and Deactivation, 176-178

UX (user experience), 268

V
vibration, controlling, 136-137

view models, building in MVVM Light,
213-218

ViewModel class, 178

ViewModelLocator, 214, 218

visual states, Expression Blend, 76-81

Visual Studio 2010, 62-66

docking target shortcut icons, 66-67
free developer tools download, 62
Solution Explorer, 64
toggling auto-hide, 65
windows, expanding, 64

Visual Studio 2010 Express, 62

VoIP, 170

W
WCF services, consuming, 204-206

web browsers, launching, 131

web browsing, 127

windows, expanding in Visual Studio 2010,
64

Windows Phone 7

no forward movement, 108
push notifications, overview, 155
secure applications, 269-270

312 toast notifications

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 312

Windows Phone 7 applications

connected gaming options, 259
leaderboards and achievements,

261-262
lobbies and matchmakers, 259-261
real-time multiplayer gaming,

264-265
turn-based game play, 263-264

debugging, 281
breakpoints, 281-284
logging, 284

unit testing, 239-240
arrange, act, assert, 248-249
mocks and stubs, 246-248
nUnit, 240
refactor, 250-251
Silverlight, 241-246

Windows Phone Emulator, 62

Windows Phone Execution Model, 171

application life cycle, 171-172
activating, 173-174
closing, 174
deactivating, 174
launching, 172-173
running, 173
tombstoned, 175

managing application and page state,
175-179

multitasking on iOS 4, 169-170
WriteGraphToFile, 186

X
XAML, 53-55, 72

text blocks, 84
Xbox Live, 261-262

Xcode, 10

iOS application development and,
59-61

Xcode UI, 60

XML, RESTful services, 198

XNA Game Studio 4.0, 62

Y–Z
Zombie Apocalypse Trainer, 289-291

313Zombie Apocalypse Trainer

22_9780672334344_Index.qxd 7/13/11 1:15 PM Page 313

	Table of Contents
	3 Object-Oriented Programming
	Why OOP?
	Building a Class
	Encapsulating Data
	Adding Behavior
	Inheritance
	Programming with Contracts
	Namespaces Versus Naming Conventions
	Extending Other People’s Classes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

