

Microsoft®

BizTalk®

Server 2010
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Brian Loesgen
Charles Young
Jan Eliasen
Scott Colestock
Anush Kumar
Jon Flanders

Microsoft® BizTalk® Server 2010 Unleashed
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33118-3

ISBN-10: 0-672-33118-7

Library of Congress Cataloging-in-Publication data is on file

Printed in the United States of America

First Printing September 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Lisa Stumpf

Proofreader
Apostrophe Editing
Services

Technical Editor
Gijsbert in 't Veld

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Gloria Schurick

Contents at a Glance

Foreword . xxii

Part I The Basics

1 What Is BizTalk Server? . 3

2 Schemas . 15

3 Maps. 89

4 Orchestrations . 173

5 Pipelines . 257

6 Adapters . 337

Part II Advanced Topics

7 BizTalk 2010 and WCF: Extensibility. 415

8 BizTalk and Windows Azure . 431

9 Business Activity Monitoring with BizTalk BAM. 441

10 The Business Rules Framework. 467

11 Rule-Based Programming . 563

12 ESB with BizTalk Server . 639

Part III Deployment and Administration

13 Administration Console Concepts . 669

14 Deployment Concepts. 687

Part IV RFID

15 BizTalk RFID . 723

16 BizTalk RFID Mobile. 779

Closing notes. 799

Index . 803

Table of Contents

Foreword xxii

Part I The Basics

1 What Is BizTalk Server? 3

A Brief History of Application Integration...3
BizTalk Server Capabilities ..7

Adaptation ...7
Mediation...8
Exception Handling...8
Orchestration and Choreography ...9
Performance and Scalability ..9
Security ..10
Insight ..10
Electronic Data Interchange..11
RFID Event Handling...11

What Is a “Typical” BizTalk Solution?..11
BizTalk Server, WCF, and WF..12
Summary ...14

2 Schemas 15

BizTalk Schemas ..16
XML Schema Definition..16
Properties ...17
Internal Schemas ...18

XML Schemas..20
Existing XSDs...20
Generating an XSD..21
Creating an XSD ..21

Flat File Schemas...36
Add Existing Schemas..38
Creating by Hand ..38
Flat File Schema Wizard ..47

EDI Schemas..60
Messages That Are Not XML and Not Flat File ..60

Pass-Through Pipeline ...60
Custom Disassembler ..61

Custom Editor Extensions ...61
Third-Party Components...61

Property Promotion ..61
Distinguished Fields...63
Promoted Properties ..65
Property Demotion..66
When to Use What..67

Versioning of Schemas..69
No Long-Running Transactions and a Short

Downtime Acceptable ...69
Long-Running Transactions or a Short Downtime

Is Unacceptable ...70
Testing ...71

Validate Schemas ...71
Validate Instances ..72
Generate Instances...74
Unit Testing of Schemas ..75
Testing Using Pipeline Tools..80

Schemas for Scenario Used in This Book ...81
FineFoods.Common.Schemas ...81
FineFoods.CreditCheck.Schemas...82
FineFoods.Customers.C1701 ...82
FineFoods.Customers.C1702 ...83
FineFoods.Customers.Schemas..84
FineFoods.Inventory.Schemas ...84
FineFoods.Orders.Schemas ..84
FineFoods.PurchaseOrders.Schemas ..87

Summary ...88

3 Maps 89

The Mapper ...90
Layout of Mapper ..90
Initial Considerations ..92
Creating a Simple Map ..94

Functoids...108
String Functoids...111
Mathematical Functoids ..112
Logical Functoids...113
Date/Time Functoids ...115
Conversion Functoids..116
Scientific Functoids..116
Cumulative Functoids ...117

Contents v

Database Functoids..118
Advanced Functoids ..120
Third-Party Functoids ..122

Advanced Maps...123
Mapping Optional Fields...123
Looping Functoid ..123
Index Functoid ..125
Database Lookup ...127
Scripting Functoid ...129
Functoid Combination..131
Combination of Functoids for If-Then-Else131
Create Separated List ...132
Table Looping Functoid...132
Conditional Creation of Output Nodes ..135
Custom XSLT ...136
Cross Referencing ..136

Building Custom Functoids ..140
Initial Setup ...141
Normal Functoid ...146
Cumulative Functoid...151
Developing Advanced Functoids...155
Deployment of Custom Functoids..157
Debugging..161

Testing of Maps ...163
Validating Maps ...164
Testing Maps ..164
Debugging a Map...167
Unit Testing ...168

Summary ...172

4 Orchestrations 173

Orchestration Designer ...174
Defining Orchestrations ..177
Building Orchestrations...178
Messages...182
Variables...186
Shapes ..188
Delivery Notification and Handling Retries217
Calling Pipelines ..218
Web Services ..221

Dehydration and Rehydration..228
Correlations...229

Microsoft BizTalk Server 2010 Unleashedvi

Convoys ..234
Parallel Convoys ..234
Sequential Convoys ...235
Zombies..236

Transactions ..237
Atomic..238
Long Running..240
Compensating Code ..241

Persistence Points..246
Exception Handling ..247
Debugging ...250

Send Out Messages ..250
Debug and Trace ..250
Breakpoints in Orchestration Debugger..250

Summary ...255

5 Pipelines 257

Stages in Pipelines...258
Stages in a Receive Pipeline...259
Stages in a Send Pipeline ...261

Built-In Pipelines...262
Receive Pipelines..262
Send Pipelines..263

Built-In Pipeline Components..263
XML Components ...264
Flat Files ...268
Encoding, Encrypting, and Signing ..272
BizTalk Framework...275
Validator and Party Resolution ...280

Custom Pipelines ..283
Using the Built-In Pipeline Templates ..283
Creating Custom Pipeline Templates ..284

Custom Pipeline Components ...287
Resources, Attributes, and Constructors ...288
Interfaces..292
Message and Context Interfaces..305
Miscellaneous Functionality..309
Streaming ...314
Properties ...317
Really Fast Pipeline Component Implementation............................323
Deployment ...324
Debugging..327
Pipeline Component Wizard...329

Contents vii

Testing ...330
Pipeline.exe..330
Unit Testing ...331

Summary ...334

6 Adapters 337

BizTalk Adapters ..337
Native Adapters..338
Line-of-Business Adapters..339
BizTalk Adapter Pack..339
Host Adapters...339
Third-Party and Custom Adapters...339
Additional Microsoft Adapters ..340

The Role of WCF Adapters..340
Adapter Characteristics ...340

Direction ..341
Push and Pull ...341
Message Interchange Pattern...341
Hosting...342
Configuration ..342
Batches ...343
Transactions ...344
Message Context..344
Metadata Harvesting..344

Registering Adapters..345
Creating Adapter Handlers ...346
Port-Level Configuration ..349

Configuring Receive Locations..350
Configuring Send Ports ...352

Adapter Properties...355
Deploying Bindings ..355
Native Adapters...357
File Adapter ...357

Robust Interchange..357
Polling Locked Files ...358
File Renaming ..359
Reliable Messaging Issues ..359
Path and File Names..359
Security ..360
Additional Send Handler Issues...360

FTP Adapter ...360
FTP Issues ...361

Microsoft BizTalk Server 2010 Unleashedviii

Contents ix

Handling Duplicate Messages..362
Staging Files in Temporary Folders ...362
Raw FTP Commands..363
Secure Messaging ...363

HTTP Adapter..364
Using HTTP Receive Handlers ...364
Using HTTP Send Handlers ...366
Additional Configuration ..366

MQ Series Adapter...367
Using MQ Series Receive Handlers..368
Using MQ Series Send Handlers ..369
Managing Queues ..369
Configuring MQSAgent ...370

MSMQ Adapter..370
Using MSMQ Receive Handlers...371
Using MSMQ Send Handlers ...372
Authenticating and Securing Messages...374

POP3 Adapter ..375
Using POP3 Receive Handlers ...376
Handling Encrypted Messages...377

SMTP Adapter..377
Using SMTP Send Handlers ...378

Windows SharePoint Services Adapter ...379
Using WSS Receive Handlers ...380
Using WSS Send Handlers ...381
Mapping SharePoint Columns ..383

SOAP Adapter..383
WCF Adapters ...384
Windows Communication Foundation ...385
Comparing WCF to BizTalk Server ...386
The Role of BizTalk Native WCF Adapters ...388
Hosting Native WCF Adapters..389
The WCF Service Publishing Wizard ..389

Publishing Orchestrations ...392
Publishing Schemas ...392

WCF Send Handlers ..394
Importing MEX Endpoints ..395
Importing Metadata Files ..396
Dynamic Ports ...397

Configuring WCF Adapters ..397
Addresses and Identity ..398
Bindings ...399

Microsoft BizTalk Server 2010 Unleashedx

Behavior ...400
Security and Credentials..401
Message Handling..402

Using the SQL Server LoB Adapter ...404
WCF LoB Framework and SDK..404
SQL Server Adapter ..404
Polling and Notification..405
Performing Operations via a Send Handler407
Additional Adapter Capabilities ..408
Metadata Harvesting..409

Summary ...412

Part II Advanced Topics

7 BizTalk 2010 and WCF: Extensibility 415

WCF Extensibility ...416
The WCF Channel Stack ...416
ABCs Reviewed ..417
ServiceContract in BizTalk...418

WCF Behaviors..420
Example of WCF Extensibility in BizTalk...420
Summary ...429

8 BizTalk and Windows Azure 431

Extending the Reach of BizTalk Applications ..431
The AppFabric SDK..432

Receiving Messages ...433
Sending Messages..434

Static Send Port..435
Dynamic Send Port..436
ESB Off-Ramp...436

Using InfoPath as a Client..438
Summary ...439

9 Business Activity Monitoring with BizTalk BAM 441

BAM and Metrics...441
What Is BizTalk BAM?...442
Using BizTalk BAM..444

End-to-End, High-Level Walkthrough of the BAM Process444
Real-Time Versus Scheduled Aggregations ...446

Contents xi

Defining Activities and Views ..447
Progress Dimension ...450
Data Dimension...450
Numeric Range Dimension ...450
Time Dimension ..450

Using the Tracking Profile Editor ...452
Using the BAM APIs..453

DirectEventStream (DES) ...453
BufferedEventStream (BES) ..453
OrchestrationEventStream (OES) ..454
IPipelineContext Interface ..454

Creating a Higher-Level API Specifically for Service Metrics454
Working with the WCF and WF Interceptors ..457
Using Notifications ...460
Rapid Prototyping ...460
REST and BAM ..461

Managing BAM ..461
BAM Database Considerations..461
Deployment and Management...461

Security ..462
Scripting Deployment..462

Summary ...465

10 The Business Rules Framework 467

The Importance of Rules...468
Processes and Policies ..468
Business Policies ..469
Policy Externalization..469
Policy Scenarios ...471
Business Versus Executable Rules ..472
Business Rule Management ...473
BRMS and the BRF ...475

Example Scenario: Order Processing ..476
Incomplete and Implicit Business Rules ...478
Indirect Policy Mapping ..478
Technical Policy ...479
Data Models ...479
Programmatic Bindings ...479
Priority ...479
Traceability...479
Refactoring...480

Microsoft BizTalk Server 2010 Unleashedxii

Testing, Publishing, and Deployment...480
Managing Change ...481

Real-World Rule-Processing ..482
Using Vocabularies ..483
What About Performance? ..484
Inference and Reasoning ...485

The Business Rules Framework ...487
Introducing the BRF ..487
Rule Storage and Administration ..488
Rule Deployment...489
Rule Modeling..495
Rule Execution...497

Components and Tools...499
Microsoft Business Rule Language ..499
Business Rules Database ..499
Pub-Sub Adapter ..504
Rule Store Components...505
SqlRuleStore ...505
OleDbRuleStore..505
FileRuleStore ..506
Rule Set Deployment Driver..507
Business Rules Language Converter ..507
Business Rules Engine..507
Policy Class ..507
Policy Tester Class..509
BizTalk Server 2010 Rule Engine Extensions.....................................511

Rule Definition and Deployment ...511
The Rule Composer ...512
Loading Rule Stores ...513
Using the Policy Explorer..516
Using the Facts Explorer..520
Composing Rule Conditions ...525
Creating Rule Actions..530
Rule Engine Component Configuration...532
Testing Rule Sets ..534
Vocabularies ...538
Strategies for Vocabulary Versioning...543
Publishing and Deployment ...545
The Rules Engine Deployment Wizard ...546

Using Rules with BizTalk Server..547
ESB Toolkit ...547
RFID Server ..548
Using Rules in Custom Code ..548

Contents xiii

Policy Management in the Administration Console548
The Call Rules Orchestration Shape..551
Policy-Driven Features of the ESB Toolkit...556
The RFID Server BRE Event Handler ...558

Summary ...561

11 Rule-Based Programming 563

The Roots of Confusion..563
Declarativity...564
Set-Based Programming...565
Recursive Processing ..565
Blended Paradigms ..566
Limits of Expressivity ..567

Understanding the Rule Engine ...568
Understanding Production Systems ..568
Understanding Short-Circuiting..571
Using OR Connectives...573
Understanding Implicit Conditions..576

Common Rule Patterns...577
Implementing Quantification ...577
Handling Negation-as-Failure..581
Using Strong Negation ..583
Designing Rule Sets as State Machines..584
Exploiting Situated Reasoning ..587

Rule Engine Mechanisms..589
Understanding Working Memory ...589
The Match-Resolve-Act Cycle..590
Introducing the Rete Algorithm..593
Managing Conflict Resolution ..594
Forward- and Backward-Chaining...595

Working with Facts ...597
Using Typed Fact Classes...597
Handling XML Documents ...598
Setting XPath Properties in the Rule Composer599
XML Type Specifiers ..600
Handling XML Namespaces ..602
Reading and Writing XML Data..602
Managing Optional XML Nodes ...603
Handling ADO.NET DataTable and DataRow Objects......................606
Handling Data Connections..607
Handling .NET Types...609
Invoking Static Type Members..613

Microsoft BizTalk Server 2010 Unleashedxiv

Optimizing Rule Sets...615
Controlling Side Effects ...615
Optimizing the Rete Network ...617

Programming with the Rule API...618
Using the Policy Class ...618
Handling Long-Term Facts ..623
Implementing Compensation Handlers ...624
Using the RuleEngine Class...627
Implementing Custom Rule Store Components628
Managing Deployment Programmatically ..630
Creating Rules Programmatically ..633

Summary ...637

12 ESB with BizTalk Server 639

What Is an ESB? ..639
Introducing the Enterprise Service Bus ..639

What Problems Does an ESB Solve?..640
What Are the Components of an ESB? ...641

Dynamic Routing..643
Dynamic Transformation..644
Message Validation ...644
Message-Oriented Middleware..645
Is BizTalk a Fully Functional ESB? ..645
What Is the ESB Toolkit? ..645

History of the ESB Toolkit ...646
What Is in the ESB Toolkit?...646
What’s the Difference Between Native BizTalk Server and BizTalk

Server with the ESB Toolkit? ...646
The Magic Behind an ESB ...647

The ESB Toolkit Stack..649
Itineraries ..650
Specifying Itineraries...651

The Itinerary Lifecycle...652
Dynamic Resolution: The Resolvers ...653
Adapter Providers..655
Service Composition...656
Messaging-Only Implementations ...657
Unified Exception Management...658
Exposing Core Services ...660
Distributed ESBs ..660

REST and BizTalk ESB ..661
A Stylistic Comparison ...661

Contents xv

Incorporating REST into the BizTalk ESB ...662
Management ..662

Provisioning and Runtime Governance ...662
SLA Enforcement...663
Monitoring ..663

Organizational Considerations..664
Ensuring a Smooth Transition..664
Gatekeeper Process..665
Summary ...666

Part III Deployment and Administration

13 Administration Console Concepts 669

Introducing the Administration Console...669
BizTalk Group Properties ..670
BizTalk Settings Dashboard...672
Group Hub and Query View...678
Applications Node...680
Platform Settings...681

Hosts ..681
Host Instances..681
Servers ..682
Message Boxes..683
Adapters ...684

Summary ...685

14 Deployment Concepts 687

The Work to Be Done ...687
“Application” as a Formal Concept..689
Where Does It All Begin? (Inside Visual Studio)..691

Folder and Project Structure..691
Namespaces and Assembly Names..692
Applying Strong Names...693
Setting Deployment Properties..694
Fine Foods Solution ...696

Deploying from Visual Studio ..697
Binding and Starting the Application ...698
Edit/Debug Cycle ...700
Handling Binding Files During Development703

Creating and Managing Deployable Packages ...704
Other Types of Resources ..707
Binding Files as Resources ...708
Deployment Scripts as Resources ..709

Microsoft BizTalk Server 2010 Unleashedxvi

Exporting MSI Files ...712
Handling MSI Export on a Build Server..713

Deploying MSI Packages to a BizTalk Group..715
Import/Install via Command Line ..717

Handling Other Deployables ..718
Business Activity Monitoring ..718
Rule Vocabularies and Policies ..719

Handling Upgrade and Versioning Scenarios...719
Summary ...720

Part IV RFID

15 BizTalk RFID 723

RFID Overview ..724
The BizTalk RFID Framework..725

Installation Notes for BizTalk RFID...727
Device Applications ...731
Vendor Extensions and Extensibility ..743
Tag Operations...749
Introducing RFID Processes ...756
Exception Handling...771
Debugging (Process Hosting Model) ...773

Integration and Deployment Considerations ..773
Summary ...778

16 BizTalk RFID Mobile 779

Mobile RFID Overview..779
The BizTalk RFID Mobile Framework ...780

Installation Notes ..781
Device Applications ...782
Running Your First Mobile Application ..787
Barcode Support...791
BizTalk RFID Mobile Connector Architecture

(Store and Forward)...792
Remote Device Management..796
Summary ...798

Closing notes 799

Index 803

About the Authors

Brian Loesgen is a Principal Architect Evangelist with Microsoft on the Azure ISV team.
Based in San Diego, Brian is a six-time Microsoft MVP and has extensive experience in
building sophisticated enterprise, ESB, and SOA solutions. Brian was a key architect/
developer of the “Microsoft ESB Guidance,” initially released by Microsoft October 2006.
He is a coauthor of the SOA Manifesto and is a coauthor of eight books, including SOA
with .NET and Windows Azure, and is the lead author of BizTalk Server 2010 Unleashed. He
has written technical white papers for Intel, Microsoft, and others. Brian has spoken at
numerous major technical conferences worldwide. Brian is a cofounder and past-
president of the International .NET Association (ineta.org), and past-president of the San
Diego .NET user group, where he continues to lead the Architecture SIG, and is a member
of the editorial board for the .NET Developer’s Journal. Brian has been blogging since 2003
at http://blog.BrianLoesgen.com, and you can find him on Twitter as @BrianLoesgen.

Charles Young, MVP, MCPD, is a principal consultant at Solidsoft, an independent inte-
gration specialist working with BizTalk Server and related technologies. He has been a
professional developer for a quarter of a century, worked for several years as a technical
trainer, and has more than a decade of experience as a consultant. Charles has worked
extensively with BizTalk Server since joining Solidsoft in 2003. He architects, designs, and
implements enterprise-level integration applications for public- and private-sector
customers, delivers seminars and workshops, and maintains a blog site. In recent years he
has specialized in the area of decision systems and business rule processing and is vice-
chair of Rules Fest, an annual technical conference for developers and researchers
involved in the implementation of reasoning systems.

Jan Eliasen, MVP, MCTS, has a Master of Science degree in Computer Science and has
been in the IT industry since 2003, currently working at Logica as an IT architect, focus-
ing on delivering solutions to customers that meet the customers’ needs. He started
working with BizTalk 2002 just after graduation in 2003 and has been working with
BizTalk ever since. He has passed the exams in BizTalk 2000, 2004, 2006, 2006R2, and
2010 and is a five-time MVP in BizTalk Server. He is a well-known contributor on the
online MSDN forums and a blogger at http://blogs.eliasen.dk/technical/. You can follow
him on Twitter as @jan_eliasen.

Scott Colestock lives and works in Minnesota. He has consulted on BizTalk, WCF, CQRS
architecture, Agile methods, and general performance engineering. Recently, he has
focused deeply on mobile and SaaS architectures using Windows Azure. He is an MVP and
frequent speaker at conference events.

http://blog.BrianLoesgen.com
http://blogs.eliasen.dk/technical/

Microsoft BizTalk Server 2010 Unleashedxviii

Anush Kumar is the chief technology officer at S3Edge (www.s3edge.com), a software
solutions company focused on Auto-ID technologies, which he helped cofound following
a distinguished career at Microsoft that spanned closed to a decade of working on multi-
ple incubations from concept to shipping. In his last avatar at Microsoft, Anush was
BizTalk RFID’s leading light from early incubation of the project to its recent productiza-
tion efforts, and has been heavily involved in the design and architecture of the RFID
product, with multiple patents to his name. His efforts have also resulted in the vibrant
partner and customer ecosystem for the product, and he is a sought-after speaker and
thought leader in this space.

Prior to RFID, Anush worked on the business rules engine for BizTalk Server 2004, tech-
nology that has been deployed by several enterprise customers to improve agility and
increase efficiency of their business processes. In his spare time, Anush enjoys backpack-
ing off the beaten track; volunteers for organizations focused on education; and is a huge
fan of Malcolm Gladwell, Guy Kawasaki, cricket, cooking, bungee jumping, and of course,
All Things RTVS™ (http://rtvs.wordpress.com), his blog that spans RFID, and more! Anush
holds a Bachelor of Engineering degree in Computer Science from University of Madras
and a Master degree in Engineering from Dartmouth College.

Jon Flanders is a member of the technical staff at MCW, where he focuses on connected
systems technologies. Jon is most at home spelunking, trying to figure out how things
work from the inside out. Jon is the author of RESTful .NET and ASP Internals, and was a
coauthor of Mastering Visual Studio.NET. Jon’s current major interest is helping people to
understand the advantages of REST and how REST connects to products such as
SharePoint 2010. You can read his blog at http://www.rest-ful.net/

www.s3edge.com
http://www.rest-ful.net/
http://rtvs.wordpress.com

Dedications

I would like to dedicate this to my family, and to all the friends I’ve
made over the years in the BizTalk community. I also want to thank

the members of the stellar author team for all the hard work and
effort they put in to make this book happen, and the team at Sams

Publishing for making it all possible in the first place.
—Brian Loesgen

To the four girls and one boy in my life who amaze me by their care
and love for each other and for me.

—Charles Young

This book is dedicated to my loving and caring wife, Helle, and our
two sons, Andreas and Emil. Thank you for all your support when I

was writing this book.
—Jan Eliasen

Thank to my beautiful wife, Tracy, and our fantastic kids (Nathan,
Grant, Grace, and Anna) for your patience during Saturday and

late-night writing sessions.
—Scott Colestock

The book is dedicated to all the guys and gal at S3Edge: I salute the
tireless dedication and passion that’s made our little start-up so

much more than a place to work. To Mom and Dad for putting up
with me through all the years To my lovely wife, Melissa, thank you

for always being there for me, darling, and letting me live my
dream.... And finally to Ambuloo, your turn now, sis!

—Anush Kumar

Acknowledgments

My thanks to Johan Hedberg, a solution architect at Enfo Zystems, who helps run the
fabulous BizTalk User Group in Sweden, and who thoroughly reviewed the rules process-
ing content. His feedback was invaluable and much appreciated. My thanks, also, to
Gijs in ‘t Veld at Covast who played such a crucial role in reviewing the book as a whole,
to the team at Pearson, to my sister Dorothy who doesn’t know what BizTalk Server is,
but is first in line to buy a copy of the book, and to my colleagues at Solidsoft who always
ensure I keep my feet firmly planted in the real world of EAI.

—Charles Young

First, I want to thank my wife, Helle, and my children, Andreas and Emil. Thank you,
Helle, for allowing me to spend all that time writing this book, and thank you for forcing
me to keep writing even when I was tired of writing. Andreas and Emil, I am sorry for all
the time I could not spend with you. Thank you for putting up with me, though.

Second, a big thank-you to Microsoft MVP Randal van Splunteren, who did me a personal
favor by reviewing my stuff so that it wasn’t too bad when I handed it in for the official
review. And getting to that, also a thank-you to Microsoft MVP Gijs in ‘t Veld for doing
the official review. And from the reviewers to the publisher: Thanks to Brook Farling for
looking me up to begin with; thanks to Neil Rowe for taking over from Brook; and a big
thanks to all involved at Sams.

Third, a thanks must go to the other authors (Brian, Charles, Scott, Jon, and Anush) for
joining this team and writing their stuff, and a thanks also goes to my boss, Michael
Hermansen, and my employer, Logica, for allowing me to spend time on this project.

Finally, another very big thanks to my wife, Helle.

—Jan Eliasen

Though I was only responsible for the two chapters on RFID, this would not have been
possible for a first-time author without a stellar support cast in the background, starting
with Ram Venkatesh, my colleague at S3Edge and the primary inspiration behind
nudging me down the “authoring” path. The RFID chapters would not have been possible
without your selfless help and guidance. So, many thanks, my friend! A big thank-you to
Clint Tennill from Xterprise, and Gijs for their time and effort to review and provide
invaluable feedback. To Brian and the rest of the veteran authoring crew, thanks for the
opportunity to be part of this; you guys totally rock! And finally to Mark, Andy, Neil, and
the rest of the crew at Pearson, thanks for your tireless efforts in getting us to the finish
line; you guys have been consummate professionals all through the process, and just great
to work with.

—Anush

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Foreword

In 2010, we celebrated two significant milestones—it marked both the 10-year anniver-
sary of BizTalk and the release of BizTalk Server 2010. Over the past decade, there have
been seven releases of Microsoft’s enterprise integration platform, and it’s become the
most broadly deployed integration middleware technology on the planet (with nearly
12,000 customers worldwide). A key reason for this impressive growth was due to the
explosion of the industry use of web services over the past decade; BizTalk Server helped
fill a critical need as our customers began to transition from the world of client-server
systems to service-oriented architectures. BizTalk Server was commonly used by our
customers to service-enable existing LOB systems and extend the value of existing IT
assets into newer applications.

As we look forward to the next decade, it’s clear that we’re beginning a similar magnitude
of platform shift as the industry moves toward cloud computing. Although many are still
grappling with how to begin the journey to the cloud, it’s a matter of when they move
not if—the long-term economic benefits to move to a public cloud computing model are
undeniable, providing both cost-savings and simultaneous benefits in terms of business
agility and ability for innovation. However, for most customers this journey will be a
measured one—moving to the public cloud on their own terms and timeframe, and
occurring in parallel with the continuing need to evolve and support an existing portfolio
of on-premises applications.

BizTalk Server will play a key role—again—in this next industry platform shift. Integration
technologies can play a key role as the gateway to the cloud by future-proofing today’s
applications so that even as you move ahead to the next-generation cloud platforms you
can still leverage the existing investments you’ve made over the years. BizTalk Server 2010
has built in the capability to easily and securely bridge your existing integration business
logic with the world of Windows Azure (Microsoft’s cloud OS)—which can accelerate
hybrid on/off premises application scenarios that we believe are critical to adoption of
cloud computing.

The importance and relevancy of integration for the decade ahead is now more important
than ever before, and this book can help you start. In this book, you get a comprehensive
overview of BizTalk Server 2010 and its latest and greatest new capabilities. The team of
authors (Brian Loesgen, Jan Eliasen, Charles Young, Scott Colestock, Jon Flanders, Anush
Kumar) collectively have a tremendous wealth of practical, hands-on experience from
implementing real-world integration solutions, and this book can help you start—
regardless of whether you are new to BizTalk Server, or if you’re an experienced developer
wanting to stay current on the latest new features.

Burley Kawasaki
Director of Product Management
Microsoft Corp.

xxii

CHAPTER 3

Maps

IN THIS CHAPTER

. The Mapper

. Functoids

. Advanced Maps

. Building Custom Functoids

. Debugging

. Testing

As mentioned several times in Chapter 2, “Schemas,”
schemas are really important in your BizTalk solution. This
is partly because they serve as the contract between systems
and are therefore useful for determining which system is
faulty. And it is partly because updating them is potentially
particularly laborious because so many other artifacts
depend on them.

One of the artifacts that depends heavily on schemas is a
map. A map is a transformation from one Extensible Markup
Language (XML) document into another XML document,
and it is used in three places:

. To transform incoming trading-partner-specific or
internal-system-specific messages into an internal
XML format. This is achieved by setting the map on a
receive port or on the receive side of a two-way port.

. To transform outgoing internal XML format messages
into the trading-partner-specific or internal-system-
specific formats they need to receive. This is achieved
by setting the map on a send port or on the send side
of a two-way port.

. To perform transformations needed inside business
processes that do not involve receiving or sending
messages to and from trading partners or internal
systems.

Maps are developed inside Visual Studio 2010 using the
BizTalk Mapper tool. This tool has a developer friendly
interface, which allows you to have a tree structure view of
both input and output schemas used by the map. When
viewing these two tree structures, you can then use either

90 CHAPTER 3 Maps

direct links from nodes in the source schema to nodes in the destination schemas, or you
can use functoids that perform some processing on its input and then generates output,
which can be used either as input for other functoids or as a value that goes to a node in
the destination schema.

Although maps are developed in a nice, user-friendly interface and stored as a BizTalk-
specific XML format, they are compiled into Extensible Stylesheet Language Transformations
(XSLT) when the Visual Studio 2010 project is compiled. In fact, you can even provide
your own XSLT instead of using the Mapper if you are so inclined or if you need to do
complex transformations that you cannot do with the Mapper. Only XSLT 1.0 is
supported for this, though.

Incoming files are either arriving as Extensible Markup Language (XML) or converted into
XML in the receive pipeline, which happens before the map on the receive port is
executed. Also, on a send port, the map is performed before the send pipeline converts the
outgoing XML into the format it should have when arriving at the destination. This
makes it possible for the Mapper and the XSLT to work for all files BizTalk handles because
the tree structure shown in the Mapper is a representation of how the XML will look like
for the file and because the XSLT can only be performed and will always be performed on
XML. This provides a nice and clean way of handling all files in BizTalk in the same way
when it comes to transformations.

The Mapper
This section walks you through the main layout of the BizTalk Mapper and describes the
main functions and features.

Developing a map is done inside Visual Studio 2010 just as with other BizTalk artifacts.
Follow these steps to add a map to your project:

1. Right-click your project.

2. Choose Add, New Item.

3. Choose Map and provide a name for the map. This is illustrated in Figure 3.1.

Layout of Mapper

After adding the map to your project, it opens in the BizTalk Mapper tool, which is shown
in Figure 3.2.

The Mapper consists of five parts:

. To the left a Toolbox contains functoids that you can use in your map. Functoids are
explained in detail later. If the Toolbox is not present, you can enable it by choosing
View, Toolbox or by pressing Ctrl+Alt+X.

. A Source Schema view, which displays a tree structure of the source schema for the
map.

91The Mapper

FIGURE 3.1 Add a new map to your project.

FIGURE 3.2 Overview of the BizTalk Mapper.

. The Mapper grid, which is where you place all functoids used by the map and also
where lines between nodes in the source and destination schemas are shown. Above
the Mapper grid there is a toolbar with some functionality that is described later.

. A Destination Schema view, which displays an inverted tree structure of the destina-
tion schema. An inverted tree structure means that it unfolds right to left rather
than left to right, which is normal.

3

92 CHAPTER 3 Maps

. The Properties window, which shows the properties that are available depending on
what is the active part of the Mapper. For instance, it can show properties for a
functoid in the map, a node in the source schema, or the map itself. If the
Properties window is not present, you can always get to it by right-clicking the item
for which you need the properties and choosing Properties or by clicking an item
and pressing F4.

Initial Considerations

When developing a transformation, you usually assume that the input for the map is
always valid given the schema for the source. This requires one of two things, however:

. Validation has been turned on in the receive pipeline, meaning that the pipeline
used is either a custom pipeline with the XML validator component in it or valida-
tion has been enabled on the disassembler in use.

. You trust the sending system or trading partner to always send valid messages and
therefore do not turn on validation. This can be done for performance reasons. The
downside to this is, of course, that it can provide unpredictable results later on in
the process and troubleshooting will be hard.

Either way, your business must decide what to do. Should validation be turned on so that
errors are caught in the beginning of the process, or can it be turned off either because
you trust the sender or because you decide to just deal with errors as they arise? As a
developer of a transformation, you need to know the state of the incoming XML. If a map
fails at some point, this can lead to unexpected behavior, like the following:

. Orchestrations can start failing and get suspended because the logic inside the
orchestration is based on valid input.

. Incoming messages can get suspended if the map fails.

. If you validate your XML in a send pipeline and the map generated invalid XML
according to the schema, the validation will fail, and the message will get suspended
and not delivered to the recipient.

After this is dealt with, you can start looking at how to implement the map. Most of a
map is usually straightforward, and you just specify which nodes in the source should be
mapped to which nodes in the destination schema. For instance, the quantity on an order
line is usually just mapped to the relevant quantity node in the destination schema that
may have another name, namespace, or other. This works fine, as long as the cardinality
and data type match between the source node and the destination node.

93The Mapper

Special cases, however, must also be dealt with. Handling all the special cases can take a
long time just to specify, and this time should be taken because you want to generate
valid output. Determining how to handle these cases is usually not something a BizTalk
developer can do alone because you need to specify what actions the business wants to
perform in these cases. Therefore, this specification should be done in cooperation
between a businessperson and a BizTalk developer. The most common special cases are
described in the following paragraphs.

Different Data Types
If the source node and destination node have different data types, you might run into
issues. Naturally, if you are mapping from one data type to another data type that has
fewer restrictions, you are safe. If you are mapping form a node of type decimal to a node
of type string, for example, you can just do the mapping because anything that can be in
a node of type decimal can also be in a node of type string. The other way around,
however, is not so easy. You have three options:

. Change the source schema either by changing the data type or by placing a restric-
tion on the node that limits the possible values. You can use a regular expression to
limit a string node to only contain numbers, for instance.

. Change the destination schema by changing the data type of the relevant node.
Relaxing restrictions, however, can give you trouble later on in the business process.

. Handle the situation inside the map. After schemas are made and agreed upon with
trading partners, they are not easy to change. So, you probably want to address this
issue inside the map. You can use functoids, which are explained later, to deal with
any inputs that are not numeric values.

Different Cardinality
If the source node is optional and the destination node is not, you have an issue. What
you should do in case the input node is missing is a matter of discussion. Again, you have
three options:

. Change the source schema by changing the optional node to be required.

. Change the destination schema by changing the relevant node to be optional.

. Handle the situation inside the map. You probably want to address this issue inside
the map. You can use functoids to deal with the scenario where the source node is
missing. This can either mean mapping a default value to the destination node or
throwing an exception.

3

94 CHAPTER 3 Maps

TIP

When developing a large solution that involves lots of trading partners, you will proba-
bly find yourself numerous times in the situation where someone says that they know
the schema doesn’t reflect it but some field that is optional is always present, so you
can assume that in your map.

Well, don’t do it! If the node is always present, the schema should reflect this.

If the schema doesn’t reflect it, then in case the incoming XML doesn’t have the node
present (regardless of the promises that have been made to you), something unpre-
dictable will go wrong. Besides that, the Mapper actually includes some extra logic in
the generated XSLT in case of mapping optional elements, which can be avoided if the
schema is properly developed.

Creating a Simple Map

To start creating the map, you must choose which schema to use as the input for the map
and which schema to use for the output. These are also known as the source and the desti-
nation schemas of the map.

To choose the source schema, click Open Source Schema on the left side of the Mapper.
Doing so opens a schema selector, as shown in Figure 3.3.

In the schema selector, you can choose between schemas that exist in the current project
or schemas that are in projects you have referenced from this project. You cannot add a
reference from this window, so references must be added before choosing schemas in
other projects. You choose a schema for the destinations schema by clicking Open
Destination Schema and choosing a schema in the same way. If you choose a schema

FIGURE 3.3 Choosing a schema to be used for the map.

95The Mapper
3

that has multiple root nodes, you get a screen where you need to choose which one of
them to use as the root node for the schema you have chosen.

TIP

If you use a schema from a referenced project as either the source or the destination
schema, and this schema uses types defined in yet another project, the schema shows
up wrong in the Mapper view. No errors are provided until you test the map with the
validation options turned on. These options are described later. There isn’t even a com-
pile-time error or an error when validating the map. So, when adding referenced to pro-
jects with schemas, remember to check whether the schema you will be using itself
uses types defined in schemas in other projects, and add that reference, as well.

NOTE

Designing a map by adding a new map to your project and choosing the source and
destination schemas only allows for one schema as input and one schema as output.
At times, it is desirable to have one schema as input and multiple schemas as out-
puts, thereby creating multiple outputs or to have multiple schemas as input and com-
bining them into one schema or even have multiple inputs and multiple outputs. This
can be achieved by defining the map inside an orchestration, and this is therefore cov-
ered in Chapter 4, “Orchestrations.” These maps can be called only from within orches-
trations and not from receive ports or end ports.

After choosing the two schemas involved, you are ready to start designing your map. This
is mainly done by dragging links between the source schema and the destination schema
and possibly doing some work on the source values before they are put into the destina-
tion schema.

For values that just need to be copied from a source node to a destination node, you can
simply drag a link between the nodes in question. Just click either the source or the desti-
nation node and hold down the left mouse button while you move the mouse to the other
element. Then release it. Doing so instructs the Mapper that you want the values from the
source node copied to the node in the destination schema when the map is executed.

TIP

If the cursor turns into a circle with a line through it, this means that you cannot create
this link. This can happen, for instance, if you want to map something into a field in the
destination schema, which might not occur, like an element that has maxOccurs at 0.

In between the source and destination schema is the Mapper grid. This grid is used to
place functoids on, which perform some work on its input before its output is either used
as input for another functoid or sent to the destination schema. Functoids are described
later in this chapter. Figure 3.4 shows a simple map with a single line drawn and a single

96

TIP

Be careful not to use too many functoids on the grid because this will seriously
decrease readability. You can right-click the name of the map page (Default: Page 1)
and choose Add Page to add another page. You can have up to 20 grid pages in your
map. You can right-click a page name and choose Rename Page to rename it, and you
can also choose Reorder Pages to change the order they appear in. Also, you can
choose Delete Page if a page is no longer needed.

Pages are a great way of dividing your map into smaller, more manageable blocks. The
functionality of the map is in no way influenced with how many pages you have and
what functionality goes into what pages.

The map grid is actually larger than what you can see on your screen. If you move the
mouse to the edge of the grid, the cursor changes to a large arrow, and you can then click
to let the grid scroll so that you can see what is located in the direction the arrow points.
You can also click the icon illustrating a hand in the toolbar at the top of the Mapper grid
to get to the Panning mode, where you can click the grid and drag it around.

TIP

If you have so many functoids on one grid page that you need to scroll around to find
the right place on the map grid, you can right-click the grid and choose Grid Preview.
This will give you an opaque window providing easy access to choose which part of the
map grid you want shown. After you’ve found the part of the grid you want to see in the
map grid, just close down the opaque window.

CHAPTER 3 Maps

FIGURE 3.4 Simple map with one line drawn and one functoid used.

functoid on it. The functoid is an “Uppercase” functoid that converts the input it gets
into uppercase and outputs that.

97The Mapper
3

If you need to move a functoid to another location on the grid, you need to first click it.
When it is selected, you can drag it anywhere on the grid.

If you need to move a collection of functoids at the same time, you can click the grid and
drag a rectangle to mark the functoids and links you want to move. After marking a
rectangle on the grid, you can just click somewhere inside it and drag the entire rectangle
to another location on the grid. Another option is to select multiple functoids/links by
holding down Ctrl while clicking them. After they are selected, you can drag them to
where you want them.

Sometimes you need to change one end of a link if, for instance, some destination node
should have its value from another node than it does at the time. You can do this either
by deleting the existing link and adding a new one or by clicking the link and then drag-
ging one end of the link that has been changed to a small blue square to the new place.
Changing the existing link instead of adding a new link has some advantages:

. All the properties you may have set on the link remain the same, so you do not have
to set them again.

. If the link goes into a functoid, this will keep the order in which they are added. The
order parameters are added to a functoid is important, so it is nice to not have to go
in and change that order after deleting a link and adding a new one.

The window shown in Figure 3.4 has a toolbar at the top of the Mapper grid in the
middle. This toolbar is new in the Mapper in BizTalk 2010 and contains some functional-
ity that wasn’t available in earlier versions of BizTalk.

One of the new features is the search bar. If you enter something in the search text box,
the Mapper finds occurrences of this text within the map. The search feature can search in
the source schema, the destination schema, and properties of the functoids such as name,
label, comments, inputs, and scripts. You use the Options drop-down to the right of the
search text box to enable and disable what the search will look at. Once a search is posi-
tive, you get three new buttons between the search text box and the Options drop-down.
The three buttons enable you to find the next match going up, find the next match going
down, or to clear the search. The search features are marked in Figure 3.5.

Another new option is the zoom feature. You get the option to zoom out, allowing you to
locate the place on the grid you want to look at. For zooming, you can use the horizontal
bar in the Mapper, as shown in Figure 3.6, or you can hold down the Ctrl key while using
the scroll wheel on your mouse.

To let the map know that a value from one node in the source is to be mapped into a
specific node in the destination schema, you drag a link between the two nodes. When
you drag a link between two record nodes, you get a list of options:

. Direct Link: This creates a direct link between the two records. This helps the
compiler know what levels of the source hierarchy correspond to what levels in the
hierarchy of the destination schema.

98

FIGURE 3.5 The search feature in a map.

FIGURE 3.6 The zoom option in a map.

. Link by Structure: This lets the Mapper automatically create links between the
child nodes of the two records you created the link between. The Mapper attempts
to create the links based on the structure of the children.

. Link by Name: This lets the Mapper automatically create links between the child
nodes of the two records you created the link between. The Mapper attempts to
create the links based on the names of the children.

. Mass Copy: This adds a Mass Copy functoid that copies all subcontent of the record
in the source to the record in the destination.

. Cancel: This cancels what you are doing.

This functionality is also new in BizTalk 2010. In earlier versions, there was a property on
the map you could set before you dragged a link between two records.

CHAPTER 3 Maps

99The Mapper
3

Functoids and links can be moved between grid pages in two ways:

. After selecting one or more functoids/links, right-click them, and choose Move to
Page or press Ctrl+M Ctrl+M. Doing so opens a small screen where you can
choose between the existing pages or choose to create a new page to place the
selected items on.

. Drag the selected items to the page tab of the page where you want them to appear.
The page appears, and then you can place the items where you want them to be.

If you need a copy of a functoid, retaining all the properties of the functoid, you can also
do this. Select a number of items and use the normal Windows shortcuts to copy, cut, and
paste them. You can also right-click and choose Copy, Cut, or Paste. You can copy across
grid pages, maps, and even maps in different instances of Visual Studio 2010. Some limita-
tions apply to this, however, such as when links are copied and when not. For a full
description, see refer to http://msdn.microsoft.com/en-us/library/ff629736(BTS.70).aspx.

For large schemas, it can be hard to keep track of which nodes are used in the map and in
what context. To assist you, the Mapper has a feature called relevance tree view. This is a
feature you can enable and disable on the source and destination schemas independently,
and the feature is enabled or disabled using the highlighted button in Figure 3.7. As you
can see, the relevance tree view is enabled for the destination schema and not for the
source schema. The destination schema has some nodes coalesced to improve readability.
This means that all the nodes in the Header record that are placed above the OrderDate
node, which is the only node currently relevant for the map, are coalesced into one icon,
showing that something is here but it is not relevant. You can click the icon to unfold the
contents if you want. Records containing no nodes that are relevant for the map are not
coalesced, but collapsed.

If you have marked a field in the source schema and need to find the field in the destina-
tion schema to map it into, you can get some help from the Mapper, as well. This feature

FIGURE 3.7 Relevance view.

http://msdn.microsoft.com/en-us/library/ff629736(BTS.70).aspx

100 CHAPTER 3 Maps

is called Indicate Matches. If you select a node in the source schema, you can either press
Shift+Space to enable it, or you can right-click it and choose Indicate Matches. Figure 3.8
shows how the screen looks after enabling the Indicate Matches feature on the OrderDate
node in the source schema. As you can see, the Mapper adds some potential links to the
map, and the one the Mapper thinks is the most likely is highlighted and thus the
currently chosen one. If none of the suggestions match, you can press the Escape key or
click with the mouse anywhere that is not one of the suggested links. If one of the links
the Mapper suggests is the one you want, you have two ways of actually adding the link
to the map:

. Use the mouse to click the link you want added to the map. Note that you cannot
click the node in the destination that the link points to; it has to be the link itself.

. Use the up- and down-arrow keys to switch between the suggested links, and press
the Enter key when the right link is chosen and highlighted.

If the feature guesses right the first time, you can add the link simply by pressing
Shift+Space and then Enter. And you did not have to find the right place in the destina-
tion schema yourself.

Unfortunately, functoids are not part of this feature, so if you want the source node to be
mapped into a functoid, this feature provides no help. You will have to do that yourself.

After a link has been dragged, it shows up in the Mapper as one of three types of links:

. A solid line: This is used for links where both ends of the link are visible in the
current view of the Mapper, meaning that none of the two ends are scrolled out of
the view.

. A dashed line that is a little grayed out: This is used for links where only one of
the ends is visible in the current Mapper view and the other end is scrolled out of
view.

FIGURE 3.8 Illustration of the Indicate Matches feature.

101The Mapper
3

. A dotted line that is grayed out: This is used for links where both ends are
scrolled out of view but the link still goes through the current view of grid.

Figure 3.9 shows the different types of links.

Because there may be a lot of links that are of the third type, where none of the ends of
the link is visible, you might want to choose to not have these links shown at all. To do
this, you can use a feature on the toolbar called Show All/Relevant Links. This is enabled
using a button, as shown in Figure 3.10.

As you can see from Figure 3.10, one of links that was also present in Figure 3.9 is no
longer shown in the Mapper. The link still exists and is valid. If one or both of the ends of
the link come into view, the link reappears on the grid.

When a map gets filled up with functoids and links, it can get hard to keep track of which
links and functoids are connected. To help you with this, the Mapper automatically high-
lights relevant links and functoids for you, if you select a link, a functoid, or a node in
either the source or destination schema. For instance, take a look at Figure 3.11.

FIGURE 3.9 The three types of links in a map.

FIGURE 3.10 Feature to show all or relevant links.

102 CHAPTER 3 Maps

Suppose you are troubleshooting to make sure the OrderDate in the destination schema is
mapped correctly. If you click the OrderDate in the destination schema, you get the screen
seen in Figure 3.12 instead. As you can see, the functoids and links that are relevant for
mapping data into the OrderDate element have been highlighted and the rest of the links
and functoids are now opaque, allowing you to focus on what is important. Had you
clicked the link between the Equal functoid and the Value Mapping functoid, a subset of
the links highlighted in Figure 3.12 would have been highlighted. If there are relevant
links or functoids on another map page than the one currently shown, this is indicated by
a small blue circle with an exclamation mark inside it to the left of the name of the page.
Note also that the links have arrows on them, indicating the flow of data. This is also new
in BizTalk 2010. In earlier versions of the Mapper, you could not have a functoid that gets
its input from a functoid that was placed to the right of the first functoid on the grid.
Now you can place your functoids where you want on the grid and the arrow will tell you
which way the link goes. You cannot drag a link from a functoid to a functoid placed to
the left of the first functoid, but after the link has been established, you can move the
functoids around as you please.

FIGURE 3.11 A map with lots of functoids.

FIGURE 3.12 The links and functoids relevant for mapping into the OrderDate element.

103The Mapper
3

Another feature is the Auto Scrolling feature. This feature, which is enabled and disabled
using the button shown in Figure 3.13, allows the Mapper grid to autoscroll to find rele-
vant functoids given something you have selected. If all the functoids had been out of
sight in the Mapper grid and you then clicked the OrderDate in the destination schema
with this feature enabled, the grid would autoscroll to the view shown in Figure 3.13. The
Auto Scroll feature also applies to other parts of the map than clicking a node in a
schema. If you click a functoid, for instance, the Mapper highlights relevant links and
functoids that are connected to the selected functoid and uses the Auto Scroll feature to
bring them into view, if enabled.

Sometimes you want insert a default value into a field in the destination schema. You can
do this by clicking the field in question and in the properties for the field finding the
property called Value and setting a value here. Other than setting a value, you can use the
drop-down to select the <empty> option. This lets the Mapper create an empty field in the
output. As explained in Chapter 4, it can be useful to have a way of setting values in
messages outside a transformation. Also, empty elements are needed for property demo-
tion, as explained in Chapter2, “Schemas.”

If you choose to set a default value in a field in the destination schema in the map, you
can no longer map any values to this node in the destination. If you open the Extensible
Markup Language Schema Definition (XSD) and set a default value on the field in the
schema itself instead of setting it in the Mapper, the Mapper uses this value, but you are
allowed to map a value to the field, which overwrites the value set in the XSD.
Unfortunately, there is no built-in support for using the default value from the XSD if the
field that is mapped to a node is optional and not present in the source at runtime. You
have to do this with an If-Then-Else sort of structure, as discussed later in this chapter.

If you choose to set a default value in a field in the source schema, this value is used only
when generating instances for testing the map from within Visual Studio 2010. The value
is not used at runtime when the map is deployed.

FIGURE 3.13 Example of using the Auto Scroll feature.

104 CHAPTER 3 Maps

If you click the map grid, you can see the properties of the map in the Properties window.
If this window is not present, you can right-click the grid and choose Properties or just
click the grid and press F4. Table 3.1 describes the available properties for the map.

TABLE 3.1 Properties of the Map

Property Name Description

General

Ignore Namespaces for
Links

Determines whether the map should be saved with information about
the namespace of the nodes that are being linked.

Script Type Precedence If a functoid that is used in the map can be both a referenced functoid
or have (multiple) inline implementations, this property determines the
order in which the implementations are to be preferred.

Source Schema Read-only property that specifies the source schema to be used.

Target Schema Read-only property that specifies the destination schema to be used.

Compiler

Custom Extension XML This property is used to point out a custom extension XML file that is
used when providing your own XSLT instead of using the Mapper. This
is explained more fully in the section “Custom XSLT.”

Custom XSL Path This property is used to point out a custom XSLT file that is used
when providing your own XSLT instead of using the Mapper. This is
explained more fully in the section “Custom XSLT.”

Custom Header

CDATA section elements This property contains a whitespace-delimited list of element names
that will have their values inside a CDATA construction to allow for
otherwise-reserved characters. The whitespace can be a space or
some other delimiter, but not, for instance, a comma.

Copy Processing
Instructions (PIs)

Boolean value describing whether the map should copy any processing
instructions from the source schema to the destination schema.
Mostly used when transforming InfoPath documents.

Doctype public Provides the value that will be written to the doctype-public attribute of
the xsl:output element of the generated XSLT.

Doctype system Provides the value that will be written to the doctype-system attribute
of the xsl:output element of the generated XSLT.

Indent Possible values are yes and no. If set to yes, the output of the map
contains indentation to make the output more human-readable.
Usually not needed, because systems often read the files and XML
viewers show the XML nicely anyway.

105The Mapper
3

TIP

If you have a schema that has two elements on the same level of either the source or
destination tree but with different namespaces, you need to set the Ignore
Namespaces for Links to False because the Mapper cannot determine which of the
nodes to use for the link when the map is opened up otherwise. The reason for the
property to exist and not just default to “false” is that when the property is true, this
allows you to change the namespace of your schemas without having to relink anything
in the map. Also the .BTM file is easier to read when opened in a text editor like
Notepad and it takes up less space.

NOTE

As explained later in this chapter, it is not possible to build a thread-safe referenced
cumulative functoid. This means that if you are using any cumulative functoids, you
should take care to have the Inline C# option or another appropriate inline option
above the External Assembly option in the Script Type Precedence property.

TABLE 3.1 Properties of the Map

Property Name Description

Media-Type Used to specify the value of the media-type attribute of the
xsl:output element in the generated XSLT. This determines the
MIME type of the generated XML.

Method Possible values are xml, html and text. The value specified goes into
the method attribute of the xsl:output element in the generated
XSLT.

Omit Xml Declaration Can be true (default) or false. Is used as the value for the omit-xml-
declaration attribute on the xsl:output element in the generated
XSLT. Determines whether to omit the XML declaration at the top of
the generated XML.

Standalone Possible values are yes and no (default). Determines the value that is
used in the standalone attribute of the xsl:output element in the
generated XSLT.

Version Specifies the value of the version attribute on the generated XML
declaration, if any.

XSLT Encoding This property contains a drop-down list of encodings. The chosen
encoding is used to populate the encoding attribute of the
xsl:output element. If you need another value than what is avail-
able, you can just enter it. The Mapper does not check the value,
however, so check to make sure it is correct.

106 CHAPTER 3 Maps

NOTE

The CDATA Section Elements property is mapped directly to the cdata-section-
elements attribute that can be present on the xsl:output element in XSLT and the
use of this property can therefore be read about in an XSLT book. In short, any element
with a name that appears in this list has its value wrapped inside a CDATA tag regard-
less of what level the element is on.

The only exceptions to this are elements with the same name, but in different name-
spaces, like elements that are of a type that comes from an imported schema. This
also means that if you want those to have their content wrapped in a CDATA tag, you
need to specify them as ns0:elementname in the CDATA Section Elements property.
You can get he namespace prefix from the schema import dialog box where you
imported the schema with the type you are referencing.

If you click a link in the map grid, you can see and change some properties of the link. If
the Properties window is not present, you can right-click the link and choose Properties
or click the link and press F4. Table 3.2 describes the properties for links.

TABLE 3.2 Properties for Links

Property
Name

Description

General

Label In this property, you can specify a label that is used for this link.

Link Source Read-only property that specifies the source of the link.

Link Target Read-only property that specifies the target of the link.

Compiler

Source
Links

This property has three possible values: If you use the value Copy Text Value, the
link copies the value from the source of the link to the destination of the link. If
you choose Copy Name, the name of the source field is copied rather than its
value. If you choose Copy Text and Sub Content Value, the source node and all its
inner content is copied. This is like the InnerText property of a .NET
System.Xml.XmlNode.

Target Links This property determines the behavior of the link with regard to creating output
nodes. Possible value are Flatten Links, Match Links Top Down, and Match Links
Bottom Up. The value in this property allows the compiler to know how to match
the source structure to the destination structure so that loops in the generated
XSLT can be generated at the correct levels. Usually the default value is fine, but
at times when you are mapping form recurring structures that are on different
levels in the source and destination schemas, this can be useful.

107The Mapper
3

Clicking the map file in Solution Explorer reveals some properties that you can set on the
Visual Studio 2010 project item. Table 3.3 describes these properties.

TABLE 3.3 Properties for the Visual Studio 2010 Project Item

Property Name Description

Advanced

Build Action This property determines what the compiler does with the .BTM file when
building the project. A value of None instructs the compiler to ignore the
file. A value of BtsCompile instructs the compiler to compile the map and
include it in the assembly.

Fully Qualified
Name

This is a read-only property displaying the fully qualified .NET name. It is a
concatenation of the .NET namespace, a period, and the .NET type name.

Namespace The .NET namespace this map belongs to. This has nothing to do with any
namespaces used in schemas. As with normal code, the namespace is
usually the same name as the project the file belongs to. Remember to
change this if you move the .BTM file among projects.

Type Name The .NET type name of the map. This corresponds to the class name of a
class in a project. The type name is usually the same as the filename of
the .BTM file.

Misc

File Name The filename of the map file. You can change this instead of renaming the
file in Solution Explorer if you are so inclined.

Full Path Read-only property containing the full path to the map file.

Test Map

TestMap Input Determines how Visual Studio 2010 can find a file to use as input when
testing the map. A value of XML means that the file given in TestMap Input
Instance is an XML file. A value of Native means that the file given in
TestMap Input Instance is in the native format of the schema, which is in
this case usually a flat file or an EDI schema, but it can also be XML. The
last option is a value of Generated Instance, which lets Visual Studio 2010
generate an XML instance to be used for the test.

TestMap Input
Instance

The full path to the file to be used for testing the map. This is used only if
the TestMap Input property does not have a value of Generate Instance.

TestMap Output Determines the format of the output from testing the map. Can be XML,
which outputs the XML the map has produced, or Native, which translates
the XML generated by the map into the destination format like EDI, flat file,
or something else.

108 CHAPTER 3 Maps

Functoids
BizTalk provides functoids to provide a way of performing some processing on the source
values before it is copied to the destination. This processing can be anything from
converting a string to uppercase over mathematical trigonometric functions to doing a
database lookup.

The functoids are divided into categories, and the functoids in each category are described
in the following sections. This chapter describes all the functoids. In the section
“Advanced Maps,” there are examples of advanced usage of the functoids.

After dragging a functoid to the grid, you can click it to see the properties of the functoid
in the Properties window. If the Properties window is not present, you can right-click the
functoid and choose Properties, or you can click the functoid and press F4. The Properties
window contains the properties listed in Table 3.4.

TABLE 3.3 Properties for the Visual Studio 2010 Project Item

Property Name Description

TestMap Output
Instance

The full path of where to place the output from testing the map. If not spec-
ified, the output is generated in your temp folder, and the output window
provides a link to the specific file when testing the map.

Validate TestMap
Input

Boolean value that determines whether the input for the map should be
validated against the source schema before performing the map. If you
know the instance to be valid, there is no need for validation, because this
will only take time. On the other hand, making sure every time you test the
map that the input is valid will confirm that you haven’t accidentally
changed the instance or the schema.

Validate TestMap
Output

Boolean value that determines whether the output of the map should be
validated against the destination schema. When developing your map, you
will usually want to turn this off, to view the result of the partially complete
map you have built. Then turn it on when you want to actually test the map
in its entirety.

TABLE 3.4 Functoid Properties

Property Name Description

(Name) The name of the functoid.

Comments A text you can alter to contain some comments about this functoid.

Help A textual description of the functoid that describes what the purpose of
the functoid is.

109Functoids
3

TIP

Use labels on links extensively. When a link is an input to a functoid and you look at
the functoid parameters, you can see something like Figure 3.14. If you label your
links, however, the text in the label is shown rather than the default value, providing a
much nicer interface to the parameter, enabling you to easily determine which parame-
ter should come before which and so on. Figure 3.15 is the same as Figure 3.14, but
with Comment from Source as the label on the link.

The screen for configuring the functoid parameters can be resized if necessary. Notice that
when you drag a functoid to the grid, it has a yellow exclamation mark on it. This indi-
cates, that the functoid is not fully configured, which at compile time would give you a
warning or an error depending on the severity of the missing configuration. When you
hover over a functoid that has the yellow exclamation mark on it, you get a tooltip
describing what needs to be changed. Most of the time, you have missing input parame-
ters or haven’t connected the output of the functoid to anything.

TABLE 3.4 Functoid Properties

Property Name Description

Input Parameters Contains the text Configure Functoid Inputs. If you click in it, you get a
button to the right of it with the ellipsis. If you click the ellipsis, you get to
a window where you can add constant parameters to the functoid and
change the order of the parameters. It usually also has text at the bottom
that describes the parameters and what they are used for. After parame-
ters are defined for the functoid, they are listed in this property rather
than the text Configure Functoid Inputs.

Label This is the only property you can edit. Here you can enter a friendly name
for the functoid in question. This has no functional meaning, but it will
perhaps ease the workload for a new developer taking over your map, and
it can be used in utilities that do automatic documentation of your solu-
tions.

Maximum Input
Parameters

Describes what the maximum number of input parameters for this func-
toid is.

Minimum Input
Parameters

Describes what the minimum number of input parameters for this
functoid is.

Script If the functoid is a Scripting functoid, which is explained later, you can
click in this property and then click the ellipsis that appears to configure
and edit the script the Scripting functoid should run when called.

Table Looping Grid If the functoid is a Table Looping functoid, which is explained later, you
can click this property and then the ellipsis that appears to configure the
table looping grid.

110 CHAPTER 3 Maps

FIGURE 3.14 Parameters for a functoid without labels on the links.

FIGURE 3.15 Parameters for a functoid, using labels on links.

111Functoids
3

String Functoids

The string functoids perform string manipulation on either an incoming value or a set of
values. They all output a string, which can be used as the input for another functoid or
sent directly to the destination schema. Table 3.5 lists the string functoids, their usage,
and parameters.

TABLE 3.5 The String Functoids

Name Description

Lowercase This functoid takes in one parameter and returns the same string in lowercase.

Size Returns an integer that equals the length of the input string. If the input string
is null, a value of 0 is returned.

String
Concatenate

This functoid takes in at least 1 string and a maximum of 100 strings. The
strings are concatenated in the order they have been added as input to the
functoid. The output is the concatenated string. Note this functoid cannot
concatenate values in a reoccurring element in the source. You need a cumula-
tive functoid for this, which is explained later.

String Extract This functoid takes in three parameters and returns a substring of the first
input. The second input determines the start position of the substring to be
extracted and the third parameter determines the end position. Note that
although the C# String.Substring method is actually used by the functoid, it
wants the end position of the string to extract and not the length of the
substring to extract. Also, contrary to the C# string methods, these parameters
are 1 based and not 0 based, meaning that the first character of the input is a
position 1.

String Find This functoid takes in two parameters and returns the first found instance of
the second parameter inside the first parameter. If the first parameter is
BizTalk and the second parameter is Talk, the functoid returns the value 4.
Note that this is also 1 based and not 0 based as is normally the case in C#.

String Left This functoid takes in two parameters. The first is a string, and the second
must be an int. The functoid returns the number of characters specified in the
second parameter from the left of the string. If the second parameter is greater
than the length of the string, the input string is returned.

String Left Trim This functoid takes in a string and trims it from the left, effectively removing all
characters from the beginning of the string until it reaches a nonwhitespace
character. The characters that are defined as whitespace are the ones defined
in C# as whitespace. These include spaces, carriage returns, line feeds, and
others. Given null as input, the functoid returns the empty string.

String Right This functoid does the same as the String Left functoid, only from the right
rather than the left.

112 CHAPTER 3 Maps

Mathematical Functoids

The mathematical functoids perform mathematical operations on their input and return
an output that can be used as the input for another functoid or sent directly to the desti-
nation schema. Because the input parameters to a mathematical functoid are strings and a
mathematical functoid returns a string, there are some methods used by the functoids to
convert a string into a number to perform mathematical functions on the inputs. As a
general rule, an input to a mathematical functoid that is not a number is ignored and if
the parameter cannot be ignored, like either parameter in a division, an empty string is
returned. Table 3.6 lists the mathematical functoids, their usage, and parameters.

TABLE 3.5 The String Functoids

Name Description

String Right
Trim

This functoid takes in a string and trims it from the right. The functionality is
the same as the String Trim Left functoid, only from the right rather than the
left.

Uppercase This functoid takes in one parameter and returns the same string in upper-
case.

TABLE 3.6 The Mathematical Functoids

Name Description

Absolute
Value

This functoid takes in one value and it returns the absolute value of the value.
For a positive number, the absolute value is the same number. For a negative
number, the absolute value is the number multiplied by –1.

Addition This functoid takes in a minimum of 2 parameters and a maximum of 100 para-
meters. It sums the parameters and returns the result.

Division This functoid takes in two parameters and returns the first parameter divided by
the second parameter. If either parameter is not a number or if the second para-
meter is 0, the empty string is returned.

Integer This functoid takes in one parameter and returns the integer part of the value,
effectively removing the decimal point and all decimals. This differs from the
Round functoid in that it will never round up (only down).

Maximum
Value

This functoid takes in a minimum of 2 parameters and a maximum of 100 para-
meters. It returns the largest number found among the parameters.

Minimum
Value

This functoid takes in a minimum of 2 parameters and a maximum of 100 para-
meters. It returns the smallest number found among the parameters.

Modulo This functoid takes in two parameters. It returns the remainder from performing a
division of the first parameter by the second parameter.

Multiplication This functoid takes in a minimum of 2 parameters and a maximum of 100 para-
meters. It multiplies all the parameters and returns the result.

113Functoids
3

All the functoids return an empty value if a specified parameter is not a number. Optional
parameters can be omitted, but if they are used, they must also be numbers or an empty
string is returned.

Logical Functoids

The logical functoids perform logical operations on their input and returns a Boolean
value that can be used later on as the input for another functoid or to instruct the
compiler how to construct the generated XSLT. How the logical functoids aid the compiler
in constructing the generated XSLT is discussed in the “Advanced Maps” section. Because
the logical functoids are used for either input to other functoids or to instruct the
compiler, you cannot get the output of a logical functoid into your destination schema. If
you want to do so, you can add a C# scripting functoid (described later) with the code as
shown in Listing 3.1 and place that in between the logical functoid and the destination
node. Table 3.7 lists the logical functoids, their usage and parameters.

TABLE 3.6 The Mathematical Functoids

Name Description

Round This functoid takes one required parameter and one optional parameter. The first
parameter is the value to round, and the second is the number of decimals to
which the first parameter should be rounded off. If the second parameter is not
present, the first parameter is rounded off to a whole number. Standard rounding
rules apply.

Square Root This functoid takes in one parameter and returns the square root of it.

Subtraction This functoid takes in a minimum of 2 parameters and a maximum of 100 para-
meters. It subtracts all parameters that are not the first parameter from the first
parameter and returns the result.

TABLE 3.7 The Logical Functoids

Name Description

Equal This functoid takes in two parameters and returns true if the parameters
are equal to each other. If they are not equal, a value of false is returned.

Greater Than This functoid takes in two parameters. It returns true if the first parameter
is greater than the second parameter. Otherwise, it returns false.

Greater Than or
Equal To

This functoid takes in two parameters. It returns true if the first parameter
is greater than or equal to the second parameter. Otherwise, it returns
false.

IsNil This functoid takes in one parameter, which must be a node in the source
schema and cannot be another functoid. The functoid returns true if the
node in the source schema is set to nil, like this: <myElement
xsi:nil=”true” />

114 CHAPTER 3 Maps

LISTING 3.1 C# Code for Getting Output of a Logical Functoid into a Destination Node

public string LogicalToString(string logical)

{

return logical;

}

TABLE 3.7 The Logical Functoids

Name Description

Less Than This functoid takes in two parameters. It returns true if the first parameter
is less than the second parameter. Otherwise, it returns false.

Less Than or
Equal To

This functoid takes in two parameters. It returns true if the first parameter
is less than or equal to the second parameter. Otherwise, it returns false.

Logical AND This functoid takes in a minimum of 2 parameters and a maximum of 100
parameters. It returns the logical AND of all the inputs, meaning that if just
one of the inputs is false, a value of false is returned. Otherwise, a value of
true is returned.

Logical Date This functoid takes in one parameter and returns a Boolean value depend-
ing on whether the input could be parsed as a .NET DateTime.

Logical Existence This functoid takes in one parameter. If the parameter is another functoid,
the input must be a Boolean, because the Logical Existence functoid
doesn’t do any conversion of the input into Boolean. The functoid just
passes the value it receives on. If the input is a node in the source
schema, however, the functoid returns true if the node is present in the
source schema and false otherwise.

Logical NOT This functoid takes in a Boolean value and returns the negation of it,
meaning true becomes false and vice versa.

Logical Numeric This functoid takes in one parameter and returns a Boolean value depend-
ing on whether the input could be parsed as a .NET double.

Logical OR This functoid takes in a minimum of 2 parameters and a maximum of 100
parameters. It returns the logical OR of all the inputs, meaning that if just
one of the inputs is true, a value of true is returned. Otherwise, a value of
false is returned.

Logical String This functoid takes in one parameter and returns true if the parameter is
neither null nor the empty string. Otherwise, it returns false.

Not Equal This functoid takes in two parameters and returns true if the parameters
are not equal to each other. If the two values are equal, a value of false is
returned.

115Functoids
3

All the functoids that need to take a Boolean as input need to parse the input to make sure
it is in fact a Boolean and not some random string. The algorithm for this is as follows:

1. The input is compared to the string true in a non-case-sensitive manner. If this
succeeds, a value of true is returned, and processing stops.

2. The input is compared to the string false in a non-case-sensitive manner. If this
succeeds, a value of false is returned, and processing stops.

3. The string is trimmed to remove leading and trailing whitespace.

4. The input is compared to the string true in a non-case-sensitive manner. If this
succeeds, a value of true is returned, and processing stops.

5. The input is compared to the string “false” in a non-case-sensitive manner. If this
succeeds, a value of false is returned, and processing stops.

6. The input is converted into a number. If this fails, a value of false is returned.

7. The number is greater than 0, a value of true is returned. Otherwise, a value of
false is returned.

This algorithm is used by the Logical OR, Logical NOT, and Logical AND functoids to vali-
date the input.

The Not Equal, Equal, Less Than or Equal To, Less Than, Greater Than or Equal To, and
Greater Than functoids can all compare numbers to numbers and strings to strings.

Date/Time Functoids

The date/time functoids are a collection of functoids that deal with dates/times. Their
output can be used as the input for another functoid or sent directly to the destination
schema. Table 3.8 lists the date/time functoids, their usage, and parameters.

TABLE 3.8 The Date/Time Functoids

Name Description

Add Days This functoid takes two parameters and returns a new date as a result of adding
the number of days specified in the second parameter to the date specified in the
first parameter.

Date This functoid takes no parameters and returns the current date.

Date and
Time

This functoid takes no parameters and returns the current date and time.

Time This functoid takes no parameters and returns the current time.

116 CHAPTER 3 Maps

Conversion Functoids

The conversion functoids perform conversions on their input and return output that can
be used as the input for another functoid or sent directly to the destination schema. Table
3.9 lists the conversion functoids, their usage, and parameters.

Scientific Functoids

The scientific functoids perform scientific mathematical operations on their input and
return an output that can be used as the input for another functoid or sent directly to the
destination schema. Table 3.10 lists the scientific functoids, their usage, and parameters.

TABLE 3.9 The Conversion Functoids

Name Description

ASCII to
Character

This functoid takes in one parameter. If the parameter is a number less than 0
or greater than 127, an empty string is returned. Otherwise, the number is
converted into the character that has this number in the ASCII table. 65
becomes A, for instance.

Character to
ASCII

This functoid takes in one parameter. If the parameter is null or the empty
string, an empty string is returned. If not, the first character of the string is
converted into the ASCII representation. A becomes 65, for instance.

Hexadecimal This functoid takes in one parameter. If the parameter is not a number, the
empty string is returned. If the parameter is a number, the integer part of the
number is converted to a hexadecimal value. The input is assumed to be a
decimal value.

Octal This functoid takes in one parameter. If the parameter is not a number, the
empty string is returned. If the parameter is a number, the integer part of the
number is converted to an octal value. The input is assumed to be a decimal
value.

TABLE 3.10 The Scientific Functoids

Name Description

10^n This functoid takes in one parameter. The functoid returns 10 lifted to the
power of the parameter. For instance, a value of 2 results in 100, and a
value of 5 results in 100000.

Arc Tangent This functoid takes in one parameter. The functoid returns the result of
performing the arc tangent function on the parameter.

117Functoids
3

For all the functoids you get an empty string as the result in case the input parameters
could not be parsed as a number.

All trigonometric functoids like Sine, Cosine, Tangent, and Arc Tangent assume the input
is in radians. This means that if you want to use any of these functoids on a value of 180°
you need to convert the 180° into π first.

Cumulative Functoids

The cumulative functoids perform operations on reoccurring nodes in the source schema
and output one value based on all the occurrences of the input node. The output can be
used as the input for another functoid or sent directly to the destination schema. Table
3.11 lists the cumulative functoids, their usage, and parameters.

TABLE 3.10 The Scientific Functoids

Name Description

Base-Specified
Logarithm

This functoid takes in two parameters. If either parameters is less than
or equal to 0, an empty string is returned. Also, if the second parameter
is 1, an empty string is returned. The functoid returns the base-specified
logarithm function using the second parameter as base and performing
the function on the first parameter. For instance, parameters 100 and 10
result in the value 2, and parameters 64 and 2 result in the value 6.

Common Logarithm This functoid takes in one parameter. If the parameter is less than or
equal to 0, an empty string is returned. Otherwise, the functoid returns
the 10-based logarithm of the parameter. For instance, a value of 100
results in 2, and a value of 10000 results in 4.

Cosine This functoid takes in one parameter. If the parameter is a number, the
cosine function is called with the parameter as input, and the result of
that is returned.

Natural Exponential
Function

This functoid takes in one parameter. The functoid returns ℮ (The
base for the natural logarithm) lifted to the power of the parameter. For
instance, a value of 2 results in 7.389..., and a value of 3 results in
20.085....

Natural Logarithm This functoid takes in one parameter. The functoid returns the natural
logarithm of the parameter. The natural logarithm is the logarithm that is
based on ℮.

Sine This functoid takes in one parameter. If the parameter is a number, the
sine function is called with the parameter as input, and the result of that
is returned.

Tangent This functoid takes in one parameter. The functoid returns the result of
performing the tangens function on the input.

X^Y This functoid takes in two parameters. The functoid returns the first para-
meter raised to the power of the second parameter.

118 CHAPTER 3 Maps

All the cumulative functoids take in two parameters. The first parameter is the value to be
accumulated, and the second is a scoping parameter. The scoping parameter is used to
generate the XSLT. If no value is passed on, a default value of 1000 is used in the XSLT. If a
value is actually passed into the parameter, this is used as an indication of what level of
scope to do the accumulation. A value of 0 means that all occurrences of the first parame-
ter are accumulated and the functoid will therefore have only one output. A value of 1
means that the values are accumulated for each parent of the first parameter and an
output is therefore generated for each parent. A value of 2 means that the values are accu-
mulated for each grandparent of the first parameter and so on. Note that it is not the
functoid that contains this logic. The generated XSLT will do all this for you, making sure
that the functoid is called for each level of scoping needed.

NOTE

As explained later in this chapter, it is not possible to build a thread-safe referenced
cumulative functoid. Therefore, if you are using any of the built-in cumulative functoids,
take care to have the Inline C# option or another appropriate inline option above the
External Assembly option in the Script Type Precedence property of the map.

Database Functoids

The database functoids can be split into two categories; Those that do database lookup
and those that do cross referencing.

Database
The database functoids are used for looking up values in an ADO.NET-compliant database
that can be used as the input for another functoid or sent directly to the destination
schema. Table 3.12 lists the database functoids, their usage, and parameters.

TABLE 3.11 The Cumulative Functoids

Name Description

Cumulative
Average

This functoid takes in all the occurrences of the input and outputs the
average of the input values.

Cumulative
Concatenate

This functoid concatenates the occurrences of the input into one string,
which is then output.

Cumulative
Maximum

This functoid takes in all the occurrences of the input and outputs the
largest number found among the input values.

Cumulative
Minimum

This functoid takes in all the occurrences of the input and outputs the
smallest number found among the input values.

Cumulative Sum This functoid takes in all the occurrences of the input and outputs the sum
of the input values.

119Functoids
3

NOTE

Hard-coding the connection string inside your functoid is probably not what you want to
do because it requires you to change it manually and recompile for each environment
your map is deployed to. Rather, you should keep the connection string in some config-
uration storage and retrieve it at runtime. Options for this include Single Sign-On (SSO),
a configuration file, a database, a .NET assembly, and others.

The preceding options are generic for all configuration options you might use through-
out your solution, but one last option that is specific for the database lookup functoid
exists. You can enter File Name=<PathToUDLFile> as the connection string. This
requires, of course, that the file can be read at runtime by the host instance that is
running. Parsing a UDL file is slow, so the options listed previously are recommended
considering performance.

Cross Referencing
The cross-referencing functoids are used for looking up values in a database and using the
values retrieved as the input for another functoid or sending it directly to the destination
schema. This is used to map values that are specific to one system to the corresponding
values from another system. For instance, you can use this setup to find your enterprise

TABLE 3.12 The Database Functoids

Name Description

Database
Lookup

This functoid takes in four parameters, which are all required. The first parame-
ter (p1) is a lookup value, which could be some ID from the source message.
The second parameter is a connection string that instructs the runtime where
to do the lookup. The third parameter (p3) is the name of the table to do the
lookup. The fourth parameter (p4) is the name of the column that is used to
find the lookup value. BizTalk creates a query like this: SELECT * FROM p3
WHERE p4 = p1; and connects to the database, and thus selects all values
from the row in the table specified that has the right lookup value in the column
specified in the fourth parameter. This requires the column in the fourth para-
meter to be a unique key in the table. If it is not a key, the first row is returned.
This functoid cannot be connected to an output node, because it outputs an
entire row. Use the Value Extractor functoid, which is explained later, to extract
a column value from this row.

Error Return This functoid takes in one parameter, which is a Database Lookup functoid. The
functoid outputs any error message that has arrived from performing the query
against the database. If no errors occur, the functoid has an empty string as
output.

Value Extractor This functoid takes two parameters, which are both required. The first is a
Database Lookup functoid. The second is the name of the column from the
output row from the Database Lookup to extract. This effectively pulls out one
specific value from a named column in the result set of the database query,
and this value can then be output to the destination schema.

120 CHAPTER 3 Maps

resource planning (ERP) system item number based on the item number your customer has
supplied you with in the order you have received.

The cross-referencing functoids are restricted to and make use of the 9 xref_* tables that
are present in the BizTalkMgmtDb database. Importing data into these tables is done via
the BizTalk Server Cross Reference Import tool (btsxrefimport.exe), which you can find in
the BizTalks installation folder. The utility takes in a parameter that specifies the filename
of an XML file that basically contains references to eight other XML files, which contain
the data that must be imported into the xref_* tables. When data is in the tables, the
cross-referencing functoids can be used to look up values in the tables. For detailed infor-
mation about the syntax of these XML files and how to import the data into the database
tables, refer to http://msdn.microsoft.com/en-us/library/aa578674(BTS.70).aspx. Table 3.13
lists the cross-referencing functoids and their usage.

You can see an example of the use of the cross-referencing functoids in the “Advanced
Maps” section.

Advanced Functoids

The advanced functoids perform advanced operations on their input. Some of them return
an output that can be used as the input for another functoid or sent directly to the desti-
nation schema. The use of others assists the compiler in creating the necessary XSLT. Table
3.14 lists the advanced functoids, their usage, and parameters.

TABLE 3.13 The Cross-Referencing Functoids

Name Description

Format Message Returns a formatted and localized string using argument substitution and,
potentially, ID and value cross referencing

Get Application ID Retrieves an identifier for an application object

Get Application
Value

Retrieves an application value

Get Common ID Retrieves an identifier for a common object

Get Common
Value

Retrieves a common value

Remove
Application ID

Removes the identifier for an application object

Set Common ID Sets and returns an identifier for a common object

http://msdn.microsoft.com/en-us/library/aa578674(BTS.70).aspx

121Functoids
3

TABLE 3.14 The Advanced Functoids

Name Description

Assert This functoid takes in three parameters. The first must be a Boolean
value. If the map is compiled in Debug mode, an exception is thrown with
the text from the second parameter if the first parameter is false. The
third parameter is used as output. If the map is compiled in Release
mode, the third parameter is always returned. This is useful for debugging
your map, and just as with assertions in normal C# code, it allows you to
make sure some conditions are always true.

Index This functoid takes in a minimum of 1 parameter and a maximum of 100
parameters. The first parameter must be a node from the source schema.
and the rest represent indexes in each level from the node that is the first
parameter and back to the root node. The functoid returns the value in the
node given by the first parameter and indexed by the values from the rest
of the parameters. An example is provided in the “Advanced Maps”
section.

Iteration This functoid takes in one parameter, which must be a node in the source
schema. The functoid returns the iteration of the node, meaning that it
returns 1 for the first occurrence of the input node, 2 for the second occur-
rence, and so on.

Looping This functoid takes in a minimum of 2 parameters and a maximum of 100
parameters. The input parameters must be nodes in the source schema
and cannot be other functoids. The functoid has no functional purpose and
therefore no output as such. You must connect the looping functoid to a
record in the destination schema, and the map then generates one output
record for each of the input records that correspond to the input parame-
ters. An example of the Looping functoid is provided in the section
“Advanced Maps” section.

Mass Copy This functoid takes in one parameter, which must be a node from the
source schema. The functoid must be connected to a node in the destina-
tion schema, and it copies recursively all the nodes below the source node
to the destination node.

Nil Value This functoid takes in one optional parameter. If specified, the parameter
must be a Boolean. If not specified, a value of true is assumed. The func-
toid is connected to a node in the destination structure, and if a value of
true is specified in the first parameter, the output node is created with a
value of nil.

Record Count This functoid takes in one parameter, which is a node from the source
schema. The functoid returns the number of times the node appears in
the input regardless of scope.

122 CHAPTER 3 Maps

Third-Party Functoids

You can download several third-party functoids and use them in your solutions. Use your
favorite search engine to locate them.

TABLE 3.14 The Advanced Functoids

Name Description

Scripting This functoid is used to execute some script. The functoid is configurable
to either call a specific method in a .NET class in an assembly or to
configure a script that is either Inline C#, Inline JScript .NET, Inline Visual
Basic .NET, Inline XSLT, or Inline XSLT Call Template. The XSLT scripting
options can be used to control creation of destination structure, because
the XSLT has access to the entire source structure and the XSLT is
inserted into the generated XSLT. The other script types can be used to
perform operations on input values and they must output one value. The
Scripting functoid is discussed in more detail in the “Advanced Maps”
section. If you use a .NET language in your inline script, you have access
to the .NET namespaces found at http://msdn.microsoft.com/en-
us/library/aa561456(BTS.70).aspx.

Table Extractor This functoid takes in two parameters. The first must be a Table Looping
functoid, and the second is a number that indicates the column from the
table to get the value from. The output from this functoid can then be sent
to another functoid as input or directly to the destination schema. An
example of the Table Extractor functoid is provided in the “Advanced
Maps” section.

Table Looping This functoid takes in a minimum of 3 parameters and a maximum of 100
parameters. The functoid builds a table in memory useful for creating
records in the output that have some structure that is not present in the
input. The first parameter is a scoping link from a node in the source
schema. The second parameter is the number of columns that should be
in the table, which corresponds to the number of fields to create in the
output. The third parameter and all following parameters are values that
can be used to build the table. An example of the Table Looping functoid
is provided in the “Advanced Maps” section.

Value Mapping This functoid takes in two parameters. The first must be a Boolean value,
and the second parameter can be any value. The functoid outputs the
second parameter if the first parameter was true. This functoid differs
from the Value Mapping (Flattening) functoid in that this functoid does not
attempt to flatten the input into the output.

Value Mapping
(Flattening)

This functoid takes in two parameters. The first must be a Boolean value,
and the second parameter can be any value. The functoid outputs the
second parameter if the first parameter was true. This functoid differs
from the Value Mapping functoid in that this functoid attempts to flatten
the input into the output. This is useful when you have multiple Value
Mapping functoids with outputs going to the same record, because other-
wise two instances of the destination record will be created.

http://msdn.microsoft.com/en-us/library/aa561456(BTS.70).aspx
http://msdn.microsoft.com/en-us/library/aa561456(BTS.70).aspx

123Advanced Maps
3

Advanced Maps
This section describes some advanced options for mapping and provides some more
details on how mappings can be done. Specifically some scenarios of advanced usage of
the functoids in combination are described.

Mapping Optional Fields

If the source document of a map has an optional field in it that you are mapping to a field
in the destination schema, the XSLT actually handles this for you and creates the destina-
tion field only if the source field exists. This way you won’t get an empty field in the
output if the source field isn’t there.

This is achieved by wrapping the creation of the destination field in an if statement, as
shown in Figure 3.16.

Had the OrderDate element in the source not been optional, the OrderDate field in the
destination would always be created; and if the element at runtime had not been present,
the output would have an empty element. The generated XSLT would be the same as
shown in Figure 3.16 but without the enclosing if statement.

Note that if you try to map an optional field to a required field, you get a warning at
compile time or when you validate the map.

Looping Functoid

The looping functoid can be used to give the compiler hints as to how to create the XSLT
when you are mapping across different hierarchies in the source document. For example,
consider the mapping in Figure 3.17.

The idea of the map is to create one AddressInformation record in the output for the
ShippingInformation record in the source and one for the BillingInformation record.

The output, however, is shown in Figure 3.18.

This is clearly not the output you want, because the address information is mixed in one
AddressInformation record. To fix this, you use the Looping functoid, as shown in
Figure 3.19.

The output is now as expected, as shown in Figure 3.20.

FIGURE 3.16 Resulting XSLT from mapping optional fields.

124 CHAPTER 3 Maps

FIGURE 3.17 Mapping across hierarchies without Looping functoid.

FIGURE 3.18 The output of the map when the Looping functoid is not used.

Note that in this example the BillingInformation record is mapped to an
AddressInformation record before the ShippingInformation. This is because the order
you add the inputs to the Looping functoid matters. If you add the ShippingInformation
to the Looping functoid before the BillingInformation, the ShippingInformation is
mapped first.

125Advanced Maps
3

FIGURE 3.19 Mapping across hierarchies with Looping functoid.

FIGURE 3.20 The output of the map when the Looping functoid is used.

Index Functoid

The Index functoid provides a means to retrieve a specific value at a specific place in a
hierarchy of fields.

If you have the XML shown in Figure 3.21 and you want to get the value ItemNumber2
from the ItemNumber element in the second OrderLine in the first Order record, for
example, you can use the Index functoid to do so.

This is done using the Index functoid as shown in Figure 3.22, with the parameters to the
functoid being as shown in Figure 3.23.

126 CHAPTER 3 Maps

FIGURE 3.21 XML example of the Index functoid.

FIGURE 3.22 Using the Index functoid.

The parameters are first of all the field to get a value from and then the index of each
parent level from that field and up. So, the parameters shown in Figure 3.23 are for the
second OrderLine in the first OrderLines in the first Order record.

127Advanced Maps
3

FIGURE 3.23 Parameters for the Index functoid.

Database Lookup

The Database Lookup functoids are used to look up values in a database if the data is not
present in the source document of the map. This can be getting the price of an item or
the address of a customer or anything else.

To explain the use of this functoid, consider the map depicted in Figure 3.24. You need to
add the Database Lookup functoid first. This functoid takes four parameters:

. A lookup value. This is the value from the source document that you need to find
information based on.

. A connection string to the database that holds the table you want to fetch infor-
mation from.

. The name of the table you need to fetch information from. You can wrap the table
name in square brackets ([and]) if you like (for instance, if spaces or reserved words
are used in the table name).

. The column in the table that you want to match against the lookup value from the
first parameter. This can also be wrapped in square brackets.

128 CHAPTER 3 Maps

The functoid converts this into a SQL statement that looks like this:

SELECT * FROM <Param3> where <Param1> = <Param4>

In other words, it connects to the database using the connection string and then executes
this SQL statement to get the row you need from the table you have specified.

TIP

If you are having trouble getting the connection string right, create an empty file on your
desktop called conn.udl. Double-click it. A wizard will appear that helps you choose the
provider, server, authorization scheme, and so on. When you have finished, save the
work and open the .UDL file in a text editor to get the connection string.

The Database Lookup functoid returns only one row from the database. If the SQL state-
ment returns more than one row, which is the case when the column specified in parame-
ter four isn’t a unique key in the table, the functoid just returns the first row from the
data set returned by the SQL statement.

TIP

If you do not have one column that is unique, but need several, you can choose to use
[Col1]+[Col2] as parameter four and then use a String Concatenate functoid to con-
catenate the fields from the source document that matches Col1 + Col2.

Because the Database Lookup functoid returns an entire row, you need to extract specific
values from this row. In the example in Figure 3.24 there are eight Value Extractor func-
toids that will each extract a specific value from a column in the row.

FIGURE 3.24 Using the Database Lookup functoid.

129Advanced Maps
3

A Value Extractor functoid takes in two parameters:

. The Database Lookup functoid that returns the row to extract a value from. Note
that although the Database Lookup functoid is the only allowed input, the user
interface allows you to use any Database functoid as the input for the Value
Extractor functoid. This returns in runtime errors, however, so get this right at
design time.

. The name of the column to extract. Note that this cannot be enclosed in square
brackets (as you can with the table name and column name for the Database Lookup
functoid, as discussed previously).

TIP

While developing a map that uses the Database Lookup functoid, you should add an
Error Return functoid to your map. Let this functoid have the Database Lookup functoid
as input, and let its output go to some element in the destination schema. This way,
while developing and testing your map, you get any relevant error information that you
can use to debug the connection. If you don’t use the Error Return functoid, you will
just have empty fields where the Value Extractor functoids should have put values.

Scripting Functoid

The Scripting functoid is used for two main things:

. To perform some task that the built-in functoids cannot do for you and which isn’t
needed often enough to justify developing a custom functoid. An example of this
could be to generate a new globally unique identifier (GUID) or to do string replacement.

. To perform some task that the built-in functoids can do for you but that requires
some combination of functoids that is too tedious to build. An example of this could
be if-then-else functionality, which is described later in this section.

After dragging the Scripting functoid onto the map, you can double-click it to get to the
functoid configuration window. Go to the Script Functoid Configuration pane, shown in
Figure 3.25, where you can change the script.

In this screen, you may choose what language to use for your script. If you choose
External Assembly, you can choose to call a public static method of a public class that is in
a current assembly. The other five options allow for editing of the script to include in the
map. For each, you can choose to import the script from an existing file by clicking
the Import from File button. This is often a good idea because the editing window in the
Script Functoid Configuration doesn’t have IntelliSense, syntax highlighting, or even
allow for the use of tabulators to indent code.

130 CHAPTER 3 Maps

FIGURE 3.25 Scripting functoid.

The types of scripts that take parameters all take in strings. Therefore, you cannot send a
node from the source document as a parameter and expect to treat it as an XmlNode. You
only get the value of the node connected to the Scripting functoid.

Take care that the number of parameters your script takes matches the number of parame-
ters you have provided to the functoid.

If you choose to leverage the power of one of the two XSLT scripting options and connect
the Scripting functoid to a field in the destination schema, you take responsibility for
creating the entire structure of the field you have connected the functoid to and any chil-
dren of this field. The other four scripting types can output only a string, which is then
copied to the field the Scripting functoid is connected to.

The XSLT scripting functoids are especially useful for performing tasks that deal with the
source XML structure, because you have access to the entire source XML using XPath in
the script, which you do not otherwise. Also, because you need to generate XML struc-
tures in the XSLT functoids, you have the possibility to create XML nodes for which there
was no data support in the source XML. Assume, for instance, that you need to add an
order line to all incoming orders that adds shipping expenses. You would need to copy all
order lines from the incoming order to the destination document but also create a new
order line to add to the existing ones. This is only doable in custom XSLT, be it either in a
Scripting functoid or in a custom XSLT script that you use in your map instead of leverag-
ing the Mapper.

Note that for XSLT you do not have access to all the nice features and functions of XSLT
2.0, because BizTalk only supports XSLT 1.0.

131Advanced Maps
3

FIGURE 3.26 Functoid collection to trim input and convert it to uppercase.

FIGURE 3.27 Performing the if-then-else logic.

Combination of Functoids for If-Then-Else

The built-in functoids provide you with two Value Mapping functoids that basically return
their second parameter if the first parameter is true. This allows for an if-then solution,
but there is no intuitive way of doing an if-then-else solution (that is, returning a third
parameter if the first parameter is false). To build an if-then-else solution, you must use
several functoids, as shown in Figure 3.27.

Functoid Combination

You can use the output from one functoid as the input for another functoid. This is useful
for building functionality that doesn’t exist in the built-in functoids.

If you want to make sure that a string in the input is trimmed for leading and trailing
whitespace and also in uppercase, you need the functoids shown in Figure 3.26.

The solution provided in Figure 3.27 is used to send the current date to the OrderDate
field if the OrderDate provided in the input is empty. This is a case where the sender has a
bug in his system that makes him send an empty element from time to time. The solu-
tion is to first use an Equal functoid to check whether the string equals the empty string

132 CHAPTER 3 Maps

and use the output of this comparison as the first input for a Value Mapping functoid that
takes in the current date as the second input. So if the field is empty, the current date is
mapped. The output of the Equal functoid is also used as input to a Logical Not functoid,
which negates the input. This is then used to allow another Value Mapping functoid to
output the value of the OrderDate in case the Equal functoid did not return true, meaning
the string wasn’t empty.

Create Separated List

Assume that the order from a customer can have many Comment fields, but the internal
order format allows for only one Comment field. In this case, you might want to concate-
nate the Comment fields from the input into one string for the output and separate the
comments by some separator. Figure 3.28 shows an example of how to do this.

FIGURE 3.28 How to create a separated list of strings.

The functionality is built up using string functoids and one cumulative functoid. First, the
input is concatenated with the separator. The output of this is sent to the Cumulative
Concatenate functoid, which will then have the complete list as its output, with a separa-
tor at the end. This final separator is removed by using the String Extract functoid, which
takes in the concatenated string as its first input. The second is the constant 1, and the
third parameter is the length of the concatenated string minus 1.

Table Looping Functoid

The table looping functoid is useful to combine constants and fields from the source docu-
ment into structures in the destination document. Let’s revisit the challenge faced that
was solved using the Looping functoid, as shown in Figure 3.19. Often, schemas that share
a record for different addresses have a qualifier on the record, which contains information
about what type of address the current record contains. So, the destination schema would
probably be as shown in Figure 3.29.

133Advanced Maps
3

FIGURE 3.29 The map to implement before adding the Table Looping functoid.

The Table Looping functoid is used to build a table of information and then output each
row in the table on at the time, thereby creating records in the destination schema. To
implement the mapping in this example, first drag the functoid to the grid, and then drag
a scoping record from the source to the functoid. In this case, that is the root node
because that is the node that encompasses all the needed fields. The second parameter to
the functoid must be a number indicating how many columns should be in the table. The
third parameter and all the next parameters are values that can be used to build the table.
As shown in Figure 3.30, all eight fields with information have been added as inputs to
the functoid. Also, two constant strings have been added as parameters to the functoid
(namely, the strings Bill and Ship). These two strings are the qualifiers used in this
example, meaning that the AddressInformation record in the output that contains the
shipping information must have a Type attribute with the value Ship and the other must
have a Type attribute with the value Bill.

FIGURE 3.30 Using the Table Looping functoid.

To tell the compiler which record is to be created for each row in the table, you must drag
the output of the Table Looping functoid to the record.

134 CHAPTER 3 Maps

FIGURE 3.31 The table grid of the Table Looping functoid.

To determine which columns of the table go into which fields in the destination schema,
you need to use the Table Extractor functoid. Add one of these, as shown in Figure 3.30,
for each field to copy values into, and use the Table Looping functoid as the first input to
each of them. The second parameter to each Table Extractor functoid must be the column
number to extract. So, given the rows shown in Figure 3.31, let the first Table Extractor
functoid have a second parameter of 1 and let its output go to the Type attribute of the
AddressInformation record. Now configure the remaining four Table Extractor functoids
to extract the correct column and map it to the correct field in the destination schema.

The resulting XML from testing the map should look as shown in Figure 3.32.

The grid configuration screen shown in Figure 3.31 has a check box at the bottom that
can be checked to instruct the map that the data in the first column should act as a condi-
tion that specifies whether each row is created in the output. At runtime, the value of the
first column is evaluated, and if data is found, the Value Extractor functoids associated
with that row are called and the output record is created. If no data is found, the Value
Extractor functoids are not called, and the record is therefore not created in the output. If

After doing this, you can start building the table, which is done either by double-clicking
the functoid and then switching to the Table Looping Grid pane or by right-clicking the
functoid and choosing Configure Table Looping Grid. This opens the table grid with as
many columns as you have indicated by the second parameter to the functoid. You can
now use the drop-down in each field to select which of all the parameters to the functoid
to use for which columns in which rows of the table. The resulting table might look like
Figure 3.31.

135Advanced Maps
3

FIGURE 3.32 Result of using Table Looping functoid.

the input for the first column is a Logical functoid rather than a field, the output record is
created if the value from the Logical functoid is true (and not otherwise).

Conditional Creation of Output Nodes

You might sometimes want to implement conditional creation of output records. For
instance, consider the opposite mapping of the one found in Figure 3.30. In this case, you
will want to create a ShippingInformation record in case the Type attribute of the
AddressInformation record has a value of Ship and similar with the billing information.
This is achieved using logical functoids.

Logical functoids have a side effect to just being able to do logical operations. If you
connect a logical functoid to an output record, the output record is only created if the
functoid returns true. This means that the reverse mapping of the address information can
be solved, as shown in Figure 3.33.

FIGURE 3.33 Conditional creation of records.

In this sample, the upper Equal functoid has a second parameter with a value of Ship,
and the ShippingInformation record is therefore only created when the Type attribute has
this value. The same applies for the BillingInformation, which is only created when the
Type attribute has a value of Bill.

136 CHAPTER 3 Maps

Custom XSLT

There are mappings that the Mapper cannot create for you using the built-in functoids. In
that case, you have two options:

. Extend the map with Scripting functoids that perform the functionality you cannot
accomplish with the built-in functoids.

. Create the map in the Mapper but don’t use links or functoids. Instead, use a custom
XSLT script for the functionality of the map.

Also, the XSLT generated by the Mapper is as good as it gets when things are automati-
cally generated. If you know what you are doing, you can usually create yourself more effi-
cient XSLT that performs better. If you have performance issues with your map, you might
therefore also choose to write a custom XSLT script and bypass the Mapper.

If you choose the option of creating an entire XSLT script to use as the map, you need to
use the Custom XSL Path and the Custom Extension XML properties of the map, as
explained earlier. After creating your custom XSL and possibly a custom extension XML,
you need to specify the path to the XSL and extension XML in the two properties. This
effectively bypasses anything you might have done inside the Mapper.

TIP

As a starting point for your custom XSLT, you can get an XSLT with all the correct name-
spaces and definitions if you follow these steps: Add the map to your project and
choose source and destination schemas. Then right-click the map in Solution Explorer
and choose Validate Map. In the output window, you now get a link to the generated
XSLT. Copy this file to your project and point your map to this file using the Custom XSL
Path property. Edit the XSLT as needed.

The extension XML is some XML that is used to create a link between a namespace prefix
that you can use in your custom XSLT and an external assembly that contains methods
you want to call. Just as with the XSLT, you can get an example of a custom extension
XML file when validating your map. You get an extension XML during this process only if
you are actually calling an external assembly from the map you are validating.

Cross Referencing

Often you need to translate some numbering scheme into another during the execution of
a map. An example of this is when mapping between customer order formats and your
own format or between your own format and the format of your supplier. In this case, you
might have an item number in your internal ERP system, and the customers and suppliers
have their own numbers. The cross-referencing functoids help you achieve this. The setup
is fairly simple: You create some XML files that contain the information about trading
partners and the numbers that need to be translated and then you use an import tool to

137Advanced Maps
3

import this XML into the cross-referencing-specific tables (xref_*) in the BizTalkMgmtDb
database. The functoids can then be used to extract values from the tables.

This section contains a simple example, covering the scenario of item numbers that need
to be translated from the numbers the customer uses to the numbers FineFoods uses. This
scenario leverages only half of the XML documents that can be used for other cross-refer-
encing features. For a complete description of the other XML files, refer to
http://msdn.microsoft.com/en-us/library/aa578674(BTS.70).aspx.

This scenario leverages five XML documents. The first one is just a container that contains
links to the other four. The XML files can be seen in Listing 3.2, Listing 3.3, Listing 3.4,
Listing 3.5, and Listing 3.6.

LISTING 3.2 Contents of Cross-Referencing Setup File

<?xml version=”1.0” encoding=”UTF-8”?>

<Setup-Files>

<App_Type_file>C:\CrossReferencing\ListOfAppType.xml</App_Type_file>

<App_Instance_file>C:\CrossReferencing\ListOfAppInstance.xml</App_Instance_file>

<IDXRef_file>C:\CrossReferencing\ListOfIDXRef.xml</IDXRef_file>

<IDXRef_Data_file>C:\CrossReferencing\ListOfIDXRefData.xml</IDXRef_Data_file>

</Setup-Files>

Listing 3.2 shows the contents of the setup file, which is really just a collection of links to
the XML documents that contain the actual data that should be imported. Other than the
four shown references, four other XML documents can be specified:

. ValueXRef_file

. ValueXRef_Data_file

. Msg_Def_file

. Msg_Text_file

These are not covered in this simple scenario.

LISTING 3.3 Contents of App_Type_file

<?xml version=”1.0” encoding=”UTF-8”?>

<listOfAppType>

<appType>

<name>ERP</name>

</appType>

</listOfAppType>

http://msdn.microsoft.com/en-us/library/aa578674(BTS.70).aspx

138 CHAPTER 3 Maps

Listing 3.3 shows the contents of the App_Type_file XML document. It is basically a list of
application types that can exist. You can use any string you want. For this scenario only
the application type ERP is used.

LISTING 3.4 Contents of App_Instances_file

<?xml version=”1.0” encoding=”UTF-8”?>

<listOfAppInstance>

<appInstance>

<instance>ERP_C1702</instance>

<type>ERP</type>

</appInstance>

<appInstance>

<instance>ERP_Internal</instance>

<type>ERP</type>

</appInstance>

</listOfAppInstance>

Listing 3.4 shows the contents of the App_Instances_file XML document. It is a list of
instances of the application types from the App_Type_file XML document. The XML in
Listing 3.4 has two instances of the ERP type, namely the ERP system from the customer
and the internal ERP system.

LISTING 3.5 Contents of IDXRef_file

<?xml version=”1.0” encoding=”UTF-8”?>

<listOfIDXRef>

<idXRef>

<name>ItemID</name>

</idXRef>

</listOfIDXRef>

Listing 3.5 shows the contents of the IDXRef_file XML document. It is a list of types of
IDs that need to be translated. In this scenario, we need to translate identifications of
items, but this can be any string you specify.

LISTING 3.6 Contents of IDXRef_Data_file

<?xml version=”1.0” encoding=”UTF-8”?>

<listOfIDXRefData>

<idXRef name=”ItemID”>

<appInstance name=”ERP_C1702”>

<appID commonID=”ITEM1”>123</appID>

<appID commonID=”ITEM2”>456</appID>

<appID commonID=”ITEM3”>789</appID>

139Advanced Maps
3

</appInstance>

<appInstance name=”ERP_Internal”>

<appID commonID=”ITEM1”>4301</appID>

<appID commonID=”ITEM2”>4398</appID>

<appID commonID=”ITEM3”>5432</appID>

</appInstance>

</idXRef>

</listOfIDXRefData>

Listing 3.6 shows the contents of the IDXRef_Data_file XML document. It is the actual
values that can be translated. In this scenario, the value 123 as an item identification from
customer C1702 is translated into 4301, which is the corresponding item identification in
the internal ERP system.

The functoids used to do the translation are shown in Figure 3.34.

Figure 3.34 shows how to translate the item identification from the ItemNo field in the
order from customer C1702 to the ItemNumber in the destination schema. The ItemNo field
is mapped to a Get Common ID functoid, which has these three parameters:

. The constant string ItemID, which matches the type of ID to convert, as specified in
the IDXRef_file XML document

. The constant string ERP_C1702, which matches the application instance of an ERP
system, as found in the App_Instances_file XML document

. The ItemNo field

FIGURE 3.34 Using the cross-referencing functoids.

140 CHAPTER 3 Maps

The functoid uses the value form the source to retrieve the common ID for this applica-
tion-specific ID. For instance, a value in the source document of 123 returns a common ID
of ITEM1. This value is then passed into a Get Application ID functoid, which also has
three parameters. The first parameter is the same as for the Get Common ID functoid. The
second is the constant string ERP_Internal, which tells the functoid to get the ID for this
particular application instance. The third is the output of the Get Common ID functoid.
For this scenario, the third parameter has a value of ITEM1, and the output of the functoid
is the string 4301.

Building Custom Functoids
You can use the built-in functoids as building blocks to provide for most mapping needs
you will encounter. Sometimes, however, you will need functionality that the built-in
functoids cannot provide. Other times, you might find yourself building the same combi-
nation of functoids to solve a specific problem in your map over and over again, which is
tiresome and which creates a mess in your map. To overcome this, you can develop your
own functoids. Developing custom functoids is not nearly as scary as it sounds, and in
fact you will probably find out that the most difficult part is to create an icon that is nice
and descriptive of your functoid. This section describes how to develop a custom functoid.

Functoids are divided into two categories:

. The noncumulative, or “normal,” ones, which expose one method that takes in
some parameters or possibly no parameters and returns a string.

. The cumulative ones, which expose three methods, where the first is called to
initialize the functoid; the second is then called for all inputs, and the third method
is called to get the final value.

Also, functoids can be divided into two other types:

. The type that is compiled into an assembly and put into the Global Assembly Cache
(GAC). It exposes one or more methods that are called at runtime to perform your
functionality. This type is also known as a referenced functoid.

. The type that doesn’t expose a method that is called at runtime, but instead outputs a
script that is included in the map. This type is also known as an inline functoid.

You should consider developing an inline functoid when

. You have no worries about your code getting into the map as clear text (which
allows others to read it and possibly modify it).

. Your functoid depends only on .NET namespaces that are available to maps. For a full
list of these, refer to http://msdn.microsoft.com/en-us/library/aa561456(BTS.70).aspx.

. You do not want to have to maintain another assembly, remembering to add it to
installation scripts, deploying it to all servers in your BizTalk group, and so on.

http://msdn.microsoft.com/en-us/library/aa561456(BTS.70).aspx

141Building Custom Functoids
3

. You want to provide the developer that uses the functoid with the ability to debug
the maps that use your functoid.

. You are developing more than one functoid, and they need to share variables.

You should consider developing a referenced functoid when

. You want to be able to put a new assembly in the GAC and restart host instances
for it to work in all maps that use the functoid without any need to maps to be
recompiled.

. You do not want your business logic code exposed in clear text for all to read and
possibly modify.

. Your functoid depends on .NET namespaces that are not available to maps.

You do not have to choose either an inline functoid or a referenced functoid. As a matter
of fact, you can develop your functoid to be both and let the developer of the map choose
which implementation to use.

Initial Setup

No matter what type of functoid you want to create, you want to create a Visual Studio
2010 project for it. You do this by either right-clicking your solution and choosing Add,
New Project or by creating a new project in a new solution if you do not have an existing
solution you want to add the project to. You can have the project with your functoids in
the same solution as your BizTalk projects and any other projects, if you like. The project
should be a Class Library project, as shown in Figure 3.35.

FIGURE 3.35 Adding a new Class Library project to your Visual Studio 2010 solution.

142 CHAPTER 3 Maps

After adding the project to your solution, you should either rename the automatic-
ally added class to a better name or delete it and add a new one. Also, you need to add
a reference to the Microsoft.BizTalk.BaseFunctoids.dll, which you can find under
<InstallationFolder>\Developer Tools. Finally, you need to add a string name to the assem-
bly so that it can be GAC’ed after the functoid has been developed.

The Microsoft.BizTalk.BaseFunctoids namespace contains a BaseFunctoid class that
must be the base class for all functoids. You must therefore let your class inherit from this
and call the constructor of the base class. Listing 3.7 shows an example.

LISTING 3.7 Extending the Needed Base Class Required to Create a Custom Functoid

using Microsoft.BizTalk.BaseFunctoids;

namespace FineFoods.Map.Functoids

{

public class StringReplace : BaseFunctoid

{

public StringReplace()

: base()

{

}

}

}

Inside the constructor, you need to set the value of some properties and call some
methods on the base class. The steps you must go through for all functoids are described
in this section, and the ones that are specific for either normal or cumulative functoids are
described in the next sections:

1. Add a resources file to your project. To do so, right-click your project and choose
Add, New Item. In the next screen, choose Resources File. Provide a descriptive file-
name that reflects whether the resources file is for one functoid only or for a collec-
tion of functoids that are in the same assembly. Figure 3.36 shows an example.

NOTE

For functoids, adding a resources file is not optional like it is for developing pipeline
components, where it is still best practice to do so. The base class needs a resource
file for the values for the functoid name, tooltip, description, and icon.

2. Add three string resources: one for the name of the functoid, one for the tooltip of
the functoid, and one for the description of the functoid. Provide descriptive names
of the resources. Figure 3.37 shows an example.

143Building Custom Functoids
3

FIGURE 3.36 Adding a resources file to your project.

3. Add an image resource of type Bitmap for the icon of the functoid. Provide a descrip-
tive name of the resource. After adding it, you can edit the bitmap. Change it to be
16x16 pixels in the properties of the bitmap, and then release your inner artist.
Figure 3.38 shows how to add the bitmap resource.

4. Assign a value to the ID property. The value must be an int, and it must be greater
than 6000 because the first 6000 are reserved for internal BizTalk usage. Always keep
track of all IDs you use in your organization to make sure you do not get an
overlap. If you use third-party functoids, there is no way of knowing what other IDs
are in use by these other than using reflector on the assemblies and looking at the
source code.

FIGURE 3.37 Adding resources for name, tooltip, and description..

144 CHAPTER 3 Maps

5. Call the SetupResourceAssembly method to let the base class know where to find the
resources file that contains the resources for name, tooltip, description, and icon.
The method takes two parameters. The first is the fully qualified .NET type name of
the resources file. This is normally the name of the project concatenated with a
period and the name of the resources file without extension. So if your
project is called FineFoods.Maps.Functoids and your resources file is called
FunctoidResources.resx, the fully qualified .NET type name of the resources file will
be FineFoods.Map.Functoids.Resources. If in doubt, open <ResourceFile>.Designer.cs
file, where <ResourceFile> is the name of your resources file without the .resx exten-
sion. In the designer file, you can see namespace and class name. Concatenate these
with a period in between and you have the fully qualified name. The second is the
executing assembly. Listing 3.8 shows an example.

6. Call the SetName method, which takes in one string parameter that defines the name
of the resource that the base class should use to find the name of the functoid.

7. Call the SetTooltip method, which takes in one string parameter that defines the
name of the resource that the base class should use to find the tooltip of the functoid.

8. Call the SetDescription method, which takes in one string parameter that defines
the name of the resource that the base class should use to find the description of
the functoid.

9. Call the SetBitmap method, which takes in one string parameter that defines the
name of the resource that the base class should use to find the icon of the functoid.

10. Set the value of the Category property. This property is of the type
FunctoidCategory, which is an enumeration, and it must be set to match the cate-
gory this functoid should belong to. There are 25 different categories, of which only
7 are supposed to be used in custom functoids. These are Conversion, Cumulative,
DateTime, Logical, Math, Scientific, and String.

As you can probably imagine, these are used to let the Mapper Toolbox know in
which group of functoids to show your custom functoid. Some of the categories are

FIGURE 3.38 Adding a bitmap resource to serve as the icon for the functoid.

145Building Custom Functoids
3

also used to let the Mapper know how to create the XSLT; that is, functoids in the
category Logical are useful for determining when to create destination nodes. This is
explained in more detail later.

11. Determine how many parameters your functoid should take in as a minimum and as
a maximum. Call the SetMinParams and SetMaxParams with the correct values.

12. For each parameter, determine what the source of the input link for the parameter
can be. For custom functoids, the parameters can often be links coming from
anything that has a value. After determining what possible inputs the parameters
can have, you must call AddInputConnectionType for each parameter in the order of
the inputs to specify what possible inputs the parameters can have. The possible
parameter values for the AddInputConnectionType method call are the values in the
ConnectionType enumeration, and there is a value for each functoid category and
also some other possible values like All, AllExceptRecord, Element, and so on. The
AllExceptRecord is often used because this will allow all inputs that are not a
record, and this can be useful because a record does not have a value, whereas others
have a value.

13. Determine what the outgoing link from the functoid can be connected to. After
determining this, set the appropriate value to the OutputConnectionType property,
which is of type ConnectionType enumeration.

NOTE

The tooltip you add to your functoid is actually not used anywhere. Microsoft is aware
of this and will look into it for future releases. This has two implications. The first impli-
cation is that you should still add the tooltip and provide valid values for it so that your
functoid will look fine in the next versions, as well. The second implication is that you
don’t need to worry when you don’t see the tooltip of your custom functoid anywhere.

For setting either the input connection type or the output connection type, you can set it
to a combination of values, which gives you control of what possibilities you want to allow.

Listing 3.8 shows a functoid that does a string replacement on an incoming string. The
functoid code is not complete, but contains the methods and properties that have been
discussed up to now.

LISTING 3.8 Functoid That Does String Replacement

public class StringReplace : BaseFunctoid

{

public StringReplace() : base()

{

ID = 8936;

SetupResourceAssembly(GetType().Namespace + “.FunctoidResources”,

146 CHAPTER 3 Maps

Assembly.GetExecutingAssembly());

SetName(“StringReplace_Name”);

SetTooltip(“StringReplace_ToolTip”);

SetDescription(“StringReplace_Description”);

SetBitmap(“StringReplace_Icon”);

Category = FunctoidCategory.String;

SetMinParams(3);

SetMaxParams(3);

AddInputConnectionType(ConnectionType.AllExceptRecord);

AddInputConnectionType(ConnectionType.AllExceptRecord);

AddInputConnectionType(ConnectionType.AllExceptRecord);

OutputConnectionType = ConnectionType.AllExceptRecord;

}

}

Normal Functoid

The functoid code in Listing 3.8 is not finished yet. It still has no implementation of the
functionality it is supposed to do. As explained earlier, this can be achieved either as a
referenced functoid or as an inline functoid and either as a normal functoid or as a cumu-
lative functoid. Implementing it as both a referenced functoid and as an inline functoid is
explored in this section.

Referenced Functoid
When implementing a functoid as a referenced functoid, you must provide the method
that is to be called at runtime. Listing 3.9 shows a method that provides the string
replacement functionality.

LISTING 3.9 A Method Performing String Replacement

public string Replace(string str, string search, string replace)

{

if (String.IsNullOrEmpty(str))

return String.Empty;

if (String.IsNullOrEmpty(search))

return str;

return str.Replace(search, replace);

}

147Building Custom Functoids
3

To instruct BizTalk what method to call at runtime, you must call the
SetExternalFunctionName method. This method has two overloads.

. The first takes in three parameters, where the first is the full name of the assembly,
the second is the class that contains the method, and the third is the name of the
method to call.

. The second takes in four parameters but is not intended to be used in custom code.

Listing 3.10 shows the added functionality to the functoid from Listing 3.8 that is needed
to make the functoid work.

LISTING 3.10 A Referenced Functoid That Does String Replacement

public class StringReplace : BaseFunctoid

{

public StringReplace()

: base()

{

// Functionality from Listing 3.8

SetExternalFunctionName(GetType().Assembly.FullName,

GetType().FullName,

“Replace”);

}

public string Replace(string str, string search, string replace)

{

if (String.IsNullOrEmpty(str))

return String.Empty;

if (String.IsNullOrEmpty(search))

return str;

return str.Replace(search, replace);

}

}

The call the SetExternalFunctionName in Listing 3.10 is coded to have the method to call
inside the same class as the functoid itself. If this is not the case, you must change the
parameters to point to the correct assembly, class, and method.

148 CHAPTER 3 Maps

TIP

If your functoid needs to check whether an input parameter is either a valid numeric
value or a valid date, the BaseFunctoid class provides static methods you can use for
this so you do not need to implement this yourself. You can just use
BaseFunctoid.IsNumeric(stringparameter) to check for numeric values and
BaseFunctoid.IsDate(stringparameter) to check for date values. Both methods
return a Boolean, and the IsNumeric method can optionally have a ref parameter that
will contain the converted value.

Inline Functoid
If you should choose to implement an inline functoid rather than a referenced functoid,
you should not call the SetExternalFunctionName method, but instead some other
methods and properties must be used.

The first is a method called AddScriptTypeSupport. It takes in one parameter, which is the
ScriptType enumeration. You must send in the value that matches the script type you
will be creating. For instance, you can send in a value of ScriptType.CSharp to tell the
Mapper that the script is a C# script.

The second is a method called SetScriptBuffer, which is called to set the script that will
be included in the map. It takes in two parameters and one optional parameter. The first
parameter is the ScriptType for this script. The second parameter is the string that is the
actual script. Most often, this parameter is a method call to a method that returns the
string that contains the script and not a constant string itself, because that would be too
big and confusing. The third and optional parameter is used for cumulative functoids,
which are described in the next section.

The third method used for inline functoids is called SetScriptGlobalBuffer. This method
is used to add some script that must be global for all your scripts. This can initialize a vari-
able, for instance, which is needed for cumulative functoids or functoids that just need to
know values from other scripts. Just as the SetScriptBuffer method, this method takes in
the ScriptType of the script and a string that contains the script.

The fourth is a property called RequiredGlobalHelperFunctions. This is used to let the
Mapper know whether some built-in helper functions are needed for the script to execute.
This is to allow for the use of the built-in IsNumeric and IsDate methods that are easily
accessible in a referenced functoid. Also, for inline functoids, you can make use of the
ValToBool method, which tests whether your string is a Boolean value. This method is not
accessible for referenced functoids.

NOTE

When developing custom inline functoids, you can add inline script for as many of the
supported languages as you want. Just call AddScriptTypeSupport for the appropriate
script type and call SetScriptBuffer to set the appropriate script. Which one is cho-
sen by the map is dependent on the Script Type Precedence property you can set as a
property on the map grid.

149Building Custom Functoids
3

Listing 3.11 shows a method that generates the same method as shown in Listing 3.9,
only for an inline functoid.

LISTING 3.11 An Inline Functoid That Does String Replacement

private string GetCSharpBuffer()

{

StringBuilder sb = new StringBuilder();

sb.Append(“\n”);

sb.Append(“public string Replace(string str, string search, string

➥replace)\n”);

sb.Append(“{\n”);

sb.Append(“\tif (String.IsNullOrEmpty(str))\n”);

sb.Append(“\t\treturn String.Empty;\n”);

sb.Append(“\tif (String.IsNullOrEmpty(search))\n”);

sb.Append(“\t\treturn str;\n”);

sb.Append(“\treturn str.Replace(search, replace);\n”);

sb.Append(“}”);

return sb.ToString();

}

So, as you can see, for inline functoids, you must create a string that contains the exact
same C# method you would have written if it were to be called in a referenced functoid.
The new lines and tabulator characters are not needed, but are there to make the method
look readable when viewing it inside the map after you have compiled it.

For inline functoids, you have the option of generating an inline script that takes in a
variable number of inputs. This requires some other method calls and is described in the
“Advanced Functoids” section.

TIP

The easiest way to create a method to be used in an inline functoid is to create the
method as a normal method first and test your functoid as a referenced functoid. Once
the functionality is as you want it to be, you can do a string replacement on the
method, replacing all quotation marks with escaped quotation marks. Then you just cut
and paste the lines from the method one at the time to a new method where you
append to the StringBuilder and change the functoid to be an inline functoid instead.

The code for the inline functoid that does string replacement can be seen in Listing 3.12.

150 CHAPTER 3 Maps

LISTING 3.12 An Inline Functoid That Does String Replacement

public class StringReplace : BaseFunctoid

{

public StringReplace()

: base()

{

// Functionality from Listing 3.8

AddScriptTypeSupport(ScriptType.CSharp);

SetScriptBuffer(ScriptType.CSharp, GetCSharpBuffer());

}

private string GetCSharpBuffer()

{

StringBuilder sb = new StringBuilder();

// Code to build the method, as shown in Listing 3.11.

return sb.ToString();

}

}

Creating an inline C# functoid is most of the times the most appropriate over XSLT for
three reasons:

. You get the .NET framework, which enables you to write your functionality with a
minimum number of lines.

. XSLT has lots of quotation marks, which can get heavy to track when building a
string. For information purposes, the code that is needed in an XSLT Call-Template
functoid for string replacement is shown in Listing 3.13. The reason for this quite
long code in XSLT is that the version of XSLT that BizTalk supports does not include
a native Replace function, so you have to do it yourself. Imagining the code to build
this as a string for an inline functoid is left to the reader.

. The real strength of XSLT functoids is that XSLT can access the entire structure of
the source schema and it has the responsibility of creating the output structure. This
means that the functoid will be hard wired to those two structures. Because the
purpose of a custom functoid is to take some functionality that is often needed and
wrap it in a common generic component, custom XSLT functoids actually go against
this purpose.

LISTING 3.13 XSLT Example of Doing String Replacement

<xsl:template name=”MyXsltReplaceTemplate”>

<xsl:param name=”str” />

<xsl:param name=”search” />

<xsl:param name=”replace” />

<xsl:element name=”Field6”>

151Building Custom Functoids
3

<xsl:call-template name=”DoReplace”>

<xsl:with-param name=”str” select=”$str” />

<xsl:with-param name=”search” select=”$search” />

<xsl:with-param name=”replace” select=”$replace” />

</xsl:call-template>

</xsl:element>

</xsl:template>

<xsl:template name=”DoReplace”>

<xsl:param name=”str” />

<xsl:param name=”search” />

<xsl:param name=”replace” />

<xsl:choose>

<xsl:when test=”contains($str, $search)”>

<xsl:value-of select=”substring-before($str, $search)” />

<xsl:value-of select=”$replace” />

<xsl:call-template name=”DoReplace”>

<xsl:with-param name=”str” select=”substring-after($str, $search)” />

<xsl:with-param name=”search” select=”$search” />

<xsl:with-param name=”replace” select=”$replace” />

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select=”$str” />

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Cumulative Functoid

Cumulative functoids are useful for performing functionality on recurring elements. The
built-in cumulative functoids provide functionality for finding the smallest number, great-
est number, and so on of a reoccurring element.

If you want to develop a cumulative functoid yourself, you need to specify three methods
rather than one. The first method initializes the functoid at runtime. The second is called
for each occurrence of the recurring element, and the last is called at the end to retrieve
the aggregated value that should be output in the end.

Thread Safety
For cumulative functoids, an issue of thread safety arises that is usually not present for
normal functoids.

Normal functoids have just one method that is called, and unless you use some variable
inside your method that is globally defined, you are usually safe. Cumulative functoids are
different, though, because you need a global variable in your functoid to hold the state of

152 CHAPTER 3 Maps

your calculations across the initialization, multiple calls to the add method, and the final
call to the get method.

You get some help in making your functoid thread safe, though. To all three methods, an
index variable is sent as a parameter, which is unique for each instance of the functoid
inside the map, which means that you can use it as an identifier into some data structure
you must maintain with the calculations you perform. Listing 3.14 shows an example of
how the XSLT looks when a cumulative functoid is used multiple times in a map. You can
see that the first occurrence of the cumulative functoid uses an index of 0 and the second
occurrence uses an index of 1.

LISTING 3.14 XSLT Generated When a Cumulative Functoid Is Used Two Times in One Map

<xsl:template match=”/s0:InputRoot”>

<ns0:OutputRoot>

<xsl:variable name=”v1” select=”userCSharp:Init(0)” />

<xsl:for-each select=”/s0:InputRoot/Field1”>

<xsl:variable name=”v2” select=”userCSharp:Add(0,string(./text()),”1000”)” />

</xsl:for-each>

<xsl:variable name=”v3” select=”userCSharp:Get(0)” />

<Feld1>

<xsl:value-of select=”$var:v3” />

</Field1>

<xsl:variable name=”v4” select=”userCSharp:Init(1)” />

<xsl:for-each select=”/s0:InputRoot/Field2”>

<xsl:variable name=”v5” select=”userCSharp:Add(1,string(./text()),”1000”)” />

</xsl:for-each>

<xsl:variable name=”v6” select=”userCSharp:GetCumulativeMax(1)” />

<Field2>

<xsl:value-of select=”$var:v6” />

</Field2>

</ns0:OutputRoot>

</xsl:template>

This way of using an index is the same both for a cumulative referenced functoid and a
cumulative inline functoid. The scope parameter to the second method is not used and
can therefore be ignored in your code.

Cumulative Referenced Functoids
For referenced functoids, the runtime engine doesn’t necessarily instantiate an object of
your functoid class for each map it executes, but rather reuses the existing object if
present. Unfortunately, this means that your functoid can get an index of 0 as parameter
to any one of the methods from multiple instances of the map at the same time without
your code being able to distinguish them from each other. This, in turn, means that it is
impossible to develop a custom referenced cumulative functoid that is thread-safe, and
this should therefore be avoided.

153Building Custom Functoids
3

If you want to develop a custom referenced cumulative functoid, you need to set the three
methods that are to be used at runtime by the mapper. This is done via the
SetExternalFunctionName, SetExternalFunctionName2, and SetExternalFunctionName3
methods. They set the initialization method, the accumulation method, and the get
method, respectively. Listing 3.15 shows an example of the code needed. The code is
given in full except for the code already listed in Listing 3.8 because it will make it easier
to understand the code in Listing 3.16, which shows how to build he same functionality
for an inline functoid.

LISTING 3.15 Sample Code of a Custom Referenced Cumulative Functoid

private Dictionary<int, string> myCumulativeArray = new Dictionary<int,string>();

public CummulativeComma() : base()

{

// All the functoid setup code seen in Listing 3.8

SetExternalFunctionName(GetType().Assembly.FullName, GetType().FullName,

“InitializeValue”);

SetExternalFunctionName2(“AddValue”);

SetExternalFunctionName3(“RetrieveFinalValue”);

}

public string InitializeValue(int index)

{

myCumulativeArray[index] = ““;

return ““;

}

public string AddValue(int index, string value, string scope)

{

string str = myCumulativeArray[index].ToString();

str += value + “,”;

myCumulativeArray[index] = str;

return ““;

}

public string RetrieveFinalValue(int index)

{

string str = myCumulativeArray[index].ToString();

if (str.Length > 0)

return str.Substring(0, str.Length - 1);

else

return ““;

}

154 CHAPTER 3 Maps

Cumulative Inline Functoids
Contrary to referenced cumulative functoids, you can develop a thread-safe inline cumu-
lative functoid. This is because whereas the Mapper reuses the same object for referenced
functoids, there is no object to reuse for an inline functoid because all the code is inline
in the XSLT. Therefore, the data structure is not shared among multiple instances of the
map, effectively making the index parameter, which is unique across multiple instances
of the functoid in one map, enough to guarantee thread safety. This requires, naturally,
that you develop the functoid using the index parameter to access a specific entry in the
data structure.

Building a custom inline cumulative functoid basically requires the same three methods as
for a referenced cumulative functoid. As with the referenced version, you need to initialize
the needed data structure.

For setting the needed three methods that are used at runtime, you must call the
SetScriptBuffer method three times, with a parameter indicating whether you are setting
the initialization, adding, or retrieval method. For initializing the data structure, you must
call the SetScriptGlobalBuffer method. Listing 3.16 shows sample code for a custom
inline cumulative functoid, with the code from Listing 3.8 omitted.

LISTING 3.16 Inline Version of the Referenced Functoid from Listing 3.15

public CummulativeComma() : base()

{

// All the functoid setup code seen in Listing 3.8

SetScriptGlobalBuffer(ScriptType.CSharp, GetGlobalScript());

SetScriptBuffer(ScriptType.CSharp, GetInitScript(), 0);

SetScriptBuffer(ScriptType.CSharp, GetAggScript(), 1);

SetScriptBuffer(ScriptType.CSharp, GetFinalValueScript(), 2);

}

private string GetFinalValueScript()

{

StringBuilder sb = new StringBuilder();

sb.Append(“\npublic string RetrieveFinalValue(int index)\n”);

sb.Append(“{\n”);

sb.Append(“\tstring str = myCumulativeArray[index].ToString();”);

sb.Append(“\tif (str.Length > 0)\n”);

sb.Append(“\t\treturn str.Substring(0, str.Length - 1);\n”);

sb.Append(“\telse\n”);

sb.Append(“\t\treturn \”\”;\n”);

sb.Append(“}\n”);

return sb.ToString();

}

155Building Custom Functoids
3

private string GetAggScript()

{

StringBuilder sb = new StringBuilder();

sb.Append(“\npublic string AddValue(int index, string value, string

scope)\n”);

sb.Append(“{\n”);

sb.Append(“\tstring str = myCumulativeArray[index].ToString();”);

sb.Append(“\tstr += value + \”,\”;\n”);

sb.Append(“\tmyCumulativeArray[index] = str;\n”);

sb.Append(“\treturn \”\”;\n”);

sb.Append(“}\n”);

return sb.ToString();

}

private string GetInitScript()

{

StringBuilder sb = new StringBuilder();

sb.Append(“\npublic string InitializeValue(int index)\n”);

sb.Append(“{\n”);

sb.Append(“\tmyCumulativeArray[index] = \”\”;\n”);

sb.Append(“\treturn \”\”;\n”);

sb.Append(“}\n”);

return sb.ToString();

}

private string GetGlobalScript()

{

return “private Dictionary<int, string> myCumulativeArray = new

Dictionary<int,string>();”;

}

Developing Advanced Functoids

This section covers some advanced topics related to developing custom functoids.

Functoids with a Variable Number of Inputs
Sometimes you need to develop a functoid that should take in a variable number of para-
meters. For instance, the Addition functoid in the Math category takes in a variable
number of parameters. Doing this is only supported for creating inline functoids and can
therefore not be done with a custom referenced functoid.

156 CHAPTER 3 Maps

To develop a custom inline functoid that takes a variable number of parameters, you
must do this:

1. Set the property HasVariableInputs to true.

2. In the constructor, call AddScriptTypeSupport for each script type you support.

3. Override the GetInlineScriptBuffer method. Listing 3.17 shows an example. This
method takes in three parameters:

. A script type determining the type of script to return.

. An integer determining the number of parameters your functoid will be getting.

. A function number for use with cumulative functoids. Values can be 0, 1 and
2, for initializing, accumulating, and retrieving functions, respectively.

4. Set the RequiredGlobalHelperFunctions to reflect any global helper methods you
may need, such as the IsDate, IsNumeric, and so on.

5. Use SetScriptGlobalBuffer to declare any global variables you may need. For
cumulative functoids, you need to initialize some data structure that is used across
the calls to the three functions.

LISTING 3.17 Generating a Functoid That Takes in a Variable Number of Parameters

protected override string GetInlineScriptBuffer(ScriptType sT, int numPar, int

func)

{

if(ScriptType.CSharp == scriptType)

{

StringBuilder builder = new StringBuilder();

builder.Append(“public string MyFunction(“);

for(int i=0; i<numParams; i++)

{

if(i > 0)

builder.Append(“, “);

builder.Append(“string param” + i.ToString());

}

builder.Append(“)\n”);

// Method body; Do what you need with the parameters.

builder.Append(“{\n”);

builder.Append(“}\n”);

return builder.ToString();

}

return string.Empty;

}

157Building Custom Functoids
3

The code in Listing 3.17 assumes this is not a cumulative functoid and therefore ignores
the func parameter. Had this been for a cumulative functoid, the method would have to
return one of three functions, given the value of the func parameter. Also, the method
shown in Listing 3.17 works only for C#. If the developer of the map requires something
else, you must extend the method to also support that ScriptType and return valid
methods for that.

Functoid Categories
When assigning a functoid category to your functoid, you get to choose between 25 differ-
ent categories, of which only 7 are supposed to be used in custom functoids. These are
Conversion, Cumulative, DateTime, Logical, Math, Scientific, and String.

Assigning one of these categories to your functoid has some effects:

. The category maps to one of the categories in the Mapper Toolbox in Visual Studio
2010, so choose a category that matches where you want the functoid to be placed.

. Some functoids have restrictions as to what types of input they can have. For
instance, a Value Extractor must have a Database Lookup functoid as its first input.
The Database Lookup is actually a functoid category in itself; it just belongs to the
Database group in the Toolbox. This means that how your functoid will be used in a
map may therefore also influence what category you want to choose for it.

. Some categories imply some semantics other than just the two preceding bullets. For
instance, a Logical functoid, as explained earlier, when connected to an output
record determines whether the record should be created. You can therefore not
create a functoid that is in the Logical category and use it to map a value of true or
false to a field.

You can see all the possible values for the functoid category when developing custom func-
toids on the MSDN site at http://msdn.microsoft.com/en-us/library/microsoft.biztalk.base-
functoids.functoidcategory(BTS.70).aspx. Most of them are for internal use only, because
they impose some semantics that you cannot control in your code.

Deployment of Custom Functoids

After developing a functoid, it must be deployed to be used. Deployment of a functoid can
be divided into deployment on a development machine where a developer can then use
the functoid in any maps created and deployment on a server that needs to be able to run
the functoid at runtime.

For a server that needs to execute the functoid at runtime, the assembly containing the
functoid must be put into the Global Assembly Cache (GAC) if the functoid is a referenced
functoid. If the functoid is an inline functoid, no deployment is necessary.

http://msdn.microsoft.com/en-us/library/microsoft.biztalk.base-functoids.functoidcategory(BTS.70).aspx
http://msdn.microsoft.com/en-us/library/microsoft.biztalk.base-functoids.functoidcategory(BTS.70).aspx

158 CHAPTER 3 Maps

For easy deployment, you can add the assembly with the functoid to your BizTalk applica-
tion, which will deploy it along with the rest of the assemblies when the exported MSI
package is installed on the server. To do this, follow these steps:

1. Open the BizTalk Server 2010 Administration Console.

2. Right-click your application and choose Add, Resources.

3. Click Add.

4. Browse your way to the assembly that contains the pipeline component and double-
click it (or click it once and click Open).

5. In the File Type drop-down, choose System.BizTalk:Assembly.

6. Make sure the Add to the Global Assembly Cache on MSI File Install (gacutil)
check box is checked.

7. Click OK.

The final screen should look like Figure 3.39

For deployment to a developer machine, the assembly must be copied into the
<InstallationFolder>\Developer Tools\Mapper Extensions folder. After copying the assem-
bly to this folder, you can add it to the Toolbox in Visual Studio 2010.

FIGURE 3.39 Adding an assembly to your BizTalk application to have it automatically deployed
with the MSI file.

159Building Custom Functoids
3

To deploy the assembly on a development machine for it to be used when developing
maps, you should copy the assembly to the <InstallationFolder>\Developer Tools\Mapper
Extensions folder. This is not strictly required, but it is the easiest way, because your func-
toid will then always be in the Toolbox, no matter how many times the Toolbox is reset.
To add the component to the functoid Toolbox that is available at design time, follow
these steps:

1. Open Visual Studio 2010

2. Go to Tools, Choose Toolbox Items, or right-click the Toolbox and choose
Choose Items.

3. Go to the Functoids pane

4. If the functoid is present in the list, make sure it is checked.

5. If the functoid is not present in the list, click Browse, and browse your way to the
assembly that contains the pipeline component.

If the functoid is placed in the <InstallationFolder>\Developer Tools\Mapper Extensions
folder you can also right-click inside the Toolbox and choose Reset Toolbox. Be aware,
though, that this completely resets the Toolbox, which might not be what you want.

Note that the Toolbox sometimes fails to update itself when new versions of a functoid are
deployed. In this case, you can delete the following four files, which contain Visual Studio
2010s Toolbox setup:

. toolbox.tbd

. toolbox_reset.tbd

. toolboxIndex.tbd

. toolboxIndex_reset.tbd

On Windows Server 2008, using Visual Studio 2010, you can find these under
C:\Users\<User>\AppData\Local\Microsoft\VisualStudio\10.0. For different operating
systems or different installation options, you can search for them. They are hidden files,
so you need to search for those. If you want to script the deletion of the files in a batch
file, you can use the script shown in Listing 3.18 in a batch file.

LISTING 3.18 Script for Deleting Visual Studio 2010 Toolbox Items

@echo off

C:

cd “\Users\<User>\AppData\Local\Microsoft\Visual Studio\10.0”

del toolbox* /AH

pause

If you need to update a functoid that is also in the GAC, you must both update it in the
GAC and in the <InstallationFolder>\Developer Tools\Mapper Extensions folder. This is

160 CHAPTER 3 Maps

because Visual Studio 2010 uses the version in the GAC if present and any updates in the
file system are therefore not used.

Note that overriding the assembly that has been copied to the
<InstallationFolder>\Developer Tools\Mapper Extensions folder is not always possible
because it might be in use by Visual Studio 2010, BizTalk runtime, or some isolated host
like Internet Information Services (IIS). In these cases, you need to restart whatever programs
are locking the assembly before you can copy the new version.

If you are trying to add your functoid to the Toolbox and get an error doing this, the most
common causes are as follows:

. Your resources are not set up correctly, so the name, tooltip, description, and icon
cannot be correctly fetched and used by the Toolbox.

. Your class is not marked public.

. There is an older version of your component in the GAC that is not valid.

If you get a sharing violation when copying your newly compiled assembly to the
<InstallationFolder>\Developer Tools\Mapper Extensions folder, you might consider
writing a script that deploys the new component for you. The script should

. Restart IIS using iisreset. Only needed in your script if you have any receive func-
tionality running in IIS like hosted WCF services, HTTP, SOAP, or others.

. Restart BizTalks Host instance. Only needed if the functoid has been used by BizTalks
runtime. This can be done in a couple of ways:

. By using net stop BTSSvc$BizTalkServerApplication and net start

BTSSvc$BizTalkServerApplication.

. By using PowerShell and doing get-service BTS* | foreach-object -
process {restart-service $_.Name}

. By using WMI. For details about this, refer to http://msdn.microsoft.com/en-
us/library/aa578621(BTS.10).aspx.

. Copy the DLL to the <InstallationFolder>\Developer Tools\Mapper Extensions folder.

. Use gacutil to add the new version to the GAC, like this: ”C:\Program
Files\Microsoft SDKs\Windows\v6.0A\Bin\gacutil.exe” /if NewlyCompiled.DLL

. Delete the Toolbox items, as described earlier, if you are having issues updating
the toolbox.

Visual Studio 2010 should probably be closed first, as well. You can do this a bit faster if
you test your functoid in a Visual Studio 2010 BizTalk project that is the only project in a
test solution. This Visual Studio 2010 will be the only instance of Visual Studio 2010 that
has a lock on the file, and it can be closed and reopened faster than your entire solution.

http://msdn.microsoft.com/en-us/library/aa578621(BTS.10).aspx
http://msdn.microsoft.com/en-us/library/aa578621(BTS.10).aspx

161Building Custom Functoids
3

Debugging

When developing a custom functoid, at some point you will probably want to debug it to
make sure not only that it provides you with the expected output under normal circum-
stances but also to test borderline cases where input might be missing or be in an unex-
pected format. For a functoid that is to be used throughout your company, it is essential
that all other developers can trust on your functoid to behave as expected and give the
expected output under all circumstances.

How to debug a custom functoid depends on whether you have developed a referenced or
an inline functoid.

Common Debugging Options for Inline and Referenced Functoids
The first and obvious way of debugging your custom functoid is to use it in a map and
then validate and test your map from within Visual Studio 2010, checking that no errors
occur and manually inspecting the output to make sure it provides the expected result.

Whether you need to debug a custom referenced or a custom inline functoid, you can and
should leverage the unit testing capabilities of BizTalk maps. This basically enables you to
check all cases the functoid should be able to handle. Because unit testing of maps should
be enabled for all maps even if no custom functoids are present, it is an obvious testing
solution for your custom functoids, as well. Unit testing of maps are explained in the
“Testing” section.

Debugging Referenced Functoids
Debugging a custom referenced functoid can be achieved in different ways. No matter
which way you choose, the functoid must be compiled in Debug mode.

Separate Assembly If the functionality the functoid is to perform is complex, you can
write a separate assembly with the functionality and then a small console application that
uses your assembly or do some standard unit tests on this to make sure the functionality is
as expected. When satisfied with the results, you can wrap the functionality in a functoid
either by copying the code or by referencing the unit-tested assembly.

Runtime Debugging Another way of debugging your functoid is to deploy a map that uses
the functoid and debug it when an instance is sent through BizTalk. Sometimes your func-
toid actually depends on the context it is executed in, and in this case, this is your only
option of debugging it.

When debugging the functoid inside BizTalks runtime, make sure the latest compiled
version is in the GAC and make sure your host instance has been restarted, so it hasn’t
cached a previous version. Inside Visual Studio 2010, set breakpoints in your code wher-
ever you want the code to break and allow you to inspect values and step into code.
When this it done, a few steps are needed to start debugging:

1. Inside Visual Studio 2010, go to Debug, Attach to Process.

162 CHAPTER 3 Maps

2. Choose the BTSNTSvc.exe process.

3. If the BTSNTSvc.exe process is not available, check

. That the host instance is started

. That you have checked Show Processes from All Users and Show Processes
in All Sessions

If multiple instances of the BTSNTSvc.exe process are running, you can stop the host
instance that will be executing the map and notice what PIDs are active and then
start the host instance. The new PID will be the one to attach to. Another option is
to attach to all the BTSNTSvc.exe processes.

4. Click Attach.

5. Send a message through BizTalk

This causes BizTalk to load the functoid at runtime, and your debugging session breaks the
runtime when one of your breakpoints is hit, allowing you to step through the code to
debug your component.

DebugView A third way of debugging your custom referenced functoid is to leverage the
System.Diagnostics namespace, which contains classes called Debug and Trace. In your
code, you can insert statements that leverage these classes to write out either trace or
debug statements, which are then viewable by tools like DebugView, which you can
download from Microsoft’s home page.

Listing 3.19 shows statements for leveraging the Debug and Trace.

LISTING 3.19 Leveraging the Debug and Trace Classes for Debugging

public string Replace(string str, string search, string replace)

{

Trace.WriteLine(“Replace method of \”String Replace\” functoid was

called.”);

Debug.WriteLine(“Parameter str: “ + str);

Debug.WriteLine(“Parameter search: “ + search);

Debug.WriteLine(“Parameter replace: “ + replace);

if (String.IsNullOrEmpty(str))

{

Debug.WriteLine(“First input was null or empty. Returning empty

string.”);

return String.Empty;

}

if (search == null)

{

Debug.WriteLine(“Second parameter was null. Returning first

163Testing of Maps
3

parameter.”);

return str;

}

Trace.WriteLine(“Replace method of \”String Replace\” functoid has

ended.”);

str = str.Replace(search, replace);

Trace.WriteLine(“Replace method will return “ + str);

return str;

}

NOTE

When testing your map from within Visual Studio 2010, DebugView correctly shows any
debug and trace statements you have in your code. When your map is executed at run-
time by BizTalk, however, they are not. To rectify this, you must enable the Capture,
Capture Global Win32 option.

Debugging Inline Functoids
For inline functoids, you do not have the option of attaching to a process and setting
breakpoints allowing you to step through your code because the code is inline in the map
and doesn’t use the assembly you compile.

Also, the option of using the System.Diagnostics namespace and leveraging the Debug
and Trace classes will not work because the System.Diagnostics namespace is not one of
the namespaces you can access from inline scripts.

When developing an inline functoid, it is impossible to know whether the script that is
encoded in the string you output is actually a valid method that can compile. Therefore,
it is often easiest to either develop your functoid as a referenced functoid or to develop
the functionality needed in a separate assembly. Either way, you can debug that as
mentioned earlier in the section about debugging custom referenced functoids, and once
the functionality is as you want it to be, you can create a method that wraps the entire
method in a string.

Testing of Maps
A map performs a transformation from one XML format into another. It is essential that
the output generated is valid given the schema that describes the output, because other-
wise you are sending invalid messages to trading partners and internal systems.

The Mapper helps you generate XSLT that generates valid XML, and it warns you about
certain issues when validating the map or when compiling the project. Ultimately,
however, it is the responsibility of the developer to make sure that the output generated
by a map is valid.

164 CHAPTER 3 Maps

This means that after developing your map you want to test it. Preferably, test all possible
cases the map can get into at runtime. This section walks you through your options for
testing your map.

Validating Maps

First of all, when developing a map, you should validate it. This is done by right-clicking
the map file (.BTM) in Solution Explorer and choosing Validate Map. This will let Visual
Studio 2010 go through the map and check for different kinds of syntactical errors such as
functoids with the wrong number of inputs and other such things. If no errors occur, the
map can be compiled and deployed.

The validation might be successful but with some warnings. If warnings occur, you must
decide whether to ignore them because you know you have handled the issue the warning
is about or whether you must do something about it. A warning that you will probably see
many times is the “Warning btm1004: The destination node ‘NameOfNode’ has multiple
inputs but none of its ancestors is connected to a looping functoid.” Basically, this
warning comes because you have multiple source nodes connected to the same output
node. This can be by design if you are using multiple Value Mapping functoids to do
conditional mapping of values into one node.

TIP

If you want to avoid the warning about multiple inputs to one destination node, you can
use a String Concatenate functoid to concatenate the output of your multiple Value
Mapping functoids and connect that to the output node.

Warnings are there for a reason, so take them seriously and deal with them all. As a
general rule, BizTalk by default does not validate any messages sent out, meaning that
your map really needs to be working well.

TIP

When you validate a map, the output window contains a link to the XSLT that is gener-
ated. This XSLT can be useful in determining why your map doesn’t work. It can
enlighten some of the logic used to build the XSLT and thereby help you build the map
using the right functoids for the job.

Testing Maps

After validating your map, you can test it from within Visual Studio 2010. To test the map,
you need to provide Visual Studio 2010 with a test instance. You can set some properties
on a map file (.BTM) in Solution Explorer to facilitate this. Figure 3.40 shows these, and
they are explained in Table 3.15.

165Testing of Maps
3FIGURE 3.40 The properties you can set on a .BTM file in Solution Explorer.

TABLE 3.15 Properties on .BTM Files for Testing a Map

Property Description

TestMap Input Can be either Generate Instance, XML, or Native. If set to Generate
Instance, Visual Studio 2010 generates an instance of the source schema
for the map and uses that as test instance no matter what the other prop-
erties are set to. If set to XML, Visual Studio 2010 assumes that the
instance you are providing for testing the map is in XML format. If set to
Native, Visual Studio 2010 assumes that the instance you are providing is
in the native format of the source schema. This allows you to use a flat file
or EDI instance as a test instance. Visual Studio 2010 then first converts it
into XML using the appropriate schema and editor extensions and uses the
XML as input.

TestMap Input
Instance

Full path to the file to use as test instance for the map. If the TestMap
Input is set to Generate Instance, this property is ignored.

TestMap Output Can be set to either XML or Native. Determines whether the output of
testing the map should be in XML format or the format that is native for
the destination schema in the map.

TestMap Output
Instance

Full path to where Visual Studio 2010 should write the output of testing the
map. If this is not specified, the output is written to a temporary file. The
full path to the file that is generated is always written in the output window,
giving you access to open it after the test is done.

Validate TestMap
Input

If set to true, the instance that is either generated or read from a file is
validated against the schema before the map is executed. If set to false,
the map is executed without validation.

Validate TestMap
Output

If set to true, the output of the map is validated against the schema for the
output. If set to False, the output is not validated and written to a file as is.

166 CHAPTER 3 Maps

FIGURE 3.41 How to test your map.

TIP

When developing a map, it is useful to set the value of Validate TestMap Output to
False until you are quite sure the map is working. This is because it allows you to test
your map even though it isn’t finished. This way you can build the part of the map
that creates a part of the destination document and test that before starting on the
rest of the map. When satisfied, you can enable the validation and make sure the vali-
dation succeeds.

After setting the properties as you want, you can test the map by right-clicking the .BTM
file and choosing Test Map, as shown in Figure 3.41.

After you choose the Test Map option, Visual Studio 2010 reads the properties on the
.BTM file as specified in Table 3.15 and tests the map. If the test is successful, you get a
link to the generated output in the output window. If the test fails, you receive a list of
errors in the Error List window. A test is considered successful if no exceptions are thrown
during execution and if input and output validation succeeds, if turned on. Exceptions
can occur during execution if the Assert functoid is used or if a functoid actively throws
an exception.

167Testing of Maps
3

FIGURE 3.42 Setting the Script Type Precedence property.

Debugging a Map

If your map does not provide you with the output you need and expect, some debugging
might be in order. BizTalk supplies you with the option to debug your map line for line to
see what happens.

Unfortunately, this functionality does not work for referenced functoids because the
debugger cannot find the right external assemblies at runtime. If you want to debug your
map and you are using functoids, it is therefore a good idea to make sure you are using
the inline versions of all functoids, where possible. The functoids that are shipped with
BizTalk, for instance, often have both an inline implementation and a referenced imple-
mentation. Which implementation to use when a functoid supports multiple implementa-
tions is controlled by the Script Type Precedence property of the Mapper grid. When you
click the ellipsis for that property, you get a small window where you can set the script
type precedence, as shown in Figure 3.42.

Basically, you should get the External Assembly possibility moved to the bottom to make
sure external assemblies are used as a last resort. If you trust that the inline versions of the
functoids is equal to the version that is referenced, you can change the order back after
debugging if you want to.

After setting the Script Type Precedence, you need to set the value of the TestMap Input
Instance property to point to the instance you want to use as input when debugging the
map. You can also specify the TestMap Output Instance if you would like to control the
filename the output is written to.

After setting these properties, you can right-click your .BTM file in Solution Explorer and
choose Debug Map. Visual Studio 2010 then generates the XSLT that is to be debugged
and opens it with a breakpoint already set on the first line. Besides this pane, two other
panes are also opened. The first contains the output, which lets you keep track of the
output that is built while the map is being debugged, and the other is the input XML,

168 CHAPTER 3 Maps

which lets you see which fields in the input XML are currently used to build the output.
You can drag the windows around so that you can see all three panes at the same time.
Figure 3.43 illustrates this.

As you can see in Figure 3.43, three panes are open: the XSLT, the input XML, and the
generated output. As you can also see at the bottom of the figure, you get the watches, as
well, thus enabling you to keep track of the values of the variables and optionally change
the values at debug time to test what will happen. Also, you can set breakpoints and use
F5 (to run until next breakpoint), F10 (to step over the currently active line of code), and
F11 (to step into the currently active line of code), as you are used to doing when debug-
ging .NET code inside Visual Studio 2010.

Unit Testing

After a map is developed, validated, tested, and possibly debugged, you should enable unit
testing of the map. As a matter of fact, many great people insist you should write your
unit tests before even starting developing anything. This is called test-driven development
(TDD). In either case, BizTalk ships with the option to do unit testing on your maps,
which you should leverage, and this section describes this functionality.

The first thing to do is to enable unit testing on the project that contains a map you want
to unit test. To do so, follow these steps:

1. Go to Solution Explorer.

2. Right-click the project that contains the map that is to be unit tested, and choose
Properties.

3. Go to the Deployment pane and enable the Enable Unit Testing property, as shown
in Figure 3.44.

FIGURE 3.43 Debugging a map.

169Testing of Maps
3

FIGURE 3.44 Enabling unit testing on project.

After enabling unit testing on the project, all maps in the project that are compiled will be
inheriting from the TestableMapBase class in the Microsoft.BizTalk.TestTools.Mapper
namespace instead of the normal TransformBase class in the Microsoft.XLANGs.BaseTypes
namespace. The TestableMapBase class actually inherits from TransformBase, so nothing
is lost. What is gained, however, are some methods and properties that can be leveraged
for unit testing.

Next, you should add a test project to your solution. This is done by using the menu in
Visual Studio 2010, where you can click Test, New Test to open the screen shown in
Figure 3.45. In this screen, you can choose to either add the new test to an existing test
project, if one is present in the solution, or create a new Visual C# test project. In addi-
tion, you can choose between four different tests:

. Ordered Test: This gives you a way of orchestrating your tests, deciding what order
they should be performed in.

. Unit Test: This option gives you a class to write your tests in, but some manual
work needs to be done like referencing the right assemblies and so on.

. Basic Unit Test: This option provides an even smaller and simpler version of a unit
test class than the unit test. More to implement yourself.

. Unit Test Wizard: This helps you through some of the choices you must make, like
what maps to test, and then generates the test class for you.

The other five options for adding a new test are not relevant for a BizTalk project.

For your first test project, name your file, choose Unit Test, and click OK. If you already
have a test project, you can decide to add the file to an existing project by selecting it in
the drop-down.

170 CHAPTER 3 Maps

The test project is created for you, and it includes a pretty empty class for your tests. The
class contains some definitions, methods, a constructor, and one method that is really the
one thing to focus on, because this is the one you need to implement.

FIGURE 3.45 Adding a new test to your test project.

So, what you need to do in this method is to implement the unit test of the maps you
want to test in this test class. Remember that you can have as many test classes and test
methods in each test project as you want.

To test a map, you need to reference three different assemblies from your test project:

. The assembly that contains the map: This assembly must have the Enable Unit
Testing property set to True.

. The Microsoft.BizTalk.TestTools assembly: This is found in the .NET pane of the
Add Reference screen.

. The Microsoft XLANG/s Base Types assembly: This is also found in the .NET
pane of the Add Reference screen.

In the project, the XML instances that are to be used for the unit test can also be added. If
you do this, consider marking their Build Action property to None, so they are not
compiled needlessly into the assembly. The instances are not required to be included in the
project, but it gives you a nice way of having everything needed for the test grouped
together.

After adding the project references, you need to implement the test method. Locate the
method in the class file called TestMethod1, and change it to something like the code
shown in Listing 3.20.

171Testing of Maps
3

LISTING 3.20 Sample Test Method for Testing a Map

[TestMethod]

public void TestMapC1702OrderToFineFoodsOrder()

{

string INPUT = testContextInstance.TestDir + @”\..\Order.xml”;

string OUTPUT = testContextInstance.TestDir + @”\..\MappedOrder.xml”;

TestableMapBase map = new Order_to_InternalOrder();

map.ValidateInput = true;

map.ValidateOutput = true;

map.TestMap(INPUT, InputInstanceType.Xml,

OUTPUT, OutputInstanceType.XML);

Assert.IsTrue(File.Exists(OUTPUT), “File does not exist”);

// Read in OUTPUT and check relevant values.

// Compare file with expected output.

}

The two strings INPUT and OUTPUT are declared to contain the path to the input instance
for the map and the path to the output file to write the output to. The functionality
required basically instantiates the map as a TestableMapBase class, which contains the
needed properties and methods for unit testing. Then the properties ValidateInput and
ValidateOutput are set to true. These properties mean the same as the properties you can
set on the .BTM file and will determine whether the TestMap method should validate the
input and output against the respective schemas before and after the map is executed. Any
failures in this validation results in the test failing. Both values are false by default.

For the code to compile, the using statements shown in Listing 3.21 are needed. The
namespaces are as follows:

. Microsoft.VisualStudio.TestTools.UnitTesting: This is the namespace needed to
use the TestClass and TestMethod attributes.

. FineFoods.Customers.FamilyRestaurant: This is the namespace the map is located in,
providing you access to the Order_to_InternalOrder class that is the compiled map.

. Microsoft.BizTalk.TestTools.Mapper: This namespace contains the
TestableMapBase class needed to call methods on the map object.

. Microsoft.BizTalk.TestTools.Schema: This namespace contains the two enumera-
tions used for specifying the type of input and the type of the output for the
TestMap method.

. System.IO: This is used to be able to access the File class that is used to check
whether the output file exists in the assertion that is in the test method.

172 CHAPTER 3 Maps

LISTING 3.21 using Statements Necessary for Code in Listing 3.20

using Microsoft.VisualStudio.TestTools.UnitTesting;

using FineFoods.Customers.C1702;

using Microsoft.BizTalk.TestTools.Mapper;

using System.IO;

using Microsoft.BizTalk.TestTools.Schema;

The code in Listing 3.20 shows just one assertion, which basically asserts that the output
file is created. You might need other assertions, such as comparing the output to an
instance of the expected output or reading in the output file and validating some of the
actual values created.

You should have as many instances as needed to make sure your map can handle all possi-
ble instances correctly. This means you should have plenty of input instances and possibly
plenty of samples of the output.

You can find Microsoft’s description of the unit test features at
http://msdn.microsoft.com/en-us/library/dd224279(BTS.70).aspx.

Summary
A map is a transformation from one XML format into another. It is important that maps
generate valid output, because otherwise you can send invalid XML to customers, trading
partners, internal systems, and others. Because the input to a map can be quite compli-
cated XML with lots of optional fields and even fields that are not optional yet are still
marked as such in the schema, developing a single map that deals with the possible inputs
to the map can present a big challenge. Take care and study the input and output schemas
and determine how to handle all special cases.

Maps are developed in the Mapper, which in turn is converted into XSLT, and you can even
provide your own XSLT instead of that which is generated. BizTalk Server 2010 provides an
all-new Mapper that helps developers get a good overview of the map to keep track of it
and that helps developers change an existing map. The Mapper provides a nice and intu-
itive user interface for building your transformations. It provides functionality to both copy
values directly from the source to the destination and also functoids that provide function-
ality that is performed on the source before it is mapped to the destination.

BizTalk ships with a lot of functoids that you can use as building blocks for the most
common mapping challenges. If you run into either functionality that the built-in func-
toids cannot handle or a combination of functoids you use a lot and want to group
together, you can build your own functoids. Custom functoids have access to the entire
.NET framework for referenced functoids and a subset of the .NET framework for inline
functoids, providing you with the power of expression you need to do almost anything.

http://msdn.microsoft.com/en-us/library/dd224279(BTS.70).aspx

Index

A
ABCs (address, binding, contracts), WCF extensi-

bility, 417

accessing Business Rule Framework API, 618

ACK/NACK, 217

act phase, match-resolve-act cycle, 591

Action Editor, Rule Composer, 513

action order, match-resolve-act cycle, 591-593

activities

data dimension, 450

defining, 447-450

numeric range dimension, 450

adaptation, BizTalk Server, 7-8

adapter handlers

creating, 346-349

deleting, 349

adapter properties, 355

adapter providers, 655-656

adapters

BizTalk Server, 337-340

batches, 343

BizTalk Adapter Pack, 339

configuration, 342-343

direction, 341

host adapters, 339

hosting, 342

line-of-business adapters, 339

message context, 344

message interchange patterns, 341-342

metadata harvesting, 344-345

native adapters, 338-339

push and pull, 341

registering, 345-346

third-party and custom adapters,
339-340

transactions, 344

native adapters. See native adapters

Platform Settings, 684-685

SQL Server adapter, 404-405

SQL Server LoB adapter. See SQL Server
LoB adapter

Add (+), 528

Add Adapter Metadata Wizard, 409-410

Add Policies dialog box, 550

Add Processing Instructions, 267, 276

Add Processing Instructions Text property, 268

Add Signing Certification to Message property,
273

Add XML Declaration property, 268, 277

adding

elements to schemas, 25-27

existing schemas, flat file schemas, 38

new schemas, XML schemas, 24-25

orchestrations, 174

resource files, 292

Adding Processing Instructions Text property,
277

addresses, configuring WCF adapters, 398-399

Administration Console, 669

Applications node, 680

Group Hub view, 678

group properties, 670-671

overview, 669-670

Platform Settings, 681

adapters, 684-685

host instances, 681-683

hosts, 681-682

message boxes, 683-684

servers, 682

policy management, 548-551

Query view, 679-680

Settings Dashboard, 672-677

ADO.NET

DataConnection class, 607-608

DataRow objects, 606-607

DataTable object, 606-607

advanced device programming, BizTalk RFID
Mobile, 790

advanced functoids, 120-122

Advanced Program-to-Program Communication.

See APPC (Advanced Program-to-Program
Communication)

After, 527

Allow Non MIME Message property, 274

Allow Unrecognized Message Property, 266,
279

analysis, 474

AND, 526

antennas, 650-747

APIs, BizTalk BAM, 453-454

APPC (Advanced Program-to-Program
Communication), 7

application adapters, ESB (enterprise service
bus), 642

application configuration, rule deployment, 493

applications, 689-691

adding artifacts to, 704-705

adding assembly resources, 705-707

binding, 698-700

starting, 698-700

Applications node, 680

artifact authorization, 501

artifacts, adding to applications, 704-705

Assemble stage, send pipelines, 261-262

adapters804

assembly names, folder/file organization,
692-693

assembly resources, adding to applications,
705-707

Assert, 121, 531

Atomic, transactions (orchestrations), 238-240

attributes

custom pipeline components, 288-292

properties for, 31-34

auditing business rules database, 502

authenticating messages, MSMQ adapter,
374-375

authorization

artifact authorization, 501

business rules database, 499-502

Auto Scrolling feature, maps, 103

autodiscovery, 734

B
Backup BizTalk Server, 504

backward-chaining, rule engine mechanisms,
595-597

BAM (business activity monitoring), 441, 718

metrics and, 441-442

BAM APIs, 453-454

BAM APIs, tracking, 454-457

barcode support, BizTalk RFID Mobile, 791-792

Batch Memory Threshold, 675

batches, BizTalk adapters, 343

Before, 527

behavior, configuring WCF adapters, 400-401

BehaviorExtensionElement, 425

behaviors, WCF, 420

Between, 527

How can we make this index more useful? Email us at indexes@samspublishing.com

Bind Wizard, 760-765

binding, applications, 698-700

binding files

deploying Visual Studio, 703-704

as resources, 708

bindings

exporting, 356

rule modeling, 496

specifiers, 570

WCF adapters, configuring, 399-400

BizTalk, ESB (enterprise service bus), 645

BizTalk Adapter Pack, 339

BizTalk BAM, 442-444

APIs, 453-454

tracking service metrics, 454-457

database considerations, 461

notification, 460

rapid prototyping, 460-461

real-time versus schedule aggregations,
446-447

REST and, 461

scripting deployment, 462-465

security, 462

TPE (Tracking Profile Editor), 452-453

walkthrough of the process, 444-446

WCF and WF interceptors, 456-459

BizTalk context properties, 648

BizTalk ESB, REST, 661

incorporating, 662

BizTalk Framework, built-in pipeline compo-
nents, 275-276

BizTalk Framework assembler, 276-278

BizTalk Framework disassembler, 278-280

BizTalk Framework assembler, built-in pipeline
components, 276-278

BizTalk Framework disassembler, built-in
pipeline components, 278-280

BizTalk Framework disassembler 805

BizTalk Group, deploying MSI packages,
715-717

BizTAlk message channels, 349

BizTalk native WCF adapters, role of, 388-389

BizTalk operations web service, 660

BizTalk RFID, 723-725

debugging, process hosting model, 773

deployment, 773-777

device applications, 731-732

discovering devices, 734-737

device names, 741

manual device addition, 737-741

running programs, 741-743

EPCGlobal Class 1 Generation 2 tag pro-
gramming model, 749-751

creating SGTIN RFID tags, 752-753

filtering on tags, 753-754

GPIO functionality, 754-756

standard tag encodings, 752

exception handling, 771-773

installing, 727-731

FX7400 device provider, 732-734

integration, 773-777

modifying existing process definitions,
770-771

RFID processes, 756

creating new RFID processes program-
matically, 765-770

creating new with RFID Process Wizard,
760-765

scenario descriptions, 756-760

running your first RFID application, 732

tag operations, 749

vendor extensions and extensibility,
743-747

device configuration, 747-748

BizTalk RFID Mobile, 779

advanced device programming, 790

barcode support, 791-792

connector architecture, 792-793

device applications, 782-787

discovering devices, 789-793

DSPI (desktop device service provider inter-
face), 780

framework, 780-781

installing, 781-782

device provider on MC 3090Z, 788-789

overview, 779-780

remote device management, 796-798

running first application, 787

store-and forward connectivity, 794-795

BizTalk Server, 3, 12-14

adaptation, 7-8

adapters, 337-340

batches, 343

BizTalk Adapter Pack, 339

configuration, 342-343

direction, 341

host adapters, 339

hosting, 342

line-of-business adapters, 339

message context, 344

message interchange patterns, 341-342

metadata harvesting, 344-345

native adapters, 338-339

push and pull, 341

registering, 345-346

third-party and custom adapters,
339-340

transactions, 344

choreography, 9

deployment, 687-689

electronic data interchange, 11

exception handling, 8-9

insight, 10-11

mediation, 8

BizTalk Group806

orchestration, 9

performance and scalability, 9-10

RFID event handling, 11

security, 10

versus WCF (Windows Communication
Foundation), 386-387

BizTalk Server 2010 Configuration Wizard, 515

BizTalk Server 2010 rule engine extensions,
BRF (Business Rules Framework), 511

BizTalk Server Administration Management
Console, 698

BM.EXE tool, 461, 463

Body Part Content Type property, 274

BPEL, building and exporting, 178

BPEL compliancy, orchestrations, 178

BRE (Business Rules Engine), 507

callback mechanisms, 624

BRE resolver, 556-557

breakpoints, debugging (orchestrations),
250-255

BRF (Business Rules Framework), 467

BizTalk Server 2010 rule engine extensions,
511

BRE (Business Rules Engine), 507

BRMS and, 475-476

business rules database, 499

auditing, 502

authorization, 499-502

deployment history, 502

rule database maintenance, 504

tracking configuration, 503

Business Rules Language (BRL), 499

Business Rules Language Converter, 507

business rules mappings, 519-520

composing rule conditions, 525

Facts Explorer, 520

XSD schemas for XML documents,
520-521

How can we make this index more useful? Email us at indexes@samspublishing.com

importance of rules, 468

BRMS, 475-476

business policies, 469

business rule management, 473

business versus executable rules,
472-473

data manipulation, 471

identification and definition, 473

management and retirement, 474

message and process flow, 471

monitoring and measurement, 474

policy externalization, 469-471

policy scenarios, 471

processes and policies, 468-469

refinement and elaboration, 474

storage and publishing, 474

tracking and notification, 471

verification and analysis, 474

workflow, 471-472

.NET types, 523-525

overview, 487-488

policies, 517

Policy class, 507-509

Policy Explorer, 516

naming policies and rules, 516-517

Policy Tester class, 509-510

Pub-Sub Adapter, 504-505

Rule Composer, 512

Action Editor, 513

Condition Editor, 513

Facts Explorer, 512-513

loading rule stores, 513-514

output, 513

Policy Explorer, 512

policy instructions, 513

properties, 513

rule deployment, 489-491

BRF (Business Rules Framework) 807

application configuration, 493

Pub-Sub Adapter, 492

Registry settings, 491-492

Rule Set Deployment Driver settings,
492-493

rule execution, 497-498

rule modeling, 495

rule set model, 495-496

vocabulary model, 496-497

rule set deployment driver, 511

rule set deployment driver components,
507

rule set tracking interceptors, 511

rule sets, 518

rule storage and administration, 488

rule set deployment driver components,
488-489

rule store components, 488

rule store components, 505-506

rule-processing, 482-483

inference and reasoning, 485-487

performance, 484-485

vocabularies, 483-484

rules, 518-519

subscription rule store, 511

BRI resolver, 558

BRL (Business Rules Language), 499, 525, 568

rule actions, creating, 530-531

rule conditions, creating, 526-530

rule engine component configuration

Fact Retriever, 532-533

maximum execution loop depth, 533

translation duration, 533-534

translators, 533

BRM (business rule management), 473

BRMS, BRF (Business Rules Framework) and,
475-476

BTSActionMapping, 408

BufferedEventStream, 453

build servers, MSI exports, 713-715

built-in pipeline components, 263-264

BizTalk Framework, 275-276

BizTalk Framework assembler, 276-278

BizTalk Framework disassembler,
278-280

flat files

flat file assembler, 270-272

flat file disassembler, 269-270

MIME/SMIME decoder, 274-275

MIME/SMIME encoder, 272-273

party resolution, 282

XML components, 264

XML assembler, 267-268

XML disassembler, 264-266

XML validator, 280-282

built-in pipeline templates, custom pipelines,
283-284

built-in pipelines

receive pipelines

PassThruReceive pipeline, 262

XMLReceive pipeline, 262-263

send pipelines

PassThruSend pipelines, 263

XMLTransit send pipeline, 263

business activity monitoring.

See BAM (business activity monitoring)

business metrics, 442

business policies, 469

Business Rule Framework API, accessing, 618

business rule management (BRM), 473

business rules database, 499

auditing, 502

authorization, 499-502

deployment history, 502

rule database maintenance, 504

tracking configuration, 503

BRF (Business Rules Framework)808

Business Rules Framework (BRF). See BRF
(Business Rules Framework)

business rules, incomplete and implicit, 478

Business Rules Language (BRL), 499

Business Rules Language Converter, 507

business rules mappings, BRF (Business Rules
Framework), 519-520

business versus executable rules, 472-473

C
Call Orchestration shape, 191-192

Call Rules orchestration shape, 551-555

Call Rules shape, 555

orchestrations, 192-193

callable orchestrations, 179-180

calling pipelines, orchestrations, 218-219

CallRules Policy Configuration dialog, 551-552

cardinality, flat file schemas, 44

CDATA Section Elements property, 106

centralized management, ESB (enterprise ser-
vice bus), 641

CentralLogger class, 624

change, managing (order processing), 481

channel stacks, WCF extensibility, 416-417

Check Revocation List property, 273-274

choreography, BizTalk Server, 9

CICS (Customer Information Control System), 7

class members, 540

Clear, 531

client side itineraries, 651

clients, InfoPath as a client (Windows Azure
AppFabric), 438

client-side hybrid itineraries, 651

closed-world assumption (CWA), 582

cloud computing styles, 5

How can we make this index more useful? Email us at indexes@samspublishing.com

code listings

Additional Rule, 480

Allow “Duplicate” Matches, 575

Basic Backward-Chaining, 596

Batch File to Development Environment
Deployment, 462-463

Batch File to QA/Production Environment
Deployment, 463

BehaviorExtensionElement, 425

BizTalk Framework Envelope, 275-276

A BizTalk Project Item File, 285

The BizTalk Service Contract, 418

BtsActionMapping Example, 408

C# Code for Getting Output of a Logical
Functoid into a Destination Node, 114

Changing the HttpRequestMessage
Property, 421-422

Class Definition and Constructors After
Introducing the Base
CustomTypeDescriptor Class, 319

Class with Attributes and a
ResourceManager for the Resources, 292

Client Application to Write Events to
Console, 766-767

Conditional Engine Operation Antipattern,
592-593

Conditional SQL Join, 566

Configuration Element, 426

Contents of App_Instances_file, 138

Contents of App_Type_file, 137

Contents of Cross-Referencing Setup File,
137

Contents of IDXRef_Data_file, 138-139

Contents of IDXRef_file, 138

Corrected XML Type Specifiers, 601-602,
604, 605, 610-611

Creating and Testing a Simple Rule Set,
634-635

DebugLevels Enumeration, 300

Decorating a Property with the
Browsable(false) Attribute, 321

code listings 809

Define Fields to be Updated and Which
Data to Use, 459

Deploying a Rule Set, 631-632

Encoded Universal Quantification:
Example 1, 579

Encoded Universal Quantification:
Example 2, 579-580

Encoded Universal Quantification:
Natural Language, 580

Enumerating Device Sources, 745-746

Example of a TestMethod That Performs a
Unit Test of a Pipeline, 333-334

Example of an XML Envelope, 35

Example of InfoPath Processing
Instructions, 36

An Example of the XmlValidator Stream
Class, 316

Example of Using the xpath Function, 181

An Execute Method Leveraging a Custom
Stream Class, 315

Executing a Policy with the Debug Tracking
Interceptor, 620

Executing a Specific Deployed Policy
Version, 619

Executing Policy with Exception Handling,
622

Executing RuleEngine for a Specific Policy
Version, 627

Executing RuleEngine with the Latest
Version of Published Policy, 628

Executing the Latest Deployed Policy
Version, 619

Existential Quantifier, 578

Explicit Condition Representation, 570-576

Explicit Match for Helper Object, 613

Exporting a Rule Set to File, 631

Extending the Needed Base Class Required
to Create a Custom Functoid, 142

Filtering Tags, 753-754

Functoid That Does String Replacement,
145-146

Generating a Functoid That Takes in a
Variable Number of Parameters, 156

How to Call a Receive Pipeline from an
Orchestration, 219

How to Call a Send Pipeline from an
Orchestration, 220

HttpVerbBehavior, 422-423

The IAssemblerComponent Interface for
Custom Pipeline Components, 302

The IBaseComponent Interface for Custom
Pipeline Components, 295-296

The IComponent Interface for Custom
Pipeline Components, 302

The IComponentUI Interface for Custom
Pipeline Components, 293-294

The IDisassemblerComponent Interface for
Custom Pipeline Components, 303

Implementation of a Helper Method to Read
from a Property Bag, 299

Implementation of a Helper Method to Write
to a Property Bag, 299-300

Implementation of Load and Save with
Different Names for Properties in the
Property Bag Than in the Pipeline
Component Class, 301

Implementation of the GetClassID Method
in the IPersistPropertyBag Interface for
Custom Pipeline Components, 298

Implementation of the IBaseComponent
Interface for Custom Pipeline
Components, 296-297

Implementation of the InitNew Method in
the IPersistPropertyBag Interface for
Custom Pipeline Components, 298

Implementation of the Load Method of the
IPersistPropertyBag Interface for a Custom
Pipeline Component, 300

Implementation of the Save Method of the
IPersistPropertyBag Interface for a Custom
Pipeline Component, 300

Implementation of the Validate Method in
the IComponentUI Interface, 294-295

Implicit Condition: Example 1, 576

Implicit Condition: Example 2, 577

code listings810

Implicit Match for Helper Object, 613

Importing a Rule Set from File, 631

Incorrect XML Type Specifiers, 601

Initializing a Custom Logger for
Compensation, 625

Initializing Compensation in a Rule Set, 626

An Inline Functoid That Does String
Replacement, 149-150

Inline Version of the Referenced Functoid
from Listing 3.15, 154-155

Interceptor Definition, 458-459

The IPersistPropertyBag Interface for
Custom Pipeline Components, 297-298

IProbeMessage Interface for Custom
Pipeline Components, 304

Leveraging Existing Pipeline Components
and Adding Logic, 311

Leveraging PipelineUtil to Transfer Context
Between Messages, 314

Leveraging the Debug and Trace Classes for
Debugging, 162-163

A Method Performing String Replacement,
146

Modeling Modus Ponens with a Production
Rule, 571

NaF Using State Machine, 585

Negated Existential Quantification, 581

Negation-as-Failure: Example 1, 581-582

No Duplicate Matches, 574

Normal Code for Transferring Context from
One Message to Another, 313

OR Decomposed in Two Rules, 573

Order-Processing Rule Set, 477

Order-processing Rule Set with Vocabulary,
483-484

A Pipeline Component Enlisting in a
Transaction, 310

A Pipeline Policy File, 285

Pre-Processing Script for Modifying IIS
Application Pool, 711

Procedural Logic, 564

How can we make this index more useful? Email us at indexes@samspublishing.com

Process Definition, 766

Reading Tag Ids, 749

Reading tags from a specific Antenna, 742

Really Fast Implementation of a Custom
Pipeline Component, 323-324

A Referenced Functoid That Does String
Replacement, 147

The ResourceRuleStore Component, 628-
630

Rule Engine Application-Level Configuration,
493

Rule Engine Component Configuration in
BRL, 534

Rule with OR Connective, 573

Sample Code of a Custom Referenced
Cumulative Functoid, 153

Sample Test Method for Testing a Map, 171

Saving the Rule Set to File, 636

Script for Deleting Visual Studio 2010
Toolbox Items, 159, 326

Script for Use by Build Server, 714-715

ServiceTracker Class, Recording a Service
End, 456

ServiceTracker Class, Recording a Service
Start, 455

ServiceTracker Class, Recording an
Exception, 456

Setting Tracking Configuration, 632-633

A Simple Fact Type, 633

SQL SELECT Statement with OR, 574

SQL UNION ALL, 574

State Machine Pattern, 587

Stopping a BizTalk Application with
PowerShell, 714

Strong Negation: Example 1, 583

Strong Negation: Example 2, 584

Strong Negation with Vocabulary, 584

A Typical Service Contract, 417

Undeploying a Rule Set, 632

code listings 811

Undeployment Script for Development
Environment, 464

Undeployment Script for QA/Production
Environment, 464

Universal Quantifier, 578

Using a DateTime to Sleep for 42 Days,
196

Using a TimeSpan to Sleep for 42 Days,
196

Using an XMLDocument Variable to Build a
Message, 185

Using Statements Necessary for Code in
Listing 3.20, 172

Using the BtsPropertyName and
BtsDescription Attributes, 321

Using the exists Operator to Check the
Existence of a Promoted Property, 197

Using the ResourceTracker, 312

Utilizing Vendor Extensions, 743-744

VerbMessageInspector, 423-424

Viewing gpio Ports on a Device, 754-755

What Can Be Done in a Message
Assignment Shape, 202

XLANG/s Script Generated by Call Rule
Shape, 554

XML Example of Debatching Issues, 265

XSLT Example of Doing String Replacement,
150-151

XSLT Generated When a Cumulative
Functoid is Used Two Times in One Map,
152

columns, databases, 541

command line, import/install via command
line, 717-718

commands, raw FTP commands, 363

compensation, transactions (orchestrations),
241-245

compensation handlers, rule API, 624-626

Compensation shape, orchestrations, 193-194

complex schemas, flat file schemas, 46-47

components of ESB (enterprise service bus),
641-642

composing rule conditions, 525

Condition Editor, Rule Composer, 513

Condition Editor, rule conditions, 526-530

conditional creation of output nodes, maps, 135

conditions, creating, 526-530

conditions, production systems (rule engine),
571

configuration

BizTalk adapters, 342-343

port-level configuration, 349-350

configuring

data connections, 608-609

multiple rule stores, 514-515

receive locations, 350-352

send ports, 352-354

WCF adapters, 397

addresses and identity, 398-399

behavior, 400-401

bindings, 399-400

message handling, 402-337

security and credentials, 401-402

conflict resolution, rule engine mechanisms,
594-595

connectives, OR, 573-575

connectivity, store-and forward connectivity,
RFID Mobile, 794-795

connector architecture, BizTalk RFID Mobile,
792-793

Constant Value, 540

Construct Message shape, orchestrations,
194-195

constructors, custom pipeline components,
288-292

Consume Adapter Service Wizard, 410-411

consuming web services, orchestrations,
226-228

Content Transfer Encoding property, 273

continuous discovery, 734

controlling side effects, 615-617

code listings812

conversion functoids, 116

convoys, 234

parallel convoys, 234-235

sequential convoys, 235-236

zombies, 236-237

core services, exposing (ESB Toolkit), 660

correlation type, properties, 233

correlations, orchestrations, 229-233

CreateObject, 529

credentials, configuring WCF adapters, 401-402

cross referencing

database functoids, 119-120

maps, 136-140

cumulative functoids, 117-118, 151

cumulative inline functoids, 154-155

cumulative referenced functoids, 152-153

thread safety, 151-152

cumulative inline functoids, 154-155

cumulative referenced functoids, 152-153

cursors, 95

custom adapters, BizTalk Server, 339-340

custom code, rules, 548

custom disassembler, 61

custom editor extensions, 61

custom functoids, deployment of, 157-160

custom pipeline components, 287-288

attributes, 288-292

constructors, 288-292

debugging, 327-329

deployment, 324-327

error handling, 311-312

implementing, 323-324

interfaces, 292-293

IAssemblerComponent, 302-303

IBaseComponent, 295-297

How can we make this index more useful? Email us at indexes@samspublishing.com

IBaseMessage, 306-307

IBaseMessageContext, 309

IBaseMessageFactory, 306

IBaseMessagePart, 307-308

IBasePropertyBag, 308

IComponent, 301-302

IComponentUI, 293-295

IDisassemblerComponent, 303

IPersistPropertyBag, 297-301

IPipelineContext, 305

IProbeMessage, 303-304

Pipeline Component Wizard, 329

PipelineUtil, 313-314

properties, 317-318

custom property name and description,
318-321

hiding, 321-322

property editor, 318

resources, 288-292

ResourceTracker, 312

streaming, 314-317

transactions, 309-310

wrapping built-in components, 310-311

custom pipelines, 283

built-in pipeline templates, 283-284

creating custom pipeline templates,
284-286

custom property names, 318-321

custom rule store components, rule API,
628-630

custom XSLT, maps, 136

Customer Information Control System. See CICS

CWA (closed-world assumption), 582

CWA 813

D
data connections, 607-608

data connections, facts, 608-609

data dimension, activities, 450

data manipulation, 471

data models, 479

rule engine, 566-567

data types, Mapper, 93

database columns, 541

database functoids, 118

cross referencing, 119-120

databases, 118-119

Database Lookup functoid, maps, 127-129

database tables, 541

databases

BizTalk BAM, 461

database functoids, 118-119

DataConnection, 598

DataConnection class, 607-608

DataRow data, reading, 606-607

DataRow objects, ADO.NET, 606-607

DataTable object, ADO.NET, 606-607

date/time functoids, 115

Day, 529

DayOfWeek, 529

Debug class, orchestrations, 250

debugging

BizTalk RFID, process hosting model, 773

custom pipeline components, 327-329

functoids, 161

DebugView, 162-163

inline and referenced functoids, 161

inline functoid, 163

runtime debugging, 161-162

inline functoid, 163

maps, 167-168

orchestrations, 250

breakpoints, 250-255

Debug and Trace, 250

send out messages, 250

DebugView, debugging functoids, 162-163

Decide shape, orchestrations, 195-196

declarative programming model, 564

declarativity, rules, 564-565

Decode stage, receive pipelines, 259

Default Application Domain for Isolated
Adapter, 673

definition sets, creating, 539

dehydration, orchestrations, 228-229

Delay shape, orchestrations, 196-197

delegates, .NET types, facts, 612

deleting

adapter handlers, 349

files, 326

logical expressions, 530

delimiters, flat file schemas, 41-43

delivery notification, orchestrations, 217-218

Delivery Receipt Address property, 277

Delivery Receipt Address Type property, 277

Delivery Receipt Send by Time property, 277

dependencies of resources, 705-706

deployable packages, 704-706

deploying

bindings, 355-357

MSI packages

to BizTalk Group, 715-717

import/install via command line,
717-718

published rule sets, 631-632

from Visual Studio, 697-698

binding and starting the application,
698-700

binding files, 703-704

edit/debug cycle, 700-702

data connections814

deployment

of BizTalk application, 687-689

BizTalk BAM, 462-465

BizTalk RFID, 773-777

of custom functoids, 157-160

custom pipeline components, 324-327

managing programmatically, rule API,
630-633

order processing (example scenario),
480-481

Rule Composer, 545-546

deployment history, business rules database,
502

deployment properties, setting, 694-696

deployment scripts as resources, 709-711

designing rule sets as state machines, 584-587

Destination Address property, 277

Destination Address Type property, 277

device applications

BizTalk RFID, 731-732

BizTalk RFID Mobile, 782-787

device configuration, vendor extensions and
extensibility (BizTalk RFID), 747-748

device providers, installing on MC 3090Z,
788-789

device sources, enumerating, 745-746

DeviceConnection API, 782

devices

discovering on RFID Mobile, 789-793

discovering with BizTalk RFID, 734-737

device names, 741

manual device addition, 737-741

running programs, 741-743

DirectEventStream, 453

direction, BizTalk adapters, 341

Disassemble stage, receive pipelines, 259-260

disassembler, 61

How can we make this index more useful? Email us at indexes@samspublishing.com

distinguished fields

versus promoted properties, 67-69

property promotion, 63-65

distributed ESBs, 660-661

Divide (/), 528

Document Schema property, 270

Document Schemas property, 266-268, 279

Document Topic property, 278

dot notation, 65

downtime, schemas, 69-71

DSPI (desktop device service provider inter-
face), BizTalk RFID Mobile, 780

duplicate messages, FTP adapter, 362

duplication, rule engine, 575

dynamic ports, WCF adapters, 397

dynamic routing, ESB (enterprise service bus),
641-644

dynamic send ports, 350, 353-355

Windows Azure AppFabric, sending mes-
sages, 436

dynamic transformation, ESB (enterprise service
bus), 641, 644

E
EDI (electronic data interchange), 11

EDI schemas, 60

edit/debug cycle, deploying Visual Studio,
700-702

elaboration, 474

electronic data interchange, BizTalk Server, 11

elements

adding to schemas, 25-27

properties for, 31-34

Enable Encryption property, 273

Encode stage, send pipelines, 262

Encode stage 815

encoding

built-in pipeline components, MIME/SMIME
encoder, 272-273

MIME/SMIME decoder, 274-275

encrypted messages, POP3 adapters, 377

endpoint behavior, creating custom, 422

endpoint creation, 688

ensuring smooth transitions, ESB (enterprise
service bus), 664-665

enterprise resource planning (ERP), 7

enterprise service bus. See ESB (enterprise
service bus)

Enterprise Service Bus Toolkit, 7

enumerating device sources, 745-746

Envelope property, 279

Envelope Schemas property, 267-268, 278

enveloping

flat file schemas, 18

XML schemas, 34-35

EPCGlobal Class 1 Generation 2 tag program-
ming model, BizTalk RFID, 749-751

creating SGTIN RFID tags, 752-753

filtering on tags, 753-754

GPIO functionality, 754-756

standard tag encodings, 752

EQUAL, 527

ERP (enterprise resource planning), 7, 19

error handling custom pipeline components,
311-312

ESB (enterprise service bus), 639-640

adapter providers, 655-656

BizTalk, 645

BizTalk ESB, REST, 661

centralized management, 641

components of, 641-642

defined, 639

distributed ESBs, 660-661

dynamic routing, 643-644

dynamic transformation, 644

ensuring smooth transitions, 664-665

exposing core services, 660

gatekeeper process, 665

itineraries, 650-651

lifecycles, 652-653

specifying, 651-652

magic of, 647-649

message validation, 644-645

message-oriented middleware, 645

messaging backbone, 640-641

messaging-only implementations, 657

monitoring, 663-664

provisioning, 662-663

resolution, 654-655

resolvers, 653-655

runtime environment for services, 641

runtime governance, 662-663

service composition, 656-657

SLA enforcement, 663

SOA, 641

unified exception management, 658-660

versus REST, 661

ESB off-ramps, Windows Azure AppFabric,
436-438

ESB Toolkit, 547-548, 646

history of, 646

policy-driven features, 556-558

ESB Toolkit stack, 649

ESB Web services, 660

event handlers, RFID Server BRE event han-
dlers, 558-559

limitations of RuleEnginePolicyExecutor,
560-561

persistent facts, 559

tracking interception, 560

transient facts, 559

encoding816

event streams, 558

exception handling

BizTalk RFID, 771-773

BizTalk Server, 8-9

ESB (enterprise service bus), 665

orchestrations, 247-249

exception management service, 660

exception message properties, 659-660

exceptions, Policy class (rule API), 621-622

executable rule sets, 482-483

executable rules versus business, 472-473

ExecuteReceivePipeline, 218

ExecuteSendPipeline, 218

Executor, 529

existing XSDs, XML schemas, 20-21

Exists, 528

Export MSI File Wizard, 713

exporting

bindings, 356

to BPEL, 178

MSI files, 712-713

policies, 549

vocabularies, 549

exposing

core services, ESB Toolkit, 660

web services, orchestrations, 221-226

expression editors, Orchestration Designer,
180-181

Expression shape, orchestrations, 197

expressivity, limits of, 567-568

extensibility, WCF. See WCF extensibility

Extensible Stylesheet Language
Transformations. See XSLT

How can we make this index more useful? Email us at indexes@samspublishing.com

F
fact creators, rule sets, 536

fact identity, 611

fact instances, multiple fact instances, 531-532

Fact Retriever, rule engine component configu-
ration, 532-533

fact retrievers, 498, 623

facts, 597

ADO.NET, DataTable and DataRow objects,
606-607

data connections, 607-608

configuring, 608-609

long-term facts, rule API, 623-624

.NET types, 609-611

delegates, 612

fact identity and hash codes, 611

helper code, 612-613

thread safety, 611-612

production systems, rule engine, 569-570

static type members, 613-614

typed fact classes, 597-598

XML data, reading and writing, 602-603

XML documents, 598-599

XML namespaces, 602

XML nodes, 603-605

XML type specifiers, 600-602

XPath properties in Rule Composer, 599-
600

Facts Explorer, 520

Rule Composer, 512-513

XSD schemas for XML documents, 520-521

fault management, ESB (enterprise service
bus), 642

File adapter, 357-358

file renaming, 359

path and file names, 359

polling locked files, 358

File adapter 817

reliable messaging issues, 359

robust exchange, 357-358

security, 360

send handler issues, 360

file names, File adapter, 359

file renaming, File adapter, 359

FileRuleStore, 506

files, deleting, 326

filtering, on tags, 753-754

FindAll, 529

FindFirst, 529

Fine Foods Solution, folder/file organization,
696

FineFoods.Common.Schemas, 81-82

FineFoods.CreditCheck.Schemas, 82

FineFoods.Customers.C1701, 82-83

FineFoods.Customers.C1702, 83-84

FineFoods.Customers.Schemas, 84

FineFoods.Inventory.Schemas, 84

FineFoods.Orders.Schemas, 84-87

FineFoods.PurchaseOrders.Schema, 87

flat file assembler, built-in pipeline components,
270-272

flat file disassembler, built-in pipeline compo-
nents, 269-270

Flat File Schema Wizard, 38, 47-59

changes after, 59

flat file schemas, 36-38

adding existing schemas, 38

creating by hand, 38-39

cardinality, 44

complex schemas, 46-47

defining structure, 39-41

enveloping, 18

localization, 46

setting delimiters, 41-43

tag identifiers, 43-44

value fields, 45-46

flat files, 38

built-in pipeline components

flat file assembler, 270-272

flat file disassembler, 269-270

flow, building, 179

folder and project structure, 691-692

folder/file organization

applying strong names, 693-694

deployment properties, 694-696

Fine Foods Solution, 696

folder and project structure, 691-692

namespaces and assembly names,
692-693

format strings, defining, 541-543

forward-chaining, rule engine mechanisms,
595-597

FTP adapter, 360

duplicate messages, 362

FTP issues, 361

raw FTP commands, 363

secure messaging, 363

staging files in temporary folders, 362-363

functions, rule modeling, 496

functoid categories, 157

functoid combination, maps, 131

if-then-else, 131-132

functoids, 108-110

advanced functoids, 120-122

building custom, 140-141

initial setup, 141-146

inline functoid, 148-151

normal functoid, 146

referenced functoid, 146-148

conversion functoids, 116

cumulative functoids, 117-118, 151

cumulative inline functoids, 154-155

cumulative referenced functoids,
152-153

thread safety, 151-152

File adapter818

database functoids, 118

cross referencing, 119-120

databases, 118-119

date/time functoids, 115

debugging, 161

DebugView, 162-163

inline and referenced functoids, 161

inline functoid, 163

runtime debugging, 161-162

deployment of custom functoids, 157-160

inline functoid, 148-151

logical functoids, 113-115

maps, 99, 102

mathematical functoids, 112-113

normal functoid, 146

properties, 109

scientific functoids, 116-117

string functoids, 111-112

Table Looping, 132-135

third-party functoids, 122

with variable number of inputs, 155-157

XSLT scripting functoids, 130

FX7400 device provider, installing BizTalk RFID,
732-734

G
Generate Delivery Receipt Request property,

278

generating

instances, 74-75

XSDs (XML Schema Definitions), 21

GetHashCode(), 611

governance, ESB (enterprise service bus),
662-663

GPIO functionality, BizTalk RFID, 754-756

How can we make this index more useful? Email us at indexes@samspublishing.com

GreaterThan, 527

GreaterThanEqual, 527

grids, maps, 96-97

Group Hub view, 678

group properties, 670-671

Group shape, orchestrations, 198

H
Halt, 531

hash codes, 611

Header Schema property, 271

helper code, 614

.NET types, 612-613

hiding, properties, custom pipeline components,
321-322

history, of ESB Toolkit, 646

host adapters, BizTalk Server, 339

host instances, Platform Settings, 681-683

hosting

BizTalk adapters, 342

native WCF adapters, 389

hosts, Platform Settings, 681-682

Hour, 529

HTTP adapters, 364

configurations, 366

receive handlers, 364-365

send handlers, 366

HttpRequestMessageProperty, 421-422

HttpVerbBehavior, 422-423

hub-and-spoke integration, 4-5

hub-bus integration, 6

hub-bus integration 819

I-J
IAssemblerComponent, 293, 302-303

IBaseComponent, 292, 295-297

IBaseMessage, 306-307

IBaseMessageContext, 309

IBaseMessageFactory, 306

IBaseMessagePart, 307-308

IBasePropertyBag, 308

IBM WebSphere MQ. See APPC (Advanced
Program-to-Program Communication)

IComponent, 301-302

IComponentUI, 292-295

ICustomTypeDescriptor, 318-321

identification, 473

identity, WCF adapters, configuring, 398-399

IDisassemblerComponent, 293, 303

IEndpointBehavior, 423

IFactRetriever interface, 623

if-then-else, functoid combination (maps),
131-132

implementing custom pipeline components,
323-324

implicit conditions, rule engine, 576-577

importing

metadata files, WCF adapters, 396

MEX endpoints, WCF adapters, 395

MSI packages via command line, 717-718

rule sets, 549

Index functoid, 121

maps, 125-126

Indicate Matches, maps, 100

indirect policy mapping, 478-479

inference, rule-processing, 485-487

InfoPath as a client, Windows Azure AppFabric,
438

infrastructure metrics, 441

inline C# functoid, 150

inline functoid, 148-151

debugging, 161-163

insight, BizTalk Server, 10-11

installing

BizTalk RFID, 727-731

FX7400 device provider, 732-734

BizTalk RFID Mobile, 781-782

device provider on MC 3090Z, 788-789

MSI packages via command line, 717-718

Instance XPath Property, 182

instances

generating, 74-75

validating, 72-74

instances attribute, 617

integration

BizTalk RFID, 773-777

hub-and-spoke integration, 4-5

hub-bus integration, 6

point-to-point integrations, 4-5

interceptors

WCF interceptors, 456-459

WF interceptors, 456-459

interfaces

custom pipeline components, 292-293

IAssemblerComponent, 302-303

IBaseComponent, 295-297

IBaseMessage, 306-307

IBaseMessageContext, 309

IBaseMessageFactory, 306

IBaseMessagePart, 307-308

IBasePropertyBag, 308

IComponent, 301-302

IComponentUI, 293-295

IAssemblerComponent820

IDisassemblerComponent, 303

IPersistPropertyBag, 297-301

IPipelineContext, 305

IProbeMessage, 303-304

ICustomTypeDescriptor, 318-321

Internal Message Queue Size, 675

internal schemas, 18-19

IPersistPropertyBag, 293, 297-301

IPipelineContext, 305

IPipelineContext interface, 454

IProbeMessage, 293, 303-304

Iteration functoid, 121

itineraries, 649-651

lifecyles of, 652-653

specifying, 651-652

ItineraryHeader, 651

K
Kawasaki, Burley, xxii

L
large orchestrations, 180

Legacy Whitespace Behavior, 673

LessThan, 527

LessThanEqual, 527

lifecycle management, ESB (enterprise service
bus), 642

lifecyles, of itineraries, 652-653

Limit to Trigger GC, 675

limitations of RuleEnginePolicyExecutor,
560-561

limits of expressivity, rules, 567-568

How can we make this index more useful? Email us at indexes@samspublishing.com

line-of-business adapters, BizTalk Server, 339

links

Mapper, 100-101

maps, 99, 102

properties, 106

Listen shape, orchestrations, 199-200

LLRP (Low Level Reader Protocol), 780

Load, 301

loading rule stores, Rule Composer, 513-514

localization, flat file schemas, 46

LogException(), 624

logical expressions

deleting, 530

moving, 530

logical functoids, 113-115

long-running transactions, 240-241

long-term facts, rule API, 623-624

Loop shape, orchestrations, 200-201

Looping functoid, 121

maps, 123-124

Low Level Reader Protocol (LLRP), 780

M
management, 474

managing change, order processing (example
scenario), 481

Mapper, 90-91

cardinality, 93-94

considerations for, 92-93

cardinality, 93-94

data types, 93

creating simple maps, 94-108

layout of, 90-92

links, 100-101

relevance tree view, 99

Mapper 821

mapping optional fields, maps, 123

mapping SharePoint columns, (WSS adapter),
383

mappings, business rules mappings, 519-520

maps, 89-90

Auto Scrolling feature, 103

conditional creation of output nodes, 135

creating separated lists, 132

creating simple maps, 94-108

cross referencing, 136-140

custom XSLT, 136

Database Lookup functoid, 127-129

debugging, 167-168

functoid combination, 131

if-then-else, 131-132

functoids, 99, 102

grids, 96-97

Index functoid, 125-126

Indicate Matches, 100

links, 99, 102

Looping functoid, 123-124

mapping optional fields, 123

messages, orchestrations, 186

properties, 105

schemas, 94-95

Scripting functoid, 129-130

search feature, 97-98

Table Looping functoid, 132-135

testing, 163-166

unit testing, 168-172

validating, 164

XSDs (XML Schema Definitions), 103

zoom feature, 97-98

Mass Copy, 121

Match, 528

match phase, match-resolve-act cycle, 590

match-resolve-act cycle, rule engine mecha-
nisms, 590

act phase, 591

action order, 591-593

match phase, 590

resolve phase, 590-591

mathematical functoids, 112-113

Maximum Engine Threads, 673

maximum execution loop depth, rule engine
component configuration, 533

MC 3090Z, installing on device providers,
788-789

measurement, 474

mediation, BizTalk Server, 8

Memory Usage, 675

Message, WCF extensibility, 418-419

Message Assignment shape, orchestrations,
201-203

message boxes, Platform Settings, 683-684

message context, BizTalk adapters, 344

Message Count in DB, 675

message flow, 471

message handling, configuring WCF adapters,
402

message interchange patterns, BizTalk
adapters, 341-342

Message Time to Live property, 278

message validation, ESB (enterprise service
bus), 641, 644-645

message-oriented middleware, ESB (enterprise
service bus), 641, 645

messages

authenticating, MSMQ adapter, 374-375

custom disassembler, 61

custom editor extensions, 61

encrypted messages, POP3 adapters, 377

orchestrations, 182

creating new, 185

defining messages, 182-183

mapping optional fields822

maps, 186

multipart, 184-185

.NET helper class, 186

resources, 186

restrictions on message types, 183-184

pass-through pipeline, 60-61

receiving, Windows Azure AppFabric,
433-434

securing MSMQ adapter, 374-375

sending, Windows Azure AppFabric, 434

third-party components, 61

messaging backbone, ESB (enterprise service
bus), 640-641

messaging-only implementations, ESB (enter-
prise service bus), 657

messaging-only solutions, 173

metadata, 687

metadata envelope properties, 650

metadata files, importing WCF adapters, 396

metadata harvesting

BizTalk adapters, 344-345

SQL Server LoB adapter, 409-411

Metadata source page, 395

metrics, BAM (business activity monitoring) and,
441-442

MEX endpoints, importing WCF adapters, 395

Microsoft BizTalk Server 2010. See BizTalk
Server

MIME/SMIME decoder, built-in pipeline compo-
nents, 274-275

MIME/SMIME encoder, built-in pipeline compo-
nents, 272-273

Minute, 529

modifying existing process definitions, BizTalk
RFID, 770-771

monitoring, 474

ESB (enterprise service bus), 642, 663-664

Month, 529

How can we make this index more useful? Email us at indexes@samspublishing.com

Move Tracking Data to DTA DB, 672

moving logical expressions, 530

MQ Series adapter, 367

managing queues, 369-370

MQSAgent, 370

receive handlers, 368-369

send handlers, 369

MQSAgent, 370

MSI exports, build servers, 713-715

MSI files, exporting, 712-713

MSI packages, deploying

to BizTalk Group, 715-717

import/install via command line, 717-718

MSMQ adapter, 370

authenticating and securing messages,
374-375

receive handlers, 371-372

send handlers, 372-374

mso-application, 36

mso-infoPath-file-attachment-present, 36

mso-infoPathSolution, 36

multipart, orchestrations, 184-185

Multiply (*), 528

N
NaF (negation-as-failure). See negation-as-

failure

names, applying strong names, 693-694

namespaces

folder/file organization, 692-693

XML namespaces, facts, 602

naming conventions, ESB (enterprise service
bus), 665

naming policies and rules, Policy Explorer,
516-517

naming policies and rules 823

native adapters, 337, 357

BizTalk Server, 338-339

File adapter, 357-358

file renaming, 359

path and file names, 359

polling locked files, 358

reliable messaging issues, 359

robust exchange, 357-358

security, 360

send handler issues, 360

FTP adapter, 360

duplicate messages, 362

FTP issues, 361

raw FTP commands, 363

secure messaging, 363

staging files in temporary folders,
362-363

HTTP adapters. See HTTP adapters

MQ Series adapter, 367

managing queues, 369-370

MQSAgent, 370

receive handlers, 368-369

send handlers, 369

MSMQ adapter, 370

authenticating and securing messages,
374-375

receive handlers, 371-372

send handlers, 372-374

POP3 adapters, 375

encrypted messages, 377

receive handlers, 376-377

SMTP adapters, 377

send handlers, 378-379

SOAP adapters, 383-384

WCF adapters, 384

hosting, 389

Windows Communication Foundation,
385-386

WSS (Windows SharePoint Services)
adapter, 379-380

mapping SharePoint columns, 383

receive handlers, 380-381

send handlers, 381-383

negation-as-failure, rule patterns, 581-583

.NET Assemblies, 524-525

.NET assemblies, 687

.NET class, 540

.NET CLR tab, 676

.NET Framework, 12-14

.NET helper class, messages (orchestrations),
186

.NET types, 523-525

action order, 591

facts, 609-611

delegates, 612

fact identity and hash codes, 611

helper code, 612-613

thread safety, 611-612

restrictions, 609

Rule Composer, restrictions, 610

situated reasoning, 588

Nil Value, 121

normal functoid, 146

NOT, 526

NotEqual, 527

notification, 471

BizTalk BAM, 460

SQL Server LoB adapter, 405-407

numeric range dimension, activities, 450

O
Object Management Group (OMG), Semantics of

Business Vocabulary and Business Rules
(SBVR), 473

native adapters824

OleDbRuleStore, 505

one-way receive, 341

one-way send, 341

on-ramp services, 660

OnTriggerPull property, 786

operations, performing via send handlers, SQL
Server LoB adapter, 407-408

optimizing rule sets, 615

controlling side effects, 615-617

Rete algorithm, 617-618

OR, 526

OR connectives, 573-575

orchestration, BizTalk Server, 9

Orchestration Debugger, 250-255

Orchestration Designer, 175

expression editors, 180-181

Orchestration Throttling, 676

Orchestration View, 175-176

OrchestrationEventStream, 454

orchestrations, 173-174, 657

adding, 174

building, 178

BPEL, building and exporting to, 178

BPEL compliancy, 178

callable orchestrations, 179-180

expression editors, 180-181

flow, 179

large orchestrations, 180

xpath functions, 181-182

calling pipelines, 218-219

convoys. See convoys

correlations, 229-233

debugging, 250

breakpoints, 250-255

Debug and Trace, 250

send out messages, 250

defining, 177-178

How can we make this index more useful? Email us at indexes@samspublishing.com

dehydration, 228-229

delivery notification, 217-218

exception handling, 247-249

messages, 182

creating new, 185

defining, 182-183

maps, 186

multipart, 184-185

.NET helper class, 186

resources, 186

restrictions on message types, 183-184

persistence points, 246-247

properties, 176-177

receive pipelines, 219-220

rehydration, 228-229

retries, 217-218

send pipelines, 220-221

shapes, 188

Call Orchestration shape, 191-192

Call Rules shape, 192-193

Compensation shape, 193-194

Construct Message shape, 194-195

Decide shape, 195-196

Delay shape, 196-197

Expression shape, 197

Group shape, 198

Listen shape, 199-200

Loop shape, 200-201

Message Assignment shape, 201-203

Parallel Actions shape, 198-199

Port shape, 203-207

Receive shape, 209-210

role links, 210-211

Scope shape, 189-191

Send shape, 212

Start Orchestration shape, 207-209

Suspend shape, 212-213

orchestrations 825

Terminate shape, 213

Throw Exception shape, 213-214

Transform shape, 214-217

transactions, 237-238

Atomic, 238-240

compensation, 241-245

long-running transactions, 240-241

variables, 186-188

web services

consuming, 226-228

exposing, 221-226

orchestrations, publishing (WCF Service
Publishing Wizard), 392

order processing (example scenario), 476-477

data models, 479

deployment, 480-481

incomplete and implicit business rules, 478

indirect policy mapping, 478-479

managing change, 481

priority, 479

programmatic bindings, 479

publishing, 480-481

refactoring, 480

technical policy, 479

testing, 480-481

traceability, 479

output, Rule Composer, 513

output, tracking (Rule Composer), 537

P
Parallel Actions shape, orchestrations, 198-199

parallel convoys, 234-235

Parser Optimization, 47

party resolution, built-in pipeline components,
282

pass-through pipeline, 60-61

PassThruReceive pipeline, built-in receive
pipelines, 262

PassThruSend pipelines, 263

path names, File adapter, 359

performance, 9-10

rule-processing, 484-485

persistence points, orchestrations, 246-247

persistent facts, RFID Server BRE event han-
dlers, 559

Pipeline Component Wizard, 329

pipeline tools, 81

testing, 80-81

pipeline.exe, 330-331

pipelines, 257

built-in pipeline components. See built-in
pipeline components

built-in pipelines, receive pipelines, 262-263

calling, orchestrations, 218-219

custom pipeline components. See custom
pipeline components

custom pipelines, 283

built-in pipeline templates, 283-284

creating custom pipeline templates,
284-286

receive pipelines

Decode stage, 259

Disassemble stage, 259-260

orchestrations, 219-220

ResolveParty stage, 260-261

stages, 259

Validate stage, 260

send pipelines

Assemble stage, 261-262

Encode stage, 262

orchestrations, 220-221

Pre-Assemble stage, 261

stages, 261

orchestrations826

stages, 258-259

testing, 330

pipeline.exe, 330-331

unit testing, 331-334

Platform Settings, Administration Console, 681

adapters, 684-685

host instances, 681-683

hosts, 681-682

message boxes, 683-684

servers, 682

point-to-point integrations, 4-5

policies, 468-469, 517

creating, 517

exporting, 549

tracking, 550

Policy class

BRF (Business Rules Framework), 507-509

rule API, 618-619

exceptions, 621-622

tracking interceptors, 620-621

Policy Explorer

BRF (Business Rules Framework), 516

naming policies and rules, 516-517

Rule Composer, 512

policy externalization, 469-471

Policy helper, 612

policy instructions, Rule Composer, 513

policy management, Administration Console,
548-551

policy mapping, indirect policy mapping,
478-479

policy scenarios, 471

Policy Tester class, BRF (Business Rules
Framework), 509-510

policy-driven features, ESB Toolkit, 556-558

policy-driven security, ESB (enterprise service
bus), 642

polling, SQL Server LoB adapter, 405-407

How can we make this index more useful? Email us at indexes@samspublishing.com

Polling Intervals, 674

polling locked files, File adapter, 358

POP3 adapters, 375

encrypted messages, 377

receive handlers, 376-377

Port shape, orchestrations, 203-207

port-level configuration, 349-350

configuring

receive locations, 350-352

send ports, 352-354

Power, 528

PowerShell, stopping BizTalk applications, 714

Pre-Assemble stage, send pipelines, 261

predicates, 496

pre/post-processing script operating mode, 710

environment variables for, 710

Preserve Byte Order Mark property, 268, 272

priority, order processing (example scenario),
479

process flow, 471

process hosting model, debugging BizTalk RFID,
773

processes, 468-469

Processing Instruction Scope property, 268

processing instructions, XML schemas, 35-36

production systems, rule engine, 568-569

conditions, 571

facts, 569-570

productions, 570-571

universe of discourse, 569

productions, production systems (rule engine),
570-571

programmatic bindings, 479

programmatic models, rule engine, 567

progress dimension, 450

promoted properties

versus distinguished fields, 67-69

property promotion, 65-66

promoted properties 827

properties

adapter properties, 355

Add Processing Instructions, 267, 276

Add Processing Instructions Text property,
268

Add Signing Certification to Message prop-
erty, 273

Add XML Declaration property, 268, 277

Adding Processing Instructions Text prop-
erty, 277

Allow Non MIME Message property, 274

Allow Unrecognized Message Property,
266, 279

for attributes, 31-34

BizTalk context properties, 648

CDATA Section Elements property, 106

Check Revocation List property, 273-274

Content Transfer Encoding property, 273

correlation type, 233

custom pipeline components, 317-318

custom property name and description,
318-321

hiding, 321-322

property editor, 318

Delivery Receipt Address property, 277

Delivery Receipt Address Type property, 277

Delivery Receipt Send by Time property,
277

Destination Address property, 277

Destination Address Type property, 277

Document Schema property, 270

Document Schemas property, 266, 268,
279

Document Topic property, 278

for elements, 31-34

Enable Encryption property, 273

Envelope property, 279

Envelope Schemas property, 266, 268, 278

exception message properties, 659-660

functoids, 109

Generate Delivery Receipt Request property,
278

group properties, 670-671

Header Schema property, 271

HttpRequestMessageProperty, 421-422

links, 106

maps, 105

Message Time to Live property, 278

metadata envelope properties, 650

OnTriggerPull property, 786

orchestrations, 176-177

Preserve Byte Order Mark property,
268, 272

Processing Instruction Scope property, 268

Receive shape, 209-210

for records, 31-32

Recoverable Interchange Processing prop-
erty, 266, 282

flat files, 270

Resolve Party by Certificate property, 282

Rule Composer, 513

schemas, 17-18

for scopes marked as Atomic, 239

Send Body Part as Attachment property,
273

Send shape, 212

Signature Type property, 273

Source Address property, 278

Target Charset property, 268, 272, 278

for testing maps, 165

Trailer Schema property, 272

flat files, 270

undocumented properties for XML
schemas, 29-31

Validate Document Structure property,
266, 279

flat files, 270

properties828

for variables, orchestrations, 187

Visual Studio 2010 Project Item, 107-108

XML schemas, 27-29

XSD schemas, 18

properties of nodes in schemas, 27

property demotion, property promotion, 66-67

property editor, custom pipeline components,
318

property promotion, 61-63

distinguished fields, 63-65

promoted properties, 65-66

property demotion, 66-67

PropertyProfile, 747

protocol and security mediation, ESB (enterprise
service bus), 641

prototyping BizTalk BAM, 460-461

provisioning ESB (enterprise service bus),
662-663

published rule sets, deploying, 631-632

publishing, 474

orchestrations, WCF Service Publishing
Wizard, 392

order processing (example scenario),
480-481

Rule Composer, 545-546

schemas, WCF Service Publishing Wizard,
392-394

Pub-Sub Adapter

BRF (Business Rules Framework), 504-505

rule deployment, 492

pub-sub model, 6

push and pull, BizTalk adapters, 341

Q
quantification, rule patterns, 577-581

Query view, 679-680

queues, MQ Series adapter, 369-370

How can we make this index more useful? Email us at indexes@samspublishing.com

R
radio frequency identification. See RFID (radio

frequency identification)

Range, 527

Range of Value, 540

Rate-Based Throttling, 675

raw FTP commands, FTP adapter, 363

reading

DataRow data, 606-607

XML data, 602-603

ReadOnlySeekableStream, 317

real-time aggregations versus scheduled aggre-
gations, BizTalk BAM, 446-447

reasoning, rule-processing, 485-487

receive handlers

HTTP adapters, 364-365

MQ Series adapter, 368-369

MSMQ adapter, 371-372

POP3 adapters, 376-377

WSS (Windows SharePoint Services)
adapter, 380-381

receive locations

configuring, 350-352

receive pipelines

built-in pipelines

PassThruReceive pipeline, 262

XMLReceive pipeline, 262-263

orchestrations, 219-220

stages, 259

Decode stage, 259

Disassemble stage, 259-260

ResolveParty stage, 260-261

Validate stage, 260

Receive shape

orchestrations, 209-210

properties, 209-210

Receive shape 829

receiving messages, Windows Azure AppFabric,
433-434

Record Count functoid, 121

records, properties for, 31-32

Recoverable Interchange Processing property,
266, 282

flat files, 270

recursive processing, rules, 565-566

refactoring, order processing (example sce-
nario), 480

referenced functoid, 146-148

debugging, 161

refinement, 474

registering BizTalk adapters, 345-346

Registry, ESB (enterprise service bus), 642

Registry settings, rule deployment, 491-492

rehydration, orchestrations, 228-229

relational data models versus XML, 598

relevance tree view, Mapper, 99

Remainder (%), 528

remote device management, BizTalk RFID
Mobile, 796-798

Remote Update (RU), 490

renaming files, File adapter, 359

repository, ESB (enterprise service bus), 642

Representational State Transfer. See REST
(Representational State Transfer)

request-response, 341

resolution, 654-655

Resolution fact object, 557

Resolve Party by Certificate property, 282

resolve phase, match-resolve-act cycle, 590-591

ResolveParty stage, receive pipelines, 260-261

Resolver service, 660

resolvers, 653-655

resource files, adding, 292

Resource-Based Throttling, 674

resources, 707

binding files as, 708

custom pipeline components, 288-292

dependencies of, 705-706

deployment scripts as, 709-711

messages, orchestrations, 186

ResourceTracker, custom pipeline components,
312

Response Timeout in Minutes, 673

REST

BAM and, 461

BizTalk ESB, 661

incorporating, 662

versus ESB, 661

REST (Representational State Transfer), 461

Restart Host Instances flag, 697

restrictions

on messages, orchestrations, 183-184

.NET types, 609

Rete algorithm

optimizing, 617-618

rule engine mechanisms, 593-594

retirement, 474

Retract, 531

RetractByType, 531

retries, orchestrations, 217-218

REU (Rule Engine Update), 489-491, 618

troubleshooting, 493-494

RFID (radio frequency identification), 723-724

framework, 725-727

installing, 725-727

overview, 724-725

RFID event handling, 11

RFID Process Wizard, 760-765

RFID processes, 723, 756

creating new RFID processes programmati-
cally, 765-770

receiving messages830

creating new with RFID Process Wizard,
760-765

scenario descriptions, 756-760

RFID Server, 548

RFID Server BRE event handlers, 558-559

limitations of RuleEnginePolicyExecutor,
560-561

persistent facts, 559

tracking interception, 560

transient facts, 559

role

of BizTalk native WCF adapters, 388-389

of WCF adapters, 340

role links, orchestrations, 210-211

ROM (Rule Object Model), 525

routing slips. See itineraries

RU (Remote Update), 490

rule actions, creating, 530-531

rule API

compensation handlers, 624-626

creating rules programmatically, 633-636

custom rule store components, 628-630

long-term facts, 623-624

managing deployment programmatically,
630-633

Policy class, 618-619

exceptions, 621-622

tracking interceptors, 620-621

RuleEngine class, 627-628

Rule Composer, 512

Action Editor, 513

Condition Editor, 513

deployment, 545-546

Facts Explorer, 512-513

loading rule stores, 513-514

How can we make this index more useful? Email us at indexes@samspublishing.com

.NET types, 523-525

restrictions, 610

output, 513

Policy Explorer, 512

policy instructions, 513

properties, 513

publishing, 545-546

tracking output, 537

XPath properties, 599-600

XPaths, 602

Rule Composer, composing rule conditions, 525

rule conditions

composing, 525

creating, 526-530

rule database maintenance, business rules
database, 504

rule deployment, 487, 489-491

application configuration, 493

Pub-Sub Adapter, 492

Registry settings, 491-492

Rule Set Deployment Driver settings,
492-493

rule engine

data models, 566-567

duplication, 575

implicit conditions, 576-577

production systems, 568-569

conditions, 571

facts, 569-570

productions, 570-571

universe of discourse, 569

programmatic models, 567

rule engine component configuration

Fact Retriever, 532-533

maximum execution loop depth, 533

translation duration, 533-534

translators, 533

rule engine component configuration 831

rule engine mechanisms

backward-chaining, 595-597

conflict resolution, 594-595

forward-chaining, 595-597

match-resolve-act cycle, 590

act phase, 591

action order, 591-593

match phase, 590

resolve phase, 590-591

Rete algorithm, 593-594

working memory, 589-590

Rule Engine Update. See REU (Rule Engine
Update)

rule engines, 485

rule execution, 488, 497-498

rule modeling, 488, 495

rule set model, 495-496

vocabulary model, 496-497

Rule Object Model (ROM), 525

rule patterns

designing rule sets as state machines,
584-587

negation-as-failure, 581-583

quantification, 577-581

situated reasoning, 587-589

strong negation, 583-584

rule prioritization, 532

rule set deployment driver, 511

rule set deployment driver components,
488-489, 507

Rule Set Deployment Driver settings, 492-493

rule set model, rule modeling, 495-496

rule set tracking interceptors, 498, 511

rule sets

BRF (Business Rules Framework), 518

designing as state machines, 584-587

importing, 549

optimizing, 615

controlling side effects, 615-617

Rete algorithm, 617-618

testing, 534-535

fact creators, 536

vocabularies, 538-539

rule storage and administration, 487-488

rule set deployment driver components,
488-489

rule store components, 488

rule store components, 488, 505-506

rule stores

configuring multiples, 514-515

loading, 513-514

rule vocabularies and policies, 719

rule-based applications, 498

RuleEngine class, rule API, 627-628

RuleEngine objects, 497

RuleEnginePolicyExecutor, limitations of,
560-561

rule-processing, 482-483, 563

inference and reasoning, 485-487

performance, 484-485

vocabularies, 483-484

rule-processing technologies, 636

rules, 518-519

creating programmatically, rule API, 633-636

custom code, 548

declarativity, 564-565

examples, Order processing. See order pro-
cessing (example scenario)

importance of, 468

BRMS, 475-476

business policies, 469

business rule management (BRM), 473

business versus executable rules,
472-473

rule engine mechanisms832

data manipulation, 471

identification and definition, 473

management and retirement, 474

message and process flow, 471

monitoring and measurement, 474

policy externalization, 469-471

policy scenarios, 471

processes and policies, 468-469

refinement and elaboration, 474

storage and publishing, 474

tracking and notification, 471

verification and analysis, 474

workflow, 471-472

limits of expressivity, 567-568

recursive processing, 565-566

set-based programming, 565

Rules Engine Deployment Wizard, 511,
546-471

rules engine, ESB (enterprise service bus), 642

RuleSetInfoCollection, 628

runtime debugging, functoids, 161-162

runtime environment for services, ESB (enter-
prise service bus), 641

runtime governance, ESB (enterprise service
bus), 662-663

S
Save method, 300

SBVR (Semantics of Business Vocabulary and
Business Rules, 473

scalability, 9-10

scheduled aggregations, versus real-time,
BizTalk BAM, 446-447

Schema Editor, creating XSDs (XML Schema
Definitions), 22

schema elements, XSDs (XML Schema
Definitions), 23

How can we make this index more useful? Email us at indexes@samspublishing.com

schemas, 15-16

EDI schemas, 60

FineFoods.Common.Schemas, 81-82

FineFoods.CreditCheck.Schemas, 82

FineFoods.Customers.C1701, 82-83

FineFoods.Customers.C1702, 83-84

FineFoods.Customers.Schemas, 84

FineFoods.Inventory.Schemas, 84

FineFoods.Orders.Schemas, 84-87

FineFoods.PurchaseOrders.Schema, 87

flat file schemas. See flat file schemas

internal schemas, 18-19

maps, 94-95

properties, 17-18

publishing, WCF Service Publishing Wizard,
392-394

SQL Server database schemas, 522-523

unit testing, 75-80

validating, 71-72

versioning, 69

transactions and downtime, 69-71

XML schemas. See XML schemas

existing XSDs, 20-21

generating XSDs, 21

XSD schemas, 520-521

XSDs (XML Schema Definitions), 16-17

scientific functoids, 116-117

Scope shape, orchestrations, 189-191

scripting deployment, BizTalk BAM, 462-465

Scripting functoid, 122

maps, 129-130

SDK

SQL Server LoB adapter, 404

Windows Azure AppFabric, 432

search feature, maps, 97-98

Second, 529

secure messaging, FTP adapter, 363

secure messaging 833

securing messages, MSMQ adapter, 374-375

security

BizTalk BAM, 462

BizTalk Server, 10

File adapter, 360

WCF adapters, configuring, 401-402

selectivity attribute, 617

Semantics of Business Vocabulary and Business
Rules (SBVR), 473

Send Body Part as Attachment property, 273

send handlers

File adapter, 360

HTTP adapters, 366

MQ Series adapter, 369

MSMQ adapter, 372-374

SMTP adapters, 378-379

SQL Server LoB adapter, 407-408

WCF adapters, 394-395

dynamic ports, 397

importing metadata files, 396

importing MEX endpoints, 395

WSS (Windows SharePoint Services)
adapter, 381-383

send pipelines

built-in pipelines

PassThruSend pipelines, 263

XMLTransit send pipeline, 263

orchestrations, 220-221

stages, 261

Assemble stage, 261-262

Encode stage, 262

Pre-Assemble stage, 261

send ports

configuring, 352-354

dynamic send ports, 353-355

Send shape

orchestrations, 212

properties, 212

sending messages, Windows Azure AppFabric,
434

separated lists, maps, 132

sequential convoys, 235-236

server side itineraries, 651

servers, Platform Settings, 682

service choreography, 9

service composition, ESB (enterprise service
bus), 656-657

service level agreement (SLA) support, ESB
(enterprise service bus), 642

service metrics, 442

tracking with BAM APIs, 454-457

service orchestration, ESB (enterprise service
bus), 642

ServiceContract, WCF extensibility, 418-420

ServiceName, 651

ServiceState, 651

Set of Values, 540

set-based programming, rules, 565

Settings Dashboard, 672-677

SGTIN (Serialized Global Trade Identification
Number), 752-753

SGTIN RFID tags, creating, 752-753

shapes, orchestrations, 188

Call Orchestration shape, 191-192

Call Rules shape, 192-193

Compensation shape, 193-194

Construct Message shape, 194-195

Decide shape, 195-196

Delay shape, 196-197

Expression shape, 197

Group shape, 198

Listen shape, 199-200

Loop shape, 200-201

Message Assignment shape, 201-203

Parallel Actions shape, 198-199

Port shape, 203-207

Receive shape, 209-210

securing messages834

role links, 210-211

Scope shape, 189-191

Send shape, 212

Start Orchestration shape, 207-209

Suspend shape, 212-213

Terminate shape, 213

Throw Exception shape, 213-214

Transform shape, 214-217

SharePoint columns, mapping (WSS adapter),
383

sharing violations, 160

short-circuiting, 571-572

Show Performance Counters, 674

side effects, controlling, 615-617

side effects flag, 615-617

Signature Type property, 273

situated reasoning, rule patterns, 587-589

SLA enforcement, 663

SMTP adapters, 377

send handlers, 378-379

SNA (System Network Architecture), 7

SOA, ESB (enterprise service bus), 641

SOAP adapters, 383-384

solicit response, 342

solution architectures, 10

Solution Explorer, 691

Source Address property, 278

specifiers, XML specifiers (facts), 600-602

Spool Multiplier, 675

SQL cursors, 566

SQL Server adapter, 404-405

SQL Server database schemas, 522-523

SQL Server LoB adapter, 404

metadata harvesting, 409-411

performing operations via send handlers,
407-408

polling and notification, 405-407

How can we make this index more useful? Email us at indexes@samspublishing.com

SDK, 404

WCF LoB framework, 404

SqlRuleStore, 505

stages

pipelines, 258-259

receive pipelines, 259

Decode stage, 259

Disassemble stage, 259-260

ResolveParty stage, 260-261

Validate stage, 260

send pipelines, 261

Assemble stage, 261-262

Encode stage, 262

Pre-Assemble stage, 261

staging files in tempoarary folders, FTP adapter,
362-363

standard tag encodings, EPCGlobal Class 1
Generation 2 tag programming model, 752

Start Orchestration shape, 207-209

starting applications, 698-700

state machines, designing rule sets as,
584-587

static send port, Windows Azure AppFabric,
sending messages, 435-436

static type members, facts, 613-614

step management, 472

storage, 474

store-and forward connectivity, BizTalk RFID
Mobile, 794-795

stored procedures

database schemas, 523

SQL Server rule store role authorization,
501

streaming custom pipeline components,
314-317

string functoids, 111-112

strong negation, rule patterns, 583-584

subscription rule store, 511

Subtract (-), 528

Subtract (-) 835

Suspend shape, orchestrations, 212-213

System Network Architecture. See SNA

T
tabes, databases, 541

Table Extractor, 122

Table Looping, 122

Table Looping functoid, maps, 132-135

tag identifiers, flat file schemas, 43-44

tag operations, BizTalk RFID, 749

tag read event, 750

tags, filtering on, 753-754

Target Charset property, 268, 272, 278

task issuance, 471

TDD (test-driven development), 168

TDDS service, 461

technical policy, 479

templates

built-in pipeline templates, 283-284

custom pipeline templates, creating,
284-286

temporary folders, staging files in (FTP
adapter), 362-363

Terminate shape, orchestrations, 213

terms, 496

Test Map option, 162

testing

maps, 163-166

order processing (example scenario),
480-481

pipeline tools, 80-81

pipelines, 330

pipeline.exe, 330-331

unit testing, 331-334

rule sets, 534-535

fact creators, 536

third-party adapters, BizTalk Server, 339-340

third-party components, messages, 61

third-party functoids, 122

thread safety

cumulative functoids, 151-152

.NET types, 611-612

Throw Exception shape, orchestrations, 213-214

time dimensions, activities, 450-452

TimeOfDay, 529

TPE (Tracking Profile Editor), 452-453

Trace class, orchestrations, 250

traceability, order processing (example sce-
nario), 479

tracking, 471

output, Rule Composer, 537

policies, 550

service metrics with BAM APIs, 454-457

tracking configuration, 632-633

business rules database, 503

tracking interception, RFID Server BRE event
handlers, 560

tracking interceptors, Policy class, rule API,
620-621

Tracking Profile Editor (TPE), 452-453

Trailer Schema property, 272

flat files, 270

transactions

BizTalk adapters, 344

custom pipeline components, 309-310

orchestrations, 237-238

Atomic, 238-240

compensation, 241-245

long-running transactions, 240-241

schemas, 69-71

Transform shape, orchestrations, 214-217

transformation services, 660

Suspend shape836

transient facts, RFID Server BRE event han-
dlers, 559

transition plans, ESB (enterprise service bus),
664-665

translation duration, rule engine component
configuration, 533-534

translators, rule engine component configura-
tion, 533

triggered discovery, 734

troubleshooting REU (Rule Engine Update),
493-494

Trusted Authentication, 673

typed fact classes, 597-598

TypedDataRow, 597

TypedDataTable, 597

TypedXmlDocument, 597-598

typical BizTalk solutions, 11-12

U
undocumented properties for XML schemas,

29-31

unified exception management, ESB (enterprise
service bus), 658-660

unit testing, 168-172

pipelines, 331-334

schemas, 75-80

universe of discourse, production systems (rule
engine), 569

Update, 531

upgrade scenarios, 719-720

V
Validate Document Structure property, 266, 279

flat files, 270

Validate stage, receive pipelines, 260

How can we make this index more useful? Email us at indexes@samspublishing.com

validating

instances, 72-74

maps, 164

schemas, 71-72

value fields, flat file schemas, 45-46

Value Mapping functoid, 122

variables

orchestrations, 186-188

properties for, orchestrations, 187

vendor extensions and extensibility

BizTalk RFID, 743-747

device configuration, 747-748

VerbMessageInspector, 423-424

verification, 474

versioning schemas, 69

transactions and downtime, 69-71

versioning scenarios, 719-720

view-creation process, 448

views, defining, 447-450

VirtualStream, 317

Visual Studio, deploying from, 697-698

binding and starting the application,
698-700

binding files, 703-704

edit/debug cycle, 700-702

Visual Studio 2010 Project Item, properties,
107-108

vocabularies

exporting, 549

rule sets, 538-539

rule-processing, 483-484

Vocabulary Definition Wizard, 541

vocabulary definitions, creating, 539

vocabulary links, rule modeling, 496

vocabulary model, 496-497

vocabulary versioning, strategies for, 543-545

vocabulary versioning 837

W
WCF (Windows Communication Foundation),

12-14, 385-386

versus BizTalk Server, 386-387

WCF 3.5, 421

WCF adapters, 339, 384, 415

configuring, 397

addresses and identity, 398-399

behavior, 400-401

bindings, 399-400

message handling, 402-337

security and credentials, 401-402

hosting, 389

role of, 340

send handlers, 394-395

dynamic ports, 397

importing metadata files, 396

importing MEX endpoints, 395

WCF behaviors, 420

WCF endpoints, 415

WCF extensibility, 416

ABCs (address, binding, contracts), 417

channel stacks, 416-417

examples, 420-429

ServiceContract, 418-420

WCF interceptors, BizTalk BAM, 456-459

WCF LoB framework, SQL Server LoB adapter,
404

WCF Message, 418-419

WCF Service Consuming Wizard, 397

WCF Service Publishing Wizard, 389-391

publishing orchestrations, 392

publishing schemas, 392-394

WCF-BasicHttp adapter, 401

web services, orchestrations

consuming, 226-228

exposing, 221-226

WF (Windows Workflow Foundation), 12-14

service composition, 657

WF interceptors, BizTalk BAM, 456-459

Windows Azure AppFabric, 431-432

InfoPath as a client, 438-439

receiving messages, 433-434

SDK, 432

sending messages, 434

dynamic send ports, 436

ESB off-ramps, 436-438

static send port, 435-436

Windows Communication Foundation. See WCF
(Windows Communication Foundation)

Windows SharePoint Services adapters. See
WSS (Windows SharePoint Services) adapter

Windows Workflow Foundation. See WF

wizards

Add Adapter Metadata Wizard, 409-410

BizTalk Server 2010 Configuration Wizard,
515

Blind Wizard, 760-765

Consume Adapter Service Wizard, 410-411

Export MSI File Wizard, 713

Flat File Schema Wizard, 38, 47-59

changes after, 59

Pipeline Component Wizard, 329

RFID Process Wizard, 760-765

Rules Engine Deployment Wizard, 467,
511-515

Vocabulary Definition Wizard, 541

WCF Service Consuming Wizard, 397

WCF Service Publishing Wizard, 389-391

publishing orchestrations, 392

publishing schemas, 392-394

WME (working memory element), 590

workflow, 471-472

working memory element. See WME (working
memory element)

WCF838

working memory, rule engine mechanisms,
589-590

wrapping built-in components, pipelines,
310-311

writing

DataRow data, 606-607

XML data, 602-603

WSS (Windows SharePoint Services) adapter,
379-380

mapping SharePoint columns, 383

receive handlers, 380-381

send handlers, 381-383

X
XLANG/s, 552-554

XML, 136

versus relational data models, 598

XML assembler, built-in pipeline components,
267-268

XML components, built-in pipeline components

XML assembler, 267-268

XML disassembler, 264-266

XML data, reading and writing, 602-603

XML disassembler, built-in pipeline components,
264-266

XML Document attributes, 540

XML document elements, 540

XML documents

facts, 598-599

XSD schemas, 520-521

XML model, 567

XML namespaces, facts, 602

XML nodes, facts, 603-605

How can we make this index more useful? Email us at indexes@samspublishing.com

XML Schema Definitions. See XSDs (XML
Schema Definitions)

XML schemas

adding

elements to, 25-27

new schemas, 24-25

creating XSDs, 21

Schema Editor, 22

schema elements, 23

enveloping, 34-35

existing XSDs, 20-21

generating XSDs, 21

processing instructions, 35-36

properties, 27-29

properties of nodes, 27

undocumented properties for, 29-31

XML type specifiers, facts, 600-602

XML validator, built-in pipeline components,
280-282

XmlHelper, 603

XMLReceive pipeline, 262-263

XMLTransit send pipeline, 263

xpath, 68

XPath field, 599

xpath functions, orchestrations, 181-182

XPath properties, Rule Composer, 599-600

XPath selector, 599

XSD schemas

properties, 18

for XML documents, 520-521

XSDs (XML Schema Definitions), 16-17

creating, 21

Schema Editor, 22

schema elements, 23

XSDs 839

generating, 21

maps, 103

XSLT (Extensible Stylesheet Language
Transformations), 16

XSLT, inline C# functoid, 150

XSLT scripting functoids, 130

Y
Year, 529

Z
zombies, convoys, 236-237

zoom feature, maps, 97-98

XSDs840

	Table of Contents
	Foreword
	Part I: The Basics
	3 Maps
	The Mapper
	Functoids
	Advanced Maps
	Building Custom Functoids
	Testing of Maps
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I-J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

