

WPF Control Development Unleashed
Copyright © 2010 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33033-9
ISBN-10: 0-672-33033-4

Library of Congress Cataloging-in-Publication Data:

Podila, Pavan.
WPF control development unleashed : building advanced user experiences /

Pavan Podila, Kevin Hoffman.
p. cm.

ISBN 978-0-672-33033-9
1. Windows presentation foundation. 2. Application software—

Development. 3. User interfaces (Computer systems) 4. Microsoft .NET
Framework. I. Hoffman, Kevin. II. Title.
QA76.76.A65P64 2009
006.7’882—dc22

2009032558

First Printing September 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the DVD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Geneil Breeze

Indexer
Brad Herriman

Proofreader
Water Crest
Publishing

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Jake McFarland

IN THIS CHAPTER

. Introducing the Visual Classes

CHAPTER 2

The Diverse Visual Class
Structure

In the first chapter, we talked about how the construction
of a framework like WPF is much like the construction of a
house. If you don’t know why certain things are built the
way they are, you are likely to use them improperly and
break something.

This chapter is all about the tools you use when building
your house. Every craftsman (including programmers!)
knows that picking the right tool for the job is essential to
the success of the project. If you use a tool that has too
much power, you’re likely to break something or punch a
hole through a wall. Go with something that doesn’t have
enough power and you won’t be able to get the job done
either.

WPF provides a rich and diverse set of classes that allow
you to create everything from simple visuals to complex
layered visuals and components. This is possible because of
the precision with which the class structure of WPF was
built. There are dozens of tools, but it is up to you to pick
the right one for the job. Each class has a specific purpose
and unique strengths that separate it from other classes.
This allows us to mix and match classes to fit our particular
needs.

Figure 2.1 shows the visual hierarchy of classes that we
examine in detail in this chapter.

Introducing the Visual Classes
WPF has a rich, diverse set of building blocks and tools that
you can use to create amazing interfaces. Knowing which
tool to use and when to use it is absolutely invaluable to

CHAPTER 2 The Diverse Visual Class Structure12

ContainerVisualContainerVisual

DrawingVisualDrawingVisual

ControlControl

ContentControlContentControl

ContentPresenterContentPresenter

ItemsControlItemsControl

UserControlUserControl

VisualVisual

UIElementUIElement

FrameworkElementFrameworkElement

ControlTemplateControlTemplate

ItemsPanelTemplateItemsPanelTemplate

PanelPanel

Viewport3DViewport3D

MediaElementMediaElement

InkCanvasInkCanvas

ImageImage

AdornerAdorner

TextBlockTextBlock

ShapeShape

DecoratorDecorator

DataTemplateDataTemplate

FrameworkTemplateFrameworkTemplate

DispatcherObjectDispatcherObject

DependencyObjectDependencyObject

FIGURE 2.1 The visual classes.

creating next-generation applications. What follows is a brief overview of the most impor-
tant classes in WPF. These are the classes that you will use most often as you progress
through this book and as you create your own applications.

The DispatcherObject Class
The DispatcherObject class can be found in the System.Windows.Threading namespace.
It provides the basic messaging and threading capabilities for all WPF objects. The main
property you will be concerned with on the DispatcherObject class is the Dispatcher
property, which gives you access to the dispatcher the object is associated with. Just like
its name implies, the dispatching system is responsible for listening to various kinds of
messages and making sure that any object that needs to be notified of that message is
notified on the UI thread. This class does not have any graphic representation but serves
as a foundation for rest of the framework.

The DependencyObject Class
The DependencyObject class provides support for WPF’s dependency property system. The
main purpose behind the dependency property system is to compute property values.
Additionally, it also provides notifications about changes in property values. The thing
that separates the WPF dependency property system from standard properties is the

Introducing the Visual Classes 13

ability for dependency properties to be data bound to other properties and automatically
recompute themselves when dependent properties change. This is done by maintaining a
variety of metadata information and logic with the DependencyProperty.
DependencyObject also supports attached properties, which are covered in Chapter 6,
“The Power of Attached Properties,” and property inheritance.

The DependencyObject class is part of the System.Windows namespace and has no graphic
representation. It is a subclass of DispatcherObject.

The Visual and DrawingVisual Classes
The System.Windows.Media.Visual abstract class is the hub of all drawing-related activity
in WPF. All WPF classes that have a visual aspect to their nature are descendants in some
way from the Visual class. It provides basic screen services such as rendering, caching of
the drawing instructions, transformations, clipping, and of course bounding box and hit-
testing operations.

While the Visual class contains a tremendous amount of useful functionality, it isn’t
until we get down to the DrawingVisual class in the hierarchy that we start seeing
concrete implementations that we can work with. DrawingVisual inherits from
ContainerVisual, a class that is designed to contain a collection of visual objects. This
collection of child visuals is exposed through the Drawing property (of type
DrawingGroup).

DrawingVisual is a lightweight class specifically designed to do raw rendering and doesn’t
contain other high-level concepts such as layout, events, data binding, and so on. Keep in
mind the golden rule of this chapter: Pick the right tool for the job. If you need to simply
draw graphics and the extent of user interaction with that object is simple hit testing, you
can save a lot on overhead by using DrawingVisual.

A great example of where DrawingVisuals would be an excellent choice is in a charting
application. You can build a variety of charts by using the drawing primitives such as
lines, beziers, arcs, and text and fill them with colors using a solid brush or even more
advanced fills such as linear and radial gradients.

You might be wondering what to do for your charting application if you need the charts
to be data bound. You see more about how to do this later, but remember that the output
of processing a data template can be simple drawing visuals, allowing you to create data-
bound charts that produce only the functionality you need.

Listing 2.1 shows an example of drawing a sector in a chart. In charting terms, a sector is
a closed region that looks like a pizza slice. It has two straight lines that form the two
sides of a triangle, but the last piece of the shape is closed by an arc rather than another
straight line.

LISTING 2.1 A “Pizza Slice” Sector Visual Class

public class SectorVisual : DrawingVisual

{

public SectorVisual

2

CHAPTER 2 The Diverse Visual Class Structure14

{

StreamGeometry geometry = new StreamGeometry;

using (StreamGeometryContext c = geometry.Open)

{

c.BeginFigure(new Point(200, 200),

true /* isFilled */, true /* isClosed */);

// First line

c.LineTo(new Point(175, 50), true /* isFilled */, true /* isClosed

➥*/);

// Bottom arc

c.ArcTo(new Point(50, 150), new Size(1, 1), 0, true,

SweepDirection.Counterclockwise, true /* isFilled */, true /*

➥isClosed */);

// Second line

c.LineTo(new Point(200, 200),

true /* isFilled */, true /* isClosed */);

}

// Draw the geometry

using (DrawingContext context = RenderOpen)

{

Pen pen = new Pen(Brushes.Black, 1);

context.DrawGeometry(Brushes.CornflowerBlue, pen, geometry);

}

}

}

When rendered, the preceding class creates a visual that looks like the one shown in
Figure 2.2.

If you have done any graphics programming for other platforms before, the concept
behind the DrawingContext class should be pretty familiar to you. It is essentially an entry
point into the conduit between your code and the actual rendered pixels on the user’s
monitor. As WPF is a retained graphics system, it caches all the drawing instructions and
renders them whenever a refresh is required. The DrawingContext is used as the cache
from which these instructions are picked up. In the preceding code, we start by building
the geometry of the sector using the StreamGeometryContext. We then use the
DrawingVisual’s RenderOpen method to obtain a reference to the current DrawingContext
instance and draw the geometry. The DrawingContext class contains methods for drawing
lines, rectangles, geometry, text, video, and much more. Using these methods, you can
build up a shape like the sector in Listing 2.1.

Introducing the Visual Classes 15

While the DrawingVisual class is ideally suited to scenarios in which you just need to do
basic drawing and hit testing, it still needs a container that is responsible for placing
those graphics on the screen. One such container is the FrameworkElement class.

The FrameworkElement Class
System.Windows.FrameworkElement derives from UIElement, which actually provides the
core services such as layout, eventing, and user input that are used by rest of the frame-
work. Although UIElement is a public class you would typically not derive from it.
Instead, the FrameworkElement makes a better choice since it exposes the previous services
(that is, layout, styles, triggers, data binding) in a user-customizable way.

FrameworkElement is also a lightweight container host for a set of visuals. Because it is a
descendant of UIElement it is free to participate in the logical tree and can provide
container support for more primitive visual elements (such as the DrawingVisual from the
preceding example). The FrameworkElement class can be used in the following ways:

1. Provide simple visual representations of data by overriding the OnRender method.

2. Compose custom visual trees, making the FrameworkElement an excellent container
class.

3. Provide custom layout logic (sizing and positioning) for the contained visuals.

4. A combination of the above.

For the pie slice control to be displayed onscreen, we need to build a container in
which the SectorVisual class (refer to Listing 2.1) is the lone visual child, as shown in
Listing 2.2.

2

FIGURE 2.2 A sector visual class.

N O T E

Retained Mode Graphics

Remember that WPF is a retained-mode
graphics system, which means all of the
drawing instructions are cached and you do
not need to call any kind of update graphics
API to force a visual refresh, as in an imme-
diate mode graphics system. Although the
API around DrawingVisual and
DrawingContext resembles something you
find in an immediate mode graphics system,
beware of using it like one. You should never
have to call any kind of update-my-graphics
API to force a visual to redraw.

LISTING 2.2 Creating a Container for the SectorVisual Class

public class VisualContainer : FrameworkElement

{

private SectorVisual _visual = new SectorVisual();

protected override Visual GetVisualChild(int index)

{

return _visual;

}

protected override int VisualChildrenCount

{

Get

{

return 1;

}

}

}

It is worth pointing out that the preced-
ing VisualContainer class could also
have been a subclass of UIElement
instead of FrameworkElement, since it is
not doing any custom layout. A
FrameworkElement is best suited when
you also want to provide custom sizing
and positioning of elements, data
binding, and styles.

The Shape Class

The Shape class provides yet another mechanism to enable primitive drawing in WPF
applications. If we already have the DrawingVisual, which we have seen can be used to
draw lines, arcs, and “pie slice” wedges, what do we need the Shape class for?

The Shape class actually provides a level of abstraction slightly above that of the
DrawingVisual. Rather than using the primitives of the DrawingContext as we have
already seen, instead we can use the concept of geometry to determine what is going to be
drawn.

As a developer creating a custom shape, you use the DefiningGeometry property on your
custom shape class. This geometry defines the raw shape of the class, and other properties
such as the stroke, stroke thickness, and fill determine the rest of the information needed
to render the shape. If you have ever used shapes, strokes, and fills in Adobe Photoshop
or Illustrator, these concepts should already be familiar to you. Whatever you create using
DefiningGeometry can also be done using the more primitive DrawingVisual class, but

CHAPTER 2 The Diverse Visual Class Structure16

N O T E

The Spine

Inside the WPF team, a specific term is
used for the set of classes comprised of
DispatcherObject, DependencyObject,
Visual, UIElement, and FrameworkElement.
They call it the Spine and rightfully so. It
is the backbone of WPF and provides the
solid foundation to build more advanced
functionality.

Introducing the Visual Classes 17
2

Stretch=“None” Stretch=“Fill”

FIGURE 2.3 Stretching a shape’s DefiningGeometry.

using the geometry allows your custom shape class to be inserted more easily into a
logical tree, making it more flexible and more amenable to reuse and packaging.

Shape is a subclass of FrameworkElement, a base class used by most container-type classes
such as Panel to render child elements. This lets Shape instances participate in the layout
pass and allows for easier event handling. Shape also defines the Stretch property, which
allows you to control how a shape’s geometry is transformed when the dimensions of the
Shape object change.

Figure 2.3 illustrates a sector shape and how it can be transformed automatically using
the Stretch property.

Taking the previous example of the sector and upgrading it this time to inherit from the
Shape class, we end up with the code in Listing 2.3.

LISTING 2.3 Making the SectorVisual into a Shape

public class SectorShape : Shape

{

protected override Geometry DefiningGeometry

{

get { return GetSectorGeometry(); }

}

private Geometry GetSectorGeometry()

{

StreamGeometry geometry = new StreamGeometry();

using (StreamGeometryContext c = geometry.Open())

{

c.BeginFigure(new Point(200, 200), true, true);

c.LineTo(new Point(175, 50), true, true);

CHAPTER 2 The Diverse Visual Class Structure18

c.ArcTo(new Point(50, 150), new Size(1, 1), 0, true,

SweepDirection.Counterclockwise, true, true);

c.LineTo(new Point(200, 200), true, true);

}

return geometry;

}

}

As you can see from the preceding code, the construction of the shape is exactly the same
as constructing a visual-based sector. The difference here is that for a Shape we stop after
creating the geometry and setting that to the DefiningGeometry property. With the
SectorVisual, we must both construct the geometry and render it. The core difference is
basically a difference in responsibilities. The Shape knows how to render itself in its
container using the geometry defined in DefiningGeometry.

When creating a shape’s defining geometry, the most commonly used geometry classes
are PathGeometry, StreamGeometry, GeometryGroup, or CombinedGeometry. You learn more
about these types of geometry in more detailed examples later in the book.

The Text Classes
Developers often overlook fonts when they are digging in their toolbox for something to
get the job done. WPF actually has robust support for drawing text, laying out text, and
working with documents. Text can be displayed onscreen in multiple ways and ranges
from simple text to text with complex layout and formatting support.

At the most primitive level, we have GlyphRuns and FormattedText. These can’t be used
declaratively; rather, you need to use the DrawingContext to display them onscreen. This
can be done using the DrawingContext.DrawGlyphRun and DrawingContext.DrawText

APIs.

In today’s modern age of globalized applications, you need more than just the ability to
blindly throw text onto the user interface. You need to be able to do things like display
text that runs from right to left, display Unicode characters, and much more. For
example, when you draw text into a drawing context, not only do you supply font infor-
mation, but you also supply the text, text culture, flow direction, and the origin of the
text:

drawingContext.DrawText(

new FormattedText(“Hello WPF!”,

CultureInfo.GetCultureInfo(“en-us”),

FlowDirection.LeftToRight,

new Typeface(“Segoe UI”),

36, Brushes.Black),

new Point(10, 10));

Introducing the Visual Classes 19
2

Text can also be displayed declaratively and easily using the TextBlock and Label classes.
TextBlocks (and Labels) are generally useful for a single line of text with fairly rich
formatting and simple alignment support. For more complex text display, you can use the
FlowDocument and FixedDocument classes that have more elaborate features to handle
dynamic layouts, paragraphs, and mixing of rich media.

FlowDocument handles automatic layout and sizing of text and graphics as you resize the
document. They are most useful for viewing newspaper-style text that can flow into
columns and multiple pages. FixedDocuments are useful for programmatically generating a
document with precise control over sizes of the textual elements, hence the name. These
documents use two kinds of elements: blocks and inlines. Blocks are container elements
that contain the more granular inline elements. Typical block-related classes include
Paragraph, Section, List, and Table. Some of the common inline classes are Run, Span,
Hyperlink, Bold, Italic, and Figure.

Although TextBlock, Label, FixedDocument, and FlowDocument are useful for displaying
static text, WPF also provides interactive controls for editing text. These include the
classic TextBox, which has limited formatting capabilities, and the RichTextBox, which as
the name suggests has richer editing capabilities.

Most of these text-related classes expose properties to control alignment, fonts, font
styles, and weights. Additionally, there is a class called Typography under the
System.Windows.Documents namespace that has a rich set of properties to specifically
control the various stylistic characteristics of OpenType fonts. They are available as
attached properties, which can be set on text-related classes that use OpenType fonts. A
sampling of the properties include Capitals, CapitalSpacing, Fraction, Kerning, and
NumeralAlignment.

The Control Class
The Control class is pretty close to the top of the food chain of visual classes. It provides
a powerful Template property (of type ControlTemplate) that can be used to change the
entire look and feel of a control. Knowing that control templates can be changed during
design time and at runtime can make for some amazingly powerful applications and
compelling UIs. Designing with a Control allows developers and designers to quickly and
easily define visual elements.

A rich set of classes that derive from the Control class provide specialized functionality
and increasing complexity and level of abstraction. Choosing the right subclass of
Control goes back to the analogy of choosing the right tool for the job. You need to make
sure that you don’t take something overly complex as well as not picking something that
is too simplistic and doesn’t offer the functionality you need. Choosing the wrong
subclass can dramatically increase the amount of work you need to do.

For example, if you are building a control that needs to display a list of child items, you
should start with ItemsControl or ListBox instead of starting with the comparatively low-
level functionality of the Control class.

CHAPTER 2 The Diverse Visual Class Structure20

Unlike the earlier UI frameworks, the Control-related classes in WPF can be used directly
without subclassing. Because of the powerful features such as Styles and Templates, you
can customize the look and feel of a control declaratively. The subclasses of Control deal
with the shape of the data rather than the appearance. A Button deals with singular data.
ScrollBars, Sliders, and so on work with range data. ListBox and ListView work with
collections. TreeView works with hierarchical data. It is up to the development team to
decide how best to visually represent the data using these controls. In most cases, you do
not have to subclass a control, rather you only have to change its Style and Template.

The ContentControl Class
The ContentControl class is ideal for displaying singular content, specified via the
Content property. The content’s look and feel can be customized using its
ContentTemplate property, which is of type DataTemplate. Remember back in Chapter 1,
“The WPF Design Philosophy,” how plain data gets transformed into a visual representa-
tion through data templates.

The container that hosts the content can also be customized using the Template property
of type ControlTemplate. This way you actually have two levels of customization avail-
able to you: You can customize the outer containing frame (via the Template property),
and you can customize how the content within the frame is rendered (via the
ContentTemplate property).

Controls derived from ContentControl are used to represent individual items that are
displayed within list-based controls such as a ListBox, ItemsControl, ListView, and so
on. The Template property is used for user interaction features such as showing selections,
rollovers, highlights, and more. The ContentTemplate property is used for visually repre-
senting the data item associated with the individual element.

For example, if you have a list of business model objects of type Customer that you are
displaying inside a ListBox, you can use its ItemTemplate property (of type DataTemplate)
to define a visual tree that contains the customer’s picture, home address, telephone
number, and other information. Optionally you can also customize the item container
holding each Customer object. As mentioned, a ContentControl derived class is used for
wrapping each item of a ListBox. We can customize this ContentControl derived
container using its Template property, which is of type ControlTemplate.

Some of the most powerful tricks in WPF revolve around control templates, content
controls, and content presenters, so it is well worth the effort of learning them in detail.

The ContentPresenter Class
The ContentPresenter class is the catalyst that brings a data template to life. It is the
container that holds the visual tree of the data template. ContentPresenters are used
inside the ControlTemplates of Control, ContentControl, or any other custom control
that exposes a property of type DataTemplate. It may help to think of the role of the
ContentPresenter as the class that is responsible for presenting the visual tree of a data
template within its container.

Introducing the Visual Classes 21
2

Within the ControlTemplate, you associate the DataTemplate property of the template
control with the ContentTemplate property of the ContentPresenter. You might do this
in XAML (eXtensible Application Markup Language) this way:

<ContentPresenter ContentTemplate={TemplateBinding ContentTemplate} />

In the preceding snippet, we are template binding the ContentTemplate property of the
ContentPresenter to the ContentControl’s ContentTemplate property.

In general, you can think of a presenter element as a shell or container for the actual
content. It instantiates the template tree and applies the content to it. As you may recall
from Chapter 1, you can think of the content as being a piece of cookie dough, the
template is the cookie cutter, and the presenter pushes down on the dough and presents
the end result of a nicely shaped cookie.

The ItemsControl Class
As this class’s name suggests, the ItemsControl class is ideally suited to displaying a list of
items. More specifically, those items are interactive controls.

Not so long ago, when the main framework for building Windows applications was
Windows Forms using .NET, controls were almost always too specialized. A ComboBox
would display a drop-down list of items, but those items were always text, unless you
rolled up your sleeves and did some serious work. This same problem occurred in virtually
every place where Windows Forms displayed a list of items—the type and display of each
item in a list was fixed unless you practically rewrote the control.

With WPF, the ItemsControl allows you to present a list of items that can have any visual
representation you choose and can be bound to any list-based data you want. Finally we
have both the flexibility we have always wanted and the power we have always needed.

Frequently used derivations of the ItemsControl class include the ListBox, ListView, and
TreeView. The ItemsControl class exposes a wide variety of properties for customizing the
look of the control and also of its contained items. Because these properties are exposed
as DependencyProperties, they can be data-bound to other properties. These properties
include the following:

. ItemsPanel—The ItemsControl needs a panel to lay out its children. We specify
the panel using an ItemsPanelTemplate. The ItemsPanelTemplate is then applied to
an ItemsPresenter.

. ItemTemplate—The ItemTemplate is the DataTemplate for the items being
displayed. This template may be applied to a ContentPresenter or a
ContentControl.

. ItemContainerStyle—This property indicates the style for the UI container for
each individual item. Note that an ItemControl wraps each data item within a UI
container such as a ContentPresenter or a ContentControl-derived class.

. Template—This defines the ControlTemplate for the ItemsControl itself.

CHAPTER 2 The Diverse Visual Class Structure22

Search...

FIGURE 2.4 A sample interactive search bar for a WPF application.

If this seems like a lot to take in, don’t worry. The concepts behind content controls,
presenters, and data templates can seem daunting at first, but we use them so extensively
throughout this book that their use will quickly become second nature to you. We cover
the ItemsControl in greater detail in Chapter 5, “Using Existing Controls,” and Chapter
8, “Virtualization.”

The UserControl Class
The UserControl class is a container class that acts as a “black box” container for a collec-
tion of related controls. If you need a set of three controls to always appear together and
be allowed to easily talk to each other, then a likely candidate for making that happen is
the UserControl class.

Creating your own UserControl is an easy first start at creating your own custom
controls. It provides the familiar XAML + Code-Behind paradigm that you can use to
define your control’s appearance and associated logic. The UserControl class derives from
ContentControl and makes a few additions to ContentControl’s stock dependency proper-
ties.

The first thing you may notice about a user control is that the control itself cannot
receive keyboard focus nor can it act as a Tab stop. This is because in the static construc-
tor for UserControl, the UIElement.Focusable DependencyProperty and the
KeyboardNavigation.IsTabStop property have been set to false.

This makes complete sense when you think about the idea that the primary function of a
UserControl is to wrap a set of related controls and not act as an interactive control on its
own.

To make things more clear, let’s take a look at an example. Suppose that you have to
create a search bar for your application that looks something like the one in Figure 2.4.

The search bar in Figure 2.4 is comprised of a TextBox and a Button. When a user types a
keyword or set of keywords and then presses the Enter key, the search functionality is
invoked. The same functionality is invoked if the user types in a keyword and clicks the
Search button.

While you can place these two controls individually in your window, their purpose and
functionality are so interconnected that you would never really use them separately. This
makes them ideal candidates for being placed inside a UserControl.

To further enhance the encapsulation, you could write your UserControl such that it
doesn’t tell the hosting container when the user presses Enter or when the user clicks the
Search button; it simply exposes a single event called SearchInvoked. Your window could

Introducing the Visual Classes 23
2

listen for that event and, in an ideal Model-View-Controller world, pass the search request
on to a search controller for processing.

Within the UserControl, you have the ability to improve the look and feel of that single
element without affecting the UI definition of the window and enabling your control for
reuse in multiple locations throughout your application. Additionally, wrapping a set of
related controls and giving them a purpose-driven name such as SearchBar makes your
XAML and your code easier to read,
maintain, and debug.

Similar to the way refactoring allows
you to incrementally improve your C#
code to make it more understandable,
maintainable, and testable, refactoring
the UI provides the same benefits and is
much easier to do within the bounds of
a UserControl. This is often called view
refactoring.

The Panel Class
The Panel class is an element that exists solely to provide the core layout functionality in
WPF. Powerful, dynamic layout capability has always been something that was missing in
Windows Forms, and now that WPF has dynamic layout features, the world is a much
happier place.

Think of the Panel as a “layout brain” rather than something that actually produces its
own UI. Its job is to size the child elements and arrange them in the allocated space, but
it has no UI of its own. WPF ships with a powerful set of panels that handle many of the
common layout scenarios that developers run into on a daily basis. These include the
Grid, StackPanel, DockPanel, and the WrapPanel. The following is a brief description of
each layout pattern (don’t worry, you see plenty more of these classes in the code samples
throughout the book):

. Grid—Provides a row/column paradigm for laying out child controls.

. StackPanel—Child controls are laid out in horizontal or vertical stacks.

. DockPanel—Child controls are docked within the container according to the pref-
erences specified by each child control.

. WrapPanel—Child controls in this panel wrap according to the specified wrapping
preferences.

Another panel called the Canvas provides static, absolute coordinate-based layout. Panels
can be nested within each other to create more complex layouts. Layout in WPF is
handled using the two-phased approach of measure and arrange.

N O T E

Customizing UserControls

A UserControl doesn’t allow customization
of its look and feel because it does not
expose properties for templates, styles, or
triggers. You will have the best luck with
UserControls if you think of them as face-
less containers for logically and functionally
related controls.

CHAPTER 2 The Diverse Visual Class Structure24

During the measure phase, the parent requests that each of its children supply their
minimum-required dimensions. The parent then applies additional requirements such as
margins, alignment, and padding.

Once each child has been measured, the parent panel then performs the arrange phase.
During this phase, the parent panel places each child control in its actual position in the
final dimensions. The final position and size of the child element may not be what the
child element requested. In these scenarios, the parent panel is the final authority on
where the child controls are and how much space they take up.

Panels also have some extra functionality that you might not want to supersede, such as
built-in ability to work with ItemsControls and the ability to dynamically change the z-
order of a child element with the Panel.SetZIndex method.

The Decorator Class
A Decorator class is responsible for wrapping a UI element to support additional behavior.
It has a single Child property of type UIElement, which contains the content to be
wrapped. A Decorator can be used to add simple visual decoration, such as a Border, or
more complex behavior such as a ViewBox, AdornerDecorator, or the InkPresenter.

When you subclass a Decorator, you can expose some useful DependencyProperties to
customize it. For example, the Border class exposes properties like BorderBrush,
BorderThickness, and CornerRadius that all affect how the border is drawn around its
child content.

The Adorner Class
If we already have an additive decoration class in the form of the Decorator, why do we
need an Adorner class? As mentioned earlier, every single class in the class hierarchy that
makes up WPF has a specific purpose. While a Decorator is responsible for drawing deco-
ration around the outside of a piece of child content, the Adorner class allows you to
overlay visuals on top of existing visual elements. An easy way to think of adorners is that
they are secondary interactive visuals that provide additional means to interact with the
primary visual. That might seem complex, but think about widgets such as resizing grips
that appear on elements in a typical diagramming program. Those are a secondary visual
that sit on top of the elements that they are adorning and provide additional functionality
and interaction. By clicking and dragging the resizing-handles, the user can resize the
underlying control.

Adorner classes work in conjunction with the AdornerDecorator, which is an invisible
surface on which the adorners rest. To be part of the visual tree, adorners have to have a
container. The AdornerDecorator acts as this container.

AdornerDecorators are generally defined at the top of the visual tree (such as the
ControlTemplate for the Window control). This makes all adorners sit on top of all of the
Window content. We explore the use of adorners throughout the book, but you see them
specifically in Chapter 6, “The Power of Attached Properties,” and Chapter 9, “Creating
Advanced Controls and Visual Effects.”

Introducing the Visual Classes 25
2

The Image Class
You might be a little surprised to see the Image class mentioned here among all of the
other highly interactive visual controls. In most frameworks, images contain just enough
functionality to display rasterized (nonvector) images and maybe support reading and
writing streams of image data, but that’s about it.

Image classes can actually provide control-like capabilities for some specific scenarios.
Image derives from FrameworkElement, so it can be composed in logical trees and has rich
support for event handling and layout. It encapsulates the functionality to render an
instance of an ImageSource, specified via the Source property. The ImageSource class can
represent a vector image like DrawingImage or a raster/bitmap image like the
BitmapSource.

Images can be useful when you want to visualize a large amount of data for which you
have limited interaction. Some situations where this might come in handy are when you
are visualizing high-volume graphs or network monitoring tools that are visualizing thou-
sands of network nodes. In cases like this, even DrawingVisuals become extremely expen-
sive because each data item is a separate visual and consumes CPU and memory resources.
Using an image, and knowing that each data point doesn’t need to be interactive, you can
visualize what you need without bringing the host computer to its knees.

Since the Image class also has event handling support, we can attach handlers for mouse
events that can query the pixel at the mouse’s current coordinates and report information
about that data item. With a little bit of creativity and forethought, the Image class can be
a powerful tool in any developer’s toolbox.

The Brushes
The Brush-related classes in WPF represent a powerful way of drawing simple to complex
graphics with extreme ease of use. A brush represents static noninteractive graphics that
serve mostly as backgrounds on visual elements. You can use a basic brush like
SolidColorBrush, which only draws solid colors like Red, Blue, LightGray, and so on, and
also gradient brushes like a LinearGradientBrush and RadialGradientBrush. The gradient
brushes have additional properties to control the style of drawing the gradient. Figure 2.5
shows you various kinds of gradient brushes.

Although solid and gradient brushes are available in previous UI technologies, the real
power comes with the TileBrush classes such as ImageBrush, DrawingBrush, and
VisualBrush. An ImageBrush as the name suggests allows you to create a Brush out of an
image. This is useful since it allows you to use an image without using the Image class.
Since it is a brush, you can use it wherever a Brush type property is expected.

DrawingBrush gives you the power of defining complex graphics as a simple brush. Using
DrawingGroups and GeometryDrawings, you can define nested graphics that can provide
elegant backgrounds to your visuals. In Figure 2.6, you can see a nested set of graphic
elements to create the final DrawingBrush. With clever use of DrawingBrushes, you can
simplify the way you define some ControlTemplates.

CHAPTER 2 The Diverse Visual Class Structure26

FIGURE 2.5 Linear and radial gradient brushes.

FIGURE 2.6 The swoop seen in Word 2007, created using a DrawingBrush.

A VisualBrush gives you a live snapshot of a rendered element from the visual tree. We
see many uses of VisualBrushes in later chapters, such as using VisualBrush as a texture
on a 3D model or creating reflections.

Introducing the Visual Classes 27
2

The TileBrush can also be stretched and tiled to fill the bounds of the visual. You can
also cut out a rectangular section of the brush using the Viewport and ViewBox properties.
Just like regular visuals, you can also apply transforms. Brushes have two kinds of trans-
form properties: RelativeTransform and Transform. The RelativeTransform property
scales the brush using the relative coordinates of the visual ([0,0] to [1,1]). It is useful if
you want to transform the brush without knowing the absolute bounds of the visual on
which it is applied. The Transform property works after brush output has been mapped to
the bounds of the visual—in other words, after the RelativeTransform is applied.

The DataTemplate, ControlTemplate, and
ItemsPanelTemplate Classes
WPF has a set of template classes that are used to represent visual trees. Templates are
never actually rendered directly; rather, they are applied to other container classes like a
ContentPresenter, ItemsPresenter, or a Control.

Each template class derives from the FrameworkTemplate class. These include the
DataTemplate, ControlTemplate, and ItemsPanelTemplate classes. There is also a
HierarchicalDataTemplate that is used for representing hierarchical data. It takes a little
getting used to, but once you are, it is an invaluable tool for representing multilevel or
tiered data. HierarchicalDataTemplates are used for controls such as the TreeView.

Each of these three templates contains a visual tree that can be greater than one level.
The exception here is that the ItemsPanelTemplate can only contain a Panel-derived class
as the root (there is a hint to this exception in the name of the template class itself).

The Viewport3D Class
So far every class that we have discussed so far has been a flat, two-dimensional control.
WPF also gives developers unprecedented power and accessibility into the world of 3D
programming. The Viewport3D class (see Figure 2.7) gives developers the ability to work in
three dimensions without having to deal with complex game-oriented frameworks such as
Direct3D or OpenGL.

The Viewport3D class is a container for a 3D world that is comprised of 3D models,
textures, cameras, and lights. Viewport3D derives from the FrameworkElement class instead
of Control. This makes a good deal of sense because FrameworkElement works great as a
visual container, and the Viewport3D class is a visual container for an interactive 3D
scene.

The Viewport3D class also has no background. As a result, you can place a 3D viewport on
top of 2D elements and create stunning effects by mixing and matching 2D and 3D visual
elements. Just keep in mind that the 3D world must reside in a completely different
container. For example, you can use a VisualBrush to take a 2D visual and apply it to the
surface of a 3D model as a material. The .NET Framework 3.5 introduced additional
classes that allow you to have live, interactive 2D visuals on a 3D surface. For example,
you can place a Button visual as a material for a Sphere and interact with it like a regular
button, even if the Sphere is spinning and being dynamically lit by a light source.

CHAPTER 2 The Diverse Visual Class Structure28

FIGURE 2.7 A sample of the ViewPort3D class.

The MediaElement Class
Many of today’s modern applications are more than just static controls and grids and
buttons. Many of them contain multimedia such as sounds, music, and video. WPF not
only lets you play audio and video, but gives you programmatic control of the playback.

WPF gives you this multimedia
programming experience with the
MediaElement class. You indicate the
source of the media using the Source
property. You can control the media
playback using the Play, Pause, and
Stop methods. You can even control the
volume and skip to a specific time in the
playback using the Position property.

Figure 2.8 shows a simple WPF applica-
tion that contains a media element and
some controls for manipulating the
video.

The InkCanvas

The Tablet PC introduced a more widespread use of the stylus as a means to interact with
the applications. The strokes created using the stylus were treated as ink, which could also
be mapped to application-specific gestures. Although the stylus is treated as the default
device, a mouse makes a good substitute.

FIGURE 2.8 A simple MediaElement
application.

Summary 29
2

FIGURE 2.9 A simple InkCanvas application.

WPF has the InkCanvas class that provides most of the features available on the Tablet
PC. In fact the InkCanvas becomes the slate on which we can scribble either with the
mouse or with the stylus. InkCanvas can be created declaratively and exposes a variety of
events related to strokes. It also has built-in gesture recognition for some standard
gestures. By overlaying an InkCanvas on some UI elements, you can add some interesting
features to an application. For example, for a photo-viewing application, you can overlay
an InkCanvas on a photo to annotate parts of the picture, as shown in Figure 2.9.

Summary
With the diverse range of classes available to use within WPF, we can see that WPF is a
great toolset for creating interesting, compelling, and visually stunning interfaces and
controls.

Understanding and respecting this diversity and knowing which is the best tool for any
given situation will make your development experience more rewarding and enjoyable
and will ultimately improve the quality of your applications.

Table 2.1 presents a summary of the classes discussed in this chapter.

In the next chapter, we discuss creating controls and some best practices for approaching
control creation. We build on the foundations from this chapter and the previous chapter
as we venture into the world of creating exciting, modern interfaces with WPF.

CHAPTER 2 The Diverse Visual Class Structure30

TABLE 2.1 Summary of WPF Classes

Class Description

DispatcherObject Provides threading and messaging control

DependencyObject Provides hosting for dependency properties, a
core building block for many of WPF’s advanced
features, such as data binding

Visual,
DrawingVisual

Provide functionality for drawing simple graphics

Shape Provides functionality for drawing geometry-based
graphics

Decorator Draws decorations around a contained UIElement

Adorner Provides a decorative overlay on top of other
controls

FrameworkElement A container for other visual elements

GlyphRuns,
TextBlock,
FlowDocument

Provide text support with increasingly complex set
of features for formatting and layout

Panel The “layout brain” container for other elements

Control A UI component that supports templating

ContentPresenter Container for holding a DataTemplate

ItemsPresenter Container for holding an ItemTemplate

ContentControl A control that contains a single child

ItemsControl A control that displays a list of items

UserControl A “black box” container for multiple logically and
visually related controls

DataTemplate,
ControlTemplate,
ItemsPanelTemplate

Reusable visual tree templates

Image A high-performance graphics control for high-
volume data visualization or display of raster and
vector images

Brush Provides static graphics for backgrounds, ranging
from the simple SolidColorBrush to the complex
TileBrushes

Viewport3D A container for an interactive 3D world

MediaElement Plays audio and/or video within a container

InkCanvas For creating Tablet PC-like strokes and gestures

Numbers
2D bounds, 3D objects, 198-199
2D visuals, 3D surfaces, mapping on, 192-199
2D-on-3D surfaces, interactivity, 200-201
3D layout, 200
3D mesh geometries, animations, 214
3D objects, 2D bounds, 198-199
3D Programming for Windows, 215
3D surfaces

2D visuals, mapping on, 192-199
creating, 219-220

3D virtualization, 140-142
3D worlds, 185-186

cameras, 186-187
ContainerUIElement, 196-199
lights, 186-187
models, 186-187
ModelUIElement, 196-199
performance, 325-326
rendered output, XAML, 188
Viewport3D element, 186-192

A
Abrams, Brad, 304
absolute layout, 85
absract classes, System.Windows.Media.Visual

abstract class, 13
actions. See data
AddOwner() method, DPs (dependency

properties), 279-280
Adobe Illustrator, 309, 312
Adorner class, 24, 29
Aero theme, 168
affine transformations, 66
angle of rotation, 42
animated scrolling, 122-123
animations, 203, 221

3D surfaces, creating, 219-220
CompositionTarget.Rendering, 204-206
custom animations, creating, 212-220
dependency properties, 206
DispatcherTimer, 204
DrawingContext, 220-221
interpolation, 216

Bézier interpolation, 214
linear interpolation, 214, 218

keyframe animations, 207-209
layout animations, attached properties, 102
path animations, 213
path-based animations, 211-212
pixel shaders, 235

procedural animations, 203-206
repeating animations, 329
storyboards, 206-212, 323
type-based animations, 206-207

APIs (application programming interfaces)
automation APIs, 338-342
TestAPI library, 349

application services, attached properties, 102
ApplicationIdle priority level (Dispatcher), 286
applications. See performance; UI automation
applying transitions, 159-161
ApplyTemplate override, runtime skinning,

177-182
ApplyTransition method, 159-161
APs (attached properties). See attached properties
arc shapes, 41

creating, 42-44
Arrange call, 51-52
assemblies, UI automation, 333
attached events, routed events, 246-248
attached properties, 35-38, 93-95, 111-112

application services, 102
as extension points, 100-103
constraining panels, 102
controls, 297
custom panels, creating, 58-63
data templates, 102
dependency properties, compared, 93
DnD (drag and drop), implementing, 103-111
ink-bases functionality, encapsulating as, 146
layout animations, 102
persistent ToolTips, creating, 97-98
property abstraction, 102
Timeline.DesiredFramerate, 220
UI helper objects, 103
UseHover attached property, building, 95-100

AttachToVisualTree method, 182
automation. See also UI automation

custom controls, 343-349
automation APIs, 338-342

automation elements, performing operation
on, 342

automation tree
locating elements in, 339-340
navigating, 342

control patterns, checking for, 340
events, listening to, 341-342
property values, reading, 341

automation tree
elements, locating in, 339-340
navigating, 336-338, 342

AutomationElement class, UI automation,
333-335

AutomationPeer class, UI automation, 333-335

B
Background priority level (Dispatcher), 286
background threads, long-running opera-

tions,322
BackgroundWorker class, data binding,

289-291
base peer classes, selecting, 343-344
Beck, Kent, 303
Behavior class, 101-102
behaviors, 3, 6-8, 34
Bézier interpolation, 214
Binding class, 284-285
blocking calls, 107
Blois, Pete, 312
Border properties, 71
bounds

2D bounds, 3D objects, 198-199
scrolling regions, controlling, 116

Brush class, 29
Brush-related classes, 25-27
brushes, 320

controls, customizing, 82-83
gradient brushes, 306-307
tile brushes, 304-305
XAML coding conventions, 307-308

builder design pattern (GUI development),
301-302

Button controls, customizing, 32

C
caching, performance, 320
calls

Arrange, 51-52
blocking calls, 107
Measure, 51-52
synchronous calls, 107

cameras
3D scenes, 186
3D worlds, 186-187

CanExecute method, 255
Canvas class, 23
Canvas panel, 319
child elements, controls, strong references, 297
Child property (Decorator class), 24
children

layout containers, conversations, 51-52
visual children, custom panels, 52-55

Children property, Panel class, 53
circular minute timers, building, 40-46
class handlers

registering, 249
routed events, 249-250

animations352

classes, 5, 11. See also visual classes
abstract classes,

System.Windows.Media.Visual, 13
base peer classes, selecting, 343-344
geometry classes, 18
partial classes, dfining controls as, 296
UI virtualization, 131-132

CLINQ (Continuous LINQ), 291-292
clip geometries, 310-312
cloning resources, xShared, 299-300
coercion, properties, 277
collinearity ratios, 66
CombinedGeometry class, 18
CommandBinding, 257
commands, 7, 255-258

components, 257
events, compared, 259-261
ICommandSource interface, 262-266
request requery, 261-262
routed commands, 259

CommandSource, 257
CommandTarget, 258
component interaction, UI virtualization, 132-133
ComponentResourceKey, 172
composed method design pattern (GUI

development), 303
composite data, 2
composite data-based controls, 34
CompositionTarget.Rendering, animations with,

204-206
concentric circles, creating, 85-91
constraining panels, attached properties, 102
container styles, customizing, 74-75, 77
containers

container recycling, 323
IoC (Inversion of Control) containers, 298
layout containers, conversations, 51-52
navigation containers, 271
recycling, 140, 323
SectorVisual class, creating for, 15
UI virtualization, 130-131

ContainerUIElement3D, 196-199
ContainerVisual class, 13
ContentControl class, 20, 29, 156
ContentPresenter class, 20-21, 29
ContextIdle priority level (Dispatcher), 286
Continuous LINQ (CLINQ), 291-292
Control class, 19-20, 29
control patterns

checking for, 340
selecting, 344-345
UI automation, 333-335

control templates, 4

How can we make this index more useful? Email us at indexes@samspublishing.com

controls, 69-70, 166. See also names of
specific controls

attached properties, 297
child elements, strong references, 297
composite data-based controls, 34
creating, 143

DockSlidePresenter, 146-154
lasso selection tool, 143-146
TransitionContainer, 154-161

custom controls
automation of, 343-349
creating, 40-47
layered structures, 39
needs assessment, 31-39

customizing, 32, 70-82
behavior extensions, 34
brushes, 82-83
ControlTemplates, 70-72
data transformations, 32-34
DataTemplates, 71-72
ListBoxes, 83-91
properties, 70
property exposure, 182-183

data shapes, 34
designing, 295-301
docking, 149-154
hierarchy-based controls, 34
internal resource dictionaries, 295-296
internal state management, scoped DPs, 296
ItemsControl, customizing, 72-74
list-based controls, 34
ListBox, customizing, 74-78
lookless controls, 32, 70
low-priority delegates, 299
markup extensions, 300-301
multiple events, handling, 299
partial classes, defining as, 296
performance. See performance
properties, attached properties, 35-38
property changes, handling, 299
range-based controls, 34
resources, cloning, 299-300
singular controls, 34
subparts, communicating between, 297-298
templates, primitive visual identification, 297
UI (user interface), visual tree, 332
UI automation. See UI automation
undocking, 149-150, 152-154
virtualized controls, creating, 135-139

ControlTemplate, 81, 91, 177
ControlTemplate class, 27, 37-38

controls, customizing, 32, 70-72
ProgressBar control, extending, 43-46

ControlTemplate class 353

ControlTemplate for the Circular Minute Timer
listing (3.4), 44-46

ControlTemplate for the process workflow
ProgressBar listing (3.2), 37-38

conversations, layout, 51-52
converters, 5

TypeConverters, data transformations,
33-34

value converters, data transformations,
32-33

Creating a Container for the SectorVisual Class
listing (2.2), 16

Creating the Arc Geometry listing (3.3), 42-43
custom animations, creating, 212-220
custom controls

automation of, 343-349
creating, 40-47
layered structures, 39
needs assessments, 31-39

custom panels
creating, 49-55

attached properties, 58-63
custom scrolling, 117-122
transformations, 63-68
VanishingPointPanel, 56-58
WeightedPanel, 58-63

layout, 49-52
visual children, 52-55

custom pixel shaders
animating, 235
grayscale pixel shaders, writing, 228-231
GUI interaction, 235-239
multi-input shaders, 239-241
parameterized pixel shaders, writing,

231-235
Shazzam tool, 242
writing, 228-242

custom ScrollBar, creating, 78-82
custom scrolling, custom panels, building,

117-122
customizing

controls, 32, 70
behavior extensions, 34
brushes, 82-83
ControlTemplates, 70-72
data transformations, 32-34
DataTemplates, 71-72
ItemsControl, 72-74
ListBox, 74-78
ListBoxes, 83-91
properties, 70
ScrollBar, 78-82

ItemContainerStyle, 74-77
ItemsPanelTemplate, 77-78
ItemTemplate, 77-78

Cwalina, Krzysztof, 304

D
data, 2-3

composite data, 2
hierarchical data, 2
list data, 2
primitive data, 2

data binding, 4, 275
Dispatcher class, 285, 287

BackgroundWorker class, 289-291
deferring UI operations, 287
posting messages from worker threads,

287-289
DPs (dependency properties), 276

AddOwner method, 279-280
listening to property changes on, 280-282
precedence, 276-279

evolution of, 275
NotifyOnSourceUpdated property, 284-285
NotifyOnTargetUpdated property, 284-285
performance, 321-322
RelativeSource.PreviousData property,

282-284
data flow, 6
data shapes, controls, 34
data templates, 4, 102
data transformations

controls, customizing, 32-34
TypeConverters, 33-34
value converters, 32-33

data types, 2-3
HLSL (High Level Shading Language), 226-227

DataBind priority level (Dispatcher), 286
DataTemplate class, 27-29, 91, 183, 319

controls, customizing, 71-72
Decorator class, 24, 29
Default (theme) Styles precedence level (DPs),

277-278
default display form, ProgressBar control, 35
default styles

building, 169-170
resources in, 170-172

deferred scrolling, 139-140, 329
DefiningGeometry property (Shape class), 16-18
dependency properties. See DPs (dependency

properties)
DependencyObject class, 12, 16, 29
design patterns

GUI development, 301, 304
builder pattern, 301-302
composed method pattern, 303
factory method pattern, 303
MVC (model-view-controller) pattern, 302

ControlTemplate for the Circular Minute Timer listing (3.4)354

MVVM (model-view-view-model)
pattern, 302

state pattern, 303
strategy pattern, 301

weak events, 250-255
Design Patterns in C#, 301
designing. See also visual design

controls, 295-301
philosophy, data and behaviors, 1-3
tools, 312-314

Dingbats font, icons, using for, 308-309
DirectX, pixel shaders, 223
Dirty Rect Addition Rate category

(Perforator), 328
Dispatcher class, data binding, 285-287

BackgroundWorker class, 289-291
deferring UI operations, 287
posting messages from worker threads,

287-289
DispatcherObject class, 12, 16, 29
DispatcherTimer, 204
DisplacementFilter, 239-241
display form (ProgressBar control), 35
DnD (drag and drop)

drag sources, 104-105
drop targets, 104-105
events, 103
implementing attached properties, 103-111

DockFrontChild() method, 150-152
Docking controls, 149-154
DockPanel, 23, 59-60, 71, 319
DockSidePresenter control, creating, 146-154
DoDragDrop method, 103
DPs (dependency properties)

animations, 206
attached properties, compared, 93
data binding, 276

AddOwner method, 279-280
listening to property changes on, 280-282
precedence, 276-279

scoped DPs, internal state management, 296
drag and drop. See DnD (drag and drop)
drag sources (DnD), 104-105
DragDrop.DoDragDrop method, 104
DrawingBrushes, 25-26, 82
DrawingContext, 14-15, 220-221
DrawingGroups class, 25
DrawingVisual class, 13-15, 29
DrawingVisual control, 70
drop shadows, implementing, 163
drop targets (DnD), 104-105
Dussud, Cedric, 127
dynamic skinning, 174-177

How can we make this index more useful? Email us at indexes@samspublishing.com

E
effect mapping, pixel shaders, GUI interaction,

235-239
effects, 166

drop shadows, implementing, 163
gloss effects, implementing, 164-165
opacity masks, implementing, 164
reflection effect, implementing, 161-162
transitions

applying, 159-161
creating, 154-157
handling, 157-159

embedded fonts, icons, 308-309
embedding, ViewPort3D element, 189-192
encapsulation, object creation, markup

extensions, 300-301
enumeration values, TreeScope, 337
environments

3D environments, 185-192
pixel shaders, setting up, 224-227

event triggers, routed events, 245-246
events, 255. See also routed events;

weak events
commands, compared, 259-261
drag and drop, 103
focus, 267-270
layout, 66-68
listening to, 341-342
multiple events, handling, 299
property changed events, listening to,

280-282
Expression Blend, 312
extending

behaviors, controls, 34
ProgressBar control, 40-46

extension points, attached properties as,
100-103

ExtractElement method, 111

F
faces, 3D shapes, 186
factory method design pattern (GUI

development), 303
Ferris Wheel rotations, 63
FinishTransition() method, 161
flip scrolls, 122
flow control, HLSL (High Level Shading

Language), 227
FlowDocument class, 18-19, 29
FluidKit project, 161, 200

FluidKit project 355

focus, 266
events, 267-270
keyboard focus, 266
keyboard navigation, 271-273
logical focus, 266-267
properties, 267-270
scopes, 266-267
visual styles, 268

Focus() method, 266
FocusVisualStyle, 268
fonts, nonstandard fonts, icons, 308-309
Frame Rate category (Perforator), 328
frame rates, 186
Framework Design Guidelines, 304
framework property metadata options, 323-324
FrameworkElement class, 15-16, 29, 156
FrameworkTemplate class, 27
freezables, 321-322
frustums, 186

G
Geometries, 16, 310-312
geometry classes, 18
GeometryDrawings class, 25
GeometryGroup class, 18
GetChild() method, 83
GetChildren() method, 83
GetChildrenCount() method, 83
GetContentBounds() method, 83
GetEffect() method, 83
GetOpacity() method, 83
GetParent() method, 83
GetTemplateChild() method, 182
GetTransform() method, 83
GetValue() method, 276
GetVisualChild method, 53
GetVisualFeedback() method, 110
gloss effects, implementing, 164-165
GlyphRuns class, 18-19, 29
Goldberg, Jossef, 321-322, 326
GPU (Graphics Processing Units), shaders, 223
gradient brushes, 306-307
grayscale pixel shaders, writing, 228-231
Grid panel, 23, 59-60, 71, 319
GUI development

design patterns, 301
builder pattern, 301-302
composed method pattern, 303
factory method pattern, 303
framework design, 304
MVC (model-view-controller) pattern, 302

MVVM (model-view-view-model)
pattern, 302

state pattern, 303
strategy pattern, 301

pixel shaders, effect mapping, 235-239

H
handling transitions, 157-159
hardware rendering, 324
helper objects, UI controls, attached

properties, 103
hierarchical data, 2
hierarchy, visual classes, 11-12
hierarchy-based controls, 34
HitTest() method, 83, 145
HLSL (High Level Shading Language), 223-225

data types, 226-227
flow control, 227
intrinsic functions, 227
keywords, 226
pixel shaders

environment setup, 224-227
writing, 228-242

samplers, 227
semantics, 227
textures, 227

Hoffman, Kevin, 292
HookUpCommand() method, 264
horizontal scrolling, user-requested scrolling,

responding to, 116
HoverInteractor class, UseHover attached

property, building, 95-100

I
ICommand, 255-258

request requery, 261-262
routed commands, 259

ICommandSource interface, 262-266
icons, nonstandard fonts, 308-309
IDropTargetAdvisor method, 110
Illustrator, 309, 312
Image class, 25, 29
ImageBrush class, 25
Implementation Patterns, 303
Implicit Style precedence level (DPs), 277-278
importing PSD files, 309
Inactive priority level (Dispatcher), 286
Ingebretsen, Robby, 313
Inheritance precedence level (DPs), 277-278

focus356

ink-based functionality, attached properties,
encapsulating as, 146

InkCanvas class, 28-29, 143-146
INotifyPropertyChanged, 282
input devices, evolution of, 7
Input priority level (Dispatcher), 286
InputBinding class, 266
interactive search bars, 22
interactivity, 2D-on-3D surfaces, 200-201
interfaces, 2

GUI development
design patterns, 301-304
pixel shaders, effect mapping, 235-239

UIs (user interfaces), 2-3
commands, 255-266
deferring operations, Dispatcher, 287
routed events, 243-255
visual tree, 332

internal resource dictionaries, 295-296
internal state management, scoped

dependency properties, 296
interpolation, 216

Bézier interpolation, 214
linear interpolation, 214, 218

intrinsic functions, HLSL (High Level Shading
Language), 227

Invalid priority level (Dispatcher), 286
Inversion of Control (IoC) containers, 298
IoC (Inversion of Control) containers, 298
IScrollInfo, 115-116, 123-124, 127, 322-323

bounds, controlling, 116
custom scrolling functionality, adding,

119-122
Thumb

location management, 116
logical scrolling, 117

user-requested scrolling, responding to, 116
IsValidDataObject method, 110
ItemContainerGenerator, UI virtualization,

132-135
ItemContainerStyle, customizing, 74-77
ItemContainerStyle property (ItemsControl

class), 21
ItemsControl class, 21-22, 29

customizing, 72-74
ItemContainerStyle, 21
ItemsPanel, 21
ItemTemplate, 21
RelativeSource.PreviousData property, 284
Template, 21
UI virtualization, 131-133

ItemsControl control, 70
ItemsPanel property (ItemsControl class), 21,

131-133

How can we make this index more useful? Email us at indexes@samspublishing.com

ItemsPanelTemplate class, 27-29, 77-78
ItemsPresenter class, 29
ItemTemplate, customizing, 77-78
ItemTemplate property (ItemsControl class), 21
IWeakEventListener, weak events, delivering,

254-255

J–K
JetBrains DotTrace, 329

Kaxaml tool, 313-314
keyboard focus, 266

events, 267-270
properties, 267-270

keyboard navigation (focus), 271-273
Keyboard.Focus() method, 266
keyframe animations, 207-209
keywords, HLSL (High Level Shading

Language), 226
Kutruff, Andrew, 292

L
Language Integrated Query (LINQ), 291
lasso selection tools, creating, 143-146
layered structures, custom controls, 39
layout, 5, 49-52

3D layout, 200
absolute layout, 85
circular layouts, 63
conversations, 51-52
events, 66, 68
layout logic, custom scrolling, 117-119
layout space, 51
transformations, 63-68
UIElement class, 5, 50

layout animations, attached properties, 102
layout logic, custom scrolling, creating, 117-119
layout patterns, 23
layout space, 51
LayoutTransforms, 66-67
light

3D worlds, 186-187
refraction, 187

light sources, 3D scenes, 186
line charts, RelativeSource.PreviousData

property, 283
linear interpolation, 214, 218
LinearGradientBrush class, 25-26
LINQ (Language Integrated Query), 291
list data, 2
list-based controls, 34

list-based controls 357

ListBoxes, customizing, 74-78, 83-91
listings

2.1 (Pizza Slice” Sector Visual Class), 13
2.2 (Creating a Container for the

SectorVisual Class), 16
2.3 (Making the SectorVisual into a

Shape), 17
3.1 (ProcessStageHelper Class), 36
3.2 (ControlTemplate for the process

workflow ProgressBar), 37-38
3.3 (Creating the Arc Geometry), 42-43
3.4 (ControlTemplate for the Circular Minute

Timer), 44-46
Loaded priority level (Dispatcher), 286
Local Values precedence level (DPs), 277-278
logical focus, 266

events, 267-270
focus scopes, 266-267
properties, 267-270

logical scrolling, 117
LogicalTreeHelper class, controls, customizing,

82-83
long-running operations, background

threads, 322
lookless controls, 32, 70
low-priority delegates, controls, 299

M
Magnifying Glass control, 154
Making the SectorVisual into a Shape

listing (2.3), 17
mapping 2D visuals, 3D surfaces, 192-199
Mariani, Rico, 326
markup extensions, object creation,

encapsulating, 300-301
Measure call, 51-52
MeasureOverride method, 135
measuring performance, 326-327

Perforator, 328-329
third-party tools, 329
Visual Profiler, 327-328

MediaElement class, 28-29
MergedDictionaries, 171
mesh surfaces, vertices, 219
mesh vertices, 148
messages, worker threads, posting from,

287-289
methods

AddOwner(), 279-280
ApplyTransition(), 159, 161
AttachToVisualTree(), 182
CanExecute(), 255
DockFrontChild(), 150, 152

DoDragDrop(), 103
DragDrop.DoDragDrop(), 104
ExtractElement(), 111
FinishTransition(), 161
Focus(), 266
GetChild(), 83
GetChildren(), 83
GetChildrenCount(), 83
GetContentBounds(), 83
GetEffect(), 83
GetOpacity(), 83
GetParent(), 83
GetTemplateChild(), 182
GetTransform(), 83
GetValue(), 276
GetVisualChild(), 53
GetVisualFeedback(), 110
HitTest(), 83, 145
HookUpCommand(), 264
IDropTargetAdvisor(), 110
IsValidDataObject(), 110
Keyboard.Focus(), 266
MeasureOverride(), 135
OnDropCompleted(), 106, 110
OnRender(), 86
PrepareStoryboard(), 159, 161
PrepareStoryboard(), 152-153, 158
Scroll(), 122
SetupVisuals(), 159, 161
SetupVisuals(), 157-158
SetValue(), 276
SetVerticalOffset(), 119, 121
Stroke.GetBounds(), 144
UndockFrontChild() method, 150, 152
UpdateScrollInfo(), 121

Metsker, Steven John, 301
minute times (circular), building, 40-46
models, 3D worlds, 186-187
ModelUIElement3D, 196, 198-199
Mole tool, 313-314
Morrison, Vance, 326
multi-input pixel shaders, 239-241
multiple events, handling, state machines, 299
MVC (model-view-controller) design pattern, 302
MVVM (model-view-view-model) design

pattern, 302

N
namespaces

System.Windows namespace,
DependencyObject class, 13

System.Windows.Threading,
DispatcherObject class, 12

UI automation, 333

ListBoxes, customizing358

navigation containers, 271
needle-shaped DrawingBrushes, 82
nonstandard fonts, icons, 308-309
Normal priority level (Dispatcher), 286
NotifyOnSourceUpdated property, data binding,

284-285
NotifyOnTargetUpdated property, data binding,

284-285

O
objects

encapsulation, markup extensions, 300-301
provider objects, 298
target objects, 35

OnDropCompleted method, 106, 110
OnRender method, 86
opacity masks, 310

clip geometries, compared, 310
implementing, 164

Open Source FluidKit project, 200
OriginalSource, Routed EventsArgs, 246

P
painter’s algorithms, 319
Panel class, 23-24, 29

Children property, 53
layout patterns, 23
VisualChildrenCount property, 53

panels, 5, 70. See also names of specific panels
Canvas, 319
constraining panels, attached properties, 102
custom panels

creating, 49-68
custom scrolling, 117-122
layout, 49-52
visual children, 52-55

DockPanel, 319
Grid, 319
performance, 319
virtualized panels, creating, 135-139

Parallax view control, 154
parallel timelines, storyboards, 208-209
parameterized pixel shaders, writing, 231-235
partial classes, controls, defining as, 296
passes, layout conversations, 51
path animations, 213
path-based animations, 211-212
PathGeometry class, 18
Perforator, 328-329

How can we make this index more useful? Email us at indexes@samspublishing.com

performance, 317-318, 330
3D worlds, 325-326
background threads, long-running

operations, 322
brushes, 320
caching, 320
data binding, 321-322
framework property metadata options,

323-324
freezables, 321-322
hardware rendering, 324
measuring, 326-329
perceived responsiveness, 329-330
performance enhancements, 318
pixel shaders, 323
reference handling, 321
render pipeline, optimizing, 325
resource management, 321
scrolling, 322-323
software rendering, 324
storyboard animations, 323
virtualization, 322-323
visuals, 318-319

persistent ToolTips, creating, attached
properties, 97-98

perspective cameras, 148
perspective projections, 141
Petzold, Charles, 214
Photoshop, 309, 312
pie shapes, 41
pixel shaders, 223-224, 242

animating, 235
custom pixel shaders, writing, 228-242
DirectX, 223
environments, setting up, 224-227
grayscale pixel shaders, writing, 228-231
GUI interaction, effect mapping, 235-239
HLSL, 225

data types, 226-227
flow control, 227
intrinsic functions, 227
keywords, 226
samplers, 227
semantics, 227

HLSL (High Level Shading Language), 223
improvements, 224
multi-input pixel shaders, 239-241
parameterized pixel shaders, writing, 231-235
performance, 323
Shazzam tool, 242
vertex shaders, compared, 223

“Pizza Slice” Sector Visual Class listing (2.1), 13
PNGs (portable network graphics), transparent

PNGs, 309

PNGs (portable network graphics) 359

posting messages from worker threads, 287-289
precedence, DPs (dependency properties),

276-279
PrepareStoryboard() method, 152-153, 158-161
presenters, 4
primitive data, 2
primitive visuals, templates, identifying, 297
priorities, Dispatcher class, 285-287
procedural animations, 203-206
ProcessStageHelper class, 36-37
ProcessStageHelper Class listing (3.1), 36
progress bars, 35, 329
ProgressBar control, 35, 40

default display form, 35
extending, 40-46

properties
attached properties, 93-95, 111-112

application services, 102
as extension points, 100-103
constraining panels, 102
controls, 297
custom panel creation, 58-63
data templates, 102
DnD (drag and drop) implementation,

103-111
layout animations, 102
property abstraction, 102
UI helper objects, 103
UseHover attached property, 95-100

automation properties, 335-336
coercion, 277
controls

attached properties, 35-38
customizing, 70
customizing with, 32

dependency properties, 93
animations, 206
data binding, 276-282
internal state management, 296

focus, 267-270
framework property metadata options,

323-324
property mirrors, routed events, 246
RelativeSource.PreviousData, data binding,

282-284
property abstraction, attached properties, 102
property changes

DPs (dependency properties), listening to,
280-282

handling, state machines, 299
property exposure, controls, customizing,

182-183
property mirrors, routed events, 246

Property Value Coercion precedence level (DPs),
277-278

property values
reading, 341
TemplateBinding, ControlTemplate, 81

PropertyDescriptors, 281
provider objects, 298
PSD files, importing, 309

Q–R
radar screens

concentric circles, creating, 85-91
creating, 83-91
moving enemies, 84-85
sweeping cones, creating, 85-91

RadialGradientBrush class, 25-26
range-based controls, 34
RangeSelector custom control, automation,

343-349
recycling (container), 323
Red Gate Ants Profiler, 329
reference figures, 87
reference handling, 321
references, control child elements,

maintaining, 297
reflection effect, implementing, 161-162
refraction, light, 187
registering class handlers, 249
relative transforms, 306-307
RelativeSource.PreviousData property

data binding, 282-284
ItemsControl, 284

render pipeline, optimizing, 325
Render priority level (Dispatcher), 286
RenderCapability, 324
rendering

hardware rendering, 324
render pipeline, optimizing, 325
software rendering, 324

RenderTransforms, 65-66
repeating animations, 329
resource dictionaries, 295-296
resource keys, dynamic skinning, 176
resource lookups, 168-169
resource management, 321
ResourceDictionaries, 171, 173
ResourceDictionary, 168
resources

cloning, xShared, 299-300
default styles, 170-172

retained-mode graphics systems, 15
Ritscher, Walt, 242
RotateTransforms, 66

posting messages from worker threads360

routed events, 243-245
attached events, 246-248
class handlers, 249-250
event triggers, 245-246
property mirrors, 246
weak events, 250-255

RoutedEventsArgs, 246
RowsPanels, creating, 117-122
runtime skinning, enabling, 174-182

S
samplers, HLSL (High Level Shading

Language), 227
Schechter, Greg, 255
SciTech .NET Memory Profiler, 329
scoped dependency properties, internal state

managements, 296
Scroll method, 122
ScrollBars, 40, 113-115

custom ScrollBar, creating, 78-82
vertical ScrollBars, 79

scrolling, 113, 127
animated scrolling, 122-123
bounds, controlling, 116
custom scrolling, 117-122
deferred scrolling, 139-140, 329
flip scrolls, 122
IScrollInfo, 115-117, 123-124
logical scrolling, 117
performance, 322-323
ScrollViewer, 124-126
Thumb, location management, 116
user-requested scrolling, responding to, 116

scrolling regions, bounds, controlling, 116
ScrollViewer, 117, 124-127, 131-133
SectorVisual class, containers, creating for, 15
semantics, HLSL (High Level Shading

Language), 227
Send priority level (Dispatcher), 286
SetupVisuals() method, 157-158, 161
SetValue() method, 276
SetVerticalOffset() method, 119, 121
shaders, 223. See also pixel shaders

GPUs (Graphics Processing Units), 223
HLSL (High Level Shading Language),

223-225
data types, 226-227
flow control, 227
intrinsic functions, 227
keywords, 226
samplers, 227
semantics, 227

vertex shaders, 223

How can we make this index more useful? Email us at indexes@samspublishing.com

Shape class, 16-18, 29
DefiningGeometry property, 16-18
Stretch property, 17

shapes, 63, 70
3D shapes, faces, 186
arc shapes, 41-44
concentric circles, creating, 85-91
pie shapes, 41
properties, 71
traditional circles, 63

Shazzam tool, pixel shaders, 242
Shifflett, Karl, 313
skins, 167-170, 183

default styles
building, 169-170
resources in, 170-172

resource lookups, 168-169
runtime skinning

ApplyTemplate override, 177-182
enabling, 174-182

theme-specific styles, creating, 172-174
themes, compared, 168

SkinThemeControl, 169
Smith, Andrew, 313
Smith, Josh, 313
Snoop tool, 312-313
software rendering, 324
SolidColorBrush class, 25, 320
Source class, 35, 246
Spine, 16
StackPanel class, 23

layout, 50
properties, 71

“staged” progress bars, custom display, 35
StaggeredPanel virtualized control, creating,

135-139
state design pattern (GUI development), 303
state machines, 299
state management, scoped dependency

properties, 296
storyboard animations, performance, 323
Storyboard Animations precedence level (DPs),

277-278
storyboards

animating with, 206-212
docked/undocked modes, 152-153

strategy design pattern (GUI development), 301
StreamGeometry class, 18
Stretch property (Shape class), 17
Stroke.GetBounds method, 144
Style Setters precedence level (DPs), 277-278
Style Triggers precedence level (DPs), 277-278

Style Triggers precedence level (DPs) 361

styles, 5-6
default styles

building, 169-170
resources in, 170-172

focus, visual styles, 268
resource lookups, 168-169
runtime skinning, enabling, 174-177
theme-specific styles, creating, 172-174

subclassing, WEM (WeakEventManager),
252-254

subparts, controls, communicating between,
297-298

surfaces
2D-on-3D surfaces, interactivity, 200-201
3D surfaces

creating, 219-220
mapping 2D visuals to, 192-196

mesh surfaces, vertices, 219
SW/HW IRTs per Frame category

(Perforator), 329
sweeping cones, creating, 85-91
synchronous calls, 107
System.Windows namespace,

DependencyObject class, 13
System.Windows.Media.Visual abstract class, 13
System.Windows.Threading namespace,

DispatcherObject class, 12
SystemIdle priority level (Dispatcher), 286

T
target objects, 35
Template property (Control class), 19
Template property (ItemsControl class), 21
Template Triggers precedence level (DPs),

277-278
TemplateBinding, property values,

ControlTemplate, 81
TemplateParent Template Properties

precedence level (DPs), 277-278
templates, 3

control templates, 4, 70-72
data templates, 4, 71-72
primitive visuals, identifying, 297

TestAPI library, 349
Text, performance, 319
text boxes, watermarked text boxes, 269
Text classes, 18-19
TextBlock class, 18-19, 29, 71, 319
TextBlock control, 70
textures, HLSL (High Level Shading

Language), 227
theme-specific styles, creating, 172-174

themes, 167-170, 183
Aero theme, 168
default styles

building, 169-170
resources in, 170-172

resource lookups, 168-169
skins, compared, 168
theme-specific styles, creating, 172-174

Themes folder, 173
third-party tools, performance measuring, 329
Thumb, bounds, controlling for, 116
tile brushes, 304-305
TileBrush classes, 25, 27
Timeline.DesiredFramerate attached

property, 220
tools, design tools, 312-314
ToolTips, persistent ToolTips, creating, 97-98
touch computing, evolution of, 7
Track, bounds, controlling for, 116
traditional circles, 63
transformations

affine transformations, 66
data transformations, 32

TypeConverters, 33-34
value converters, 32-33

layout, 63-68
transition abstractions, building, 154-161
TransitionContainer control, creating, 154-161
TransitionPresenter control, 161
Transitions, 154

applying, 159-161
handling, 157-159

transparent PNGs, 309
TreeScope, enumeration values, 337
TreeWalker, 336
triggers (event), routed events, 245-246
TwirlEffect, parameterized pixel shaders,

building, 231-235
two-pass approach, layout conversations, 51
type-based animations, 206-207
TypeConverters, data transformations, 33-34

U
UI Auditing, class handlers, registering, 249
UI automation, 331-332

assemblies, 333
automation APIs, 338-342
automation elements, performing

operations on, 342
automation tree

locating elements, 339-340
navigating, 342

styles362

automation tree, navigating, 336-338
AutomationElement class, 333-335
AutomationPeer class, 333-335
control patterns, 333-335

checking for, 340
custom controls, 343-349
events, listening to, 341-342
namespaces, 333
object model, 332-338
properties, 335-336
property values, reading, 341
resources, 349

UI controls, helper objects, attached
properties, 103

UI virtualization, 130-131
3D virtualization, 140-142
classes, 131-132
component interaction, 132-133
containers, 130-131

recycling, 140
deferred scrolling, 139-140
ItemContainerGenerator, 133-135
viewports, 130-131
virtualized controls, creating, 135-139

UIElement class, 5, 15-16, 50
UIs (user interfaces), 2-3

commands, 255-258
components, 257
ICommandSource interface, 262-266
request requery, 261-262
routed commands, 259

deferring operations, Dispatcher, 287
routed events, 243-245

attached events, 246-248
class handlers, 249-250
event triggers, 245-246
property mirrors, 246
weak events, 250-255

visual tree, 332
UISpy, 341
UndockFrontChild() method, 150, 152
undocking controls, 149-154
UniformGrid panel

layout, 50
properties, 71

unit testing, 111
UpdateScrollInfo method, 121
UseHover attached property, building, 95-100
user experience, accounting for, 8-9
user input, 6, 8
user-requested scrolling, responding to, 116
UserControl class, 22-23, 29
UX guidelines, visual design, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

V
value converters, data transformations, 32-33
VanishingPointPanel, 56-58
vector graphics, designing, Adobe Illustrator, 309
vertex shaders, pixel shaders, compared, 223
vertical ScrollBars, 79
vertical scrolling, user-requested scrolling,

responding to, 116
vertices, mesh surfaces, 219
Video Memory Usage category (Perforator), 329
view refactoring, 23
Viewport3D class, 27-29
Viewport3D element, 186-192
viewports, UI virtualization, 130-131
views, transitions

applying, 159-161
creating, 154-161
handling, 157-159

Virtual Earth, 130
virtualization, 129-130, 142. See also

UI virtualization
performance, 322-323
Virtual Earth, 130

Visual class, 13-16, 29
visual classes, 11

Adorner, 29
Adorner class, 24
Brush, 29
Brush-related classes, 25-27
ContentControl, 29
ContentControl class, 20
ContentPresenter, 29
ContentPresenter class, 20-21
Control, 29
Control class, 19-20
ControlTemplate class, 27
DataTemplate, 29
DataTemplate class, 27
Decorator, 29
Decorator class, 24
DependencyObject, 29
DependencyObject class, 12, 16
DispatcherObject, 29
DispatcherObject class, 12, 16
DrawingVisual, 29
DrawingVisual class, 13-15
FlowDocument, 18-19, 29
FrameworkElement, 29
FrameworkElement class, 15-16
GlyphRuns, 18-19, 29
hierarchy, 11-12
Image, 29
Image class, 25

visual classes 363

InkCanvas, 29
InkCanvas class, 28-29
ItemsControl, 29
ItemsControl class, 21-22
ItemsPanelTemplate, 29
ItemsPanelTemplate class, 27
ItemsPresenter, 29
MediaElement, 29
MediaElement class, 28
Panel, 29
Panel class, 23-24
Shape, 29
Shape class, 16-18
TextBlock, 18-19, 29
UIElement class, 15-16
UserControl, 29
UserControl class, 22-23
Viewport3D, 29
Viewport3D class, 27-28
Visual, 29
Visual class, 13-16

visual children, custom panels, 52-55
visual design

Adobe Illustrator, vector manipulation, 309
clip geometries, 310-312
gradient brushes, 306-307
icons, nonstandard fonts, 308-309
opacity masks, 310
Photoshop, importing from, 309
relative transforms, 306-307
tile brushes, 304-305
transparent PNGs, 309
Windows Vista guidelines, 308
XAML coding conventions, 307-308

visual effects, 166
drop shadows, implementing, 163
gloss effects, implementing, 164-165
opacity masks, implementing, 164
reflection effect, implementing, 161-162
transitions

applying, 159, 161
creating, 154-157
handling, 157-159

Visual Profiler, 327-328
visual richness, 319
Visual Studio, 312
visual styles, focus, 268
visual tree (UI), 332
VisualBrush class, 25-26
VisualChildrenCount property, 53
visuals, 318-319
VisualTreeHelper class, controls, customizing,

82-83

W–Z
watermarked text boxes, 269
Weak Delegates, 255
weak events, 250-255

delivering, IWeakEventListener, 254-255
implementing, 251-252
WEM (WeakEventManager), 251-254

Webdings font, icons, using for, 308-309
WeightedPanel, 58-63
WEM (WeakEventManager), 251-254
windows, 5
Windows Forms, 3
Windows Presentation Foundation (WPF), 1-3
Windows Vista guidelines, visual design, 308
worker threads, posting messages from,

287-289
world units, 186
WPF (Windows Presentation Foundation), 1-3
WPF Application Quality guide, 349
WrapPanel, properties, 71
WrapPanel class, 23

XAML (Extensible Application Markup Language)
3D world rendered output, 188
coding conventions, 307-308

xShared Boolean attribute, resources, cloning,
299-300

visual classes364

OTHER UNLEASHED TITLES

ASP.NET 3.5 AJAX

Unleashed

ISBN-13: 9780672329739

Windows Small Business

Server 2008 Unleashed

ISBN-13: 9780672329579

Silverlight 2 Unleashed

ISBN-13: 9780672330148

Windows Communication

Foundation 3.5

Unleashed

ISBN-13: 9780672330247

Windows Server 2008

Hyper-V Unleashed

ISBN-13: 9780672330285

LINQ Unleashed

ISBN-13: 9780672329838

C# 3.0 Unleashed

ISBN-13: 9780672329814

Ubuntu Unleashed

2008 Edition

ISBN-13: 9780672329937

Microsoft Dynamics

CRM 4 Integration

Unleashed

ISBN-13: 9780672330544

Microsoft Expression

Blend Unleashed

ISBN-13: 9780672329319

Windows PowerShell

Unleashed

ISBN-13: 9780672329883

Microsoft SQL Server

2008 Analysis Services

Unleashed

ISBN-13: 9780672330018

Microsoft SQL Server

2008 Integration

Services Unleashed

ISBN-13: 9780672330322

Microsoft XNA Game

Studio 3.0 Unleashed

ISBN-13: 9780672330223

SAP Implementation

Unleashed

ISBN-13: 9780672330049

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts, and the most
in-depth coverage of the latest technologies.

informit.com/sams

ASP.NET MVC Framework Unleashed

ISBN-13: 9780672329982

System Center Configuration Manager

(SCCM) 2007 Unleashed

ISBN-13: 9780672330230

Microsoft SQL Server 2008 Reporting

Services Unleashed

ISBN-13: 9780672330261

UNLEASHED

Your purchase of WPF Control Development Unleashed includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every
Sams book is available online through Safari Books Online, along with more than 5,000
other technical books and videos from publishers such as Addison-Wesley Professional,
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, and Que.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: YTKFREH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	2 The Diverse Visual Class Structure
	Introducing the Visual Classes
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W–Z

