

The Object-Oriented Thought Process, Third Edition
Copyright © 2009 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-10: 0-672-33016-4

ISBN-13: 978-0-672-33016-2

Library of Congress Cataloging-in-Publication Data

Weisfeld, Matt A.

The object-oriented thought process / Matt Weisfeld. -- 3rd ed.

p. cm.

Includes index.

ISBN 978-0-672-33016-2 (pbk.)

1. Object-oriented programming (Computer science) I. Title.

QA76.64.W436 2009

005.1'17--dc22

2008027242

Printed in the United States of America

First Printing: August 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book or
from the use of the programs accompanying it.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Chrissy White

Indexer
Tim Wright

Proofreader
Matt Purcell

Technical Editor
Jon Upchurch

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Composition
Mark Shirar

Introduction

This Book’s Scope
As the title indicates, this book is about the object-oriented (OO) thought process. Obvi-
ously, choosing the theme and title of the book are important decisions; however, these
decisions were not all that simple. Numerous books deal with various levels of object ori-
entation. Several popular books deal with topics including OO analysis, OO design, OO
programming, design patterns, OO data (XML), the Unified Modeling Language (UML),
OO Internet development, various OO programming languages, and many other topics
related to OO development.

However, while pouring over all of these books, many people forget that all of these
topics are built on a single foundation: how you think in OO ways. It is unfortunate, but
software professionals often dive into these books without taking the appropriate time
and effort to really understand the concepts behind the content.

I contend that learning OO concepts is not accomplished by learning a specific devel-
opment method or a set of tools. Doing things in an OO manner is, simply put, a way of
thinking.This book is all about the OO thought process.

Separating the methods and tools from the OO thought process is not easy. Many peo-
ple are introduced to OO concepts via one of these methods or tools. For example, years
ago, most C programmers were first introduced to object orientation by migrating di-
rectly to C++—before they were even remotely exposed to OO concepts. Other soft-
ware professionals were first introduced to object orientation by presentations that
included object models using UML—again, before they were even exposed directly to
OO concepts. It is not unusual to find that programming books and courses defer OO
concepts until later in the learning process.

It is important to understand the significant difference between learning OO concepts
and using the methods and tools that support the paradigm.This came into focus for me
before I worked on the first edition of this book when I read articles such as Craig Lar-
man’s “What the UML Is—and Isn’t,” In this article he states,

Unfortunately, in the context of software engineering and the UML diagramming language,
acquiring the skills to read and write UML notation seems to sometimes be equated with
skill in object-oriented analysis and design. Of course, this is not so, and the latter is much
more important than the former. Therefore, I recommend seeking education and educational
materials in which intellectual skill in object-oriented analysis and design is paramount
rather than UML notation or the use of a case tool.

2 Introduction

Although learning a modeling language is an important step, it is much more impor-
tant to learn OO skills first. Learning UML before OO concepts is similar to learning
how to read an electrical diagram without first knowing anything about electricity.

The same problem occurs with programming languages.As stated earlier, many C
programmers moved into the realm of object orientation by migrating to C++ before
being directly exposed to OO concepts.This would always come out in an interview.
Many times developers who claim to be C++ programmers are simply C programmers
using C++ compilers. Even now, with languages such as C# .NET,VB .NET, and Java
well established, a few key questions in a job interview can quickly uncover a lack of
OO understanding.

Early versions of Visual Basic are not OO. C is not OO, and C++ was developed to be
backward compatible with C. Because of this, it is quite possible to use a C++ compiler
(writing only C syntax) while forsaking all of C++’s OO features. Even worse, a pro-
grammer can use just enough OO features to make a program incomprehensible to OO
and non-OO programmers alike.

Thus, it is of vital importance that while you’re on the road to OO development, you
first learn the fundamental OO concepts. Resist the temptation to jump directly into a
programming language (such as VB .NET, C++, C# .NET or Java) or a modeling lan-
guage (such as UML), and take the time to learn the object-oriented thought process.

In my first class in Smalltalk in the late 1980s, the instructor told the class that the new
OO paradigm was a totally new way of thinking (despite the fact that it has been around since
the 60s). He went on to say that although all of us were most likely very good program-
mers, about 10%–20% of us would never really grasp the OO way of doing things. If this
statement is indeed true, it is most likely because some people never really take the time
to make the paradigm shift and learn the underlying OO concepts.

What’s New in the Third Edition
As stated often in this introduction, my vision for the first edition was primarily a con-
ceptual book.Although I still adhere to this goal for the second and third editions, I have
included several application topics that fit well with object-oriented concepts. For the
third edition I expand on many of the topics of the second edition and well as include
totally new chapters.These revised and updated concepts

n XML is used for object communication.
n Object persistence and serialization.
n XML integrated into the languages object definition.
n Adding properties to attributes.
n XML-based Internet applications.
n Client/Server technologies.
n Expanded code examples in Java, C# .NET and VB .NET.

3This Book’s Scope

The chapters that cover these topics are still conceptual in nature; however, many of the
chapters include Java code that shows how these concepts are implemented. In this third
edition, a code appendix is included that presents the chapter’s examples in C# .NET and
Visual Basic .NET.

The Intended Audience
This book is a general introduction to fundamental OO concepts with code examples to
reinforce the concepts. One of the most difficult juggling acts was to keep the material
conceptual while still providing a solid, technical code base.The goal of this book is to al-
low a reader to understand the concepts and technology without having a compiler at
hand. However, if you do have a compiler available, then there is code to be investigated.

The intended audience includes business managers, designers, developers, program-
mers, project managers, and anyone who wants to gain a general understanding of what
object orientation is all about. Reading this book should provide a strong foundation for
moving to other books covering more advanced OO topics.

Of these more advanced books, one of my favorites remains Object-Oriented Design in
Java by Stephen Gilbert and Bill McCarty. I really like the approach of the book, and have
used it as a textbook in classes I have taught on OO concepts. I cite Object-Oriented De-
sign in Java often throughout this book, and I recommend that you graduate to it after
you complete this one.

Other books that I have found very helpful include Effective C++ by Scott Meyers,
Classical and Object-Oriented Software Engineering by Stephen R. Schach, Thinking in C++
by Bruce Eckel, UML Distilled by Martin Flower, and Java Design by Peter Coad and
Mark Mayfield.

The conceptual nature of this book provides a unique perspective in regards to other
computer technology books.While books that focus on specific technologies, such as
programming languages, struggle with the pace of change, this book has the luxury of
presenting established concepts that, while certainly being fine-tuned, do not experience
radical changes.With this in mind, many of the books that were referenced several years
ago, are still referenced because the concepts are still fundamentally the same.

This Book’s Scope
It should be obvious by now that I am a firm believer in becoming comfortable with the
object-oriented thought process before jumping into a programming language or model-
ing language.This book is filled with examples of code and UML diagrams; however, you
do not need to know a specific programming language or UML to read it.After all I have
said about learning the concepts first, why is there so much Java, C# .NET, and VB .NET
code and so many UML diagrams? First, they are all great for illustrating OO concepts.
Second, both are vital to the OO process and should be addressed at an introductory
level.The key is not to focus on Java, C# .NET, and VB .NET or UML, but to use them
as aids in the understanding of the underlying concepts.

4 Introduction

The Java, C# .NET and VB .NET examples in the book illustrate concepts such as
loops and functions. However, understanding the code itself is not a prerequisite for un-
derstanding the concepts; it might be helpful to have a book at hand that covers specific
languages syntax if you want to get more detailed.

I cannot state too strongly that this book does not teach Java, C# .NET, and VB .NET
or UML, all of which can command volumes unto themselves. It is my hope that this
book will whet your appetite for other OO topics, such as OO analysis, object-oriented
design, and OO programming.

This Book’s Conventions
The following conventions are used in this book:

n Code lines, commands, statements, and any other code-related terms appear in a
monospace typeface.

n Placeholders that stand for what you should actually type appear in italic mono-
space.Text that you should type appears in bold monospace.

n Throughout the book, there are special sidebar elements, such as

Note
A Note presents interesting information related to the discussion—a little more insight or a
pointer to some new technique.

Tip
A Tip offers advice or shows you an easier way of doing something.

Caution
A Caution alerts you to a possible problem and gives you advice on how to avoid it.

Source Code Used in This Book
You can download all the source code and examples discussed within this book from the
publisher’s website.

8
Frameworks and Reuse:

Designing with Interfaces and
Abstract Classes

Chapter 7,“Mastering Inheritance and Composition,” explains how inheritance and
composition play major roles in the design of object-oriented (OO) systems.This chapter
expands on this theme and introduces the concepts of a Java interface and an abstract
class.

Java interfaces and abstract classes are a powerful mechanism for code reuse, providing
the foundation for a concept I call contracts.This chapter covers the topics of code reuse,
frameworks, contracts, Java interfaces, and abstract classes.At the end of the chapter, we’ll
work through an example of how all these concepts can be applied to a real-world situa-
tion.

Code: To Reuse or Not to Reuse?
You have been dealing with the issue of code reuse since you took your first program-
ming class or wrote your first line of code. Many software development paradigms have
code reuse as a major component. Since the dawn of computer software, the concept of
reusing code has been reinvented several times.The OO paradigm is no different. One of
the major advantages touted by OO proponents is that if you write code properly the
first time, you can reuse it to your heart’s content.

This is only true to a certain degree.As with all design approaches, the utility and the
reusability of code depends on how well it was designed and implemented. OO design
does not hold the patent on code reuse.There is nothing stopping anyone from writing
very robust and reusable code in a non–OO language. Certainly, there are countless num-
bers of routines and functions, written in structured languages such as COBOL C and
traditional VB, that are of high quality and quite reusable.

Thus, it is clear that following the OO paradigm is not the only way to develop
reusable code. However, the OO approach does provide several mechanisms for facilitat-

152 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

ing the development of reusable code. One way to create reusable code is to create frame-
works. In this chapter, we focus on using interfaces and abstract classes to create frame-
works and encourage reusable code.

What Is a Framework?
Hand-in-hand with the concept of code reuse is the concept of standardization, which is
sometimes called plug-and-play.The idea of a framework revolves around these plug-and-
play and reuse principles. One of the classic examples of a framework is a desktop appli-
cation. Let’s take an office suite application as an example.The document editor that I am
currently using (Microsoft Word) has a menu bar that includes multiple menu options.
These options are similar to those in the presentation package (Microsoft PowerPoint)
and the spreadsheet software (Microsoft Excel) that I also have open. In fact, the first six
menu items (File, Edit,View, Insert, Format, and Tools) are the same in all three programs.
Not only are the menu options similar, but the first toolbar looks remarkably alike as well
(New, Open, Save, and so on). Below the toolbars is the document area—whether it be
for a document, a presentation, or a spreadsheet.The common framework makes it easier
to learn various applications within the office suite. It also makes a developer’s life easier
by allowing maximum code reuse, not to mention that fact that we can reuse portions of
the design as well.

The fact that all these menu bars have a similar look and feel is obviously not an acci-
dent. In fact, when you develop in most integrated development environments, on a cer-
tain platform like Microsoft Windows, for example, you get certain things without having
to create them yourself.When you create a window in a Windows environment, you get
elements like the main title bar and the file close button in the top-right corner.Actions
are standardized as well—when you double-click the main title bar, the screen always
minimizes/maximizes.When you click the close button in the top-right corner, the ap-
plication always terminates.This is all part of the framework. Figure 8.1 is a screenshot of
a word processor. Note the menu bars, toolbars, and other elements that are part of the
framework.

A word processing framework generally includes operations such as creating docu-
ments, opening documents, saving documents, cutting text, copying text, pasting text,
searching through documents, and so on.To use this framework, a developer must use a
predetermined interface to create an application.This predetermined interface conforms
to the standard framework, which has two obvious advantages. First, as we have already
seen, the look and feel are consistent, and the end users do not have to learn a new
framework. Second, a developer can take advantage of code that has already been written
and tested (and this testing issue is a huge advantage).Why write code to create a brand
new Open dialog when one already exists and has been thoroughly tested? In a business
setting, when time is critical, people do not want to have to learn new things unless it is
absolutely necessary.

153What Is a Contract?

Figure 8.1 A word processing framework.

Code Reuse Revisited
In Chapter 7, we talked about code reuse as it pertains to inheritance—basically one class
inheriting from another class. This chapter is about frameworks and reusing whole or partial
systems.

The obvious question is this: If you need a dialog box, how do you use the dialog box
provided by the framework? The answer is simple:You follow the rules that the framework
provides you.And where might you find these rules? The rules for the framework are
found in the documentation.The person or persons who wrote the class, classes, or class
libraries should have provided documentation on how to use the public interfaces of the
class, classes, or class libraries (at least we hope). In many cases, this takes the form of the
application-programming interface (API).

For example, to create a menu bar in Java, you would bring up the API documentation
for the JMenuBar class and take a look at the public interfaces it presents. Figure 8.2 shows
a part of the Java API. By using these APIs, you can create a valid Java applet and conform
to required standards. If you follow these standards, your applet will be set to run in Java-
enabled browsers.

What Is a Contract?
In the context of this chapter, we will consider a contract to be any mechanism that re-
quires a developer to comply with the specifications of an Application Programming In-
terface (API). Often, an API is referred to as a framework.The online dictionary
Dictionary.com (http://www.dictionary.com) defines a contract as an agreement between

http://www.dictionary.com

154 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Figure 8.2 API documentation.

two or more parties for the doing or not doing of something specified—an agreement en-
forceable by law.”

This is exactly what happens when a developer uses an API—with the project man-
ager, business owner or industry standard providing the enforcement.When using con-
tracts, the developer is required to comply with the rules defined in the framework.This
includes issues like method names, number of parameters, and so on. In short, standards
are created to facilitate good development practices.

The Term Contract
The term contract is widely used in many aspects of business, including software develop-
ment. Do not confuse the concept presented here with other possible software design con-
cepts called contracts.

Enforcement is vital because it is always possible for a developer to break a contract.With-
out enforcement, a rogue developer could decide to reinvent the wheel and write her own
code rather than use the specification provided by the framework.There is little benefit to
a standard if people routinely disregard or circumvent it. In Java and the .NET languages,
the two ways to implement contracts are to use abstract classes and interfaces.

Abstract Classes
One way a contract is implemented is via an abstract class.An abstract class is a class that
contains one or more methods that do not have any implementation provided. Suppose
that you have an abstract class called Shape. It is abstract because you cannot instantiate it.
If you ask someone to draw a shape, the first thing they will most likely ask you is “What

155What Is a Contract?

+draw:void

Shape

+draw:void

Rectangle

+draw:void

Circle

Figure 8.3 An abstract class hierarchy.

kind of shape?”Thus, the concept of a shape is abstract. However, if someone asks you to
draw a circle, this does not pose quite the same problem because a circle is a concrete
concept.You know what a circle looks like.You also know how to draw other shapes, such
as rectangles.

How does this apply to a contract? Let’s assume that we want to create an application
to draw shapes. Our goal is to draw every kind of shape represented in our current design,
as well as ones that might be added later.There are two conditions we must adhere to.

First, we want all shapes to use the same syntax to draw themselves. For example, we
want every shape implemented in our system to contain a method called draw().Thus,
seasoned developers implicitly know that to draw a shape you simply invoke the draw()

method, regardless of what the shape happens to be.Theoretically, this reduces the
amount of time spent fumbling through manuals and cuts down on syntax errors.

Second, remember that it is important that every class be responsible for its own ac-
tions.Thus, even though a class is required to provide a method called draw(), that class
must provide its own implementation of the code. For example, the classes Circle and
Rectangle both have a draw() method; however, the Circle class obviously has code to
draw a circle, and as expected, the Rectangle class has code to draw a rectangle.When we
ultimately create classes called Circle and Rectangle, which are subclasses of Shape, these
classes must implement their own version of Draw (see Figure 8.3).

In this way, we have a Shape framework that is truly polymorphic.The Draw method can
be invoked for every single shape in the system, and invoking each shape produces a dif-
ferent result. Invoking the Draw method on a Circle object draws a circle, and invoking
the Draw method on a Rectangle object draws a rectangle. In essence, sending a message
to an object evokes a different response, depending on the object.This is the essence of
polymorphism.

circle.draw(); // draws a circle
rectangle.draw(); // draws a rectangle

156 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Let’s look at some code to illustrate how Rectangle and Circle conform to the Shape
contract. Here is the code for the Shape class:

public abstract class Shape {

public abstract void draw(); // no implementation

}

Note that the class does not provide any implementation for draw(); basically there is
no code and this is what makes the method abstract (providing any code would make the
method concrete).There are two reasons why there is no implementation. First, Shape
does not know what to draw, so we could not implement the draw() method even if we
wanted to.

Structured Analogy
This is an interesting issue. If we did want the Shape class to contain the code for all possi-
ble shape present and future, some conditional statement (like a Case statement) would be
required. This would be very messy and difficult to maintain. This is one example of where
the strength of an object-oriented design comes into play.

Second, we want the subclasses to provide the implementation. Let’s look at the Circle
and Rectangle classes:

public class Circle extends Shape {

public void Draw() {System.out.println (“Draw a Circle”};

}

public class Rectangle extends Shape {

public void Draw() {System.out.println (“Draw a Rectangle”};

}

Note that both Circle and Rectangle extend (that is, inherit from) Shape.Also notice
that they provide the actual implementation (in this case, the implementation is obviously
trivial). Here is where the contract comes in. If Circle inherits from Shape and fails to
provide a draw() method, Circle won’t even compile.Thus, Circle would fail to satisfy
the contract with Shape.A project manager can require that programmers creating shapes
for the application must inherit from Shape. By doing this, all shapes in the application
will have a draw() method that performs in an expected manner.

157What Is a Contract?

Circle
If Circle does indeed fail to implement a draw() method, Circle will be considered ab-
stract itself. Thus, yet another subclass must inherit from Circle and implement a draw()
method. This subclass would then become the concrete implementation of both Shape and
Circle.

Although the concept of abstract classes revolves around abstract methods, there is nothing
stopping Shape from actually providing some implementation. (Remember that the defi-
nition for an abstract class is that it contains one or more abstract methods—this implies that
an abstract class can also provide concrete methods.) For example, although Circle and
Rectangle implement the draw() method differently, they share the same mechanism for
setting the color of the shape. So, the Shape class can have a color attribute and a method
to set the color.This setColor() method is an actual concrete implementation, and
would be inherited by both Circle and Rectangle.The only methods that a subclass
must implement are the ones that the superclass declares as abstract.These abstract meth-
ods are the contract.

Caution
Be aware that in the cases of Shape, Circle, and Rectangle, we are dealing with a strict
inheritance relationship, as opposed to an interface, which we will discuss in the next sec-
tion. Circle is a Shape, and Rectangle is a Shape. This is an important point because
contracts are not used in cases of composition, or has-a relationships.

Some languages, such as C++, use only abstract classes to implement contracts; however.
Java and .NET have another mechanism that implements a contract called an interface.

Interfaces
Before defining an interface, it is interesting to note that C++ does not have a construct
called an interface. For C++, an abstract class provides the functionality of an interface.
The obvious question is this: If an abstract class can provide the same functionality as an
interface, why do Java and .NET bother to provide this construct called an interface?

Interface Terms
This is another one of those times when software terminology gets confusing. The term
interface used in earlier chapters is a term generic to OO development and refers to the pub-
lic interface to a class. The term interface used in this context refers to a syntactical lan-
guage construct that is specific to a programming language. It is important not to get the
two terms confused.

For one thing, C++ supports multiple inheritance, whereas Java and .NET do not.Al-
though Java and .NET classes can inherit from only one parent class, they can implement
many interfaces. Using more than one abstract class constitutes multiple inheritance; thus
Java and .NET cannot go this route.Although this explanation might specify the need for
Java and .NET interfaces, it does not really explain what an interface is. Let’s explore what
function an interface performs.

158 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

+getName:String
+setName:void

interface
Nameable

Figure 8.4 A UML diagram of
a Java interface.

Circle
Because of these considerations, interfaces are often thought to be a workaround for the
lack of multiple inheritance. This is not technically true. Interfaces are a separate design
technique, and although they can be used to design applications that could be done with
multiple inheritance, they do not replace or circumvent multiple inheritance.

As with abstract classes, interfaces are a powerful way to enforce contracts for a frame-
work. Before we get into any conceptual definitions, it’s helpful to see an actual interface
UML diagram and the corresponding code. Consider an interface called Nameable, as
shown in Figure 8.4.

Note that Nameable is identified in the UML diagram as an interface, which distinguishes
it from a regular class (abstract or not).Also note that the interface contains two methods,
getName() and setName(). Here is the corresponding code:

public interface Nameable {

String getName();

void setName (String aName);

}

In the code, notice that Nameable is not declared as a class, but as an interface. Because
of this, both methods, getName() and setName(), are considered abstract and there is no
implementation provided.An interface, unlike an abstract class, can provide no implemen-
tation at all.As a result, any class that implements an interface must provide the implemen-
tation for all methods. For example, in Java, a class inherits from an abstract class, whereas a
class implements an interface.

Implementation Versus Definition Inheritance
Sometimes inheritance is referred to as implementation inheritance, and interfaces are
called definition inheritance.

159What Is a Contract?

Tying It All Together
If both abstract classes and interfaces provide abstract methods, what is the real difference
between the two? As we saw before, an abstract class provides both abstract and concrete
methods, whereas an interface provides only abstract methods.Why is there such a differ-
ence?

Assume that we want to design a class that represents a dog, with the intent of adding
more mammals later.The logical move would be to create an abstract class called Mammal:

public abstract class Mammal {

public void generateHeat() {System.out.println(“Generate heat”);}

public abstract void makeNoise();

}

This class has a concrete method called generateHeat(), and an abstract method
called makeNoise().The method generateHeat() is concrete because all mammals gen-
erate heat.The method makeNoise() is abstract because each mammal will make noise
differently.

Let’s also create a class called Head that we will use in a composition relationship:

public class Head {

String size;

public String getSize() {

return size;

}

public void setSize(String aSize) { size = aSize;}

}

Head has two methods: getSize() and setSize().Although composition might not
shed much light on the difference between abstract classes and interfaces, using composi-
tion in this example does illustrate how composition relates to abstract classes and inter-
faces in the overall design of an object-oriented system. I feel that this is important
because the example is more complete. Remember that there are two ways to build object
relationships: the is-a relationship, represented by inheritance, and the has-a relationship,
represented by composition.The question is: where does the interface fit in?

160 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

+getName:String
+setName:void

interface
Nameable

type: String

+getType:String
+setType:void

Mammal

name: String

+getName:String
+setName:void

Dog

size: String

+getSize:String
+setSize:void

Head

Figure 8.5 A UML diagram of the sample code.

Compiling This Code
If you want to compile this Java code, make sure that you set classpath to the current di-
rectory, or you can use the following code:
javac -classpath . Nameable.java

javac -classpath . Mammal.java

javac -classpath . Head.java

javac -classpath . Dog.java

To answer this question and tie everything together, let’s create a class called Dog that is a
subclass of Mammal, implements Nameable, and has a Head object (see Figure 8.5).

In a nutshell, Java and .NET build objects in three ways: inheritance, interfaces, and com-
position. Note the dashed line in Figure 8.5 that represents the interface.This example il-
lustrates when you should use each of these constructs.When do you choose an abstract
class? When do you choose an interface? When do you choose composition? Let’s explore
further.

You should be familiar with the following concepts:

n Dog is a Mammal, so the relationship is inheritance.
n Dog implements Nameable, so the relationship is an interface.
n Dog has a Head, so the relationship is composition.

The following code shows how you would incorporate an abstract class and an interface
in the same class.

public class Dog extends Mammal implements Nameable {

161What Is a Contract?

String name;

Head head;

public void makeNoise(){System.out.println(“Bark”);}

public void setName (String aName) {name = aName;}

public String getName () {return (name);}

}

After looking at the UML diagram, you might come up with an obvious question:
Even though the dashed line from Dog to Nameable represents an interface, isn’t it still in-
heritance? At first glance, the answer is not simple.Although interfaces are a special type of
inheritance, it is important to know what special means. Understanding these special differ-
ences are key to a strong object-oriented design.

Although inheritance is a strict is-a relationship, an interface is not quite. For example:

n A dog is a mammal.
n A reptile is not a mammal

Thus, a Reptile class could not inherit from the Mammal class. However, an interface tran-
scends the various classes. For example:

n A dog is nameable.
n A lizard is nameable.

The key here is that classes in a strict inheritance relationship must be related. For exam-
ple, in this design, the Dog class is directly related to the Mammal class.A dog is a mammal.
Dogs and lizards are not related at the mammal level because you can’t say that a lizard is a
mammal. However, interfaces can be used for classes that are not related.You can name a
dog just as well as you can name a lizard.This is the key difference between using an ab-
stract class and using an interface.

The abstract class represents some sort of implementation. In fact, we saw that Mammal
provided a concrete method called generateHeat(). Even though we do not know what
kind of mammal we have, we know that all mammals generate heat. However, an interface
models only behavior.An interface never provides any type of implementation, only be-
havior.The interface specifies behavior that is the same across classes that conceivably have
no connection. Not only are dogs nameable, but so are cars, planets, and so on.

The Compiler Proof
Can we prove or disprove that interfaces have a true is-a relationship? In the case of Java
(and this can also be done in C# or VB), we can let the compiler tell us. Consider the fol-
lowing code:

Dog D = new Dog();

Head H = D;

162 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

When this code is run through the compiler, the following error is produced:

Test.java:6: Incompatible type for Identifier. Can’t convert Dog to Head. Head H =
D;

Obviously, a dog is not a head. Not only do we know this, but the compiler agrees.
However, as expected, the following code works just fine:

Dog D = new Dog();

Mammal M = D;

This is a true inheritance relationship, and it is not surprising that the compiler parses
this code cleanly because a dog is a mammal.

Now we can perform the true test of the interface. Is an interface an actual is-a rela-
tionship? The compiler thinks so:

Dog D = new Dog();

Nameable N = D;

This code works fine. So, we can safely say that a dog is a nameable entity.This is a sim-
ple but effective proof that both inheritance and interfaces constitute an is-a relationship.

Nameable Interface
An interface specifies certain behavior, but not the implementation. By implementing the
Nameable interface, you are saying that you will provide nameable behavior by implementing
methods called getName and setName. How you implement these methods is up to you. All
you have to do is to provide the methods.

Making a Contract
The simple rule for defining a contract is to provide an unimplemented method, via ei-
ther an abstract class or an interface.Thus, when a subclass is designed with the intent of
implementing the contract, it must provide the implementation for the unimplemented
methods in the parent class or interface.

As stated earlier, one of the advantages of a contract is to standardize coding conven-
tions. Let’s explore this concept in greater detail by providing an example of what happens
when coding standards are not used. In this case, there are three classes: Planet, Car, and
Dog. Each class implements code to name the entity. However, because they are all imple-
mented separately, each class has different syntax to retrieve the name. Consider the fol-
lowing code for the Planet class:

public class Dog extends Mammal implements Nameable {

String name;

Head head;

}

public class Planet {

163What Is a Contract?

String planetName;

public void getplanetName() {return planetName;};

}

Likewise, the Car class might have code like this:

public class Car {

String carName;

public String getCarName() { return carName;};

}

And the Dog class might have code like this:

public class Dog {

String dogName;

public String getDogName() { return dogName;};

}

The obvious issue here is that anyone using these classes would have to look at the
documentation (what a horrible thought!) to figure out how to retrieve the name in each
of these cases. Even though looking at the documentation is not the worst fate in the
world, it would be nice if all the classes used in a project (or company) would use the
same naming convention—it would make life a bit easier.This is where the Nameable in-
terface comes in.

The idea would be to make a contract for any type of class that needs to use a name.As
users of various classes move from one class to the other, they would not have to figure
out the current syntax for naming an object.The Planet class, the Car class, and the Dog
class would all have the same naming syntax.

To implement this lofty goal, we can create an interface (we can use the Nameable in-
terface that we used previously).The convention is that all classes must implement
Nameable. In this way, the users only have to remember a single interface for all classes
when it comes to naming conventions:

public interface Nameable {

public String getName();

public void setName(String aName);

}

164 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

The new classes, Planet, Car, and Dog, should look like this:

public class Planet implements Nameable {

String planetName;

public String getName() {return planetName;}

public void setName(String myName) { planetName = myName;}

}

public class Car implements Nameable {

String carName;

public String getName() {return carName;}

public void setName(String myName) { carName = myName;}

}

public class Dog implements Nameable {

String dogName;

public String getName() {return dogName;}

public void setName(String myName) { dogName = myName;}

}

In this way, we have a standard interface, and we’ve used a contract to ensure that it is
the case.

There is one little issue that you might have thought about.The idea of a contract is
great as long as everyone plays by the rules, but what if some shady individual doesn’t
want to play by the rules (the rogue programmer)? The bottom line is that there is noth-
ing to stop someone from breaking the standard contract; however, in some cases, doing so
will get them in deep trouble.

On one level, a project manager can insist that everyone use the contract, just like
team members must use the same variable naming conventions and configuration man-
agement system. If a team member fails to abide by the rules, he could be reprimanded,
or even fired.

Enforcing rules is one way to ensure that contracts are followed, but there are instances
in which breaking a contract will result in unusable code. Consider the Java interface
Runnable. Java applets implement the Runnable interface because it requires that any class
implementing Runnable must implement a run() method.This is important because the
browser that calls the applet will call the run() method within Runnable. If the run()
method does not exist, things will break.

165An E-Business Example

System Plug-in-Points
Basically, contracts are “plug-in points” into your code.Anyplace where you want to make
parts of a system abstract, you can use a contract. Instead of coupling to objects of specific
classes, you can connect to any object that implements the contract.You need to be aware
of where contracts are useful; however, you can overuse them.You want to identify com-
mon features such as the Nameable interface, as discussed in this chapter. However, be
aware that there is a trade-off when using contracts.They might make code reuse more of
a reality, but they make things somewhat more complex.

An E-Business Example
It’s sometimes hard to convince a decision maker, who may have no development back-
ground, of the monetary savings of code reuse. However, when reusing code, it is pretty
easy to understand the advantage to the bottom line. In this section, we’ll walk through a
simple but practical example of how to create a workable framework using inheritance,
abstract classes, interfaces and composition.

An E-Business Problem
Perhaps the best way to understand the power of reuse is to present an example of how
you would reuse code. In this example, we’ll use inheritance (via interfaces and abstract
classes) and composition. Our goal is to create a framework that will make code reuse a
reality, reduce coding time, and reduce maintenance—all the typical software development
wish-list items.

Let’s start our own Internet business. Let’s assume that we have a client, a small pizza
shop called Papa’s Pizza. Despite the fact that it is a small, family-owned business, Papa re-
alizes that a Web presence can help the business in many ways. Papa wants his customers
to access his website, find out what Papa’s Pizza is all about, and order pizzas right from
the comfort of their browsers.

At the site we develop, customers will be able to access the website, select the products
they want to order, and select a delivery option and time for delivery.They can eat their
food at the restaurant, pick up the order, or have the order delivered. For example, a cus-
tomer decides at 3:00 that he wants to order a pizza dinner (with salads, breadsticks, and
drinks), to be delivered to his home at 6:00. Let’s say the customer is at work (on a break,
of course). He gets on the Web and selects the pizzas, including size, toppings, and crust;
the salads, including dressings; breadsticks; and drinks. He chooses the delivery option, and
requests that the food be delivered to his home at 6:00.Then he pays for the order by
credit card, gets a confirmation number, and exits.Within a few minutes he gets an email
confirmation as well.We will set up accounts so that when people bring up the site, they
will get a greeting reminding them of who they are, what their favorite pizza is, and what
new pizzas have been created this week.

When the software system is finally delivered, it is deemed a total success. For the next
several weeks, Papa’s customers happily order pizzas and other food and drinks over the

166 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

foodOfferings:String[]

+getInventory:String[]
+buyInventory:void

pizzaShop

menuItems:String[]

+getInventory:String[]
+buyInventory:void

donutShop

+main:void

testDonutShop

+main:void

testPizzaShop

1 1

Figure 8.6 Applications on divergent paths.

Internet. During this rollout period, Papa’s brother-in-law, who owns a donut shop called
Dad’s Donuts, pays Papa a visit. Papa shows Dad the system, and Dad falls in love with it.
The next day, Dad calls our company and asks us to develop a Web-based system for his
donut shop.This is great, and exactly what we had hoped for. Now, how can we leverage
the code that we used for the pizza shop in the system for the donut shop?

And how many more small businesses, besides Papa’s Pizza and Dad’s Donuts, could
take advantage of our framework to get on the Web? If we can develop a good, solid
framework, then we will be able to efficiently deliver Web-based systems at lower costs
than we were able to do before.There will also be an added advantage that the code will
have been tested and implemented previously, so debugging and maintenance should be
greatly reduced.

The Non-Reuse Approach
There are many reasons the concept of code reuse has not been as successful as some soft-
ware developers would like. First, many times reuse is not even considered when develop-
ing a system. Second, even when reuse is entered into the equation, the issues of schedule
constraints, limited resources, and budgetary concerns often short-circuit the best inten-
tions.

In many instances, code ends up highly coupled to the specific application for which it
was written.This means that the code within the application is highly dependent on other
code within the same application.

A lot of code reuse is the result of simply using cut, copy, and paste operations.While
one application is open in a text editor, you would copy code and then paste it into an-
other application. Sometimes certain functions or routines can be used without any
change.As is unfortunately often the case, even though most of the code may remain
identical, a small bit of code must change to work in a specific application.

For example, consider two totally separate applications, as represented by the UML dia-
gram in Figure 8.6.

167An E-Business Example

In this example, the applications testDonutShop and testPizzaShop are totally inde-
pendent code modules.The code is kept totally separate, and there is no interaction be-
tween the modules. However, these applications might use some common code. In fact,
some code might have been copied verbatim from one application to another.At some
point, someone involved with the project might decide to create a library of these shared
pieces of code to use in these and other applications. In many well-run and disciplined
projects, this approach works well. Coding standards, configuration management, change
management, and so on are all very well run. However, in many instances, this discipline
breaks down.

Anyone who is familiar with the software development process knows that when bugs
crop up and time is of the essence, there is the temptation to put some fixes or additions
into a system that are specific to the application currently in distress.This might fix the
problem for the distressed application, but could have unintended, possibly harmful, impli-
cations for other applications.Thus, in situations like these, the initially shared code can di-
verge, and separate code bases must be maintained.

For example, one day Papa’s website crashes. He calls us in a panic, and one of our de-
velopers is able to track down the problem.The developer fixes the problem, knowing that
the fix works but is not quite sure why.The developer also does not know what other ar-
eas of the system the fix might inadvertently affect. So the developer makes a copy of the
code, strictly for use in the Papa’s Pizza system.This is affectionately named Version
2.01papa. Because the developer does not yet totally understand the problem and because
Dad’s system is working fine, the code is not migrated to the donut shop’s system.

Tracking Down a Bug
The fact that the bug turned up in the pizza system does not mean that it will also turn up in
the donut system. Even though the bug caused a crash in the pizza shop, the donut shop
might never encounter it. It may be that the fix to the pizza shop’s code is more dangerous
to the donut shop than the original bug.

The next week Dad calls up in a panic, with a totally unrelated problem.A developer fixes
it, again not knowing how the fix will affect the rest of the system, makes a separate copy
of the code, and calls it Version 2.03dad.This scenario gets played out for all the sites we
now have in operation.There are now a dozen or more copies of the code, with various
versions for the various sites.This becomes a mess.We have multiple code paths and have
crossed the point of no return.We can never merge them again. (Perhaps we could, but
from a business perspective, this would be costly.)

Our goal is to avoid the mess of the previous example.Although many systems must
deal with legacy issues, fortunately for us, the pizza and donut applications are brand-new
systems.Thus, we can use a bit of foresight and design this system in a reusable manner. In
this way, we will not run into the maintenance nightmare just described.What we want to
do is factor out as much commonality as possible. In our design, we will focus on all the
common business functions that exist in a Web-based application. Instead of having multi-
ple application classes like testPizzaShop and testDonutShop, we can create a design
that has a class called Shop that all the applications will use.

168 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Notice that testPizzaShop and testDonutShop have similar interfaces, getInventory
and buyInventory.We will factor out this commonality and require that all applications
that conform to our Shop framework implement getInventory and buyInventory

methods.This requirement to conform to a standard is sometimes called a contract. By ex-
plicitly setting forth a contract of services, you isolate the code from a single implementa-
tion. In Java, you can implement a contract by using an interface or an abstract class. Let’s
explore how this is accomplished.

An E-Business Solution
Now let’s show how to use a contract to factor out some of the commonality of these sys-
tems. In this case, we will create an abstract class to factor out some of the implementa-
tion, and an interface (our familiar Nameable) to factor out some behavior.

Our goal is to provide customized versions of our Web application, with the following
features:

n An interface, called Nameable, which is part of the contract.
n An abstract class called Shop, which is also part of the contract.
n A class called CustList, which we use in composition.
n A new implementation of Shop for each customer we service.

The UML Object Model
The newly created Shop class is where the functionality is factored out. Notice in Figure
8.7 that the methods getInventory and buyInventory have been moved up the hierar-
chy tree from DonutShop and PizzaShop to the abstract class Shop. Now, whenever we
want to provide a new, customized version of Shop, we simply plug in a new implementa-
tion of Shop (such as a grocery shop). Shop is the contract that the implementations must
abide by:

public abstract class Shop {

CustList customerList;

public void CalculateSaleTax() {

System.out.println(“Calculate Sales Tax”);

}

public abstract String[] getInventory();

public abstract void buyInventory(String item);

}

169An E-Business Example

+getName:String
+setName:void

interface
Nameable

+calculateSaleTax:void
+getInventory:String[]
+buyInventory:void

Shop
+name:String

CustList

+findCust:String
+addCust:void

companyName:String
menuItems:String[]

DonutShop

+getInventory:String[]
+buyInventory:void
+getName:String
+setName:void

companyName:String
foodOfferings:String[]

PizzaShop

+getInventory:String[]
+buyInventory:void
+getName:String
+setName:void

Figure 8.7 A UML diagram of the Shop system.

To show how composition fits into this picture, the Shop class has a customer list.Thus,
the class CustList is contained within Shop:

public class CustList {

String name;

public String findCust() {return name;}

public void addCust(String Name){}

}

To illustrate the use of an interface in this example, an interface called Nameable is
defined:

public interface Nameable {

public abstract String getName();

public abstract void setName(String name);

}

We could potentially have a large number of different implementations, but all the rest
of the code (the application) is the same. In this small example, the code savings might not
look like a lot. But in a large, real-world application, the code savings is significant. Let’s
take a look at the donut shop implementation:

public class DonutShop extends Shop implements Nameable {

String companyName;

170 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

String[] menuItems = {

“Donuts”,

“Muffins”,

“Danish”,

“Coffee”,

“Tea”

};

public String[] getInventory() {

return menuItems;

}

public void buyInventory(String item) {

System.out.println(“\nYou have just purchased “ + item);

}

public String getName(){

return companyName;

}

public void setName(String name){

companyName = name;

}

}

The pizza shop implementation looks very similar:

public class PizzaShop extends Shop implements Nameable {

String companyName;

String[] foodOfferings = {

“Pizza”,

“Spaghetti”,

“Garden Salad”,

“Anitpasto”,

“Calzone”

}

public String[] getInventory() {

171An E-Business Example

return foodOfferings;

}

public void buyInventory(String item) {

System.out.println(“\nYou have just purchased “ + item);

}

public String getName(){

return companyName;

}

public void setName(String name){

companyName = name;

}

}

Unlike the initial case, where there are a large number of customized applications, we
now have only a single primary class (Shop) and various customized classes (PizzaShop,
DonutShop).There is no coupling between the application and any of the customized
classes.The only thing the application is coupled to is the contract (Shop).The contract
specifies that any implementation of Shop must provide an implementation for two meth-
ods, getInventory and buyInventory. It also must provide an implementation for
getName and setName that relates to the interface Nameable that is implemented.

Although this solution solves the problem of highly coupled implementations, we still
have the problem of deciding which implementation to use.With the current strategy, we
would still have to have separate applications. In essence, you have to provide one applica-
tion for each Shop implementation. Even though we are using the Shop contract, we still
have the same situation as before we used the contract:

DonutShop myShop= new DonutShop();

PizzaShop myShop = new PizzaShop ();

How do we get around this problem? We can create objects dynamically. In Java, we
can use code like this:

String className = args[0];

Shop myShop;

myShop = (Shop)Class.forName(className).newInstance();

172 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

In this case, you set className by passing a parameter to the code. (There are other
ways to set className, such as by using a system property.)

Let’s look at Shop using this approach. (Note that there is no exception handling and
nothing else besides object instantiation.)

class TestShop {

public static void main (String args[]) {

Shop shop = null;

String className = args[0];

System.out.println(“Instantiate the class:” + className + “\n”);

try {

// new pizzaShop();

shop = (Shop)Class.forName(className).newInstance();

} catch (Exception e) {

e.printStackTrace();

}

String[] inventory = shop.getInventory();

// list the inventory

for (int i=0; i<inventory.length; i++) {

System.out.println(“Argument” + i + “ = “ + inventory[i]);

}

// buy an item

shop.buyInventory(Inventory[1]);

}

}

173Example Code Used in This Chapter

Compiling this Code
If you who want to compile this Java code, make sure to set classpath to the current
directory:

javac -classpath . Nameable.java
javac -classpath . Shop.java
javac -classpath . CustList.java
javac -classpath . DonutShop.java
javac -classpath . PizzaShop.java
javac -classpath . TestShop.java

To run the code to test the pizza shop application, execute the following command:

java -classpath . TestShop PizzaShop

In this way, we can use the same application code for both PizzaShop and DonutShop. If
we add a GroceryShop application, we only have to provide the implementation and the
appropriate string to the main application. No application code needs to change.

Conclusion
When designing classes and object models, it is vitally important to understand how the
objects are related to each other.This chapter discusses the primary topics of building ob-
jects: inheritance, interfaces, and composition. In this chapter, you have learned how to
build reusable code by designing with contracts.

In Chapter 9,“Building Objects,” we complete our OO journey and explore how ob-
jects that might be totally unrelated can interact with each other.

References
Booch, Grady, et al. Object-Oriented Analysis and Design with Applications, 3rd ed.Addison-

Wesley, 2007. Boston, MA.
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Coad, Peter, and Mark Mayfield. Java Design. Prentice-Hall, 1997. Upper Saddle River

New Jersey.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestShape Example: C# .NET

using System;

using System.Collections.Generic;

using System.Linq;

174 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

using System.Text;

namespace TestShop

{

class TestShop

{

public static void Main()

{

Shop shop = null;

Console.WriteLine(“Instantiate the PizzaShop class:” + “\n”);

try

{

// new pizzaShop();

shop = new PizzaShop();

}

catch (Exception e)

{

}

string[] inventory = shop.getInventory();

// list the inventory

for (int i = 0; i < 5; i++)

{

Console.WriteLine(“Argument” + i + “ = “ + inventory[i]);

}

// buy an item

shop.buyInventory(inventory[1]);

}

}

public abstract class Shop

{

CustList customerList;

public void CalculateSaleTax()

{

Console.WriteLine(“Calculate Sales Tax”);

}

public abstract string[] getInventory();

175Example Code Used in This Chapter

public abstract void buyInventory(string item);

}

public interface Nameable

{

String Name

{

get;

set;

}

}

public class PizzaShop : Shop, Nameable

{

string companyName;

string[] foodOfferings = {

“Pizza”,

“Spaghetti”,

“Garden Salad”,

“Anitpasto”,

“Calzone”

};

public override string[] getInventory()

{

return foodOfferings;

}

public override void buyInventory(string item)

{

Console.WriteLine(“\nYou have just purchased “ + item);

}

public String Name

{

get { return companyName; }

set { companyName = value; }

}

}

public class DonutShop : Shop, Nameable

{

string companyName;

176 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

string[] menuItems = {

“Donuts”,

“Muffins”,

“Danish”,

“Coffee”,

“Tea”

};

public override string[] getInventory()

{

return menuItems;

}

public override void buyInventory(string item)

{

Console.WriteLine(“\nYou have just purchased “ + item);

}

public String Name

{

get { return companyName; }

set { companyName = value; }

}

}

public class CustList

{

string name;

public string findCust() { return name; }

public void addCust(string Name) { }

}

}

The TestShape Example: VB .NET

Module Module1

Sub Main()

Dim myShop As New DonutShop()

Dim inventory() As String

Dim ival As Integer

System.Console.WriteLine(“Instantiate the DonutShop class”)

177Example Code Used in This Chapter

inventory = myShop.getInventory()

For ival = 0 To 4

System.Console.Write(“Argument “)

System.Console.Write(ival)

System.Console.Write(“ = “)

System.Console.WriteLine(inventory(ival))

Next

myShop.buyInventory(inventory(1))

System.Console.ReadLine()

End Sub

End Module

Public MustInherit Class Shop

Dim myCustList As New CustList()

Public Function CalculateSaleTax()

System.Console.WriteLine(“Calculate Sales Tax”)

Return Nothing

End Function

Public MustOverride Function getInventory() As String()

Public MustOverride Function buyInventory(ByVal i As String)

End Class

Interface Nameable

Property Name() As String

End Interface

Public Class DonutShop

Inherits Shop

Implements Nameable

178 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Dim companyName As String

Dim menuItems() As String = {“Donuts”, “Muffins”, “Danish”, “Coffee”, “Tea”}

Public Overrides Function getInventory() As String()

Return menuItems

End Function

Public Overrides Function buyInventory(ByVal item As String)

System.Console.WriteLine(“You have just purchased “ + item)

Return Nothing

End Function

Private strName As String

Public Property Name() As String Implements Nameable.Name

Get

Return strName

End Get

Set(ByVal value As String)

strName = value

End Set

End Property

End Class

Public Class CustList

Dim name As String

Public Function findCust() As String

Return name

End Function

Public Function addCust(ByVal c As String)

Return Nothing

End Function

End Class

Index

Symbols
{} (braces), 64

/**...*/ comment notation, 77

/*...*/ comment notation, 77

// comment notation, 77

- (minus sign), 21, 197

+ (plus sign), 21, 68, 197

A
aborting applications, 60

abstract interfaces, 45-47

abstraction, 23-24, 29

interface design, 45-47
access designations, 197

accessing

attributes, 81-83
object variables, 66
relational databases, 236-237

JDBC, 236-237
ODBC, 236

accessor methods, 12

accessors, 80-83

accuracy versus complexity, 134

adapter design pattern, 296-298

addition

integer addition, 68
matrix addition, 69

aggregation, 183

associations, combining with, 185-186
class diagrams, 201

Alexander, Christopher, 288, 300

Alpha and Beta Companies case study

application-to-application data
transfer, 210-211

data design, 212
data validation, 212-213
XML document, 213-219

Ambler, Scott, 101, 128, 205, 300

analyzing software, 107

antipatterns, 299-300

APIs (application programming interface),
41, 153

application-to-application data transfer,
210-211

applications

aborting, 60
client security, 249
client/server model, 248-249
environmental constraints, 48
horizontal applications, 208
JavaScript, 250-254

Flash objects, 258
movie players, 257
objects, 254-255
sound players, 257
web page controls, 255-256

middleware, 41-43
recovering, 61
server-side validation, 250
standalone applications, 43
vertical applications, 208

Applying UML and Patterns, 300

The Architecture of Complexity, 181

arrays, 240

assigning objects, 70-71

association, 184-185

aggregations, combining with,
185-186

associations

cardinality, 186-188
class diagrams, 201-202
example, 191
multiple object associations, 189-190
optional, 190-191

attributes, 11, 63-64, 130

class attributes, 17, 67, 77-79
accessing, 81-83
initializing, 79
null attributes, 79
private attributes, 78
protecting, 81
static attributes, 78, 81-82
testing for null, 79

class diagrams, 196
defined, 10
initializing, 54, 59
local attributes, 64-65
object attributes, 10, 65-67
private attributes, 19
sharing, 65-67
static attributes, 67

avoiding

dependencies, 186
legacy data, 43

B
behavioral inheritance, 70

behavioral patterns, 291, 298

iterator design pattern, 298-299

310 aggregation

behaviors, 17

inheriting, 134
object behaviors, 13-14

defined, 11
objects, 48

Bet class, 119-120

Beta and Alpha Companies case study

application-to-application data
transfer, 210-211

data design, 212
data validation, 212-213
XML document, 213-219

beta testing, 106

bitwise copies, 70

black boxes, 6

blackjack case study, 109

Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC (class-responsibility-collabora-

tion) cards, 111-112, 124-125
Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111
statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

blocks, try/catch blocks, 61-63

Booch, Grady, 194

books

Applying UML and Patterns, 300
Building Web Applications with UML, 270

Designing Object-Oriented Software, 109,
128

Effective C++, 51, 70-71, 101, 146,
173, 192

The Elements of UML Style, 205
Java 2 Platform Unleashed, 236-237
Java Distributed Computing, 242
Java Enterprise in a Nutshell, 242
Java Primer Plus, 71, 84, 101
Object-Oriented Design in Java, 48, 51,

70-71, 84, 101, 127-128, 146, 192
The Object Primer, 109
Patterns in Java:A Catalog of Reusable

Design Patterns Illustrated with UML,
300

Practical Object-Oriented Development
with UML and Java, 205

Teach Yourself XML in 10 Minutes, 223
UML Distilled, 51, 84, 205
The Web Wizard’s Guide to XML, 223
XML: How to Program, 223
XML:Web Warrior Series, 223

braces ({}), 64

bugs, 167

Building Web Applications with UML, 270

bulletproof code, 63

C
C++, 248

C-style comments, 77

Cab class, 78

Cabbie class, 49

accessors, 80-83
attributes, 77-79
class diagram, 194-196
class name, 75-77
comments, 77

311Cabbie class

constructor, 53
constructors, 79-80
private implementation methods, 83-84
public interface methods, 83

CalculatePay() method, 12

calculateSquare() method, 22

calculating

pay, 12
squares of numbers, 19

calling

constructors, 54
methods, 11, 17

Card class, 117

cardinality, 186, 188

class diagrams, 204
Cascading Style Sheets (CSS), 220-222

case studies

Alpha and Beta Companies
application-to-application data

transfer, 210-211
data design, 212
data validation, 212-213
XML document, 213-219

blackjack, 109
Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC (class-responsibility-

collaboration) cards, 111-112,
124-125

Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111

statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

Cat class, 23

catch keyword, 61-63

catching exceptions, 63

child classes (subclasses), 23

Ciccozzi, John, 128

Circle class, 26, 155-157

class attributes, 67

class diagrams, 13-14, 18

access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

class keyword, 75

class-responsibility-collaboration (CRC) cards,
111-112, 124-125

classes, 14

accessors, 80-83
as object templates, 15, 17
attributes, 17, 67, 77-79

accessing, 81-83
class diagrams, 196

312 Cabbie class

initializing, 54, 59, 79
null attributes, 79
private attributes, 19, 78
protecting, 81
static attributes, 78, 81-82
testing for null, 79

blackjack case study
Bet, 119-120
Card, 117
class responsibilities, 115-117
Dealer, 118
Deck, 117-118
Hand, 118
identifying, 112-114
Player, 119

Cab, 78
Cabbie, 49

accessors, 80-83
attributes, 77-79
class diagram, 194-196
class name, 75-77
comments, 77
constructor, 53
constructors, 79-80
private implementation methods,

83-84
public interface methods, 83

Cat, 23
Circle, 26
class diagrams, 13-14, 18, 109

access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196

cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

code recompilation, 44
comments, 77

/**...*/ notation, 77
/*...*/ notation, 77

compared to objects, 15-17
constructors, 79-80

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

Count, 55
creating instances of, 54
DataBaseReader, 41

class diagram, 42, 57-58
defined, 14-15
designing, 8
determining responsibilities of, 108,

115-117
Dog, 23
DriverManager, 238
GermanShepherd, 23
identifying, 108

313classes

implementations, 20
compared to interfaces, 38-40
identifying, 50
public implementation methods, 83

inheritance, 22-25
abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25
multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

interaction with other classes, 109
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
real-world example, 20

interfaces, 19, 40
abstract interfaces, 45-47
compared to implementations, 38-40
designing, 45-47
identifying, 49-50
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43, 49-50
relationship between, 39

Mammal, 22-23
messages, 17-18
methods

class diagrams, 197
defined, 17
invoking, 11, 17
overloading, 56-57, 80

private methods, 17, 83-84
protected methods, 17
public methods, 17-19, 41-42, 83
shared methods, 63
signatures, 56
static methods, 82

names, 75-77
Number, 65-66
Person, 16-17, 227

attributes, 17
class diagram, 18
methods, 17

polymorphism, 25-28
Poodle, 23
Rectangle, 27
ResultSet, 240
reusable classes, 45-47
SavePerson, 228-230
scope, 64
Shape, 25-28
Square, 21-22
subclasses, 23
superclasses, 23, 58-59

client code

client/server communication, creating
with XML, 280-281

point-to-point connections, creating
in Java, 273

loop-back address, 274
virtual port, 275

client/server applications, creating, 271

nonproprietary approach, 278
client code, 280-281
executing, 283
object definition code, 278-279
server code, 281-283

314 classes

proprietary approach, 272
client code, 273-275
running the server, 276-277
serialized object code, 272-273
server code, 275-276

Coad, Peter, 130, 146, 173, 192

code listings

XML document validation, 212
code recompilation, 44

code reuse, 151-153

UML object model, 172
collaboration, blackjack case study, 121-123

collections, 240

combining

associations and aggregations, 185-186
error-handing techniques, 61
strings, 68

comments, 77

/**...*/ notation, 77
/*...*/ notation, 77
// notation, 77
XML, 213

common behaviors, factoring out, 133

communication, object-to-object, 8-9

comparing pointers, 70

compiling classes, 143, 160, 173

composition, 28-29

aggregation, 183
combining with association, 185-186

association, 183-185
combining with aggregation,

185-186
example, 191
multiple object associations,

189-190
optional, 190-191

class diagrams, 201

defined, 30
dependencies, avoiding, 186
has-a relationships, 29

Conallen, Jim, 270

concatenating strings, 68

connecting to databases, 238-239

constraints, environmental, 48

constructors, 79-80

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

contracts, 151

abstract classes, 154
compared to abstract classes, 159-161
creating, 162-164
defined, 153-154
example, 155-158
interfaces, 157-158
is-a relationships, 161-162
system plug-in points, 165
when to use, 165

copying

objects, 70-71
references, 70

CORBA (Common Object Request Broker
Architecture), 259-261

Count class, 55

Counter singleton, 291

counters, multiple references, 293-294

CRC (class-responsibility-collaboration) cards,
111-112, 124-125

createStatement() method, 239

315createStatement() method

“Creating Chaos” (article), 299-300

creational patterns, 290-291

singleton design pattern, 291-295
CSS (Cascading Style Sheets), 220-222

customers, 48

D
data

global data, 7
legacy data, avoiding, 43
sending across networks

OO programming, 10
procedural programming, 9

data hiding, 8, 78

DataBaseReader class, 41

class diagram, 42, 57-58
databases (relational)

accessing, 236-237
database connections, 238-239
drivers

documentation, 239
loading, 238

JDBC (Java Database Connectivity),
236-237

legacy data, 235
mapping objects to, 43
ODBC (Open Database

Connectivity), 236
reading with DataBaseReader, 41

class diagram, 42, 57-58
SQL statements, 239-241
writing to, 234-235

Dealer class, 118

Deck class, 117-118

deep copies, 70

default constructors, 54-55

defining static methods, 82

definition inheritance, 158

delineating strings, 239

dependencies, avoiding, 186

design, 103, 287. See also design patterns

adapter design pattern, 296
behavioral patterns, 298
best practices, 287
classes, 8

minimal interfaces, 47
constructors, 59-60
creational patterns, 291
design patterns, 288

Elements of Reusable Object-Oriented
Software, 287, 300

interfaces, 45-47
minimal interfaces, 47

model complexity, 134
MVC (Model/View/Controller),

289-290
robust artifacts, 300
singleton design pattern, 294
structural patterns, 296
systems, 109

classes, 108-109
design guidelines, 104-107
design process, 104
prototypes, 108, 127
rapid prototyping, 104
requirements document, 107-108
RFP (request-for proposal), 107
safety versus economics, 105
software analysis, 107
software testing, 105-106
statement of work, 107
waterfall method, 104-105

316 “Creating Chaos” (article)

design patterns

advantages of, 288
antipatterns, 299-300
behavioral patterns, 291, 298

iterator design pattern, 298-299
consequences, 288
creational patterns, 290-291

singleton design pattern, 291-295
MVC (Model/View/Controller),

289-290
names, 288
problems, 288
solutions, 288
structural patterns, 291, 295

adapter design pattern, 296-298
Designing Object-Oriented Software,

109, 128

diagrams

class diagrams, 13-14, 18, 109
access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

collaboration diagrams, blackjack case
study, 121-123

distributed computing, 258-259

distributed objects, 258

CORBA, 259-263
e-business example, 262
IDL, 261
IIOP, 263
interfaces, 261
languages supported, 262
marshaling, 261
OMG, 260
ORBs, 261

Document Type Definitions (DTDs), 210

data validation, 212-213
integrating into XML document,

213-219
documentation drivers, 239

documents

requirements document, 107-108
blackjack case study, 110-111

RFP (request-for proposal), 107
statement of work, 107-109

Dog class, 23

domains, mixing, 186

DonutShop class, 169-170

Downing, Troy, 71, 84, 101

DriverManager class, 238

drivers

documentation, 239
loading, 238

DTDs (Document Type Definitions), 210

data validation, 212-213
integrating into XML document,

213-219

317DTDs (Document Type Definitions)

E
Effective C++, 51, 70-71, 90, 101, 132, 146,

173, 192

Effective C: 50 Specific Ways to Improve
Your Programs and Designs, 88

The Elements of UML Style, 205

emptying stacks, 28

encapsulation, 19

defined, 8, 29
implementations, 20, 40

compared to interfaces, 38-40
identifying, 50
public implementation methods, 83

interface/implementation paradigm
Java DataBaseReader class example,

41-44
Java Square class example, 21-22
real-world example, 20

interfaces, 19-20, 40
abstract interfaces, 45-47
compared to implementations,

38-40
designing, 45-47
GUIs, 38
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43, 49-50
relationship with classes, 39

enterprise computing, 258

environmental constraints, 48

error handling, 60

aborting applications, 60
bulletproof code, 63
combining error-handing techniques,

61
exceptions

catching, 63

defined, 61
granularity, 62
throwing, 61-62

ignoring errors, 60
recovery, 61
throwing exceptions, 62-63

examples of associations, 191

Exception parameter (catch block), 63

exceptions

catching, 63
defined, 61
granularity, 62
throwing, 61-63

executeQuery() method, 239-240

executeUpdate() method, 239

executing

nonproprietary client/server
communication, 283

SQL statements, 240
extends keyword, 26

F
Farley, Jim, 242, 284

files

saving objects to, 227
serialization, 227-229

example, 227-229
interface/implementation

paradigm, 229-230
Flanagan, David, 242, 284

Flash objects (JavaScript), 258

Flower, Martin, 51, 84, 205

forName() method, 238

frameworks, 152-153

contracts, 168
example, 152
non-reuse approach, 166-168

318 Effective C++

Papa’s Pizza e-business case study,
165-166

UML object model, 168-173

G
generateHeat() method, 159

GermanShepherd class, 23

get() method, 81

getArea() method, 26

getCompanyName() method, 81

getConnection() method, 238

getHours() method, 254

getInstance() method, 294

getMail() method, 297

getMinutes() method, 254

getName() method, 158

getSize() method, 159

getSocialSecurityNumber() method, 12

getSquare() method, 22

getters, 12, 232

Gilbert, Stephen, 51, 71, 84, 101, 128, 146,
192

giveDestination() method, 83

global data, 7

Grand, Mark, 300

granularity (exceptions), 62

graphical user interfaces (GUIs), 38

GUIs (graphical user interfaces), 38

H
Hand class, 118

handing errors, 60

has-a relationships, 29

class diagrams, 201
hasMoreElements() method, 299

Head class, 159

hiding data, 8, 78

horizontal applications, 208

HTML (Hypertext Markup Language), 209,
250

compared to XML, 209-210
tags, 209-210

I
identifying

classes, 108, 112-114
implementations, 50
public interfaces, 49-50
users, 40, 48

IDEs (integrated development environ-
ments), 108

if keyword, 61

ignoring errors, 60

implementation inheritance, 70, 158

implementations, 20, 40

compared to interfaces, 38-40
identifying, 50
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

public implementation methods, 83
inheritance, 22-25

abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
class diagrams, 198-199
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25

319inheritance

multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

initializing attributes, 54, 59, 79

Instance() method, 292

instantiating objects, 14, 54

integer addition, 68

Integer class, 296

integrated development environments
(IDEs), 108

interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

interfaces, 19-20, 40

abstract interfaces, 45-47
class diagrams, 200
compared to implementations, 38-40
designing, 45-47
GUIs, 38
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

MailInterface, 297
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43

identifying, 49-50
relationship with classes, 39
Serializable, 228

Invoice class (SOAP), 267-269

invoking

constructors, 54
methods, 11, 17

IP addresses, loop-back, 275

is-a relationships, 25, 130

iterate() method, 299

iterator design pattern, 298-299

J
Jacobson, Ivar, 194

Java

point-to-point connections, creating,
272-273

client code, 273
loop-back address, 274-275
running the server, 276-277
server code, 275-276

syntax, 77
Java 1.1 Developers Guide, 101, 128

Java 2 Platform Unleashed, 236-237, 300

Java 2 Platform Unleashed, 284

Java Database Connectivity (JDBC), 236

Java Design, 130, 146, 173, 192

Java Distributed Computing, 242, 284

Java Enterprise in a Nutshell, 242, 284

Java Primer Plus, 71, 84, 101

Java serialization model, 233

Javascript, 250

compared to Java, 251
objects, 254-255

Flash, 258
movie players, 257
sound players, 257
web page controls, 255-256

validateNumber() method, 252
Jaworski, Jamie, 101, 128, 236, 242, 270,

284, 300

320 inheritance

JDBC (Java Database Connectivity), 236

Johnson, Johnny, 299-300

K
keywords

catch, 61-63
class, 75
extends, 26
if, 61
new, 54
null, 79
private, 78
static, 78, 81
this, 67
throw, 61-63

Koenig, Andrew, 299

L
languages, 208

HTML, 209
compared to XML, 209-210
tags, 209-210

RecipeML, 208
scripting languages, 247-250
SGML, 209
SmallTalk, 247
XML, 207, 209

and object-oriented languages,
210-211

application-to-application data
transfer, 210-211

comments, 213
compared to HTML, 209-210
CSS, 220-222
data validation, 212-213
document structure, 213

document validity, 213
DTDs, 210-219
horizontal applications, 208
parsers, 211
PCDATA, 213
portable data, 208-209
proprietary solutions, 211
references, 223
vertical applications, 208
XML Notepad, 215-216, 219

Larman, Craig, 194, 205, 300

Lee, Richard, 205

legacy data, 235

avoiding, 43
legacy systems, 5

legal issues, software engineering, 106

LhasaApso class, 131

life cycle, objects, 225-226

loading drivers, 238

local attributes, 64-65, 94

loop-back addresses, 275

M
mail client, 296-297

MailTool class, 296

makeNoise() method, 159

Mammal class, 22-23, 159

mapping objects to relational databases, 43

Math object, 8-9

matrix addition, 69

Mayfield, Mark, 130, 146, 173, 192

McCarty, Bill, 51, 71, 84, 101, 128, 146, 192

memory leaks, 90

messages, sending between objects, 17-18

methodologies (design)

rapid prototyping, 104
waterfall method, 104-105

321methodologies (design)

methods, 11-12, 231

accessor methods, 12
CalculatePay(), 12
calculateSquare(), 22
class diagrams, 197
constructors

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

createStatement(), 239
defined, 17
executeQuery(), 239-240
executeUpdate(), 239
forName(), 238
get(), 81
getArea(), 26
getCompanyName(), 81
getConnection(), 238
getSocialSecurityNumber(), 12
getSquare(), 22
giveDestination(), 83
invoking, 11, 17
mutator methods, 12
open(), 43-44
overloading, 80

advantages of, 56-57
defined, 56

private, 17, 83-84
protected, 17
public, 17, 19, 41-42, 83
set(), 81

setAge(), 81
shared, 63
signatures, 56
static, 82

Meyers, Scott, 51, 70-71, 88, 101, 132, 146,
173, 192

middleware, 41, 43, 260

minimal interfaces, 42, 47

minus sign (-), 21, 197

modeling classes, 57

models, 109

movie players (JavaScript), 257

multi-tiered systems, 260

multiple constructors, 55-56

multiple counter references, 294

multiple inheritance, 69-70

multiple object associations, 189-190

mutator methods, 12

MVC (Model/View/Controller), 289-290

N
Nameable interface, 158, 162

names, classes, 75, 77

networks, sending data across

OO programming, 10
procedural programming, 9

new keyword, 54

nonproprietary approach to client/server
model, 278

client code, 280-281
executing, 283
object definition code, 278-279
server code, 281-283

null attributes, 79

null keyword, 79

Number class, 65-66

322 methods

O
object attributes, 65-67

object definition code, client/server commu-
nication, creating with XML, 278-279

The Object Primer, 97, 101, 109, 128

object wrappers, 5, 43

Object-Oriented Design in Java, 48, 51, 70-
71, 84, 88, 101, 127-128, 146, 181, 192

object-to-object communication, 8-9

objects

assigning, 70-71
attributes, 10-11, 65-67

accessing, 81-83
defined, 10
initializing, 54, 59
protecting, 81

behaviors, 11-14, 48
compared to classes, 15, 17
composition, 28-30

class diagrams, 201
copying, 70-71
creating, 16
defined, 6-10
environmental constraints, 48
instantiating, 14, 54
JavaScript, 254-256

Flash, 258
movie players, 257
sound players, 257

life cycle, 225-226
mapping to relational databases, 43
Math, 8-9
object variables, accessing, 66
object wrappers, 5, 43
object-to-object communication, 8-9
Payroll, 12

persistent objects, 43, 225
object life cycle, 225-226
relational databases, 234-241
serialization, 227-229

referencing, 78-79
saving

to flat files, 227
to relational databases, 234-237

sending messages between, 17-18
serialization, 227-229

example, 227-229
interface/implementation

paradigm, 229-230
SOAP, 263-267

Invoice class, 267-269
Web objects, 10
wrappers, 261

ODBC (Open Database Connectivity), 236

OO paradigm, 38

OO programming, 5-6, 37-38

abstraction, 29
accuracy versus complexity, 134
advantages of, 10, 132, 181-183
aggregation, 183-186
association, 183-185, 189-191
attributes, 63-64

accessing, 81-83
class attributes, 17, 67, 77-79
class diagrams, 196
initializing, 54, 59, 79
local attributes, 64-65
null attributes, 79
object attributes, 10, 65-67
private attributes, 19
protecting, 81
sharing, 65, 67
static attributes, 67
testing for null, 79

323OO programming

cardinality, 186-188
classes, 14, 75, 87-88

accessors, 80-83
as object templates, 15, 17
attributes, 17-19, 67, 77-79
Cabbie, 49, 53
Cat, 23
Circle, 26
class diagrams, 13-14, 18, 21, 109
code recompilation, 44
comments, 77
compared to objects, 15-17
constructors, 79-80
Count, 55
creating instances of, 54
DataBaseReader, 41-42, 57-58
defined, 14-15
designing, 8
Dog, 23
GermanShepherd, 23
implementations, 38-40
inheritance, 22-25, 58-59, 69-70
interfaces, 38-40
Mammal, 22-23
messages, 17-18
methods, 17, 83-84
names, 75-77
Number, 65-66
Person, 16-18
Poodle, 23
Rectangle, 27
reusable classes, 45-47
scope, 64
Shape, 25-28
Square, 21-22
subclasses, 23
superclasses, 23, 58-59

combining with aggregation, 185
compared to procedural

programming, 6-10
composition, 28-29, 135-136, 179

defined, 30
has-a relationships, 29

compounds, 136
constructors, 79-80, 89-90

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

data hiding, 8
defined, 129-130, 138
dependency, avoiding, 186
design issues, 134-135
destructors, 90
effect of inheritance on, 139-141
encapsulation, 19, 138

defined, 8, 29
implementations, 20, 38-40, 50
interface/implementation

paradigm, 20-22, 41-44
interfaces, 19-20, 38-50

error handling, 60, 90-91
aborting applications, 60
bulletproof code, 63
combining error-handing

techniques, 61
exceptions, 61-63
ignoring errors, 60
recovery, 61
throwing exceptions, 62-63

324 OO programming

example of, 141, 191
extensibility, 92-96
generalization-specialization, 133
GoldenRetriever class example, 131
has-a relationships, 129, 179-181
highly coupled classes, 97
implementations, 89
improper use of, 140
inheritance, 22-25, 129-133

abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25
multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

maintainability, 96-99
methods, 11-12, 81

accessor methods, 12
CalculatePay(), 12
calculateSquare(), 22
class diagrams, 197
defined, 17
getArea(), 26
getSocialSecurityNumber(), 12
getSquare(), 22
invoking, 11, 17
mutator methods, 12
overloading, 56-57, 80
private methods, 17, 83-84
protected methods, 17
public methods, 17-19, 41-42, 83
shared methods, 63
signatures, 56

multiple object associations, 189
object persistence, 99-100
object responsibility, 141-145
objects

assigning, 70-71
attributes, 10-11, 65-67
behaviors, 11-14, 48
compared to classes, 15-17
copying, 70-71
creating, 16
defined, 6-10
environmental constraints, 48
instantiating, 14, 54
life cycle, 225-226
mapping to relational databases, 43
Math, 8-9
object wrappers, 43
object-to-object communication,

8-9
Payroll, 12
persistence, 43, 225-229, 234-241
referencing, 78-79
saving to flat files, 227
saving to relational databases,

234-235
sending messages between, 17-18
serialization, 227-229

OO paradigm, 38
operators, overloading, 68-69
optional associations, 190
polymorphism, 25-29
problems with, 132
public interfaces, 88-89
real-world example, 135-136
reusability, 91
serializing, 100
static methods, 82

325OO programming

stubs, 97, 99
UML notation, 136-137

open() method, 43-44

operations

assigning objects, 70-71
copying objects, 70-71

bitwise copies, 70
deep copies, 70
shallow copies, 70
valid copies, 70

operators, overloading, 68-69

optional associations, 190-191

Oracle databases, reading with
DataBaseReader, 41

class diagram, 42, 57-58
overloading

methods, 80
operators, 68-69

overloading methods

advantages of, 56-57
defined, 56

P-Q
parent classes (superclasses), 23, 58-59

parse character data (PCDATA), 213

parsers, 211

passing references, 79

pattern names, 288

pay, calculating, 12

Payroll object, 12

PCDATA (parse character data), 213

persistence

defined, 225
objects, 43

persistent objects, 225

object life cycle, 225-226

relational databases
accessing, 236-237
database connections, 238-239
drivers, 238-239
JDBC, 236-237
ODBC, 236
SQL statements, 239-241
writing to, 234-235

saving
to flat files, 227
to relational databases, 234-235

serialization, 227-229
example, 227-229
interface/implementation

paradigm, 229-230
Person class, 16-17, 227

attributes, 17
class diagram, 18
methods, 17

PizzaShop class, 170

Player class, 119

plus sign (+), 21, 68, 197

point-to-point connections

creating in Java, 272
client code, 273
loop-back address, 274
running the server, 276-277
server code, 275-276
virtual port, 275

pointers, comparing, 70

polymorphism, 25-29

Poodle class, 23

portable data, 207-209

Practical Object-Oriented Development
with UML and Java, 205

private attributes, 78

private keyword, 78

326 OO programming

procedural programming

compared to OO programming, 6-10
sending data across networks, 9-10

proprietary approach to client/server model,
272

client code, 273-275
serialized object code, 272-273
server code, 275-276
server, running, 276-277

proprietary solutions, 211

protected access, 198

protecting attributes, 81

prototyping, 108

blackjack case study, 127
rapid prototyping, 104

public interfaces, 42-43

identifying, 49-50
public methods, 41-42

queries (SQL), 239-241

R
rapid prototyping, 104

RecipeML (Recipe Markup Language), 208

recompiling code, 44

recovery, 61

Rectangle class, 27

references

copying, 70
multiple, 293-294
passing, 78-79
uninitialized references, 80

relational databases

accessing, 236-237
database connections, 238-239

drivers
documentation, 239
loading, 238

JDBC, 236-237
legacy data, 235
ODBC, 236
SQL statements, 239-241
writing to, 234-235

relational-to-object mapping, 43

relationships

has-a, 29
class diagrams, 201

is-a, 25
removing items from stack, 28

requests for proposals (RFPs), 107

requirements document, 107-108

blackjack case study, 110-111
ResultSet class, 240

retrieveMail() method, 297

return values, constructors, 53

reusable classes, 45-47

Reuse Patterns and Antipatterns, 300

Reuseless Artifacts, 300

RFPs (requests for proposals), 107

Robust Artifacts, 300

routing, ORBs, 263

RPCs (remote procedure calls), 263

Rumbaugh, James, 194

S
safety versus economics, 105

SavePerson class, 228-230

saving objects

to flat files, 227
to relational databases, 234-235

327saving objects

scope, 63-64

class attributes, 67
classes, 64
local attributes, 64-65
object attributes, 65-67

sending

data across networks
OO programming, 10
procedural programming, 9

messages between objects, 17-18
Serializable interface, 100, 228

serialization, 227-229

example, 227-229
interface/implementation paradigm,

229-230
XML, 231-234

server code

client/server communication, creating
with XML, 281-283

point-to-point connections, creating
in Java, 275-276

set() method, 81

setAge() method, 81

setName() method, 158

setSize() method, 159

setters, 12, 232

SGML (Standard Generalized Markup
Language), 209

shallow copies, 70

Shape class, 25-28

shared methods, 63

sharing attributes, 65-67

Shop class, 168-169

signatures (methods), 56

Simon, Herbert, 181

singletone design pattern, 291-295

slash-asterisk (/*...*/) comment notation, 77

slash-asterisk-asterisk (/**...*/) comment

notation, 77

slash-slash (//) comment notation, 77

Smalltalk, 289

MVC, 289-290
SOAP (Simple Object Access Protocol),

263-264, 266-267

Invoice class, 267-269
software, 48

software analysis, 107

Software by Committee, 128

software testing, 105-106

sound players (JavaScript), 257

SQL statements, 236, 239-241

Square class, 21-22

squares of numbers, calculating, 19

stable systems, 181

stacks, 28

standalone applications, 43

standardization, 152

statement of work, 107

blackjack case study, 109
statements (SQL), 239-241

static attributes, 67, 78, 81-82, 92

static keyword, 78, 81, 92

static methods, 82, 92

strings

concatenating, 68
delineating, 239

structural design patterns, 295

adapter design pattern, 296-298
structural patterns, 291, 296

style sheets, CSS, 220-222

subclasses, 23

Sun Microsystems website, 242, 284

superclasses, 23, 58-59

syntax (Java), 77

328 scope

system design

blackjack case study, 109
Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC cards, 111-112, 124-125
Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111
statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

classes
class diagrams, 109
determining responsibilities of, 108
identifying, 108
interaction with other classes, 109

design guidelines, 104-107
design process, 104
prototypes, 108

blackjack case study, 127
rapid prototyping, 104
requirements document, 107-108
RFP (request-for proposal), 107
safety versus economics, 105
software analysis, 107
software testing, 105

beta testing, 106
legal issues, 106

statement of work, 107
waterfall method, 104-105

systems, building independently, 181

T
tags (HTML), 209-210

Teach Yourself XML in 10 Minutes, 223

Tepfenhart, William, 205

testing

code, 132
for null attributes, 79
software, 105-106

this keyword, 67

throw keyword, 61-63

throwing exceptions, 61-63

tools, XML Notepad, 215-216, 219

top-down design, 87

Torok, Gabriel, 71, 84, 101

try/catch blocks, 61-63

Tyma, Paul, 71, 84, 101

U
UML (Unified Modeling Language), 14, 104,

193

access designations, 197
aggregations, 201
associations, 201-202
cardinality, 204
class diagrams, 13-14, 18, 109

attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
creating, 57-58
DataBaseReader class, 42, 57-58
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

composition, 201
defined, 193-194
history of, 194
inheritance, 198-199

329UML (Unified Modeling Language)

interfaces, 200
UML User Guide, 193
use-case scenarios, 120-121

UML Distilled, 51, 84, 205

UML User Guide, 193

uninitialized references, 80

updates (SQL), 239-241

use-case scenarios, 120-121

users

defined, 39
identifying, 40, 48

V
valid copies, 70

validateNumber() method, 252

validating XML documents, 212-213

variables, accessing, 66

vertical applications, 208

virtual port, specifying for point-to-point
connection, 275

vocabulary, 208

W
waterfall design method, 104-105

web applications, rendering HTML
documents, 249

Web objects, 10

web page controls (JavaScript), 255-256

web services, 263

SOAP, 264-267
Invoice class, 267-269

The Web Wizard’s Guide to XML, 223

websites

OMG (Object Management Group),
260

Sun Microsystems, 242
Weisfeld, Matt, 128

word processing framework, 153

work statement, 107

wrappers (object), 5, 43, 261

X-Y-Z
XML (Extensible Markup Language),

207-209

application-to-application data
transfer, 210-211

and object-oriented languages,
210-211

client/server communication, creating,
278

client code, 280-281
object definition code, 278-279
server code, 281-283

comments, 213
compared to HTML, 209-210
CSS, 220-222
data validation, 212-213
document structure, 213
document validity, 213
DTDs, 210

data validation, 212-213
integrating into XML document,

213-219
horizontal applications, 208
parsers, 211
PCDATA, 213
portable data, 208-209
proprietary solutions, 211
RecipeML, 208
references, 223
serialization, 231-234
vertical applications, 208
XML Notepad, 215-216, 219

XML: How to Program, 223

XML Notepad, 215-216, 219

XML: Web Warrior Series, 223

330 UML Distilled

	Introduction
	8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes
	Code: To Reuse or Not to Reuse?
	What Is a Framework?
	What Is a Contract?
	Abstract Classes
	Interfaces
	Tying It All Together
	The Compiler Proof
	Making a Contract
	System Plug-in-Points

	An E-Business Example
	An E-Business Problem
	The Non-Reuse Approach
	An E-Business Solution
	The UML Object Model

	Conclusion
	References
	Example Code Used in This Chapter

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

