
Data View Web Part Code

It’s easy to write a piece on using DataViews that shows how easy it is to create good-look-

ing alternative presentations of a list by using only menu-guided methods. It’s another

thing to easily satisfy real-world requests and, as most of us know, bosses want to be

warned of problems in advance.

So, although I included the necessary steps for create a good-looking data view in Hour

21, the main section of that hour shows how to take a real-world request and solve it

using a Data View Web Part. While it was possible to create a data view that matched

most of that request by using only menu-guided methods, there was one item—getting a

sum of staff numbers per company—that was not quickly achieved. So, I ended that sec-

tion in the book with the warning not to assume that every request would be possible to

achieve without a lot of work or some code.

This website section picks up where the section of the book left off.

It starts with Figure 1, which shows that we have Count=4 (number of rows) rather than

the sum of staff numbers per company, which is what we want to see. It then continues

with several attempts to solve this problem. Each of these attempts gets closer to solving

the problem, but in the end it has to be conceded that the problem needs code to finally

solve it and that code is provided.

So be warned. In order to be sure that you can handle real-world requests, you need to

have knowledge of XPath and XSLT.

There are plenty of books (especially on XSLT) that define these languages, but very few

(particularly not for XPath) provide sample examples. I know this only too well because I

spent many hours staring at Internet pages and a detailed book on XPath and XSLT and

still, as you will see, only got very close to the solution. I then asked a group of SharePoint

MVPs what I was missing and a final hint from one of them solved the problem.

I hope you enjoy this online section. I suggest you work through it rather than just jump-

ing to the end for the solution because I think you’ll learn a lot on the way.

Select the row containing Count: 4 and right-click. Figure 2 shows part of what you then

see. I’ve inserted an arrow indicating what you then need to select.

030_0672330008_Online_Content.qxp 9/19/08 3:36 PM Page 1

2 Addition to the Hour 21 text

First, double-click Sum, and then double-click Number of Staff. You should see Figure 3.

FIGURE 1
No repeated
names.

FIGURE 2
Inserting a
formula.

FIGURE 3
The first
attempt at a
good sum
formula.

030_0672330008_Online_Content.qxp 9/19/08 3:36 PM Page 2

Addition to the Hour 21 text 3

I think you’ll agree that this looks to be a reasonable solution. After all, we are on

the footer line for the first grouping level, so we can reasonably expect our sum to

be at that level.

But click OK, and you have Count: 4240 and Count: 5155, respectively, for HP and

IBM when you should be getting Total Number of Staff: 375 and Total Number of

Staff: 1055. The text part is easy enough to fix. Just like adding bold to HP (which

we did in the book), go to the Count text and replace it with Total Number of Staff.

But, where are these numbers coming from?

A look at the generated code gives the answer. (When in Design mode in SharePoint

Designer 2007, place your cursor at the end of the 4240 and then select the Code

mode [or Split].):

Number of Staff: <xsl:value-of select=”count($nodeset)” /><xsl:value-of

select=”sum(@Number_x0020_of_x0020_Staff)” />

When you insert the correct formula, it is added on top of the existing formula

rather than replacing it.

The difference between XPath and XSLT is as follows:
[sum(@Number_x0020_of_x0020_Staff)] was XPath code, and what was gener-
ated from that [<xsl:value-of
select=”sum(@Number_x0020_of_x0020_Staff)” />] is XSLT code.

From that code, we get rid of <xsl:value-of select=”count($nodeset)” />, and

we now have Total Number of Staff: 240 and Total Number of Staff: 155.

These are the values for what exactly?

Well, they seem to be values of the first and last lines for IBM and no sum at all.

What we do know is that we need to look at how the correct count was achieved

and then try to work out how to get the correct sum. To do that, we need to find out

what a nodeset is and transfer that idea into the Number of Staff field.

I know the word nodeset because after many hours of staring (and mentally
screaming) at Xpath/XSLT texts, I knew that the sum function requires a nodeset
rather than a field. I also knew that the only examples I could find said that to
make a field a nodeset you need to add // before the field name.

So let’s try:

sum(//@Number_x0020_of_x0020_Staff)

Note

Note

030_0672330008_Online_Content.qxp 9/19/08 3:36 PM Page 3

4 Addition to the Hour 21 text

Figure 4 is the result (together with a suitably revised text), which is the correct total

staff count for all the companies. However, this total staff count appears everywhere

you would expect a total staff count per company. So it’s still not quite right.

FIGURE 4
Almost achiev-
ing the total
number of staff
per company.

Rather than attacking those XPath/XSLT texts again, this is where I requested help

from other SharePoint MVPs, and MVP Jeremy Sublett provided me with this (XSLT)

formula:

<xsl:value-of select=”sum($nodeset/@NumberOfStaff)” />

I’ll leave it to you to work out what information you choose to enter into Figure 3 to

get this in your code (remember, what you enter there will be in XPath format).

Hint: Look at the Note after Figure 3 and at the formula used to get Figure 4.

030_0672330008_Online_Content.qxp 9/19/08 3:36 PM Page 4

