

Sams Teach Yourself WPF in 24 Hours
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32985-2
ISBN-10: 0-672-32985-9

Library of Congress Cataloging-in-Publication Data

Eisenberg, Robert (Robert Harold)

Sams teach yourself WPF in 24 hours / Robert Eisenberg and Christopher Bennage.

p. cm.

ISBN-13: 978-0-672-32985-2

ISBN-10: 0-672-32985-9

1. Windows presentation foundation. 2. Application software. 3. Windows (Computer
programs)—Standards. 4. Microsoft .NET. I. Bennage, Christopher. II. Title. III. Title: Teach
yourself WPF in 24 hours.

QA76.76.A65E39 2009

006.7’882—dc22

2008020014

Printed in the United States of America

First Printing July 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Barbara Hacha

Indexer
Brad Herriman

Proofreader
Debbie Williams

Technical Editor
J. Boyd Nolan

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Nonie Ratcliff

This Book Is Safari Enabled
The Safari®Enabled icon on the cover of your favorite technology book means the book is available through Safari
Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code
samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book

. Go to www.informit.com/onlineedition.

. Complete the brief registration form.

. Enter the coupon code F613-Z84G-8HWN-PHGQ-1G5E.

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email customer-
service@safaribooksonline.com.

www.informit.com/onlineedition

Introduction

Windows Presentation Foundation, or WPF, is Microsoft’s latest framework for building

sophisticated and rich user interfaces for desktop applications. WPF differs significantly

from its predecessor, and yet draws on many of the concepts found existing in frameworks

for both desktops and the web.

WPF enables developers to easily and quickly handle tasks that were either very difficult or

impossible to accomplish in previous frameworks.

Audience and Organization
This book is intended for those who have at least some experience with general .NET devel-

opment. If you have worked with WinForms or ASP.NET, you should feel comfortable with

this book. The code examples provided are written in C#, but we’ve been careful to keep

them readable for those whose primary language is Visual Basic.

Because WPF is both a broad and a deep topic, it can easily become overwhelming. Our

approach in this book is to stay broad. We cover the essential concepts of the framework.

Our goal is for you to feel confident building a WPF application when you are done with

the book, as well as equipping you to dig deeper into any areas of the framework that

interest you.

The book is organized into five parts. In each of the first four parts, we build a sample

application that demonstrates the features of WPF covered in that part. Although the appli-

cations are simplified, they are designed to reflect real-world scenarios that you are likely to

encounter. Each of the parts builds on its predecessor, and we recommend reading them in

order. Part V concludes with information designed to help you move forward after the book.

. Part I, “Getting Started”—We build a utility for browsing the fonts installed on your

system. You’ll learn about the new markup language XAML that is an integral part of

WPF. We also introduce you to most of the basic controls, including those that handle

layout. You’ll also learn about basic data binding in WPF.

. Part II, “Reaching the User”—You’ll create your own rich text editor. You’ll learn

about the powerful new event and command systems. We also introduce you to a few

more controls and show you how you can deploy your WPF applications. You also dis-

cover how to print from WPF.

. Part III, “Visualizing Data”—This part teaches you how to style an application, as

well as how to use WPF’s powerful graphics capabilities for visualizing the data in

your applications. We also dig further into data binding and show you some options

for architecting your WPF applications.

. Part IV, “Creating Rich Experiences”—You’ll learn how to easily embed media in

your applications. You’ll see how WPF’s drawing and templating APIs make it easy to

create unique and visually attractive interfaces. You’ll also get started with animation.

. Part V, “Appendices”—This includes a brief introduction to 3D and a list of tools,

frameworks, and other resources that aid in WPF development.

Throughout the book, we use code-continuation characters: When a line of code is too long

to fit on the printed page, we wrap it to the next line and precede it with a code-continua-

tion character, like this:

public object ConvertBack(object value, Type targetType, object parameter,
➥CultureInfo culture)

Farther Up and Further In
Learning WPF is really a lot of fun. We’ve discovered a new joy in building user interfaces

since we’ve begun using this technology. We believe that you’ll have the same experience

working through this book. Although it may take some time to become a master of WPF, it’s

actually quite easy to get up and running quickly. By the time you are done here, you’ll be

ready to start using WPF on your next project.

Now, let’s get started!

2

Sams Teach Yourself WPF in 24 Hours

HOUR 1

What WPF Is and Isn’t

What You’ll Learn in This Hour:
. What WPF is
. When you should use WPF
. What tools you will need
. How WPF compares to other frameworks
. The versions of .NET
. Silverlight

What Is WPF?
WPF is big. In fact, it can be overwhelming because it has lots of moving parts that all

interconnect. The shortest answer to the question, though, is that WPF is an API for build-

ing graphical user interfaces (UI) for desktop applications with the .NET Framework.

Now for the longer answer.

To begin with, WPF is an abbreviation for Windows Presentation Foundation. Physically, it’s

a set of .NET assemblies and supporting tools. It’s intended to provide a unified API for

creating rich, sophisticated user interfaces on Windows XP and Windows Vista.

WPF combines the good things from web development, such as style sheets and a markup

language for declarative UI, with good things from Rich Internet Applications, such as

scalable vector graphics, animation, and media support. These good things are wrapped

up with the good things from traditional Windows development—things like strong inte-

gration with the OS and data binding. In WPF, these concepts are strengthened and uni-

fied. Even all that does not capture the full extent of WPF. It has other facets, such as

support for 3D drawing, advanced typography, and portable documents similar to PDF.

6 HOUR 1: What WPF Is and Isn’t

WPF is also a unified API. Many of the things you are able to do in WPF, you could

do before. However, doing them all in one application was extremely difficult. Not

only does WPF enable you to bring these disparate features together, but it provides

you with a consistent API for doing so.

WPF is just one part of a larger picture. Three additional libraries were also released

as part of .NET 3.0. All four of these libraries have the same intent of providing a

consistent, unified API for their domain. Additionally, combining any of these four

libraries in an application can yield some very impressive results. The three sibling

libraries of WPF are shown in Table 1.1.

TABLE 1.1 The Sibling Libraries of WPF

WCF Windows Communication Foundation is focused on messaging. This
API greatly simplifies all sorts of networking and communication
tasks. It covers everything from web services to remoting to P2P
and more.

WF A powerful library for building workflow enabled applications. It uti-
lizes a markup language for declaring workflows in an application,
and thus prevents workflow from becoming hard-coded. It also
makes it very easy for developers to create custom workflow tasks.

CardSpace The least famous of the four libraries, CardSpace provides a com-
mon identification system that can be used by desktop applications,
web sites, and more.

The immediate predecessor to WPF is Windows Forms, the graphical API available

to developers in .NET 2.0 and earlier. Windows Forms provides a managed wrapper

for accessing the graphical functions of the traditional Windows API. WPF differs

fundamentally in that it builds on top of DirectX. The DirectX API was originally

focused on multimedia and game programming in particular. As such, you are able

to do some nifty visual tricks in WPF that were practically impossible with Windows

Forms. It also means that WPF will take advantage of hardware acceleration when

it is available.

WPF still has some similarities to Windows Forms (and even ASP.NET Web Forms).

Microsoft provides a library of basic controls such as text boxes and buttons. You’ll

also encounter familiar concepts such as data binding and code-behind files. All

these concepts have been refined and improved for WPF.

Getting to Know the Features of WPF 7

Getting to Know the Features of WPF
Let’s take a moment to review the major features of WPF. We’ll cover each of these

with more depth in later hours.

Declarative UI
WPF allows you to construct your interface using a markup language called XAML

(pronounced zammel, rhymes with camel). We’ll dig into XAML in Hour 2, “Under-

standing XAML,” but if you have ever worked with HTML, you are already familiar

with the concepts. XAML is a much richer markup language than HTML, and it has

less ambiguity. Visual Studio, as well as some members of the Expression family of

products are able to generate XAML natively.

XAML provides a common medium for interacting with designers.

Intelligent Layout
Arranging the various components of an application onscreen can be complicated,

and it’s further complicated by the myriad display possibilities that users might

have. WPF provides an extensible layout system for visually arranging the elements

of a user interface. It can intelligently resize and adjust, depending on how you

define the layout. We’ll cover this in some detail when we discuss panels in Hour 4,

“Handling Application Layout.”

Scalable Graphics
Graphics in WPF are vector based, in contrast to raster based. Vector graphics are

inherently scalable and typically require less storage than a comparable raster

image. WPF still has plenty of support for raster graphics, but vectors are an excel-

lent fit for constructing user interfaces.

Vector graphics have already become popular on the web, primarily because of

Adobe Flash and to a lesser extent the Scalable Vector Graphics specification (SVG).

The net result for developers with WPF is that applications scale nicely without a

loss in visual quality.

8 HOUR 1: What WPF Is and Isn’t

Vector Versus Raster
A raster graphic is an image that is stored as rectangle grid of pixels, and each
pixel is assigned a color. Most graphic file formats that you are familiar with are
just variations to this method. This includes formats such as GIF, JPEG, BMP,
and PNG.

Raster graphics are also called bitmaps. (Don’t let the the BMP file format con-
fuse you. The term bitmap is a general term describing a particular way to store
image data.)

Suppose that you have a raster image of a blue circle on a white background that
is 100×100 pixels. The computer loads those 10,000 pixels into memory and dis-
plays them on the screen. That’s a lot of data for such a simple image. Imagine
that we need the same image but two or three times larger. The number of pixels
increases exponentially. If we could simply provide the computer with the dimen-
sions, position, and color of the shapes, then we would have much less data to
worry about. In this way, raster graphics are inefficient.

Another problem with raster images is that they do not resize well. There’s a
noticeable loss of quality, especially when you are enlarging an image. Suppose
that you wanted to double the size of a 100×100 image of yourself. To increase
the size to 200×200, you would need 390,000 more pixels. These missing pixels
would need to be interpolated from the existing ones.

Vector graphics, however, are stored as geometries. The data structure for a vec-
tor image contains just enough information for the computer to draw the image.
A vector image of a blue circle on a white background would contain the x and y
position of the circle, its radius, and metadata indicating the circle was blue and
the background white. When a computer renders this image, it figures out the
actual pixels on-the-fly. This means that there is no difference in quality between
the 100×100 vector image and the 200×200 image, and that the size of the data
needed to draw the image is substantially less.

A general rule of thumb is that vector graphics are good for geometrical or car-
toonish images and that raster is better for photographs and realistic images.

Templates
WPF makes it very easy to create reusable elements for your user interfaces. There

are two types of templates in WPF: control templates and data templates. Control

templates enable you to redefine the way a control looks. (For ASP.NET developers,

they are conceptually similar to control adapters.) For example, if your application

needs to have all its list boxes with a blue background and a red border, you could

use a control template to redefine the visual appearance of list boxes. Control tem-

plates also make it easier for designers. They are able to provide a “look” for a list

box through a control template, with little to no impact on the actual development

process.

By the
Way

Getting to Know the Features of WPF 9

Data templates are similar, except that instead of defining the way a control looks,

they define the way certain types of data are rendered. Imagine that you have an

application dealing with people, such as a contact manager, and that you represent

people in code with instances of a Person class. You can create a data template that

defines how an instance of a Person is rendered in the UI. For example, an instance

of Person might be visualized as a business card with a picture, first name, last

name, and telephone number. If you use such a data template, whenever a Person

instance is bound to some UI element, such as a list box, WPF will use the corre-

sponding data templates. In practice you will find that data templates are really

handy when dealing with lists or other collections of data.

Binding
When we talk about binding in WPF, you probably jump immediately to the con-

cept of data binding. Data binding has already been made popular with Windows

Forms and ASP.NET Web Forms, and has demonstrated its usefulness there.

Although WPF has significant data binding features—significant in that it greatly

outclasses its predecessors—it also allows you to declaratively bind other things such

as commands, key bindings, animation, and events. For example, you can declara-

tively bind a button control to a command for pasting.

Styling
WPF really shines when it comes to making an application look pretty. It allows you

to do such things as make the background of a text box red or surround a button

with a thick blue border. Styles in WPF are similar to cascading style sheets for

HTML. Though again, WPF styles are richer and have less ambiguity. They encom-

pass all the visual characteristics you would expect, such as padding, margin, posi-

tion, color, and so on. But you can also use styles to declare nonvisual properties.

Styles are also easy to reuse, and when you combine them with templates, you are

able to do some amazing things.

Triggers
Both templates and styles in WPF support the notion of triggers. A trigger enables

you to tell WPF something like this: “When the mouse is over the button, make the

background purple.” In other words, triggers enable you to declaratively handle

changes of state. You will also find them useful for kicking off animations.

10 HOUR 1: What WPF Is and Isn’t

Animation
The animation framework in WPF is very impressive, and a great deal more useful

than you might think. Most properties in WPF can be animated, and support exists

for timelines, key frames, and interpolation. Animations are easily integrated with

templates and styles. For example, you might define a style for a button that ani-

mates the button when you move the mouse over it. Flash developers and designers

will be impressed with the available features.

3D
Finally, WPF allows for some basic 3D modeling and animation. I say basic because

WPF is not intended for building high-performance 3D applications. You won’t be

constructing a first person shooter in WPF. (If that is what you are interested in,

be sure to give Microsoft’s XNA platform a look.) Nevertheless, the 3D features are

powerful and easily integrated into any user interface. We won’t be covering the

3D features of WPF in this book; however, a very basic tutorial is available in

the appendixes.

Why Use WPF?
WPF, as well as its sister libraries released with .NET 3.0, are well-factored and con-

sistent APIs. They unify many programming concepts and, on the whole, make a lot

of complicated development tasks easier. However, WPF is not necessarily the right

choice for every project. Some desktop applications would be easier to build and

maintain in Windows Forms. But, you’ll find many benefits when you work with

WPF. Any Windows developer should begin learning WPF because it will eventually

mature to a point where it completely replaces Windows Forms.

Many of the key benefits are apparent by reading the list of features in the “Getting

to Know the Features of WPF” section. The following are some scenarios where WPF

will really shine:

. Your project requires collaboration with designers. The use of XAML and its

supporting tools can really help out here. After the developers and the design-

ers become familiar with the tools, your team can experience tremendous

gains in efficiency.

. Your application is media aware. If you need to integrate video and audio into

your product, you’ll definitely want to consider WPF.

Comparing WPF to Other Options 11

. The anticipated hardware for your application has support for DirectX 9 or

greater. WPF is built on top of DirectX, and your applications will benefit from

the hardware acceleration.

. Your application needs support for advanced typography. WPF has support for

OpenType and many other features that are not available with Windows

Forms.

Finally, you as a developer can get more done in less time. Even if you are not con-

cerned with many of the bells and whistles of WPF, you will be able to produce qual-

ity software with less effort. In Part I, “Getting Started,” we’ll demonstrate this

principle by building a simple but useful utility using just markup language.

Comparing WPF to Other Options
If you are solely a .NET developer, you really have only two other options to con-

sider: Windows Forms and ASP.NET. We’ve already compared WPF to Windows

Forms throughout the course of this hour. The only real advantages that Windows

Forms has are its mature library of controls and significant third-party support. WPF

is still the new kid on the block, and the mass of supporting tools and materials has

not had time to build up yet.

Comparing WPF to ASP.NET is a little more involved. The question here really centers

on deployment and distribution. WPF is currently limited to the Windows platform,

and there’s obviously no such limitation with a web application. WPF requires the

.NET Framework 3.0 or later, as well as a means of deploying the application. If your

application is centralized, requiring one or more server components, you are likely to

reduce the complexity significantly by choosing to develop a web application.

Outside of the .NET world, some of the same features are available with Adobe

Flash, primarily when it comes to media and animation. Historically, Flash has

really only been useful in a Web context. However, the Adobe AIR platform utilizes

Flash for developing cross-platform, desktop applications. Nevertheless, Flash still

has some notable drawbacks. The development environment is not as robust as

.NET although, admittedly, Flash does tend to be more designer friendly. Control

libraries for Flash are much more limited and cumbersome to use. It is possible that

AIR will provide some healthy competition for WPF.

12 HOUR 1: What WPF Is and Isn’t

The Pieces of .NET Framework
Unfortunately, a lot of terms and version numbers are floating around in the .NET

world right now, and sorting them out can be particularly difficult. Let’s take a

moment and step through the various pieces of the .NET Framework and how they

relate to all the version numbers.

It is easiest to think of the .NET Framework as a family of products including the

runtime, the compilers, and the common code libraries.

The runtime is the common language runtime, or CLR. It is the virtual machine

that hosts .NET applications. It provides many of the core services such as memory

management, garbage collection, and security. It’s outside the scope of this book to

discuss the CLR in depth, but you should know that the CLR is the .NET runtime and

its version numbers differ from those of the .NET Framework in general. The current

CLR is 2.0.

The two dominant languages in the .NET world are C# and Visual Basic .NET. Both

of these languages have their own version numbers and those numbers differ from

the .NET Framework as a whole. The current version of C# is 3.0, and Visual Basic

is 9.0.

You’ll also hear about the Base Class Library (BCL) and the Framework Class Library

(FCL). The BCL is a set of classes available to any language in the .NET family.

These classes mostly live in the System namespace. The FCL is a term that includes

both the BCL and the common libraries in the Microsoft namespace.

Distinguishing between the two sometimes results in hair splitting, and many peo-

ple use the terms interchangeably.

Figure 1.1 shows how these “products” have changed with each release of the .NET

Framework beginning with 2.0.

Some interesting points to clarify are the following:

. The CLR has not changed since the release of 2.0. Thus, the core features of

the .NET Framework are the same.

. C# 3.0 and VB .NET 9.0 both compile to bytecode (or IL) that is compiled “just

in time” on the CLR 2.0. The new language features with .NET 3.5 are essen-

tially enhancements to the respective compilers.

. WPF is a class library; nothing changed the underlying CLR. This means that

unlike .NET 2.0, version 3.0 of the Framework was just the addition of new

libraries.

Tools for WPF 13

Tools for WPF
In this book we work primarily with Visual Studio 2008. Specifically, we use the

Express Edition, which Microsoft provides free of charge. Visual Studio 2008 has

native support for WPF applications.

The Express Edition of Visual Studio 2008 is available at www.microsoft.com/
express/, along with many other resources.

It is possible to build WPF applications with Visual Studio 2005; however, you need

to install the WPF extensions for Visual Studio that never made their way to a final

release. I strongly advise to move to 2008 if at all possible.

You can also use SharpDevelop (also known as #develop). It is an open-source IDE

for .NET, and it has support for building WPF applications in .NET 3.0. It is a solid

IDE, but it is hard to beat the level of support for WPF in Visual Studio.

The second primary tool for creating WPF applications from Microsoft is Expression

Blend. Blend targets designers rather than developers. It works with the same files as

Visual Studio, so a designer using Blend and a developer using Visual Studio can

both work on the same projects, solution, and files. Blend is somewhat comparable

to the IDE for Adobe Flash. You will find drawing tools, animation timelines,

palettes, and other designer-centric features. Despite its focus, I recommend that

developers become familiar with Blend. Blend is also one of the first Microsoft prod-

ucts to be written with WPF.

.NET 2.0

.NET 3.0

.NET 3.5

WPF, WCF,
WF, CardSpace

Enhancements for
WPF, WCF,
WF, CardSpace

VB.NET 9.0

C# 3.0

C# 3.0

VB.NET 8.0

C# 2.0

CLR 2.0

FIGURE 1.1
The version his-
tory of the .NET
Framework.

By the
Way

www.microsoft.com/express/
www.microsoft.com/express/

14 HOUR 1: What WPF Is and Isn’t

A third-party product exists for designing WPF interfaces—Aurora, by Mobiform

Software. It provides a similar set of features as Expression Blend. One notable fea-

ture is that Aurora designer can be embedded in another WPF application. So if you

have a need for providing a built-in XAML editor in your application, be sure to

check it out.

Expression Design is another Microsoft product. It is for authoring vector-based

graphical content, similar to Adobe Illustrator or Inkscape. Expression Design can be

used to create logos, icons, and illustrations for use with WPF. It can natively output

graphics as XAML, which can then be directly incorporated into WPF. Expression

Design differs from Blend, in that Blend’s focus is purely on authoring user interfaces.

Many other applications for producing 2D and 3D art now have plug-ins available

for exporting assets in XAML. (Remember, XAML is the native tongue of WPF.) Some

of the applications that have plug-ins available are Adobe Fireworks, Adobe

Illustrator, Inkscape, Maya, Blender, and Lightwave.

Aside from the 3D tools just mentioned, at least one WPF-specific 3D content editor

is available—ZAM 3D by Electric Rain. ZAM 3D is very similar to the Swift 3D prod-

uct for Flash. It’s more approachable than most 3D editors and is probably the best

place to start for WPF developers interested in 3D.

One final tool worth mentioning is Kaxaml. It is a lightweight XAML editor featur-

ing a live preview. That is, you can see how WPF will render your markup as you

are typing. It is a very handy utility to have around, and at the time of this writing

it is free.

Visit www.kaxaml.com/ to download Kaxaml. Even though the tutorials in this
book focus on Visual Studio, you might find it useful to test some of the markup
in Kaxaml. Unlike the preview in Visual Studio, Kaxaml is truly what-you-see-is-
what-you-get (WYSIWYG).

Many other tools, utilities, control libraries, and so on become available every day.

Some are third-party commercial products, and others are community-driven and

free. Be sure to check in the appendixes for additional resources. For the sake of sim-

plicity, we use only Visual Studio 2008 Express Edition in this book.

Constrasting WPF with Silverlight
Silverlight is a platform for developing Rich Internet Applications (RIA), whereas

WPF is primarily intended for desktop applications. Silverlight is a direct competitor

to Adobe Flash and it has a strong focus on media, cross-platform compatibility, as

By the
Way

www.kaxaml.com/

Q&A 15

well as a small download and install footprint. Like Flash, Silverlight applications

are hosted in a browser.

Microsoft has intentionally designed Silverlight to be very similar to WPF, although

the two are separate products. In fact, an early name for Silverlight was WPF/E or

Windows Presentation Foundation/Everywhere. Developers familiar with one tech-

nology will have a head start with the other.

Like WPF, Silverlight uses XAML for declaring user interfaces. In version 1.0, a

Silverlight application consists only of text files containing JavaScript and XAML.

Silverlight 2.0, however, will support a more robust runtime and a base class library

similar to the standard .NET BCL. You will be able to write Silverlight applications

in your favorite .NET language and compile them to assemblies for distribution.

Silverlight 2.0 will look a lot more like WPF, but you should be aware that signifi-

cant differences exist. It is almost certain that Silverlight will not support all the

features in WPF. Likewise, code written for Silverlight may need significant changes

before it will compile for a standard .NET application. Always keep in mind that

the runtime for Silverlight is different from the CLR.

Summary
Windows Presentation Foundation is the future of software development for desktop

applications. The API is very large, and the features are numerous. Becoming an

expert in WPF can take some time. However, a basic understanding of the core fea-

tures can greatly increase a developer’s productivity. WPF is also a leap forward in

promoting collaboration between designers and developers.

Q&A
Q. Are there any good reasons for not using WPF to build your application?

A. A WPF application is generally more resource intensive than a Windows

Forms application. If you are building applications for low-end hardware, you

might want to do some performance testing before you commit to using WPF.

Additionally, .NET 3.0 and 3.5 are not yet widely installed and they are pre-

requisites for a WPF application. (.NET 3.0 is included with Vista and Windows

Server 2008.)

16 HOUR 1: What WPF Is and Isn’t

Q. There seems to be a lot to understanding WPF; do I really need to master
all of these concepts to use it?

A. No, you don’t. As we’ve emphasized, WPF is big. However, by the end of Part I,

you can begin building useful applications and realizing the benefits of WPF.

Workshop

Quiz
1. What is the benefit of using a markup language for designing a user

interface?

2. What operating systems does WPF currently support?

3. How does WPF differ from Silverlight, and in what ways are they similar?

4. Aside from Visual Studio 2008, what is another tool from Microsoft that WPF

developers should become familiar with?

Answers
1. Using a markup language such as XAML, or even HTML, is beneficial

because it provides a common medium for both designers and developers.

Additionally, the markup language allows for a declarative approach for

building applications, which is often easier to construct and maintain.

2. WPF is currently available on Windows XP and Windows Vista.

3. WPF is part of the .NET Framework, and it is intended for building graphical

user interfaces for desktop applications. Silverlight targets Rich Internet

Applications that are hosted in a web browser. Silverlight’s runtime is different

from the standard .NET runtime. Both Silverlight and WPF use XAML for

defining interfaces. Microsoft has intentionally made Silverlight as close to

WPF as possible to lower the barrier for developers and designers.

4. WPF developers should be at least somewhat familiar with Microsoft’s

Expression Blend. The application is primarily intended for designers, but can

often be useful for developers as well. It uses the same file formats as Visual

Studio, so that solutions and projects are interchangeable between the two

applications.

Symbols

3D animation, 10

3D modeling, 10

3DS, 425

A

abstracting data stores,

188, 190

acceleration, animations,

392-393

AccelerationRatio property, 392

accessing controls, labels,

64-67

actions, triggering, buttons,

67-68

Adding a ToolTip to the Font

Viewer listing (6.2), 83-84

Address.cs listing (12.2),

183-187

Adobe Fireworks, 424

Adobe Illustrator, 424

Advanced Grid Layout

listing (4.2), 50-51

aggregates, 187

Alignment function, 42-44

analogous colors, 317

animation, 383

acceleration, 392-393

adding, EventTrigger,

377-379

clock animations, 400

clocks, 386-388

controlling, 398-400

deceleration, 392-393

fills, 393

frames, 383

frame rate, 383

key frames, 384,

394-396

tweens, 384

Index

local animations, 400

manual animations, 401

Media Viewer, 388-390

applying to, 401-405

motion, 383

path geometry, 396-398

placement, 391-392

properties, 392-394

repeating, 393

target property, resolving,

390-391

timelines, 384-388

animation framework, 10

Animation Toolbar

(ZAM 3D), 427

anticipating user needs, 131

APIs

DirectX API, 6

unified APIs, 6

App.xaml listing (14.1), 212

App.xaml.cs listing (11.5),

169-170

application frameworks, 425

Application Presenter

implementing, 196, 199

application shell, creating,

179-182

ApplicationCommands built-in

command library, 146

ApplicationController.cs

listing (17.1), 269-270

ApplicationPresenter.cs

listing (13.2), 197-199

applications

animations

acceleration, 392-393

adding, 377-379

applying to, 401-405

clock animations, 400

controlling, 398-400

deceleration, 392-393

fills, 393

key frames, 394-396

local animations, 400

manual animations, 401

path geometry, 396-398

placing, 391-392

properties, 392-394

repeating, 393

bitmaps, outputting,

168-172

colors, choosing, 316-318

commands, 145-146

adding to, 151-152

availability, 153

binding to menus,

148-149

customizing, 149-151

input bindings, 153-155

using, 146-147

control templates, 347-350

adding to, 353-358

benefits, 366

controlling, 351-352

creating, 362-366

creating for a slider,

360-362

identifying special parts,

358-362

items controls, 351-352

placing content in,

350-351

deployment models, 93-98

designing, 407, 418

architecture concerns,

412-414

code conventions,

417-418

code organization, 413

coding conventions,

417-418

dependency injection,

410-411

DRY (Don’t Repeat

Yourself), 409, 412

inversion of control,

410-411

MVP (Model View

Presenter), 413

orthogonal code,

408, 411

patterns, 409-412

resources, 415

SOC (Separation of

Concerns), 408, 412

SRP (Single

Responsibility

Principal), 408, 412

styles, 415-416

440

animation

templates, 416-417

UI design, 412-414

UI layout, 414-415

usability, 414

XAML, 418

YAGNI (Ya Aren’t Gonna

Need It), 411

developing, 33-39

Edit Contact screens,

building, 201-207

events

handling, 128-138

preview events, 139-141

file formats, 93

Font Viewer, fancy instruc-

tions, 61

formatted text support,

adding to, 115, 117-118

Front Builder, building,

27-39

Front Viewer, laying out,

41-57

“hello world” XAML

applications, creating, 18

layout, 41, 57

Alignment function,

42-44

building up, 56

Canvas function, 53-54

creating, 108-109

decorators, 41-42

Decorators function,

54-56

DockPanel function,

46-48

Grid function, 48-52

Margin function, 42-44

panels, 41-42

Panels function, 45

StackPanel function,

45-47

System.Windows.

FrameworkElement

base class, 42

WrapPanel function,

52-54

media player

creating, 282-285

finalizing, 286-288

menu screen,

implementing, 271-274

menus, adding to, 113-115

models

building, 274-277

defining, 182-187

navigation applications,

99-100

navigation models, 98-100

picture screen, creating,

277-281

Print Manager, developing,

161-164

Print Preview, adding to,

164-168

requirements, defining, 267

RIAs (Rich Internet

Applications), 14

shells, enhancing, 200-201

solutions, setting up,

268-271

text document editor, 107

formatted text support,

115-118

layout, 108-109

menus, 113-115

toolbars, 109-110

user controls, 110-113

toolbars, adding to,

109-110

triggers

advanced scenarios,

380-381

DataTrigger, 373-377

EventTrigger, 377-379

leveraging, 369-373

restrictions, 380

user controls, 100-104

adding to, 110-113

XAML file, converting to,

94-95

XBAPs

converting to, 96-97

publishing, 97-98

applying data templates, 259

architectures

application design, 412-414

Contact Manager, choosing,

178-179

ASP.NET, 1

WPF, compared, 11

How can we make this index more useful? Email us at indexes@samspublishing.com

ASP.NET

441

Aurora, 14, 424

automatic change notifications,

demonstrating, 85-88

AutoReverse property, 392

availability, commands,

determining, 153

B

Base Class Library (BCL), 12

BasedOn property, 227

BCL (Base Class Library), 12

BeginStoryboard inheritor

(TriggerAction), 379

BeginTime property, 392

BevelBitmapEffect, 342

binding, 9, 75, 89, 229-232

automatic change

notifications, 85-88

bound data, formatting,

239-247

change, communicating

with, 234-239

contact lists, adding,

230-232

in code, 232-234

syntax, 76, 89

two controls, 76-77

two-way data binding, 78-85

Binding a Slider to a TextBlock

listing (6.1), 77

Binding markup extension, 23

bindings, input bindings,

creating, 153-155

bitmap effects

BevelBitmapEffect, 342

BitmapEffectGroup, 342

BlurBitmapEffect, 342

creating, 339-341

DropShadowBitmapEffect,

341

EmbossBitmapEffect, 342

Media Player, adding to,

342-344

OuterGlowBitmapEffect, 341

BitmapEffectGroup, 342

bitmaps, 8

outputting, 168-172

Blend, 13, 424

Blender, 424

BlurBitmapEffect, 342

“boiler-plate” code, 425

Bold inline element

(TextBlock), 61

bound data, formatting,

239-247

brushes, 318-319, 328

Contact Manager, creating

for, 213

DrawingBrush, 323-325

LinearGradientBrush,

319-320

RadialGradientBrush,

321-323

SolidColorBrush, 319

VisualBrush, 326-327

bubbling up events, 122

built-in command libraries, 146

Button, 67-68

Button class, Name

property, 20

buttons, 67

actions, triggering, 67-68

toggling, 68-71

C

C# 3.0, 12

CAB (Composite Application

Block), 425

Caliburn, 425

Canvas function, 53-54

CardSpace library, 6

carrot animation, creating, ZAM

3D, 428-435

change notifications, 85

changes, data bindings, com-

municating with, 234-239

child elements, 21

choosing panels, items

controls, 351-352

CI (constructor injection), 199

classes

Application Presenter class,

implementing, 196, 199

Button class, Name

property, 20

Clock, 386-388

442

Aurora

content-related

classes, 252

DataTemplateSelector, 255

hierarchy, 171

ItemContainerGenerator,

254

list-related classes, 252

MessageBox class, 71

partial classes, 30

PresenterBase.cs class,

creating, 193-194

repository classes, 188

Selector, 260-261

SideBar.xaml.cs, 200

StyleSelector, 255

System.Windows.Controls.

Control base class, 42

System.Windows.Framework

Element base class, 42

clock animations, 400

Clock class, 386-388

clocks, animation, 386-388

CloseTab method, 199

CLR (common language

runtime), 12, 122

code

application design, conven-

tions, 417-418

“boiler plate” code, 425

data binding in, 232-234

downloading, 437

organizing, 413

orthogonal code, application

design, 408, 411

refactoring, 32

code-behind files (Visual Studio

2008), 29-30

Code-Behind for

MainWindow.xaml

listing (9.3), 138

Code-Behind for

TextEditorToolbar.xaml

listing (9.2), 136-138

collection views, 247-248

XAML, 248-249

colors, 315-316, 328

analogous colors, 317

brushes, 318-319

DrawingBrush, 323-325

LinearGradientBrush,

319-320

RadialGradientBrush,

321-323

SolidColorBrush, 319

VisualBrush, 326-327

choosing, 316-318

complementary colors, 317

declaring, 212

primary colors, 317

secondary colors, 317

tertiary colors, 317

combining resources, 213

ComboBox named part

(controls), 358

commands, 145-146

availability, determining, 153

built-in command

libraries, 146

customizing, 149-151

DeleteContact, 179

gestures, defining, 155

input bindings, creating,

153-155

menus, binding to, 148-149

Refactor menu, Rename,

31-32

SaveContact, 179

Search, 179

Text Editor, adding to,

151-152

using, 146-147

common language runtime

(CLR), 122

communicating changes to

data bindings, 234-239

compiling, Contact Manager, 207

complementary colors, 317

complex drawings

path geometry, 306-310

stream geometry, 310-311

ComponentCommands built-in

command library, 146

Composite Application Block

(CAB), 425

constructor injection (CI), 199

contact forms, 64, 68-70

contact lists, Contact Manager,

adding to, 230-232

Contact Manager, 177, 190,

193, 206-207, 249

Application Presenter,

implementing, 196, 199

application shell, creating,

179-182

How can we make this index more useful? Email us at indexes@samspublishing.com

Contact Manager

443

architecture, choosing,

178-179

brushes, creating for, 213

code, downloading, 437

collection views, 247-248

XAML, 248-249

compiling, 207

contact lists, adding,

230-232

data binding, 229-232

code, 232-234

communicating change

with, 234-239

formatting bound data,

239-247

data store, abstracting,

188, 190

data templates, 237-239

designing, 177-178

Edit Contact screen,

building, 201-207

items, displaying, 253

ItemsControl, 262

Selector class, 260-261

List View, displaying,

236-237

lists

control hierarchy,

251-252

ItemsControl, 252-256

models, defining, 182-187

PresenterBase.cs class,

creating, 193-194

resource files, factoring, 216

resources

combining, 213

defining, 211-212

using UIs in, 214-215

SearchBar, adding to,

214-215

shell, enhancing, 200-201

side bars, customizing,

256, 258-259

solution shell, creating,

179-182

styles, 227

defining, 217-220

factoring, 226-227

keyed styles,

220-221, 226

tabbed UI infrastructure,

completing, 194-196

Contact.cs listing (12.3),

184-187

ContactRepository.cs

listing (12.5), 188-190

contacts, aggregates, 187

Content property, 21-22

content-related classes, 252

control, 42

control hierarchy, lists, 251-252

Control Manager, lists, laying

out, 256

control templates, 347-350

applications, adding to,

353-358

benefits, 366

content, placing in, 350-351

controlling, 351-352

creating, 362-366

items control, choosing

panels in, 351-352

sliders, creating for,

360-362

special parts, identifying,

358-362

controlling

animations, 398-400

control template, 351-352

controls, 41, 72. See also

functions

accessing labels, 64-67

binding, 76-77

two-way data binding,

78-85

buttons, 67

toggling, 68-71

triggering actions, 67-68

control templates, 347-350

adding to applications,

353-358

benefits, 366

controlling, 351-352

creating, 362-366

creating for a slider,

360-362

identifying special parts,

358-362

items controls, 351-352

placing content in,

350-351

DataContext, 80-83

444

Contact Manager

document controls, 168

leveraging, 59

lists, displaying, 71

media controls, styling,

303-306

named parts, 358-360

RichTextBox, 115, 117-118

ScrollViewer, 201

user controls, 100-104,

110-113

conventions, code, application

design, 417-418

ConvertBack method, 240,

244-245

Converter in Application

Resources listing (15.1), 243

ConverterParameter, 246

converters

bound data, formatting,

239-247

hooking up, 242-244

parameterizing, 246-247

converting applications

to XAML files, 94-95

to XBAPs, 96-97

custom controls, user controls,

compared, 101

custom dependency

properties, 167

custom document paginators,

implementing, 158-160

Custom DocumentPaginator

listing (11.1), 158-160

customizing commands,

149-151

D

data binding, 9, 75, 89,

229-232

automatic change

notifications, 85-88

bound data, formatting,

239-247

change, communicating

with, 234-239

contact lists, adding,

230-232

in code, 232-234

modes, 79

syntax, 76, 89

two controls, 76-77

two-way data binding, 78-85

data stores, abstracting,

188, 190

data templates, 237-239

applying, 259

DataContext property,

80-83, 199

DataTemplateSelector

class, 255

DataTrigger, 373-377

deceleration, animations,

392-393

DecelerationRatio property, 392

declarative UI, 7

declaring colors, 212

decorators (layout), 41-42

UIs, enhancing with, 54-56

DefaultStyles.xaml

listing (14.4), 217-218

defining

gestures, commands, 155

models, 182-187

requirements,

applications, 267

resources, 211-212

styles, 217-220

DeleteContact command, 179

demonstrating automatic

change notifications, 85-88

dependency injection (DI), 199

application design, 410-411

dependency properties,

84-85, 234

custom dependency

properties, 167

deployment models,

applications, 93-98

designer tools, 424

designing

applications, 407, 418

architecture concerns,

412-414

code organization, 413

coding conventions,

417-418

dependency injection,

410-411

DRY (Don’t Repeat

Yourself), 409, 412

inversion of control,

410-411

MVP (Model View

Presenter), 413

How can we make this index more useful? Email us at indexes@samspublishing.com

designing

445

orthogonal code,

408, 411

patterns, 409-412

resources, 415

SoC (Separation of

Concerns), 408, 412

SRP (Single

Responsibility

Principal), 408, 412

styles, 415-416

templates, 416-417

UI design, 412-414

UI layout, 414-415

usability, 414

XAML, 418

YAGNI (Ya Aren’t Gonna

Need It), 411

Contact Manager, 177-178

developer tools, 423

developing applications, 33-39

DI (dependency injection), 199

dialog boxes, modal dialog

boxes, 71

DirectX API, 6

discrete interpolation, key

frames, 395

Dispatcher, 277

displaying

items, 253

List View, 236-237

lists, 71

rich text, 60-61

DockPanel function, 46-48

document controls, 168

document paginators,

implementing, 158, 160

DocumentPageView document

control, 168

DocumentViewer document

control, 168

DocumentViewer named part

(controls), 358

Domain-Driven Design: Tackling

Complexity in the Heart of

Software, 191

downloading code, 437

drawing

ellipses, 299

fills, 295-297

headers, Media Viewer,

299-302

lines, 292-295

path geometry, 306-310

polygons, 296-298

polylines, 295-298

rectangles, 299

stream geometry, 310-311

strokes, 292-295

DrawingBrush, 323-325

DropShadowBitmapEffect, 341

DRY (Don’t Repeat Yourself)

principal, application design,

409, 412

DynamicResource markup

extension, 23

StaticResource markup

extension, compared, 216

E

Edit Contact screens, building,

201-207

EditContactPresenter.cs

listing (13.4), 204-206

EditContactView.xaml

listing (13.3), 202-205

EditContactView.xaml

listing (14.5), 221-226

EditContactView.xaml.cs

listing (13.5), 205-206

EditingCommands built-in

command library, 146

Editor Tabs (ZAM 3D), 428

elements, trees, 121

ellipses, drawing, 299

EmbossBitmapEffect, 342

ending animations, 393

entities, building, 182-183

equations, easing, timelines,

387-388

Evans, Eric, 191

event handlers, 68

adding, 124

events, 142

bubbling up, 122

handling, Text Editor,

128-138

naming conventions, 234

preview events, 139-141

446

designing

routed events, 121-122

RoutedEventArgs,

122-127

using, 127-128

tunneling down, 122

EventTrigger, 377, 379

Exact Positioning with Canvas

listing (4.3), 53-54

Expander, 181

Express Edition, Visual

Studio 2008, 13

Expression Blend, 13, 424

Expression Design, 14

Extrusion Editor (ZAM 3D), 431

F

factoring

resource files, 216

styles, 226-227

fancyButtonStyle listing (22.1),

377-379

FCL (Framework Class

Library), 12

Figure inline element

(TextBlock), 61

file formats, applications, 93

files

code-behind files, 29-30

resource files,

factoring, 216

standard executable

files, 93

XAML files, 94

converting applications

to, 94-95

renaming, 30-32

XBAP files, 93

converting applications

to, 96-97

publishing, 97-98

FillBehavior property, 392

fills

animations, 393

drawing, 295-297

finalizing media player, Media

Viewer, 286-288

Flash, 425

Floater inline element

(TextBlock), 61

FlowDocumentPageViewer

document control, 168

FlowDocumentPageViewer

named part (controls), 358

FlowDocumentReader

document control, 168

FlowDocumentReader named

part (controls), 358

FlowDocumentScrollViewer

document control, 168

FlowDocumentScrollViewer

named part (controls), 359

FocusManager.FocusedElement,

64

font collections, binding to, 80

Font Viewer

building, 27-39

code, downloading, 437

fancy instructions, 61

font collections, binding

to, 80

laying out, 41-57

user controls, 100-104

XAML file, converting to,

94-95

XAML-only version, 402

XBAPs, converting to, 96-97

Font Viewer with a User Control

listing (7.2), 103

formatted text support, text

document editors, adding to,

115-118

formatting bound data,

239-247

forms, contact forms, 68, 70

fps (frames per second), 383

Frame named part

(controls), 359

frame rate, animation, 383

frames, animation, 383

frame rate, 383

key frames, 384, 394-396

tweens, 384

Framework Class Library

(FCL), 12

FrameworkElement base

class, 42

How can we make this index more useful? Email us at indexes@samspublishing.com

FrameworkElement base class

447

functions. See also controls

Alignment, 42-44

Button, 67-68

Canvas, 53-54

Decorators, 54-56

DockPanel, 46-48

Grid, 48-52

Labels, 64-67

ListBox, 71

Margin, 42-44

Padding, 44

Panels, 45

StackPanel, 45-47

TextBlock, 60-64

TextBox, 61-64

ToggleButtons, 68-71

WrapPanel, 52-54

G

Gallery Toolbar (ZAM 3D), 428

gathering text from users,

61-64

geometric transfers

BitmapEffect, 339-341

adding to Media Viewer,

342-344

BevelBitmapEffect, 342

BitmapEffectGroup, 342

BlurBitmapEffect, 342

DropShadowBitmap-

Effect, 341

EmbossBitmapEffect, 342

OuterGlowBitmapEffect,

341

Media Viewer, adding to,

337-339

geometric transforms, 331, 333

LayoutTransform, 335-337

RenderTransform, 335-337

RotateTransform, 334

ScaleTransform, 334

SkewTransform, 333

TransformGroup, 334

TranslateTransform, 333

gestures, 145

commands, defining, 155

graphical user interfaces

(GUIs), 5

graphics, 7-8

Grid function, 48-52

GridSplitter, 52

GridViewColumnHeader named

part (controls), 359

GUIs (graphical user

interfaces), 5

H

Handled property

(RoutedEventArgs), 123

handling events, Text Editor,

128-138

headers, Media Viewer,

creating, 299-302

“hello world” XAML

applications, creating, 18

hierarchies, classes, 171

Hierarchy Toolbar

(ZAM 3D), 427

Hyperlink inline element

(TextBlock), 61

I

icons, 426

Media Viewer,

replacing, 437

Implementing the

DocumentManager

listing (8.3), 115-117

Ingebretsen, Robby, 423

inheritors, TriggerAction, 379

Inline elements (TextBlock), 61

InlineUIContainer inline

element (TextBlock), 61

INotifyPropertyChanged, 234

input bindings, commands,

creating, 153-155

instances, rendering, 253-254

IntelliSense, 33

event handlers, adding, 124

interfaces

decorators, enhancing with,

54-56

GUIs (graphical user

interfaces), 5

ZAM 3D, 427-428

448

functions

interpolation, key frames, 395

inversion of control, application

design, 410-411

Italic inline element

(TextBlock), 61

ItemContainerGenerator

class, 254

items, displaying, 253

items controls, panels, choosing

in, 351-352

ItemsControl, 201,

252-256, 262

instances, rendering,

253-254

items, displaying, 253

lists, laying out, 256

Selector class, 260-261

side bars, customizing,

256, 258-259

ItemsControl with

ItemTemplate listing (16.1),

256-257

J–K

Kaxaml, 14, 423

key frames

animation, 384

interpolation, 395

animations, 394-396

keyed styles, 220-221, 226

Kuler utility, 317

L

Label, 64-67

TextBlock, compared, 67

labels, controls, accessing,

64-67

Lathe Editor (ZAM 3D), 429

laying out lists, 256

layout, 57

Alignment function, 42-44

applications, 41

decorators, 41-42

panels, 41-42

System.Windows.

FrameworkElement

base class, 42

building up, 56

Canvas function, 53-54

Decorators function, 54-56

DockPanel function, 46-48

Grid function, 48-52

Margin function, 42-44

Panels function, 45

StackPanel function, 45-47

UIs, 414-415

WrapPanel function, 52-54

layout (application), creating,

108-109

LayoutTransform, 335-337

leveraging triggers, 369-373

libraries

BCL (Base Class

Library), 12

built-in command

libraries, 146

FCL (Framework Class

Library), 12

WPF (Windows Presentation

Foundation), 6

Lightwave, 424

linear interpolation, key

frames, 395

LinearGradientBrush, 319-320

LineBreak inline element

(TextBlock), 61

lines, drawing, 292-295

Linq, 242

List View, Contact Manager,

displaying, 236-237

ListBox, 71

listings

2.1 (Simple Button in

XAML), 19-20

3.1 (MainWindow.xaml),

37-38

4.1 (Simple Grid Layout),

48-49

4.2 (Advanced Grid Layout),

50-51

4.3 (Exact Positioning with

Canvas), 53-54

5.1 (Simple Contact Form

XAML), 62-63

5.2 (More Navigable

Contact Form), 64-66

5.3 (More Usable Contact

Form), 68-70

6.1 (Binding a Slider to a

TextBlock), 77

6.2 (Adding a ToolTip to the

Font Viewer), 83-84

How can we make this index more useful? Email us at indexes@samspublishing.com

listings

449

7.1 (Markup for

FontViewer.xaml), 95-96

7.2 (Font Viewer with a

User Control), 103

8.1 (Toolbars in a

UserControl), 112

8.2 (Menu Contained by a

UserControl), 114

8.3 (Implementing the

DocumentManager),

115-117

9.1 (Markup for

MainWindow.xaml in the

Text Editor), 132-136

9.2 (Code-Behind for

TextEditorToolbar.xaml),

136-138

9.3 (Code-Behind for

MainWindow.xaml), 138

9.4 (Window1.xaml

Captures All the KeyDown

Events), 140-141

9.5 (Window1.xaml.cs

Implements a General

Handler), 141

10.1 (Markup for

TextEditorToolbar.xaml),

147-148

11.1 (Custom

DocumentPaginator),

158-160

11.2 (PrintManager),

161-163

11.3 (PrintPreviewDialog.xaml),

165

11.4 (PrintPreviewDialog.

xaml.cs), 166-167

11.5 (App.xaml.cs),

169-170

12.1 (Shell.xaml), 180-181

12.2 (Address.cs), 183-187

12.3 (Contact.cs), 184-187

12.4 (States.cs), 188

12.5 (ContactRepository.cs),

188-190

13.1 (PresenterBase.cs),

194

13.2 (ApplicationPresenter.cs),

197-199

13.3 (EditContactView.xaml),

202-205

13.4

(EditContactPresenter.cs),

204-206

13.5 (EditContactView.

xaml.cs), 205-206

14.1 (App.xaml), 212

14.2 (SearchBar.xaml), 214

14.3 (SearchBar.xaml.cs),

214-215

14.4 (DefaultStyles.xaml),

217-218

14.5 (EditContactView.xaml),

221-226

15.1 (Converter in Application

Resources), 243

15.2 (PhoneConverter

Class), 245-246

16.1 (ItemsControl with

ItemTemplate), 256-257

17.1 (ApplicationController.cs),

269-270

17.2 (MainWindow.xaml.cs),

270

17.3 (MenuView.xaml), 272

17.4 (MenuPresenter.cs),

272-273

17.5 (MenuView.xaml.cs),

273-274

17.6 (Media.cs), 274-276

17.7 (Picture.cs), 275-276

17.8 (PictureView.xaml),

279-280

17.9 (MediaPresenter.cs),

280-281

17.10 (MediaPlayer.xaml),

282-284

17.11 (MediaPlayer.xaml.cs),

283

17.12 (MusicView.xaml),

286-287

17.13 (VideoView.xaml),

288

18.1 (Several Lines in

Window1.xaml), 294-295

18.2 (Polyline, Polygons,

and Fills), 297-298

18.3 (MainWindow.xaml

with Some Styling),

302-303

20.1 (Window1.xaml),

332-333

20.2 (Window1.xaml

with LayoutTransform),

335-336

20.3 (Window1.xaml with

BitmapEffect), 339-340

450

listings

21.1 (Window1.xaml), 363

21.2 (Window1.xaml

Refactored), 364-365

22.1 (fancyButtonStyle),

377-379

23.1 (Window1.xaml), 385

23.2 (Window1.xaml

Demonstrating Animation

with a Path), 397

23.3 (Window1.xaml

Demonstrating a Controlled

Animation), 399

lists

classes, 252

control hierarchy, 251-252

displaying, 71

ItemsControl, 252-256

laying out, 256

side bars, customizing,

256-259

local animations, 400

M

MainWindow.xaml, 37-38, 270

markup for, 132-136

styling, 302-303

MainWindow.xaml listing (3.1),

37-38

MainWindow.xaml with Some

Styling listing (18.3), 302-303

MainWindow.xaml.cs

listing (17.2), 270

manual animations, 401

Margin function, 42-44

markup

MainWindow.xaml, 132-136

UIs, 226

markup extensions (XAML),

22-23

Markup for FontViewer.xaml

listing (7.1), 95-96

Markup for MainWindow.xaml

in the Text Editor listing (9.1),

132-136

Markup for

TextEditorToolbar.xaml

listing (10.1), 147-148

markup language for

declarative UI, 5

Maya, 425

media controls, Media Viewer,

styling, 303-306

media player, Media Viewer

creating, 282-285

finalizing, 286-288

Media Viewer, 267, 289

animations, 388-390

acceleration, 392-393

applying to, 401-405

clock animations, 400

controlling, 398-400

deceleration, 392-393

fills, 393

key frames, 394-396

local animations, 400

manual animations, 401

path geometry, 396-398

placement, 391-392

properties, 392-394

repeating, 393

target property

resolution, 390-391

bitmap effects, adding to,

342-344

brushes, 318-319

DrawingBrush, 323-325

LinearGradientBrush,

319-320

RadialGradientBrush,

321-323

SolidColorBrush, 319

VisualBrush, 326-327

code, downloading, 437

colors, 315-316

choosing, 316-318

control templates

adding to, 353-358

benefits, 366

creating, 362-366

creating for a slider,

360-362

identifying special parts,

358-362

fills, drawing, 295-297

geometric transforms,

331, 333

adding to, 337-339

bitmap effects, 339-342

LayoutTransform,

335-337

How can we make this index more useful? Email us at indexes@samspublishing.com

Media Viewer

451

RenderTransform,

335-337

RotateTransform, 334

ScaleTransform, 334

SkewTransform, 333

TransformGroup, 334

TranslateTransform, 333

header, creating, 299-302

icons, replacing, 437

media controls, styling,

303-306

media player

creating, 282-285

finalizing, 286-288

menu screen,

implementing, 271-274

model, building, 274-277

paths geometry, 306-310

picture screen, creating,

277-281

requirements, defining, 267

shapes, 291

ellipses, 299

lines, 292-295

polygons, 296-298

polylines, 295-298

rectangles, 299

strokes, 292-295

solution, setting up,

268-271

stream geometry, 310-311

triggers

advanced scenarios,

380-381

DataTrigger, 373-377

EventTrigger, 377-379

leveraging, 369-373

restrictions, 380

Media.cs listing (17.6),

274-276

MediaCommands built-in

command library, 146

MediaPlayer.xaml, 282-285

MediaPlayer.xaml

listing (17.10), 282-284

MediaPlayer.xaml.cs

listing (17.11), 283

MediaPresenter.cs

listing (17.9), 280-281

Menu Contained by a

UserControl listing (8.2), 114

menu screen, implementing,

271-274

MenuItem named part

(controls), 359

MenuPresenter.cs listing (17.4),

272-273

menus

commands, binding to,

148-149

text document editors,

adding to, 113-115

MenuView.xaml

listing (17.3), 272

MenuView.xaml.cs

listing (17.5), 273-274

MessageBox class, 71

methods

CloseTab, 199

ConvertBack, 240, 244-245

Search, 199

Microsoft Visual C# 2008

Express Edition, 28

Mobiform Software, Aurora,

14, 424

modal dialog boxes, 71

Model-View-Controller

(MVC), 178

Model-View-Presenter pattern,

178-179

models

defining, 182-187

Media Viewer, building,

274-277

modes, data binding, 79

Mole, 423

More Navigable Contact Form

listing (5.2), 64-66

More Usable Contact Form

listing (5.3), 68-70

motion, 383

MusicView.xaml listing (17.12),

286-287

MVC (Model-View-Controller),

178

MVP (Model View Presenter),

application design, 413

MVP pattern, 179, 193

452

Media Viewer

N

Name property (Button

class), 20

named parts, controls, 358-360

namespaces, XML, 19

naming conventions,

events, 234

navigation applications, 99-100

navigation models, applications,

98-100

NavigationCommands, 146

NavigationWindow named part

(controls), 359

.NET Framework, 1, 5, 12

version history, 13

new projects, setting up, 28-29

notifications, automatic change

notifications, demonstrating,

85-88

O

observable collections,

demonstrating, 235-236

OneTime mode (data

binding), 79

OneWay mode (data

binding), 79

OneWayToSource mode (data

binding), 79

OriginalSource property

(RoutedEventArgs), 123

orthogonal code, applications,

designing, 408, 411

OuterGlowBitmapEffect, 341

output, printing

custom document

paginator, 158-160

enabling, 157-158

Print Manager, 161-164

Print Preview, 164-168

outputting bitmaps, 168-172

P

Padding functions, 44

panels, items controls, choosing

in, 351-352

panels (layout), 41-42

Panels function, 45

parameterizing converters,

246-247

partial classes, 30

PasswordBox named part

(controls), 359

path geometry, animations,

396-398

patterns

application design, 409-412

Model-View-Presenter

pattern, 178-179

MVP pattern, 179, 193

PauseStoryboard inheritor

(TriggerAction), 379

Penner, Robert, 388

pens, darwing with, 307

PhoneConverter Class

listing (15.2), 245-246

picture screen, Media Viewer,

creating, 277-281

Picture.cs listing (17.7),

275-276

PictureView.xaml listing (17.8),

279-280

placing animations, 391-392

polygons, drawing, 296-298

Polyline, Polygons, and Fills

listing (18.2), 297-298

polylines, drawing, 295-298

PresenterBase.cs class,

creating, 193-194

PresenterBase.cs

listing (13.1), 194

preview events, 139-141

primary colors, 317

Print Manager, developing,

161-164

Print Preview, applications,

adding to, 164-168

printing

custom document

paginators, implementing,

158-160

Text Editor, enabling, 157-

158

PrintManager listing (11.2),

161-163

PrintPreviewDialog.xaml

listing (11.3), 165

How can we make this index more useful? Email us at indexes@samspublishing.com

PrintPreviewDialog.xaml listing

453

PrintPreviewDialog.xaml.cs

listing (11.4), 166-167

Prism, 425

programming languages

C#, 1

XAML, 17-18

syntax, 19-23

ProgressBar named part

(controls), 359

project files (Visual

Studio 2008), 29

projects, setting up, 28-29

properties

animations, 392-394

BasedOn, 227

Content property, 21-22

DataContext, 199

dependency properties,

84-85, 234

custom dependency

properties, 167

RoutedEventArgs, 123

setting, 20-21

target properties, resolving,

390-391

TargetType, 218

property elements, 21

property paths, 194

Property Toolbar (ZAM 3D), 428

publishing XBAPs, 97-98

Q–R

RadialGradientBrush, 321-323

raster graphics, vector graphics,

compared, 8

rectangles, drawing, 299

Refactor menu commands,

Rename, 31-32

refactoring code, 32

RemoveStoryboard inheritor

(TriggerAction), 379

Rename command (Refactor

menu), 31-32

renaming XAML files, 30-32

rendering instances, 253-254

RenderTransform, 335-337

RepeatBehavior property, 392

RepeatButton (Slider), 360

repeating animations, 393

repository classes, 188

requirements, applications,

defining, 267

resolving target properties,

390-391

resource files, factoring, 216

ResourceDictionary, 211

resources

application design, 415

combining, 213

defining, 211-212

UIs, using in, 214-215

restrictions, triggers, 380

ResumeStoryboard inheritor

(TriggerAction), 379

Rich Internet Applications

(RIAs), 5, 14

rich text, displaying, 60-61

RichTextBox, 115-118

RotateTransform, 334

Rotation Trackball

(ZAM 3D), 427

routed events, 121-122

RoutedEventArgs, 122-127

using, 127-128

RoutedEvent property

(RoutedEventArgs), 123

RoutedEventArgs, 122-127, 142

Run inline element

(TextBlock), 61

S

SaveContact command, 179

scalable graphics, 7-8

ScaleTransform, 334

ScrollBar named part

(controls), 359

ScrollViewer control, 201

ScrollViewer named part

(controls), 359

Search command, 179

Search method, 199

454

PrintPreviewDialog.xaml.cs listing (11.4)

SearchBar, 215

Contact Manager, adding to,

214-215

SearchBar.xaml

listing (14.2), 214

SearchBar.xaml.cs

listing (14.3), 214-215

secondary colors, 317

SeekStoryboard inheritor

(TriggerAction), 379

Selection Range (Slider), 361

Selector class, 260-261

separation of concerns

(SoC), 199

Separation of Concerns

principle, 178

SetStoryboardSpeedRatio

inheritor (TriggerAction), 379

Setter, 381

setting properties, 20-21

Several Lines in Window1.xaml

listing (18.1), 294-295

shapes, 291

ellipses, drawing, 299

headers, drawing, 299-302

lines, drawing, 292-295

media controls, styling,

303-306

path geometry, 306-310

polygons, drawing, 296-298

polylines, drawing, 295,

297-298

rectangles, drawing, 299

stream geometry, 310-311

strokes, drawing, 292-295

SharpDevelop, 13

Shell.xaml listing (12.1),

180-181

shells

application shells, creating,

179-182

enhancing, 200-201

solution shells, creating,

179-182

Shifflett, Karl, 423

SideBar.xaml.cs, 200

signatures, 68

Silverlight, WPF, compared,

14-15

Simple Button in XAML

listing (2.1), 19-20

Simple Contact Form XAML

listing (5.1), 62-63

Simple Grid Layout listing (4.1),

48-49

SkewTransform, 333

SkipStoryboardTo Fill inheritor

(TriggerAction), 379

Slider, 182

functional parts, 360

Slider named part

(controls), 359

sliders, templates, creating for,

360-362

Smith, Andrew, 423

Smith, Josh, 423

SoC (separation of

concerns), 199

SoC (Separation of Concerns),

applications, designing,

408, 412

SolidColorBrush, 319

solution shell, creating,

179-182

solutions, applications,

setting up, 268-271

SoundPlayerAction inheritor

(TriggerAction), 379

Source property

(RoutedEventArgs), 123

Span inline element

(TextBlock), 61

SpeedRatio property, 392

splined interpolation, key

frames, 395

split pane, Visual Studio 2008, 29

SRP (Single Responsibility

Principal), applications,

designing, 408-409, 412

StackPanel function, 45-47

standard executable files, 93

States.cs listing (12.4), 188

StaticResource markup

extension, 23

DynamicResource markup

extension, compared, 216

StickyNoteControl named part

(controls), 359

How can we make this index more useful? Email us at indexes@samspublishing.com

StickyNoteControl named part (controls)

455

StopStoryboard inheritor

(TriggerAction), 379

strokes, drawing, 292-295

Style, 381

style sheets, 5

styles, 227

application design, 415-416

defining, 217-220

factoring, 226-227

keyed styles, 220-221, 226

StyleSelector class, 255

styling media controls, Media

Viewer, 303-306

SVG, 425

syntax

data binding, 76, 89

XAML, 19-23

System.Windows.Controls.

Control base class, 42

System.Windows.Framework-

Element base class, 42

T

tabbed UI infrastructure,

completing, 194-196

TabControl, 182

TabControl named part

(controls), 359

target properties, resolving,

390-391

TargetType property, 218

TDD (Test Driven

Development), 413

templates, 8-9

application design, 416-417

control templates, 347-350

adding to applications,

353-358

benefits, 366

controlling, 351-352

creating, 362-366

creating for a slider,

360-362

identifying special parts,

358-362

items controls, 351-352

placing content in,

350-351

data templates, 237-239

applying, 259

sliders, creating for,

360-362

templating, 59

tertiary colors, 317

Test Driven Development

(TDD), 413

text, 60

controls, accessing with

labels, 66-67

rich text, displaying, 60-61

users, gathering from, 61,

63-64

text document editors, 107

application layout, creating,

108-109

events, handling, 128-138

formatted text support,

adding, 115, 117-118

menus, adding, 113-115

toolbars, adding, 109-110

user controls, adding,

110-113

Text Editor, 107, 118

application layout, creating,

108-109

bitmaps, outputting,

168-172

code, downloading, 437

commands, adding to,

151-152

custom document

paginator, implementing,

158, 160

events, handling, 128-138

formatted text support,

adding, 115-118

MainWindow.xaml, markup

for, 132-136

menus, adding, 113-115

Print Manager, developing,

161-164

Print Preview, adding to,

164-168

printing, enabling, 157-158

456

StopStoryboard inheritor (TriggerAction)

toolbars, 146-147

adding, 109-110

user controls, adding,

110-113

TextBlock

Inline elements, 61

Label, compared, 67

rich text, displaying, 60-61

users, gathering text from,

61-64

TextBox, users, gathering text

from, 61-64

Thumb (Slider), 360

TickBar (Slider), 360

timelines, animation, 384-388

ToggleButtons, 68-71

toggling buttons, 68-71

ToolBar named part

(controls), 359

toolbars

text document editors,

adding to, 109-110

Text Editor, 146-147

Toolbars in a UserControl

listing (8.1), 112

tools

application frameworks, 425

designer tools, 424

developer tools, 423

XAML converters, 424-425

tools (WPF), 13-14

ToolTip, 64, 82

Track (Slider), 360

TransformGroup, 334

transforms, 331-333

BitmapEffect, 339-341

BevelBitmapEffect, 342

BitmapEffectGroup, 342

BlurBitmapEffect, 342

DropShadowBitmap-

Effect, 341

EmbossBitmapEffect, 342

Media Viewer, 342-344

OuterGlowBitmapEffect,

341

LayoutTransform, 335-337

Media Viewer, adding to,

337-339

RenderTransform, 335-337

RotateTransform, 334

ScaleTransform, 334

SkewTransform, 333

TransformGroup, 334

TranslateTransform, 333

TranslateTransform, 333

trees, elements, 121

TreeViewItem named part

(controls), 359

TriggerAction, inheritors, 379

triggering actions, buttons,

67-68

triggers, 9, 369, 381

advanced scenarios,

380-381

DataTrigger, 373-377

EventTrigger, 377-379

leveraging, 369-373

restrictions, 380

tunneling down events, 122

tweens, animation, 384

two controls, binding, 76-77

two-way data binding, 78-85

TwoWay mode (data

binding), 79

U

UIs (user interfaces)

application design, 412-414

layout, 414-415

declarative UI, 7

decorators, enhancing with,

54-56

GUIs (graphical user

interfaces), 5

markup, 226

resources, using in,

214-215

tabbed UIs, completing,

194-196

Underline inline element

(TextBlock), 61

unified APIs, 6

UniformGrid, 341

usability, application

design, 414

How can we make this index more useful? Email us at indexes@samspublishing.com

usability, application design

457

user controls, 100-104

custom controls,

compared, 101

text document editors,

adding to, 110-113

user needs, anticipating, 131

users, test, gathering from,

61-64

V

value objects, building,

182-183

VB .NET 9.0, 12

vector graphics, 7

raster graphics,

compared, 8

version history, .NET

Framework, 13

VideoView.xaml

listing (17.13), 288

Viewports (ZAM 3D), 427

Visual Basic applications

adding formatted text sup-

port to, 115-118

adding menus to, 113-115

adding user controls to,

110-113

Visual Basic .NET, 12

Visual C# 2008 Express

Edition, 28

Visual Studio

application layout, creating,

108-109

XAML files, converting

applications to, 94

XBAPs

converting applications

to, 96-97

publishing, 97-98

Visual Studio 2008, 423

applications, developing,

33-39

code-behind files, 29-30

Express Edition, 13

new projects, setting up,

28-29

project files, 29

split pane, 29

XAML files, renaming, 30-32

VisualBrush, 326-327

W

WCF (Windows Communication

Foundation), 6

WF (Workflow Foundation),

6, 17

Window1.xaml Captures All the

KeyDown Events listing (9.4),

140-141

Window1.xaml Demonstrating

a Controlled Animation

listing (23.3), 399

Window1.xaml Demonstrating

Animation with a Path

listing (23.2), 397

Window1.xaml listing (20.1),

332-333

Window1.xaml listing (21.1), 363

Window1.xaml listing (23.1), 385

Window1.xaml Refactored

listing (21.2), 364-365

Window1.xaml with

BitmapEffect listing (20.3),

339-340

Window1.xaml with

LayoutTransform

listing (20.2), 335-336

Window1.xaml.cs Implements

a General Handler

listing (9.5), 141

Windows Communication

Foundation (WCF), 6

Windows Forms, 6

Windows Presentation

Foundation (WPF). See WPF

(Windows Presentation

Foundation)

WinForms, 1

Workflow Foundation (WF),

6, 17

WPF (Windows Presentation

Foundation), 1, 5, 15

3D animation, 10

3D modeling, 10

animation framework, 10

ASP.NET, compared, 11

458

user controls

benefits, 10-11

data binding, 9

declarative UI, 7

layout, 7

markup extensions, 23

scalable graphics, 7-8

sibling libraries, 6

Silverlight, compared, 14-15

styling, 9

templates, 8-9

tools, 13-14

triggers, 9

WPF CAB, 425

WrapPanel function, 52-54

X-Z

X:Array markup extension, 23

x:Null markup extension, 23

x:Type markup extension, 23

XAML, 7, 14, 17-18, 24

application design, 418

collection views, 248-249

markup extensions, 22-23

properties

Content property, 21-22

setting, 20-21

syntax, 19-23

XAML converters, 424-425

XAML files, 94

applications, converting to,

94-95

renaming, 30-32

XAML-only Font Viewer, 402

XBAP files, 93

applications, converting to,

96-97

publishing, 97-98

XML namespaces, 19

YAGNI (Ya Aren’t Gonna Need

It), 131

application design, 411

ZAM 3D, 424, 427

carrot animation, creating,

428-435

Extrusion Editor, 431

interface, 427-428

Lathe Editor, 429

How can we make this index more useful? Email us at indexes@samspublishing.com

ZAM 3D

459

	Introduction
	HOUR 1: What WPF Is and Isn’t
	What Is WPF?
	Getting to Know the Features of WPF
	Why Use WPF?
	Comparing WPF to Other Options
	The Pieces of .NET Framework
	Tools for WPF
	Constrasting WPF with Silverlight
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X-Z

