

C# 3.0 Unleashed
With the .NET Framework 3.5
Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32981-4
ISBN-10: 0-672-32981-6

Library of Congress Cataloging-in-Publication Data
Mayo, Joseph.

C# 3.0 unleashed : with the .NET Framework 3.5 / Joe Mayo. — 1st ed.
p. cm.

ISBN 978-0-672-32981-4
1. C# (Computer program language) 2. Microsoft .NET Framework. I.

Title.
QA76.73.C154M38 2008
006.7’882—dc22

2008026117

Printed in the United States of America

First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andrew Beaster

Copy Editor
Keith Cline

Indexer
Brad Herriman

Proofreader
San Dee Phillips

Technical Editors
Tony Gravagno
Todd Meister
J. Boyd Nolan

Publishing
Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Composition
Jake McFarland

The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for
45 days. Safari Bookshelf is an electronic reference library that lets you easily search thousands

of technical books, find code samples, download chapters, and access technical information whenever and
wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.samspublishing.com/safarienabled

. Complete the brief registration form

. Enter the coupon code VDD7-6QGD-AVQZ-VFEX-CZ76

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

http://www.samspublishing.com/safarienabled

Introduction

Welcome to C# 3.0 Unleashed, a programmer’s guide and
reference to the C# (pronounced “C sharp”) programming
language. C# is primarily an object-oriented programming
language, created at Microsoft, which emphasizes a
component-based approach to software development. In
its third version, C# is still evolving, and this book guides
you on a journey of learning how that evolution helps you
accomplish more in your software engineering endeavors.

C# is one of several languages of the .NET (pronounced
“dot net”) platform, which includes a runtime engine called
the Common Language Runtime (CLR) and a huge class
library. The runtime is a virtual machine that manages code
and provides several other services. The class library
includes literally thousands of reusable objects and supports
several user interface technologies for both desktop and
Web Application development.

C# is evolving as a programming language. It began life as
an object-oriented, component-based language but now is
growing into areas that were once considered the domain of
functional programming languages. Throughout this book,
you’ll see examples of objects and components being used
as building blocks for applications. You’ll also see many
examples that include Language Integrated Query (LINQ),
which is a declarative way to query data sources, whether
the data source is in the form of objects, relational, XML, or
any other format.

Just as C# (and the .NET platform) has evolved, so has this
book. C# Unleashed began as a language-centric learning
guide and reference for applying the C# programming
language. The audience was varied because C# was new
and developers from all types of backgrounds were

2 Introduction

programming with it. All the applications compiled on the command line, and all you
needed was the .NET Framework SDK and an editor to do everything.

At its essence, the same concepts driving the first version of this book made it into this
version. For example, you don’t need to already know .NET before getting started. If
you’ve programmed with any programming language, C# 3.0 Unleashed should be an easy
on-ramp for you. This book contains a few command-line examples, especially in the
beginning, because I believe that using the command line is a skill that is still necessary
and useful. However, I quickly move to the Visual Studio 2008 (VS2008) Integrated
Development Environment (IDE) for the largest share of the rest of the book. You aren’t
required to use VS2008, however; I show you right away how to build your applications
without it, and Appendix A, “Compiling Programs,” is a guide to command-line options
with examples (just like the first version of C# Unleashed). However, VS2008 is an incredi-
ble tool for increasing productivity, and I provide tips throughout this book for cranking
out algorithms with code-focused RAD.

In addition to coverage of VS2008, I’ve included several new chapters for the newest tech-
nologies, such as Windows Presentation Foundation (WPF), Windows Communication
Foundation (WCF), and AJAX. If you like the cutting edge, there are chapters on the
ADO.NET Entity Framework and ADO.NET Data Services. Speaking of data, I’ve added an
entire part of this book with multiple chapters on working with data.

Since July 2000, when I cracked open the first public pre-beta release of .NET, I’ve been
hooked, with C# as my language of choice. I’ve made a good living and found my C#
skills in demand, even in a difficult economy. Most of all, I’ve gained an enormous
amount of experience in both teaching, as a formal course instructor, and as a developer,
delivering value to customers with an awesome toolset. I hope that all the gotchas, tips,
and doses of reality that I’ve encountered and shared in this book will help you learn and
thrive as I have.

Why This Book Is for You
If you’ve developed software in any other computer programming language, you will be
able to understand the contents of this book with no trouble. You already know how to
make logical decisions and construct iterative code. You also understand variables and
basic number systems such as hexadecimal. Novices may want to start with something at
the introductory level, such as Sams Teach Yourself C# in 21 Days. Honestly, ambitious
beginners could do well with this book if they’re motivated.

This is a book written for any programmer who wants to learn C# and .NET. It’s basic
enough for you to see every aspect of C# that’s possible, yet it’s sufficiently advanced to
provide insight into the modern enterprise-level tasks you deal with every day.

3Organization and Goals

Organization and Goals
C# 3.0 Unleashed is divided into eight parts. To promote learning from the beginning, it
starts with the simpler material and those items strictly related to the C# language itself.
Later, the book moves into other C#-related areas, showing how to use data, user interface
technologies, web services, and other useful .NET technologies.

Part 1 is the beginning, covering basic C# language syntax and other essentials. Chapter 1
starts you off by discussing the .NET platform. This is an important chapter because you
need to know the environment that you are building applications for. It permeates every-
thing else you do as a C# developer and should be a place you return to on occasion to
remind yourself of the essential ingredients of being a successful C# developer. In
Chapter 2, you learn how to build a simple C# application using both the command line
and VS2008. It is just the beginning of much VS2008 coverage to come. Chapter 3 is
another essential milestone for success in developing .NET applications with C#, learning
the type system. Chapters 4 and 5 show you how to work with strings and arrays, respec-
tively. By the time you reach Chapter 7, you’ll have enough skills necessary to write a
simple application and encounter bugs. So, I hope you find my tips on using the VS2008
debugger helpful before moving on to more complexity with object-oriented programming
in Part 2.

Part 2 covers object and component programming in C#. In the first version of C#
Unleashed, I dedicated an entire chapter to basic object-oriented programming concepts.
What changed in C# 3.0 Unleashed is that I weaved some of those concepts into other
chapters. This way, developers who already know object-oriented programming don’t have
to skip over an entire chapter, but those who don’t aren’t completely left out. Mostly, I
concentrate on how C# implements object-oriented programming, explaining those
nuances that are of interest to existing object-oriented programmers and necessary for any
C# developer.

Part 3 teaches you some of the more advanced features of C#. With an understanding of
objects from Part 2, you learn about object lifetime—when objects are first instantiated and
when they are cleaned up from memory. An entire body of knowledge builds upon earlier
chapters, leading to where you need to be to understand .NET memory management, the
Garbage Collector, what it means for you as a C# developer, and mostly, what you can do to
ensure that your objects and the resources they work with are properly managed.

Part 4 gives you five chapters of data. Feedback from the first version of this book indi-
cated that you wanted more. So, now you can learn about LINQ to Objects, LINQ to SQL,
ADO.NET, LINQ to DataSet, XML, LINQ to XML, ADO.NET Entity Framework, LINQ to
Entities, ADO.NET Data Services, and LINQ to Data Services. Really, five chapters aren’t
the end of the story, and there is good reason why I moved data earlier in the book: I use
LINQ throughout the rest of the book. In addition to learning how to use all of these data
access technologies, you’ll see many examples in the whole book.

Part 5 demonstrates how to use various desktop user interface technologies. You have
choices, console applications, which were beefed up in .NET 2.0, Windows Forms, and
WPF. By the way, if you are interested in Silverlight, you’ll want to read the WPF chapter

4 Introduction

first because both technologies use XAML, the same layout, and the same control set. Not
only does it help me bring more information to you on these new technologies, but it also
should be comforting that what you learn with one technology is useful with another,
expanding your skill set as a .NET developer.

Part 6 teaches you how to build web user interfaces. ASP.NET is the primary web UI tech-
nology for .NET today, and I provide a fair amount of coverage to help you get up-to-
speed with it. You’ll want to pay attention to the discussion of the difference between
desktop and web applications because it affects how you develop ASP.NET applications. In
recent years, Asynchronous JavaScript and XML (AJAX) has become a hot topic. I show
you how to use ASP.NET AJAX, which ships with VS2008, to make your ASP.NET pages
more responsive to the user. The newest web UI technology is Silverlight, which enables
you to build interactive websites that were once only possible with desktop UI technolo-
gies. A couple of the new capabilities of Silverlight are easier ways to play audio and video
on the web and animation; these new capabilities allow you to build web experiences
similar to Adobe Flash.

Part 7 brings you in touch with various communications technologies. In a connected
world, these chapters teach you how to use essential tools. You learn how to use TCP/IP,
HTTP, and FTP, and send email using .NET Framework libraries. The remoting chapter is
still there, as is the web services chapter. However, an additional chapter covers the new
WCF web services.

Part 8 covers topics in architecture and design. Many programmers learn C# and all the
topics discussed previously and then find their own way to build applications with what
they’ve learned. If they find an effective way to build applications, then that is positive.
However, it’s common for people to want to know what the best way is for putting
together all of these objects, components, and services to build a usable application. I
don’t have all the answers because architecture and design is a big topic, and there are as
many opinions about it as there are questions. However, I’ve taken a quick foray into the
subject, showing you some of the techniques that have worked for me. You learn how C#
and .NET support common design patterns and make it easy for you to use these patterns.
I show you how to build an n-layered application and describe a couple more ways that
you can take what I’ve presented and use it in your own way. I also show you how to use
a couple .NET tools, including the Class Designer, and introduce you to Windows
Workflow (WF), which has a graphical design surface for building applications graphically.

Part 9 is a grab bag of technologies that could be important to your development, depend-
ing on what you want to do. For example, multithreading is something that most
programmers will do on occasion. However, multithreading is a skill that most program-
mers will need as multiprocessing and multicore CPUs become more common, meaning
that I added more multiprocessing/multithreaded information in this version of the book.
Depending on where you are in the world, localization and globalization could be very
important, so I explain the essentials of resources and satellite assemblies for localization

5

purposes. There is still a lot of legacy code that people need to communicate with,
depending on the needs of the project you are working on. To help out, the chapter on
Interop covers P/Invoke for interoperating with Win32 DLLs and COM Interop for
working with COM. There’s also some information on working with COM+. For those of
you who like a solution out of the box, I explain how to use the .NET trace facilities for
instrumenting and logging. There’s also a section on how to use existing performance
counters and how to instrument your own code with a custom performance counter for
diagnostics through the Windows Performance Monitor.

Part 10 helps you with your ultimate goal: deploying code. This is a series of quick chap-
ters to help you build setup programs and deploy desktop or web applications. Before that,
I give you some more information about assemblies and what they are made of. The
Security chapter will help you learn how the .NET Code Access Security (CAS) system
works. Along the way, I throw in several tips to ensure that your deployment endeavors go
more smoothly than if you would have had to do it alone.

That’s what this book is all about. I wish you luck in learning C# and hope that you find
C# 3.0 Unleashed a helpful learning tool and useful reference.

Why This Book Is for You

CHAPTER 1

Introducing the .NET
Platform

IN THIS CHAPTER

. What Is .NET?

. The Common Language
Runtime (CLR)

. The .NET Framework Class
Library (FCL)

. C# and Other .NET Languages

. The Common Type System (CTS)

. The Common Language
Specification (CLS)

As a C# developer, it’s important to understand the envi-
ronment you are building applications on: Microsoft .NET
(pronounced “Dot Net”). After all, your design and
development decisions will often be influenced by code-
compilation practicalities, the results of compilation, and
the behavior of applications in the runtime environment.
The foundation of all .NET development begins here, and
throughout this book I occasionally refer back to this
chapter when explaining concepts that affect the practical
implementation of C#.

By learning about the .NET environment, you can gain an
understanding of what .NET is and what it means to you.
You learn about the parts of .NET, including the Common
Language Runtime (CLR), the .NET Framework Class
Library, and how .NET supports multiple languages. Along
the way, you see how the parts of .NET tie together, their
relationships, and what they do for you. First, however, you
need to know what .NET is, which is explained in the next
section.

What Is .NET?
Microsoft .NET, which I refer to as just .NET, is a platform
for developing “managed” software. The word managed is
key here—a concept setting the .NET platform apart from
many other development environments. I’ll explain what
the word managed means and why it is an integral capabil-
ity of the .NET platform.

When referring to other development environments, as in
the preceding paragraph, I’m focusing on the traditional

10 CHAPTER 1 Introducing the .NET Platform

Source Code Compiler Binary
Executable

FIGURE 1.1 Traditional compilation.

Source Code Compiler Binary
Executable

FIGURE 1.2 Managed compilation.

practice of compiling to an executable file that contains machine code and how that file is
loaded and executed by the operating system. Figure 1.1 shows what I mean about the
traditional compilation-to-execution process.

In the traditional compilation process, the executable file is binary and can be executed by
the operating system immediately. However, in the managed environment of .NET, the file
produced by the compiler (the C# compiler in our case) is not an executable binary.
Instead, it is an assembly, shown in Figure 1.2, which contains metadata and intermediate
language code.

As mentioned in the preceding paragraph, an assembly contains intermediate language
and metadata rather than binary code. This intermediate language is called Microsoft
Intermediate Language (MSIL), which is commonly referred to as IL. IL is a high-level,
component-based assembly language. In later sections of this chapter, you learn how IL
supports a common type system and multiple languages in the same platform.

.NET STANDARDIZATION

.NET has been standardized by both the European Computer Manufacturers
Association (ECMA) and the Open Standards Institute (OSI). The standard is referred to
as the Common Language Infrastructure (CLI). Similarly, the standardized term for IL is
Common Intermediate Language (CIL).

In addition to .NET, there are other implementations of CIL—the two most well known
by Microsoft and Novell. Microsoft’s implementation is an open source offering for the
purposes of research and education called the Shared Source Common Language
Infrastructure (SSCLI). The Novell offering is called Mono, which is also open source.

Beyond occasional mention, this book focuses mainly on the Microsoft .NET implemen-
tation of the CLI standard.

The other part of an assembly is metadata, which is extra information about the code
being used in the assembly. Figure 1.3 shows the contents of an assembly.

11The Common Language Runtime (CLR)

1Assembly

Meta Data

IL

FIGURE 1.3 Assembly contents.

Figure 1.3 is a simplified version of an assembly, showing only those parts pertaining to
the current discussion. Assemblies have other features that illustrate the difference
between an assembly and an executable file. Specifically, the role of an assembly is to be a
unit of deployment, execution, identity, and security in the managed environment. In
Part X, Chapters 43 and 44 explain more about the role of the assembly in deployment,
identity, and security. The fact that an assembly contains metadata and IL, instead of only
binary code, has a significant advantage, allowing execution in a managed environment.
The next section explains how the CLR uses the features of an assembly to manage code
during execution.

The Common Language Runtime (CLR)
As introduced in the preceding section, C# applications are compiled to IL, which is
executed by the CLR. This section highlights several features of the CLR. You’ll also see
how the CLR manages your application during execution.

Why Is the CLR Important?

In many traditional execution environments of the past, programmers needed to perform
a lot of the low-level work (plumbing) that applications needed to support. For example,
you had to build custom security systems, implement error handling, and manage
memory.

The degree to which these services were supported on different language platforms varied
considerably. Visual Basic (VB) programmers had built-in memory management and an
error-handling system, but they didn’t always have easy access to all the features of COM+,
which opened up more sophisticated security and transaction processing. C++ program-
mers have full access to COM+ and exception handling, but memory management is a
totally manual process. In a later section, you learn about how .NET supports multiple

12 CHAPTER 1 Introducing the .NET Platform

TABLE 1.1 CLR Features

Feature Description

.NET Framework Class
Library support

Contains built-in types and libraries to manage assemblies,
memory, security, threading, and other runtime system support

Debugging Facilities for making it easier to debug code. (Chapter 7)

Exception management Allows you to write code to create and handle exceptions.
(Chapter 11)

Execution management Manages the execution of code

Garbage collection Automatic memory management and garbage collection
(Chapter 15)

Interop Backward-compatibility with COM and Win32 code. (Chapter 41)

Just-In-Time (JIT) compila-
tion

An efficiency feature for ensuring that the CLR only compiles
code just before it executes

Security Traditional role-based security support, in addition to Code
Access Security (CAS) (Chapter 44)

Thread management Allows you to run multiple threads of execution (Chapter 39)

Type loading Finds and loads assemblies and types

Type safety Ensures references match compatible types, which is very
useful for reliable and secure code (Chapter 4)

languages, but knowing just a little about a couple of popular languages and a couple of
the many challenges they must overcome can help you to understand why the CLR is such
a benefit for a C# developer.

The CLR solves many problems of the past by offering a feature-rich set of plumbing
services that all languages can use. The features described in the next section further high-
light the value of the CLR.

CLR Features

This section describes, more specifically, what the CLR does for you. Table 1.1 summarizes
CLR features with descriptions and chapter references (if applicable) in this book where
you can find more detailed information.

In addition to the descriptions provided in Table 1.1, the following sections expand upon
a few of the CLR features. These features are included in the CLR execution process.

The CLR Execution Process

Beyond just executing code, parts of the execution process directly affect your application
design and how a program behaves at runtime. Many of these subjects are handled
throughout this book, but this section highlights specific additional items you should
know about.

13The Common Language Runtime (CLR)

1

From the time you or another process selects a .NET application for execution, the CLR
executes a special process to run your application, shown in Figure 1.4.

As illustrated in Figure 1.4, Windows (the OS) will be running at Start; the CLR won’t
begin execution until Windows starts it. When an application executes, OS inspects the
file to see whether it has a special header to indicate that it is a .NET application. If not,
Windows continues to run the application.

If an application is for .NET, Windows starts up the CLR and passes the application to the
CLR for execution. The CLR loads the executable assembly, finds the entry point, and
begins its execution process.

The executable assembly could reference other assemblies, such as dynamic link libraries
(DLLs), so the CLR will load those. However, this is on an as-needed basis. An assembly
won’t be loaded until the CLR needs access to the assembly’s code. It’s possible that the

Start

End

Windows
Examines

Executable File
Header

Windows or
CLR?

Method
Already
JITted?

More code
to execute?

Assembly in
Memory?

Run CLR
JIT Compile

Method

Execute

Load Assembly Execute Method

WindowsWindows

NoNo

NoNo

NoNo

YesYes

YesYes

YesYes

CLRCLR

Windows

No

No

No

Yes

Yes

Yes

CLR

FIGURE 1.4 The CLR execution process (summarized).

14 CHAPTER 1 Introducing the .NET Platform

code in some assemblies won’t be executed, so there isn’t a need to use resources unless
absolutely necessary.

As mentioned previously, the C# compiler produces IL as part of an assembly’s output. To
execute the code, the CLR must translate the IL to binary code that the operating system
understands. This is the responsibility of the JIT compiler.

As its name implies, the JIT compiler only compiles code before the first time that it
executes. After the IL is compiled to machine code by the JIT compiler, the CLR holds the
compiled code in a working set. The next time that the code must execute, the CLR
checks its working set and runs the code directly if it is already compiled. It is possible
that the working set could be paged out of memory during program execution, for various
reasons that are necessary for efficient operation of the CLR on the particular machine it is
running on. If more memory is available than the size of the working set, the CLR can
hold on to the code. Additionally, in the case of Web applications where scalability is an
issue, the working set can be swapped out due to periodic recycling or heavier load on the
server, resulting in additional load time for subsequent requests.

The JIT compiler operates at the method level. If you aren’t familiar with the term method,
it is essentially the same as a function or procedure in other languages. Therefore, when
the CLR begins execution, the JIT compiler compiles the entry point (the Main method in
C#). Each subsequent method is JIT compiled just before execution. If a method being JIT
compiled contains calls to methods in another assembly, the CLR loads that assembly (if
not already loaded).

This process of checking the working set, JIT compilation, assembly loading, and execu-
tion continues until the program ends.

The meaning to you in the CLR execution process is in the form of application design and
understanding performance characteristics. In the case of assembly loading, you have
some control over when certain code is loaded. For example, if you have code that is
seldom used or necessary only in specialized cases, you could separate it into its own DLL,
which will keep the CLR from loading it when not in use. Similarly, separating seldomly
executed logic into a separate method ensures the code doesn’t JIT until it’s called.

Another detail you might be concerned with is application performance. As described
earlier, code is loaded and JIT compiled. Another DLL adds load time, which may or may
not make a difference to you, but it is certainly something to be aware of. By the way,
after code has been JIT compiled, it executes as fast as any other binary code in memory.

One of the CLR features listed in Table 1.1 is .NET Framework Class Library (FCL) support.
The next section goes beyond FCL support for the CLR and gives an overview of what else
the FCL includes.

The .NET Framework Class Library (FCL)
.NET has an extensive library, offering literally thousands of reusable types. Organized into
namespaces, the FCL contains code supporting all the .NET technologies, such as
Windows Forms, Windows Presentation Foundation, ASP.NET, ADO.NET, Windows

15The .NET Framework Class Library (FCL)

1

Workflow, and Windows Communication Foundation. In addition, the FCL has numerous
cross-language technologies, including file I/O, networking, text management, and diag-
nostics. As mentioned earlier, the FCL has CLR support in the areas of built-in types,
exception handling, security, and threading. Table 1.2 shows some common FCL libraries.

WHAT IS A TYPE?

Types are used to define the meaning of variables in your code. They could be built-in
types such as int, double, or string. You can also have custom types such as
Customer, Employee, or BankAccount. Each type has optional data/behavior associ-
ated with it.

Much of this book is dedicated to explaining the use of types, whether built-in, cus-
tom, or those belonging to the .NET FCL. Chapter 4, “Understanding Reference Types
and Value Types,” includes a more in-depth discussion on how C# supports the .NET
type system.

The namespaces in Table 1.2 are a sampling from the many available in the .NET
Framework. They’re representative of the types they contain. For example, you can find
Windows Presentation Foundation (WPF) libraries in the System.Windows namespace,
Windows Communication Foundation (WCF) is in the System.ServiceModel namespace,
and Language Integrated Query (LINQ) types can be found in the System.Linq namespace.

Another aspect of Table 1.2 is that I included only two levels in the namespace hierarchy,
System.*. In fact, there are multiple namespace levels, depending on which technology
you view. For example, if you want to write code using the Windows Workflow (WF)
runtime, you look in the System.Workflow.Runtime namespace. Generally, you can find
the more common types at the higher namespace levels.

One of the benefits you should remember about the FCL is the amount of code reuse it
offers. As you read through this book, you’ll see many examples of how the FCL forms the
basis for code you can write. For example, you learn how to create your own exception

TABLE 1.2 Common .NET Framework Class Library
Namespaces

System System.Runtime

System.Collections System.Security

System.Configuration System.ServiceModel

System.Data System.Text

System.Diagnostics System.Threading

System.Drawing System.Web

System.IO System.Windows

System.Linq System.Workflow.*

System.Net System.Xml

16 CHAPTER 1 Introducing the .NET Platform

object in Chapter 13, “Naming and Organizing Types with Namespaces,” which requires
that you use the Exception types from the FCL. Even if you encounter situations that
don’t require your use of FCL code, you can still use it. An example of when you would
want to reuse FCL code is in Chapter 17, “Parameterizing Type with Generics and Writing
Iterators,” where you learn how to use existing generic collection classes. The FCL was
built and intended for reuse, and you can often be much more productive by using FCL
types rather than building your own from scratch.

Another important feature of the FCL is language neutrality. Just like the CLR, it doesn’t
matter which .NET language you program in—the FCL is reusable by all .NET program-
ming languages, which are discussed in the next section.

C# and Other .NET Languages
.NET supports multiple programming languages, which are assisted by both the CLR and
the FCL. Literally dozens of languages target the .NET CLR as a platform. Table 1.3 lists
some of these languages.

Table 1.3 is not a comprehensive list because there are new languages being created for
.NET on a regular basis. An assumption one could make from this growing list is that .NET
is a successful multilanguage platform.

As you learned earlier in this chapter, the C# compiler emits IL. However, the C#
compiler is not alone—all compilers for languages in Table 1.2 emit IL, too. By having a
CLR that consumes IL, anyone can build a compiler that emits IL and join the .NET
family of languages.

In the next section, you learn how the CLR supports multiple languages via a Common
Type System (CTS), the relationship of the languages via a Common Language
Specification (CLS), and how languages are supported via the FCL.

TABLE 1.3 Languages Targeting the .NET CLR

A# Fortran Phalanger (PHP)

APL IronPython Python

C++ IronRuby RPG

C# J# Silverfrost FTN95

COBOL Jscript Scheme

Component Pascal LSharp SmallScript

Delphi Mercury Smalltalk

Delta Forth Mondrian TMT Pascal

Eiffel.NET Oberon VB.NET

F# Perl Zonnon

17Summary

1

The Common Type System (CTS)
To support multiple programming languages on a single CLR and have the ability to reuse
the FCL, the types of each programming language must be compatible. This binary
compatibility between language types is called the Common Type System (CTS).

The built-in types are represented as types in the FCL. This means that a C# int is the
same as a VB.NET Integer type and their .NET type is System.Int32, which is a 32-bit
integer named Int32 in the System namespace of the FCL. You’ll learn more about C#
types, type classification, and how C# types map to the CTS in Chapter 4.

The Common Language Specification (CLS)
Although the CLR understands all types in the CTS, each language targeting the CLR will
not implement all types. Languages must often be true to their origins and will not lose
their features or add new features that aren’t compatible with how they are used.

However, one of the benefits of having a CLR with a CTS that understands IL, and an FCL
that supports all languages, is the ability to write code in one language that is consumable
by other languages. Imagine you are a third-party component vendor and your language
of choice is C#. It would be desirable that programmers in any .NET language (for
example, IronRuby or Delphi) would be able to purchase and use your components.

For programming languages to communicate effectively, targeting IL is not enough. There
must be a common set of standards to which every .NET language must adhere. This
common set of language features is called the Common Language Specification (CLS).

Most .NET compilers can produce both CLS-compliant and non-CLS-compliant code, and
it is up to the developer to choose which language features to use. For example, C#
supports unsigned types, which are non-CLS compliant. For CLS compliance, you can still
use unsigned types within your code so long as you don’t expose them in the public inter-
face of your code, where code written in other languages can see.

Summary
.NET is composed of a CLR and the .NET FCL, and supports multiple languages. The CLR
offers several features that free you from the low-level plumbing work required in other
environments. The FCL is a large library of code that supports additional technologies
such as Windows Presentation Foundation, Windows Communication Foundation,
Windows Workflow, ASP.NET, and many more. The FCL also contains much code that you
can reuse in your own applications. Through its support of IL, a CTS, and a CLS, many
languages target the .NET platform. Therefore, you can write a reusable library with C#
code that can be consumed by code written in other programming languages.

18 CHAPTER 1 Introducing the .NET Platform

Remember that understanding the .NET platform, which includes CLR, FCL, and multiple-
language support, has implications in the way you design and write your code.
Throughout this book, you’ll encounter many instances where the concepts in this
chapter lay the foundation of the tasks you need to accomplish. You might want to refer
back to this chapter for an occasional refresher.

This chapter has been purposefully as short as possible to cover only the platform issues
most essential to building C# applications. If you’re like me, you’ll be eager to jump into
some code. The next chapter does that by introducing you to essential syntax of the C#
programming language.

Index

2D graphics, creating, Graphics object, 536-539

A
abstract classes, 288-290

interface differences, 290
abstraction, OOP (object-oriented

programming), 177
access modifiers

encapsulation, 185
internal access, 187-188
private access, 186
protected access, 187
protected internal access, 188
public access, 185

objects, 188-189
accessing

ADO.NET Data Services via HTTP URIs,
493-498

ASP.NET AJAX controls, 628-635
Entity SQL, 480

Add menu commands, New Item, 189
add method, modifying, 266-267, 271
Add New Item window (VS2008), 28
Add Silverlight Application window, 643
adding colors, console applications, 511-514
addition operator (+), 53
ADO.NET, 14, 441, 459

architecture, 441-445
components, 441-443
connected modes, 443-444
connections, creating, 445-447
data

manipulating, 450-452
viewing, 447-450

data providers, 444-445
database login security, 446-447

DataSet object
LINQ, 458-459
reading data with, 453-454
saving modifications to database,

454-457
disconnected mode, 443-444
disconnected data, working with, 453-457
entities

creating, 482-486
EDM (Entity Data Model), 476-480
mapping, 482-483
querying with Entity SQL, 480-481

namespaces, 444-445
prefixes, 444-445
providers, 444-445
stored procedures, calling, 452

ADO.NET Data Services, 491
accessing via HTTP URIs, 493-498
client library, writing code with, 499-504
entities

adding, 501
deleting, 502-503
querying, 499-501
sorting, 497
updating, 501-502

entity associations, traversing, 497-498
entity items, selecting, 493-495
entity results, filtering, 495-497
entity sets, viewing, 493
projects, adding to, 492-493
WebDataGen.exe-generated classes, using,

503-504
ADO.NET Entity Framework, 476, 489

data abstractions, creating, 475-489
entities, 476

AdRotator server control (ASP.NET), 593
advanced options, compilers, 969-970
aggregate operators, 439
AJAX (Asynchronous JavaScript and XML),

619-620
ASP.NET AJAX web applications, 620-621

calling web services, 635-640
controls, 625-635
life cycles, 621-623
loading custom script libraries, 623-625

Silverlight, relationship, 642
alias directive, namespaces, 276-278

alias qualifiers, namespaces, 283-284
aliases, 95
alignment, WPF applications

default alignment, 552
explicit alignment, 552-553

allocation, memory, 328-329
animating UI elements, Silverlight, 655-657
Anonymous method, 670
anonymous methods

assigning, 256-258
fields, capturing, 257
local variables, capturing, 257

Another Implementation of the IBroker
Interface listing (14.4), 298-301

API hierarchy, reflection, 350
APIs (application programming interfaces),

Reflection.Emit API, 359-363
AppDomain execution environment, 696
Append method, 123
AppendFormat method, 123
application domain security policy level, 936
Application state (ASP.NET), 596
applications

architectures
N-Layer, 781-795
N-Tier, 781-784

console applications, 507
adding color to, 511-514
command-line input handling, 510-511
PasswordGenerator, 508
program interaction, 45-48
user interaction, 508-510

debugging, 147-159
desktop applications, deploying, 955-958
RAD (rapid application development), 516

drag-and-drop problems, 779-781
regular expressions, 127-129
RIAs (rich internet applications), 583,

641-657
VS2008 applications

building, 28-31
running, 28-31

WCF applications, creating, 726-727
web applications, 586-588

adding interactivity to, 619-620
ASP.NET, 588-617

ADO.NET978

ASP.NET AJAX web applications, 620-640
components, 961-962
model, 583-586
publishing, 961-966

Windows Form applications
controls, 528-536
data binding, 533-536
dialog boxes, 539-545
files, 520
fundamentals, 516-519
GDI+, 536-539
visual design environment, 519
Visual Designer, 521-527
VS2008 support, 519-527
window communication, 540-543
windows, 539-545

Windows service applications, 679
coding, 683-688
creating, 680-683

Workflow application, starting, 797-798
WPF (Windows Presentation Foundation)

applications, 547
canvas layout, 553
controls, 560-573
data binding, 574-578
default alignment, 552
displaying data lists, 575-578
DockPanel layout, 559
event handling, 573-574
explicit alignment, 552-553
Grid layout, 555-559
layout management, 551-559
StackPanel layout, 554
styles, 578-580
UniformGrid layout, 555
WrapPanel layout, 553-554
XAML, 548-551

architectures
ADO.NET, 441-445
applications

N-Layer, 781-795
N-Tier, 781-784

arithmetic operators, 52
addition operator (+), 53
division operator (/), 52
modulus operator (%), 53

How can we make this index more useful? Email us at indexes@samspublishing.com

multiplication operator (*), 52
subtraction operator (–), 53

arrays, 131-134
array bounds, 137-138
generic collections, compared, 371-372
initializing, 132
jagged arrays, 135-137
multidimension arrays, 134-135
nongeneric collections, compared, 371-372
searching, 138-139
single-dimension arrays, 132-134
sorting, 138-139
System.Array class, 137

array bounds, 137-138
searching, 138-139
sorting, 138-139

as operator, 60-61
ASMX web services, 713

basic web services, 714-716
information, viewing, 716-719
technologies, 713-714
using, 719-723

ASP.NET, 14
benefits of, 586
controls, 593

HTML controls, 595-596
Menu control, 605
Server controls, 593, 595

cookies, issuing, 598
data binding, 614-617
navigation, 603-609
page life cycle, code, 590-593
page requests, high-level view of, 584
pages, 588-593
Silverlight, relationship, 642
SiteMapPath, 609
sites, theming, 609-612
state management, 596-603
TreeView, implementing, 606-608
web applications

components, 961-962
creating, 586-588
model, 583-586

web services, 713
basic web services, 714-716
technologies, 713-714

ASP.NET 979

using, 719-723
viewing information, 716-719

web.sitemap, site layout, 604
websites, securing, 612-613

ASP.NET AJAX
web applications, 619-620

controls, 625-635
life cycles, 621-623
loading custom script libraries, 623-625
setting up, 620-621

web services, calling, 635-640
assemblies, 10, 832, 921-922

attributes, 923-924
CLR (Common Language Runtime), 11-14
code groups, 935-936
compilers, 971
concurrent garbage collection, 928
configuration, 927-930
deployment, 930
executable files, compared, 11
GAC (global assembly cache), 930
identity, 925
IL (Intermediate Language), 10
location elements, 929-930
manifests, 922
metadata, 10
runtime assemblies, building, 359-363
saving, 362
scope, 925
security, 926-927
version redirection, 928-929
versioning, 925-926

Assembly names, verifying, 700
assembly reference, namespaces, compared,

277-278
Assembly type, 356
Assertion Demonstration: AssertDemo.cs

listing (42.11), 887
assertions, making, 886-887
assigning anonymous methods, 256-258
assignments

reference type, 88-91
value type, 91-92

assignment operators, 59
association relationships, creating, VS2008

Class Designer, 753

associations, observing, VS2008 Class Designer,
747-748

associativity, operators, 64-65
Asynchronous JavaScript and XML (AJAX), 619
ATMs (automated teller machines), interfaces,

287-288
attaching to processes, debugging, 156-159
attachments, email, sending, 676
Attribute Targets listing (16.5), 344
attributes, 339, 363

assemblies, 923-924
AttributeUsage, 345-349
classes, obtaining from, 356-357
CLSCompliant, 344
common naming conventions, 348
conditional attributes, debugging with,

881-882
creating, 345-349
field requirements, 348
Flags, 341
inheritance, 349
multiple attributes, using, 341-342
multiplicity, controlling, 349
Obsolete, 343
OperationContract attributes, declaring, 730
parameters, 342

named parameters, 343
positional parameters, 342-343

property requirements, 348
reflection, 356-363
ServiceContract attribute, declaring, 730
StructLayout, 343
targets, 344-348
using, 340-342

AttributeUsage attribute, 345-349
auto-implemented properties, objects, 168
autogenerated web service proxies, creating,

719-721
Autogenerated Web Service Proxy:

BasicWebService.cs listing (33.3), 720-721
automatic expression conversions, 220
automatic memory management, objects,

328-331
automatic promotions, handling, 220
Autos window (VS2008), 151

ASP.NET980

B
base classes

constraints, 385-386
Contact, 190
inheritance, 178-180
members

calling, 179-180
hiding, 180-181

Basic Remoting Client: BasicRemotingClient.cs
listing (32.3), 699-700

behavior element, web services, 736-737
Berners-Lee, Tim, 583
binary operators, 52

addition operator (+), 53
division operator (/), 52
modulus operator (%), 53
multiplication operator (*), 52
subtraction operator (–), 53

BinarySearch method, 138-139
binding ComboBox, 576
bitwise AND operator (&), 56
bitwise complement operator (~), 52
bitwise exclusive OR operator (^), 57
bitwise inclusive OR operator (|), 57
blocks

catch blocks, exception handling, 236-237
code, 63
try/catch block, exception handling,

232-234
try/catch blocks, 667

bool type, 39
Boolean AND operator (&), 57
Boolean exclusive OR operator (^), 58
Boolean inclusive OR operator (|), 57
Boolean logical operators, 56

bitwise AND operator (&), 56
bitwise exclusive AND operator (&), 57
bitwise exclusive OR operator (^), 57
bitwise inclusive OR operator (&), 57
Boolean exclusive OR operator (^), 58
Boolean inclusive OR operator (|), 57
conditional AND operator (&&), 58
conditional OR operator (||), 58-59
side effects, 59

How can we make this index more useful? Email us at indexes@samspublishing.com

Boolean switches, debugging, implementing
with, 883-884

BooleanSwitch entry in Configuration File:
BooleanSwitchDemo.config listing (42.6), 884

Border control (WPF), 560-561
boxing value type variables, 83-85
break statements, 75-76
breakpoints, code, 158

setting, 148-149
Brush object (GDI+), Windows Forms

applications, 536-537
Build Menu (VS2008), 28
Build Project command (Build menu), 29
Build Solution command (Build menu), 29
building

generic types, 372-387
hierarchies, group joins, 414
runtime assemblies, Reflection.Emit API,

359-363
VS2008 applications, 28-31

built-in performance counters, accessing,
888-895

built-in types, 15
BulletedList server control (ASP.NET), 593
Button control (Windows Forms), 528
Button control (WPF), 561
Button server control (ASP.NET), 593

C
C#

aliases, 95
arrays, 131-132

array bounds, 137-138
jagged arrays, 135-137
multidimension arrays, 134-135
searching, 138-139
single-dimension arrays, 132-134
sorting, 138-139
System.Array class, 137-139

case sensitivity, 22
code

blocks, 63
commenting, 32-35

C# 981

conventions, 37
definite assignment, 44
identifiers, 35-36
keywords, 36-37
layout, 37
locating, 584
scope, 63
style, 37
types, 39-44
variables, 38-39

enums, 139-142
System.Enum struct, 142-145

labels, 63-64
loops, 69

do loops, 71-72
for loops, 72-73
foreach loops, 73
while loops, 70

operators, 49
as operator, 60-61
assignment operators, 59
associativity, 64-65
binary operators, 52-54
checked operator, 62
compound assignment operators, 59
is operator, 60
logical operators, 56-59
precedence, 64-65
relational operators, 54-56
sizeof operator, 61
ternary operator, 60
typeof operator, 61
unary operators, 49-52
unchecked operator, 62

simple programs, writing, 19-23
statements, 62

break statements, 75-76
continue statements, 76
goto statements, 74-75
if statements, 65-67
return statements, 76-77
switch statements, 67-69

types
.NET framework types, 94-101
nullable types, 102-103
string, 105-122

Unified Type System, 80-81
boxing, 83-85
object type, 82-83
unboxing, 83-85

C# Component Configured for JIT Activation:
CPJit.cs listing (41.18), 874

C# Component Exposed as a COM Component:
CallFromCom.dll listing (41.14), 869-870

C# handler, Silverlight, adding to, 648-649
C# Program Calling a COM Component:

TalkToCom.cs listing (41.12), 867-868
C# Program in VS2008 listing (2.2), 27
C++ COM Component: ComObj.dll

listing (41.11), 867
C++ Programming Style, 190
Cache state (ASP.NET), 596-598
Calendar server control (ASP.NET), 593
calling

base member classes, 179-180
stored procedures

ADO.NET, 452
LINQ to SQL, 420-421

web services
ASP.NET AJAX, 635-640
client code, 738-739

Calling a C# Component Exposed as a COM
Component listing (41.15), 870

canvas layout, WPF (Windows Presentation
Foundation), 553

Cargill, Tom, 190
case sensitivity, C#, 22
Caspol.exe security utility, 944
catch blocks, exception handling, 236-237
Cert2spc.exe security utility, 944
certificates, assemblies, 926-927
Certmgr.exe security utility, 944
channels

HttpChannel, 708
remoting, 706-708
TCP channels, 708

character classes, regular expressions, 126
characters, strings, working with, 119-121
CheckBox control (Windows Forms), 528
CheckBox control (WPF), 561
CheckBox server control (ASP.NET), 593

C#982

CheckBoxList server control (ASP.NET), 593
checked operator, 62
checked statements, 245-248
checked Statements: checked.cs listing (11.7),

245-246
CheckListBox control (Windows Forms), 528
Chktrust.exe security utility, 944
Class Designer (VS2008), 743, 754

code, visualizing, 743-748
object models, creating, 749-754

class libraries, Silverlight, 644
files, 646-647

class library documentation, .NET
Framework, 974

class members, GC (garbage collector), 335
Class to Reflect Upon: Reflected.cs

listing (16.7), 350-352
classes

abstract classes, 288-290
interface differences, 290

attributes, obtaining from, 356-357
base classes

Contact, 190
inheritance, 178-180

Console, 23, 45
Customer, 190-191
Debug, 879-881, 917
interfaces

explicit implementation, 304-310
implicit implementation, 293-304

members, qualification, 179
Monitor, 827-828
Process, 818-823
ResourceManager, 833-834
sealed classes, inheritance, 183-184
SiteOwner, 190-192
static classes, objects, 171-172
StringBuilder, 122-123

Append method, 123
AppendFormat method, 123
EnsureCapacity method, 123-124
ToString method, 124

System.Array class, 137
array bounds, 137-138
searching, 138-139
sorting, 138-139

How can we make this index more useful? Email us at indexes@samspublishing.com

System.Object, 175
System.Object class, 172-175
System.Object class members, overriding,

197-200
Trace, 879
WebDataGen.exe-generated classes, using,

503-504
wrappered HTTP classes, 661

Clean Project (Build menu), 29
Clean Solution command (Build menu), 29
CLI (Common Language Infrastructure), 10
ClickOnce, 959

configuring, 957-958
desktop applications, deploying, 955-957

client code
iterator pattern, using in, 763
web services, calling, 738-739

Client Code Calling a Web Service listing (34.3),
738-739

Client Configuration File:
BasicRemotingClient.exe.config
listing (32.4), 700

client library (ADO.NET Data Services), writing
code with, 499-504

Client Using Data from Custom Performance
Counter: CustomOrderClient.cs listing (42.15),
897-902

clients
HTTP clients, creating, 669-671
socket clients, creating, 665-669

cloning objects, 173-174
closing diagrams, 747
CLR (Common Language Runtime), 9-14, 17, 79

debugging, 12
exception management, 12
execution management, 12
execution process, 12-14
features, 12
garbage collection, 12
importance of, 11-12
interop, 12
JIT (Just-In-Time) compilation, 12-14
namespaces, 274
security, 12
stacks, 87

unwinding, 239
string handling, intern pools, 121-122

CLR (Common Language Runtime) 983

thread management, 12
type loading, 12
type safety, 12

CLS (Common Language Specification), 16-17
CLSCompliant attribute, 344
code

ASP.NET page life cycle, 590-593
assertions, making, 886-887
blocks, 63
breakpoints, 158

setting, 148-149
built-in performance counters, accessing,

888, 893-895
C# code, locating, 584
client code

iterator pattern, 763
web service calls, 738-739

code groups, membership, 936
code-based security, 933-934

code groups, 935-936
evidence, 934
permission requests, 937-940
permissions, 934-935
security policy implementation, 940-942
security policy levels, 936-937

commenting, 32-35
comments

multiline comments, 32
single-line comments, 32-33
XML documentation comments, 33-35

conventions, 37
copying, 623
customized performance counters, building,

897, 902-907
debug tracing, runtime tracing, 884-886
debugging

Boolean switches, 883-884
conditional debugging, 881-884
runtime debugging, 879-881

definite assignment, 44
dynamically activating, 357-359
executing CLR (Common Language

Runtime), 12-14
identifiers, 35-36
keywords, 36-37
layout, 37

managed code, 854
managed compilation, 10
organizing namespaces, 274
performance analysis, sampling, 908, 913,

916-917
programming state, examining, 149-150
proxies, 720
reusing, FCL, 15-16
role-based security, 942

GenericPrincipal, 943-944
WindowsPrincipal, 942-943

runtime trace facilities, 879
safe code, 854
scope, 63
stepping through, 147-159
style, 37
threads, running in, 824
timers, implementing, 896-897
traditional compilation, 10
types, 39-44

bool type, 39
floating-point types, 42-43
integral types, 39-41
string type, 43-44

unmanaged code, 854
unsafe code, 853-854

configuring, 61
fixed statement, 861-864
pointers, 855-858
recognizing, 854
sizeof() operator, 858-859
stackalloc operator, 860-861

variables, 38-39
visualizing, VS2008 Class Designer,

743-748
WF (Windows Workflow) runtime, writing

in, 15
writing, ADO.NET Data Services, 499-504

code groups
code-based security, 935-936
membership, 936

code-based security, 933-934
code groups, 935-936
evidence, 934
permission requests, 937-940
permissions, 934-935
security policy, implementing, 940-942
security policy levels, 936-937

CLR (Common Language Runtime)984

Code-Behind Demonstrating Page Life Cycle
listing (27.2), 592

Code-Behind File listing (26.2), 549-550
coding

events, 258-267, 271
LINQ to Entities, 486-489
VS2008, 27-28
Windows service applications, 683-688

coding methods, 201-202
defining, 202-203
local variables, 203-204
overloading, 210-212
parameters, 204

out parameters, 207-209
params parameters, 209-210
ref parameters, 205-207
value parameters, 204-205

Collect class member (GC), 335
collection process, GC (garbage collector), 330
collection types, 372
Collection Without IEnumerable/IEnumerator

Interfaces listing (36.1), 764-766
collections, .NET Framework, 757
colors, console applications, adding to, 511-514
COM components, 853

.NET components, exposing as, 869
early-bound COM component calls, 866-868
communicating with from .NET, 866-869
late-bound COM component calls, 868-869

COM+ services, 876
.NET support, 871-876
JIT (Just-In-Time) activation, 874
object pooling, 875-876
transactions, 873-874

COM+ Services Object Pooling Implemented in
C#: CPPool.cs listing (41.19), 875-876

COM+ Transactional Component in C#:
CPTrans.cs listing (41.17), 873-874

CombinePath method, 229
ComboBox control (Windows Forms), 528
ComboBox control (WPF), 561

binding, 576
comma-separated values (CSVs), strings, 118
command-line communications, 45-46
command-line input, handling, console

applications, 510-511

How can we make this index more useful? Email us at indexes@samspublishing.com

command-line options, VS2008, 46
commands, Add menu, New Item, 189
comments, code, 32-35

multiline comments, 32
single-line comments, 32-33
XML documentation comments, 33-35

common dialog boxes, Windows Forms
applications, 543-545

Common Language Infrastructure (CLI), 10
Common Language Runtime (CLR), 9, 79
Common Language Specification (CLS), 16
common naming conventions, attributes, 348
Common Type System (CTS), 16
communication

objects, 177
workflows, hosts, 805-810

communications, windows, Windows Forms
applications, 540-543

Compare method, 109-110
CompareOrdinal method, 109-110
CompareValidator server control (ASP.NET), 593
comparing

object references, 172
strings, 109-110

compilation
JIT (Just-In-Time) compilation, CLR (Common

Language Runtime), 12
managed compilation, 10
programs, 969-971
traditional compilation, 10
VS2008 projects, 30

Compilation Instructions for Chapter 12 listings
listing (12.8), 271

Compilation Instructions for Listing 41.1
listing (41.2), 858

Compilation Instructions for Listing 41.3
listing (41.4), 859

Compilation Instructions for Listing 41.5
listing (41.6), 861

Compilation Instructions for Listing 41.7
listing (41.8), 864

Compilation Instructions for Listing 41.9
listing (41.10), 866

Compilation Instructions for Listing 42.1
listing (42.2), 881

Compilation Instructions for Listing 42.11
listing (42.12), 887

Compilation Instructions for Listing 42.11 listing (42.12) 985

Compilation Instructions for Listing 42.3
listing (42.4), 883

Compilation Instructions for Listing 42.5
listing (42.7), 884

Compilation Instructions for Listing 42.8
listing (42.10), 886

compiler
advanced options, 969-970
assemblies, 971
warnings, handling, 194

ComplexNumber, 94
components

ADO.NET, 441-443
COM components, .NET, 866-869

compositional relationships, objects, 177
compound assignment operators, 59
Concat method, 111-112
concatenating strings, 111-112
concatenation operators, 438-439
concurrent garbage collection, assemblies, 928
conditional AND operator (&&), 58
conditional debugging, System.Diagnostic

namespace, 881-884
conditional logical operators, 218
conditional OR operator (||), 58-59
configuration

assemblies, 927-930
ClickOnce, 957-958
objects, VS2008 Class Designer, 750
ServiceInstaller, 690
ServiceProcessInstaller, 689
unsafe code, 61
virtual directories, 963-964
web servers, 962-963
web services, 734-737
Windows services, 687-688

conflicts, avoiding, namespaces, 275
connected mode, ADO.NET, 443-444
connection performance, databases, 443
connections, ADO.NET, creating, 445-447
console applications, 507

colors, adding to, 511-514
command-line input, handling, 510-511
PasswordGenerator, 508
programs, interacting with, 45-48
users, interacting with, 508-510

Console class, 23, 45
console screen communications, 45
Console.WriteLine method, 210-211
constant fields, objects, 165-166
constraints

base class constraints, 385-386
constructor constraints, 387
interfaces, 384-385
reference type constraints, 386
value type constraints, 387

construction
reference types, 93
value types, 93

constructor constraints, 387
constructors

default constructors, object
initialization, 323

instance constructors, objects, 320-322
overloading, object initialization, 322-323
private constructors, object initialization,

323-324
static constructors, object initialization, 325

consuming web services, 737-739
Contact base class, 190
containment, encapsulation, 190
Contains method, 113-114
ContentControl control (WPF), 561
Context state (ASP.NET), 598
continue statements, 76
contracts

data contracts, creating, 730-732
web services, creating, 727-732

controllers, Windows services, communicating
with, 691-693

controlling objects, 335, 337
controls

ASP.NET, 593
HTML controls, 595-596
Menu control, 605
Server controls, 593, 595

ASP.NET AJAX controls, 625-635
accessing, 628-635
Timer control, 628
UpdatePanel control, 625-627
UpdateProgress control, 627-628

Compilation Instructions for Listing 42.3 listing (42.4)986

Canvas, 553
default events, 525
DockPanel, 559
Grid, 555-558
ListView, binding to, 578
Silverlight, 644-646
StackPanel, 554
UniformGrid, 555
Windows Forms applications, 528-531

DataGridView control, 534-536
ListBox control, 534
MenuStrip control, 531-533
StatusStrip control, 531-533
ToolStrip control, 531-533

WPF (Windows Presentation
Foundation), 560

Border control, 560-561
Button control, 561
CheckBox control, 561
ComboBox control, 561
ContentControl control, 561
DockPanel control, 562
DocumentViewer control, 562
Ellipse control, 563
Expander control, 563
Frame control, 563
Grid control, 564
GridSplitter control, 564
GroupBox control, 564-565
Image control, 565
Label control, 565
ListBox control, 565
ListView control, 565
MediaElement control, 565
Menu control, 565-566
PasswordBox control, 566
ProgressBar control, 566
RadioButton control, 566-567
Rectangle control, 567
RichTextBox control, 567
ScrollBar control, 567
ScrollViewer control, 568
Separator control, 568
Slider control, 569
StackPanel control, 569
StatusBar control, 569
Tab control, 569

How can we make this index more useful? Email us at indexes@samspublishing.com

TextBlock control, 570
TextBox control, 570
ToolBar control, 570
ToolBarPanel control, 570-571
ToolBarTray control, 571
TreeView control, 571
UniformGrid control, 571
ViewBox control, 572
WindowsFormsHost control, 572-573
WrapPanel control, 573

WrapPanel, 553-554
XAML, 550-551

conventions, code, 37
conversion operators, 438

overloads, 218-227
conversions

automatic expression conversions, 220
custom reference type conversion

operators, 225-227
custom value type conversion operators,

222-225
explicit conversions, 219-222
implicit conversions, 219-222

converting resource files, 836-838
cookies, issuing, ASP.NET, 598
Copy method, 112-113
copying

code, 623
strings, 112-113

CopyTo method, 114-115
Couple of Interfaces with Identical Members

listing (14.6), 304-305
Creating a Socket Client listing (30.2), 665-669
Creating a Socket Server listing (30.1), 662-665
Creating a Socket Server: MultiCast.cs

listing (12.1), 253-254
Creating an HTTP Client listing (30.3), 669-671
credentials, processes, opening, 818-819
CSVs (comma-separated values), strings, 118
CTS (Common Type System), 16-17
curly braces, 21
custom actions, launch conditions, 953-954
Custom Attribute Example listing (16.6),

346-348
custom numeric format strings, 108

custom numeric format strings 987

custom operators, 201
Custom Performance Counter Sampling:

CustomSamplingProcessor.cs listing (42.18),
913-917

custom reference type conversion operators,
225-227

custom script libraries, loading, 623-625
custom types, 15

logical operator overloads, 215-216
mathematical operator overloads, 213-215

custom value type conversion operators,
222-225

Customer class, 190-191
customized performance counters, building,

897, 902-907
CustomValidator server control (ASP.NET), 593

D
data

disconnected data, working with, 453-457
filtering, LINQ, 412
grouping, LINQ, 413
hiding, 185
joining, LINQ, 413-414
manipulating, ADO.NET, 450-452
updating after running samples, 420
viewing, ADO.NET, 447-450

data abstractions, creating, ADO.NET Entity
Framework, 475-489

data binding
ASP.NET, 614-617
Windows Forms applications, 533-536
WPF (Windows Presentation Foundation)

applications, 574-578
data contracts, creating, 730-732
data entities, LINQ to SQL, 418
data handling logic, extending, partial methods,

425-427
data providers, ADO.NET, 444-445
data structures, nongeneric collections, 366
databases

connection performance, 443
login security, ADO.NET, 446-447

modifying, stored procedures, 421-424
scalability, 443

DataContext
declaring, 575-576
defining, 415-418
modifying, 419-420
querying through, 418-419

DataGrid, Silverlight, 652
DataGridView control (Windows Forms), 528,

534-536
DataList server control (ASP.NET), 594
DataSet object

data, reading, 453-454
saving to database, 454-457

DataTemplate, 576-577
DateTime object

math, 98-99
string types, converting between, 99-101

DateTime objects
creating, 97
extracting parts of, 97-98

DateTimePicker control (Windows Forms), 528
Debug class, 879, 917

conditional debugging, 881-884
runtime debugging, 880-881

Debug.Assert method, 917
assertions, making, 886-887

debugger demo program, 147-148
debuggers, programming errors, finding, 152,

155-156
debugging

applications, 147-159
assertions, making, 886-887
Boolean switches, 883-884
built-in performance counters, accessing,

888, 893-895
CLR (Common Language Runtime), 12
code

breakpoints, 148-149
stepping through, 147-152, 155-159

conditional debugging, System.Diagnostic
namespace, 881-884

customized performance counters, building,
897, 902-907

performance analysis, sampling, 908, 913,
916-917

custom operators988

processes, attaching to, 156-159
runtime debugging, 879

Debug class, 880-881
runtime tracing, System.Diagnostic

namespace, 884-886
timers, implementing, 896-897

Debugging Demo Program listing (7.1), 147
Debugging with Conditional Attributes:

ConditionalDebugDemo.cs listing (42.3), 882
Declarative Security Request listing (44.1),

937-938
declaring

DataContext, 575-576
OperationContract attributes, 730
properties, objects, 167
ServiceContract attribute, 730

decrement operator (—), 51
default alignment, WPF (Windows Presentation

Foundation), 552
default constructors, object initialization, 323
default events, controls, 525
DefineDynamicModule method, 362
defining

DataContext, 415, 417-418
delegates, 250-251
event handlers, 258-259
interface types, 291-293

events, 293
indexers, 293
methods, 292
properties, 292

methods, 202-203
types, generic types, 384

definite assignment, 44
delegates, 250, 271

defining, 250-251
equality, checking, 255-256
function pointers, compared, 251
generic delegates, 382-384
hooking up, 251-252
inference, implementing, 256
lambda expressions, 258, 399-404
method handlers, creating, 251
methods, invoking through, 252
multicasting, 252, 254-255

How can we make this index more useful? Email us at indexes@samspublishing.com

deleting
data, ADO.NET, 451-452
entities, ADO.NET Data Services, 502-503

deploying
desktop applications, 955-958
web servers, 965
Windows services, 690-691

deployment, assemblies, 930
design patterns, 755

iterator pattern, 755-756
client code, 763
foreach loop, 764-767
IEnumerable interface, 756-763
Reset method, 766
simplifying with iterators, 767-768

proxy pattern, 768-771
proxy object, 771-772

template pattern, 772-777
.NET Framework, 773
implementing, 773-777

designing
exceptions, 243-245
objects, 163-175

Designing an Exception: NewException.cs
listing (11.6), 243-245

desktop applications, deploying, 955-958
desktop N-Layer multiple-assembly architecture,

792-794
desktop N-Layer single-assembly architecture,

785-789
destructors

detriments, 332
finalizers, compared, 328

details, processes, reading, 822
DetailsView server control (ASP.NET), 594
diagrams, closing, 747
dialog boxes, Windows Forms applications,

539-545
common dialog boxes, 543-545
modal dialog boxes, 539-540
modeless dialog boxes, 539-540
window communications, 540-543

disconnected data, working with, ADO.NET,
453-457

disconnected data 989

directives, namespaces, 275
alias directive, 276-278
using directive, 275-276

directories, virtual directories, setting up,
963-964

disabling processes, 822-823
disconnected mode, ADO.NET, 443-444
Dispose pattern, 332-334
Dispose Pattern: DisposePattern.cs

listing (15.1), 332-333
disposing iterators, 395-396
division operator (/), 52
DLLs (dynamic link libraries), 13
do loops, 71-72
DockPanel control (WPF), 562
DockPanel layout (WPF), 559
documents

XML documents, creating, 468, 470
XPS documents, creating, 562

DocumentViewer control (WPF), 562
DOM (Document Object Model), XML DOM,

466-468
DomainUpDown control (Windows Forms), 528
drag-and-drop problems, RAD (rapid application

development), 779-781
drawing text, Windows Forms applications,

537-539
DropDownList server control (ASP.NET), 594
Dynamic Assembly Generation listing (16.11),

360-361
dynamic link libraries (DLLs), 13
dynamically activating code, 357-359
Dynamically Activating Code:

DynamicActivation.cs listing (16.10), 358-359

E
early-bound COM component calls, 866-868
ECMA (European Computer Manufacturers

Association), .NET standardization, 10
EDM (Entity Data Model), 476-480, 492
element operators, 437
elements, resource files, 832

Ellipse control (WPF), 563
email

attachments, sending, 676
sending, 675-676

encapsulation
access modifiers, 185

internal access, 187-188
private access, 186
protected access, 187
protected internal access, 188
public access, 185

containment, 190
data, hiding, 185
inheritance, 190
objects, managing, 177
OOP (object-oriented programming),

184-190
endpoint element, web services, 736
EndsWith method, 113-114
EnsureCapacity method, 123-124
enterprise security policy level, 936
entities, 476

accessing, Entity SQL, 480
ADO.NET Data Services

adding, 501
sorting, 497

creating, 482-486
deleting, ADO.NET Data Services, 502-503
EDM (Entity Data Model), 476-480
mapping, 482-483
querying

Entity SQL, 480-481
LINQ to Data Services, 503
LINQ to Entities, 486-487
WebDataQuery, 499-501

selecting, Entity SQL, 480-481
updating, ADO.NET Data Services, 501-502

entity associations, ADO.NET Data Services,
traversing, 497-498

Entity Data Model (EDM), 476-480, 492
entity items, ADO.NET Data Services, selecting,

493-495
entity results, ADO.NET Data Services, filtering,

495-497
entity sets, ADO.NET Data Services, viewing, 493
Entity SQL, entities, querying, 480-481

directives990

enums, 131, 139-142
ints, converting between, 142-143
strings, converting between, 142-143
System.Enum struct, 142-145
type members, iterating through, 144

Equal method, 110-111
equal operator (==), 54
equality

delegates, checking, 255-256
objects, checking, 173
strings, checking for, 110-111

equality operators, 436-437
Equals method, 200

System.Object class members, overriding,
198-199

errors, 231
European Computer Manufacturers Association

(ECMA), .NET standardization, 10
Event Accessors: MenuItem.cs listing (12.6),

266-267
Event Declaration: MenuItem.cs

listing (12.2), 259
event handlers, defining, 258-259
event handling

Silverlight, 648-652
state workflows, 811-813
WPF (Windows Presentation Foundation)

applications, 573-574
Event Method Handlers: DelegatesAndEvents.cs

listing (12.3), 260-261
Event Method Handlers: SiteManager.cs

listing (12.4), 261-263
event-based programming, 249-250, 271

anonymous methods, assigning, 256-258
delegates, 250

checking delegate equality, 255-256
defining, 250-251
hooking up, 251-252
implementing inference, 256
method handler creation, 251
method invocation, 252
multicasting, 252-255

event add/remove methods, modifying,
266-267, 271

event handlers, defining, 258-259

How can we make this index more useful? Email us at indexes@samspublishing.com

events
coding, 258-267, 271
firing, 263-265
implementing, 261-263
registering for, 259-261

events, 271
add/remove methods, modifying, 266-271
coding, 258-267, 271
controls, default events, 525
firing, 263-265
implementing, 261-263
interface types, defining, 293
registering for, 259-261

evidence, code-based security, 934
exception management, CLR (Common

Language Runtime), 12
exceptions, 231

designing, 243-245
handling, 232-240

different exception types, 236-237
finally blocks, 234-235
try/catch block, 232-234

passing, 237-240
recovering from, 240-243

executable files
assemblies, compared, 11
compiling to, 10

executable works, ensuring, 363
executing code, CLR (Common Language

Runtime), 12-14
execution management, CLR (Common

Language Runtime), 12
existing processes, working with, 821-823
Expander control (WPF), 563
explicit alignment, WPF (Windows Presentation

Foundation), 552-553
explicit conversions, implicit conversions,

compared, 219-222
explicit implementation, interfaces, 304-310
Explicit Interface Implementation listing (14.7),

306-308
expression trees, 397, 404-406

lambda expressions, converting to, 404-406

expression trees 991

expressions
expression trees, 397, 404-406

lambda conversions, 404-406
grep (Global Regular Expression Print),

127-128
lambda expressions, 397-398, 406

delegates, 258, 399-404
syntax, 398
using, 398-399

regular expressions, 124-125
application, 127-129
common character classes, 126
operations, 125-126
quantifiers, 127

Extensible HTML (XHTML), 589
Extensible Markup Language (XML), 461
extension methods, 228-230
extern namespaces alias, 284-286
ExternalDataExchangeService, implementing,

805-810
extracting string information, 114-115
extending data handling logic, partial methods,

425-427

F
FCL (Framework Class Library), 9, 14-17, 23

attributes, creating, 345-349
code reuse, 15-16
features, 15
language neutrality, 16
namespaces, 14-15, 274-276
reusable types, 14

fields
attributes, requirements, 348
capturing, anonymous methods, 257
objects, 165

constant fields, 165-166
read only fields, 166

file system setup projects, configuring, 950
file types, setup projects, 951
files

FTP servers
downloading from, 673-675
uploading to, 671-673

resource files, 831
converting, 836-838
creating, 831-834
elements, 832
graphical resource files, 838-843
multiple locales, 843-850
reading, 835-836
writing, 834-835

Silverlight class library, 646-647
Windows Forms applications, 520

FileUpload server control (ASP.NET), 594
filtering

ADO.NET Data Services entity results,
495-497

data, LINQ, 412
filtering operators, 430-431
finalization

objects, 327-328
reference types, 93
value types, 93

finalizers, destructors, compared, 328
finally Block: Exceptions2.cs listing (11.2),

234-235
finally blocks, exception handling, 234-235
FindAll method, 398
firing events, 263, 265
Firing Events: Menu.cs listing (12.5), 264-265
FirstProgram.cs, creating, 20-23
fixed statement, 861-864
fixed Statement Demo: FixedStatementDemo.cs

listing (41.7), 862-864
Flags attribute, 341
floating-point types, 42-43
folders, Project and Solution folders, 25
fonts, Windows Forms application, 537-539
for loops, 72-73
foreach loops, 73

iterator pattern, 764-767
ForEach method, 398
Form control (Windows Forms), 528
Form1.cs after Adding and Configuring a Button

listing (25.5), 525-526
Form1.Designer.cs After Adding and Configuring

a Button listing (25.6), 526-527
Format method, 106-109

expressions992

formatting strings, 106-109
forms

ASP.NET, 588-593
web forms, 588

FormView server control (ASP.NET), 594
Frame control (WPF), 563
framework class library types, 16
framework types (NET), 94-101
FrontPage Server Extensions, 643
FTP file transfers, performing, 671-675
FTP servers, files

downloading from, 673-675
uploading to, 671-673

FullAddress method, 181-182
function pointers, delegates, compared, 251
functions, 14. See also methods

SQL functions, using, 421
fundamentals, Windows Forms application,

516-519

G
GAC (global assembly cache), 930
garbage collection, CLR (Common Language

Runtime), 12
Garbage Collector (GC), 327
GC (Garbage Collector), 327-330

class members, 335
collection process, 330
interacting with, 335-337
optimization, 330-331
running, 329

GDI+, Windows Forms applications, 536-539
Brush object, 536-537
drawing text, 537-539
fonts, 537-539
Graphics object, 536-537
Pen object, 536-537

Generated .resx File: strings.resx listing (40.5),
837-838

GenerateException method, 239
GenerateReport method, 185
generation operators, 435-436

How can we make this index more useful? Email us at indexes@samspublishing.com

generic collections, 396
arrays, compared, 371-372
nongeneric collections, compared, 371-372

generic delegates, 382-384
generic interfaces, 381-382
generic nodes, implementing, 373-374
generic type objects, 365
generic types

benefits of, 366-372
building, 372-387
singly linked lists, implementing, 373-381
types, defining, 384

GenericPrincipal, role-based security, 943-944
GenericSingleLinkedList collection, 373-376
GenericSingleLinkedListT, 375-376
GetAttribute method, 356-357
GetEnumerator method, 388-390
GetGeneration class member (GC), 335
GetHashCode method, 173, 200

System.Object class members,
overriding, 199

GetLowerBound method, 137-138
GetModule method, 356
GetReflectionInfo method, 356
Getting Attributes from a Class listing (16.9),

356-357
Getting Files from an FTP Server listing (30.5),

673-675
GetTotalMember class member (GC), 335
GetUpperBound method, 137-138
global assembly cache (GAC), 930
globally unique identifier (GUIDs), 95-96
goto statements, 63, 74-75
graphical resource files, creating, 838-840, 843
Graphics object, 2D graphics, creating, 536-539
Graphics object (GDI+), Windows Forms

applications, 536-537
grep (Global Regular Expression Print)

expressions, 127-128
Grid control (WPF), 564
Grid layout, WPF (Windows Presentation

Foundation), 555-559
GridSplitter control (WPF), 564
GridView server control (ASP.NET), 594

GridView server control (ASP.NET) 993

group joins, hierarchies, building with, 414
GroupBox control (Windows Forms), 528
GroupBox control (WPF), 564-565
grouping data, LINQ (Language Integrated

Query), 413
grouping operators, 434-435
GUIDs (globally unique identifiers), System.Guid,

95-96

H
handlers, event handlers, defining, 258-259
handling

automatic promotions, 220
command-line input, console applications,

510-511
compiler warnings, 194
events

Silverlight, 648-652
state workflows, 811-813
WPF (Windows Presentation Foundation),

573-574
exceptions, 232-240

different exception types, 236-237
finally blocks, 234-235
try/catch block, 232-234

hash values, objects, obtaining, 173
help, .NET Framework, receiving, 973-975
Help index, VS2008, 974
HiddenField server control (ASP.NET), 594
hiding

base member classes, 180-181
data, 185

hierarchies, building, group joins, 414
Hospital Database Schema listing (19.1),

415-417
host utility, setup, 703-706
Host Utility Configuration File:

RemotingHost.exe.config listing (32.9), 706
Host Utility Demo: RemotingHost.cs

listing (32.8), 705
Hosted Server Demo: HostedServer.cs

listing (32.5), 703
hosts, workflows, communicating to, 805-810

HTML (Hypertext Markup Language), 589
HTML controls (ASP.NET), 595-596
HTTP (HyperText Transfer Protocol)

clients, creating, 699-671
message formats, 719
network communications, working with,

669-671
wrappered HTTP classes, 661

HTTP URIs, ADO.NET Data Services, accessing
via, 493-498

HttpChannel, TCP channels, compared, 708
HyperLink server control (ASP.NET), 594
Hypertext Markup Language (HTML), 589

I
IBroker Interface Definition listing (14.1),

293-294
identifiers

code, 35-36
yield, 389

identity, assemblies, 925
identity attributes, assemblies, 923
IDEs (integrated development

environments), 19
IDL (Interface Definition Language), 339
IEnumerable interface, implementing, 756-763
IEnumerableT, 376-381
IEnumerator interface

IEnumerator-derived type construction,
759-760

moving, 761-762
resetting, 760-761
values, reading from, 762-763

IEnumeratorT, 376-381
if statements, 65

if-else-else statement, 66-67
if-then-else statement, 65-66

if-else-else statement, 66-67
if-then-else statement, 65-66
IIS (Internet Information Server), 643, 670
IL (Microsoft Intermediate Language), 10, 17
IListT, 375-376
Image control (WPF), 565

group joins994

Image server control (ASP.NET), 594
ImageButton server control (ASP.NET), 594
ImageMap server control (ASP.NET), 594
impedance mismatches, 410
Imperative Security Request listing (44.2),

939-940
implementation

explicit implementation, interfaces,
304-305, 308-310

generic nodes, 373-374
IEnumerableT, 376-381
IEnumeratorT, 376-381
IListT, 375-376
implicit implementation, interfaces,

293-304
interfaces, single-class interface

implementation, 293-297
iterators, 388-396
singly linked lists, generic types, 373-381

Implementation of Explicit Interface Members
listing (14.8), 308-309

Implementation of Single Interface Inheritance
listing (14.3), 296-297

Implementation of the IBroker Interface listing
(14.2), 294-295

implementing
events, 261-263
interfaces, 291
logic, WCF web services, 732-734

Implementing a ServiceController listing (31.7),
692-693

Implementing Debugging with a Boolean
Switch: BooleanSwitchDemo.cs listing (42.5),
883-884

Implementing OnStart listing (31.4), 685
Implementing OnStop listing (31.6), 687
Implicit and Explicit Class Conversions

listing (10.2), 226
Implicit and Explicit Struct Conversions

listing (10.1), 222-225
implicit conversions, explicit conversions,

compared, 219-222
implicit implementation, interfaces, 293-304
interfaces, IEnumeratorT, 376-381
increment operator (++), 50-51
indexer iterators, 391-393

How can we make this index more useful? Email us at indexes@samspublishing.com

indexers
interface types, defining, 293
objects, 169-170
polymorphism, 196-197

IndexOf method, 114-115
IndexOutOfRangeException, 239
inference, delegates, implementing, 256
informational attributes, assemblies, 923-924
inheritance, 81

attributes, 349
encapsulation, 190
interfaces, 312-315
namespaces, 274
object initialization, 324-325
objects, 315
observing, VS2008 Class Designer,

747-748
OOP (object-oriented programming),

178-184
base classes, 178-180
sealed classes, 183-184
versioning, 180-183

reference types, 92-93
single-implementation inheritance, 93
value types, 92-93

inheritance relationships, objects, 177
initialization

arrays, 132
objects, 320

default constructors, 323
inheritance, 324-325
instance constructors, 320-322
order of instantiation, 324-325
overloading constructors, 322-323
private constructors, 323-324
static constructors, 325

initializers, objects, 326-327
Insert method, 117
inserting data, ADO.NET, 450-451
installation, Windows services, 688-691
InstallUtil, 690, 693
instance constructors, object initialization,

320-322
instances, objects, 164-165
integral types, 39-41

integral types 995

integrated development environments
(IDEs), 19

IntelliSense, overloads, finding, 106
IntelliSense

overrides, 195
partial methods, 228

Interacting with the Garbage Collector:
CollectGenerations.cs listing (15.2), 335-337

interaction, programs, console applications,
45-48

Interface Definition Language (IDL), 339
interface differences, abstract classes, 290
Interface Mapping Example listing (14.9),

310-312
interface types, defining, 291-293
interfaces, 186, 315

ATMs (automated teller machines), 287-288
constraints, 384-385
explicit implementation, 304-310
generic interfaces, 381-382
IEnumerable interface, implementing,

756-763
IEnumerableT, 376-381
IListT, 375-376
implementing, 291

single-class interface implementation,
293-297

implicit implementation, 293-304
inheritance, 312-315
mapping, 310-312
observing, VS2008 Class Designer,

747-748
polymorphic behavior, simulating, 298-304
types, defining, 291-293
WCF web services, creating, 727-730

Interfaces Inheriting Other Interfaces
listing (14.10), 313-314

Intern method, 121-122
intern pools, 122

CLR string handling, 121-122
internal access modifiers, encapsulation,

187-188
Internet Information Server (IIS), 643, 670
Interop, CLR (Common Language Runtime), 12
ints, enums, converting between, 142-143
invocation results, web services, 717

invoking methods through delegates, 252
is operator, 60
IsError positional parameter, 343
IService1.cs Skeleton Code listing (34.1),

727-729
IsValidUrl method, 202, 212
item template defaults, VS2008, 189
items, Windows service projects, 680-683
iteration, enum type members, 144
iterator pattern, 756

client code, using in, 763
foreach loop, 764-767
IEnumerable interface, implementing,

756-763
Reset method, 766
simplifying with iterators, 767-768

iterators, 366, 396
disposing, 395-396
GetEnumerator method, 388-390
implementing, 388-396
indexer iterators, 391-393
iterator pattern, simplifying, 767-768
iterator types, 388
method iterators, 390-391
operator iterators, 393-394
property iterators, 391
sequence of values, 394-395

J–K
jagged arrays, 135-137
Java packages, namespaces, 274
JavaScript, Silverlight, relationship, 642
JIT (Just-In-Time) activation, COM+ services, 874
JIT (Just-In-Time) compilation, CLR (Common

Language Runtime), 12-14
JIT compiler (CLR), 14
Join method, 118-119
join operators, 433-434
joining

data, LINQ (Language Integrated Query),
413-414

strings, 118-119

integrated development environments (IDEs)996

KeepAlive class member (GC), 335
keywords

code, 36-37
yield, 389

killing processes, 822-823

L
Label control (Windows Forms), 528
Label control (WPF), 565
Label server control (ASP.NET), 594
labels, 63-64
lambda expressions, 397-398, 406

delegates, 258, 399-404
expression trees, converting to, 404-406
syntax, 398
using, 398-399

Language Integrated Query (LINQ). See LINQ
(Language Integrated Query)

language neutrality, FCL (Framework Class
Library), 16

languages, .NET support, 16
LastIndexOf method, 114-115
lastName parameter, 398
late-bound COM component calls, 868-869
Late-Bound COM Component Invocation:

TalkToComLater.cs listing (41.13), 868-869
launch conditions

custom actions, 953-954
setup projects, 953

launching new processes, 818-821
layout, 37

WPF (Windows Presentation Foundation)
applications

canvas layout, 553
default alignment, 552
DockPanel layout, 559
explicit alignment, 552-553
Grid layout, 555-559
managing, 551-559
StackPanel layout, 554
UniformGrid layout, 555
WrapPanel layout, 553-554

less than operator (<), 55

How can we make this index more useful? Email us at indexes@samspublishing.com

less than or equal operator (<=), 55
levels

namespaces, 15
policies, code-based security, 936-937

libraries, compiling, 969-971
life cycles

AJAX pages, 621-623
ASP.NET page life cycle, 590-593

lifetimes
managing, remoting, 709-711
objects, 319

automatic memory management,
328-331

GC (Garbage Collector) interaction,
335, 337

resource cleanup, 331-332, 334
LinkButton server control (ASP.NET), 594
LinkLabel control (Windows Forms), 529
LINQ (Language Integrated Query), 228,

409, 439
data

filtering, 412
grouping, 413
joining, 413-414

DataSet object, 458-459
group joins, building hierarchies with, 414
objects, accessing, 410-414
projections, extracting, 411-412
query operators, 427

aggregate operators, 439
concatenation operators, 438-439
conversion operators, 438
element operators, 437
equality operators, 436-437
filtering operators, 430-431
generation operators, 435-436
grouping operators, 434-435
join operators, 433-434
partitioning operators, 433
projection operators, 432
quantifier operators, 431-432
set operators, 428-430
sorting operators, 427-428

query results, ordering, 412-413
syntax, 410-411
types, 15

LINQ (Language Integrated Query) 997

LINQ to Data Services, entities, querying, 503
LINQ to Entities, coding with, 486-489
LINQ to SQL

data entities, 418
databases, modifying, 421-424
DataContext

defining, 415-418
modifying, 419-420
querying through, 418-419

relational data, querying, 414-427
SQL functions, using, 421
stored procedures, calling, 420-421

LINQ to XML
documents, creating, 468-470
namespaces, 470-471
objects, 468
XML, manipulating, 468-472
XML documents

modifying, 472
querying, 471
reading, 471

ListBox, binding to, 576-577
ListBox control (Windows Forms), 529, 534
ListBox control (WPF), 565
ListBox server control (ASP.NET), 594
listings

2.1 (Simple C# Program), 20
2.2 (C# Program in VS2008), 27
5.1 (Regular Expressions Application), 127
7.1 (Debugging Demo Program), 147
7.2 (Program with Bugs), 152-155
10.1 (Implicit and Explicit Struct

Conversions), 222-225
10.2 (Implicit and Explicit Class

Conversions), 226
11.1 (Simple Exception: Exceptions.cs), 233
11.2 (finally Block: Exceptions2.cs),

234-235
11.3 (Multiple catch Blocks:

Exceptions3.cs), 236-247
11.4 (Passing Exceptions: Exceptions4.cs),

237-239
11.5 (Recovering from Exceptions:

ExceptionTester.cs), 240-242
11.6 (Designing an Exception:

NewException.cs), 243-245

11.7 (checked Statements: checked.cs),
245-246

11.8 (unchecked Statements:
unchecked.cs), 246-247

12.1 (Creating a Socket Server:
MultiCast.cs), 253-254

12.2 (Event Declaration: MenuItem.cs), 259
12.3 (Event Method Handlers:

DelegatesAndEvents.cs), 260-261
12.4 (Event Method Handlers:

SiteManager.cs), 261-263
12.5 (Firing Events: Menu.cs), 264-265
12.6 (Event Accessors: MenuItem.cs),

266-267
12.7 (Rest of the Program: WebSites.cs),

268, 271
12.8 (Compilation Instructions for

Chapter 12 listings), 271
14.1 (IBroker Interface Definition), 293-294
14.2 (Implementation of the IBroker

Interface), 294-295
14.3 (Implementation of Single Interface

Inheritance), 296-297
14.4 (Another Implementation of the IBroker

Interface), 298-301
14.5 (Using Two Classes with the Same

Interface), 302-303
14.6 (Couple of Interfaces with Identical

Members), 304-305
14.7 (Explicit Interface Implementation),

306-308
14.8 (Implementation of Explicit Interface

Members), 308-309
14.9 (Interface Mapping Example), 310-312
14.10 (Interfaces Inheriting Other

Interfaces), 313-314
15.1 (Dispose Pattern: DisposePattern.cs),

332-333
15.2 (Interacting with the Garbage

Collector: CollectGenerations.cs), 335-337
16.1 (Using a Single Attribute), 340-341
16.2 (Using Multiple Attributes), 341
16.3 (Positional Parameters), 342
16.4 (Named Parameters), 343
16.5 (Attribute Targets), 344
16.6 (Custom Attribute Example), 346-348
16.7 (Class to Reflect Upon: Reflected.cs),

350-352

LINQ to Data Services998

16.8 (Performing Reflection: Reflecting.cs),
352-355

16.9 (Getting Attributes from a Class),
356-357

16.10 (Dynamically Activating Code:
DynamicActivation.cs), 358-359

16.11 (Dynamic Assembly Generation),
360-361

17.1 (You Can Use Objects Polymorphically
with Generics), 370-371

17.2 (GenericSingleLinkedListT, 375-376
19.1 (Hospital Database Schema),

415, 417
21.1 (Writing an XML Document with

XmlTextWriter), 462-464
21.2 (Reading an XML Document with

XmlTextReader), 465
24.1 (Simple Console Application), 508
24.2 (Retrieving User Input from the

Command-Line), 510
25.1 (Windows Forms Application Showing

Fundamentals), 516-518
25.2 (Windows Forms Program.cs File), 521
25.3 (Windows Forms Form1.cs File), 522
25.4 (Windows Forms Form1.Designer.cs

File), 523-525
25.5 (Form1.cs after Adding and

Configuring a Button), 525-526
25.6 (Form1.Designer.cs After Adding and

Configuring a Button), 526-527
26.1 (Skeleton XAML for a WPF

Application), 549
26.2 (Code-Behind File), 549-550
26.3 (Using the Grid Layout Control),

556-558
27.1 (Web Form with Multiple Controls),

591-592
27.2 (Code-Behind Demonstrating Page Life

Cycle), 592
29.1 (Silverlight Control on a Web Form),

645-646
29.2 (Silverlight User Control), 646
30.1 (Creating a Socket Server), 662-665
30.2 (Creating a Socket Client), 665-669
30.3 (Creating an HTTP Client), 669-671
30.4 (Uploading a File to an FTP Server),

671-673
30.5 (Getting Files from an FTP Server),

673-675

How can we make this index more useful? Email us at indexes@samspublishing.com

31.1 (Partial Class for a Windows Service),
681-682

31.2 (Windows Service Entry Point),
682-683

31.3 (Windows Service Code), 684
31.4 (Implementing OnStart), 685
31.5 (MoneyServer Implementation),

686-687
31.6 (Implementing OnStop), 687
31.7 (Implementing a ServiceController),

692-693
32.1 (Remoting Server Demo:

BasicRemotingServer.cs), 697
32.2 (Remote Server Component

Configuration File: web.config), 697-698
32.3 (Basic Remoting Client:

BasicRemotingClient.cs), 699-700
32.4 (Client Configuration File:

BasicRemotingClient.exe.config), 700
32.5 (Hosted Server Demo:

HostedServer.cs), 703
32.6 (Remoting Client Demo:

HostedClient.cs), 704
32.7 (Remoting Client Configuration File:

HostedClient.exe.config), 704-705
32.8 (Host Utility Demo:

RemotingHost.cs), 705
32.9 (Host Utility Configuration File:

RemotingHost.exe.config), 706
32.10 (Remote Leasing Demo:

LeasingDemo.cs), 709-711
33.1 (Web Service Header:

BasicWebService.asmx), 714
33.2 (Web Service Code:

BasicWebService.asmx.cs), 715
33.3 (Autogenerated Web Service Proxy:

BasicWebService.cs), 720-721
33.4 (Using a Web Service:

WebServiceClient.cs), 722
34.1 (IService1.cs Skeleton Code),

727-729
34.2 (WCF Web Service Implementation),

732-734
34.3 (Client Code Calling a Web Service),

738-739
36.1 (Collection Without IEnumerable/

IEnumerator Interfaces), 764-766
36.2 (Proxy for Encapsulating TCP/IP Calls

to a Server), 768, 770

listings 999

40.1 (txt Resource File: strings.txt), 832
40.2 (Using Resources: StringRes.cs), 833
40.3 (Writing a Resource File: ResWrite.cs),

834-835
40.4 (Reading a Resource file:

RegRead.cs), 835-836
40.5 (Generated .resx File: strings.resx),

837-838
40.6 (Using Graphical Resources:

GraphRes.cs), 840-842
40.7 (Localized Program: MultiCulture.cs),

845-848
41.1 (Pointer Arithmetic:

PointerArithmetic.cs), 856-858
41.2 (Compilation Instructions for

Listing 41.1), 858
41.3 (Using the sizeof() Operator), 858-859
41.4 (Compilation Instructions for

Listing 41.3), 859
41.5 (stackalloc Demonstration:

StackAllocDemo.cs), 860-861
41.6 (Compilation Instructions for

Listing 41.5), 861
41.7 (fixed Statement Demo:

FixedStatementDemo.cs), 862-864
41.8 (Compilation Instructions for

Listing 41.7), 864
41.9 (Platform Invoke Demo:

PinvokeDemo.cs), 864-865
41.10 (Compilation Instructions for

Listing 41.9), 866
41.11 (C++ COM Component:

ComObj.dll), 867
41.12 (C# Program Calling a COM

Component: TalkToCom.cs), 867-868
41.13 (Late-Bound COM Component

Invocation: TalkToComLater.cs), 868-869
41.14 (C# Component Exposed as a COM

Component: CallFromCom.dll), 869-870
41.15 (Calling a C# Component Exposed as

a COM Component), 870
41.16 (Minimal C# COM+ Component),

871-872
41.17 (COM+ Transactional Component in

C#: CPTrans.cs), 873-874
41.18 (C# Component Configured for JIT

Activation: CPJit.cs), 874
41.19 (COM+ Services Object Pooling

Implemented in C#: CPPool.cs), 875-876
42.1 (Simple Debugging Example:

PlainDebugDemo.cs), 880-881

42.2 (Compilation Instructions for
Listing 42.1), 881

42.3 (Debugging with Conditional Attributes:
ConditionalDebugDemo.cs), 882

42.4 (Compilation Instructions for
Listing 42.3), 883

42.5 (Implementing Debugging with a
Boolean Switch: BooleanSwitchDemo.cs),
883-884

42.6 (BooleanSwitch entry in Configuration
File: BooleanSwitchDemo.config), 884

42.7 (Compilation Instructions for
Listing 42.5), 884

42.8 (TraceSwitch Class Demo:
TraceSwitchDemo.cs), 885

42.9 (TraceSwitch entry in Config File:
TraceSwitchDemo.config), 886

42.10 (Compilation Instructions for
Listing 42.8), 886

42.11 (Assertion Demonstration:
AssertDemo.cs), 887

42.12 (Compilation Instructions for
Listing 42.11), 887

42.13 (System Performance Counter Demo:
OrderClient.cs), 888-893

42.14 (Server Component of System
Performance Counter Demo:
OrderProcessor.cs), 893

42.15 (Server Component of System
Performance Counter Demo:
OrderProcessor.cs), 894-895

42.16 (Client Using Data from Custom
Performance Counter:
CustomOrderClient.cs), 897-902

42.17 (Server Implementing a Custom
Performance Counter:
CustomOrderProcessor.cs), 902-907

42.18 (Sampling Client: SampleClient.cs),
908-913

42.19 (Custom Performance Counter
Sampling: CustomSamplingProcessor.cs),
913-917

44.1 (Declarative Security Request),
937-938

44.2 (Imperative Security Request),
939-940

44.3 (Role-Based Security with
WindowsPrincipal), 942-943

44.4 (Role-Based Security with
GenericPrincipal), 943-944

listings1000

ListItem objects, 175
lists, processes, obtaining, 821-822
lists of data, WPF (Windows Presentation

Foundation) applications, displaying, 575-578
ListView control (Windows Forms), 529
ListView control (WPF), 565

binding to, 578
ListView server control (ASP.NET), 594
loading custom script libraries, 623-625
local variables

anonymous methods, capturing, 257
methods, 203-204

definite assignment, 44
locales, multiple locales, 843-844

implementing, 844-849
obtaining resources, 849-850

localization, 831
multiple locales, 843-844

implementing, 844-849
obtaining resources, 849-850

resource files, 831
converting, 836-838
creating, 831-834
graphical resource files, 838-843
reading, 835-836
writing, 834-835

Localized Program: MultiCulture.cs
listing (40.7), 845-848

Locals window (VS2008), 149
location elements, assemblies, 929-930
lock statement, thread synchronization,

826-828
Monitor class, 827-828

logic, WCF web services, implementing,
732-734

logical complement operator (!), 51
logical operator overloads, custom types,

215-216
logical operators, 56

bitwise AND operator (&), 56
bitwise exclusive OR operator (^), 57
bitwise inclusive OR operator (|), 57
Boolean AND operator (&), 57
Boolean exclusive OR operator (^), 58
Boolean inclusive OR operator (|), 57

How can we make this index more useful? Email us at indexes@samspublishing.com

conditional AND operator (&&), 58
conditional logical operators, 218
conditional OR operator (||), 58-59
side effects, 59

login security, databases, ADO.NET, 446-447
loops, 69

do loops, 71-72
for loops, 72-73
foreach loop, iterator pattern, 764-767
foreach loops, 73
while loops, 70

low-level work (plumbing), 11

M
machine security policy level, 936
Main method, 14, 21-22, 30, 239
Makecert.exe security utility, 944
managed code, 854
managed compilation, 10
managed software, 9-10
managing

layout, WPF (Windows Presentation
Foundation), 551-559

process streams, 820-821
manifest attributes, assemblies, 924
manifests, assemblies, 922
mapping interfaces, 310-312
matching curly braces, 21
mathematical operator overloads, custom

types, 213-215
MaxGeneration class member (GC), 335
McIlroy, Doug, 128
media, playing, Silverlight, 652-655
MediaElement (Silverlight), manipulating,

653-655
MediaElement control (WPF), 565
MediaPlayer, WebForms, adding to, 652-653
members

base classes
calling, 179-180
hiding, 180-181

classes, qualification, 179
namespaces, 281

members 1001

objects, 163-164
fields, 165-166
indexers, 169-170
instances, 164-165
methods, 166-167
properties, 167-169
static classes, 171-172
static members, 164-165
System.Object class, 172-175

System.Object class, overriding, 197-200
membership, code groups, 936
MemberwiseClone method, 174
memory allocation, 328-329

reference type, 86
value type, 86-87

Menu control (ASP.NET), 605
Menu control (WPF), 565-566
MessageBox control (Windows Forms), 529-533
metadata, assemblies, 10
method handlers, delegate method handlers,

creating, 251
method iterators, 390-391
methods, 14, 397

add, 266-267, 271
Anonymous, 670
anonymous methods, assigning, 256-258
Append, 123
AppendFormat, 123
BinarySearch, 138-139
coding methods, 201-202
CombinePath, 229
Compare, 109-110
CompareOrdinal, 109-110
Concat, 111-112
Console.WriteLine, 210-211
Contains, 113-114
Copy, 112-113
CopyTo, 114-115
Debug.Assert, 886-887, 917
DefineDynamicModule, 362
defining, 202-203
delegates, invoking through, 252
EndsWith, 113-114
EnsureCapacity, 123-124
Equals, 110-111, 198-200

extension methods, 228-230
FindAll, 398
ForEach, 398
Format, 106-109
FullAddress, 181-182
GenerateException, 239
GenerateReport, 185
GetAttribute, 356-357
GetEnumerator, 388-390
GetHashCode, 173, 199-200
GetLowerBound, 137-138
GetModule, 356
GetReflectionInfo, 356
GetUpperBound, 137-138
IndexOf, 114-115
Insert, 117
interface types, defining, 292
Intern, 121-122
IsValidUrl, 202, 212
Join, 118-119
LastIndexOf, 114-115
local variables, 203-204

definite assignment, 44
Main, 14, 21-22, 30, 239
MemberwiseClone, 174
objects, 166-167
OnPaint, 537, 539
OnStart, 684-687
OnStop, 687
overloading, 210-212
overriding, Windows services, 683-684
PadLeft, 115-116
PadRight, 115-116
parameters, 204

out parameters, 207-209
params parameters, 209-210
ref parameters, 205-207
value parameters, 204-205

partial methods, 227-228, 425-427
IntelliSense, 228

PredictLocation, 206
ReadLine(), 45
Remove, 117, 266-267, 271
Replace, 118
Reset, 766
Save, 363
SendAlert, 191, 194

members1002

Split, 118-119
Start, 818
StartsWith, 113-114
ToCharArray, 119-121
ToLower, 118
ToString, 124, 175, 199-200
ToUpper, 118
Trim, 115-116
UpdateSite, 205
ValidateUrl, 211-212
WriteLine, 23

Microsoft .NET, 9
Microsoft Intermediate Language (MSIL), 10
Minimal C# COM+ Component listing (41.16),

871-872
minus operator (–), 50
MMC configuration tool, runtime configuration,

assemblies, 930
modal dialog boxes, Windows Forms

applications, 539-540
modeless dialog boxes, Windows Forms

applications, 539-540
models, web applications, 583-586
modifying strings, 117-118
modules, skipping to types, 356
modulus operator (%), 53
MoneyServer Implementation listing (31.5),

686-687
Monitor class, thread synchronization, 827-828
Mono, 10
MonthCalendar control (Windows Forms), 529
Moore’s law, 895
moving IEnumerator interface, 761-762
multicasting delegates, 252-255
multicore processors, 817
multidimension arrays, 134-135
multiline comments, code, 32
multiple attributes, using, 341-342
Multiple catch Blocks: Exceptions3.cs

listing (11.3), 236-247
multiple locales (localization), 843-844

implementing, 844-849
resources, obtaining, 849-850

multiple-assembly N-Layer architectures,
792-795

How can we make this index more useful? Email us at indexes@samspublishing.com

multiplication operator (*), 52
multiplicity, attributes, controlling, 349
multithreading, 823

ThreadPool object, 825-826
threads

creating, 823-824
passing parameters to, 824-825
running code in, 824

MultiView server control (ASP.NET), 594
MyCalc variable, 251

N
N-Layer architecture, 782-784

N-Layer/Multiple-Assembly architectures,
792-795

N-Layer/Single-Assembly architectures,
785-792

N-Tier architecture, compared, 781-782
N-Layer/Single-Assembly architectures, 785-792
N-Layer/Multiple-Assembly architectures,

792-795
N-Tier architecture, 783-784

N-Layer architecture, compared, 781-782
named parameters, attributes, 343
Named Parameters listing (16.4), 343
NameMatch delegate parameter, 400
names

assembly names, verifying, 700
Windows service project spaces, 680

namespaces, 273-274, 286
ADO.NET, 444-445
alias qualifiers, 283-284
assembly reference, compared, 277-278
benefits of, 284
CLR (Common Language Runtime), 274
code, organizing, 274
conflicts, avoiding, 275
creating, 278-281
directives, 275

alias directive, 276-278
using directive, 275-276

extern namespaces alias, 284-286
FCL (Framework Class Library), 14-15,

274-276

namespaces 1003

inheritance, 274
Java packages, 274
levels, 15
LINQ to XML, 470-471
managing, VS2008, 286
members, 281
nested namespaces, 279
scope, 282-283
System, 273
System.Diagnostics, 879, 918

assertions, 886-887
built-in performance counters, 888-895
conditional debugging, 881-884
Debug class, 880-881
runtime tracing, 884-886

System.Linq, 15
System.Linq.Expression, 404
System.ServiceModel, 15
System.Windows, 15
System.Workflow.Runtime, 15
visibility, 282-283
when to use, 281

naming conventions, attributes, 348
native code, 854
natural relationships, objects, 177
navigation, ASP.NET applications, 603-609
nested namespaces, 279
.NET, 9-11, 17-18

COM components, communicating with,
866-869

COM+ services, support for, 871-876
components, exposing as COM

components, 869
FTP file transfers, performing, 671-673, 675
HTTP, working with, 669-671
programming languages, 16
SMTP mail, sending, 675-676
sockets, implementing, 661-669
standardization, 10

.NET Framework
class library documentation, 974
collections, 757
framework class library types, 16
framework types, 94-101
help, receiving, 973-975
processes, support, 818-823

search engines, 975
security utilities, 944
template pattern, 773-777
websites, 975

network communications
FTP file transfers, performing, 671,

673, 675
HTTP, working with, 669-671
remoting, 695

basic remoting, 695-706
channels, 706-708
diagrams, 695
lifetime management, 709-711
remoting servers, 696-698
setup, 701-706

SMTP mail, sending, 675-676
sockets, implementing, 661-669

New Item command (Add menu), 189
new processes, launching, 818-821
New Project Wizard (VS2008), running, 23-26
new threads, creating, 823-824
nongeneric collections, 366, 396

arrays, compared, 371-372
generic collections, compared, 371-372

not equal operator (!=), 54-55
nullable types, 102-103
NumericUpDown control (Windows Forms), 529

O
object models, creating, VS2008 Class

Designer, 749-754
object pooling, COM+ services, 875-876
object type, 82-83
object-oriented programming (OOP), 177
objects, 164, 177

2D objects, creating, 536-539
access modifiers, 188-189
automatic memory management, 328-331
cloning, 173-174
communication, 177
compositional relationships, 177
configuring, VS2008 Class Designer, 750
controlling, 335, 337

namespaces1004

data access, LINQ (Language Integrated
Query), 410-414

DataContext, modifying, 419-420
DataSet

LINQ to, 458-459
reading data, 453-454

DateTime objects
creating, 97
extracting parts of, 97-98
math, 98-99
string types, 99-101

design patterns, 755
iterator pattern, 756-768
proxy pattern, 768-772
template pattern, 772-777

designing, 163-175
DOM (Document Object Model), XML DOM,

466-468
encapsulation, managing, 177
equality, checking, 173
fields, 165-166
finalization, 327-328
GC (Garbage Collector), interacting with,

335-337
GDI+, 536-537
generic type object, 365
Graphics object, 536-539
hash values, obtaining, 173
identifying, 177
indexers, 169-170
inheritance, 81, 315
inheritance relationships, 177
initialization, 320

default constructors, 323
inheritance, 324-325
instance constructors, 320-322
order of instantiation, 324-325
overloading constructors, 322-323
private constructors, 323-324
static constructors, 325

initializers, 326-327
lifetime, 319
LINQ to XML objects, 468
ListItem, 175
members, 163-164

instances, 164-165
methods, 166-167
static members, 164-165

How can we make this index more useful? Email us at indexes@samspublishing.com

natural relationships, 177
partial types, 170
PerformanceCounter, 888, 893-895
polymorphism, 177
properties, 167

auto-implemented properties, 168
declaring, 167
using, 167-168
VS2008 property snippet, 169

proxy object, 771-772
references, comparing, 172
resource cleanup, 331-334
size, considerations, 94
static classes, 171-172
strings, using as, 174-175
System.Object class, 172-175
ThreadPool, 825-826
TimeSpan object, 98-99
types, checking, 172
viewing, VS2008 Class Designer, 744-746

Obsolete attribute, 343
OnPaint method, overriding, 537, 539
OnStart method, implementing, 684-687
OnStop method, implementing, 687
OOP (object-oriented programming), 200

abstraction, 177
classes, abstract classes, 288-290
coding methods, 202

defining, 202-203
local variables, 203-204
overloading, 210-212
parameters, 204-210

encapsulation, 184-190
access modifiers, 185-188
containment, 190
inheritance, 190

event-based programming, 249-250, 271
anonymous methods, 256-258
coding events, 258-271
defining event handlers, 258-259
delegates, 250-256
firing events, 263-265
implementing events, 261-263
modifying event add/remove methods,

266-271
registering for events, 259-261

OOP (object-oriented programming) 1005

exception handling, 232-240
different exception types, 236-237
finally blocks, 234-235
recoveries, 240-243
try/catch block, 232-234

exceptions
designing, 243-245
passing, 237-240

inheritance, 178-184
base classes, 178-180
sealed classes, 183-184
versioning, 180-183

interface types, defining, 291-293
interfaces, 315

explicit implementation, 304-310
implementing, 291
implicit implementation, 293-304
inheritance, 312-314
mapping, 310-312

namespaces, 274, 286
alias qualifiers, 283-284
avoiding conflicts, 275
code organization, 274
creating, 278-281
directives, 275-278
extern namespaces alias, 284-286
Java packages, 274
members, 281
scope, 282-283
visibility, 282-283

operators, overloading, 213-227
polymorphism, 190-200

indexers, 196-197
problem solving, 190-196
properties, 196
System.Object class member overrides,

197-200
statements

checked statements, 245-248
unchecked statements, 245-248

Open Standards Institute (OSI), .NET
standardization, 10

OperationContract attributes, declaring, 730
operator iterators, 393-394
operators, 49

as operator, 60-61
assignment operators, 59

associativity, 64-65
binary operators, 52

addition operator (+), 53
division operator (/), 52
modulus operator (%), 53
multiplication operator (*), 52
subtraction operator (–), 53

checked operator, 62
compound assignment operators, 59
conversion operators, overloads, 218-227
custom operators, 201
custom reference type conversion

operators, 225-227
custom value type conversion operators,

222-225
is operator, 60
logical operator overloads, custom types,

215-216
logical operators, 56

bitwise AND operator (&), 56
bitwise exclusive OR operator (^), 57
bitwise inclusive OR operator (|), 57
Boolean AND operator (&), 57
Boolean exclusive OR operator (^), 58
Boolean inclusive OR operator (|), 57
conditional AND operator (&&), 58
conditional logical operators, 218
conditional OR operator (||), 58-59
side effects, 59

mathematical operator overloads, custom
types, 213-215

overloading, 213-218
postfix, 217
precedence, 64-65
prefix, 217
query operators, 427

aggregate operators, 439
concatenation operators, 438-439
conversion operators, 438
element operators, 437
equality operators, 436-437
filtering operators, 430-431
generation operators, 435-436
grouping operators, 434-435
join operators, 433-434
partitioning operators, 433
projection operators, 432

OOP (object-oriented programming)1006

quantifier operators, 431-432
set operators, 428-430
sorting operators, 427-428

relational operators, 54
equal operator (==), 54
less than operator (), 55
less than or equal operator (=), 55
not equal operator (!=), 54-55

sizeof(), 61, 858-859
stackalloc, 860-861
ternary operator, 60
typeof operator, 61
unary operators, 49

bitwise complement operator (~), 52
decrement operator (—), 51
increment operator (++), 50-51
logical complement operator (!), 51
minus operator (–), 50
plus operator (+), 49

unchecked operator, 62
optimization, GC (Garbage Collector), 330-331
optional parameters, simulating, 212
order of instantiation, object initialization,

324-325
organizing code, namespaces, 274
OSI (Open Standards Institute), .NET

standardization, 10
out parameters, methods, 207-209
output, strings, 115-116
overflow checking, 62
overloading

constructors, object initialization, 322-323
methods, 210-212
operators, 213-218
overriding, compared, 210

overloads
conversion operators, 218-227
explicit conversions, 219-222
finding, IntelliSense, 106
implicit conversions, 219-222

override modifier, compiler warnings,
handling, 194

overriding
IntelliSense, 195
methods, Windows services, 683-684
OnPaint method, 537, 539

How can we make this index more useful? Email us at indexes@samspublishing.com

overloading, compared, 210
System.Object class members, 197-200

Equals method, 198-199
GetHashCode method, 199
ToString method, 199-200

P
padding output, strings, 115-116
PadLeft method, 115-116
PadRight method, 115-116
page requests, ASP.NET, high-level view of, 584
Panel control (Windows Forms), 529
Panel server control (ASP.NET), 594
parameters

attributes, 342
named parameters, 343
positional parameters, 342-343

lastName, 398
methods, 204

out parameters, 207-209
params parameters, 209-210
ref parameters, 205-207
value parameters, 204-205

optional parameters, simulating, 212
params parameter, methods, 209-210
threads, passing to, 824-825
values as variables, 452

params parameters, methods, 209-210
Partial Class for a Windows Service

listing (31.1), 681-682
partial methods, 227-228

data handling logic, extending, 425-427
IntelliSense, 228

partial types, objects, 170
partitioning operators, 433
passing exceptions, 237-240
Passing Exceptions: Exceptions4.cs

listing (11.4), 237-239
PasswordBox control (WPF), 566
PasswordGenerator console application, 508
patterns

Dispose pattern, 332-334
proxy pattern, 768-771
template pattern, 772-777

patterns 1007

Pen object (GDI+), Windows Forms applications,
536-537

perceived performance, comprehending,
585-586

performance analysis, sampling, 908, 913,
916-917

performance counters
built-in performance counters, accessing,

888, 893-895
customized performance counters, building,

897, 902-907
sampling performance counters, 908, 913,

916-917
PerformanceCounter object, 888-895
Performing Reflection: Reflecting.cs

listing (16.8), 352-355
permissions

code-based security, 934-935
requests, code-based security, 937-940

Permview.exe security utility, 944
Preverify.exe security utility, 944
PictureBox control (Windows Forms), 529
PInvoke (Platform Invoke), 853, 864-866
Platform Invoke Demo: PinvokeDemo.cs

listing (41.9), 864-865
playing media, Silverlight, 652-655
plumbing (low-level work), 11
plus operator (+), 49
Pointer Arithmetic: PointerArithmetic.cs

listing (41.1), 856-858
pointers, 855-858
policies

levels, code-based security, 936-937
security policy, implementing, 940-942

polymorphic behavior, interfaces, simulating,
298-304

polymorphism, 190
indexers, 196-197
objects, 177
OOP (object-oriented programming),

190-200
problem solving, 190-196
properties, 196
System.Object class members, overriding,

197-200
positional parameters, attributes, 342-343
Positional Parameters listing (16.3), 342

positioning colors, console applications,
511-514

postfix operators, 217
precedence, operators, 64-65
PredictLocation method, 206
prefix operators, 217
prefixes, ADO.NET, 444-445
private access modifiers, encapsulation, 186
private constructors, object initialization,

323-324
procedures, 14
processes, 829

.NET support, 818-823
attaching to, 156-159
details, reading, 822
existing processes, working with, 821-823
killing, 822-823
launching new processes, 818-821
lists, obtaining, 821-822
locating specific, 822
streams, managing, 820-821
threads, 823, 830

creating, 823-824
passing parameters to, 824-825
reader threads, 828-829
running code in, 824
synchronization, 826-829
ThreadPool object, 825-826
writer threads, 828-829

processors, multicore processors, 817
ProcessStartInfo, setting, 820
program state, examining, 149-150
Program with Bugs listing (7.2), 152-155
Programmatic Remoting Channel Registration:

RemotingProxyClient.cs listing (31.10), 708
programming

event-based programming, 249-250, 271
anonymous methods, 256-258
coding events, 258-267, 271
defining event handlers, 258-259
delegates, 250-252, 254-256
firing events, 263, 265
implementing events, 261, 263
modifying event add/remove methods,

266-267, 271
registering for events, 259-261

Pen object (GDI+)1008

objects, designing, 163-175
OOP (object-oriented programming)

base classes, 178-180
checked statements, 245-248
classes, 180
encapsulation, 184-190
exception design, 243-245
exception handling, 232-243
inheritance, 178-184
namespaces, 274-286
polymorphism, 190-200
serialed classes, 183-184
unchecked statements, 245-248
versioning, 180-183

programming errors, finding, debuggers,
152-156

programming languages, NET support, 16
programs

assertions, making, 886-887
built-in performance counters, accessing,

888, 893-895
C# programs, writing simple, 19-23
compiling, 969-971
customized performance counters, building,

897, 902-907
debugger demo program, 147-148
debugging

Boolean switches, 883-884
conditional debugging, 881-884
runtime debugging, 879-881

information, discovering, 350-356
interacting with, 45-48
localization, 831

multiple locales, 843-845, 848-850
resource files, 831-843

performance analysis, sampling, 908, 913,
916-917

runtime trace facilities, 879
timers, implementing, 896-897
tracing, runtime tracing, 884, 886
values, returning, 47-48

ProgressBar control (Windows Forms), 529
ProgressBar control (WPF), 566
Project folder, 25
projection operators, 432
projections, extracting, LINQ (Language

Integrated Query), 411-412

How can we make this index more useful? Email us at indexes@samspublishing.com

projects
ADO.NET Data Services, adding to, 492-493
setup projects

configuring, 950-954
creating, 947-954

Silverlight projects
creating in VS2008, 642-647
parts, 644-647

VS2008 projects
compiling, 30
creating, 23-32

WF (Windows Workflow) projects, starting,
797-798

Windows service projects, items, 680-683
projects (VS2008), 26
promotions, automatic promotions,

handling, 220
properties

attributes, requirements, 348
interface types, defining, 292
objects, 167

auto-implemented properties, 168
declaring, 167
using, 167-168
VS2008 property snippet, 169

polymorphism, 196
property accessors, reflection, 359
property iterators, 391
PropertyGrid control (Windows Forms), 529
protected access modifiers, encapsulation, 187
protected internal access modifiers,

encapsulation, 188
providers, ADO.NET, 444-445
proxies, 737

code, 720
Proxy for Encapsulating TCP/IP Calls to a

Server listing (36.2), 768-770
proxy object, 771-772
proxy pattern, 768-771

proxy object, 771-772
public access modifiers, encapsulation, 185
publishing, web applications, 961-966

VS2008, 965-966

publishing 1009

Q
qualification, class members, 179
quantifier operators, 431-432
quantifiers, regular expressions, 127
query operators (LINQ), 427

aggregate operators, 439
concatenation operators, 438-439
conversion operators, 438
element operators, 437
equality operators, 436-437
filtering operators, 430-431
generation operators, 435-436
grouping operators, 434-435
join operators, 433-434
partitioning operators, 433
projection operators, 432
quantifier operators, 431-432
set operators, 428-430
sorting operators, 427-428

query results, ordering, LINQ (Language
Integrated Query), 412-413

querying
entities

Entity SQL, 480-481
LINQ to Data Services, 503
LINQ to Entities, 486-487
WebDataQuery, 499-501

relational data, LINQ to SQL, 414-427
through DataContext, 418-419

R
RAD (rapid application development), 516

drag-and-drop problems, 779-781
RadioButton control (Windows Forms), 529
RadioButton control (WPF), 566-567
RadioButton server control (ASP.NET), 594
RadioButtonList server control (ASP.NET), 594
RangeValidator server control (ASP.NET), 594
rapid application development (RAD), 516, 779
reader threads, access, 828-829

reading
process details, 822
resource files, 835-836
values, IEnumerator interface, 762-763
XML, 465-466

XPathDocument, 466-467
Reading an XML Document with XmlTextReader

listing (21.2), 465
ReadLine() method, 45
readonly fields, objects, 166
Rebuild Project (Build menu), 29
Rebuild Solution command (Build menu), 29
Recovering from Exceptions: ExceptionTester.cs

listing (11.5), 240-242
Rectangle control (WPF), 567
ref parameters, methods, 205-207
reference types, 79-80

assignments, 88-91
constraints, 386
construction, 93
conversions, 225-227
finalization, 93
inheritance, 92-93
memory allocation, 86
object size considerations, 94
objects, arrays, 134
value types, compared, 92-94

references, objects, comparing, 172
reflection, 339, 349, 363

API hierarchy, 350
attributes, 356-363
performing, 352-356
program information, discovering, 350-356
property accessors, 359

Reflection.Emit API, runtime assemblies,
building with, 359-363

registering for events, 259-261
registry settings, creating, 951
regular expressions, 124-125

application, 127-129
common character classes, 126
operations, 125-126
quantifiers, 127

Regular Expressions Application
listing (5.1), 127

qualification1010

RegularExpressionValidator server control
(ASP.NET), 594

relational data, querying, LINQ to SQL, 414-427
relational operators, 54

equal operator (==), 54
less than operator (<), 55
less than or equal operator (<=), 55
not equal operator (!=), 54-55

relationships, objects, 177
Remote Leasing Demo: LeasingDemo.cs

listing (32.11), 709-711
Remote Server Component Configuration File:

web.config listing (32.2), 697-698
remoting, 695

basic remoting, 695-706
channels, 706-708
diagram, 695
lifetime management, 709-711
remoting server, 696-698
setup, 701-706

Remoting Client Configuration File:
HostedClient.exe.config listing (32.7), 704-705

Remoting Client Demo: HostedClient.cs
listing (32.6), 704

Remoting Server Demo:
BasicRemotingServer.cs listing (32.1), 697

Remove method, 117
Remove method, modifying, 266-267, 271
Repeater server control (ASP.NET), 594
Replace method, 118
Representational State Transfer (REST) web

service APIs, 493
requests, permissions, code-based security,

937-940
RequiredFieldValidator server control

(ASP.NET), 594
ReRegisterForFinalize class member (GC), 335
ResEditor utility, graphical resource files,

creating, 839-840
Reset method, iterator pattern, 766
resetting IEnumerator interface, 760-761
ResGen utility, resource files, creating, 831-834
resource cleanup

ensuring, finally blocks, 234-235
objects, 331-334

How can we make this index more useful? Email us at indexes@samspublishing.com

resource files, 831
converting, 836-838
creating, 831-834
elements, 832
graphical resource files, creating, 838-843
multiple locales, 843-844

implementing, 844-849
obtaining resources, 849-850

reading, 835-836
writing, 834-835

ResourceManager class, 833-834
REST (Representational State Transfer) web

service APIs, 493
Rest of the Program: WebSites.cs listing (12.7),

268-271
ResXGen utility, graphical resource files,

creating, 839
Retrieving User Input from the Command-Line

listing (24.2), 510
return statements, 76-77
returning values, 47-48
reusable types, FCL (Framework Class

Library), 14
reusing code, FCL (Framework Class Library),

15-16
RIAs (rich internet applications), 583

creating, Silverlight, 641-657
RichTextBox control (Windows Forms), 530
RichTextBox control (WPF), 567
role-based security, 933, 942

GenericPrincipal, 943-944
WindowsPrincipal, 942-943

Role-Based Security with GenericPrincipal
listing (44.4), 943-944

Role-Based Security with WindowsPrincipal
listing (44.3), 942-943

running
GC (Garbage Collector), 329
New Project Wizard (VS2008), 23-26
Silverlight, 647
VS2008 applications, 28-31
VS2008 Setup Project Wizard, 947-948

runtime assemblies, building with
Reflection.Emit API, 359-363

runtime configuration, assemblies, 928-930

runtime configuration 1011

runtime debugging, 879
Debug class, 880-881

runtime trace facilities, 879
runtime tracing, System.Diagnostic namespace,

884-886

S
safe code, 854
samples, data updates, 420
sampling performance analysis, 908, 913,

916-917
Sampling Client: SampleClient.cs

listing (42.17), 908, 913
Save method, 363
saving assemblies, 362
scalability, 584-585

databases, 443
scope

assemblies, 925
code, 63
namespaces, 282-283

script libraries, loading, 623-625
ScrollBar control (Windows Forms), 530
ScrollBar control (WPF), 567
ScrollViewer control (WPF), 568
sealed classes, inheritance, 183-184
search engines, .NET Framework, 975
searching arrays, 138-139
securing, ASP.NET sites, 612-613
security

assemblies, 926-927
CLR (Common Language Runtime), 12
code-based security, 933-934

code groups, 935-936
evidence, 934
permission requests, 937-940
permissions, 934-935
security policy implementation, 940-942
security policy levels, 936-937

role-based security, 933, 942
GenericPrincipal, 943-944
WindowsPrincipal, 942-943

security utilities, 944

security policy, implementing, 940-942
security utilities, 944
Secutil.exe security utility, 944
selecting

ADO.NET Data Services entity items,
493-495

entities, Entity SQL, 480-481
semicolons, statements, 70
SendAlert method, 191, 194
sending

email attachments, 676
SMTP mail, 675-676

Separator control (WPF), 568
sequence of values, iterators, 394-395
serialization, XML, 731
Server Component of System Performance

Counter Demo: OrderProcessor.cs
listing (42.14), 893-895

Server controls (ASP.NET), 593-595
Server Implementing a Custom Performance

Counter: CustomOrderProcessor.cs
listing (42.16), 902-907

servers
remoting servers, 696-698
socket servers, creating, 252-254, 662-665
web servers

deploying, 965
setting up, 962-963

service element, web services, 736
service references, creating, 737-738
ServiceContract attribute, declaring, 730
ServiceController, implementing, 691-693
ServiceInstaller, configuring, 690
ServiceProcessInstaller, configuring, 689
services, uninstalling before redeploying, 691
Session state (ASP.NET), 599
set operators, 428-430
Setreg.exe security utility, 944
setting breakpoints, code, 148-149
Setup Project Wizard (VS2008), running,

947-948
setup projects, 954

configuring, VS2008, 950-954
creating, VS2008, 947-954
file types, 951

runtime debugging1012

launch conditions, 953
UIs (user interfaces), 952

Setup Wizard Include Files window, 948
Setup Wizard Project Outputs window, 948
Setup Wizard Project Type window, 948
Shared Source Common Language

Infrastructure (SSCLI), 10
side effects, Boolean logical operators, 59
Signcode.exe security utility, 944
Silverlight, 641, 657

Add Silverlight Application window, 643
ASP.NET, relationship, 642
C# handler, adding, 648-649
class libraries, 644

files, 646-647
control, 644, 646
data, working with, 649-650, 652
DataGrid, 652
events, handling, 648-652
JavaScript, relationship, 642
media, playing, 652-655
MediaElement, manipulating, 653-655
obtaining, 642
projects

creating in VS2008, 642-647
parts, 644-647

RIAs (rich Internet applications), creating,
641-657

running, 647
UI elements, animating, 655-657
WPF (Windows Presentation Foundation),

641-642
XAML (Extensible Application Markup

Language), 641-642
Silverlight Control on a Web Form listing (29.1),

645-646
Silverlight User Control listing (29.2), 646
Simple C# Program listing (2.1), 20
simple C# programs, writing, 19-23
Simple Console Application listing (24.1), 508
Simple Debugging Example:

PlainDebugDemo.cs listing (42.1), 880-881
Simple Exception: Exceptions.cs

listing (11.1), 233
simplifying iterator pattern with iterators,

767-768

How can we make this index more useful? Email us at indexes@samspublishing.com

simulation
optional parameters, 212
polymorphic behavior, interfaces, 298-304

single-assembly N-Layer architectures
desktop N-Layer single-assembly

architecture, 785-789
web application notes N-Layer

single-assembly, 789-792
single-dimension arrays, 132-134
single-implementation inheritance, 93
single-line comments, code, 32-33
singly linked lists, implementing, generic types,

373-381
site layout, web.sitemap file (ASP.NET), 604
SiteMapPath, ASP.NET, 609
SiteOwner class, 190-192
sites, ASP.NET

securing, 612-613
theming, 609-612

sizeof operator, 61
sizeof() operator, 858-859
Skeleton XAML for a WPF Application

listing (26.1), 549
skins, websites, creating, 610-611
Slider control (WPF), 569
SMTP mail, sending, 675-676
Sn.exe security utility, 944
SOAP, message formats, 717
socket clients, creating, 665-669
socket servers, creating, 252-254, 662-665
sockets, implementing, 661-669
software

managed software, 9-10
scalabilty, 584-585

Solution folder, 25
solutions (VS2008), 26
sorting

ADO.NET Data Services entities, 497
arrays, 138-139

sorting operators, 427-428
spaces, Windows service project names, 680
Split method, 118-119
Splitter control (Windows Forms), 530
splitting strings, 118-119

splitting strings 1013

SQL functions, using, LINQ to SQL, 421
SSCLI (Shared Source Common Language

Infrastructure), 10
stackalloc Demonstration: StackAllocDemo.cs

listing (41.5), 860-861
stackalloc operator, 860-861
StackPanel control (WPF), 569
StackPanel layout, WPF (Windows Presentation

Foundation), 554
stacks, 87

unwinding, CLR, 239
standard numeric format strings, 108
standard query operators (LINQ), 427

aggregate operators, 439
concatenation operators, 438-439
conversion operators, 438
element operators, 437
equality operators, 436-437
filtering operators, 430-431
generation operators, 435-436
grouping operators, 434-435
join operators, 433-434
partitioning operators, 433
projection operators, 432
quantifier operators, 431-432
set operators, 428-430
sorting operators, 427-428

standardization, .NET, 10
Start method, processes, launching, 818
StartsWith method, 113-114
startup configuration, assemblies, 927-928
state management, 584-585

ASP.NET, 596-603
state workflows

building, 803-813
event handling, 811-813

statements, 62
break statements, 75-76
checked statements, 245-248
continue statements, 76
fixed, 861-864
goto statements, 74-75
if statements, 65-67
lock, 826-828

loop statements, 69
do loops, 71-72
for loops, 72-73
foreach loops, 73
while loops, 70

return statements, 76-77
semicolons, 70
switch statements, 67-69
unchecked statements, 245-248
using statement, 334

static classes, objects, 171-172
static constructors, object initialization, 325
static members, objects, 164-165
static types, 23
StatusBar control (Windows Forms), 530
StatusBar control (WPF), 569
StatusStrip control, Windows Forms applica-

tions, 531-533
stepping through code, 147-159
Storeadm.exe security utility, 944
stored procedures

calling
ADO.NET, 452
LINQ to SQL, 420-421

databases, modifying, 421-424
streaming XML data, 462
streams, processes, managing, 820-821
string type, 43-44, 105-122
string types, DateTime objects, converting

between, 99-101
StringBuilder class, 122-123

Append method, 123
AppendFormat method, 123
EnsureCapacity method, 123-124
ToString method, 124

StringBuilder types, 105
strings

characters, working with, 119-121
CLR string handling, intern pools, 121-122
comparing, 109-110
concatenating, 111-112
content, inspecting, 113-114
copying, 112-113
CSVs (comma-separated values), 118
custom numeric format strings, 108

SQL functions1014

enums, converting between, 142-143
equality, checking for, 110-111
formatting, 106-109
information, extracting, 114-115
joining, 118-119
modifying, 117-118
objects, using as, 174-175
output, padding and trimming, 115-116
regular expressions, 124-125

application, 127-129
common character classes, 126
operations, 125-126
quantifiers, 127

splitting, 118-119
standard numeric format strings, 108
StringBuilder class, 122-123

Append method, 123
AppendFormat method, 123
EnsureCapacity method, 123-124
ToString method, 124

strong name attributes, assemblies, 924-926
StructLayout attribute, 343
structs

interfaces
explicit implementation, 304-310
implicit implementation, 293-304

System.Enum struct, 142-145
style, code, 37
style sheets, creating, 612
styles, WPF (Windows Presentation Foundation)

applications, 578-580
Substitution server control (ASP.NET), 595
subtraction operator (–), 53
SuppressFinalize class member (GC), 335
switch statements, 67-69
switches, Boolean switches, debugging with,

883-884
synchronization, threads, 826

access, 828-829
lock statement, 826-828
Monitor class, 827-828
reader threads, 828-829
writer threads, 828-829

How can we make this index more useful? Email us at indexes@samspublishing.com

syntax
code, variables, 38-39
exception handling, try/catch block,

232-234
lambda expressions, 398
LINQ (Language Integrated Query), 410-411

system libraries, runtime debugging and tracing
facilities, 879

System namespace, 273
System Performance Counter Demo:

OrderClient.cs listing (42.13), 888-893
System.Array class, 137

array bounds, 137-138
searching, 138-139
sorting, 138-139

System.DateTime type, 97-101
System.Diagnostics namespace, 918

assertions, 886-887
built-in performance counters, accessing,

888, 893-895
conditional debugging, 881-884
customized performance counters, building,

897, 902-907
Debug class, 880-881
runtime debugging classes, 879
runtime tracing, 884-886
sampling, performance analysis, 908,

913-917
timers, implementing, 896-897

System.Enum struct, 142-143
type members, 144-145

System.Guid, 95-96
System.Linq namespace, 15
System.Linq.Expression namespace, 404
System.Object class, 172-175

hash values, obtaining, 173
members, overriding, 197-200
object equality, checking, 173
object references, comparing, 172
object types, checking, 172
objects

cloning, 173-174
using as strings, 174-175

System.ServiceModel namespace, 15
System.Windows namespace, 15
System.Workflow.Runtime namespace, 15

System.Workflow.Runtime namespace 1015

T
Tab control (WPF), 569
TabControl control (Windows Forms), 530
Table server control (ASP.NET), 595
targets, attributes, 344-348
TCP channels, HttpChannel, compared, 708
template pattern, 772-777

.NET Framework, 773
implementing, 773-777

ternary operator, 60
testing web services, 717
text, Windows Forms application, drawing,

537-539
TextBlock control (WPF), 570
TextBox control (Windows Forms), 530
TextBox control (WPF), 570
TextBox server control (ASP.NET), 595
theming, ASP.NET sites, 609-612
Thread.CurrentThread, 849
ThreadPool object, 825-826
threads, 823, 830

code, running in, 824
creating, 823-824
managing, CLR (Common Language

Runtime), 12
parameters, passing to, 824-825
reader threads, access, 828-829
synchronization, 826

access, 828-829
lock statement, 826-828
Monitor class, 827-828

ThreadPool object, 825-826
writer threads, access, 828-829

Timer control (ASP.NET AJAX), 628
Timer control (Windows Forms), 530
timers, implementing, 896-897
TimeSpan object, 98-99
ToCharArray methods, 119-121
ToLower method, 118
ToolBar control (Windows Forms), 530
ToolBar control (WPF), 570
ToolBarPanel control (WPF), 570-571

ToolBarTray control (WPF), 571
ToolStrip control, Windows Forms applications,

531-533
ToolTip control (Windows Forms), 530
ToString method, 124, 175, 200

System.Object class members, overriding,
199-200

ToUpper method, 118
Trace class, 879
TraceSwitch class, runtime tracing, 884, 886
TraceSwitch Class Demo: TraceSwitchDemo.cs

listing (42.8), 885
TraceSwitch entry in Config File:

TraceSwitchDemo.config listing (42.9), 886
TrackBar control (Windows Forms), 531
traditional compilation, 10
transactions, COM+ services, 873-874
traversing, ADO.NET Data Services entity

associations, 497-498
TrayIcon control (Windows Forms), 531
TreeView, ASP.NET, implementing, 606-608
TreeView control (Windows Forms), 531
TreeView control (WPF), 571
Trim method, 115-116
trimming output, strings, 115-116
try/catch block, exception handling, 232-234
try/catch blocks, 667
txt Resource File: strings.txt listing (40.1), 832
type loading, CLR (Common Language

Runtime), 12
type safety, CLR (Common Language

Runtime), 12
typeof operator, 61
types, 15, 23

.NET framework types, 94-101
Assembly, 356
built-in types, 15
code, 39-44

bool type, 39
floating-point types, 42-43
integral types, 39-41
string type, 43-44

collection types, 372
CTS (Common Type System), 16-17

Tab control 1016

custom types, 15
logical operator overloads, 215-216
mathematical operator overloads,

213-215
enum types, 139-142

System.Enum struct, 142-145
framework class library types, 16
generic type object, 365
generic types

benefits of, 366-372
building, 372-387
defining, 384

interface types, defining, 291-293
iterator types, 388
LINQ (Language Integrated Query) types, 15
modules, skipping, 356
nullable types, 102-103
objects

checking, 172
System.Object class, 172-175

partial types, objects, 170
reference type, assignment, 88-91
reference types, 79-80, 92-94

construction, 93
finalization, 93
inheritance, 92-93
memory allocation, 86
object size considerations, 94

reusable types, FCL (Framework Class
Library), 14

static types, 23
string, 105-122
string types, 99-101
StringBuilder, 105
System.DateTime type, 97-101
Unified Type System, 80-81

boxing, 83-85
object type, 82-83
unboxing, 83-85

value types, 79-80, 92-94
assignment, 91-92
construction, 93
finalization, 93
inheritance, 92-93
object size considerations, 94

values types, memory allocation, 86-87

How can we make this index more useful? Email us at indexes@samspublishing.com

U
UIs (user interfaces)

elements, animating, 655-657
setup projects, 952

UML (Unified Modeling Language), 81
unary operators, 49

bitwise complement operator (~), 52
decrement operator (—), 51
increment operator (++), 50-51
logical complement operator (!), 51
minus operator (–), 50
plus operator (+), 49

unboxing value type variables, 83-85
unchecked operator, 62
unchecked statements, 245-248
unchecked Statements: unchecked.cs

listing (11.8), 246-247
Unified Modeling Language (UML), 81
Unified Type System, 80-81

boxing, 83-85
object type, 82-83
unboxing, 83-85

Uniform control (WPF), 571
UniformGrid layout, WPF (Windows Presentation

Foundation), 555
uninstalling services before redeploying, 691
unmanaged code, 854
unsafe code, 853-854

configuring, 61
fixed statement, 861-864
pointers, 855-858
recognizing, 854
sizeof() operator, 858-859
stackalloc operator, 860-861

unwinding stacks, CLR, 239
UpdatePanel control (ASP.NET AJAX), 625-627
UpdateProgress control (ASP.NET AJAX),

627-628
UpdateSite method, 205
updating

data
ADO.NET, 451
after running samples, 420

entities, ADO.NET Data Services, 501-502

updating 1017

Uploading a File to an FTP Server listing (30.4),
671-673

user security policy level, 936
users, interacting with, console applications,

508-510
Using a Single Attribute listing (16.1), 340-341
Using a Web Service: WebServiceClient.cs

listing (33.4), 722
using directive, namespaces, 275-276
Using Graphical Resources: GraphRes.cs

listing (40.6), 840-842
Using Multiple Attributes listing (16.2), 341
Using Resources: StringRes.cs

listing (40.2), 833
using statement, 334
Using the Grid Layout Control listing (26.3),

556-558
Using the sizeof() Operator listing (41.3),

858-859
Using Two Classes with the Same Interface

listing (14.5), 302-303

V
ValidateUrl method, 211-212
ValidationSummary server control

(ASP.NET), 595
value parameters, methods, 204-205
value type, assignment, 91-92
value type constraints, 387
value type variables
value types, 79-80

assignments, 91-92
construction, 93, 387
finalization, 93
inheritance, 92-93
memory allocation, 86-87
object size considerations, 94
reference types, compared, 92-94
variables

boxing, 83-85
unboxing, 83-85

values
parameters as variables, 452
programs, returning, 47-48
reading, IEnumerator interface, 762-763

variables
code, 38-39
local variables, methods, 203-204
MyCalc, 251
parameter values as, 452
types, 15
value type variables

boxing, 83-85
unboxing, 83-85

version redirection, assemblies, 928-929
versioning

assemblies, 925-926
inheritance, 180-183

View server control (ASP.NET), 595
ViewBox control (WPF), 572
viewing

ADO.NET Data Services entity sets, 493
data, ADO.NET, 447-450
objects, VS2008 Class Designer, 744-746

ViewState (ASP.NET), 599
virtual directories, setting up, 963-964
visibility, namespaces, 282-283
visual design environments, Windows Forms

applications, 519
Visual Designer, Windows Forms applications,

521-527
Visual Studio 2008 (VS2008), 23
visualizing code, VS2008 Class Designer,

743-748
VS2005, 643
VS2008

Add New Item window, 28
applications

building, 28-31
debugging, 147-159
running, 28-31

ASP.NET projects, creating, 586-588
Autos window, 151
Build Menu, 28
Class Designer, 743, 754

object model creation, 749-754
visualizing code, 743-748

Uploading a File to an FTP Server listing (30.4)1018

code
commenting, 32-35
stepping through, 150-151

coding in, 27-28
command-line options, 46
EDM (Entity Data Model), 476-480
Help index, 974
item template defaults, 189
Locals window, 149
namespaces, managing, 286
New Project Wizard, running, 23-26
projects, 26

compiling, 30
creating, 23-32

property snippet, objects, 169
Setup Project Wizard, running, 947-948
setup projects

configuring, 950-954
creating, 947-954

Silverlight, creating projects in, 642-647
solutions, 26
Watch window, 150
WCF applications, creating, 726-727
web applications, publishing, 965-966
web references, creating, 723
web services, building, 716
Windows Forms applications, 519-527

files, 520
visual design environment, 519
Visual Designer, 521-527

Windows service projects
coding, 683-688
creating, 680-683

Workflow application, starting, 797-798
VS2008 (Visual Studio 2008), 19

W
WaitForPendingFinalizers class member

(GC), 335
warnings, compilers, handling, 194
Watch window (VS2008), 150
WCF (Windows Communications Foundation),

15, 492
applications, creating, 726-727

How can we make this index more useful? Email us at indexes@samspublishing.com

web services
configuring, 734-737
consuming, 737-739
contracts, 727-732
creating, 725-739
implementing logic, 732-734
interface creation, 727-730

WCF Web Service Implementation listing (34.2),
732-734

web application notes N-Layer single-assembly
architecture, 789-792

web applications, 619-620
ASP.NET AJAX web applications

controls, 625-635
life cycles, 621-623
loading custom script libraries, 623-625
setting up, 620-621

ASP.NET applications, 588-593
controls, 593-596
data binding, 614-617
navigation, 603-609
securing, 612-613
state management, 596-603
theming, 609-612

ASP.NET projects, starting, 586-588
components, 961-962
model, 583-586
publishing, 961-966
RIAs (rich Internet applications), creating,

641-657
websites, compared, 643

Web Form with Multiple Controls listing (27.1),
591-592

web forms, 588
web project for N-Layer multiple-assembly

architecture, 794-795
web references, creating, VS2008, 723
web servers

deploying, 965
setting up, 701-702, 962-963

Web Service Code: BasicWebService.asmx.cs
listing (33.2), 715

Web Service Header: BasicWebService.asmx
listing (33.1), 714

web services, 713
ASP.NET AJAX, calling, 635-640
basic web services, 714-716

web services 1019

behavior element, 736-737
building, VS2008, 716
client code, writing code to call, 738-739
configuring, 734-737
consuming, 737-739
contracts, creating, 727-732
creating, WCF, 725-739
endpoint element, 736
HTTP message services, 719
Information, viewing, 716-719
invocation results, 717
logic, implementing, 732-734
service element, 736
SOAP message format, 717
technologies, 713-714
testing, 717
using, 719-723
WCF web services, interface creation,

727-730
web service proxies, creating, 719, 721

web.sitemap file (ASP.NET), site layout, 604
WebDataGen.exe-generated classes, using,

503-504
WebDataQuery, entities, querying, 499-501
WebForms, MediaPlayer, adding to, 652-653
websites

.NET Framework, 975
securing, ASP.NET, 612-613
web applications, compared, 643

Welcome screen (Setup Project Wizard), 947
WF (Windows Workflow), 797

projects, starting, 797-798
workflows

creating, 798-801
executing, 802-803
state workflows, 803-813

WF (Windows Workflow) runtime, writing code
in, 15

while loops, 70
windows, Windows Forms applications, 539-545

communication, 540-543
Windows Communications Foundation (WCF).

See WCF (Windows Communications
Foundation)

Windows Forms, 14
Windows Forms Application Showing

Fundamentals listing (25.1), 516-518

Windows Forms applications
controls, 528, 531

DataGridView control, 534-536
ListBox control, 534
MenuStrip control, 531-533
StatusStrip control, 531-533
ToolStrip control, 531-533

data binding, 533-536
dialog boxes, 539-545

common dialog boxes, 543-545
modal dialog boxes, 539-540
modeless dialog boxes, 539-540
window communication, 540-543

fundamentals, 516-519
GDI+, 536-539

Brush object, 536-537
drawing text, 537-539
fonts, 537-539
Graphics object, 536-537
Pen object, 536-537

VS2008 support, 519-527
files, 520
visual design environment, 519
Visual Designer, 521-527

windows, 539-545
Windows Forms Form1.cs File listing (25.3), 522
Windows Forms Form1.Designer.cs File

listing (25.4), 523-525
Windows Forms Program.cs File

listing (25.2), 521
Windows Presentation Foundation (WPF)

libraries, 14-15
Windows service, method overrides, 683-684
Windows service applications, 679

coding, 683-688
creating, VS2008, 680-683
items, 680-683
spaces, names, 680

Windows Service Code listing (31.3), 684
Windows Service Entry Point listing (31.2),

682-683
Windows services

communicating with, controllers, 691-693
configuring, 687-688
deploying, 690-691
installing, 688-691

web services1020

OnStart method, implementing, 684-687
OnStop method, implementing, 687

Windows Workflow (WF), 797
runtime, writing code in, 15

WindowsFormsHost control (WPF), 572-573
WindowsPrincipal, role-based security, 942-943
Wizard server control (ASP.NET), 595
wizards, New Project Wizard, running, 23-26
workflows

creating, 798-801
executing, 802-803
hosts, communicating from, 805-810
state workflows

building, 803-813
event handling, 811-813

WPF (Windows Presentation Foundation)
applications, 547

controls, 560
Border control, 560-561
Button control, 561
CheckBox control, 561
ComboBox control, 561
ContentControl control, 561
DockPanel control, 562
DocumentViewer control, 562
Ellipse control, 563
Expander control, 563
Frame control, 563
Grid control, 564
GridSplitter control, 564
GroupBox control, 564-565
Image control, 565
Label control, 565
ListBox control, 565
ListView control, 565
MediaElement control, 565
Menu control, 565-566
PasswordBox control, 566
ProgressBar control, 566
RadioButton control, 566-567
Rectangle control, 567
RichTextBox control, 567
ScrollBar control, 567
ScrollViewer control, 568
Separator control, 568
Slider control, 569

How can we make this index more useful? Email us at indexes@samspublishing.com

StackPanel control, 569
StatusBar control, 569
Tab control, 569
TextBlock control, 570
TextBox control, 570
ToolBar control, 570
ToolBarPanel control, 570-571
ToolBarTray control, 571
TreeView control, 571
UniformGrid control, 571
ViewBox control, 572
WindowsFormsHost, 572-573
WrapPanel control, 573

data binding, 574-578
event handling, 573-574
layout

canvas layout, 553
default alignment, 552
DockPanel layout, 559
explicit alignment, 552-553
Grid layout, 555-559
managing, 551-559
StackPanel layout, 554
UniformGrid layout, 555
WrapPanel layout, 553-554

lists of data, displaying, 575-578
Silverlight, 641-642
styles, using, 578-580
XAML, 548-551

WPF (Windows Presentation Foundation)
libraries, 15

WrapPanel control (WPF), 573
WrapPanel layout, WPF (Windows Presentation

Foundation), 553-554
wrappered HTTP classes, 661
WriteLine method, 23
writer threads, access, 828-829
writing

resource files, 834-835
simple C# programs, 19-23
XML, 462-464

Writing a Resource File: ResWrite.cs
listing (40.3), 834-835

Writing an XML Document with XmlTextWriter
listing (21.1), 462-464

Writing an XML Document with XmlTextWriter listing (21.1) 1021

X–Z
XAML

controls, 550-551
Silverlight, 641-642
WPF (Windows Presentation Foundation)

applications, 548-551
XHTML (Extensible HTML), 589
XML (Extensible Markup Language), 461

data, streaming, 462
documents, creating, 468-470
LINQ to XML

document creation, 468, 470
modifying documents, 472
namespaces, 470-471
objects, 468
querying documents, 471
reading documents, 471

manipulating
LINQ to XML, 468-472
XmlDocument, 467-468

reading, 465-466
XPathDocument, 466-467

serialization, 731
writing, 462-464
XmlDocument, manipulating, 467-468
XML DOM, 466-468

XML documentation comments, code, 33-35
XML documents

modifying, LINQ to XML, 472
querying, LINQ to XML, 471
reading, LINQ to XML, 471

XML DOM, 466-468
Xml server control (ASP.NET), 595
XmlDocument, manipulating, 467-468
XPathDocument, reading, 466-467
XPS documents, creating, 562

yield identifier, 389
You Can Use Objects Polymorphically with

Generics listing (17.1), 370-371

XAML1022

	Introduction
	Why This Book Is for You
	Organization and Goals

	1 Introducing the .NET Platform
	What Is .NET?
	The Common Language Runtime (CLR)
	The .NET Framework Class Library (FCL)
	C# and Other .NET Languages
	The Common Type System (CTS)
	The Common Language Specification (CLS)
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

