

ASP.NET 3.5 AJAX Unleashed

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32973-9
ISBN-10: 0-672-32973-5

Library of Congress Cataloging-in-Publication Data:

Foster, Robert Hill.
ASRENET 3.5 Ajax unleashed / Robert Foster.
p. cm.
ISBN 0-672-32973-5
1. Active server pages.
Application software-Development.
TK5105.8885.A52F67 2008
005.2'76—dc22

2. Ajax (Web site development technology) 3.
4. Microsoft .NET. I. Title.

2008014763

Printed in the United States of America
First Printing December 2008

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy

of this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor

Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Meg Shaw

Copy Editors
Lori Lyons
Karen Annett

Indexer
Erika Millen

Proofreader
Anne Goebel

Technical Editor
Todd Meister

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Jake McFarland

Manufacturing Buyer

Dan Uhrig

Introduction

As an ASP.NET web developer in today’s market, you need countless skills to distinguish your-
self from the next person. One of those skills that you can quickly acquire is developing AJAX-
enabled applications. As your users begin to utilize AJAX-enabled sites on the web, such as
Live.com and Google Maps, they are beginning to expect the same rich functionality in the
applications that you deliver.

Although these applications took many man hours to create, the process is made easier for you as
a developer with the AJAX library that’s packaged with ASP.NET 3.5. You can save many hours
and lines of code by learning and leveraging ASP.NET AJAX to create and deliver a very rich user
experience in your applications.

In this book, you learn how to make the most of ASP.NET AJAX by building on the knowledge
that you already have as an ASP.NET developer and extend that knowledge so that you can easily
create AJAX-enabled applications. The book has been divided into the following chapters:

Chapter 1—Introduction to AJAX Technologies

In this chapter, you learn the fundamentals of AJAX by first understanding the XmlHttpRequest
JavaScript object, and then building a simple AJAX library for use in your applications.

Chapter 2—Introduction to ASP.NET AJAX

Chapter 2 introduces you to the controls and capabilities that are available in ASP.NET AJAX and
serves as a springboard for technologies that are discussed in future chapters.

Chapter 3—The ScriptManager and ScriptManagerProxy Controls

Chapter 3 discusses the core object of the ASP.NET AJAX library: the ScriptManager control. In
this chapter, you learn the capabilities of the ScriptManager control and how you can best utilize
it in your AJAX-enabled pages.

Chapter 4—The ASP.NET AJAX Client API

In Chapter 4, you learn how to make the most of the ASPNET AJAX client-side objects that are
made available via the ScriptManager control.

Chapter 5—The UpdatePanel and Timer Controls

In Chapter 5, you learn how to use the UpdatePanel control to quickly and easily add AJAX func-
tionality to your ASP.NET web pages. You also learn how to use the Timer control to make asyn-
chronous callbacks from your pages at a specified time interval.

2 Introduction

Chapter 6—Advanced Techniques with the ASP.NET AJAX PageRequestManager Object

In Chapter 6, you learn some essential techniques that can be used with the ASP.NET
AJAX PageRequestManager object to save you many lines of code as well as help you create
richer user experiences for your AJAX-enabled applications.

Chapter 7—Using the ASP.NET AJAX Control Toolkit

In Chapter 7, you learn about the controls that are available in the ASP.NET AJAX Control
Toolkit, which is an open-source, community-based suite of controls for ASP.NET AJAX.

Chapter 8—Building an ASP.NET AJAX Extender Control

Chapter 8 first introduces the concept of creating AJAX-enabled extender controls, and
then shows you how to build an extender control that can be used in your applications.

Chapter 9—ASP.NET AJAX and SharePoint 2007

In Chapter 9, you learn how to enable ASP.NET AJAX in SharePoint 2007 and Windows
SharePoint Services (WSS) 3.0, and then you learn how to build an AJAX-enabled WSS web
part.

Chapter 10—Creating ASP.NET AJAX-Enabled Vista Sidebar Gadgets

In Chapter 10, you learn how to build ASP.NET AJAX-Enabled Gadgets for the Windows
Vista Sidebar.

CHAPTER 1

Introduction to AJAX
Technologies

If you've purchased this book, you probably are interested
in AJAX technologies. If you are not familiar with the tech-
nology or are new to AJAX, it is important that you take
some time and understand where AJAX fits into the big
picture of web development. This section helps bring you
up to speed with AJAX'’s place in your web development
toolbox.

One problem with the design of web pages (especially
ASP.NET web pages) is that to refresh the data on the page,
it must postback to the server. This causes the page to
flicker while the page is posting, and then the page is
reloaded in the browser with the results of the post. You
can view the amount of data with tools such as
IEHTTPHeaders and HTTPWatch. You will quickly notice
that the amount of information getting posted is quite size-
able because ASP.NET applications not only postback the
controls, but also post the page’s ViewState. Although the
technique of a postback works, it creates a lot of traffic over
the wire and inherently reduces the overall scalability of
your application.

Asynchronous JavaScript and XML (AJAX) is a development
pattern that you can use to provide your users with a much
richer user experience in your web applications. Simply
stated, AJAX allows you to asynchronously load data into
pieces of a page on demand instead of loading the whole
page each time data is requested.

An example of where a user experience can be enhanced by
AJAX is a web page that contains related dropdown boxes.
For example, say that you have a web page that supplies
information on cars in which a user must select the year,
make, and model of his car from dropdown boxes on the

IN THIS CHAPTER

>
>
>
>

AJAX and Web 2.0
Why Use AJAX?

AJAX: An Example
Using the AJAX Library

6 CHAPTER 1 Introduction to AJAX Technologies

page. When a user selects a year, she populates all makes for a selected year in the make
dropdown box. Additionally, when a user selects a make of car, the models dropdown is
populated with models for a given year and make.

If you use traditional ASP.NET without AJAX, you will probably set the AutoPostBack
property of your dropdowns to true and the page will postback (and flicker) when your
user makes selections on the page.

Conversely, if you use AJAX, data can be loaded asynchronously into the list boxes as the
user makes selections on the page. This is much more efficient because only the data being
requested will travel in the request to the server, which could be as simple as a query string
appended to the end of a page request. Also, the page will not flicker as the user makes
selections in the dropdowns because the post actually is happening in the background.

NOTE

An example of AJAX is described later in the chapter.

AJAX and Web 2.0

Web 2.0 is a term (or rather buzzword) that you often hear when describing most
“modern” web sites; however, it shouldn’t be a new concept to web developers. Web 2.0 is
actually a consolidation of many existing technologies that allows you to provide a rich
interactive user experience over the web. Examples of Web 2.0 technologies include, but
aren’t limited to, the following areas:

» Rich Internet Applications (RIAs), which include AJAX, Adobe Flash, Silverlight, and
Moonlight

» Web services

» Blogs

» Wikis

» Social networking
» Social bookmarking
» RSS/Atom

Before the Web 2.0 movement began on the Internet, web pages often focused solely on
providing the user with data. The user would simply request a page, view the page, request
another page, view that page, and so on.

In contrast, the patterns and techniques behind Web 2.0 are all about the user experience
with the web: AJAX and web services for rich, efficient user experiences, blogs, wikis,
social networking, and social bookmarking for collaboration, and RSS/Atom so that users
can “subscribe” to data.

Why Use AJAX?

As technologies such as AJAX evolve and are adopted in large scale on the web, Web 2.0
techniques are quickly becoming the expected user experience for the web. Mainstream
examples of AJAX include the Google-based applications, such as Google’s Maps, Docs,
and Calendar, as well as Microsoft-based applications, such as Hotmail, and Windows
Live-based applications. As users start utilizing these types of applications in their every-
day lives, they will come to expect the same type of functionality in the applications you
develop.

Why Use AJAX?

As stated previously in this chapter, you can use AJAX to help provide a rich user experi-
ence. Of all the new, cool techniques and technologies that are available in Web 2.0 and
rich Internet applications, AJAX is clearly the most widely used today. Should you use
AJAX simply because it’s cool? The short answer is “No,” which is explained in the next
section.

AJAX Rationale

Although the user experience that results from AJAX development patterns is a much
richer experience, the rationale for utilizing AJAX is the total amount of traffic that is
reduced from users accessing your web pages. When you have a web application with a
large user base, using AJAX significantly increases the scalability of the application due to
the amount of web traffic that is reduced every time a page is loaded.

The following list gives advantages and disadvantages of AJAX:
Advantages
» Reduced page bandwidth
» Load page data on demand
» Service-based approach to web development
» Rich user experience
Disadvantages
» Unexpected browser functionality (when the user clicks the back or refresh button)
» Business logic can exist in the JavaScript
» Difficult to test with automated tools

Although this book highlights and focuses on the advantages of AJAX, several disadvan-
tages should be noted. The first thing your users will notice is that when they click the
refresh or back button in the browser, the page has a possibility of losing its state when
the page reloads. This is a result of dynamically loading data on demand (which was one
of the advantages of AJAX).

7

8 CHAPTER 1 Introduction to AJAX Technologies

The second disadvantage of AJAX that you will see in the development world is actually
JavaScript. You might wonder that if AJAX is initiated from client-side JavaScript, how can
JavaScript be a disadvantage? The answer is that JavaScript eventually will be considered a
disadvantage for AJAX in your web applications. Over time, you will be quite shocked at
the amount of JavaScript that is required (which is an evolution throughout the lifecycle
of your application) for AJAX functionality in your application. It will start out very small
and clean, but can quickly spiral out of control.

From the architecture perspective, there is not a clean way to reverse-engineer JavaScript
into an architecture model. An architecture document will probably define how a page
should function, and there could be thousands of lines of JavaScript behind the scenes to
enable this functionality. Depending on your environment and Software Development
Lifecycle (SDLC), this could become a problem because it is very difficult to validate the
JavaScript against the architecture models.

The third (and certainly not the last) disadvantage is the potential difficulty of testing
AJAX functionality with automated tools. For example, Visual Studio Team Suite (VSTS)
2005 had limited support for AJAX when creating web tests. This problem was easily
circumvented with tools such as Fiddler (http://www.fiddlertool.com/fiddler/), which
helps you capture AJAX requests, which then can be loaded into the VSTS Web Test. It is
important to note that these issues have been resolved in VSTS 2008.

This section is designed not to scare you away from AJAX, but to create an awareness of
things that can affect you and your AJAX development experience. Best practices and
warnings are highlighted in upcoming chapters so that you can be aware of the pitfalls
that can show up in your applications.

In the next section, you learn the basics of implementing AJAX in your applications.

AJAX: An Example

Now that you understand the advantages and disadvantages of AJAX, it is helpful to learn
about the code behind AJAX requests. This section introduces an example of using AJAX
and JavaScript Object Notation (JSON).

The XMLHttpRequest Object

The main object behind AJAX is the XMLHttpRequest object. This object exposes function-
ality that allows you to send and receive data (usually XML-based, but not required) from
client-side JavaScript code to a server page.

XMLHttpRequest has six methods, listed in Table 1.1, and seven properties, listed in Table
1.2.

Deep knowledge of the capabilities of the XMLHttpRequest object’s properties and methods
is required learning for any AJAX developer. At its core, every library that encapsulates
AJAX functionality (ASP.NET AJAX, AJAX.NET, Yahoo YUI, and so on) uses the
XMLHttpRequest object.

http://www.fiddlertool.com/fiddler/

AJAX: An Example 9

The next section defines a simple AJAX JavaScript library that can be used to make AJAX
calls in your web applications.

TABLE 1.1 XMLHttpRequest Methods

Method Parameters Description

Abort Aborts the request that has
been made.

getAllResponseHeaders Returns a string of all

response headers.

getResponseHeader headerName Returns the value of a given
response header.

Open method, url Opens the request to a

method, url, async specified URL.

method, url, async, method defines the HTTP

username method that will be used

method, url, async, (typically GET or POST).

username, password url defines the location of
the page that is being
requested.

async is a Boolean that
defines whether the request
will be made asynchronously

or not.
Send content Sends the request to the
DOMString server.
Document DOMString is the XML that

is to be sent as a string.

Document is an XML DOM
document

setRequestHeader label, value Allows you to add a label
and value to the HTTP
header that is being sent to
the server.

10 CHAPTER 1 Introduction to AJAX Technologies

TABLE 1.2 XMLHttpRequest Properties

Property Description

onreadyStatechange Event handler that is fired when the readyState property
changes. This will be a JavaScript function that handles the data
that is returned to the client.

readyState Returns the state of the XMLHttpRequest object. Possible
values are
0 = not initialized
1 = open
2 = HTTP Headers received
3 = receiving
4 = |oaded

responseText Returns the complete response as a string.

responseXML Returns the complete response (if it is XML) as an XML docu-
ment object.

responseBody Returns a binary encoded string of the response.

Status Returns the HTTP status code of the request. HTTP status
codes are defined at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

statusText Returns the HTTP status description of the request.

A Simple AJAX Library

As a developer, you probably have several (possibly hundreds of) scripts stuffed away
somewhere that you reuse to accomplish specific tasks. One such script you can use for
making AJAX calls is provided in Listings 1.1 through 1.3.

NOTE

Although this library can be written many different ways, this example contains three
JavaScript functions: createAjaxRequest, createHttpRequestObject, and
getResponse. Each function is separated into its own listing and described in the next

three sections.

LISTING 1.1 createAjaxRequest Function

//Section 1

var http_request = false;

function createAjaxRequest(url, parameters) {

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

AJAX: An Example 11

http_request = createHttpRequestObject();

if (!http_request) {
alert('Error creating XMLHTTP object');
return false;

}

http_request.onreadystatechange = getResponse;
http_request.open('GET', url + parameters, true);
http_request.send(null);

This section contains the createAjaxRequest function. This method is called when you
want to invoke an AJAX request. When this method is invoked, it first makes a call to
createHttpRequestObject (described in Listing 1.2) to create an instance of the
XMLHttpRequest object. After the object is returned, you need to do some error checking
around this object to ensure that it was created correctly. Next (and most importantly),
the object is configured by setting the onreadystatechange property to the getResponse
function handler (described in Listing 1.3), and the request is opened (as asynchronous)
and finally sent to the server.

LISTING 1.2 createHttpRequestObject Function

//Section 2
function createHttpRequestObject(){
var request;
if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, etc.
request = new XMLHttpRequest();
if (request.overrideMimeType) {
request.overrideMimeType('text/xml');
I3
} else if (window.ActiveXObject) { // IE 6 and previous
try {
request = new ActiveXObject("Msxml2.XMLHTTP");
} catch (e) {
try {
request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (e) {}

}

return request;

This section contains a helper function called createHttpRequestObject. Unfortunately,
depending on the type of browser that you are using, there are many ways that you can

12 CHAPTER 1 Introduction to AJAX Technologies

(or should) create an instance of XMLHttpRequest. This method creates and returns the
object instance of XMLHttpRequest that your browser supports.

LISTING 1.3 getResponse Function

//Section 3
function getResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
var xmldoc = http_request.responseXML;
alert(xmldoc.xml);
} else {
alert('There was a problem with the request.');

Although createAjaxRequest and createHttpRequestObject are somewhat boilerplate
functions, the processing of the response occurs in the getResponse function, defined in
Listing 1.3, getResponse.

The handler to execute this function was set up in the Section 1 createAjaxRequest
method by setting the onreadystatechange property of the XMLHttpRequest object. This
function gets fired every time the readyState property changes. It important to note that
you will not be able to access the response until the readyState property is equal to 4, or
loaded, so you first must check the status of the readyState before processing the
response.

After your response has been loaded, you must perform another check on the HTTP status.
If anything is wrong with your request (for example, 401-unauthorized, 404-page not
found, and so on), then you can respond to that error here. In the example in Listing 1.3,
the status is checked for a value of 200 (or OK), and then the function will process the
request.

As soon as you make these two checks on the readyState and status properties of the
XMLHttpRequest object, you can then process the response. In this example, the response
is loaded into an XML Document object, and then the XML is displayed in a message box
to help confirm the results.

Listing 1.4 is a complete code listing for all of the code described in this section.

LISTING 1.4 Simple AJAX Library—Complete Listing

var http_request = false;

function createAjaxRequest(url, parameters, callbackFunction) {
http_request = createHttpRequestObject();

AJAX: An Example 13

if (!http_request) {
alert('Error creating XMLHTTP object');
return false;

}

http_request.onreadystatechange = getResponse;
http_request.open('GET', url + parameters, true);
http_request.send(null);

function createHttpRequestObject(){
var request;
if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, etc.
request = new XMLHttpRequest();
if (request.overrideMimeType) {
request.overrideMimeType('text/xml');
}
} else if (window.ActiveXObject) { // IE 6 and previous
try {
request = new ActiveXObject("Msxml2.XMLHTTP");
} catch (e) {
try {
request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (e) {}

}

return request;

function getResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {

var xmldoc = http_request.responseXML;
alert(xmldoc.xml);

} else {
alert('There was a problem with the request.');

NOTE

You will most likely process the XML document and not display it in an alert. An exam-
ple of processing the returned XML is explained in the next section.

14 CHAPTER 1 Introduction to AJAX Technologies

Using the AJAX Library

After you understand the basics of AJAX, you can start applying this knowledge to your
projects. In this section, you learn how to use AJAX to connect two dropdown list boxes
in ASP.NET.

This example allows you to select a make of car (BMW, Mercedes, or Porsche) and use
AJAX to request the models for the selected car make. The very simple page is illustrated
in Figure 1.1.

Untitled Page - Windows Intemet Explorer = =y
(S, |g hittp://loc de/AjaxDropd asp v| | x | Live Search £«
. ; | & - - - ikpPage = (5 laols v
E G| @8 Untitled Page i i (5] o = 5y lage = {55 1go
-
Porsche - an -
|Dene & Intemet | Protected Mode: On H100%

FIGURE 1.1 AJAX dropdowns

When you select a car from the first dropdown, an AJAX request is made to the server to
get different car models. For this example, a call is be made to a page called
getModels.aspx, which is defined in Listing 1.4.

LISTING 1.4 getModels.aspx

<%@ Page Language="C#"%>

<script runat="server">

protected void Page_Load(object sender, EventArgs e)

{

Response.ContentType = "text/xml";

Using the AJAX Library 15

string Make = Request.QueryString["make"];
switch (Make.ToUpper())
{
case "BMW":
Response.Write("<models><car>3-Series</car>
<car>5-Series</car><car>7-Series</car><car>M</car><car>X3</car>
<car>X5</car><car>Z-Series</car></models>");

break;
case "MERCEDES":
Response.Write("<models><car>C-Class</car>
<car>E-Class</car><car>S-Class</car><car>AMG</car></models>");
break;
case "PORSCHE":
Response.Write("<models><car>911</car><car>Cayman</car>
<car>Cayanne</car><car>Boxster</car></models>");
break;
case "BLANK":
Response.Write("<models><car></car></models>");

break;

default:
Response.Write("<models><car>Invalid selection</car></models>");

break;

}

</script>

This page simply accepts a query string argument called make and will return an XML
string of car models, depending on the make argument. A sample of the returned XML
where the value PORSCHE is passed into the make query string argument is described in
Listing 1.5.

16 CHAPTER 1 Introduction to AJAX Technologies

LISTING 1.5 Models XML Records

<models>
<car>911</car>
<car>Cayman</car>
<car>Cayanne</car>
<car>Boxter</car>
</models>

NOTE

Note that this syntax is important, because you will learn how to parse the XML
document and populate the second dropdown with the values that are returned from
this page.

Now that you have learned where the data is coming from, it is time to learn how to
request and manipulate the data using AJAX. Listing 1.6 describes a page named
AjaxDropdowns.aspx.

LISTING 1.6 AjaxDropdowns.aspx

<%@ Page Language="C#"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

protected void Page_Load(object sender, EventArgs e)
{
//setup the AJAX call on the dropdown
dd1lMakes.Attributes.Add("onchange",
"javascript:createAjaxRequest('getModels.aspx', '?make=' + " + ddlMakes.ClientID +
".value);");

}

</script>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">

Using the AJAX Library

<div>

<asp:DropDownList ID="ddlMakes" runat="server">
<asp:ListItem Value="blank">Select a Make</asp:ListItem>
<asp:ListItem>BMW</asp:ListItem>
<asp:ListItem>Mercedes</asp:ListItem>
<asp:ListItem>Porsche</asp:ListItem>
</asp:DropDownList>
<asp:DropDownList ID="dd1lModels" runat="server">
</asp:DropDownList>
</div>
</form>
<script type="text/javascript">
//Section 1
var http_request = false;

function createAjaxRequest(url, parameters) {
http_request = createHttpRequestObject();

if (!http_request) {

alert('Error creating XMLHTTP object');

return false;
}
http_request.onreadystatechange = getResponse;
http_request.open('GET', url + parameters, true);
http_request.send(null);

//Section 2
function createHttpRequestObject(){
var request;
if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, etc.
request = new XMLHttpRequest();
if (request.overrideMimeType) {
request.overrideMimeType('text/xml');
}
} else if (window.ActiveXObject) { // IE 6 and previous
try {
request = new ActiveXObject("Msxml2.XMLHTTP");
} catch (e) {
try {
request = new ActiveXObject("Microsoft.XMLHTTP");
} catch (e) {}

17

18 CHAPTER 1 Introduction to AJAX Technologies

LISTING 1.6 Continued

return request;

//Section 3
function getResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
//get dropdown
var ddl = document.forms[0].<%=this.dd1lModels.ClientID %>;

//clear items in dropdown
ddl.options.length = 0;

//get the XML response and loop elements
var xmldoc = http_request.responseXML;
var cars = xmldoc.getElementsByTagName('car');
for(i=0; i<cars.length; i++){
//add items to the dropdown
try{
var opt = new
Option(cars[i].firstChild.nodeValue, cars[i].firstChild.nodeValue);
ddl.add(opt, 1i);

}
catch (e){
ddl.length=0;
}
}
http_request = null;
}
else {
alert('There was a problem with the request.');
}
}
}
</script>
</body>
</html>

As you browse through the code in Listing 1.6, first notice that it is using the simple AJAX
library that you learned about earlier in this chapter. You learn about the changes that
were made to the getResponse function later in this chapter, but it is important to note
because you will also see calls made to the createAjaxRequest function, which is
discussed next.

Using the AJAX Library 19

This page contains two dropdowns, dd1Makes and dd1Models, and one server side event
handler, Page_Load. When the user selects a car make from the dd1Makes dropdown, an
AJAX call needs to be made to populate the dd1Models dropdown with car models. In this
example, the AJAX call is set up on the dd1Makes dropdown in the Page_Load event by
adding an onchange attribute to the server side dropdown list control and setting its value
to call the createAjaxRequest JavaScript method defined in the simple AJAX library.

The big change to the AJAX library is in the getResponse method, which is highlighted in
Listing 1.7.

LISTING 1.7 getResponse Method

function getResponse() {
if (http_request.readyState == 4) {
if (http_request.status == 200) {
//get dropdown
var ddl = document.forms[0].<%=this.ddlModels.ClientID %>;

//clear items in dropdown
ddl.options.length = 0;

//get the XML response and loop elements
var xmldoc = http_request.responseXML;
var cars = xmldoc.getElementsByTagName('car');
for(i=0; i<cars.length; i++){
//add items to the dropdown
try{
var opt = new
Option(cars[i].firstChild.nodeValue, cars[i].firstChild.nodeValue);
ddl.add(opt, i);

}
catch (e){
ddl.length=0;
}
}
http_request = null;
I3
else {
alert('There was a problem with the request.');
I3

As you walk through the method, first, a reference is made to the dd1Models dropdown on
the page, and all items are cleared by setting the options.length property to zero. If you

20 CHAPTER 1 Introduction to AJAX Technologies

don’t do this, items will simply get added to the dropdown list every time the user selects
a new car make. Next, the XML response is returned from the http_request object.
Finally, the code loops through the values of all the returned <car> elements and popu-
lates the dd1Models dropdown list.

When you execute the page, you will notice that the dropdown is populated with data
very quickly with no page flicker. This is a great first example of using AJAX because linked
(or related) dropdowns are a common scenario that you see in applications. Additionally,
functionality such as this is often a developer’s first experience with AJAX functionality in
their applications.

Before ASP.NET AJAX (and other libraries), this was how we, as a development commu-
nity, had to write AJAX functionality. One of the first things you will notice about this
approach is the amount of JavaScript that you have to write and maintain. It quickly
becomes very difficult to maintain and add or change the functionality of your pages
without starting from scratch. There is nothing wrong with this approach, and libraries
such as ASP.NET AJAX shield you from a lot of the coding and JavaScript maintenance
(and the libraries are generating this code for you). However, it is important to note the
maintenance cost associated with manually writing AJAX code.

Summary

In this chapter, you learned about AJAX and its place in the Web 2.0 world. AJAX has a
place in your web applications, and the rationale of utilizing AJAX was discussed in detail
as well as the advantages and disadvantages that you will encounter by applying this type
of functionality in your applications. Finally, you learned how to build AJAX from scratch
using ASP.NET and JavaScript.

Index

A

Abort method, 9

Accordion control, 102, 106-110
AccordionPane control, 102, 106-110
activating SharePoint features, 237
add_abortPostBack method, 94
add_beginRequest method, 94
add_dispose method, 94
add_endRequest method, 94

Add Gadgets dialog window, 187-188
add_getinstance method, 94
add_InitializeRequest method, 94
add_pagelLoaded method, 94
add_pagelLoading method, 94
AddNumbers function, 41

AddProperty method, 158-159
$addHandler function, 51
$addHandlers function, 51

advantages of AJAX, 7-8

AJAX Client Behavior web site item, 25
AJAX Client Control web site item, 25
AJAX Client Library web site item, 25
AJAX Control Toolkit, 26-27
AJAX-enabled WCF Service web site item, 26
AJAX Master Page web site item, 25
AJAX Web Form web site item, 25
AJAX Web Forms, 32-34
AjaxControlToolkit.dll file, 152
AjaxDropdowns.aspx page, 16-18
AJAXWebServiceProxy.aspx web page, 38-39

AllowCustomErrorsRedirect property
(ScriptManager), 34

AlwaysVisibleControlExtender control, 102
AnimationExtender control, 102

Application class, 52

Apply Styles (Expression Web), 197

ASP.NET AJAX Control Toolkit. See specific controls
ASP.NET AJAX Server Control Extender projects, 24
ASP.NET AJAX Server Control projects, 24

Assemblies element, 230

242 AssemblyDeployment element

AssemblyDeployment element, 229
assert method, 53
AsyncPostbackError event, 36

AsyncPostBackErrorMessage property
(ScriptManager), 34

AsyncPostBackTimeout property
(ScriptManager), 34

AsyncPostBackTrigger, 78

authentication, Forms authentication, 62-65

AuthenticationService property (ScriptManager), 34

autoformatting Expression Web code, 202-203
AutoSize property (Accordion control), 110

B-C

BeginRequest event, 68-71, 94
BeginRequestEventArgs type, 68
Behavior class, 66

BindGrid method, 89

Bounds class, 66

CalendarExtender control, 102, 110-112
CalendarExtender.aspx sample page, 110-112
CascadingDropDown control, 102
CasPermissions element, 230

ChildrenAsTriggers property (UpdatePanel
control), 78

classes. See specific classes
$clearHandler function, 51
clearTrace method, 53
client APl namespaces, 49

client-side handlers, adding to server-side
controls, 51

client-side properties (FocusExtender), 158-159

ClientBehaviorl.js file (FocusExtender), 155,
159-161

ClientBehaviorl.resx file (FocusExtender), 155

Code Formatting options (Expression Web),
202-203

CodePlex site, 213

CollapseControllD property
(CollapsiblePanelExtender control), 117

CollapsePanel.aspx sample page, 112-116

CollapsiblePanelExtender control, 102, 112-117
completingRequest event, 54

configSettings section (SharePoint/WSS
Web.Config file), 170-171

configuration files. See Web.Config file

configuring Visual Studio for ASP.NET AJAX Control

Toolkit, 105-106
ConfirmButton.aspx sample page, 118-119
ConfirmButtonExtender control, 102, 118-119

ConfirmText property (ConfirmButtonExtender
control), 119

Control class, 66
control extenders
adding, 152-154
FilteredTextBoxExtender, 152-153
FocusExtender project, 154-161
selecting, 153-154
Control Toolkit. See specific controls
controls. See specific controls
converting data types, 57
$create function, 51
Create New Web Site dialog, 198-199
createAjaxRequest function, 10-11
CreateChildNode method, 219
createHttpRequestObject function, 11
CSS Properties (Expression Web), 196
CSS Schemas, 202

D

data types, 57, 68
Debug class, 53
Default.aspx page, 87-89, 162-163

deploying .NET Framework 3.5 as
SharePoint feature

CreateChildNode method, 219

feature activation, 237

Feature.xml file, 216-217

FeatureReceiver class, 214-216, 219-228
Microsoft.SharePoint.targets file, 231-234
ModificationEntry structure, 218-219
scope, 214

SharePoint Solution Management, 235
SolutionConfig.xml elements, 229-230
SolutionConfig.xml file, 217-218, 228-229
SolutionPackage.ddf file, 230-231
STSADM.EXE command-line utility, 234
STSDev tool, 213-214

deserialize method, 43

disadvantages of AJAX, 7-8

displaying modal windows
ModalWizard.aspx page, 138-144
stylesheet, 134-138

Document Type Declaration (DTD), 202

DomElement class, 66-67

DomeEvent class, 66

downloading AJAX Control Toolkit, 26

dragging XML files into Expression Web, 205-206

DragHandlelD property (DragPanelExtender
control), 122

DragPanel.aspx sample page, 120-121
DragPanelExtender control, 102, 120-122
dropdown list boxes, connecting
AjaxDropdowns.aspx page, 16-18
getModels.aspx page, 14-15
getResponse method, 19-20
models XML records, 15

DropDownControllD property (DropDownExtender
control), 124

DropDownExtender control, 102, 122-125
DropShadowExtender control, 103

DTD (Document Type Declaration), 202
DWT files, 200

DynamicPopulateExtender control, 103

E

elements, 229-230

Employee class, 54, 56

EmployeeSales web part
code listing, 171-174
EnsurePanelFix() method, 176-177
Monthly Sales list schema, 174-175

Expression Web 243

Monthly Sales sample data, 175

rendering in SharePoint Team Site, 174-176
Enabled property (Timer control), 89
EnabledViewState property (Timer control), 89
EnablePageMethods property (ScriptManager), 34

EnablePartialPageRendering property
(ScriptManager), 34

EnableScriptGlobalization property
(ScriptManager), 34

EnableScriptLocalization property
(ScriptManager), 34

EnableViewState property
ScriptManager, 34
UpdatePanel control, 78

EndRequest event, 68-71, 94

EndRequestEventArgs type, 68

EnsurePanelFix() method, 176-177

enumerations, 66

events. See specific events

Exceptions type, 68

ExpandControllD property
(CollapsiblePanelExtender control), 117

Expression Web
Code Formatting options, 202-203

configuring for ASPNET AJAX Control Toolkit,
145-150

IntelliSense, 204
overview, 191
tools, 145
user interface
Apply Styles, 197
CSS Properties, 196
Folder List, 194
illustration, 191
Manage Styles, 198
Tag Properties, 195-196
Toolbox, 196
Web pages
creating, 192-193
dragging XML files into, 205-206
standards-based web sites, 198-202
XSLT style sheets, generating, 207-209

How can we make this index more useful? Email us at indexes@samspublishing.com

244 ExtenderControl class

ExtenderControl class, 158
ExtenderControll.cs file (FocusExtender), 155

extenders. See control extenders

F

FadeTransitions property (Accordion control), 110
fail method, 53

Feature.xml file, 216-217

FeatureReceiver class, 214-216, 219-228
Fiddler, 8

files. See specific files

FilteredTextBoxes.aspx page, 125-127

FilteredTextBoxExtender control, 103, 125-127,
152-153

FilterType property
control extenders, 154
FilteredTextBoxExtender control, 127

$find function, 51

FocusCSSClass property, 158, 161-163

FocusExtender project, 154-155
client-side properties, 158-159
ClientBehaviorl.js file, 155, 159-161
ClientBehaviorl.resx file, 155
Default.aspx, 162-163
ExtenderControl class, 158
ExtenderControll.cs file, 155
TextBoxFocusExtender.cs file, 156-158

Folder List (Expression Web), 194

formatting Expression Web code, 202-203

form templates, 32-34

Forms authentication, 62-65

functions. See specific functions

G

Gadget.xml file, 186
Gadgets
adding to Vista Sidebar, 179-181
creating, 181-187
Gadget.xml file, 186
GetRandomNumber.html file, 187

JavaScript proxy, 183-185
web service, 181-183
definition, 179
GetRandomNumber Gadget
Gadget.xml file, 186
GetRandomNumber.html file, 187
JavaScript proxy, 183-185
web service, 181-183
testing, 187-188
Get Employee Information WCF service, 41-43
$get function, 51
getAllResponseHeaders method, 9
getModels.aspx page, 14-15
GetRandomNumber Gadget
Gadget.xml file, 186
GetRandomNumber.html file, 187
JavaScript proxy, 183-185
web service, 181-183
GetRandomNumber.html file, 187
getResponse method, 12, 19-20
getResponseHeader method, 9
GetScriptDescriptors method, 158
GetScriptReferences method, 159
getSerializedEmployee() method, 61
global namespace, 49-51

H-l

HeaderCssClass property (Accordion control), 110

HoverMenu.aspx sample page, 127-130

HoverMenuExtender control, 103, 127-130
HoverMenu.aspx example, 127-130
properties, 130

ID property
Timer control, 89
UpdatePanel control, 78
Init event (Application class), 52
initalizeRequest method, 98

initializeBase function, 161

initializeRequest event, 94
InitializeRequestEventArgs type, 68
IntelliSense, 204

Interval property (Timer control), 89
invokingRequest event, 54

isinAsyncPostBack property (PageRequestManager
object), 94

J

JavaScript Object Notation (JSON), 41

JavaScript proxy classes, generating, 183-185
AJAXWebServiceProxy.aspx web page, 38-39
Get Employee Information WCF service, 41-43
JSON (JavaScript Object Notation), 41
MyMathService.cs file, 37-38
MyMathService.svc file, 37
overview, 37

JavaScriptSerializer class, 56

JSON (JavaScript Object Notation) objects, 41
processing with Sys.Serialization, 57-61

K-L

Key enumeration, 66

libraries, simple AJAX library, 11-13

lists, connecting dropdown list boxes
AjaxDropdowns.aspx page, 16-18
getModels.aspx page, 14-15
getResponse method, 19-20
models XML records, 15

ListSearchExtender control, 103

load event (Application class), 52

LoadPostData method, 35

LoadScriptsBeforeUl property (ScriptManager), 34

Login function, 65

Logout function, 65

.NET Framework 3.5 245

M

Manage Styles (Expression Web), 198
MaskedEditExtender control, 103
MaskedEditValidator control, 103
master/detail UpdatePanel controls, 82
methods. See specific methods
Microsoft Expression Web. See Expression Web
Microsoft.SharePoint.targets file, 231-234
modal windows, displaying
ModalWizard.aspx page, 138-144
stylesheet, 134-138

ModalPopupExtender control, 103, 134. See also
modal windows, displaying

ModalWizard.aspx page, 138-144
models XML records, 15
ModificationEntry structure, 218-219
MouseButton enumeration, 66
multiple UpdatePanel controls
Default.aspx page, 87-89
master/detail UpdatePanel controls, 82
ucCustomerOrders.ascx page, 85-87
ucCustomers.ascx page, 82-85
user control sequence diagram, 81
MutuallyExclusiveCheckBoxExtender control, 103
MyMathService.cs file, 37-38
MyMathService.svc file, 37

N

namespaces. See specific namespaces

.NET Framework 3.5, deploying as
SharePoint feature

CreateChildNode method, 219

feature activation, 237

Feature.xml file, 216-217

FeatureReceiver class, 214-216, 219-228
Microsoft.SharePoint.targets file, 231-234
ModificationEntry structure, 218-219
scope, 214

How can we make this index more useful? Email us at indexes@samspublishing.com

246 .NET Framework 3.5

SharePoint Solution Management, 235
SolutionConfig.xml elements, 229-230
SolutionConfig.xml file, 217-218, 228-229
SolutionPackage.ddf file, 230-231
STSADM.EXE command-line utility, 234
STSDev tool, 213-214

New Page dialog, 192

NoBot control, 103

NoFocusCSSClass property, 158, 161-163

NumericUpDownExtender control, 103

o-P

objects. See specific objects
OnAsyncPostBackError method, 35
OnButtonClick function, 40
onGetEmployeeClick function, 43

onreadystatechange property (XMLHttpRequest
object), 10

OnResolveScriptReference method, 35
OnSucceeded function, 40

OnTick property (Timer control), 89
Open method, 9

pagelLoad function, 51
pagelLoaded event, 94
PageLoadedEventArgs type, 68
pagelLoading event, 94
PageLoadingEventArgs type, 68
PageRequestManager object
events, 68-71, 93-94
methods, 93-94
overview, 93
properties, 93-94
sample application, 95-99
PagingBulletedListExtender control, 103
partial-page rendering, 43-47
definition, 23
PartialPageRendering.aspx page, 44-46
products_sel stored procedure, 44
Timer control, 90-92

PartialPageRendering.aspx page, 44-46
PasswordStrength control, 103

Point class, 66

PopupControlExtender control, 103

PopupControllD property (HoverMenuExtender
control), 130

PopupPosition property (HoverMenuExtender
control), 130

PostBackTrigger, 79
procedures, products_sel, 44
processClientClick function, 51

processing JSON objects with Sys.Serialization,
57-61

Products.xml file, 205

Products.xsl file, 207-209

products_sel stored procedure, 44
ProfileService property (ScriptManager), 34
projects, 24

QR

Rating control, 104

readyState property (XMLHttpRequest object), 10

refreshing UpdatePanel controls with
triggers, 79-81

RegisterArrayDeclaration method, 35
RegisterClientScriptBlock method, 35
RegisterClientScriptinclude method, 35
RegisterClientScriptResource method, 35
RegisterDataltem method, 36
RegisterDispose method, 36
RegisterExpandAttribute method, 36
RegisterExtenderControl method, 36
RegisterHiddenField method, 36
RegisterOnSubmitStatement method, 36
RegisterPostbackControl method, 36
RegisterScriptControl method, 36
RegisterStartupScript method, 36

$remove function, 51

rendering, partial-page, 43-47
definition, 23
PartialPageRendering.aspx page, 44-46
products_sel stored procedure, 44
Timer control, 90-92

Render method, 36

RenderMode property (UpdatePanel control), 78

ReorderList control, 104

ResetWebServer element, 229

ResizableControlExtender control, 104

ResolveScriptReference event, 36

responseBody property (XMLHttpRequest
object), 10

responseText property (XMLHttpRequest
object), 10

responseXML property (XMLHttpRequest
object), 10

RoleService property (ScriptManager), 34

RoundedCornersExtender control, 104

S

SafeControlSettings element, 230
saveEmployee() method, 61
scope of SharePoint solutions, 214
ScriptManager control
AJAX Web Form template, 32-34
events, 36
JavaScript proxy classes, generating

AJAXWebServiceProxy.aspx web
page, 38-39

Get Employee Information WCF
service, 41-43

JSON (JavaScript Object Notation), 41
MyMathService.cs file, 37-38
MyMathService.svc file, 37
overview, 37

methods, 35-36

overview, 22-23, 31-32

partial-page rendering, 43-47

Software Development Lifecycle (SDLC) 247

properties, 34-35

Services element, 40
ScriptManager method, 35
ScriptManagerProxy control, 23
ScriptMode property (ScriptManager), 35
ScriptPath property (ScriptManager), 35
Scripts property (ScriptManager), 35
SDLC (Software Development Lifecycle), 8
Selectedindex property (Accordion control), 110
selecting control extenders, 153-154
Send method, 9
server-side controls, 51
services, web, 181-183
Services property (ScriptManager), 35, 40
setLocation method, 68
setRequestHeader method, 9
SharePoint

and AJAX, 165

deploying .NET Framework 3.5 as
SharePoint features

CreateChildNode method, 219
feature activation, 237
Feature.xml file, 216-217
FeatureReceiver class, 214-216, 219-228
Microsoft.SharePoint.targets file, 231-234
ModificationEntry structure, 218219
scope, 214
SharePoint Solution Management, 235
SolutionConfig.xml elements, 229-230
SolutionConfig.xml file, 217-218, 228-229
SolutionPackage.ddf file, 230-231
STSADM.EXE command-line utility, 234
STSDev tool, 213-214
EmployeeSales web part, 171-177
overview, 211-213
Solution Management, 235
Web.Config file, 166-171
SliderExtender control, 104
SlideShowExtender control, 104
Software Development Lifecycle (SDLC), 8

How can we make this index more useful? Email us at indexes@samspublishing.com

248 Solution Management (SharePoint)

Solution Management (SharePoint), 235
SolutionConfig.xml file, 217-218, 228-230
Solutionld element, 229

SolutionName element, 229
SolutionPackage.ddf file, 230-231

standards-based web sites, creating with
Expression Web, 198-202

Status property (XMLHttpRequest object), 10
statusText property (XMLHttpRequest object), 10
stored procedures, products_sel, 44

structures, ModificationEntry, 218-219
STSADM.EXE command-line utility, 234

STSDev tool, 213-214

style sheets (XSLT), generating with Expression
Web, 207-209

Sys namespace, 50-53
Sys.Net namespace, 50, 53-54
Sys.Serialization namespace
definition, 50, 54
Employee class example, 54-56
JavaScriptSerializer class, 56
processing JSON objects with, 57-61
serialization data type conversions, 57
Sys.Services namespace, 50, 62-65
Sys.Ul namespace, 50, 66-68
Sys.WebForms namespace, 50, 68-71

T

TabContainer control, 104

TabPanel control, 104

Tag Properties (Expression Web), 195-196

TargetControllD property
CollapsiblePanelExtender control, 117
ConfirmButtonExtender control, 119
DragPanelExtender control, 122
DropDownExtender control, 124
FilteredTextBoxExtender control, 127
HoverMenuExtender control, 130

TextBoxWatermarkExtender control, 133

TargetControlType attribute (control
extenders), 158

templates, AJAX Web Form templates, 32-34
testing Vista Sidebar Gadgets, 187-188

TextBoxFocusExtender control. See
FocusExtender project

TextBoxFocusExtender.cs file, 156-158
TextboxWatermark.aspx page, 131-133
TextBoxWatermarkExtender control, 104, 130-133
Timer control, 23, 89-92
ToggleButtonExtender control, 104
Toolbox (Expression Web), 196
ToolkitScriptManager control, 104
trace method, 53
traceDump method, 53
triggers
adding to UpdatePanel controls, 79
AsyncPostBackTrigger, 78
PostBackTrigger, 79
refreshing UpdatePanel controls, 79-81
Triggers property (UpdatePanel control), 78
types, 57, 68

U

ucCustomerOrders.ascx page, 85-87
ucCustomers.ascx page, 82-85
unload event (Application class), 52
UpdateCustomerOrders method, 89
UpdateMode property (UpdatePanel control), 78
UpdatePanel control
multiple UpdatePanel controls, 81
Default.aspx page, 87-89
master/detail UpdatePanel controls, 82
ucCustomerOrders.ascx page, 85-87
ucCustomers.ascx page, 82-85
user control sequence diagram, 81
overview, 23, 73-74
performance problems, 73

properties, 78

simple example, 74-77
triggers, 78-81
adding, 79
AsyncPostBackTrigger, 78
PostBackTrigger, 79
refreshing UpdatePanel control, 79-81
UpdatePanelAnimationExtender control, 104

UpdateProgress control, 23

\%

ValidatorCalloutExtender control, 104
Visibility Mode enumeration, 66
Visible property (UpdatePanel control), 78
Vista Sidebar Gadgets

adding, 179-181

creating, 181-187

definition, 179

testing, 187-188
Visual Studio

configuring for ASRNET AJAX Control Toolkit,
105-106

controls. See specific controls
projects

ASPNET AJAX Server Control Extender
projects, 24

ASPNET AJAX Server Control projects, 24
overview, 24
web site items, 25-26

W

WatermarkCSSClass page
(TextBoxWatermarkExtender control), 133

WatermarkText page (TextBoxWatermarkExtender
control), 133

WCF services, Get Employee Information, 41-43
Web 2.0, 6-7
web pages

adding controls to, 151-152

creating with Expression Web, 192-193

XSLT style sheets 249

web parts, EmployeeSales

code listing, 171-174

EnsurePanelFix() method, 176-177

Monthly Sales list schema, 174-175

Monthly Sales sample data, 175

rendering in SharePoint Team Site, 174-176
web services

creating, 181-183

Get Employee Information WCF service, 41-43

JavaScript proxy classes, generating

AJAXWebServiceProxy.aspx web page,
38-39

Get Employee Information WCF service,
41-43

JSON (JavaScript Object Notation), 41
MyMathService.cs file, 37-38
MyMathService.svc file, 37
overview, 37
web sites
creating with Expression Web, 193, 198-202
web site items, 25-26
Web.Config file
Forms authentication, 62
SharePoint/WSS Web.Config file, 166-171
WebRequest class, 53
WebRequestManager class, 53-54
WebServiceError class, 53
WebServiceProxy class, 53
windows
Add Gadgets dialog window, 187-188
modal windows, displaying
ModalWizard.aspx page, 138-144
stylesheet, 134-138

X-Y-Z

XML, dragging into Expression Web, 205-206
XMLHttpExecutor class, 53

XSLT style sheets, generating with Expression Web,
207-209

How can we make this index more useful? Email us at indexes@samspublishing.com

	Introduction
	1 Introduction to AJAX Technologies
	AJAX and Web 2.0
	Why Use AJAX?
	AJAX: An Example
	Using the AJAX Library
	Summary

	Index
	A
	B-C
	D
	E
	F
	G
	H-I
	J
	K-L
	M
	N
	O-P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

