

Creating Vista® Gadgets: Using HTML, CSS and JavaScript
with Examples in RSS, AJAX, ActiveX (COM) and Silverlight™
Copyright © 2008 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.
This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).
ISBN-13: 978-0-672-32968-5
ISBN-10: 0-672-32968-9
Library of Congress Cataloging-in-Publication Data

Lal, Rajesh.
Creating Vista gadgets : using html, css and javascript with examples

in rss, ajax, activex (com) and silverlight / Rajesh Lal.
p. cm.

ISBN 978-0-672-32968-5 (pbk.)
1. Microsoft Windows (Computer file) 2. Operating systems (Computers)

3. User interfaces (Computer systems) I. Title.
QA76.76.O63L3546 2008
005.4'46--dc22

2008016280
Printed in the United States of America
First Printing April 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

This Book Is Safari Enabled
The Safari® Enabled icon on the cover of your favorite technology book means the book
is available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of
technical books, find code samples, download chapters, and access technical information
whenever and wherever you need it.
To gain 45-day Safari Enabled access to this book:

• Go to http://www.informit.com/onlineedition
• Complete the brief registration form
• Enter the coupon code UWC5-ZPGE-RMIN-P5EG-MSHE

If you have difficulty registering on Safari Bookshelf or accessing the online edition,
please email customer-service@safaribooksonline.com.

Associate Publisher

Greg Wiegand

Acquisitions Editor

Loretta Yates

Development Editor

Todd Brakke

Managing Editor

Patrick Kanouse

Project Editor

Jennifer Gallant

Copy Editor

Margo Catts

Indexer

Ken Johnson

Proofreader

Mike Henry

Technical Editor

Marc Clifton

Publishing Coordinator

Cindy Teeters

Book Designer

Anne Jones

http://www.opencontent.org/openpub/
http://www.informit.com/onlineedition

IntroductionWith the broadest ever worldwide release of a PC operat-
ing system, in 2007 Windows Vista opened the door to an
era of gadget development. Gadgets, which reside on the
Windows Vista Sidebar, are small, lightweight, and can be
very useful applications. The Sidebar is a brand new plat-
form for innovation and it gives users a unique way to
interact with information.

This book is for people who want to create feature-rich and
professional-looking Vista Sidebar gadgets. It’s a guide for
designers, developers, and anyone else who has a basic
knowledge of HTML, CSS, and JavaScript and wants to
leverage this new and innovative platform. It’s for anyone
who wants to create a gadget for his company, or for a
programmer with a great idea to implement on a Sidebar
gadget platform, or even for a hobbyist programmer, who
wants to try his hand on a gadget platform. This book is
intended to give you ideas for what you can do with this
new platform and how you can do it.

What’s in the Book
This book starts with a brief background on gadgets, and
then gives a broad and clear view of the architecture of
gadget development. Gadget design considerations are an
important part of this book and they go side by side with
almost all the chapters that deal with gadget development.
Once you’ve read up on the concept and scope of gadget
development, the book helps you create a gadget called
MyBlog. During this process the text elaborates on the
architecture, design constraints, and implementation
details for the gadget and then details some standard prac-
tices applicable to all gadget development. The last section
deals with more advanced gadget examples that utilize
.NET, XML, XHTML, CSS, Ajax, and Microsoft Silverlight.

This book is divided into three broad sections.

Section 1: The Foundation
The four chapters in this first section give a thorough back-
ground of Sidebar gadgets. The section explains the types
of gadgets, the architecture, and the technology behind the

gadget development. The “Approach to Design” chapter helps you know the difference
between a merely good-looking gadget and a one that is professional, rich, and worth the
space it takes up on the user’s desktop. The last chapter discusses the revenue model of
the gadget: what you need to know to sell your gadgets.

Section 2: Developing a Gadget
This section walks you through the standard development process of a gadget. It details
the creation of the basic MyBlog Gadget, which makes use of an RSS/Atom feed. It also
goes through best practices with the user interface, design guidelines, and common
assumptions. The later chapters improve on the basic gadget based on standard practices
and also deal with deploying and distributing a gadget.

Section 3: Advanced Samples
The section deals with advanced samples. You will be able to create advanced gadgets
such as a Site Statistics Gadget, a Radio Gadget, and a YouTube Video Gadget. All the
samples follow standard patterns, making it easier to switch between the features and
functionality you want, when you want. You will also learn how to use ActiveX COM for
creating a utility gadget with a sample .Net Most Recent Used (MRU) Gadget. The final
chapter shows you how to create a gadget with Microsoft Silverlight. You will also see
how, in just a few minutes, to create a Sidebar gadget with Microsoft Popfly.

If you are a relatively new gadget developer, I would suggest you to start with the first
section. If you have basic background knowledge of gadgets and you just want to start
with the step-by-step practical approach to gadget development, you can directly start
with the second section, “Developing a Gadget.” The third section, “Advanced Samples,”
is for people who have developed a gadget and want to go beyond the basics of gadget
development. Each chapter in the third section is actually an advanced sample dealing
with a particular type of gadget in a scenario of its own.

Special Features and Notations
This book is meant to be a definite, precise, and concrete guide for gadget development.
By pruning redundant information and filtering and highlighting the information that is
more crucial, we have tried to make it as comprehensive as possible. This book includes
various features and conventions that help you get the most out of the book.

HTML, CSS, and JavaScript code blocks will be shown as follows:

<HTML>

Code in HTML, CSS, and JavaScript

</HTML>

Sample single code lines will look like this:

Statement one;

Statement two;

Create Killer Vista Sidebar Gadgets Using HTML, CSS, and Ajax2

Other comments will also show up in the code with two backslashes

// Comment one

// Comment two

The book also uses the following boxes for important information:

Introduction 3

A Note includes extra information to broaden your understanding of a topic.

NOTE

A Tip provides alternative, shortcuts, or insider information of the topic being discussed.

TIP

A Caution warns you of potential traps and pitfalls.

CAUTION

Supporting Website
The book has a supporting website where you can download all the codes and gadgets.
The website also has blogs I have written on Sidebar gadgets and some of my personal
views on gadget development. You are invited to check that site and contact me person-
ally. You will also find errata and most updated information there.

Visit www.innovatewithgadgets.com

www.innovatewithgadgets.com

CHAPTER

An Approach to
Design

“You know you’ve achieved perfection in design, not when you
have nothing more to add, but when you have nothing more to

take away.”

—Antoine de Saint-Exupery

Design Considerations
This chapter is about gadget design and user interface.
Design starts with the factors that determine the type of
gadget you want to develop, the information it will display,
the user interface, the usage pattern, and the behavior of a
gadget.

Design includes the dimensions, the images, the text, and
the “look and feel.” You also decide how the gadget inter-
acts with the user and how it interacts with the system.
This chapter discusses the visual theme, how the gadget
can look like a part of Windows Vista, and the overall user
experience.

Before you start, keep these two things in mind:

• Justify the space—The Windows Vista Sidebar is
neither very tall nor wide. It can have—at the most—
five or six gadgets at any particular time. Thousands
of other gadgets, freely available online, will compete
for the same screen space. So, offering the set of
features a user critically needs is an important factor.
Be prepared to convince users that your gadget justi-
fies the space.

3
IN THIS CHAPTER

• Design Considerations

• Challenges for the User
Interface

• Visual Themes

• Transparent Images in the
Gadget

• Ensure overall quality—If your users don’t experience quality throughout your
gadget, they may conclude there is a lack of quality everywhere. This means you need
to pay attention to the quality of icons, images, text, background, and interaction.
Each of these elements is equally important. A good idea and a great implementation
with an average user interface cannot stand up to the competition (see Figure 3.1).

CHAPTER 3 An Approach to Design50

FIGURE 3.1 Two gadgets that perform the same function, one with a nice interface and the other
plain and simple. Which one would you prefer?

Consider the following four factors before designing a gadget (see Figure 3.2):

• Information first

• The right user interface

• The gadget’s usage pattern

• The gadget’s behavior

Information First
Right User
Interface

Usage Pattern Gadget Behavior

Design

FIGURE 3.2 A gadget’s design is an important aspect of development.

Putting Information First
Gadgets are meant for a single task. When designing a gadget, keep in mind that a gadget
should have a small set of goals relevant to the specific task. A gadget should show only
data suitable for that task and that task only. Information in the gadget window should
satisfy the following rules:

• Live data

• Information for quick access

• User’s choice

• Brief information for further action

Let’s take a closer look at what each of these really means.

Live Data
Gadgets should display only information that changes regularly, such as live feeds, news
updates, daily weather, battery status, and so on. Information that is static for more than
a day makes a gadget dull.

A user looks to a gadget to see interesting things that are active. Fun gadgets are an excep-
tion but can be made more interesting if live data is also added. For example, a subset of a
popular game is nice to have in a Sidebar, but it’s better if there is live information, like a
regularly updated scoreboard, or live updates about the game. If that is not possible,
adding a capability to change the gadget’s wallpaper (background image) is a good option.

Easy Access to Information
Gadgets are particularly useful at showing information for which users don’t have to start
an application or open a web page. A good example might be stock values, an event
calendar, traffic maps, local fuel cost, and so forth. Any information that saves a user’s
time makes a gadget worth the space it takes.

Information Relevant to Individual Users
Gadgets are all about user choice and preference. If there are a lot of users for a particular
newspaper’s crossword puzzle, a gadget that taps into that theme can be an instant hit
with them. User-tailored gadgets are very popular, such as a gadget for a Flickr website
showing the user’s own shared pictures or the user’s favorite blog feed.

Information for Further Action
The gadget should show enough information for the user to decide on further action. For
example, a website statistics gadget should not show each and every detail corresponding
to website usage. It should show statistics for a week or a day and let users decide what
further action they want to take.

Case Study: The Soapbox Video Gadget
Imagine you wanted to create a video gadget (see Figure 3.3). The task is to create a gadget
for a video feed from http://soapbox.msn.com with the goal of accomplishing the following:

• Listing frequently updated videos from soapbox.msn.com in a simple and aestheti-
cally pleasing way

• Playing a video in the flyout

A video feed normally contains thumbnails of the video, reviews, and ratings from users.
A gadget with these goals gives you the following options for design decision:

• Making available the thumbnails and ratings for each video

• Adding capability to browse video by categories

• Functionality to search for videos by keyword

• Video resize option with support for Windows Media Player and Flash Player

• Easy page-wise access to list of videos

Design Considerations 51

3

http://soapbox.msn.com

Figure 3.3 shows a preview of the Soapbox Video Gadget with all these options. More
information about the gadget can be found at http://www.codeproject.com/KB/gadgets/
SoapBoxGadget.aspx.

CHAPTER 3 An Approach to Design52

FIGURE 3.3 This fully developed gadget gives quick access to Soapbox video.

Try to make your gadget feature-rich by providing a complete set of functionality related
to a specific task (see Figure 3.4). Think like a user. If the gadget shows a list of videos, the
gadget should also categorize them and give easy access to all the items in the video feed.

Providing the complete set of functionality does not mean that the gadget should do
everything the Soapbox video website is doing. Video sharing and review capabilities in
the website may not be a part of the gadget. Complete functionality here means the
gadget should give access to all the information from the video feed, which is the gadget’s
input. The users should be able to filter videos, sort them, search by keyword, and play
videos in the way they want. In Chapter 11 we will see how to create a video gadget
using YouTube Video feedback.

FIGURE 3.4 This gadget is able to categorize MSN Soapbox videos, giving users easy access to
the one they want to see.

http://www.codeproject.com/KB/gadgets/SoapBoxGadget.aspx
http://www.codeproject.com/KB/gadgets/SoapBoxGadget.aspx

Refer to the checklist of guidelines for gadget development and compare that to this
gadget. What live information does the gadget display?

• Frequently updated soapbox feed.

• Currently featured videos.

• Recent videos.

Does the gadget offer quick access to the information it provides?

• Ability to click on the thumbnail to play the video in the flyout.

• Ability to browse through the video list.

Does the gadget give the user a choice?

• Settings page gives an option to customize the list of videos.

• Users can select the media player and video size.

Does the gadget provide information that lets the user decide on further action?

• Gadget gives information about the video’s ratings, a thumbnail image, and the title
in the main window for users to decide to watch the video.

• Gadget gives Previous and Next options for browsing the videos in the feed.

Constructing the Right User Interface
Gadgets are a visual experience and the right user interface makes all the difference. Here
are four pointers for creating one:

• Keep the gadget simple and aesthetically pleasing.

• Show only relevant information.

• Make use of visuals such as icons and images, rather than text.

• Be sure that the gadget is not too obtrusive.

Simplicity and Aesthetics
A gadget should look simple and aesthetically pleasing. Take a look at the gadget samples
provided in Figure 3.5.

Clearly the objects in the first pair are both simpler and more aesthetically pleasing than
the obnoxious clock and difficult-to-read note. If a gadget is going to be part of the
desktop, it is something the user will look at every day; make sure it is as clear and
aesthetic. The choice of color and fonts can also make a difference.

Design Considerations 53

3

FIGURE 3.5 Choice of clear image and aesthetically pleasing fonts can make a lot of difference
in gadget design.

Show Only Relevant Information
The maximum width of a gadget is 130 pixels. That’s not a lot of room to work with,
especially if there’s a lot of information you want to convey. It can be done, however. Just
look at the RSS feed and Calendar Gadgets shown in Figure 3.6.

CHAPTER 3 An Approach to Design54

THIS IS ANOTHERSAMPLE NOTE

FIGURE 3.6 The RSS feed Gadget shows the title partially in the gadget window, and the
complete title is shown as the tooltip.

So, what is it exactly that makes these well-designed gadgets? For one, titles should gener-
ally be only as long as the space allows. With some gadgets, like this RSS news feeder, that

isn’t possible. But in this case, tooltips are applied to good effect. And, although you can’t
see this clearly from the black-and-white photos in this book, the fonts have different
colors to highlight the title.

The RSS Reader Gadget doesn’t try to do too much. It displays only four records at a time,
and the Calendar Gadget displays just the current month or the current day, based on the
user’s choice.

Figure 3.7 shows two more gadgets that are designed to accomplish the same goals, but
suffer from an extremely poor design.

Design Considerations 55

3

FIGURE 3.7 The gadget with scrollbars and the overfilled calendar both try to squeeze too much
information into the small space.

The presence of a scrollbar in a gadget is unacceptable. It’s far better to use paging
because a scrollbar can further reduce the already small space a gadget provides.
Providing paging functionality to browse multiple items with previous and next options
and page numbers can remove the clutter from the gadget screen. Both the Blog and the
Calendar Gadgets have far too much information cramped into a small space. That’s the
kind of design mistakes you should strive to avoid when designing your own gadgets.

Make Use of Visuals
Make use of icons, images, and signs as much as possible; they give visual clues of the
functionality (see Figure 3.8). For example, a Weather Gadget can use pictures of clouds,
the sun, and rain instead of corresponding text to depict different weather condition. The
proper use of images makes the gadget more user friendly.

Two gadgets are compared in Figure 3.8. Both gadgets show the same information, using
different designs. However, the designs in the top row have visuals that give a rich experi-
ence to the user. When designing a gadget, check for the following:

• Can any information displayed in the gadget can be replaced by visuals?

• Is the gadget too plain or does it lack design?

Visual themes are covered in more detail in later section.

FIGURE 3.8 Pictures of clouds and sun in the Weather Gadget depict the weather. Computer
usage in the form of a CPU meter is more intuitive than plain text.

Not Too Obtrusive
The design of the gadget should not be too obtrusive. The use of buttons and user
controls should be avoided at all costs. For example, using a Previous and Next button
can make the gadget look ugly. Instead, use proper images and show them when the
mouse is moved over the gadget.

Figure 3.9 compares a Picture Slideshow Gadget with two different designs. The lower
gadget shows buttons to browse either the previous image or the next one. The buttons
are too obtrusive for a good design. The upper images are examples of a good design. The
gadget’s default view (upper left) is without any Previous or Next buttons. When the
mouse is moved over the gadget, previous and next images are shown.

The Picture Slideshow Gadget shows the action buttons (images) on mouse hover. A good
mouseover effect (refer to the upper-right image of Figure 3.9) with proper visuals makes a
good design. Note that these are not buttons but images that are aligned with the gadget
theme.

CHAPTER 3 An Approach to Design56

FIGURE 3.9 The always visible Previous and Next buttons are used to browse images in the
Picture Slideshow Gadget (lower image), but they are too obtrusive for the small space.

Usage Patterns
The type of gadget you want to create also has an impact on its design. As discussed
previously, there are four broad classifications:

• Information gadget

• Application gadget

• Utility gadget

• Fun gadget

These classifications all have common user interface guidelines, but each has its own
specific design pattern that needs to be considered during development.

Information Gadget
Information gadgets collect data from multiple sources and are time sensitive. An infor-
mation gadget normally uses RSS feeds that contain 10 or more items. To display them all
in the gadget proper, page number and previous/next options should be available. The
use of such options is also referred to as paging. These gadgets refresh their data regularly,
so they should not be visually distracting or obtrusive (see Figure 3.10). As stated previ-
ously, there should be no scrollbars.

Design Considerations 57

3

FIGURE 3.10 This example of an RSS Reader Gadget has paging options 1–4 and no distract-
ing images. It reflects good gadget design.

Application Gadget
These gadgets depend on other applications or products for their data and act as a side
product or a quick tool for data visualization. These gadgets should be designed with the
main product or application in mind. The visual theme should go along with the original
application (see Figure 3.11).

CHAPTER 3 An Approach to Design58

FIGURE 3.11 An application gadget mimics the user interface of the original application.

This is an example of a Microsoft Office Recent Documents gadget. The gadget shows the
recently used Microsoft Office documents. The corresponding logo of Microsoft Office
and icons for Microsoft Word, Excel, and PowerPoint make the gadget look rich and
pleasing.

Please note that the gadget shown in Figure 3.11 is developed at Microsoft and it uses icons and
images that are copyrighted by Microsoft and should not be used in publicly distributed gadgets
without permission. Please check the “Use of Microsoft Copyright content” at
https://www.microsoft.com/about/legal/permissions/default.mspx.

CAUTION

Utility Gadget
Utility gadgets provide quick information or shortcuts to frequently accessed tools and
features. There should be no gimmicks in a utility gadget. The size should be appropriate:
It should be the smallest of all other types of gadgets and should correspond to the
feature it provides (see Figure 3.12).

https://www.microsoft.com/about/legal/permissions/default.mspx

FIGURE 3.12 A Battery Monitor Gadget displays percentage and time remaining in appropriate
size.

This example shows a utility gadget that indicates the amount of battery life remaining in
a mobile PC. The information it provides is the percentage of battery remaining and the
time left. The background is an image of a battery with a percentage filled with color. This
is a good design. There are no bells and whistles, but the size is appropriate and the
design is intuitive.

Fun Gadgets
Fun gadgets are more distracting than other types of gadgets. As a result, users are likely
to change them more frequently. Their purpose is to entertain or provide some fun activ-
ity to the user. If you are making a fun gadget, you must have a strong understanding of
your target users and the gadget should have some dynamic features to keep the user
interested for a longer period of time. It should also look visually pleasing (see Figure 3.13).

A visually pleasing experience comes with proper use of colors along with neat and clean
images. Keep these quick tips in mind:

• Do not use too many colors; try to stick with two or three colors.

• Do not use more than one bright color in your gadget window.

• Check for good contrast colors or shades of the same color.

Design Considerations 59

3

To get a better idea on different colors and contrast effects check
http://www.colorsontheweb.com/.

TIP

FIGURE 3.13 This Minesweeper Gadget has a visually pleasing interface.

The example shown here is of a Minesweeper Gadget. It uses only a few colors: gray, black
and red. It makes good use of contrast between red and black and the color also reflects
the personality of the game.

http://www.colorsontheweb.com/

What Gadgets Are Not Meant For
So far we have discussed what the different usage patterns are and what a gadget is meant
for. This section gives you an idea what a gadget is not meant for. Keep this set of rules in
mind while designing a gadget:

• Gadgets are not meant as a substitute for full applications such as email or instant
messaging.

• Gadgets should not be designed as time-sensitive applications.

• Gadgets should contain no direct advertisements.

A gadget is not meant for notification purposes. Notice of new emails or instant messages
should not be a gadget’s purpose. Applications such as instant messaging and email notifi-
cation require more robust applications such as MSN Messenger and Microsoft Outlook. A
gadget is lightweight and is designed to supplement these applications rather than
compete with them.

A gadget is also not meant for notification applications that need immediate attention
because gadgets are not executables running in the user’s desktop. They reside in the
Sidebar and the user might have closed or hidden the Sidebar to avoid distraction. A
gadget should not be a crucial application.

Gadgets can be used for advertisement purposes but are not meant to include banner
advertisements or text ads. The small size of gadgets does not allow them. Check the next
chapter to get details on the gadget’s business model.

Gadget Behavior
The behavior relates to the way the gadget interacts with the user. How a gadget should
react in particular circumstances, what a gadget is meant for, and what it is not meant
for—all this decides the gadget’s behavior.

You need to consider the following to ensure proper gadget behavior:

• Gadget configuration

• Refreshing a gadget

• Errors, information, and warnings

• Service not available information

Gadget Configuration
Most gadgets have an optional settings page that can be used to configure the gadget. You
access it by clicking on the Option menu in the right-click context menu or by clicking
the settings icon in the top-right corner of the gadget (see Figure 3.14).

Gadget configuration is the only option a user has to customize the gadget. It is a single
administration page per instance of the gadget. Any configuration change in the settings
page is applied to only that instance of the gadget. Choose wisely what changes a user

CHAPTER 3 An Approach to Design60

would like to have in the gadget, based on its functionality. For example, if the gadget
allows, give a resize option to a mini version of the gadget with absolute essentials. This
gives the user the opportunity to add more gadgets to the Sidebar, which means that your
gadget has a better chance of being utilized.

Design Considerations 61

3

FIGURE 3.14 A settings page of a Weather Gadget enables the user to select a location, as well
as choose Fahrenheit or Celsius to display temperature.

A settings page gives the user an option to customize the gadget according to choice. A
configuration page gives more flexibility and freedom to the user and so increases a
gadget’s usability.

Refreshing a Gadget
If your gadget displays live data, you might need to refresh it regularly or on user
demand. Keep in mind that if a user has a slow Internet connection, it can take some
time for a gadget to reload. Using a loading image in the waiting screen with the message
Getting data... or loading... is recommended (see Figures 3.15).

FIGURE 3.15 A Weather Gadget displays a Getting Data screen, along with a Vista busy cursor
(image on the left) to display the status.

Errors, Information, and Warnings
The gadget sometimes needs to display status to the user. For example, an RSS Feed
Gadget needs to tell the user when the feed is not available, or if there is no Internet
connection available to fetch data from the remote server. These messages can also be
custom error messages, warnings, or other information. All these status messages should
be shown as inline text with standard 16×16 icons, like the ones shown in Figure 3.16,
for the type of message. Pop-up dialog boxes are not allowed in a gadget.

FIGURE 3.16 Standard icons for errors, information, and warnings need to be used for the corre-
sponding status.

A gadget is an HTML file with scripts, so make sure you have handled all the possible
errors in the gadget. If there is an unexpected error or warning, display it in the same way
as the Getting Data screen shown in Figure 3.15, or display the Service Not Available
screen. If the error inside a gadget is not handled properly, a default runtime error
message is displayed along with the line number.

JavaScript error messages, like the one shown in Figure 3.17, are annoying. One of these
messages and the user will lose all faith in the gadget and won’t hesitate to remove or
even uninstall it. A good practice is to encapsulate each JavaScript function inside an
error handler, a try-catch block.

CHAPTER 3 An Approach to Design62

FIGURE 3.17 Typical JavaScript error messages, like this one, are too vague to be useful to the
end user.

A try-catch block is a piece of code that ensures the execution of the catch block if any
error occurs inside the try block. Here is the example in JavaScript. The code ensures that
the user doesn’t get a default JavaScript error dialog:

try

{

// your script code here

}

catch (e)

{

//set and display your inline error message and icon here

}

Service Not Available Information
Service Not Available is a default screen that is used in most of the common scenarios.
Use the Service Not Available screen where appropriate. For example, if the gadget is in a
mobile laptop and the laptop disconnects from the Internet, show a screen with the
information icon like the one shown in Figure 3.18.

Challenges for the User Interface 63

3

FIGURE 3.18 A Weather Gadget shows a Service Not Available screen when there is no Internet
connection, along with the information icon.

Sample code would look like this:

If (CheckInternetConnection)

{

// your functionality code here

}

else

{

//set and display your inline “Service not available” message and icon here

}

Challenges for the User Interface
A gadget looks quite simple, but developing a rich and effective gadget takes much more
than HTML and JavaScript code. The design of the gadget almost always decides the fate
of the gadget. Therefore, while developing gadgets an important factor to keep in mind is
size limitations.

So far, we have approached gadget design in a methodical way. If you take care of infor-
mation first and consider the usage pattern, you can develop a good user interface and
ensure the behavior of the gadget. It’s time to give boundaries to the gadget. Note that by
boundaries, I mean the actual dimensions of all the interfaces of the gadget.

A gadget should not be treated as a web page. For example, the Zodiac Sign Gadget in
Figure 3.19 outgrows the width of the Sidebar and has scrollbars. This is not a good
design. The size of the gadget window should not be larger than the Sidebar when
docked. A larger size is desirable only in the undocked mode.

FIGURE 3.19 A Zodiac Sign Gadget with width greater than that of the Sidebar looks cumber-
some in the desktop.

Knowing the standard dimensions to use when designing specific gadget types is essential
for you to have success in gadget development.

Standard Dimensions
All the interfaces in a gadget are HTML pages, each with recommended and allowed
dimensions. These dimensions are set in the corresponding CSS files. There are different
recommended dimensions for the different types of pages you might use. These page
types include

• Gadget page when docked

• Undocked gadget

• Settings page

• Flyout page

Each of these types is documented in more detail in the following sections. Table 3.1
summarizes the recommended and maximum dimensions for each page type. These
dimensions are recommended by Microsoft. More information on guidelines can be
found at http://msdn2.microsoft.com/en-us/library/aa511443.aspx.

TABLE 3.1 The Maximum Dimensions for Each Page Type

Recommended Maximum Minimum
Type of Page Width×Height Width×Height Width×Height

Gadget main page when 130 pixels×150 pixels 130×200 130 pixels×57 pixels

docked 5 pixels transparent

border (2 left/3 right)

Gadget page when 250 pixels×180 pixels 400 pixels×400 pixels 130 pixels×57 pixels

undocked (floating)

Settings page 280 pixels×180 pixels 300 pixels×400 pixels Variable

Flyout page 320 pixels×240 pixels 400 pixels×400 pixels Variable

Gadget Page When Docked
A gadget width when docked should be not more than 130 pixels. The Sidebar width is
150 pixels. The image used for the gadget’s background needs to have two pixels on the
left and three pixels on the right side for the gadget’s drop-shadow effect. These five
pixels are also sometimes kept transparent (see Figure 3.20).

The minimum height for a gadget is 57 pixels, which accommodates the Settings and
Drag icons in the upper-right corner. The maximum height for a docked gadget is 200
pixels. Remember that a gadget that utilizes space efficiently is more likely to be used.

The recommended size for a docked gadget is 130×150 pixels.

CHAPTER 3 An Approach to Design64

http://msdn2.microsoft.com/en-us/library/aa511443.aspx

FIGURE 3.20 The Currency Gadget docked size is 130 pixels wide and 83 pixels high.

Undocked Gadget
An undocked gadget size should differ according to the gadget’s functionality. If the
gadget needs more real estate when undocked to show more information, the size
changes accordingly. The maximum size is 400×400 pixels, and the recommended size is
250×180 (see Figure 3.21).

Challenges for the User Interface 65

3

1.000

0.731

USD

EUR

150 Pixels

130 Pixels

Docked in the Sidebar

Background Image
when docked

2 Pixels 3 Pixels

FIGURE 3.21 The undocked size for the Currency Gadget is 254×196 pixels.

Settings Page
The size of the settings page, like the one shown in Figure 3.22, depends on the amount
of customization given to the user. For example, a Weather Gadget just needs to have an
option for city and for temperature unit. The maximum allowed size for a settings page is
300×400. The recommended size is 278×180.

Flyout Page
The flyout window is meant for extra information and is optional. The maximum size
allowed for a flyout page is 400×400 pixels. The recommended size is 320×240.

FIGURE 3.22 The settings page for the Notes Gadget is 278×310.

Other Interface Guidelines
The following is a list of other interface guidelines that should be considered:

• Use Windows styles for text, cursors, icons, and so on. Because gadgets reside within
the Vista operating system, the images, text, and icons used should go along with
the Vista theme.

• Use a similar style for the gadget’s docked and undocked states. The style used for
fonts, colors, and sizes should not be completely different between docked and
undocked state.

• A gadget should be self-explanatory, with no need for help files. A gadget is a light-
weight application and should be simple to understand and use.

• After installation, the gadget should start working. Initial gadget configuration
makes a gadget look cumbersome. A gadget should come with working default
settings. For example, a Weather Gadget shows the weather of a default city as soon
as it is installed. The user is able to customize it later. Asking the user for a configu-
ration as soon the gadget is installed is not the norm and should be avoided.

• An option to resize the gadget in its docked state is absolutely essential in a good
design. A gadget that comes with an essential mini version in the docked state
becomes an instant favorite of users.

• Flyouts should be used for additional information, but keep in mind that they auto-
matically hide when the focus is in any other window. Flyouts cannot be used to
display live data updates.

CHAPTER 3 An Approach to Design66

Visual Themes
The visual theme determines the look and feel of the gadget. Visual theme is about
images, text, fonts, colors, sizes, and styles—everything together. It is all about what users
see and also what they don’t see. They all work together to present a unified theme to a
user. Here is the list of items to consider when developing a theme for your gadget:

• Title

• Icon

• Drag image

• Background image

• Controls

• Text and style

A gadget’s visual theme starts at its icon and title, which appear in the Gadget Picker
window after installation.

Title
Keep the gadget’s title to two or three meaningful words, 15 letters maximum, so that it
displays properly in the Gadget Picker. For example, for a Google Search Gadget, use the
title “Google Search” rather than “Google.com Search bar.” Figure 3.23 shows two gadgets
in the Gadget Picker window. The first one has the name “Currency” and the second one
is called “MyMoneyGadget,” which displays as “MyMoneyGad….” You can avoid this
undesirable result by keeping the title short.

Icon
A transparent icon gives a rich look. The icon.png file is an image file whose dimensions
are 64×64. Figure 3.23 shows two versions of a gadget that compares different currencies
of the world. The left image uses a meaningful title and an attractive icon. The right
image, MyMoneyGadget, is not a meaningful title and the icon is very crude. This is not a
good design.

Visual Themes 67

3

FIGURE 3.23 To avoid turning off potential users from the start, gadgets should have an attrac-
tive icon and short title.

Drag Image
The drag image appears when you try to drag an image from the Gadget Picker window to
the Vista Sidebar. The source of the drag image is drag.png. It’s meant to show the screen-
shot of the actual working gadget in its docked size (see Figure 3.24).

CHAPTER 3 An Approach to Design68

FIGURE 3.24 When a clock gadget is dragged in the Gadget Picker window, it shows the
drag.png image.

Background Image
The gadget’s background image is the wallpaper for the gadget. It is normally a plain
image with rounded curves. The image is selected based on the gadget’s functionality. An
image of a world map for a Currency Gadget, for example, is appropriate (see Figure 3.25).
Multiple images are used for the gadget for different modes, like docked and undocked.
The images used can also be different for different sizes of the gadget.

FIGURE 3.25 A Currency Gadget uses different images to display the gadget’s background in
different sizes.

When the gadget is docked, the image should have a shadow of 2 pixels on the left and 3
pixels on the right. When the image is undocked, the shadow should be more promi-
nent—10 pixels to the left and 18 pixels to the right.

You can add the shadow to an image by using photo-editing software or the graphics
protocol provided by the Vista Gadget Model. A black shadow with an opacity level 25%

can be used for the docked image for a two-three-pixel shadow, and an opacity value of
75% can be used for a 10-pixel shadow in images for undocked gadgets.

Controls
For any controls or action buttons that need to appear on the gadget, only the glyph
images consistent with Windows should be used. Figure 3.26 shows a number of these
glyphs with possible actions they can each represent. If the action buttons need to be
shown in the gadget’s main window, always try to keep them hidden by default and have
them activate only on mouse hover or when the gadget is active. All these glyph images
can be found in the Extras section in the book download.

Visual Themes 69

3

FIGURE 3.26 The glyph images that are consistent with the Windows Vista user interface should
be used in the gadget.

Figure 3.27 shows an example of a gadget with controls that are hidden until the user
hovers the mouse over the gadget.

FIGURE 3.27 The Notes Gadget by default (left image) does not show the action buttons. When
the mouse is moved on the Notes Gadget (image on the right), the action buttons are visible.

Text and Style
The fonts and the styles used to format text in the gadget are also very important while
designing a gadget. The style sheet is a language used to describe the presentation of an
HTML page. A gadget can use multiple sStyle sheets for different pages of the gadget
window, such as the settings page and the flyout page. The style sheet and font you
should use depend on the gadget’s functionality and theme, and can vary with different
gadgets. Here is a link that can further help you understand HTML and CSS:
http://www.w3.org/Style/Examples/011/firstcss.

Here is some of the standard style information as applied to the different pages. These
styles help the gadget to display a consistent look with Windows Vista.

For the gadget window:
Font: Calibri or Segoe UI

Style:

body

{

margin: 0px;

padding: 0px;

color: #000;

font-family: Calibri, Tahoma, sans-serif;

}

For the settings window:
Font: Segoe UI

Style:

body

{

padding: 0;

margin: 0px;

font-family: Segoe UI, Tahoma, sans-serif;

font-size:12px;

}

For the flyout:
Font: Calibri

Style:

body

{

margin: 0px;

padding: 0px;

color: #ffffff;

font-size: 10px;

font-family: Calibri, Tahoma, sans-serif;

}

CHAPTER 3 An Approach to Design70

http://www.w3.org/Style/Examples/011/firstcss

Transparent Images in the Gadget
The images used in a gadget window have a shadow effect and sometimes semitranspar-
ent oval shapes. These images use either a PNG or a GIF image format. The recommended
images used for the gadget are in a PNG format. The next few sections describes these
formats in more detail.

Alpha Transparency
Microsoft started supporting PNG icons with alpha transparency in Windows Vista.
Creating an alpha transparent image is a process of combining two images: a central
image laid on top of a background image to create an appearance of partial transparency.
It is used to display an image that has transparent or semitransparent pixels.

Alpha transparency is used extensively in the images used for gadgets to create the
shadow or oval shape effect.

Portable Network Graphics File
PNG is an abbreviation for Portable Network Graphics. It’s an advanced graphics format
with 48-bit color. It’s one of the standard formats that is beginning to replace the use of
GIF images, which are limited to 8-bit colors (256 colors). It also includes an alpha
channel for showing transparency.

This is the standard format used in all the images for a gadget. A PNG file allows every
pixel (dot) to have any level of transparency, from completely opaque to completely
transparent and anything in between.

The PNG image format combines the best features of GIF and JPG/JPEG. It supports
binary transparency along with alpha transparency, meaning that each pixel of the image
can also have one of 256 different levels of transparency. PNG format produces a file with
approximately the same file size as that of an equivalent GIF image, assuming that they
have the same number of colors. Appendix A shows how to create a PNG image in Adobe
Photoshop.

GIF File Limitations
Graphics Interchange Format is a popular bitmapped graphics file format developed by
CompuServe. To date, it is the most widely used graphics format on the Web. Given that
GIF files can also be transparent, you might wonder why you would not want to use
them in favor of PNG. There are three reasons for not using a GIF format:

Transparent Images in the Gadget 71

3

These are merely recommendations for suitable style sheet information. Users should change it
according to the feature set that the gadget provides. For example, the Notes Gadget shown in
Figure 3.27 uses italic fonts.

NOTE

• GIF files support only 100% transparency; you cannot create a translucent shadow
effect.

• GIF images are limited to 8-bit colors, so they’re not very rich.

• PNG format is endorsed by the World Wide Web Consortium (W3C), an organiza-
tion responsible for managing standards for the World Wide Web.

About Accessibility
Accessibility is a way of producing applications accessible to the broadest range of people.
This includes people with disabilities such as poor eyesight, motor impairments, and so
on, and also to people who prefer to use keyboards for fast access, people with limited
bandwidth, with older computers, people using applications such as text-only browsers,
screen readers, and other devices to access applications. To learn more about adding acces-
sibility to an application, visit the Microsoft Accessibility Developer Center at
http://msdn2.microsoft.com/en-us/accessibility/default.aspx.

For a Sidebar gadget, accessibility relates to theme colors, high color contrast, and HTML
accessibility in general. Adding accessibility to a gadget means taking care of gadget
design in terms of the following:

• Keyboard access

• HTML accessibility

• Theme colors and contrast

Keyboard Access
One of the fundamental accessibility scenarios is that some users use only their
keyboards. This is also a requirement from power-users who love the speed of using the
keyboard rather than a point-and-click device such as a mouse. So, specifically, the
Sidebar and the gadgets themselves should be accessible from the keyboard.

The keyboard support listed in Table 3.2 is provided by the Sidebar

TABLE 3.2 Shortcut Keys to Access Sidebar Gadget

Keyboard Access Action

Windows logo key + Spacebar Brings all gadgets to the front and puts focus on the Windows Sidebar

Windows logo key + G Cycles through the gadgets

After your gadget is in focus, you have to make sure all its features are accessible through
the keyboard. The following lists important points to keep in mind when adding accessi-
bility:

• Focus should be put on the gadget when it is loaded.

• Users should be able to tab through the controls and links in the gadget.

CHAPTER 3 An Approach to Design72

http://msdn2.microsoft.com/en-us/accessibility/default.aspx

• The Enter key should act like a mouse click to push a button or follow a link and
should call the onclick event of the control or link.

• The onfocus and onfocusout functions should be called to simulate the mouse
hover effect.

• Apart from the gadget main page, a gadget’s Flyout and Settings page should also be
accessible from the keyboard.

The, “About Accessibility,” section in Chapter 6, ”Design Patterns and Standard Practices,”
shows you how to implement these in a gadget.

General HTML accessibility
Because all the pages used in a gadget (the main gadget window, Flyout, and Settings
pages) are HTML pages, accessibility rules apply to them as well. To adhere to these rules
you should attend to the following:

• Provide text alternatives for images and links. Set the ALT tag in the image and
Title tag in the Anchor element. The alt text as well as the title act as a short
description of the image that serves the same purpose as the image or the link itself.
If the image is purely a decoration, then set alt=””. For example, if the gadget has a
weather image, then set alt=”Cloudy” or alt =”Partly sunny”. Reflecting what the
image conveys fulfills this requirement.

• Create content in a modular way so that the structure of the page (HTML), presenta-
tion (CSS), and behavior (JavaScript functionality) are in separate pages and the
HTML page is accessible without the CSS file.

These guidelines are from the W3C Initiative Web Content Accessibility Guidelines 2.0,
which can be found at http://www.w3c.org/TR/WCAG20/.

Theme Colors and Contrast
When adding accessibility to a gadget, you next need to consider the colors used in the
background, images, HTML page elements, and so forth.

• Pick contrasting foreground and background colors to make your gadget informa-
tion more visible. This is especially important for the color of the text against the
background color. Contrast is a function of lightness, hue, and saturation. Here’s a
resource from the Lighthouse for the Blind, an expert in vision disabilities:
http://www.lighthouse.org/accessibility/effective-color-contrast/.

• Avoid using red and green combinations because people with red-green colorblind-
ness cannot distinguish between red and green. There are other types of colorblind-
ness, but red-green is the most common.

• Do not use color alone to convey information.

About Accessibility 73

3

http://www.w3c.org/TR/WCAG20/
http://www.lighthouse.org/accessibility/effective-color-contrast/

Index

A

About screen (Settings page, Recent
Project Gadgets), 222

accessibility techniques

enter key as mouse clicks, 135-137

Flyouts, 137-138

HTML, 73

keyboard access, 72-73

putting focus on gadgets after loading, 135

Settings pages, 137-138

tab controls, adding, 135

theme colors, 73

accessing information (gadget design), 51

Active Desktop feature (Windows XP), 9

ActiveX COM, 38, 214

initializing inside gadgets, 215

Windows Registry, reading settings via,
229-234

ad gadgets

benefits of, 82

case study, 81

Added Features check box (Settings page),
Site Statistics gadgets, 199

AddFeed function, feed gadgets, 147-148

AddItem function, feed gadgets, 146

addShadow() method, 46, 304-306

Adobe AIR widgets, 25

aesthetics, user interface design, 53

Ajax

buildMyContent function, Site Statistics
gadgets, 205-210

getData function, 200

getHTMLAjax function, 200-201

getTextAjax function, 190, 200-203

parseData function, 190, 203-204

parseHTML function, 200

parseHTMLAjax function, 201-202

ShowFlyout function, 204-205

Site Statistics gadget

API, 188-190

displaying portions of web pages in,
190-194

XMLHTTPRequest object, 188, 192

alpha transparencies, gadget design, 71

Always On Top property, 17

animation, Silverlight World Clock Gadget,
273-274

API (Application Programming Interfaces)

Site Statistics gadgets, 187

data retrieval, 200-204

graphs, 204-210

parsing data, 190

pie charts, 204-210

pulling text data, 188-189

Windows Registry, MRU Project Gadgets,
230-231

Apollo widgets. See Adobe AIR widgets

Apple, Dashboard widgets, 23

application gadgets, 13, 58

Assert function, debugging gadgets, 164

assumptions

feed gadgets

caching data, 133

updates, 132

functionality, JavaScript errors, 130-131

Internet connections, 131

memory, 133-134

session management, 133-134

Atom feed gadgets, 91

data storage, 92

feed example, 103

audio (streaming), playing on Radio
Gadget, 240

automatic updates, 289

checking for, 290

user notifications, 292-293

version checks via inserted code, 291-292

version information, posting online, 290-291

AveDesk widgets, 25

B

background images

as wallpaper, 34

gadget design, 68-69

background.png files, 35

behaviors (gadget design)

configuring gadgets, 60-61

displaying gadget statuses, 61-62

error messages, 61-62

refreshing gadgets, 61

Service Not Available information, 62-63

warnings, 61-62

blogs. See MyBlog gadget

body on load functions, feed gadgets, 104

BuildContent function, 124-125

BuildMyBlog function, feed gadgets, 111

buildMyContent function, Site Statistics
gadgets, 205-210

BuildVideoObject function, YouTube Video
Gadgets, 251

Ajax322

buttons

gadget design, 69

icons associated with button types, 163

type values list, 163

buttons parameter (MsgBox function), 165

C

CAB files

creating, 175

deploying gadgets via, 174

buying certificates, 176

signing via certificates, 178

Windows Installer, 180

caching feed gadget data, 133

case studies

ad gadgets, 81

free information gadgets, 86

gadget design information, 51-53

gadgets as side products, 83

pull models (gadget revenue models), 77

push models (gadget revenue models), 79

utility gadgets, 85

CDF (Channel Definition Format), 10

ChangeFeed() function, feed gadgets,
144-146

checkForUpdate() function, 291

click events (mouse), Silverlight World
Clock Gadget, 279-280

Clock Gadget for Time, 14

Clock Gadgets, 261

designing

images, 268-269

layouts, 269-270

How can we make this index more useful? Email us at indexes@samspublishing.com

themes, 268-269

usability, 270

developing

animation, 273-274

existing framework integration, 271-272

handleLoad function, 277

logic, 275-280

mouse click events, 279-280

multiple locales, 278-279

SetClock function, 277-278

setting time, 276-277

SilverlightClock.XAML files, 272-273

features of, 264-265

JavaScript, 265-266

XAML, 267-268, 272-276

code security, JavaScript, 313

collection objects, MRU Project Gadgets,
231

color (themes), accessibility techniques, 73

Comic-Strip gadget, 319

common assumptions

feed gadgets

caching data, 133

updates, 132

functionality, JavaScript errors, 130-131

Internet connections, 131

memory, 133-134

session management, 133-134

common images, display/presentation
(design patterns), 128

communities (online), gadgets, 21

comparing gadgets, 26

Comparison Gadgets (Websites), 280

configuration functions, 122

configuration functions 323

configuring

gadget behaviors, 60-61

gadget window, feed gadgets, 156-157

Settings page, feed gadgets, 155

controls, gadget design, 69

converting gadgets, 20

Counter Widget feature (Sitemeter.com
website), Site Statistic gadget develop-
ment, 184

country codes (localization), 302

CPU Meter Gadget, 14

CSS (Cascading Style Sheets), 32

display presentation (design patterns),
129-130

feed gadgets, data presentation in, 108

flyout.css files, 33

gadget.css files, 33

settings.css files, 33

undocked.css files, 33

Currency gadget, 64, 68

customizable design patterns, 116

customizing

gadgets, 18

Windows Sidebar, 8

D

Dashboard widgets (Apple), 23

data applications, gadget development, 9

data storage, feed gadgets, 92

debugger statements, 169

debugging gadgets, 160

debugger statements, 169

Disable Script Debugging option (Internet
Explorer), 168

DOM, 166-167

JavaScript, 161, 166-167

Systems Debugger Select window, 169

VBScript, 164-166, 169

WScript, 161-163

deploying gadgets

CAB files, 174

buying certificates, 176

signing via certificates, 178

Windows Installer, 180

comparison chart, 180

installation process, 172

installation target folders, 171

packaging, 172-173

design

accessibility

adding tab controls, 135

enter key as mouse clicks, 135-137

Flyouts, 137-138

HTML, 73

keyboard access, 72-73

putting focus on gadgets after loading,
135

Settings pages, 137-138

theme colors, 73

behaviors

configuring gadgets, 60-61

displaying gadget statuses, 61-62

error messages, 61-62

refreshing gadgets, 61

Service Not Available information, 62-63

warnings, 61-62

customizable patterns, 116

directory structures, 118-119

configuring324

display/presentation, 127

common images, 128

standard images, 128

Stylesheets, 129-130

extensible patterns, 117

file structures, 119

image grouping, 118

information, 50

case study, 51-53

easy access of, 51()

live data, 51

relevant to individual users, 51

showing enough for further action, 51

showing only revelant information, 54

localization, 118

maintainable patterns, 116

modular file structures, 118

PNG files, 71-72

quality, ensuring, 50

reusable functionality, 120

flyout window, 124-125

gadget window, 122-124

Settings page functions, 125-126

screen space, justifying, 49

standard file/folder layouts, 118-120

styles, 70

text, 70

transparent images, 71

usage patterns

application gadgets, 58

fun gadgets, 59

information gadgets, 57

utility gadgets, 58-59

what gadgets aren’t meant for, 60

How can we make this index more useful? Email us at indexes@samspublishing.com

user interfaces

aesthetics, 53

docked page dimensions, 64

flyout page dimensions, 65

guidelines for, 66

relevant information, 54

settings page dimensions, 65

simplicity, 53

standard page dimensions, 64

undocked page dimensions, 65

unobtrusiveness of, 56

visuals, 55

visual themes

background images, 68-69

buttons, 69

controls, 69

drag images, 68

icons, 67

titles, 67

Desktop (Google), 23

desktop gadgets

Adobe AIR widgets, 25

AveDesk widgets, 25

Dashboard widgets (Apple), 23

Desktop (Google), 23

DesktopX widgets, 24

KlipFolio widgets, 25

Konfabulator (Yahoo widgets), 22

Opera widgets, 26

Samurize widgets, 24

DesktopX widgets, 24

directories

feed gadget structures, 95

structures of, 118-119

Disable Script Debugging option (Internet
Explorer), 168

Disable Script Debugging option 325

display/presentation (design patterns), 127

images, 128

Stylesheets, 129-130

displaying

HMTL in flyouts, 193-194

web pages, Site Statistics gadgets,
190-194

docked gadgets

feed gadgets, 154-155

page dimensions, 64

YouTube Video Gadget, 258-259

Docked Views, 16

DOM (Document Object Model)

debugging gadgets, 166-167

feed gadgets, data presentation in, 109-111

Site Statistic gadgets

displaying portions of web pages in,
190-194

parsing data, 190

DOM Level 1 (Document Object Model
Level 1), 36

drag images, gadget design, 68

dragicon.png files, 30, 34-35

E - F

easy access of information (gadget
design), 51

effects, 302. See also graphic design

enter key as mouse clicks (accessibility
techniques), 135-137

enterprise-level applications, gadgets in,
313

Enumerate Registry, MRU Project Gadgets,
231-232

error messages, gadget behaviors, 61-62

event.Action.commit property, 123

event.closeAction property, 123

extensible design patterns, 117

features, adding to gadgets, 140

feed gadgets, 91-92, 139

adding features to, 140

advanced framework of, 141

caching data, 133

commonly used fields list, 99-100

core functionality, 104-107

data presentation, 107

CSS, 108

DOM, 109-111

data section, 103

data storage, 92

deploying, 114

framework of, 98

directory structure, 95

image files, 96

required files, 94-96

Gadget.xml manifest files, 98-99

JavaScript functions in, 112-113

Main Gadget window, 104-107

Mini Me option, 154

gadget window configuration, 156-157

Settings page configuration, 155

mouse hover functionality, 152-154

multiple feeds, 142-148

multiple pages, managing, 150-152

removing feeds from, 148-149

Settings page, 100-101

unobtrusive traversing, 152-154

updates to, 132

updating feeds, 148-150

zip files, 113-114

display/presentation326

feed tracking, 294

FeedBurner feed tracking tool, 294

feedchanged function, feed gadgets, 102

feedchanged variable, 123

FeedURL, feed gadgets, 101

File System API

System.Environment, 43

System.Network, 43

System.Shell, 42-43

files

standard gadget layouts, 118-120

structures of, 119

Flash Media Player, embedding in YouTube
Video Gadgets, 250-251

floating state, feed gadgets, 154-155

Floating Views, 16

flyout page dimensions (user interface
design), 65

flyout windows, 18, 124-125, 130

flyout-related functions, 124

Flyout.css, 129

flyout.css files, 33

flyout.html files, 30, 32

flyouts

accessibility techniques, 137-138

displaying HTML in, 193-194

folders, standard gadget layouts, 118-120

free information gadgets, 85

benefits of, 87

case study, 86

fun gadgets, 14-15, 59

functionality

JavaScript errors, 130-131

resuable functionality, 120

flyout window, 124-125

gadget window, 122-124

Settings page functions, 125-126

How can we make this index more useful? Email us at indexes@samspublishing.com

G

Gadget Object Model, 35, 38-39

gadget development, 9

Sidebar Events API, 41

System.Contact API, 45

System.debug API, 45

System.Diagnostic.EventLog API, 45

System.Environment API, 43-44

System.Gadget API, 40

System.Gadget.Settings API, 40-42

System.Machine API, 44

System.MessageStore API, 45

System.Network API, 43

System.Shell API, 42-43

Gadget Picker window, 30

gadget revenue models, 75

ad gadgets

benefits of, 82

case study, 81

free information gadgets, 85

benefits of, 87

case study, 86

gadgets as side products, 82

benefits of, 84

case study, 83

pull models, 76

ad gadgets, 81

benefits of, 85

case study, 77

utility gadgets, 84-85

push models, 78

case study, 79

gadgets as side products, 82-84

utility gadgets, 84-85

Gadget Setup function, 122

Gadget Setup function 327

gadget window, 129

configuration functions, 122

feed gadgets, configuring for Mini Me gad-
gets, 156-157

flyout-related functions, 124

gadget specific functions, 124

settings-related functions, 123

standard functions in, 122

YouTube Video Gadget, 259-260

Gadget.css, 129

gadget.css files, 33

gadget.xml files, 30-32

Gadget.xml manifest files, MyBlog gadget,
98-99

gadgets

application gadgets, 13

classifying, 12

comparison chart, 26

competing versions of, 22

converting, 20

core functionality of, 34

customizing, 18

defining, 7

development of, 8-9

development platforms, 21

fun gadgets, 14-15

history of, 9-10

information gadgets, 12

limitations of, 15-16

malware, 37

meeting points between different gadgets,
20

multiple versions of, 8, 22

purposes of, 7

spyware, 37

support for, 87-88

utility gadgets, 14

web resources, online community website,
21

GadgetUndocked.css, 129

gBackground method, 45

getData function, 200

getElementById function, feed gadgets, 109

GetFeed() function, 105, 124, 132

getHTMLAjax function, 200-201

getTextAjax function, 190, 200-203

GIF (Graphics Interchange Format) files,
71-72

gImage method, 45

gimage protocol, 304

globalization

internationalization, 299

localization, 299

country codes, 302

gadget example, 300-302

globalUpdateGadgetXML variable, 291

globalUpdateURL variable, 291

Google Desktop, 23

graphic design, 302

gimage protocol, 304

GraphicDemo.gadget, 304-306

g:background protocol, 303-306

g:image protocol, 303

g:text protocol, 303

shadow effects, 309-311

transparent PNG files, 307

GraphicDemo.gadget, 304-306

graphs, Site Statistics gadgets, 204-210

g:background protocol, 303

GraphicDemo.gadget, 304-306

removeElements method, 306

removeObjects method, 306

gadget window328

g:image protocol, 303

g:text protocol, 303

H

handleLoad function, Silverlight World
Clock Gadget, 277

Hello World XAML files, Silvelight World
Clock Gadget, 268

HideArrows function, feed gadgets, 153

HideFlyout function, 124

hosting web gadgets, 19

hover functionality (mouse), feed gadgets,
152-154

href properties, changing onclick events to,
136

HTML (Hypertext Markup Language)

accessibility techniques, 73

applications versus web pages, 37

extracting for display in flyouts, 193-194

feed gadget files, 94-95

flyout.html files, 30-32

getHTMLAjax function, 200-201

main.html files, 30, 32

MSHTML (Microsoft HTML) component,
36-37

parseHTML function, 200

parseHTMLAjax function, Site Statistics
gadgets, 201-202

reading, XHR (XMLHttpRequest) object,
295, 297

retrieving via XMLHTTPRequest objects,
192

Settings page, feed gadgets, 100-101

settings.html files, 30-32

How can we make this index more useful? Email us at indexes@samspublishing.com

Sidebar gadgets, 37

web pages

applications versus, 37

displaying in Site Statistics gadgets, 192

I

icon.png files, 30, 34-35

icons

gadget design, 67

user interface design, 55

images. See also graphic design

addShadow method, 46

background images

as wallpaper, 34

gadget design, 68-69

background.png files, 35

display/presentation (design patterns), 128

drag images, gadget design, 68

dragicon.png files, 30, 34-35

feed gadgets, 96

gBackground method, 45

GIF files, gadget design, 71-72

gImage method, 45

grouping, gadget design patterns, 118

icon.png files, 30, 34-35

info.gif files, 35

loading.gif files, 35

logo.png files, 30, 34-35

MRU Project Gadgets, 220

PNG files, gadget design, 71

Silverlight World Clock Gadget, 268-269

Site Statistic gadgets, 195-196

transparent images, gadget design, 71

images 329

user interface design, 55

wallpaper, 34

info.gif files, 35

information gadgets, 57

Site Statistics gadget

Added Features check box, 199

API, 187-190, 204-210

Counter Widget feature (Sitemeter.com
website), 184

data retrieval, 200-204

design considerations, 195-197

developing, 198-204

displaying portions of web pages in,
190-194

goals of, 183

images, 195-196

integration into existing frameworks, 199

layouts, 196-197

Mini Me version, 199

site summary pages (Sitemeter.com
website), 185

themes, 195-196

usability, 197

Weather Gadget, 12

Initialize function, 124

Innovate.Gadget project template (reusable
frameworks), 315

Installer (Windows), deploying gadgets via
CAB files, 180

installing gadgets for deployment, 172

internationlization, 299

Internet

connections, common assumptions of, 131

radio stations, 238-239

Internet Explorer, Disable Script Debugging
option, 168

J - K - L

JavaScript, 34

ActiveX COM objects, initializing inside
gadgets, 215

debugging gadgets, 161, 166-167

errors, gadgets

design, 62

functionality, 130-131

feed gadgets, functions in, 112-113

JSON, 105

main.Js files, 30

Settings page, feed gadgets, 101

Silverlight World Clock Gadget creation,
265-266

Site Statistic gadgets, parsing data, 190

Sitemeter.com website, Count Widget fea-
ture, 184

JavaScript Compression, 313

JavaScript Obfuscator, 313

JSON (JavaScript Object Notation), 105,
295-297

keyboards, accessibility techniques, 72-73

KlipFolio widgets, 25

Konfabulator (Yahoo widgets), 22

Layer style (Photoshop), 309

layouts

files/folders, 118-120

Radio Gadgets, 241

Silverlight World Clock Gadget, 269-270

Site Statistic gadgets, 196-197

YouTube Video Gadget, 252-253

live data, gadget design, 51

images330

Live Gadgets, 19

LoadFeed function, feed gadgets, 146

loading gadgets, putting focus on (accessi-
bility techniques), 135

loading.gif files, 35

LoadSettings function, 101, 125

LoadXML function, 133

localization, 299

country codes, 302

gadget design patterns, 118

gadget example, 300-302

logic, Silverlight World Clock Gadget,
275-280

logo.png files, 30, 34-35

M

Main Gadget window, feed gadgets, 104-107

main.html files, 30-32

main.Js files, 30

maintainable design patterns, 116

malware, gadgets as, 37

mashup gadgets, creating, 281-283

media gadgets

Radio Gadget

designing, 240-242

developing, 243-248

features of, 239-240

Internet radio stations, 238-239

requirements for, 239

Windows Media Player, 244-245

YouTube Video Gadget

BuildVideoObject function, 251

designing, 251-253

developing, 255-260

How can we make this index more useful? Email us at indexes@samspublishing.com

embedding Flash Media Player in,
250-251

video feeds, 249-250

media player functionality, Radio Gadgets,
243-244

PlayRadio function, 247

state changes in, 245-247

memory, common assumptions, 133-134

Message function, debugging gadgets, 164

MessageDialog function, debugging gad-
gets, 164

MessageJS function, debugging gadgets,
162

Microsoft Feed Manager, reading online
data via, 298-299

Microsoft Outlook Gadget, 13

Microsoft Popfly, creating via Sidebar gad-
gets

mashup gadgets, 281-283

Website Comparison Gadgets, 280

Microsoft Silverlight applications

features of, 262

origin of, 263

running, 262

Sidebar implementation, 264

Microsoft Silverlight World Clock Gadget,
261, 266

designing

images, 268-269

layouts, 269-270

themes, 268-269

usability, 270

developing, 271

animation, 273-274

existing framework integration, 271-272

handleLoad function, 277

logic, 275-280

mouse click events, 279-280

Microsoft Silverlight World Clock Gadget 331

multiple locales, 278-279

SetClock function, 277-278

setting time, 276-277

SilverlightClock.XAML files, 272-273

features of, 264-265

JavaScript, 265-266

XAML, 267-268, 272-276

Minesweeper Gadget, 59

Mini Me option, feed gadgets, 154

gadget window configuration, 156-157

Settings page configuration, 155

Mini Me versions, Site Statistics gadgets,
199

mini web applications, gadget develop-
ment, 9

modular file structures, 118

mouse

click events

enter key as (accessibility techniques),
135-137

Silverlight World Clock Gadget, 279-280

hover functionality, feed gadgets, 152-154

MRU (Most Recent Used) lists, 13

MRU (Most Recent Used) Project Gadgets,
211

ActiveX COM, 214-215

initializing inside gadgets, 215

reading Windows Registry settings,
229-234

developing

collection objects, 231

Enumerate Registry, 231-232

framework integration, 222-225

listing Windows Registry items, 225-229

reading Windows Registry, 229-235

RegRead function, 232-233

Windows Registry API, 230-231

goals of, 212

images of, 220

layout of, 220

themes of, 219

usability of, 221

Windows Power Shell, 216

WMI, 216-218, 226-229

MsgBox function

buttons parameter, 165

debugging gadgets, 166

prompt parameter, 165

return values of, 166

title parameter, 166

MSHTML (Microsoft HTML) component,
36-37

Multiple Views, 16

MyBlog Gadget, 92, 139

adding features to, 140

advanced framework of, 141

commonly used fields list, 99-100

core functionality, 104-107

data presentation, 107

CSS, 108

DOM, 109-111

data section, 103

deploying, 114

framework of, 98

directory structure, 95

image files, 96

required files, 94-96

Gadget.xml manifest files, 98-99

JavaScript functions in, 112-113

Main Gadget window, 104-107

Mini Me option, 154

gadget window configuration, 156-157

Settings page configuration, 155

Microsoft Silverlight World Clock Gadget332

mouse hover functionality, 152-154

multiple feeds, 142-148

multiple pages, managing, 150-152

removing feeds from, 148-149

Settings page, 100-101

unobtrusive traversing, 152-154

updating feeds, 148-150

zip files, 113-114

N

NET MRU Project Gadgets, 211

ActiveX COM, 214-215

initializing inside gadgets, 215

reading Windows Registry settings,
229-234

developing

collection objects, 231

Enumerate Registry, 231-232

framework integration, 222-225

listing Windows Registry items, 225-229

reading Windows Registry, 234-235

reading Windows Registry settings,
229-234

RegRead function, 232-233

Windows Registry API, 230-231

goals of, 212

images of, 220

layout of, 220

themes of, 219

usability of, 221

Windows Power Shell, 216

WMI, 216-218, 226-229

notifications, gadget updates, 292-293

How can we make this index more useful? Email us at indexes@samspublishing.com

O

On Load function, 122

onclick events, changing to href properties,
136

OnDock function, 122

onfocus events, 137

onfocusout events, 137

onkeydown events, 136

onkeypress events, 136

onkeyup events, 136

online data, reading

Microsoft Feed Manager, 298-299

Windows RSS platform, 298-299

XHR (XMLHttpRequest) object, 295-297

XML DOM, 297-298

online gadget communities, 21

OnMouseHover function, feed gadgets, 152

OnUndock function, 122

Opacity property, 17

Opera widgets, 26

Outlook Gadget (Microsoft), 13

P

packaging gadgets for deployment, 172

parseData function, 190, 203-204

ParseFeed function, 124

debugging gadgets, 162

feed gadgets, 150-151

parseHTML function, 200

parseHTMLAjax function, Site Statistics
gadgets, 201-202

parseRSS function, feed gadgets, 109

parseRSS function 333

Photoshop

Layer style, 309

shadow effects, 309-311

transparent PNG files, 307

Picture Slideshow Gadget, 56

pie charts, Site Statistics gadgets, 204-210

PlayRadio function, Radio Gadgets, 247

PNG (Portable Network Graphic) files

gadget design, 71

transparent files, 307

Popfly, Sidebar gadget creation via

mashup gadgets, 281-283

Website Comparison Gadgets, 280

popup function

debugging gadgets, 161

syntax of, 162-163

porting mashup gadgets, 283

power supply information, detecting, 44

PowerStatus method (System.Machine
API), 44

presentation/display (design patterns), 127

images, 128

Stylesheets, 129-130

prompt parameter (MsgBox function), 165

pull models (gadget revenue models), 76

ad gadgets, 81

case study, 77

utility gadgets, 84-85

push models (gadget revenue models), 78

case study, 79

gadgets as side products, 82

benefits of, 84

case study, 83

Q - R

Question function, debugging gadgets, 164

Radio Gadget

designing

layouts, 241

themes, 240

usability, 242

developing

existing framework integration, 243

media player functionality, 243-247

volume functions, 247-248

features of, 239-240

Internet radio stations, 238-239

requirements for, 239

Windows Media Player, advanced optional
parameters list, 244-245

reading online data

Microsoft Feed Manager, 298-299

Windows RSS platform, 298-299

XHR (XMLHttpRequest) object, 295-297

XML DOM, 297-298

RealPlayer, Internet radio stations, 239

Recent Documents Gadget, 13

Recent Project Gadgets, 222

Recent ProjectX Gadgets, 221

Refresh function, feed gadgets, 146

refreshing gadget behaviors, 61

RegRead function, MRU Project Gadgets,
232-233

relevant information, gadget design, 51, 54

removeElements method, g:background
protocol, 306

RemoveFeed function, feed gadgets,
148-149

Photoshop334

removeObjects method, g:background pro-
tocol, 306

removing feeds from feed gadgets, 148-149

Reset() function, feed gadgets, 144

Resize() function, 123

reusable functionality, 120

flyout window, 124-125

gadget window

configuration functions, 122

flyout-related functions, 124

gadget specific functions, 124

settings-related functions, 123

standard functions in, 122

Settings page, functions of, 125-126

reusble frameworks, 315

revenue models, 75

ad gadgets

benefits of, 82

case study, 81

free information gadgets, 85

benefits of, 87

case study, 86

gadgets as side products, 82

benefits of, 84

case study, 83

pull models, 76

ad gadgets, 81

benefits of, 85

case study, 77

utility gadgets, 84-85

push models, 78

case study, 79

gadgets as side products, 82-84

utility gadgets, 84-85

How can we make this index more useful? Email us at indexes@samspublishing.com

RSS (Really Simple Syndication) feed gad-
gets, 61, 91

data storage, 92

feed example, 103

RSS Reader gadget, 55, 57

RSS/Atom, reading, 295, 296-299

S

Samurize widgets, 24

SaveSettings function, 125-126

SaveXML function, 133-134

scripting, disabling via Disable Script
Debugging option (Internet Explorer), 168

security, 312

code, 313

malware, gadgets as, 37

spyware, gadgets as, 37

User Account Control, 312

Windows Live Gallery, 312

SendPlayStateChangeEvents event, Radio
Gadget media player functionality, 245

Service Not Available information (gadget
behaviors), 62-63

session management, common assump-
tions, 133-134

SetClock function, Silverlight World Clock
Gadget, 277-278

SetGlobalText function, 301

SetInterval function, feed gadgets, 132

Settings Closed function, 123

Settings page

accessibility techniques, 137-138

dimensions (user interface design), 65

Settings page 335

feed gadgets, 100-101

adding multiple feeds, 142, 146-148

configuring for Mini Me gadgets, 155

removing feeds from, 148-149

updating feeds, 148-150

functions of, 125-126

Recent Project Gadgets, 222

Site Statistics gadgets, 199

settings window, 129

settings-related functions, 123

settings.css files, 33, 129

settings.html files, 30-32

SettingsClosing function, 126

Setup function, 104, 123

Setup Size function, 122

shadow effects, creating in Photoshop,
309-311

shadows in images, addShadow method, 46

sharing gadgets, 320

ShellOpen function, reading Windows
Registry, 234-235

shortcut keys, sidebar gadget access, 72

ShowArrows function, feed gadgets, 153

ShowFlyout function, 124

feed gadgets, 110

Site Statistics gadgets, 204-205

side products, gadgets as, 82

benefits of, 84

case study, 83

Sidebar (Windows)

customizing, 8

gadgets, functions of, 10-11

Silverlight application implementation, 264

Sidebar Events API (Gadget Object Model),
41

Sidebar gadgets, 19-20

accessibility techniques

HTML access, 73

keyboard access, 72-73

theme colors, 73

addShadow method, 46

as HTML application, 37

future of, 46

gBackground method, 45

gImage method, 45

Popfly, creating via

mashup gadgets, 281-283

Website Comparison Gadgets, 280

widget boxes, 20

Silverlight applications

features of, 262

origin of, 263

running, 262

Sidebar implementation, 264

Silverlight World Clock Gadget, 261

designing

images, 268-269

layouts, 269-270

themes, 268-269

usability, 270

developing, 271

animation, 273-274

existing framework integration, 271-272

handleLoad function, 277

logic, 275-280

mouse click events, 279-280

multiple locales, 278-279

SetClock function, 277-278

setting time, 276-277

SilverlightClock.XAML files, 272-273

Settings page336

features of, 264-265

JavaScript, 265-266

XAML, 267-268, 272-276

simplicity, user interface design, 53

Site Statistics gadget, 183

API, 187

graphs based on, 204- 210

parsing data, 190

pie charts based on, 204-210

pulling text data, 188-189

designing

images, 195-196

layouts, 196-197

themes, 195-196

usability, 197

developing, 198

data retrieval, 200-204

integration into existing frameworks, 199

goals of, 183

Mini Me version, 199

Sitemeter.com website

Counter Widget feature, 184

site summary pages, 185

web pages, displaying portions of, 190-194

site summary pages (Sitemeter.com web-
site), Site Statistic gadget development,
185

Sitemeter.com website, Site Statistics gad-
get development

API, 187-190

Counter Widget feature, 184

site summary pages, 185

SLQ Server, accessing, 313

Soapbox Video Gadget, gadget design case
study, 51-53

sound information, detecting, 44

How can we make this index more useful? Email us at indexes@samspublishing.com

spyware, gadgets as, 37

standard file/folder layouts, 118-120

standard images, display/presentation
(design patterns), 128

standardizing widgets, 47

startUpPage function, feed gadgets, 111

statistics

feed tracking, 294

user tracking, 294

statuses, displaying (gadget behaviors),
61-62

Stop function, debugging gadgets, 169

storing data, feed gadgets, 92

streaming audio, playing on Radio Gadget,
240

styles, gadget design, 70

Stylesheets, display/presentation (design
patterns), 129-130

support for gadgets, 87-88

System Debugger Select window, debug-
ging gadgets, 169

System.Contact API, 45

System.debug API, 45

System.Diagnostic.EventLog API, 45

System.Environment API, 43-44

System.Gadget API (Gadget Object Model),
40

System.Gadget.onSettingsClosed property,
123

System.Gadget.Settings API (Gadget
Object Model), 40-42

System.Machine API, 44

System.MessageStore API, 45

System.Network API, 43

System.Shell API, 42-43

SystemSetup() function, 123

SystemSetup() function 337

T

tab controls, accessibility techniques, 135

text. See also graphic design

gadget design, 70

reading, XHR (XMLHttpRequest) object,
295-297

TextBoxFeedURL, feed gadgets, 102

themes

color, 73

Radio Gadgets, 240

Silverlight World Clock Gadget, 268-269

Site Statistic gadgets, 195-196

time

information, detecting, 44

Silverlight World Clock Gadget, setting in,
276-277

title parameter (MsgBox function), 166

titles, gadget design, 67

tracking users, 294

transparent images, gadget design, 71

transparent PNG files, 307

traversing feed gadgets, 152-154

Trick-of-Mind gadget, 319

U

undocked gadgets

feed gadgets, 154-155

page dimensions, 65

YouTube Video Gadget, 258-259

undocked.css files, 33

unobtrusive traversing, feed gadgets,
152-154

updateAvailable variable, 291

UpdateFeed function, feed gadgets, 148-150

updates

automatic updates, 289

checking for, 290

posting version information online,
290-291

user notifications, 292-293

version checks via inserted code,
291-292

feed gadgets, 132

feeds in feed gadgets, 148-150

URLFeedsCurrentID variable, feed gadgets,
145

usability, designing for Site Statistic
gadgets, 197

usage patterns (gadget design)

application gadgets, 58

fun gadgets, 59

information gadgets, 57

utility gadgets, 58-59

User Account Control, security, 312

user interfaces, designing

aesthetics, 53

docked page dimensions, 64

flyout page dimensions, 65

guidelines for, 66

relevant information, 54

settings page dimensions, 65

simplicity, 53

standard page dimensions, 64

undocked page dimensions, 65

unobtrusiveness of, 56

visuals, 55

user notifications, gadget updates, 292-293

user tracking, 294

tab controls338

utility gadgets, 58-59, 84

benefits of, 85

case study, 85

Clock Gadget for Time, 14

CPU Meter Gadget, 14

MRU Project Gadgets, 211

ActiveX COM, 214-215

reading Windows Registry settings,
229-234

collection objects, 231

Enumerate Registry, 231-232

framework integration, 222-225

goals of, 212

images of, 220

layout of, 220

listing Windows Registry items, 225-229

reading Windows Registry, 234-235

reading Windows Registry settings,
229-234

RegRead function, 232-233

themes of, 219

usability of, 221

Windows Power Shell, 216

Windows Registry API, 230-231

WMI, 216-218

listing Windows Registry MRU items,
226-229

V

VBScript, debugging gadgets, 164-166, 169

verisign certificates, buying, 176

version checks via inserted code, 291-292

How can we make this index more useful? Email us at indexes@samspublishing.com

version information, posting online,
290-291

Video Gadgets, 15, 249

BuildVideoObject function, 251

designing

layouts, 252-253

themes, 251

usability, 253

developing

docked/undocked functionality, 258-259

existing framework integration, 255-256

gadget windows, 259-260

Flash Media Player, embedding in, 250-251

video feeds, 249-250

Visual Studio, MRU Project Gadgets,
211-213

framework integration, 222-225

goals of, 212

images of, 220

layout of, 220

themes of, 219

usability of, 221

Windows Registry

listing items, 225-229

reading, 234-235

reading settings, 229-234

visual themes (gadget design)

background images, 68-69

buttons, 69

controls, 69

drag images, 68

icons, 67

titles, 67

visual themes 339

visuals (gadget design)

GIF files, 71-72

PNG files, 71

transparent images, 71

user interface design, 55

volume functions, Radio Gadgets, 247-248

W

W3C (World Wide Web Consortium), widget
standardization, 47

wallpaper, 34

warnings, gadget behaviors, 61-62

Weather Gadget, 12, 19, 61

web gadgets, 19, 22

web pages

displaying, Site Statistics gadgets, 190-194

HTML pages, applications versus, 37

Site Statistics gadgets, data retrieval,
200-204

web resources, sharing gadgets, 320

Website Comparison Gadgets, 280

widget boxes, 20

Widget-Box gadget, 317

widgets, standardizing, 47

Windows Cabinet (CAB) files

creating, 175

deploying gadgets, 174

buying certificates, 176

signing via certificates, 178

Windows Installer, 180

Windows Installer, deploying gadgets via
CAB files, 180

Windows Live Gallery, security, 312

Windows Media Player, advanced optional
parameters list, 244-245

Windows Power Shell, 216

Windows Registry

accessing

ActiveX COM, 214-215

Windows Power Shell, 216

WMI, 216-218

listing MRU items from, 225-229

reading

settings via ActiveX COM, 229-234

ShellOpen function, 234-235

Visual Studio MRU, viewing, 213

Windows Registry API, MRU Project
Gadgets, 230-231

Windows RSS platform, reading online data
via, 298-299

Windows Sidebar

customizing, 8

gadgets, functions of, 10-11

Windows XP, Active Desktop feature, 9

WMI (Windows Management
Instrumentation), 216-218, 226-229

World Clock Gadgets, 261

designing

images, 268-269

layouts, 269-270

themes, 268-269

usability, 270

developing, 271

animation, 273-274

existing framework integration, 271-272

handleLoad function, 277

logic, 275-280

mouse click events, 279-280

multiple locales, 278-279

SetClock function, 277-278

visuals340

setting time, 276-277

SilverlightClock.XAML files, 272-273

features of, 264-265

JavaScript, 265-266

XAML, 267-268, 272-276

WPF/E (Windows Presentation
Foundation/Everywhere). See Silverlight
applications, 263

WScript, debugging gadgets, 161-163

X

XAML (eXtensible Application Markup
Language)

Hello World files, 268

Silverlight World Clock Gadget, 267-268,
272-276

XHR (XMLHttpRequest) object, reading
online data via, 295-297

XHTML (Extensible Hypertext Markup
Language), reading, 295

XML (Exentensible Markup Language)

feed gadget files, 94-95

gadget.xml files, 30-32

Gadget.xml manifest files, MyBlog gadget,
98-99

reading

XHR (XMLHttpRequest) object, 295-297

XML DOM, 297-298

XML DOM (Document Object Model), read-
ing online data via, 297-298

XMLHTTPRequest object, 105-107, 298

XMLHTTPRequest objects

methods of, 188

properties of, 188

pulling text data, 188

retreiving HTML, 192

How can we make this index more useful? Email us at indexes@samspublishing.com

Y - Z

Yahoo widgets, Konfabulator, 22

YouTube Video Gadget, 249

BuildVideoObject function, 251

designing

layouts, 252-253

themes, 251

usability, 253

developing

docked/undocked functionality, 258-259

existing framework integration, 255-256

gadget windows, 259-260

Flash Media Player, embedding in, 250-251

video feeds, 249-250

zip files

deploying gadgets, 173

feed gadgets, 113-114

zip files 341

	Introduction
	What's in the Book
	Section 1: The Foundation
	Section 2: Developing a Gadget
	Section 3: Advanced Samples

	Special Features and Notations
	Supporting Website

	3 An Approach to Design
	Design Considerations
	Challenges for the User Interface
	Visual Themes
	Transparent Images in the Gadget
	About Accessibility

	Index
	A
	B
	C
	D
	E - F
	G
	H
	I
	J - K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

