

Sams Teach Yourself Ajax, JavaScript, and PHP All in One
Copyright © 2009 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-32965-4
ISBN-10: 0-672-32965-4
Library of Congress Cataloging-in-Publication Data
Ballard, Phil.
Sams teach yourself Ajax, JavaScript, and PHP all in one / Phil

Ballard, Michael Moncur.
p. cm.

Includes index.
ISBN 978-0-672-32965-4 (pbk. : CD-ROM)

1. Ajax (Web site development technology) 2. JavaScript (Computer program language)
3. PHP (Computer program language) 4. Web site development. I. Moncur, Michael G.
II. Title. III. Title: Teach yourself Ajax, JavaScript, and PHP all in one.
TK5105.8885.A52B38 2008
006.7'6--dc22

2008022476
Printed in the United States of America
First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taber

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Indexer
Ken Johnson

Proofreader
Paula Lowell

Publishing
Coordinator
Vanessa Evans

Multimedia
Developer
Dan Scherf

Designer
Gary Adair

Composition
TnT Design, Inc.

The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,

find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition

. Complete the brief registration form

. Enter the coupon code 37H1-TGKI-1KQV-LRIZ-VM1R

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email customer-
service@safaribooksonline.com.

http://www.informit.com/onlineedition

Introduction

Over the last decade or so, the World Wide Web has grown in scope from being a relative-

ly simple information repository to becoming the first stop for many people when seeking

entertainment, education, news, or business resources.

Websites themselves need no longer be limited to a number of static pages containing text

and perhaps simple images; the tools now available allow the development of highly

interactive and engaging pages involving animations, visual effects, context-sensitive con-

tent, embedded productivity tools, and much more.

The list of technologies available for producing such pages is broad. However, those based

on Open Source licenses have become, and remain, highly popular due to their typically

low (often zero) entry cost, and to the huge resource of user-contributed scripts, tutorials,

tools, and other resources for these tools and applications available via the Internet and

elsewhere.

In this book, we give a detailed account of how to program fluid, interactive websites

using server- and client-side coding techniques and tools, as well as how to combine these

to produce a slick, desktop-application-like user experience using Ajax.

The programming languages used in this book include the ubiquitous JavaScript (for

client-side programming) and the immensely popular open-source PHP language (for serv-

er-side scripting, and available with the majority of web-hosting packages). The nuts and

bolts of Ajax programming are described in detail, as well as the use of several advanced

open-source frameworks that contain ready-written code for quickly building state-of-the-

art interactive sites.

The CD that accompanies this book provides all the tools required on
your journey through learning to program in PHP, JavaScript, and Ajax.

What Is Ajax?
Ajax stands for Asynchronous JavaScript And XML. Although strictly speaking Ajax is not

itself a technology, it mixes well-known programming techniques in an uncommon way

to enable web developers to build Internet applications with much more appealing user

interfaces than those to which we have become accustomed.

On the
CD

2 Sams Teach Yourself Ajax, JavaScript, and PHP All in One

When using popular desktop applications, we expect the results of our work to be

made available immediately, without fuss, and without our having to wait for the

whole screen to be redrawn by the program. While using a spreadsheet such as

Excel, for instance, we expect the changes we make in one cell to propagate imme-

diately through the neighboring cells while we continue to type, scroll the page, or

use the mouse.

Unfortunately, this sort of interaction has seldom been available to users of web-

based applications. Much more common is the experience of entering data into

form fields, clicking on a button or a hyperlink and then sitting back while the page

slowly reloads to exhibit the results of the request. In addition, we often find that the

majority of the reloaded page consists of elements that are identical to those of the

previous page and that have therefore been reloaded unnecessarily; background

images, logos, and menus are frequent offenders.

Ajax promises us a solution to this problem. By working as an extra layer between

the user’s browser and the web server, Ajax handles server communications in the

background, submitting server requests and processing the returned data. The

results may then be integrated seamlessly into the page being viewed, without that

page needing to be refreshed or a new one being loaded.

In Ajax applications, such server requests are not necessarily synchronized with user

actions such as clicking on buttons or links. A well-written Ajax application may

already have asked of the server, and received, the data required by the user—per-

haps before the user even knew she wanted it. This is the meaning of the asynchro-

nous part of the Ajax acronym.

The parts of an Ajax application that happen “under the hood” of the user’s brows-

er, such as sending server queries and dealing with the returned data, are written in

JavaScript, and XML is an increasingly popular means of coding and transferring for-

matted information used by Ajax to efficiently transfer data between server and

client.

We’ll look at all these techniques, and how they can be made to work together, as

we work through the chapters.

Who This Book Is For
This volume is aimed primarily at web developers seeking to build better interfaces

for the users of their web applications and programmers from desktop environments

looking to transfer their applications to the Internet.

Introduction 3

It also proves useful to web designers eager to learn how the latest techniques can

offer new outlets for their creativity. Although the nature of PHP, JavaScript, and

Ajax applications means that they require some programming, all the required

technologies are explained from first principles within the book, so even those with

little or no programming experience should be able to follow the lessons without a

great deal of difficulty.

How To Use This Book
All the technologies—including a refresher of WWW basics—are explained from first

principles, so that even non-programmers or those unfamiliar with these languages

should be able to follow the development of the concepts with little problem.

The book is divided into parts, each dedicated to a particular technology or discus-

sion topic. Within each part, the chapters each specialize in a given aspect or

subtopic. It should therefore be easy to follow the instructional flow of the book by a

quick look through the table of contents.

However, if you are already a competent programmer in one or more of the tech-

nologies used—in PHP for instance, or in JavaScript—then feel free to speed-read or

skip the sections that you don’t need.

To try out many of the examples you’ll need access to a web server that supports

PHP, and a means to upload files into your web space (probably FTP). Most web

hosts include PHP in their hosting packages, or can do so on request at minimal or

no cost.

Alternatively, the CD that accompanies this book contains everything required to set

up a web serving environment on your own computer. This package is called

XAMPP, and it contains everything you need to develop fully functional, interactive

websites like those described in this book, ready to be deployed to a web-based server

at a later date if you so choose. Look out for the boxes marked “On the CD” as you

work through the book.

Conventions Used In This Book
This book contains special elements as described by the following:

These boxes highlight information that can make your programming more efficient
and effective.

Did you
Know?

▼

4 Sams Teach Yourself Ajax, JavaScript, and PHP All in One

These boxes provide additional information related to material you just read.

These boxes focus your attention on problems or side effects that can occur in
specific situations.

Try It Yourself
The Try It Yourself section offers suggestions for creating your own scripts, experi-

menting further, or applying the techniques learned throughout the chapter. This

will help you create practical applications based on what you’ve learned.

Sections like this remind you about relevant information or tools available on the
CD that accompanies the book.

A special monospace font is used on programming-related terms and language.

Setting Up Your Workspace
While you can write the code in this book using just a simple text editor, to run the

examples you’ll need a computer (with Windows, Mac, or Linux operating system)

running a modern browser such as Internet Explorer or Firefox.

You can download Microsoft Windows Explorer from http://www.microsoft.com/
and the latest version of Firefox from http://www.mozilla.com/.

You will also need to load files on to a web server—if you already have a web host

that supports PHP, you can use your web space there. Alternatively, the accompany-

ing CD has everything you need to set up your own web server for private use,

either on your own PC or another on your network.

By the
Way

Watch
Out!

▲

On the
CD

Did you
Know?

http://www.microsoft.com/
http://www.mozilla.com/

Introduction 5

What’s on the CD
The accompanying CD contains everything you could need to get the best from this

book. Included on the CD you’ll find

. XAMPP, a complete open source compilation you can use to easily install the

Apache web server, PHP language, and MySQL database manager on your

computer. Versions are provided for Linux, Mac, and Windows environments.

. jEdit, a Java-based programmer’s editor that’s perfect for creating or modify-

ing code. The CD includes files for Java, Mac, or Windows.

. A selection of open source frameworks for developing sophisticated web

applications. Programming examples based on some of these frameworks are

presented towards the end of the book.

CHAPTER 3

Anatomy of an Ajax Application

What You’ll Learn in This Chapter:
. The Need for Ajax
. Introducing Ajax
. The Constituent Parts of Ajax
. Putting It All Together

In this chapter you will learn about the individual building blocks of Ajax and how they fit

together to form the architecture of an Ajax application. Subsequent chapters will examine

these components in more detail, finally assembling them into a working Ajax application.

The Need for Ajax
In the following parts of the book, we shall discuss each of the core components in detail.

Before discussing the individual components, though, let’s look in more detail at what we

want from our Ajax application.

Traditional Versus Ajax Client-Server Interactions
Chapter 1 discussed the traditional page-based model of a website user interface. When

you interact with such a website, individual pages containing text, images, data entry

forms, and so forth are presented one at a time. Each page must be dealt with individually

before navigating to the next.

For instance, you may complete the data entry fields of a form, editing and re-editing your

entries as much as you want, knowing that the data will not be sent to the server until the

form is finally submitted.

Figure 3.1 illustrates this interaction.

42 CHAPTER 3: Anatomy of an Ajax Application

After you submit a form or follow a navigation link, you then must wait while the

browser screen refreshes to display the new or revised page that has been delivered

by the server.

As your experience as an Internet user grows, using this interface becomes almost

second nature. You learn certain rules of thumb that help to keep you out of trouble,

such as “don’t click the Submit button a second time,” and “don’t click the Back

button after submitting a form.”

Unfortunately, interfaces built using this model have a few drawbacks. First, there is

a significant delay while each new or revised page is loaded. This interrupts what

we, as users, perceive as the “flow” of the application.

Furthermore, a whole page must be loaded on each occasion, even when most of its

content is identical to that of the previous page. Items common to many pages on a

website, such as header, footer, and navigation sections, can amount to a significant

proportion of the data contained in the page.

Figure 3.2 illustrates a website displaying pages before and after the submission of a

form, showing how much identical content has been reloaded and how relatively lit-

tle of the display has actually changed.

This unnecessary download of data wastes bandwidth and further exacerbates the

delay in loading each new page.

Bandwidth refers to the capacity of a communications channel to carry informa-
tion. On the Internet, bandwidth is usually measured in bps (bits per second) or in
higher multiples such as Mbps (million bits per second).

Server

Browser

Page 1 Page 2 Page 3 Page 4

Time

FIGURE 3.1
Traditional
client–server
interactions.

By the
Way

Introducing Ajax 43

The Rich User Experience
The combined effect of the issues just described is to offer a much inferior user expe-

rience compared to that provided by the vast majority of desktop applications.

On the desktop, you expect the display contents of a program to remain visible and

the interface elements to respond to commands while the computing processes occur

quietly in the background. As I write this chapter using a word processor, for exam-

ple, I can save the document to disk, scroll or page up and down, and alter font

faces and sizes without having to wait on each occasion for the entire display to be

refreshed.

Ajax allows you to add to your web application interfaces some of this functionality

more commonly seen in desktop applications and often referred to as a rich user

experience.

Introducing Ajax
To improve the user’s experience, you need to add some extra capabilities to the tra-

ditional page-based interface design. You want your user’s page to be interactive,

responding to the user’s actions with revised content, and be updated without any

interruptions for page loads or screen refreshes.

To achieve this, Ajax builds an extra layer of processing between the web page and

the server.

FIGURE 3.2
Many page
items are
reloaded unnec-
essarily.

44 CHAPTER 3: Anatomy of an Ajax Application

This layer, often referred to as an Ajax Engine or Ajax Framework, intercepts requests

from the user and in the background handles server communications quietly, unob-

trusively, and asynchronously. By this we mean that server requests and responses no

longer need to coincide with particular user actions but may happen at any time

convenient to the user and to the correct operation of the application. The browser

does not freeze and await the completion by the server of the last request but

instead lets the user carry on scrolling, clicking, and typing in the current page.

The updating of page elements to reflect the revised information received from the

server is also looked after by Ajax, happening dynamically while the page continues

to be used.

Figure 3.3 represents how these interactions take place.

Server

Ajax

Page 1

Browser

Time

FIGURE 3.3
Ajax client–
server interac-
tion.

A Real Ajax Application—Google Suggest
To see an example of an Ajax application in action, let’s have a look at Google

Suggest. This application extends the familiar Google search engine interface to offer

the user suggestions for suitable search terms, based on what he has so far typed.

With each key pressed by the user, the application’s Ajax layer queries Google’s serv-

er for suitably similar search phrases and presents the returned data in a drop-down

box. Along with each suggested phrase is listed the number of results that would be

expected for a search conducted using that phrase. At any point the user has the

option to select one of these suggestions instead of continuing to type and have

Google process the selected search.

Because the server is queried with every keypress, this drop-down list updates dynam-

ically as the user types—with no waiting for page refreshes or similar interruptions.

Figure 3.4 shows the program in action. You can try it for yourself by following the

links from Google’s home page at http://www.google.com/webhp?complete=1&hl=en.

http://www.google.com/webhp?complete=1&hl=en

The Constituent Parts of Ajax 45

Next let’s identify the individual components of such an Ajax application and see

how they work together.

Google has presented other Ajax-enabled applications that you can try, including
the gmail web mail service and the Google Maps street mapping program. See the
Google website at http://www.google.com/ for details.

The Constituent Parts of Ajax
Now let’s examine the components of an Ajax application one at a time.

The XMLHTTPRequest Object
When you click on a hyperlink or submit an HTML form, you send an HTTP request

to the server, which responds by serving to you a new or revised page. For your web

application to work asynchronously, however, you must have a means to send HTTP

requests to the server without an associated request to display a new page.

You can do so by means of the XMLHTTPRequest object. This JavaScript object is

capable of making a connection to the server and issuing an HTTP request without

the necessity of an associated page load.

In following chapters you will learn what objects are, see how an instance of this

object can be created, and see how its properties and methods can be used by

JavaScript routines included in the web page to establish asynchronous communica-

tions with the server.

FIGURE 3.4
An example
of an Ajax
application—
Google
Suggest.

By the
Way

http://www.google.com/

46 CHAPTER 3: Anatomy of an Ajax Application

As a security measure, the XMLHTTPRequest object can generally only make calls
to URLs within the same domain as the calling page and cannot directly call a
remote server.

Chapter 5, “Working with the Document Object Model” will introduce the concept of

objects in general, and this subject will be expanded in Chapter 7 “Using Functions

and Objects.”

Chapter 10, “The Heart of Ajax”—the XMLHTPPRequest Object, discusses how to cre-

ate an instance of the XMLHTTPRequest object and reviews the object’s properties

and methods.

Talking with the Server
In the traditional style of web page, when you issue a server request via a hyperlink

or a form submission, the server accepts that request, carries out any required

server-side processing, and subsequently serves to you a new page with content

appropriate to the action you have undertaken.

While this processing takes place, the user interface is effectively frozen. You are

made quite aware of this, when the server has completed its task, by the appearance

in the browser of the new or revised page.

With asynchronous server requests, however, such communications occur in the

background, and the completion of such a request does not necessarily coincide with

a screen refresh or a new page being loaded. You must therefore make other arrange-

ments to find out what progress the server has made in dealing with the request.

The XMLHTTPRequest object possesses a convenient property to report on the

progress of the server request. You can examine this property using JavaScript rou-

tines to determine the point at which the server has completed its task and the

results are available for use.

Your Ajax armory must therefore include a routine to monitor the status of a

request and to act accordingly. We’ll look at this in more detail in Chapter 11,

“Talking with the Server.”

What Happens at the Server?
So far as the server-side script is concerned, the communication from the

XMLHTTPRequest object is just another HTTP request. Ajax applications care little

about what languages or operating environments exist at the server; provided that

the client-side Ajax layer receives a timely and correctly formatted HTTP response

from the server, everything will work just fine.

Did you
Know?

Putting It All Together 47

It is possible to build simple Ajax applications with no server-side scripting at all,

simply by having the XMLHTTPRequest object call a static server resource such as an

XML or text file.

Ajax applications may make calls to various other server-side resources such as web

services. Later in the book we’ll look at some examples of calling web services using

protocols such as SOAP and REST.

In this book we’ll be using the popular PHP scripting language for our server-side
routines, but if you are more comfortable with ASP, JSP, or some other server-side
language, go right ahead and use it in your Ajax applications.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully completed, you
may then utilize the information returned by the server.

Ajax allows for this information to be returned in a number of formats, including
ASCII text and XML data.

Depending on the nature of the application, you may then translate, display, or
otherwise process this information within the current page.

We’ll look into these issues in Chapter 12, “Using the Returned Data.”

Other Housekeeping Tasks
An Ajax application will be required to carry out a number of other duties, too.

Examples include detecting error conditions and handling them appropriately, and

keeping the user informed about the status of submitted Ajax requests.

You will see various examples in later chapters.

Putting It All Together
Suppose that you want to design a new Ajax application, or update a legacy web

application to include Ajax techniques. How do you go about it?

First you need to decide what page events and user actions will be responsible for

causing the sending of an asynchronous HTTP request. You may decide, for exam-

ple, that the action of moving the mouse cursor over an image will result in a

request being sent to the server to retrieve further information about the subject of

the picture, or that the clicking of a button will generate a server request for infor-

mation with which to populate the fields on a form.

By the
Way

48 CHAPTER 3: Anatomy of an Ajax Application

JavaScript can be used to execute instructions on occurrences such as these, by

employing event handlers. The details of how will be covered in detail in the follow-

ing chapters. In your Ajax applications, such methods will be responsible for initiat-

ing asynchronous HTTP requests via XMLHTTPRequest.

Having made the request, you need to write routines to monitor the progress of that

request until you hear from the server that the request has been successfully completed.

Finally, after receiving notification that the server has completed its task, you need a

routine to retrieve the information returned from the server and apply it in the

application. You may, for example, want to use the newly returned data to change

the contents of the page’s body text, populate the fields of a form, or pop open an

information window.

Figure 3.5 shows the flow diagram of all this.

Web Page

Server

Ajax Engine

XMLHTTPRequest

create
server

request

send

monitor status

get response

capture
event

update
page

request

readyState

response

process
returned

data

FIGURE 3.5
How the compo-
nents of an Ajax
application work
together.

In Chapter 13, “Our First Ajax Application,” you’ll use what you have learned to

construct a complete Ajax application.

Summary 49

Ajax Frameworks
While it is essential for a complete understanding of Ajax to understand what role

each of the individual components plays, it is thankfully not necessary to rewrite all

of your code for each new application. Your Ajax code can be stored as a reusable

library of common Ajax routines, ready to be reused wherever they may be needed.

There are also many commercial and open-source frameworks that you can use in

your projects to do the “heavy lifting.”

We shall look at both of these techniques later in the book, where we develop our

own JavaScript library for Ajax, and also consider several of the more popular open-

source libraries.

Summary
This chapter discussed the shortcomings of the traditional web interface, identifying

specific problems we want to overcome. We also introduced the various building

blocks of an Ajax application and discussed how they work together.

In the following chapters we shall look at these components in more detail, eventu-

ally using them to build a complete Ajax application.

That concludes Part I of the book, “Web Basics Refresher.” In Part II we shall begin

to explore client-side programming using JavaScript.

SYMBOLS

&& (And operator), 120

* (multiplication operator), 198

@ characters, PHP methods, 253

\ (backslashes)

escaping strings, 202

\n character sequence, new-

line characters, 192

{} (braces)

code indentation rules, 216

loop syntax, 126

use in conditional state-

ments, 216

[] (brackets), use in conditional

statements, 216

$ (dollar sign)

$ SERVER global array vari-

able, 320

$() function, 306

$F() function, 307

variables, 195

= (equal sign)

= (assignment operator), 119

== (equality operator),

119, 203

! (Not operator), 120

< (less than sign)

<ajax-response> elements,

Rico, 317-319s

<div> … <div>

elements, 176

<div> containers, 179

<response> elements, Rico,

317-319

<script> … <script>

elements, 177

— (minus sign), 84

— (decrement operator), 199

- (subtraction operator), 198

% (modulus operator), 199

. (period), 71

|| (Or operator), 119-120

Index

+ (plus sign), 57

+ (addition operator), 198

+= operator, 84

++ (increment operator), 84,

132, 199

(use in single-line

comments), 193

? (question mark)

closing tags, 189

?php tag, 189-190

‘ (single quotes), 197, 202

“ (double quotes), 197, 202

; (semicolon) 56, 61, 189

/ (slashes)

/ (division operator), 199

/*…*/ (use in multiple-line

comments), 193

// (use in single-line

comments), 193

A

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

a:active selector, formatting

links, 38

a:hover selector, formatting

links, 38

a:link selector, formatting

links, 38

a:visited selector, formatting

links, 38

abbreviating statements with

shorthand expressions,

121-122

abort method, 154

active page elements,

designing, 299

addition (+) operator, 198

AHAH (Asynchronous HTML and

HTTP). See also HTML; HTTP

advantages of, 248

callAHAH() functions,

250-251

myAHAHlib.js, 249-251

metatag information,

retrieving from URL,

252-253

responseText

property, 255

responseAHAH() functions,

250-251

Ajax

application examples, 44

application flow, example

of, 47-48

client-server interaction,

41-44

inappropriate situations for

using, 299

objects

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

AjaxEngine objects,

316-317

Ajax Engines, 44, 316-317

<ajax-response> elements, Rico,

317-319

alert() function, 68

alt attribute (image tags), 26

Amazon.com REST API, 275-278

anchor objects, 77

anchor tags (HTML), 27

anchors, 77

And operator (&&), 120

Apache Web Server website, 11

appendChild() method, 259-261

applications, designing, 299

basic example

callback functions,

179-180

completed application,

180-182

event handlers, 180

HTML document, 176

PHP scripts, 178-179

server requests, 178

user feedback, 182-183

XMLHTTPRequest objects,

177-178

flow diagram, 48

prototype.js, adding to, 306

Rico, adding to, 316

scripts, creating, 47-48, 54

troubleshooting, 301

arguments, 104, 225

arithmetic operators

addition (+), 198

compound operations,

199-200

division (/), 199

modulus (%), 199

multiplication (*), 198

subtraction (-), 198

350

+ (plus sign)

ARPAnet, Internet development, 9

array function, 207

arrays, 94

accessing, 207

assigning values to, 95

associative, textual key

names, 208

contents, searching, 209

creating, 95, 207

declaring, 95, 207

elements, accessing, 96

function of, 206-209

index values, 207

length property, 95

looping through

foreach loop, 207

while loop, 207-208

sorting, 98-100

string arrays, 96-98

array_search function, array

manipulation, 209

ASCII text, server responses, 47

assigning values to

arrays, 95

strings, 89-90

variables, 84

assignment operator (=), 119

associative arrays, textual key

names, 208

asterisk (*), multiplication opera-

tor, 198

asynchronous server communica-

tions, 44

asynchronous server requests,

46, 157-162

at sign (@), PHP methods, 253

B

Back button, 79, 296

background property, 36, 39

background-color property, 38

backslashes (\)

escaping strings, 202

\n character sequence, new-

line characters, 192

bandwidth, defining, 42

best practices, 67

body tags (HTML), 24-25

bookmarks, troubleshooting, 297

Boolean data types, 197

Boolean operators. See logical

operators

Boolean values, 87, 216

braces ({})

code indentation rules, 216

loop syntax, 126

use in conditional state-

ments, 216

brackets ([]), use in conditional

statements, 216

break statement, escaping from

infinite loops, 130

breaking loops, 222

browsers

availability of, 13

caches

callAjax() functions, 160-

162

GET requests, 301

server requests, 160-162

defining, 13

graphics browsers, 13

Lynx text-based browsers, 13

style sheet properties, 38

text-based browsers, 13

unsupported browsers, trou-

bleshooting, 297-298

web server interaction, 10

built-in objects, 72

definitions, extending, 112-

114

Math object, 135-136

C

caches (browser)

callAjax() functions, 160-162

GET requests, 301

server requests, 160, 162

callAHAH() functions, 250-251

callAjax() function, 159

browser caches, 160-162

launching, 165

callback functions, 162-163

AHAH, 250-251

basic application creation

example, 179-180

JavaScript libraries, 288-290

launching, 165

myAJAXlib.js, 291

RSS headline readers, creat-

ing, 266-267

calling functions, 105-106

callRICO() function, 318

capitalization in strings, 205

How can we make this index more useful? Email us at indexes@samspublishing.com

capitalization in strings

351

case sensitivity, 65

strings, 205

variables, 196

ceil function, rounding number

functions, 200

center tags (HTML), 28

CERN (Conseil Europeen pour le

Recherche Nucleaire), Internet

development, 10

change() function, 335-336

character strings, split()

method, 245

charAt method, responseText

property, 169

charAT() method, 93

child nodes, adding to DOM, 259

child objects, 109

childNodes property, 261

cinematic effects (Rico), 324

classes (OO programming), 232

appearance of, 232-233

constructors, 234

definitions, 232-233

functions, 232

inheritance, 232

methods, 232-234

object instances,

creating, 233

private methods, 232

public methods, 232

third-party, 232-236

when to use, 232

client-server interactions versus

Ajax, 41-42

client-side programming,

defining, 14

closing tags (?), 189

code

braces ({}), indentation

rules, 216

comments, 193

functions, uses for, 223

modular, 224

platform tests,

troubleshooting, 300

color, style sheets, 38

color property, 36-39

combining

conditions, 119-121

values of strings, 89

words, use of underscore

characters, 196

comments, 66

code, 193

HTML, 25

Using Comments in a Script

(Listing 1.4), 193

comparison operators,

strings, 203

compound operators, 199-200

concatenation operators,

strings, 202

conditional expressions, 118-119

conditional operators, 119

conditional statements, 62, 215

Boolean values, 216

braces ({}), 216

brackets ([]), 216

logical operators, 217-218

multiple condition branches,

218-219

operators, 216-217

switch statement, 219-220

conditions, combining, 119-121

constructors

class methods, 234

functions, 110

continue statement, 130

converting

case of strings, 91-92

data types, 88

date formats, 143, 213

count function, array manipula-

tion, 209

CreateAttribute method, 261

createElement() method,

260-261

createTextNode() method,

259-261

CSS (Cascading Style Sheets),

30, 39

custom objects, 72

D

data types, 86-87

Boolean, 197

converting between, 88

double, 197

gettype function, 198

integer, 197

NULL values, 200

numeric, 200

querying, 198

settype function, 198

string, 197

352

case sensitivity

data() function, 178

date and time, displaying, 54-60

date command, 189

date formats

converting, 143, 213

listing of, 213

storage overview, 209-210

Unix timestamp, 210

date function, 210-211, 224

Date object, 56, 140-141

Date.parse() method, 143

Date.UTC() method, 143

decimal numbers, rounding, 136

declaring

arrays, 95, 207

variables, 82, 196

decrement operator (—), 199

decrementing variables, 84

default argument values,

functions, 226-227

defining

functions, 104

multiple parameters, 105

simple example, 224-225

objects, 110

DELETE requests, 273-274

developer’s tokens, 276

displaying

dates and times, 54-60

error messages, 60

Displaying the System Date and

Time (Listing 1.1), 190-191

dissecting strings

sublen function, 206

subpos function, 206

substr function, 205-206

<div> … <div> elements, 176

<div> containers, 179

division operator (/), 199

DNS (Domain Name Service)

servers, 14

do loops, 221

do…while loops, 128

doAjax function, 289-293

DOCTYPE elements, 23

document object, 74

methods, 76

properties, 75

document.write statement, 56

Dojo library, 144

dollar sign ($)

$ SERVER global array vari-

able, 320

$() function, 306

$F() function, 307

variables, 195

DOM (Document Object Model)

appendChild() method, 259

child nodes, adding to, 259

createElement() method, 260

createTextNode()

method, 259

document methods

table, 261

elements, deleting, 267

getElementByID method, 258

getElementsByTagName

method, 258

history of, 73

level standards, 74

methods, 73

node methods table, 261

node properties table, 261

objects, 72

document, 74-76

hierarchy, 73

properties, 73

double data types, 197

double quotes (“ “), strings,

197, 202

downloading Script.aculo.us

library, 325

E

echo command, 189

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

browser, outputting to,

191-192

Using echo to Send Output to

the Browser (Listing 1.2),

191-192

else clause, multiple condition

branches, 218-219

else keyword, 121-124

elseif keyword, multiple condition

branches, 218-219

email

gmail web mail service

(Google), 45

Internet development, 10

return values, mail function

example, 226

email_validation_class (third-

party), 234-235

How can we make this index more useful? Email us at indexes@samspublishing.com

email_validation_class

353

Engines (Ajax), 44

equal sign (=)

= (assignment operator), 119

== (equality operator),

119, 203

error handling

application design, 301

Back button codes, 296

bookmarks, 297

browser caches, 301

code, platform tests, 300

GET requests, 301-302

JavaScript libraries, 293

links, 297

page design, 299

Permission Denied

errors, 302

POST requests, 302

security, 300

spiders, 298

unsupported browsers,

297-298

user feedback, 297

error messages, 60

escape characters (\),

strings, 202

escaping infinite loops, 130

eval() function, JavaScript

libraries, 288-290

event handlers

basic application creation

example, 180

example of, 67-68

myAJAXlib.js, calls for, 291

exclamation point (!), Not

operator, 120

explicit newline characters,

\n, 192

expressions

operators, precedence rules,

85-86

use in variables, 196-197

F

$F() function, 307

feedback (user)

basic application creation

example, 182-183

JavaScript libraries, 293

server requests, 172-173

troubleshooting, 297

firstChild property, 261

float widths, string

formatting, 204

floor function, rounding number

functions, 200

flow control, 117

conditional statements, 215

Boolean values, 216

logical operators, 217-218

multiple condition branch-

es, 218-219

operators, 216-217

switch statement,

219-220

if statement

conditional

expressions, 118

logical operators, 119-121

loops

breaking out of, 222

do, 221

for, 221-222

nested, 222

while, 220-221

font-family property, 36-38

font-size property, 36

font-style property, 36

font-weight property, 36

for loops, 125, 221-222

for statement, 63, 125-128

for…in loops, 131-133

foreach loops, looping through

arrays, 207

Form objects, prototype.js, 307

formatting strings

format codes, 204

printf function, 203

sprintf function, 204-205

Forth programming

language, 127

Forward button, creating, 79

Frameworks (Ajax), 44

FTP (File Transfer Protocol),

Internet development, 10

Fuchs, Thomas, 144

function calls, 62

functions, 62, 103

$(), 306

$F(), 307

alert(), 68

arguments, 104, 225

array, 207

array manipulation, 208-209

354

Engines

callAHAH(), 250-251

callAjax(), 159

browser caches, 160-162

launching, 165

callback, 162-163

AHAH, 250-251

basic application creation

example, 179-180

JavaScript libraries,

288-290

launching, 165

myAJAXlib.js, 291

RSS headline readers, cre-

ating, 266-267

calling, 105-106

callRICO(), 318

change(), 335-336

constructor, 110

date(), 178, 211, 224

default argument values,

226-227

defining, 104, 224-225

doAjax, 289-293

eval(), JavaScript libraries,

288-290

header(), 334

library files, creating, 229

local variables, creating, 83

mail, return values, 226

mathematical, 201

mktime, 212

multiple parameters,

defining, 105

naming conventions, 65

numeric, rounding numbers,

200-201

parseFloat, 88

partInt(), 88

phpinfo, 225

printf, 203

prototype, 224

responseAHAH(), 250-251

responseAjax(), 159, 163

return codes, 225-226

return values, 225

runServer(), 334

sizeof(), 244

sprintf, 204-205

strtotime, 213

Try.these(), 308

uses for, 223

values, returning, 106-107

variable scope, 227-228

G

get methods, 141

GET requests, 159

browser caches, 160-162,

301

JavaScript libraries, 288

myAJAXlib.js, 291

REST, 273-276

troubleshooting, 302

getAllResponseHeaders

method, 154

getElementById() method, 173,

180, 258

getElementByTagname

method, 179

getElements() method,

prototype.js, 307

GetElementsById method, 261

getElementsByTagName()

method, 171-172, 258, 261

getResponseHeader method, 154

getTimeZoneOffset()

function, 142

gettype function, 198

getUTCDate() function, 142

getUTCDay() function, 142

getUTCFullYear() function, 142

getUTCMonth() function, 142

global variables, 82, 227-228

GMT (Greenwich Mean Time), 54

GNU.org website, date formats

listing, 213

Google

gmail web mail service, 45

Google Maps, 45

Google Suggest, 44

graphics web browsers, 13

H

HasChildNodes method, 261

head tags (HTML), 24

header() function, 334

history objects, 77

history.back() method, 78

history.forward() method, 78

history.go() method, 78

history.length property, 77

horizontal lines, HTML tags, 39

How can we make this index more useful? Email us at indexes@samspublishing.com

horizontal lines

355

href property (window

objects), 78

HTML (Hypertext Markup

Language), 21. See also AHAH,

HTTP

attributes, adding to, 25

basic application creation

example, 176

color values, 26

common tags table, 29-30

containers, 25

defining, 22

<div> … <div> elements, 176

<div> containers, 179

<hr>, 39

hyperlinks, 27

loading, 23

myAJAXlib.js, 291

responseText property,

242-243

RSS headline readers, creat-

ing, 263

saving, 23

<script> … <script> ele-

ments, 177

seville.html document exam-

ple, 28

tags, 22-23

anchor tags, 27

body tags, 24-25

center tags, 28

event handlers, 64

head tags, 24

metatags, 251-253

table tags, 27-29

title tags, 24

testpage.html document

example, 22

tool requirements, 22

XOAD, 334

change() function, 335-

336

XOAD

HTML::getElementByID()

method, 335-336

XOAD

HTML::getElementByTag

Name() method,

336-337

word processors, 22

HTTP (Hypertext Transfer

Protocol), 10. See also AHAH;

HTML

server response status

codes, 163

SOAP requests, sending, 281

hyperlinks, HTML, 27

hypertext, Internet

development, 10

I

id values, 173

if statement

conditional expressions, 118

logical operators

And, 120

else keyword, 121

Not, 120

Or, 119

testing multiple conditions,

122-124

images

defining, 26

tags

alt attribute, 26

src attribute, 26

include keyword, library function

files, 229

include once keyword, library

function files, 229

increment operator (++), 84,

132, 199

incrementing variables, 84

indenting code, braces ({}), 216

index values, assigning

arrays, 207

indexOf() method, 94, 169

infinite loops, 129-130, 220

inheritance, classes, 232

initial expression, 125

instances (objects), creating, 111

class objects, 233

XMLHTTPRequest objects,

151-153

integer data types, 197

Internet, development of, 9-10

Internet Explorer 6.0, security set-

tings, 58

in_array function, array manipula-

tion, 209

IP addresses, defining, 14

356

href property

J

JavaScript libraries

Back button codes, 296

callback functions, 288-290

doAjax functions, 289-293

error handling, 293

eval() function, 288-290

GET requests, 288

myAHAHlib.js, 286-287

myAJAXlib.js, 289-290

callback functions, 291

event handler calls, 291

GET requests, 291

HTML pages, 291

PHP scripts, 291

responseText

properties, 291

usage example, 291-292

XML data, retrieving, 292

POST requests, 288, 293

prototype.js

$() function, 306

$F() function, 307

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

download website, 305

Form objects, 307

getElements() method,

307

Rico, 315-324

serialize() method, 307

Stock Price Reader build

example, 311-312

Try.these() function, 308

web applications, adding

to, 306

user feedback, 293

XMLHTTPRequest instances,

creating, 287

join() method, 100

JSON (JavaScript Object

Notation), 309, 332

K - L

keywords, 139-140

keywords metatag, 251-253

large clock display, adding to

time and date script, 58-60

lastChild property, 261

lastIndexOf() method, 94, 169

length of arrays, calculating, 95

length property, 91, 95

less than sign (<)

<ajax-response> elements,

Rico, 317-319

<div> … <div>

elements, 176

<div> containers, 179

<response> elements, Rico,

317-319

<script> … <script> ele-

ments, 177

levels (DOM), 74

libraries

JavaScript

callback functions,

288-290

doAjax functions, 289-293

error handling, 293

eval() function, 288, 290

GET requests, 288

myAHAHlib.js, 286-287

myAJAXlib.js, 289-292

POST requests, 288, 293

prototype.js, 305-312,

315-324

user feedback, 293

XMLHTTPRequest

instances, 287

open source libraries,

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

third-party libraries

Prototype, 143

Script.aculo.us, 144,

325-327

Yahoo! UI Library, 144

How can we make this index more useful? Email us at indexes@samspublishing.com

libraries

357

library file functions,

creating, 229

link objects, 76-77

links

style sheets, 38

troubleshooting, 297

underlining, 38

local variables, 83, 227-228

localtime variable, 56

location object, 78-79

location.reload() method, 79

location.replace() method, 79

logical operators

And (&&), 120

conditional statements,

217-218

Not (!), 120

Or (||), 119-120

loops, 63

breaking out of, 222

continue statement, 130

do loops, 221

for loops, 221-222

for statement, creating with,

125-128

for…in loops, 131-133

foreach loops, 207

infinite loops, 129-130, 220

nested loops, 222

while loops, 207-208,

220-221

while statement, creating

with, 128

Lynx text-based web browsers, 13

M

mail function

default argument values,

226-227

return values, 226

margin-left property, 40

Math object, 135-136

Math.random() method,

137-139, 160

mathematical functions, 201

metatags

keywords, 251-253

myAHAHlib.js, 252-253

methods, 72, 109

abort, 154

appendChild(), 259-261

charAT(), 93, 169

classes, 233-234

constructors, 234

CreateAttribute, 261

createElement(), 260-261

createTextNode(), 259-261

getAllResponseHeaders, 154

getElementById(), 173,

180, 258

getElementByTagname, 179

getElements(),

protoype.js, 307

GetElementsById, 261

getElementsByTagName(),

171-172, 258, 261

getResponseHeader, 154

HasChildNodes, 261

history.back(), 78

history.forward(), 78

history.go(), 78

indexOf(), 94, 169

join(), 100

lastIndexOf(), 94, 169

location.reload, 79

location.replace(), 79

Math.random(), 137-139, 160

open, 154-155

registerDraggable, 320

registerDropZone, 320

RemoveChild, 261

send, 154-155

serialize(), protoype.js, 307

setRequestHeader, 154-156

sort(), 98-100

split(), 97, 245

substring(), 93, 169

toLowerCase(), responseText

property, 169

toUpperCase(), responseText

property, 169

XMLHTTPRequest object, 154

XOAD

HTML::getElementByID(),

335-336

XOAD

HTML::getElementByTagNam

e(), 336-337

Microsoft typography website, 36

minus sign (-), 84

— (decrement operator), 199

- (subtraction operator), 198

358

library file functions

mktime function, creating time-

stamps, 212

MochiKit library, 145

modular code, 224

modulus operator (%), 199

Mosaic, Internet development, 10

multiplatform code tests, 300

multiple conditions

conditional statements,

218-219

testing, 122-124

multiple scripts, order of opera-

tion, 64

multiplication (*) operator, 198

myAHAHlib.js, 249-251, 286-287

metatag information, retriev-

ing from URL, 252-253

responseText property, 255

myAJAXlib.js, 289-290

callback functions, 291

event handler calls, 291

GET requests, 291

HTML pages, 291

PHP scripts, 291

responseText properties, 291

usage example, 291-292

XML data, retrieving, 292

N

\n character sequence, newline

characters, 192

namespaces, SOAP, 280

naming conventions, 65, 195-196

NaN (non a number), 88

navigation tools, creating

Back/Forward buttons, 79

nested loops, 222

newline characters, \n, 192

nextSibling property, 261

nodeName property, 261

nodes (DOM)

child nodes, 259

document methods table, 261

node methods table, 261

node properties table, 261

nodeType property, 261

nodeValue property, 261

Not operator (!), 120

null value, 87, 200

numeric arrays, sorting, 98-100

numeric data types, 200

numeric functions

random, 201

rounding numbers, 200-201

O

object hierarchy (DOM), 73

object-oriented programming, see

OO (object-oriented) program-

ming

objects, 108

Ajax

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

AjaxEngine, instances in Rico,

316-317

built-in, 72, 112-114

child objects, 109

creating, 108, 111

defining, 110

document, 74

methods, 76

properties, 75

DOM, 72

Form, protoype.js, 307

instances, creating, 111,

151-153, 233

location, 78-79

methods, 72

naming conventions, 65

properties, 71, 108

XMLHTTPRequest

basic application creation

example, 177-178

callAjax() function, 159

instances, creating,

151-153

JavaScript libraries,

creating, 287

methods

open, 155

send, 155

methods, list of, 154

properties, list of, 154

responseAjax()

function, 159

server requests, 157-165

How can we make this index more useful? Email us at indexes@samspublishing.com

objects

359

status property, 164

statusText property, 164

uses of, 150

XMLHTYTPRequest,

readyState property,

162-163

onBlur event handler, 165

onLoad() event handler, basic

application creation

example, 180

onreadystatechange

property, 154

OO (object-oriented) program-

ming

advantages of, 232

classes

appearance of, 232-233

constructors, 234

definitions, 232-233

functions, 232

inheritance, 232

methods, 232-234

objects, instance

creation, 233

private methods, 232

public methods, 232

third-party, 232-236

PHP Classes website, 231

PHP functionality, 231

PHP.net website

resources, 233

when to use, 232

open method, 154-155

open source libraries, Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding, 316

operators, 85

+= operator, 84

arithmetic

addition (+), 198

division (/), 199

modulus (%), 199

multiplication (*), 198

subtraction (-), 198

assignment (=), 119

compound, 199-200

conditional statements,

216-217

decrement (—), 199

equality (==), 119, 203

increment (++), 199

logical operators

And (&&), 120

conditional statements,

217-218

Not (!), 120

Or (||), 119-120

precedence rules, 85-86

P

parentNode property, 261

parseFloat() function, 88

parseInt() function, 88

parsing, responseXML

property, 172

percent sign (%), modulus

operator, 199

period (.), 71

Permission Denied errors, trou-

bleshooting, 302

PHP (Hypertext Preprocessor), 187

$ SERVER global array

variable, 320

?php tag, 189-190

methods, 253

running locally from PC, 190

scripts

basic application creation

example, 178-179

myAJAXlib.js, 291

XOAD, 331

cache handling, 338

client controls, customiz-

ing, 338

downloading/

installing, 332

events, 338

header() function, 334

JSON, 332

runServer() function, 334

simple page example,

332-334

360

objects

XOAD Controls class, 338

XOAD HTML, 334-337

PHP Classes website, 231, 234

PHP interpreter, @

characters, 253

PHP.net website

array functions, 208

mathematical function

resources, 201

online manual documenta-

tion, 223

OO programming

resources, 233

string functions listing, 205

phpinfo function, 225

pipes (|), || (Or operator),

119-120

platform code tests, 300

plus sign (+), 57

+ (addition operator), 198

+= operator, 84

++ (increment operator), 84,

132, 199

pop-ups, 299

pound sign (#), use in single-line

comments, 193

POST requests, 273-275, 293

JavaScript libraries, 288

troubleshooting, 302

precision specifiers, string

formatting, 204

previousSibling property, 261

printf function, string

formatting, 203

printf functions, 203

private methods (classes), 232

properties, 71, 108

childNodes, 261

DOM document methods

table, 261

DOM node methods

table, 261

DOM node properties

table, 261

firstChild, 261

lastChild, 261

nextSibling, 261

nodeName, 261

nodeType, 261

nodeValue, 261

of document object, 75

onreadystatechange, 154

parentNode, 261

previousSibling, 261

readystate, 154, 162-163

responseText, 154, 239

character strings, 240

character strings, using in

page elements, 240-242

formatted data, 244-245

HTML, 242-243

manipulation methods list,

169-170

myAHAHlib.js, 255

myAJAXlib.js, 291

null values, 168

returned text, using in

page elements, 240-242

values, displaying,

168-169

responseXML, 154, 170

parsing, 172

stored values, 258

web pages, adding ele-

ments to, 259-261

status, 154, 164

statusText, 154, 164

values, reading, 109

XMLHTTPRequest object, 154

prototype keyword, 112

Prototype third-party library, 143

prototype.js

$() function, 306

$F() function, 307

Ajax objects

Ajax.PeriodicalUpdater

class, 310

Ajax.request class, 308

Ajax.Updater class,

309-310

download website, 305

Form objects, 307

getElements() method, 307

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

How can we make this index more useful? Email us at indexes@samspublishing.com

prototype.js

361

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

serialize() method, 307

Stock Price Reader build

example, 311-312

Try.these() function, 308

web applications, adding

to, 306

public methods (classes), 232

PUT requests, 273-274

Q - R

quotation marks

double quotes (“ “)

strings, 197

variables, 202

single quotes (‘)

strings, 202

variables, 197

question mark (?)

?php tag, 189-190

closing tags, 189

random numbers

generating, 136

example script, 137-139

rand function, 201

srand function, 201

readyState property, 154,

162-163

recommended web browsers, 54

registerDraggable method, 320

registerDropZone method, 320

RemoveChild method, 261

require keyword, library function

files, 229

require once keyword, library

function files, 229

reserved words, 66

<response> elements, Rico,

317-319

responseAHAH() functions,

250-251

responseAjax() function, 159, 163

responseText property, 154, 239

character strings, 240-242

formatted data, 244-245

HTML, 242-243

manipulation methods list,

169-170

myAHAHlib.js, 255

myAJAXlib.js, 291

null values, 168

returned text, 240-242

values, displaying, 168-169

responseXML property, 154, 170

parsing, 172

stored values, 258

web pages, adding elements

to, 259-261

REST (Representational State

Transfer)

Amazon.com REST API,

275-278

articles, uploading, 275

DELETE requests, 273-274

example of, 273

GET requests, 273-276

POST requests, 273-275

principles of, 272

PUT requests, 273-274

SOAP versus, 283

stateless operations, 274

return keyword, 107

return values, functions

failure, 225-226

mail function

example, 226

success, 225-226

returning

single characters from

strings, 93

time in UTC, 142

Rico, 315

AjaxEngine instances,

316-317

callRICO() function, 318

cinematic effects, 324

drag-and-drop, 320-323

multiple page element

updates, 317

<response> elements,

317-319

usage example, 318

web applications, adding

to, 316

rounding decimal numbers, 136

rounding number functions

ceil, 200

floor, 200

round, 201

362

prototype.js

RSS

feeds, 262

headline readers, creating,

262-265

callback functions,

266-267

HTML page, 263

server scripts, 268-269

runServer() function, 334

S

scope of variables, 82

<script> … <script> elements, 177

Script.aculo.us library, 144,

325-327

scripts

A Badly Formatted Script That

Displays the Date and Time

(Listing 1.3), 192

adding to HTML

documents, 57

comments, adding, 66

creating, required tools

for, 54

date and time, displaying,

55-60

Displaying the System Date

and Time (Listing 1.1),

190-191

flow control

conditional statements,

215-220

loops, 220-222

library functions,

including, 229

order of operation, 64

random numbers, generating,

137-139

Using Comments in a Script

(Listing 1.4), 193

Using echo to Send Output to

the Browser (Listing 1.2),

191-192

search engine spiders, trou-

bleshooting, 298

security

IE 6.0, settings for, 58

troubleshooting, 300

XMLHTTPRequest objects, 46

semicolon (;) 56, 61, 189

send method, 154-155

serialize() method,

prototype.js, 307

server-side programming, defin-

ing, 12

servers

asynchronous

communications, 44

requests

asynchronous requests, 46

basic application creation

example, 178

browser caches, 160-162

callback functions, 162

GET requests, 159

monitoring status of,

162-163

progress notifications,

172-173

readyState property,

162-163

sending, 157-162

timestamps, 162

user feedback, 172-173

responses, 47

getElementsByTagName()

method, 171

progress notifications,

172-173

responseText property,

168-169

responseXML property,

170-172

user feedback, 172-173

scripts, 46

creating RSS headline

readers, 268-269

page processing, 188

setRequestHeader method,

154-156

settype function, 198

shorthand conditional

expressions, 121

single quotes (‘)

strings, 202

variables, 197

single-line comments, 193

sizeof() function, 244

slashes (/)

/ (division operator), 199

/*…*/ (use in multiple-line

comments), 193

// (use in single-line

comments), 193

How can we make this index more useful? Email us at indexes@samspublishing.com

slashes (/)

363

SOAP (Simple Object Access

Protocol), 278

development of, 279

namespaces, 280

requests

Ajax usage example, 282

code example, 281

components of, 279-280

HTTP, sending via, 281

REST versus, 283

specification information

website, 279

sort() method, 98-100

sorting

numeric arrays, 98-100

string arrays, 98

spiders (search engine), trou-

bleshooting, 298

split() method, 97, 245

splitting strings, 97

sprintf function, string formatting,

204-205

srand function, random number

generation, 201

src attribute (image tags), 26

statements, 61

conditional, 62

function calls, 62

termination (;), 189

status property, 154, 164

statusText property, 154, 164

Stephenson, Sam, 143

Stock Price Reader build exam-

ple, 311-312

storing date formats, 209-210

string arrays

creating, 96-97

sorting, 98

string data types, 197

string objects, creating, 89

strings, 56, 87

assigning values to, 89-90

capitalization in, 205

case sensitivity, 91-92, 205

comparing, 203

concatenation operator, 202

dissecting

sublen function, 206

subpos function, 206

substr function, 205-206

escape characters (\), 202

formatting

format codes, 204

printf function, 203

sprintf function, 204-205

function of, 202

length of, calculating, 91

length property, 91

quotation marks

double (“ “), 197, 202

single (‘), 197, 202

returning single characters

from, 93

splitting, 97

substrings, 92-94

variables, 197

strtolower function, string capital-

ization, 205

strtotime function, 213

strtoupper function, string capital-

ization, 205

style sheets

adding, 33-34

class attribute, 31-33

declarations, 31

embedded, 30

inline, 30

linked, 30

links, 38

precedence, 34-35

rules, 31

text, 36

<style> tag, 36

sublen function, string

dissection, 206

subpos function, string dissection,

206

substr function, string dissection,

205-206

substring() method, 93, 169

substrings

index values, 92

locating, 94

subtraction (-) operator, 198

switch statement, 124

conditional statements,

219-220

syntax, 125

syntax

case sensitivity, 65

comments, 66

naming conventions, 65

reserved words, 66

switch statement, 125

364

SOAP (Simple Object Access Protocol)

T

table tags (HTML), 27, 29

tags

?php, 189-190

closing (?), 189

HTML tags

anchor tags, 27

body tags, 24-25

center tags, 28

head tags, 24

table tags, 27-29

title tags, 24

image tags, 26

metatags

keywords, 251-253

myAHAHlib.js, 252-253

processing instructions, 189-

190

<style> tag, 36

testing

color, 39

date and time script, 58

multiple conditions, 122-124

text-align property, 36

text-based web browsers, 13

text-decoration property, 36-38

text-indent property, 36

third-party classes, 234-236

third-party libraries

Prototype, 143

Script.aculo.us, 144

time

displaying, 54-60

zones, 142

time and greeting example,

123-124

time function, locating time-

stamps, 210

time.php script, date and time

display, 190-191

timestamps

converting date formats

to, 213

creating (mktime

function), 212

date function, 210-211

server requests, 162

time function, 210

title tags (HTML), 24

toLocalString() function, 142

toLowerCase() method, 91, 169

toUpperCase() method, 91, 169

toUTCString() function, 142

troubleshooting

application design, 301

Back button codes, 296

bookmarks, 297

browser caches, 301

code, platform tests, 300

GET requests, 301-302

links, 297

page design, 299

Permission Denied errors, 302

POST requests, 302

security, 300

spiders, 298

unsupported browsers,

297-298

user feedback, 297

Try.these() function, 308

U

underscore characters, combining

words, 196

Unix timestamp format

best uses, 210

drawbacks, 210

ease of use, 210

mktime function, 212

starting value, 210

unsupported browsers, trou-

bleshooting, 297-298

URL (Uniform Resource Locators),

creating RSS headline readers,

262-265

callback functions, 266-267

HTML page, 263

server scripts, 268-269

user feedback

basic application creation

example, 182-183

JavaScript libraries, 293

server requests, 172-173

troubleshooting, 297

Using echo to Send Output to the

Browser (Listing 1.2), 191-192

UTC (Universal Time

Coordinated), 54, 142

utctime variable, 56

V

variables, 55

arguments, 104

assigning values to, 84

How can we make this index more useful? Email us at indexes@samspublishing.com

variables

365

declaring, 82, 196

decrementing, 84

dollar sign ($), 195

expressions, 85, 196-197

fixed values, 196

global

creating, 83

scope of, 227-228

incrementing, 84

invalid names, 196

local, 83, 227-228

naming, 82, 195

case sensitivity, 196

conventions, 65, 196

operators, precedence rules,

85-86

scope of, 82

global, 227-228

local, 227-228

strings, 197

underscore characters, word

combinations, 196

valid names, 196

values, 195

verifying date and time script, 58

W

W3C (World Wide Web

Consortium), 74, 279, 301

web browsers

availability of, 13

caches

callAjax() functions,

160-162

GET requests, 301

server requests, 160-162

defining, 13

graphics browsers, 13

Lynx text-based browsers, 13

style sheet properties, 38

text-based browsers, 13

unsupported browsers, trou-

bleshooting, 297-298

web server interaction, 10

web pages

defining, 11

elements, adding via

responseXML property, 259-

261

id values, 173

server-side scripting, 188

web servers

defining, 11

server-side scripting of web

pages, 188

web browser interaction, 10

web services

example of, 272

REST

Amazon.com REST API,

275-278

articles, uploading, 275

DELETE requests,

273-274

example of, 273

GET requests, 273-276

lists of available articles,

reading, 274-275

particular articles,

retrieving, 275

POST requests, 273-275

principles of, 272

PUT requests, 273-274

SOAP versus, 283

stateless operations, 274

SOAP, 278

development of, 279

namespaces, 280

requests, 279-282

REST versus, 283

specification information

website, 279

websites

Apache Web Server

website, 11

GNU.org, date formats, 213

JSON, 309

Lynx text-based web

browsers, 13

Microsoft typography

website, 36

PHP Classes, 231, 234

PHP.net

array functions, 208

mathematical function

resources, 201

online manual documenta-

tion, 223

OO programming

resources, 233

string functions

listing, 205

prototype.js download web-

site, 305

W3C, 279, 301

366

variables

while loops, 220-221

arrays, looping through,

207-208

example of, 128

whitespace, 66

with keyword, 139-140

word processors, HTML, 22

X

XML (Extensible Markup

Language)

data, retrieving, 292

responseXML property

stored values, 258

web pages, adding ele-

ments to, 259-261

RSS headline readers, creat-

ing, 262-265

callback functions,

266-267

HTML page, 263

server scripts, 268-269

server responses, 47

XMLHTTPRequest objects, 45

basic application creation

example, 177-178

callAjax() function, 159

instances, creating, 151-153

JavaScript libraries,

creating, 287

methods, list of, 154

open method, 155

properties, list of, 154

readyState property, 162-163

responseAjax() function, 159

security, 46

send method, 155

server requests, 46

browser caches, 160-162

callback functions,

164-165

sending, 157-159

status, monitoring,

162-163

timestamps, 162

server-side scripts, 46

status property, 164

statusText property, 164

uses of, 150

XOAD (XMLHTTP Object-oriented

Application Development), 331

cache handling, 338

client controls,

customizing, 338

Controls class, 338

downloading/installing, 332

events, 338

header() function, 334

HTML, 334

change() function,

335-336

XOAD

HTML::getElementByID()

method, 335-336

XOAD

HTML::getElementByTag

Name() method,

336-337

JSON, 332

runServer() function, 334

simple page example,

332-334

XOAD Controls class, 338

XSLT, 248

Y - Z

Yahoo! UI Library, 144

How can we make this index more useful? Email us at indexes@samspublishing.com

Yahoo! UI Library

367

	Introduction
	CHAPTER 3: Anatomy of an Ajax Application
	The Need for Ajax
	Introducing Ajax
	The Constituent Parts of Ajax
	Putting It All Together
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

