

Sams Teach Yourself Django in 24 Hours
Copyright © 2008 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 9780672329593
ISBN-10: 067232959X

Library of Congress Cataloging-in-Publication Data:

Dayley, Brad.

Sams teach yourself Django in 24 hours / Brad Dayley.

p. cm.

ISBN 978-0-672-32959-3 (pbk.)

1. Web site development. 2. Django (Electronic resource) 3. Python (Computer program
language) I. Title.

TK5105.888.D397 2008

006.7’6—dc22

2008001956

Printed in the United States of America

First Printing January 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

This Book Is Safari Enabled
The Safari®Enabled icon on the cover of your favorite technology book means the book is avail-
able through Safari Bookshelf. When you buy this book, you get free access to the online edition
for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of techni-
cal books, find code samples, download chapters, and access technical information whenever and
wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition.

. Complete the brief registration form.

. Enter the coupon code ERBC-2QCB-ZL1W-YDBJ-YZ42.

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email
customer-service@safaribooksonline.com.

Editor-in-Chief
Mark Taub

Development
Editor
Songlin Qiu

Managing Editor
Gina Kanouse

Project Editor
Jovana San Nicolas-
Shirley

Copy Editor
Gayle Johnson

Indexer
Cheryl Lenser

Proofreader
Anne Goebel

Technical Editor
Timothy Boronczyk

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

http://www.informit.com/onlineedition

Introduction

I have been working with the Django framework for about a year and a half, and I love it.

Every so often you run into ideas that make absolute, complete sense, and Django is one of

those. The folks at Django seem to be bent on making it the most elegant web framework

available, and so far they are doing a great job.

This was a tough book to write. The Django framework is simple to implement, but you can

accomplish so much with it. The format of this book is Teach Yourself in 24 Hours. The idea

is that after spending 24 hours with this book and a Django installation, you should have a

pretty good idea of how to use Django to build a full-featured production website.

Throughout this book, I use a fictitious website project called iFriends to illustrate the build-

ing blocks of a Django-powered website. The book has several “Try It Yourself” sections that

take you through specific tasks of building the iFriends website. Actually do the “Try It

Yourself” sections. They will help everything else make a lot more sense. They build on each

other, so if you skip one, future “Try It Yourself” sections may not work properly.

When you have finished the “Try It Yourself” sections, you will have a mostly functional

website. You should easily have enough skills by then that you could tweak and finish the

website on your own in only a few hours if you wanted to. There just wasn’t enough room

in the book to finish every component. I felt it was much more important to cover the topics

that I did.

I do have one disclaimer: There is absolutely no CSS code in my HTML template examples.

I would much rather have used CSS code to format my HTML templates than the classic

HTML tags (some of them deprecated) that I used. I chose not to include CSS for two impor-

tant reasons. The first reason is room. Adding CSS files to all the examples would have

taken quite a bit more room, which I didn’t have. The second reason is that this book is

designed for Python programmers as well as HTML programmers. Using CSS for someone

who is not as familiar with it could provide a distraction. This book is about learning to

implement the Django framework. CSS programming techniques belong in a different book.

When designing the content for this book, I tried to come up with the most relevant way to

present the Django framework that will actually help programmers develop websites that

are pertinent to real-world needs. I know that a few components and concepts have been

left out. I welcome your comments and any suggestions on things that you feel need to be

added to this book. If I get a chance, I will try to incorporate them into future revisions of

the book. You can email any queries or suggestions to dayleybooks@yahoo.com.

I hope you enjoy the Django framework as much as I have and that the concepts in this

book prove useful to you.

Who Should Read This Book
This book should be read by anyone who is developing or even considering developing web-

sites. The Django framework saves web developers a lot of time and headaches. This book is

designed for website developers who have at least some familiarity with the Python pro-

gramming language. Don’t worry if you are not very familiar with Python. You should be

able to pick up on what is going on with a few visits to www.python.org.

How This Book Is Organized
This book is organized into four parts that help you quickly navigate the Django framework

so that you will have the knowledge necessary to leverage the framework to build produc-

tion websites. I tried to design the book to start slowly so that you will be able to build a

good foundation for the Django framework. Then, as the hours (chapters) progress, the

book delves deeper into different aspects of the Django framework.

. Part I, “Creating the Website Framework,” covers the basics of installing, configuring,

and using the Django framework to build basic websites. You are introduced to the

model, template, and view concepts that Django uses to implement websites.

. Part II, “Implementing the Website Interface,” covers building templates and views to

build web pages. You will learn how to use templates and views to store, access, and

retrieve data that is stored in the website’s database.

. Part III, “Implementing a Full-Featured Website,” covers adding authentication, cook-

ie handling, and other features necessary to implement a full production website.

You will learn how to create users and groups and how to assign permissions to

specific data.

. Part IV, “Implementing Advanced Website Components,” covers some of the

advanced features of the Django framework that you will likely want to imple-

ment in production websites. You will learn how to implement middleware to

enable advanced request and response handlers. You will also learn how to imple-

ment localized strings to add multiple-language capability to the website, implement

caching to improve website performance, and deploy a Django website.

2

Sams Teach Yourself Django in 24 Hours

www.python.org

How to Use This Book
The Teach Yourself in 24 Hours series has several unique elements that will help you as you

are trying to learn the Django framework. Throughout the book, I use the following ele-

ments to draw attention to specific concepts:

This element provides information about slightly off-topic tangents that
may be beneficial to you but that are not necessarily directly related to
the current section.

This element provides information that is directly related to the current
section but that does not necessarily flow with the text. It discusses what
is happening in the background or points that you may not easily pick up
on but that are important.

This element notes important things that you need to know before pro-
ceeding through the book. It is important to read these sections to avoid
problems with your website.

The “Try It Yourself” sections are designed to take you through the steps of actually per-

forming the tasks that you have been reading about. Do not skip these sections. They

usually provide additional information about the topic and are a great chance to practice

the concepts.

At the end of each hour, you will find the following sections that are designed to help you

solidify what you have read:

. The “Q&A” section poses questions and gives answers on concepts that are related

to the hour but that fall outside what is covered in the book.

. The “Quiz” section provides questions and answers about the topics covered in

each hour.

. The “Exercises” section lists activities that you can do to practice what you have

learned during the hour. These exercises are a great way to strike out on your own a

bit and get more confident with Django.

Introduction

3

Did you
Know?

By the
Way

Watch
Out!

HOUR 2

Creating Your First Website

What You’ll Learn in This Hour:
. How to begin creating a Django project
. How to start and stop the built-in web server
. The steps to configure Django to access the database
. How to create and install an application
. The steps to apply a model to an application
. The steps to activate a model in Django
. How to configure Django to accept specific URL requests
. How to create a simple view for a web browser

In Hour 1, “Understanding Django,” you learned some of the basics about the Django

framework. This hour guides you through the steps of creating a functional website called

iFriends. Although this website will be basic, it will be the basis for future hours to build

on as you are guided through the various aspects of the Django framework.

Creating a Django Project
Let’s begin the process of creating a working website by creating a Django project. A

Django project is a collection of settings that define a specific instance of Django. These

settings include things such as database configuration, URL configuration, and other

options that you will learn about as the hours tick by.

▼

20 HOUR 2: Creating Your First Website

Try It Yourself

Create Your First Django Project
Creating a Django project is relatively simple to do from the command prompt. In

this section, you create a project called iFriends.

1. From a command prompt, change to the directory where you want to store

the code for the iFriends project.

2. Create a directory called iFriends. This will be the root directory for the

iFriends project.

3. Change to the iFriends directory.

4. Type the following command to create the iFriends project:

python django-admin.py startproject iFriends

Because the project will act as a Python package, avoid using a project name that
conflicts with any existing built-in Python packages. The documentation for built-in
Python packages can be found at http://www.python.org.

There is no need to put your project code in a directory in the web server’s
document base. The Django framework will be responsible for executing the code.
In fact, it is a much better idea to store the code somewhere outside the web
server’s root. That way your code will be protected from being accessed directly
from a web browser.

The startproject command first creates a directory called iFriends, and then it

stores the basic set of Python files that are needed to begin the project in the iFriends

directory. The startproject command creates the following files:

. __init__.py is an empty file that tells Python that the website directory

should be treated as a Python package.

. manage.py is the command-line utility that allows the administrator to start

and manage the Django project.

. settings.py is the configuration file that controls the behavior of the

Django project.

. urls.py is a Python file that defines the syntax and configures the behavior

of the URLs that will be used to access the website.

Watch
Out!

By the
Way

▼

http://www.python.org

Starting the Development Server 21

The basic purpose of these files is to set up a Python package that Django can use to

define the website’s structure and behavior. We will discuss these files a bit more in

this hour and in subsequent hours as the website gets increasingly complex.

Starting the Development Server
After you have created the Django project, you should be able to start the develop-

ment server to test it. The development server is a lightweight web server that is

included with the Django project. It lets you develop and test your website without

having to deal with all the configuration and management issues of a production

web server.

Try It Yourself

Start the Development Server
In this section, you learn how to start the development server.

1. From a command prompt, change to the root directory for the iFriends project.

2. Enter the following command to start the development server, as shown in

Figure 2.1:

python manage.py runserver

▼

▲

FIGURE 2.1
Starting the
development
server from a
command line.

The manage.py utility is copied into the root of your project by the createproject
command discussed earlier in this hour. The manage.py utility first validates the
project and reports any errors. If no critical errors are encountered, you are noti-
fied that the development sever is running at http://127.0.0.1:8000/.

By the
Way

▼

▼

22 HOUR 2: Creating Your First Website

3. Verify that the development server is working properly by opening a web

browser and entering the following address:

http://127.0.0.1:8000/

If the development server starts properly (and you haven’t changed the debug set-

ting), you should see a page similar to the one shown in Figure 2.2.

FIGURE 2.2
Initial browser
view of a Django
website.

You can tell the development server to use a different port than 8000 if that port
is already being used by adding the port to the command line. The following exam-
ple shows the syntax for configuring the development server to run on port 8008:

manage.py runserver 8008

To stop the development server, press Ctrl+Break or Ctrl+C.

Configuring the Database
After you have verified that you can start and stop the development server, it is time

to configure access to the database. This section takes you through the process of

creating and configuring access to the database that will be used in the sample

project.

Django can dynamically serve web pages without using a database to store infor-
mation. However, one of the best aspects of Django is its ability to implement
database-backed websites.

By the
Way

Did you
Know?

By the
Way

▼

▲

▼

Configuring the Database 23

Configuring the database involves three major steps. The first is to create the data-

base and assign rights. The second is to modify the settings.py file to specify the

database type, name, location, and access credentials. The third step is to synchro-

nize the Django project with the database to create the initial tables necessary for

the Django engine.

Django supports several different types of database engines. The project used in this

book uses a MySQL database. This section assumes that you have already installed,

configured, and started a database engine and that it is accessible from the develop-

ment server.

The MySQL database does not allow you to use case sensitive names when creat-
ing tables. If you want to define objects in your project that have uppercase char-
acters, then you will need to turn off case sensitivity in the Django framework by
using the following setting in the <django installation path>/django/db/
backends/__init__.py file:

uses_case_insensitive_names = True

Try It Yourself

Create the Database and Grant Rights
This section takes you through the steps of creating the database, creating an admin

user, and granting rights from your SQL database command console. You will also

modify the uses_case_insensitive_names setting in the Django framework so that

you can name objects with uppercase characters. This step will be critical for some

of the other Try it Yourself sections.

1. From your SQL database command console, enter the following command to

create a database called iFriends:

CREATE DATABASE iFriendsDB;

2. Enter the following command to begin using the iFriends database:

USE iFriendsDB;

3. Enter the following command to create an administrative user named dAdmin

with a password called test:

CREATE USER ‘dAdmin’@’localhost’ IDENTIFIED BY ‘test’;

Watch
Out!

▼

24 HOUR 2: Creating Your First Website

4. Enter the following command to grant all rights on the iFriends database to

the dAdmin user:

GRANT ALL ON *.* TO ‘dAdmin’@’localhost’;

If your database engine has a graphical interface that allows you to manage data-
bases and users, you can use that interface as well to create the database and
admin user and to assign rights.

5. Open the <django installation path>/django/db/backends/__init__.py

file in an editor.

6. Add the following setting to the file to disable case sensitivity for the MySQL

database:

uses_case_insensitive_names = True

7. Save the __init__.py file.

Configuring Database Access in settings.py
After the database has been created and a user account set up for Django, you need

to configure the settings.py file in your Django project to access that database.

Each Django project has its own settings.py file. The settings.py file is a Python

script that configures various project settings.

Django uses the following settings in the settings.py file to control access to

the database:

. DATABASE_ENGINE is the type of database engine. Django accepts

postgresql_psycopg2, postgresql, mysql, mysql_old, sqlite3, and

ado_mssql.

. DATABASE_NAME is the name of the database. For SQLite, you need to specify

the full path.

. DATABASE_USER is the user account to use when connecting to the database.

No user is used with SQLite.

. DATABASE_PASSWORD is the password for DATABASE_USER. No password is used

with SQLite.

. DATABASE_HOST is the host on which the database is stored. This can be left

empty for localhost. No host is specified with SQLite.

▼

By the
Way

▲

▼

Configuring the Database 25

. DATABASE_PORT is the port to use when connecting to the database. This can

be left empty for the default port. No port is specified with SQLite.

Try It Yourself

Configure Django to Access the iFriends Database
The following section takes you through the steps to modify the settings in the set-

tings.py file for the database and user created in the preceding section (a MySQL

database named iFriendsDB, and a username of dAdmin with a password of test

running on the localhost and default port). Open the iFriends\settings.py file

in a text editor.

1. Find the DATABASE_ENGINE setting, and change the value to the following:

DATABASE_ENGINE = ‘mysql’

If you have elected to use an SQL database other than MySQL, you need to use
that database type here instead of mysql.

2. Change the value of the DATABASE_NAME setting to the following:

DATABASE_NAME = ‘iFriendsDB’

3. Change the value of the DATABASE_USER setting to the following:

DATABASE_USER = ‘dAdmin’

4. Change the value of the DATABASE_PASSWORD setting to the following:

DATABASE_PASSWORD = ‘test’

5. Verify that the DATABASE_HOST and DATABASE_PORT settings have no value:

DATABASE_HOST = ‘’
DATABASE_PORT = ‘’

When the DATABASE_HOST and DATABASE_PORT settings are left blank, they default
to the localhost and default port. If the database is on a remote server or is run-
ning on a nondefault port, these options need to be set accordingly.

By the
Way

By the
Way

▲

▼

26 HOUR 2: Creating Your First Website

Synchronizing the Project to the Database
After you have configured access to the database in the settings.py file, you can

synchronize your project to the database. Django’s synchronization process creates

the tables necessary in the database to support your project.

The tables are created based on what applications are specified in the INSTALLED_

APPS setting of the settings.py file. The following are the default settings already

specified in the INSTALLED_APPS setting:

INSTALLED_APPS = (
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.sites’,

)

The following list describes the default applications that get installed in the Django

project:

. django.contrib.auth is the default authentication system included with

Django.

. django.contrib.contenttypes is the framework of types of content.

. django.contrib.sessions is the framework used to manage sessions.

. django.contrib.sites is the framework used to manage multiple sites using a

single Django installation.

Try It Yourself

Synchronize the iFriends Project to the iFriends Database
This section guides you through the steps to synchronize the Django project to the

database. During the process, Django creates the default tables and prompts you to

input the name, email address, and password for a website administration account.

The username and password you specify allow you to access the Django authentica-

tion system.

1. Make certain that the development server has stopped by pressing Ctrl+Break

from the console prompt.

2. Change to the root directory of the iFriends project.

3. Enter the following command at the console prompt to begin the synchroniza-

tion, as shown in Figure 2.3:

python manage.py syncdb▼

Installing an Application 27

4. At the prompt, enter a username for the website administrator’s account.

5. At the prompt, enter a password for the website administrator’s account.

The database now has the appropriate tables configured to allow Django to use its

authentication, content, session, and site frameworks correctly.

Installing an Application
After you have configured and synchronized the database, you can begin installing

applications in it. Installing applications is simply a matter of creating an applica-

tion directory, defining a model, and then activating the application so that Django

can access it in the database.

Try It Yourself

Create Your First Application
The first application you will create is an application called People, which will be

used to keep track of the individuals who use the website.

1. From a console prompt, change to the root directory of the iFriends project.

2. Enter the following command to create a blank application called People:

python manage.py startapp People

FIGURE 2.3
Synchronizing
the initial
Django project
with the data-
base from a
command line.

▲

▼

▼

▼

▼

28 HOUR 2: Creating Your First Website

The startapp command creates a People directory within the iFriends directory and

then populates it with the following files:

. __init__.py is a necessary file for the application to be used as a Python

package.

. models.py contains the Python code that defines the model.

. views.py contains the Python code that defines the views for the model.

The files in the application directory define how information for the application will

be stored and accessed in the database. They also define how information in the

model will be viewed when accessed from the website.

Creating a Model
After the application has been created, you need to create a model for the data that

will be stored in the application. A model is simply a definition of the classes, attrib-

utes, and relationships of objects in the application.

To create a model, you need to modify the models.py file located in the application

directory. The models.py file is a Python script that is used to define the tables that

will be added to the database to store objects in the model.

The models.py file initially has only one line, which imports the models object from

the django.db package. To define the model, you need to define one or more

classes. Each class represents an object type in the database.

Try It Yourself

Create a Model for the People Application
In this section, you create the class Person in the People model by modifying the

Python script, models.py, for the People application. Initially, the script is blank.

This section takes you through adding the Python code to define classes in the

model.

1. Open the iFriends\People\models.py file in an editor.

2. Add the following line of code to the file to import the Django models pack-

age into the application:

from django.db import models▼

▼

▲

▼

Installing an Application 29

3. Add the following code snippet to define the Person class with name, email,

headshot, and text attributes:

class Person(models.Model):
name = models.CharField(‘name’, maxlength=200)
email = models.EmailField(‘Email’, blank=True)
headshot = models.ImageField(upload_to=’img’, blank=True)
text = models.TextField(‘Desc’, maxlength=500, blank=True)
def __str__(self):

return ‘%s’ % (self.name)

4. Save the file.

Listing 2.1 shows the complete code for the iFriends\People\models.py file.

LISTING 2.1 Full Contents of the iFriends\People\models.py File
from django.db import models

class Person(models.Model):
name = models.CharField(‘name’, max_length=200)
text = models.TextField(‘Desc’, max_length=500, blank=True)

def __str__(self):
return ‘%s’ % (self.name)

The definition for __str__ defines a string representation of the object that can
be used in views or other Python scripts. Django uses the __str__ method in
several places to display objects as well.

Try It Yourself

Activate the Person Model
This section takes you through the process of activating the Person model by adding

it to the INSTALLED_APPS setting in the settings.py file and then synchronizing

the database.

1. Open the iFriends\settings.py file in an editor.

2. Find the INSTALLED_APPS setting, and add the iFriends.People application to

it, as shown in the following snippet:

INSTALLED_APPS = (
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.sites’,
‘iFriends.People’,

)

▼

By the
Way

▲

▼

▼

30 HOUR 2: Creating Your First Website

3. Save the file.

4. Synchronize the People application into the iFriends database by using the fol-

lowing command from the root of the iFriends project, as shown in Figure 2.4:

python manage.py syncdb

▼

FIGURE 2.4
Synchronizing
the new People
application with
the database
from a com-
mand line.

The syncdb command creates the necessary tables in the iFriends database for the

People application. The model is now active, and data can be added to and

retrieved from the database using Django at this point.

Adding Data Using the API
This section briefly describes how to use the Django shell interface and database API

to quickly add a single Person object to the People table. The Django shell is a

Python shell that gives you access to the database API included with Django. The

database API is a set of Python methods that allow you to access the project data-

base from the data model.

Try It Yourself

Add a Person Object to the iFriends Database
Open the Django shell, and follow these steps to add yourself as a Person object in

the People model of the iFriends database.

1. From a console prompt, change to the root directory of the iFriends project.

2. Enter the following command to invoke the Django shell:

python manage.py shell

▲

▼

Setting Up the URLConf File 31

3. From the shell prompt, enter the following to import the Person class from the

People package:

from iFriends.People.models import Person

4. Enter the following command to create a Person object named p:

p = Person(name=”<your name>”, email=”<your eMail>”)

5. Save the Person object you just created using the following command:

p.save()

6. Verify that the object was created by using the Person.objects.all() func-

tion, which returns a list of all Person objects, and then print the list:

lst = Person.objects.all()
print lst

Figure 2.5 shows these commands.

▼

FIGURE 2.5
Using the
Python shell to
add an object to
the database.

A Person object has now been created in the iFriends database. We will discuss

accessing the database and using the database API in more depth later.

Setting Up the URLConf File
This section discusses configuring the URLConf file to define how installed applica-

tions are accessed from the web. The URLConf file is a Python script that allows you

to define specific views that are accessed based on the URL that is sent by the web

browser. When the Django server receives an URL request, it parses the request

based on the patterns that are contained in the URLConf file. The parsed request is

translated into a specific Python function that is executed in the views.py file, dis-

cussed in a moment.

▲

▼

32 HOUR 2: Creating Your First Website

The location of the URLConf file is defined by the ROOT_URLCONF setting in the
settings.py file. The default location is the name of the project’s root directory.
In the case of the iFriends project, the value of ROOT_URLCONF would be set to the
following value, where ‘iFriends.urls’ equates to iFriends/urls.py:

ROOT_URLCONF = ‘iFriends.urls’

Try It Yourself

Add an URL Pattern to Use for a People View
In this example, you set up a simple URL pattern for the People application by

modifying the urlpatterns setting in the iFriends/urls.py file.

1. Open the iFriends\urls.py file in an editor.

2. Find the urlpatterns setting, and add the iFriends.People.views.index

pattern to it:

urlpatterns = patterns(‘’,
(r’^People/$’, ‘iFriends.People.views.index’)

)

3. Save the file.

In the preceding code snippet, iFriends.People.views.index refers to the
index() function located in the iFriends/People/views.py file, which is
discussed next.

Creating a Simple View
After you have configured the URLConf file, you need to add the views to the appli-

cation. The application’s views are stored as functions in the views.py file in the

application directory. When the Django server receives an URL request, it parses the

request based on the patterns that are contained in the URLConf file and determines

which function to execute to generate the web view.

By the
Way

By the
Way

▲

▼

Creating a Simple View 33

Try It Yourself

Create the Index View for the People Application
This section guides you through the steps of creating an index view stub for the

People application in the iFriends project. After the view is created, you start the

development server and view the web page that is generated.

1. Open the iFriends/People/views.py file in an editor. The views.py file is

empty at first.

2. Use the editor to add the following code snippet to the file:

from django.shortcuts import HttpResponse
from iFriends.People.models import Person

def index(request):
html = “<H1>People</H1><HR>”
return HttpResponse(html)

3. Save the file.

4. From a command prompt, change to the root directory for the iFriends project.

5. Enter the following command to start the development server:

python manage.py runserver

6. Access the http://127.0.0.1:8000/People URL. You should see a web page

similar to the one shown in Figure 2.6.

FIGURE 2.6
Accessing a
custom index
view in the
Django project
from a web
browser.

▲

34 HOUR 2: Creating Your First Website

Summary
In this hour, you created a Django project called iFriends. You configured access to a

MySQL database for the project. You created an application called People, added a

Person class, and populated the database with one Person object. You then config-

ured the URL behavior to support an index view and added the necessary code in

that view to display a list of objects in the Person class.

The steps you took during this hour helped demonstrate how easy it is to set up a

website using the Django framework. Subsequent hours will build on this framework

to implement a full-featured website.

Q&A
Q. How do I modify a model after it has been synced to the database?

A. Currently, Django cannot update models reliably. The safest and easiest

method to modify an existing model is to make changes to the model and

then delete all tables related to the model in the database using the SQL drop

command. Finally, use the syncdb command to sync the model with the

database.

Q. Is there a way to check for errors in my model before trying to sync to
the database?

A. Django has a utility to validate the contents of models before syncing to the

database. From the root directory of the project, enter python manage.py

validate. The validate utility checks the model’s syntax and logic and reports

any problems.

Workshop
The workshop consists of a set of questions and answers designed to solidify your

understanding of the material covered in this hour. Try answering the questions

before looking at the answers.

Exercises 35

Quiz
1. What file contains the information that Django uses to connect to the

database?

2. What default file contains the configuration that Django uses to parse the

location URLs?

3. What file contains the code that implements an index view for the People

application in the iFriends project?

Quiz Answers
1. settings.py

2. urls.py

3. iFriends/People/views.py

Exercises
Try your hand at creating and activating a simple application. Create an applica-

tion called Comments. Add a class to the model called Note, with two CharField

attributes called Title and Text. Then activate the model by adding it to the

INSTALLED_APPS setting in the settings.py file. Synchronize the model to the

database. Test your application by adding an object to the database using the

Django shell.

Symbols

$ (dollar sign), in URL
patterns, 110

| (pipe), in filters, 156
__init__() function, 385
__init__.py file, 20, 28
__str__ method, 29

A

access
limiting to one site, 441
from multiple sites, defining

models, 439-440
accessing

add forms, 13
admin interface, enabling in

URLconf file, 38-40
change forms, 12
change list view, 12
databases, configuring in

settings.py file, 24-25
languages in templates, 411
list items in reverse order, 140
model view, 11

normalized data in forms,
215-216

objects with HTML templates,
123-126

settings.py file, 9
sites from views, 442

activating models, 29-30
in admin interface, 40-42

add forms, explained, 13-14
add() function, 309
admin change list view. See

change list view
Admin class, 41
admin interface

adding to URLconf file, 38-40
change list view, explained,

12-13
contents of, 365-366
customizing

admin templates,
overriding, 366-368,
372-377

admin templates,
overriding block tags in,
373-374

admin URL patterns,
overriding, 378-379

admin views, creating
custom, 368-372

explained, 11

Index

form views, explained, 12-14
installing, 37-38
model change list view,

customizing, 347-356
model forms, customizing,

356-359
model view, explained, 11-12
models, activating, 40-42
multiple models, viewing

inline, 359-362
navigating, 42-43
navigation links in, 45
objects, adding/modifying,

43-45
admin media files, adding to

servers, 467
admin model view. See

model view
admin template directory, path

for, 118
admin templates

block tags, overriding,
373-374

overriding, 366-368, 372-377
storage location, 365

admin URL patterns
overriding, 378-379
storage location, 365

admin views
creating custom, 368-372
storage location, 366

all() function, 86-88
allow_empty argument (generic

views), 233
allow_future argument (generic

views), 233
anonymous users, 297
Apache

deploying Django with
mod_python, 465

implementing multiple Django
installations, 469-470

web server page, 477
application level, overriding

admin templates, 372-377

applications. See also
middleware applications

default, list of, 26
installing, 27-28

activating models, 29-30
creating models, 28-29

loading templates from,
269-270

views, creating, 32-33
archive_day view, 247
archive_detail view, 248
archive_index view, 245
archive_month view, 246
archive_today view, 248
archive_week view, 247
archive_year view, 246
argument names in expressions,

73-74
arguments. See also options

for date and time field
types, 47

for file fields, 47
for ForeignKey field, 56
for form fields, 188
for image fields, 47
for ManyToMany field, 57
passing

field options as, 50-52
to filters, 156

positional arguments, 73
for text fields, 46
for URLfields, 48
to view function, expression

values as, 72-73
arguments dictionary for generic

views, 232-234
assigning content to sites,

439-440
as_p() function, 191
as_table() function, 190
as_ul() function, 190-191
attributes of HttpRequest class,

64-65
authenticate() function, 314

authentication
generic views, limiting access

to, 330
groups, creating, 304-307
login process, 313-318
logout process, 318-319
permissions, setting,

307-310
permissions, verifying

in templates, 326-330
in views, 325-326

User objects
anonymous users, 297
changing passwords in

views, 298
creating in views, 297-304
explained, 295-296
fields of, 296

verifying
in templates, 321-325
in views, 320

AuthenticationMiddleware
application, 403

auto_now_add argument (date
and time field types), 47

auto_now argument (date and
time field types), 47

availability of cookies, verifying,
336-339

B

backends
configuring caching, 451-452

database backend,
452-453

dummy backend, 454
file system backend, 453
local memory

backend, 454
memcached backend, 455
simple backend, 454

database backend,
caching, 455

494

admin interface

basic permissions, setting,
307-308

blank field option, 50-51
block tags, 129

creating custom, 277-278
overriding in admin

templates, 373-374
blocktrans tag, 410
BooleanField object, 187, 481
bound forms, 188-189
built-in middleware applications,

list of, 402-403
built-in Python packages, 20

C

cache API, caching and retrieving
specific objects, 459-460

cached pages
allowing to vary based on

headers, 461-462
controlling with cache-control

header, 462-463
CacheMiddleware application, 403
CACHE_MIDDLEWARE_

ANONYMOUS_ONLY, 456
CACHE_MIDDLEWARE_KEY_

PREFIX, 456
CACHE_MIDDLEWARE_SECONDS,

456
caching

configuring caching backends,
451-452

database backend,
452-453

dummy backend, 454
file system backend, 453
local memory

backend, 454
memcached backend, 455
simple backend, 454

implementing
per-object caches,

458-459
per-site caching, 456-457
per-view caches, 457-458
at site level, 457

optimizing Django
deployment, 472

specific objects, using
cache API, 459-460

upstream caching, managing,
460-461

calling view functions, 113
capfirst filter, 157
case sensitivity

disabling, 23
in MySQL databases, 23
of URL dispatcher

algorithm, 69
case of text, changing, 157
chaining QuerySets, 93-94
change forms, explained, 12-13
change list view

customizing, 347-348
date hierarchy, adding,

352-353
fields, displaying, 348-349
filters, adding, 350-351
ordering objects in, 353
search fields, adding,

354-356
explained, 12-13

changefreq member (sitemap
classes), 425

CharField object, 187, 481-482
CharField type, 46
check_password() function, 314
child templates, 129-133
ChoiceField object, 187, 482
choices field option, 51
class relationships. See

relationships
cleaned_data() function,

215-216
clear() function, 309
cloning objects in database, 90

commands in manage.py
utility, 10

CommonMiddleware application,
402-403

compilation functions, creating
custom tags, 276

compile-messages.py utility, 414
compiling message files, 414
conditions. See if logic
configuring

caching backends, 451-452
database backend,

452-453
dummy backend, 454
file system backend, 453
local memory

backend, 454
memcached backend, 455
simple backend, 454

databases, 22-23
granting rights, 23-24
settings.py file, setting

database access, 24-25
synchronizing project to

database, 26-27
Django projects, 466
eggs with mod_python, 471
session manager, 334-336
with settings.py file, 9-10
template directory, 118
URLConf file, 31-32, 63-64
URLpatterns, 68-70

contains (field lookup type), 92
content

assigning to sites, 439-440
modifying based on site,

443-448
context_processors argument

(generic views), 233
context variables in generic

views, 235-237
contexts (template)

RequestContext objects as,
289-290

retrieving/setting variables in,
278-284

How can we make this index more useful? Email us at indexes@samspublishing.com

contexts (template)

495

cookies
drawbacks to, 334
setting/retrieving, 344
verifying availability of,

336-339
core field option, 51
create() function, 82
create_object view, 254-258
create_user() function,

passwords in, 297
CurrentSiteManager class,

442-443
custom admin views, creating,

368-372
custom filters

creating, 272-275
extending templates,

270-272
custom permissions, setting, 308
custom tags

creating, 275-277
block tags, 277-278
retrieving/setting variables

in context, 278-284
simple_tag filter, 277

extending templates,
270-272

custom variables, passing to
views, 232

customizing
admin interface

admin templates,
overriding, 366-368,
372-377

admin templates,
overriding block tags in,
373-374

admin URL patterns,
overriding, 378-379

admin views, creating
custom, 368-372

forms, 200-205
in templates, 202-203
widgets, changing,

200-202

model change list view,
347-348

date hierarchy, adding,
352-353

fields, displaying, 348-349
filters, adding, 350-351
ordering objects in, 353
search fields, adding,

354-356
model forms, 356-359

cycle logic, adding to tables in
templates, 151

D

data, adding with database API,
30-31

data models. See models
data validation, 46
database API, adding data with,

30-31
database-abstraction API, 81

objects
adding to database, 81-85
deleting from database, 90
retrieving from database,

86-89
updating in database,

89-90
queries, performing in

database, 90-97
QuerySets

chaining, 93-94
ordering objects in, 94-95
retrieving from database,

90-97
views, displaying database

data in, 97-100
database backend

configuring caching, 452-453
enabling for caching, 455

databases
adding objects to, 81-85

configuring, 22-23
granting rights, 23-24
settings.py file, setting

database access, 24-25
synchronizing project to

database, 26-27
deleting objects from, 90
displaying data in views,

97-100
performing queries in, 90-97
retrieving

objects from, 86-89
QuerySets from, 90-97

saving form data to, 219-228
SQL databases as Django

prerequisite, 14
synchronizing, 179
updating objects in, 89-90

DATABASE_ENGINE setting
(settings.py file), 24

DATABASE_HOST setting
(settings.py file), 24

DATABASE_NAME setting
(settings.py file), 24

DATABASE_PASSWORD setting
(settings.py file), 24

DATABASE_PORT setting
(settings.py file), 25

DATABASE_USER setting
(settings.py file), 24

date and time fields, 46-47
date-based objects, displaying in

generic views, 245-254
date_field argument (generic

views), 233
date filter, 174-175
date formatting, filters for,

174-181
date filter, 174-175
now filter, 176
time filter, 175-176
timesince filter, 176-178
timeuntil filter, 177-178

date_joined field (User object), 296
date_list context variable (generic

views), 235

496

cookies

date hierarchy, adding to change
list view, 352-353

DateField object, 187, 482-483
DateField type, 46
dates, format characters for, 491
DateTimeField object, 187, 483
DateTimeField type, 46
day (field lookup type), 93
day argument (generic views), 233
day context variable (generic

views), 235
day_format argument (generic

views), 233
dbshell command, 10
DecimalField object, 187,

483-484
decorator functions, registering

filters with, 273
default applications, list of, 26
default field option, 51
defining models, 46

adding fields to, 48-50
field options, 50-55
field types, 46-48

delete() function, 90
delete_object view, 263-267
delete_test_cookie() function, 336
deleting objects from database, 90
deploying Django, 471

adding RAM, 472
to Apache with

mod_phython, 465
caching, 472
middleware, 472
moving databases/media to

separate server, 471
projects, 468-469

details() function, 104-105
details() view

creating, 69-70
updating, 74-76

development server
explained, 10
ports, changing, 22

starting, 11, 21-22
stopping, 11, 22

development version of Django
downloading, 14
installing, 15-16

dictionaries
arguments dictionary for

generic views, 232-234
sorting, filters for, 173-174

dictsort filter, 173-174
directories, creating template

directory, 118
direct_to_template view, 237
disabling case sensitivity, 23
displaying

database data in views,
97-100

date-based objects in generic
views, 245-254

fields in change list view,
348-349

object details in generic
views, 242-244

object lists in generic views,
238-241

web pages with
HttpResponse class, 66-68

Django
default applications, list of, 26
defined, 8
installing, 14-16
online resources, 477-479
pronunciation, 8
reasons for using, 8

Django project home page, 477
DoesNotExist exception, 88
dollar sign ($), in URL

patterns, 110
downloading development

version of Django, 14
dummy backend, configuring

caching, 454
dynamic links in templates,

147-150
dynamic web pages, defined, 8

E

edit_inline argument (ForeignKey
field), 56

editable field option, 52
eggs, configuring with

mod_python, 471
email fields, 47, 296
EmailField object, 187, 484
EmailField type, 47
embedding templates, 133-135
enabling

admin access in URLconf file,
38-40

session framework, 334
sitemaps, 425-431

endswith (field lookup type), 92
error handling POST request

data, 215
escape filter, 158
escaping HTML code, 158
exact (field lookup type), 91
exception postprocessors,

implementing, 398-402
exceptions, raising from get()

function, 87
exclude() function, 91
expressions

adding to URL patterns,
71-72

argument names in, 73-74
list of, 71-72
named expressions, adding to

URL patterns, 74-76
in views, 72-73

extending templates, 129-133
with custom tags/filters,

270-272
extra_context argument (generic

views), 232-233
extra options dictionary, 103-108

How can we make this index more useful? Email us at indexes@samspublishing.com

extra options dictionary

497

F

FastCGI web page, 478
field lookups, list of, 91-93
field objects

list of, 481-487
mapping form field objects

to model field objects,
488-490

field options, 50
adding to models, 53-55
list of, 50-52

field types, 46
adding field options to, 50-55
date and time fields, 46-47
email fields, 47
file fields, 47
text fields, 46
URL fields, 48

fields, 185
adding to models, 48-50
displaying in change list view,

348-349
form fields, list of, 186-188
search fields, adding to

change list view, 354-356
for User objects, 296

file fields, 47
file system backend, configuring

caching, 453
FileField object, 187, 484
FileField type, 47
FILES attribute (HttpRequest

class), 65
filter() function, 90-91
filtering change list view, 12
filters

adding to change list view,
350-351

custom filters
creating, 272-275
extending templates,

270-272
explained, 155-156

formatting dates, 174,
178-181

date filter, 174-175
now filter, 176
time filter, 175-176
timesince filter, 176-178
timeuntil filter, 177-178

formatting text, 157, 163-166
applying line breaks, 159
changing text case, 157
determining length of

objects, 159
escaping HTML code, 158
pluralizing words, 161-162
removing HTML tags, 160
string formatting, 159-160
testing true/false

variables, 162
wordwrapping, 160

list management, 166
join filter, 168
make_list filter, 167-168
random filter, 168-173
slice filter, 166-167

registering with decorator
functions, 273

sorting dictionaries, 173-174
filter_interface argument

(ManyToMany field), 57
first_name field (User object), 296
first_on_page context variable

(generic views), 235
flatpages, creating sitemaps

for, 429
flup wiki page, 478
for loops in templates, 139-143
ForeignKey field, 55-56
forloop variable, fields in, 141
form context variable (generic

views), 235
form field objects, mapping to

model field objects, 488-490
form fields, list of, 186-188
form views, explained, 12-14
format characters for

dates/times, 491-492

formatting
dates, filters for, 174,

178-181
date filter, 174-175
now filter, 176
time filter, 175-176
timesince filter, 176-178
timeuntil filter, 177-178

text, filters for, 157, 163-166
applying line breaks, 159
changing text case, 157
determining length of

objects, 159
escaping HTML code, 158
pluralizing words, 161-162
removing HTML tags, 160
string formatting, 159-160
testing true/false

variables, 162
wordwrapping, 160

forms, 185
creating form instances, 186

bound/unbound forms,
188-189

field types, 186-188
customizing, 200-205

in templates, 202-203
widgets, changing,

200-202
GET requests, handling,

209-213
model forms, customizing,

356-359
normalized data, accessing,

215-216
object-creation views,

254-258
object-deletion views,

263-267
object-update views, 258-262
POST requests

error handling, 215
handling, 209-213
retrieving data from, 214
validating data from,

214-219

498

FastCGI web page

rendering, 189-194
as lists, 190-191
from models, 194-200
from objects, 195-196
as paragraphs, 191
partial forms from

models, 196-197
as tables, 190

saving data to database,
219-228

form_for_instance() function,
195-196

form_for_model() function,
194-195

forms library, 185-186

G

generic templates, 237
generic views, 231-232

arguments dictionary,
232-234

context variables, 235-237
date-based objects,

displaying, 245-254
generic templates, 237
limiting access to, 330
object-creation views,

254-258
object-deletion views,

263-267
object details, displaying,

242-244
object lists, displaying,

238-241
object-update views, 258-262
simple generic views,

237-238
sitemaps of, creating,

428-431
URL patterns, 235

GET attribute (HttpRequest
class), 65

GET requests, handling, 209-213
get() function, 87-94
gettext() function, 408
gettext_lazy() function, 408-409
gettext_noop() function, 409
gettext package, installing, 413
Google, pinging, 434
granting rights, 23-24
groups

creating, 304-307
permissions, creating,

308-309
groups field (User object), 296
gt (field lookup type), 92
gte (field lookup type), 92
GZipMiddleware application, 403

H

has_module_perms()
function, 326

has_next context variable
(generic views), 236

has_perm() function, 326
has_previous context variable

(generic views), 236
headers

allowing cached pages to
vary, 461-462

cache-control headers,
462-463

height_field argument (image
fields), 47

help_text argument (form
fields), 188

hits context variable (generic
views), 236

home_view() function, 459-460
HTML code, escaping, 158
HTML forms. See forms
HTML tags, removing, 160

HTML templates
accessing objects with,

123-126
creating, 120-123

HTTP response, rendering
templates as, 127-128

httpd.conf file, 467-468
HttpRequest class, 64-66
HttpResponse class, 66-68

I

icontains (field lookup type), 92
iendswith (field lookup type), 92
iexact (field lookup type), 91
if logic in templates

if tag, 144
ifchanged tag, 144-145
ifequal tag, 145-147
ifnotequal tag, 145-146

ImageField object, 187, 485
ImageField type, 47
implementing

caching at site level, 457
exception postprocessors,

398-402
middleware applications,

384-385
multiple Django installations

in Apache, 469-470
per-object caches, 458-459
per-site caches, 456-457
per-view caches, 457-458
request preprocessors,

385-389
response postprocessors,

394-398
sites framework, 437
view preprocessors, 390-394

importing view functions, 113
in (field lookup type), 92
include() function, 110-113
inclusion tags, creating, 284-289

How can we make this index more useful? Email us at indexes@samspublishing.com

inclusion tags, creating

499

index() function, 103-104
indexes for sitemaps, creating,

432-433
initial argument (form fields), 188
inline, viewing multiple models,

359-362
INSTALLED_APPS setting

(settings.py file), 26
installing

admin interface, 37-38
applications, 27-30
Django, 14-16
gettext package, 413
middleware applications, 384
sites framework, 438

instances (of forms), creating,
186-189

IntegerField object, 187, 485
internationalization

language files, creating,
412-415

language preferences,
setting, 416-421

localizing strings, 407
adding to view

function, 409
lazy translation method,

408-409
no-op string translation

method, 409
standard translation

method, 408
in templates, 410-412

IPIAddressField object, 187, 485
iregex (field lookup type), 93
is_active field (User object), 296
is_paginated context variable

(generic views), 236
is_staff field (User object), 296
is_superuser field (User

object), 296
is_valid() function, 214-215
ISNULL (field lookup type), 93
istartswith (field lookup type), 92
items() method (sitemap

classes), 424

J–K–L

join filter, 168

label argument (form fields), 188
language files, creating, 412-415
language preferences, setting,

416-421
languages, accessing in

templates, 411
lastmod member (sitemap

classes), 425
last_login field (User object), 296
last_name field (User object), 296
last_on_page context variable

(generic views), 236
latest context variable (generic

views), 236
lazy translation method, 408-409
len() function, 86
length filter, 159
length of objects, determining, 159
line breaks, applying, 159
linebreaks filter, 159
links. See also relationships

dynamic links in templates,
147-150

navigation links, generating
with inclusion tags,
285-289

Linux distributions, Django
included with, 14

list() function, 86-87
list items

accessing in reverse
order, 140

cycling through, 151
list management, filters for, 166

join filter, 168
make_list filter, 167-168
random filter, 168-173
slice filter, 166-167

lists, rendering forms as, 190-191
loading templates from

applications, 269-270

local memory backend,
configuring caching, 454

LocaleMiddleware
application, 403

localizing strings, 407
adding to view function, 409
lazy translation method,

408-409
no-op string translation

method, 409
standard translation

method, 408
in templates, 410-412

locals() function, 127
location member (sitemap

classes), 424
login() function, 314
login process, 313-318
login_required argument (generic

views), 233
login_required() function, 320
logout process, 318-319
loops in templates, 139-143
lower filter, 157
lt (field lookup type), 92
lte (field lookup type), 92

M

make_list filter, 167-168
make-messages.py utility,

413-414
make_object_list argument

(generic views), 233
manage.py utility, 20

commands, 10
explained, 10
starting development

server, 21
managing upstream caching,

460-461
many-to-many relationships,

56-60
many-to-one relationships, 55-60

500

index() function

ManyToMany field, 56-57
mapping form field objects to

model field objects, 488-490
max_length argument

text fields, 46
URL fields, 48

media files, serving on same
server, 470

memcached backend, configuring
caching, 455

message files, building, 413-414
message-make.py utility, 413-414
messages, translating, 414
META attribute (HttpRequest

class), 65
method attribute (HttpRequest

class), 64
Microsoft SQL database server

website, 479
middleware applications,

334, 383
built-in applications, list of,

402-403
implementing, 384-385

exception postprocessors,
398-402

request preprocessors,
385-389

response postprocessors,
394-398

view preprocessors,
390-394

installing, 384
mimetype argument (generic

views), 233
model argument (generic

views), 233
model change list view,

customizing, 347-348
date hierarchy, adding,

352-353
fields, displaying, 348-349
filters, adding, 350-351
ordering objects in, 353
search fields, adding,

354-356

Model class, 8
model field objects, mapping

form field objects to, 488-490
model forms, customizing,

356-359
model view, explained, 11-12
Model View Controller (MVC)

architecture, 8
models, 185

activating, 29-30
adding relationships to, 55

many-to-many
relationships, 56-60

many-to-one relationships,
55-60

one-to-one relationships, 57
admin interface. See admin

interface
allowing access from multiple

sites, 439-440
creating, 28-29
defining, 46

adding fields to, 48-50
field options, 50-55
field types, 46-48

explained, 8-9
limiting access to one

site, 441
multiple models, viewing

inline, 359-362
rendering forms from,

194-200
models.django.db package, 46
models.py file, 28
modifying

objects in admin interface,
43-45

URLconf file, named
expressions in URL
patterns, 74-76

view behavior and content
based on sites, 443-448

mod_python, 466
configuring eggs, 471
deploying Django to

Apache, 465
web page, 477

month (field lookup type), 93
month argument (generic

views), 233
month context variable (generic

views), 236
month_format argument (generic

views), 233
multiple models, viewing inline,

359-362
MultipleChoiceField object,

187, 486
MVC (Model View Controller)

architecture, 8
MySQL databases, case

sensitivity and, 23
MySQL project home page, 478

N

named expressions, adding to
URL patterns, 74-76

navigating admin interface, 42-43
navigation links

in admin interface, 45
generating with inclusion

tags, 285-289
newforms library. See forms

library
next context variable (generic

views), 236
next_day context variable

(generic views), 236
next_month context variable

(generic views), 236
no-op string translation

method, 409
normalized data, accessing in

forms, 215-216
now filter, 176
null field option, 50-51
NullBooleanField object, 187, 486
num_latest argument (generic

views), 233
numeric format, expression

values, 72

How can we make this index more useful? Email us at indexes@samspublishing.com

numeric format

501

O

object context variable (generic
views), 236

object details, displaying in
generic views, 242-244

object level, overriding admin
template, 372-377

object lists, displaying in generic
views, 238-241

object-creation generic views,
254-258

object-deletion generic views,
263-267

object-update generic views,
258-262

ObjectDoesNotExist exception, 88
objects

accessing with HTML
templates, 123-126

adding/modifying in admin
interface, 43-45

date-based objects, displaying
in generic views, 245-254

ordering in change list
view, 353

referencing in templates,
150-151

rendering forms from,
195-196

object_detail view, 242-244
object_id argument (generic

views), 234
object_list context variable

(generic views), 236
object_list view, 238-241
one-to-one relationships, 57
OneToOne field, 57
online resources, list of, 477-479
optimizing Django

deployment, 471
adding RAM, 472
caching, 472
middleware, 472
moving database/media to

separate server, 471

options, passing to views, 103-
108. See also arguments

Oracle database website, 479
ordering objects

in change list view, 353
in QuerySets, 94-95

order_by() function, 94-95
overriding

admin templates, 366-368,
372-377

admin URL patterns, 378-379
block tags in admin

templates, 373-374

P

packages, built-in Python
packages, 20

page argument (generic
views), 234

page context variable (generic
views), 236

pages context variable (generic
views), 236

paginate_by argument (generic
views), 234

paragraphs, rendering forms
as, 191

params context variable (generic
views), 236

parent templates, 129-133
parse() function, 277
partial forms, rendering from

models, 196-197
passing

custom variables to
views, 232

options to views, 103-108
password field (User object), 296
passwords

changing in views, 298
in create_user() function, 297

path attribute (HttpRequest
class), 64

paths
for admin template

directory, 118
specifying for file fields, 47

patterns. See URL patterns
patterns() function, 108-109
per-object caches, implementing,

458-459
per-site cache, implementing,

456-457
per-view caches, implementing,

457-458
permissions, setting, 307-310
persistent data

cookies
setting/retrieving, 344
verifying availability of,

336-339
session framework, 333-334

configuring session
manager, 334-336

enabling, 334
setting/retrieving session

data, 339-343
PIL (Python Imaging Library)

project home page, 477
ping_google() function, 434
pinging Google, 434
pipe (|), in filters, 156
placeholders in templates, 119
pluralize filter, 161-162
pluralizing words, 161-162
ports for development server,

changing, 22
positional arguments, 73
POST attribute (HttpRequest

class), 65
POST requests

error handling, 215
handling, 209-213
retrieving data from, 214
validating data from, 214-219

post_delete_redirect argument
(generic views), 234

post_save_redirect argument
(generic views), 234

502

object context variable (generic views)

PostgreSQL project home
page, 478

preferences, setting language
preferences, 416-421

prefixes, view prefixes, 108-110
prerequisites, installing

Django, 14
previous context variable (generic

views), 236
previous_day context variable

(generic views), 236
previous_month context variable

(generic views), 236
primary_key field option, 52
primary keys, updating

objects, 90
priority member (sitemap

classes), 425
process_exception() function,

384, 398
process_request() function,

384-385
process_response() function,

384, 394
process_view() function,

384, 390
program flow. See if logic
projects

code storage location, 20
configuring, 466
creating, 19-21
defined, 19
deploying, 468-469
placing in PYTHONPATH, 466
synchronizing to database,

26-27
Python

built-in packages, 20
as Django prerequisite, 14

Python eggs, loading templates
from, 270

Python Imaging Library (PIL)
project home page, 477

Python project home page, 477
PYTHONPATH, placing projects

in, 466

Q–R

queries, performing in database,
90-97

queryset argument (generic
views), 234

QuerySets, 86
chaining, 93-94
ordering objects in, 94-95
retrieving from database,

90-97

raising exceptions from get()
function, 87

RAM, optimizing Django
deployment, 472

random filter, 168-173
randomized QuerySets, 95
range (field lookup type), 93
recursive relationships, 56-57
redirect_to view, 238
referencing objects in templates,

150-151
regex (field lookup type), 93
RegexField object, 187, 486
registration

custom tags, 276
filters with decorator

functions, 273
generic views, limiting access

to, 330
groups, creating, 304-307
login process, 313-318
logout process, 318-319
permissions, setting,

307-310
User objects

anonymous users, 297
changing passwords in

views, 298
creating in views, 297-304
explained, 295-296
fields of, 296

verifying authentication
in templates, 321-325
in views, 320

verifying permissions
in templates, 326-330
in views, 325-326

related_name argument
ForeignKey field, 56
ManyToMany field, 57

relationships, adding to
models, 55

many-to-many relationships,
56-60

many-to-one relationships,
55-60

one-to-one relationships, 57
released version of Django,

installing, 15
remove() function, 309
removetags filter, 160
removing HTML tags, 160
render() function, 120
render_to_response() function,

127-128
renderer objects, creating custom

tags, 275
rendering

forms, 189, 191-194
as lists, 190-191
from models, 194-200
from objects, 195-196
as paragraphs, 191
partial forms from

models, 196-197
as tables, 190

templates as HTTP response,
127-128

REQUEST attribute (HttpRequest
class), 65

request preprocessors,
implementing, 385-389

RequestContext objects in
templates, 289-290

requests, retrieving information
from, 64-66

required argument (form
fields), 188

requirements. See prerequisites

How can we make this index more useful? Email us at indexes@samspublishing.com

requirements

503

response postprocessors,
implementing, 394-398

results_per_page context variable
(generic views), 236

retrieving
cookies, 344
objects from database, 86-89
POST request data, 214
QuerySets from database,

90-97
session data, 339-343
specific objects with

cache API, 459-460
variables in template context,

278-284
reverse order, accessing list items

in, 140
rights, granting, 23-24
ROOT_URLCONF setting

(settings.py file), 32, 63-64
runserver command, 10

S

save() function, 82, 89-90
saving form data to database,

219-228
search (field lookup type), 92
search fields, adding to change

list view, 354-356
security. See authentication
servers

adding admin media files
to, 467

development server. See
development server

serving media files on same
server, 470

session framework, 333-334
enabling, 334
session manager, configuring,

334-336
setting/retrieving session

data, 339-343

session manager, configuring,
334-336

SessionMiddleware
application, 403

sessions, setting language
preferences, 417

settings.py file, 20
explained, 9-10
modifying, 118
setting database access,

24-25
set_cookie() function, 344
set_test_cookie() function, 336
shell, creating templates in,

119-120
shell command, 10
shell interface, accessing

database API to add data,
30-31

simple backend, configuring
caching, 454

simple generic views, 237-238
simple_tag filter, 277
site level, overriding admin

templates, 366-368
site objects, creating, 438-439
sitemap classes, creating,

424-425
sitemaps, 423-424

creating, 424
enabling sitemap,

425-428
sitemap class, creating,

424-425
indexes, creating, 432-433
of generic views, creating,

428-431
notifying Google of

changes, 434
sites

accessing from views, 442
assigning content to sites,

439-440
defining models that allow

access from multiple sites,
439-440

defining models that limit
access to one site, 441

modifying view behavior and
content, 443-448

sites framework, 437-438
slice filter, 166-167
slug_field argument (generic

views), 234
sorting change list view, 12
sorting dictionaries, filters for,

173-174
split() function, 276
split_contents() function, 276
SQL databases, as Django

prerequisite, 14
SQLite project home page, 479
startapp command, 10, 28
starting development server, 11,

21-22
startproject command, 10, 20
startswith (field lookup type), 92
stopping development server,

11, 22
string format, expression

values, 72
stringformat filter, 159-160
strings

formatting, 159-160
localizing, 407

adding to view
function, 409

lazy translation method,
408-409

no-op string translation
method, 409

standard translation
method, 408

in templates, 410-412
striptags filter, 160
Subversion version control

system, 14, 479
superuser, creating, 38
symmetrical argument

(ManyToMany field), 57
syncdb command, 10, 30, 170

504

response postprocessors

synchronizing
database, 179
project to database, 26-27

T

tables
rendering forms as, 190
in templates, adding cycle

logic to, 151
tags

block tags, overriding in
admin templates, 373-374

custom tags
creating, 275-284
extending templates,

270-272
inclusion tags, creating,

284-289
template argument (generic

views), 234
templates

accessing languages in, 411
admin templates

overriding, 366-368,
372-377

overriding block tags in,
373-374

storage location, 365
advantages of, 117
creating in shell, 119-120
custom filters, creating,

272-275
custom tags, creating,

275-284
customizing forms in,

202-203
directory for, creating, 118
dynamic links in, 147-150
embedding, 133-135
explained, 9
extending, 129-133, 270-272

filters
explained, 155-156
formatting dates, 174-181
formatting text, 157-166
list management, 166-173
sorting dictionaries,

173-174
for loops in, 139-143
generic templates, 237
generic views. See generic

views
HTML templates

accessing objects with,
123-126

creating, 120-123
if logic in

if tag, 144
ifchanged tag, 144-145
ifequal tag, 145-147
ifnotequal tag, 145-146

inclusion tags, creating,
284-289

loading from applications,
269-270

localizing strings in, 410-412
placeholders in, 119
referencing objects in,

150-151
rendering as HTTP response,

127-128
RequestContext objects in,

289-290
tables, adding cycle

logic to, 151
verifying

authentication in, 321-325
permissions in, 326-330

template_loader argument
(generic views), 234

template_name argument
(generic views), 234

template_object_name argument
(generic views), 234

test_cookie_worked()
function, 336

test cookies, 336-339
testing true/false variables, 162
text fields, 46
text formatting, filters for, 157,

163-166
applying line breaks, 159
changing text case, 157
determining length of

objects, 159
escaping HTML code, 158
pluralizing words, 161-162
removing HTML tags, 160
string formatting, 159-160
testing true/false

variables, 162
wordwrapping, 160

TextField type, 46
time filter, 175-176
TimeField object, 187, 487
TimeField type, 46
times, format characters for, 492
timesince filter, 176-178
timeuntil filter, 177-178
title filter, 157
to_field argument (ForeignKey

field), 56
trans tag, 410
translating messages, 414
translation. See

internationalization
translation hooks, 411

U

unbound forms, 188-189
unique field option, 52
unique_for_date field option, 52
unique_for_month field

option, 52
unique_for_year field option, 52
update_object view, 258-262

How can we make this index more useful? Email us at indexes@samspublishing.com

update_object view

505

updating
database data, 219-221
details() view, 74-76
objects in database, 89-90

upload_to argument (file
fields), 47

upper filter, 157
upstream caching, managing,

460-461
url argument (generic views), 234
URL dispatcher algorithm, case

sensitivity of, 68-69
URL dispatcher algorithm,

operational overview, 68
URL fields, 48
URL patterns

$ (dollar sign) in, 110
adding

expressions to, 71-72
named expressions to,

74-76
admin URL patterns

overriding, 378-379
storage location, 365

configuring, 68-70
for date-based views, 248
for generic views, 235
view prefixes, 108-110

url tag, adding dynamic links to
templates, 147-150

URLconf file
adding

admin interface to, 38-40
URL patterns to, 69-70
URLconf files to, 110-113

configuring, 31-32, 63-64
importing view functions, 113
location of, 32
modifying named expressions

in URL patterns, 74-76
passing options to views,

103-108
view prefixes, 108-110

URLField object, 187, 487

URLField type, 48
urlpatterns variable, 68
urls.py file, 20, 38
user attribute (HttpRequest

class), 65
User objects. See also

authentication
anonymous users, 297
changing passwords in

views, 298
creating in views, 297-304
explained, 295-296
fields of, 296
groups, creating, 304-307
login process, 313-318
logout process, 318-319
permissions, setting,

307-310
user_permissions field (User

object), 296
username field (User object), 296

V

validating
data, 46
POST request data, 214-219

variables
context variables in generic

views, 235-237
retrieving/setting in template

context, 278-284
testing true/false, 162

vary_on_cookie(), 462
verify_exists argument (URL

fields), 48
verifying

authentication
in templates, 321-325
in views, 320

availability of cookies,
336-339

permissions
in templates, 326-330
in views, 325-326

view function, 64
calling directly, 113
expression values as

arguments to, 72-73
HttpRequest class as

argument, 64-66
view preprocessors,

implementing, 390-394
viewing multiple models inline,

359-362
views

accessing sites from, 442
admin views

creating custom, 368-372
storage location, 366

change list view, explained,
12-13

changing passwords in, 298
creating, 32-33
creating User objects in,

297-304
details() view

creating, 69-70
updating, 74-76

displaying database data in,
97-100

explained, 9
expression values in, 72-73
form views, explained, 12-14
generic views. See generic

views
GET requests, handling,

209-213
model view, explained, 11-12
modifying behavior based on

sites, 443-448
passing custom variables

to, 232
passing options to, 103-108
POST requests, handling,

209-213
prefixes, 108-110

506

updating

URL patterns. See URL
patterns

verifying
authentication in, 320
permissions in, 325-326

views.py file, 28, 32
passing options to, 103-108

W

web pages, displaying with
HttpResponse class, 66-68

web requests. See requests
web servers, project code storage

location, 20
web sites, list of online resources,

477-479
week argument (generic

views), 234
week context variable (generic

views), 236
widget argument (form

fields), 188
Widget objects, list of, 488
widgets, 186

customizing, 200-202
width_field argument (image

fields), 47
with tag, referencing objects in

templates, 150-151
words, pluralizing, 161-162
wordwrap filter, 160
wordwrapping, enabling, 160
wrapper views, limiting access to

generic views with, 330

X–Y–Z

year (field lookup type), 93
year argument (generic

views), 234
year context variable (generic

views), 236
yesno filter, 162

How can we make this index more useful? Email us at indexes@samspublishing.com

yesno filter

507

	Introduction
	Who Should Read This Book
	How This Book Is Organized
	How to Use This Book

	HOUR 2: Creating Your First Website
	Creating a Django Project
	Starting the Development Server
	Configuring the Database
	Installing an Application
	Adding Data Using the API
	Setting Up the URLConf File
	Creating a Simple View
	Summary
	Q&A
	Workshop
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Y–Z

