
IN THIS CHAPTER

. Introduction

. Object Based

. Understanding Providers

. Understanding Errors

. Error Handling

. PowerShell Profiles

. Understanding Security

. The PowerShell Language

CHAPTER 3

PowerShell: A More
In-Depth Look

Introduction
This chapter delves into some specifics of how PowerShell
works that you need to understand for the later scripting
chapters. Try not to get too bogged down in details;
instead, focus on understanding the concepts. Because
PowerShell is a change from Windows scripting of the past,
you might also need to change your scripting methods.
With practice, it will start to feel as familiar as Windows
scripting via VBScript or JScript, which was the standard
method for Windows automation tasks.

Object Based
Most shells operate in a text-based environment, which
means you typically have to manipulate the output for
automation purposes. For example, if you need to pipe data
from one command to the next, the output from the first
command usually must be reformatted to meet the second
command’s requirements. Although this method has
worked for years, dealing with text-based data can be
difficult and frustrating.

Often, a lot of work is necessary to transform text data into
a usable format. Microsoft has set out to change the stan-
dard with PowerShell, however. Instead of transporting
data as plain text, PowerShell retrieves data in the form of
.NET Framework objects, which makes it possible for
commands (cmdlets) to access object properties and
methods directly. This change has simplified shell use.
Instead of modifying text data, you can just refer to the

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 57

required data by name. Similarly, instead of writing code to transform data into a usable
format, you can simply refer to objects and manipulate them as needed.

Understanding the Pipeline
The use of objects gives you a more robust method for dealing with data. In the past, data
was transferred from one command to the next by using the pipeline, which makes it
possible to string a series of commands together to gather information from a system.
However, as mentioned previously, most shells have a major disadvantage: The informa-
tion gathered from commands is text based. Raw text needs to be parsed (transformed)
into a format the next command can understand before being piped. To see how parsing
works, take a look at the following Bash example:

CHAPTER 3 PowerShell: A More In-Depth Look58

$ ps -ef | grep "bash" | cut -f2

The goal is to get the process ID (PID) for the bash process. A list of currently running
processes is gathered with the ps command and then piped to the grep command and
filtered on the string “bash”. Next, the remaining information is piped to the cut
command, which returns the second field containing the PID based on a tab delimiter.

NOTE

A delimiter is a character used to separate data fields. The default delimiter for the
cut command is a tab. If you want to use a different delimiter, use the -d parameter.

Based on the man information for the grep and cut commands, it seems as though the ps
command should work. However, the PID isn’t returned or displayed in the correct
format.

The command doesn’t work because the Bash shell requires you to manipulate text data
to display the PID. The output of the ps command is text based, so transforming the text
into a more usable format requires a series of other commands, such as grep and cut.
Manipulating text data makes this task more complicated. For example, to retrieve the
PID from the data piped from the grep command, you need to provide the field location
and the delimiter for separating text information to the cut command. To find this infor-
mation, run the first part of the ps command:

$ ps -ef | grep "bash"
bob 3628 1 con 16:52:46 /usr/bin/bash

The field you need is the second one (3628). Notice that the ps command doesn’t use a
tab delimiter to separate columns in the output; instead, it uses a variable number of
spaces or a whitespace delimiter, between fields.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 58

NOTE

A whitespace delimiter consists of characters, such as spaces or tabs, that equate to
blank space.

The cut command has no way to tell that spaces should be used as a field separator,
which is why the command doesn’t work. To get the PID, you need to use the awk script-
ing language. The command and output in that language would look like this:

Object Based 59

3$ ps -ef | grep "bash" | awk '{print $2}'
3628

The point is that although most UNIX and Linux shell commands are powerful, using
them can be complicated and frustrating. Because these shells are text-based, often
commands lack functionality or require using additional commands or tools to perform
tasks. To address the differences in text output from shell commands, many utilities and
scripting languages have been developed to parse text.

The result of all this parsing is a tree of commands and tools that make working with
shells unwieldy and time consuming, which is one reason for the proliferation of
management interfaces that rely on GUIs. This trend can be seen among tools Windows
administrators use, too; as Microsoft has focused on enhancing the management GUI at
the expense of the CLI.

Windows administrators now have access to the same automation capabilities as their
UNIX and Linux counterparts. However, PowerShell and its use of objects fill the auto-
mation need Windows administrators have had since the days of batch scripting and
WSH in a more usable and less parsing intense manner. To see how the PowerShell
pipeline works, take a look at the following PowerShell example:

PS C:\> get-process bash | format-table id -autosize

Id
--

3628

PS C:\>

Like the Bash example, the goal of this PowerShell example is to display the PID for the
bash process. First, information about the bash process is gathered by using the Get-
Process cmdlet. Second, the information is piped to the Format-Table cmdlet, which
returns a table containing only the PID for the bash process.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 59

The Bash example requires complex shell scripting, but the PowerShell example simply
requires formatting a table. As you can see, the structure of PowerShell cmdlets is much
easier to understand and use.

Now that you have the PID for the bash process, take a look at the following example,
which shows how to kill (stop) that process:

CHAPTER 3 PowerShell: A More In-Depth Look60

PS C:\> get-process bash | stop-process
PS C:\>

PS C:\> $Ping = new-object Net.NetworkInformation.Ping
PS C:\>

PS C:\> $IE = new-object -comObject InternetExplorer.Application
PS C:\> $IE.Visible=$True
PS C:\> $IE.Navigate("www.cnn.com")
PS C:\>

.NET Framework Tips
Before continuing, you need to know a few points about how PowerShell interacts with
the .NET Framework. This information is critical to understanding the scripts you review
in later chapters.

New-Object cmdlet
You use the New-Object cmdlet to create an instance of a .NET object. To do this, you
simply provide the fully qualified name of the .NET class you want to use, as shown:

By using the New-Object cmdlet, you now have an instance of the Ping class that enables
you to detect whether a remote computer can be reached via Internet Control Message
Protocol (ICMP). Therefore, you have an object-based version of the Ping.exe command-
line tool.

If you’re wondering what the replacement is for the VBScript CreateObject method, it’s
the New-Object cmdlet. You can also use the comObject switch with this cmdlet to create
a COM object, simply by specifying the object’s programmatic identifier (ProgID), as
shown here:

Square Brackets
Throughout this book, you’ll notice the use of square brackets ([and]), which indicate
that the enclosed term is a .NET Framework reference. These references can be one of the
following:

• A fully qualified class name—[System.DirectoryServices.ActiveDirectory.Forest],
for example

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 60

• A class in the System namespace—[string], [int], [boolean], and so forth

• A type accelerator—[ADSI], [WMI], [Regex], and so on

NOTE

Chapter 8, “PowerShell and WMI,” explains type accelerators in more detail.

Defining a variable is a good example of when to use a .NET Framework reference. In this
case, the variable is assigned an enumeration value by using an explicit cast of a .NET
class, as shown in this example:

Object Based 61

3

PS C:\> $SomeNumber = [int]1
PS C:\> $Identity = [System.Security.Principal.NTAccount]"Administrator"
PS C:\>

If an enumeration can consist of only a fixed set of constants, and you don’t know these
constants, you can use the System.Enum class’s GetNames method to find this information:

PS C:\>
[enum]::GetNames([System.Security.AccessControl.FileSystemRights])
ListDirectory
ReadData
WriteData
CreateFiles
CreateDirectories
AppendData
ReadExtendedAttributes
WriteExtendedAttributes
Traverse
ExecuteFile
DeleteSubdirectoriesAndFiles
ReadAttributes
WriteAttributes
Write
Delete
ReadPermissions
Read
ReadAndExecute
Modify
ChangePermissions
TakeOwnership
Synchronize
FullControl
PS C:\>

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 61

Static Classes and Methods
Square brackets are used not only for defining variables, but also for using or calling static
members of a .NET class. To do this, just use a double colon (::) between the class name
and the static method or property, as shown in this example:

CHAPTER 3 PowerShell: A More In-Depth Look62

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::
GetCurrentForest()

Name : taosage.internal
Sites : {HOME}
Domains : {taosage.internal}
GlobalCatalogs : {sol.taosage.internal}
ApplicationPartitions : {DC=DomainDnsZones,DC=taosage,DC=internal,
DC=ForestDns

Zones,DC=taosage,DC=internal}
ForestMode : Windows2003Forest
RootDomain : taosage.internal
Schema :
CN=Schema,CN=Configuration,DC=taosage,DC=internal
SchemaRoleOwner : sol.taosage.internal
NamingRoleOwner : sol.taosage.internal

PS C:\>

Reflection
Reflection is a feature in the .NET Framework that enables developers to examine objects
and retrieve their supported methods, properties, fields, and so on. Because PowerShell is
built on the .NET Framework, it provides this feature, too, with the Get-Member cmdlet.
This cmdlet analyzes an object or collection of objects you pass to it via the pipeline. For
example, the following command analyzes the objects returned from the Get-Process
cmdlet and displays their associated properties and methods:

PS C:\> get-process | get-member

Developers often refer to this process as “interrogating” an object. It’s a faster way to get
information about objects than using the Get-Help cmdlet (which at the time of this
writing provides limited information), reading the MSDN documentation, or searching
the Internet.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 62

Object Based 63

3

PS C:\> get-process | get-member

TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemorySize
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet
add_Disposed Method System.Void add_Disposed(Event...
add_ErrorDataReceived Method System.Void add_ErrorDataRecei...
add_Exited Method System.Void add_Exited(EventHa...
add_OutputDataReceived Method System.Void add_OutputDataRece...
BeginErrorReadLine Method System.Void BeginErrorReadLine()
BeginOutputReadLine Method System.Void BeginOutputReadLine()
CancelErrorRead Method System.Void CancelErrorRead()
CancelOutputRead Method System.Void CancelOutputRead()
Close Method System.Void Close()
CloseMainWindow Method System.Boolean CloseMainWindow()
CreateObjRef Method System.Runtime.Remoting.ObjRef...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
get_BasePriority Method System.Int32 get_BasePriority()
get_Container Method System.ComponentModel.IContain...
get_EnableRaisingEvents Method System.Boolean get_EnableRaisi...
...
__NounName NoteProperty System.String __NounName=Process
BasePriority Property System.Int32 BasePriority {get;}
Container Property System.ComponentModel.IContain...
EnableRaisingEvents Property System.Boolean EnableRaisingEv...
ExitCode Property System.Int32 ExitCode {get;}
ExitTime Property System.DateTime ExitTime {get;}
Handle Property System.IntPtr Handle {get;}
HandleCount Property System.Int32 HandleCount {get;}
HasExited Property System.Boolean HasExited {get;}
Id Property System.Int32 Id {get;}
MachineName Property System.String MachineName {get;}
MainModule Property System.Diagnostics.ProcessModu...
MainWindowHandle Property System.IntPtr MainWindowHandle...
MainWindowTitle Property System.String MainWindowTitle ...
MaxWorkingSet Property System.IntPtr MaxWorkingSet {g...
MinWorkingSet Property System.IntPtr MinWorkingSet {g...
...
Company ScriptProperty System.Object Company {get=$th...
CPU ScriptProperty System.Object CPU {get=$this.T...
Description ScriptProperty System.Object Description {get...
FileVersion ScriptProperty System.Object FileVersion {get...
Path ScriptProperty System.Object Path {get=$this....
Product ScriptProperty System.Object Product {get=$th...
ProductVersion ScriptProperty System.Object ProductVersion {...

PS C:\>

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 63

This example shows that objects returned from the Get-Process cmdlet have additional
property information that you didn’t know. The following example uses this information
to produce a report about Microsoft-owned processes and their folder locations. An
example of such a report would be as follows:

CHAPTER 3 PowerShell: A More In-Depth Look64

PS C:\> get-process | where-object {$_.Company -match ".*Microsoft*"} |
format-table Name, ID, Path -Autosize

Name Id Path
---- -- ----
ctfmon 4052 C:\WINDOWS\system32\ctfmon.exe
explorer 3024 C:\WINDOWS\Explorer.EXE
iexplore 2468 C:\Program Files\Internet Explorer\iexplore.exe
iexplore 3936 C:\Program Files\Internet Explorer\iexplore.exe
mobsync 280 C:\WINDOWS\system32\mobsync.exe
notepad 1600 C:\WINDOWS\system32\notepad.exe
notepad 2308 C:\WINDOWS\system32\notepad.exe
notepad 2476 C:\WINDOWS\system32\NOTEPAD.EXE
notepad 2584 C:\WINDOWS\system32\notepad.exe
OUTLOOK 3600 C:\Program Files\Microsoft Office\OFFICE11\OUTLOOK.EXE
powershell 3804 C:\Program Files\Windows PowerShell\v1.0\powershell.exe
WINWORD 2924 C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

PS C:\>

You wouldn’t get nearly this much process information by using WSH with only a single
line of code.

The Get-Member cmdlet isn’t just for objects generated from PowerShell cmdlets. You can
also use it on objects initialized from .NET classes, as shown in this example:

PS C:\> new-object System.DirectoryServices.DirectorySearcher

The goal of using the DirectorySearcher class is to retrieve user information from Active
Directory, but you don’t know what methods the returned objects support. To retrieve
this information, run the Get-Member cmdlet against a variable containing the mystery
objects, as shown in this example.

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher
PS C:\> $Searcher | get-member

TypeName: System.DirectoryServices.DirectorySearcher

Name MemberType Definition
---- ---------- ----------
add_Disposed Method System.Void add_Disposed(EventHandle...

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 64

Object Based 65

3

CreateObjRef Method System.Runtime.Remoting.ObjRef Creat...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
FindAll Method System.DirectoryServices.SearchResul...
FindOne Method System.DirectoryServices.SearchResul...
...
Asynchronous Property System.Boolean Asynchronous {get;set;}
AttributeScopeQuery Property System.String AttributeScopeQuery {g...
CacheResults Property System.Boolean CacheResults {get;set;}
ClientTimeout Property System.TimeSpan ClientTimeout {get;s...
Container Property System.ComponentModel.IContainer Con...
DerefAlias Property System.DirectoryServices.Dereference...
DirectorySynchronization Property System.DirectoryServices.DirectorySy...
ExtendedDN Property System.DirectoryServices.ExtendedDN ...
Filter Property System.String Filter {get;set;}
PageSize Property System.Int32 PageSize {get;set;}
PropertiesToLoad Property System.Collections.Specialized.Strin...
PropertyNamesOnly Property System.Boolean PropertyNamesOnly {ge...
ReferralChasing Property System.DirectoryServices.ReferralCha...
SearchRoot Property System.DirectoryServices.DirectoryEn...
SearchScope Property System.DirectoryServices.SearchScope...
SecurityMasks Property System.DirectoryServices.SecurityMas...
ServerPageTimeLimit Property System.TimeSpan ServerPageTimeLimit ...
ServerTimeLimit Property System.TimeSpan ServerTimeLimit {get...
Site Property System.ComponentModel.ISite Site {ge...
SizeLimit Property System.Int32 SizeLimit {get;set;}
Sort Property System.DirectoryServices.SortOption ...
Tombstone Property System.Boolean Tombstone {get;set;}
VirtualListView Property System.DirectoryServices.

DirectoryVi...

PS C:\>

Notice the FindAll method and the Filter property. These are object attributes that can
be used to search for information about users in an Active Directory domain. To use these
attributes the first step is to filter the information returned from DirectorySearcher by
using the Filter property, which takes a filter statement similar to what you’d find in a
Lightweight Directory Access Protocol (LDAP) statement:

PS C:\> $Searcher.Filter = ("(objectCategory=user)")

Next, you retrieve all users from the Active Directory domain with the FindAll method:

PS C:\> $Users = $Searcher.FindAll()

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 65

At this point, the $Users variable contains a collection of objects holding the distin-
guished names for all users in the Active Directory domain:

CHAPTER 3 PowerShell: A More In-Depth Look66

PS C:\> $Users

Path Properties
---- ----------
LDAP://CN=Administrator,CN=Users,DC=... {homemdb, samaccounttype, countrycod...
LDAP://CN=Guest,CN=Users,DC=taosage,... {samaccounttype, objectsid, whencrea...
LDAP://CN=krbtgt,CN=Users,DC=taosage... {samaccounttype, objectsid, whencrea...
LDAP://CN=admintyson,OU=Admin Accoun... {countrycode, cn, lastlogoff, usncre...
LDAP://CN=servmom,OU=Service Account... {samaccounttype, lastlogontimestamp,...
LDAP://CN=SUPPORT_388945a0,CN=Users,... {samaccounttype, objectsid, whencrea...
LDAP://CN=Tyson,OU=Acc... {msmqsigncertificates, distinguished...
LDAP://CN=Maiko,OU=Acc... {homemdb, msexchhomeservername, coun...
LDAP://CN=servftp,OU=Service Account... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Erica,OU=Accounts,OU... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Garett,OU=Accou... {samaccounttype, lastlogontimestamp,...
LDAP://CN=Fujio,OU=Accounts,O... {samaccounttype, givenname, sn, when...
LDAP://CN=Kiyomi,OU=Accounts,... {samaccounttype, givenname, sn, when...
LDAP://CN=servsql,OU=Service Account... {samaccounttype, lastlogon, lastlogo...
LDAP://CN=servdhcp,OU=Service Accoun... {samaccounttype, lastlogon, lastlogo...
LDAP://CN=servrms,OU=Service Account... {lastlogon, lastlogontimestamp, msmq...

PS C:\>

NOTE

The commands in these examples use the default connection parameters for the
DirectorySearcher class. This means the connection to Active Directory uses the
default naming context. If you want to connect to a domain other than the one specified
in the default naming context, you must set the appropriate connection parameters.

Now that you have an object for each user, you can use the Get-Member cmdlet to learn
what you can do with these objects:

PS C:\> $Users | get-member

TypeName: System.DirectoryServices.SearchResult

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
get_Path Method System.String get_Path()
get_Properties Method System.DirectoryServices.ResultPropertyCollecti...
GetDirectoryEntry Method System.DirectoryServices.DirectoryEntry GetDire...
GetHashCode Method System.Int32 GetHashCode()

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 66

To collect information from these user objects, it seems as though you need to step
through each object with the GetDirectoryEntry method. To determine what data you
can retrieve from these objects, you use the Get-Member cmdlet again, as shown here:

Object Based 67

3

GetType Method System.Type GetType()
ToString Method System.String ToString()
Path Property System.String Path {get;}
Properties Property System.DirectoryServices.ResultPropertyCollecti...

PS C:\>

PS C:\> $Users[0].GetDirectoryEntry() | get-member -MemberType Property

TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
accountExpires Property System.DirectoryServices.Property...
adminCount Property System.DirectoryServices.Property...
badPasswordTime Property System.DirectoryServices.Property...
badPwdCount Property System.DirectoryServices.Property...
cn Property System.DirectoryServices.Property...
codePage Property System.DirectoryServices.Property...
countryCode Property System.DirectoryServices.Property...
description Property System.DirectoryServices.Property...
displayName Property System.DirectoryServices.Property...
distinguishedName Property System.DirectoryServices.Property...
homeMDB Property System.DirectoryServices.Property...
homeMTA Property System.DirectoryServices.Property...
instanceType Property System.DirectoryServices.Property...
isCriticalSystemObject Property System.DirectoryServices.Property...
lastLogon Property System.DirectoryServices.Property...
lastLogonTimestamp Property System.DirectoryServices.Property...
legacyExchangeDN Property System.DirectoryServices.Property...
logonCount Property System.DirectoryServices.Property...
mail Property System.DirectoryServices.Property...
mailNickname Property System.DirectoryServices.Property...
mDBUseDefaults Property System.DirectoryServices.Property...
memberOf Property System.DirectoryServices.Property...
msExchALObjectVersion Property System.DirectoryServices.Property...
msExchHomeServerName Property System.DirectoryServices.Property...
msExchMailboxGuid Property System.DirectoryServices.Property...
msExchMailboxSecurityDescriptor Property System.DirectoryServices.Property...
msExchPoliciesIncluded Property System.DirectoryServices.Property...
msExchUserAccountControl Property System.DirectoryServices.Property...
mSMQDigests Property System.DirectoryServices.Property...
mSMQSignCertificates Property System.DirectoryServices.Property...
name Property System.DirectoryServices.Property...

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 67

CHAPTER 3 PowerShell: A More In-Depth Look68

nTSecurityDescriptor Property System.DirectoryServices.Property...
objectCategory Property System.DirectoryServices.Property...
objectClass Property System.DirectoryServices.Property...
objectGUID Property System.DirectoryServices.Property...
objectSid Property System.DirectoryServices.Property...
primaryGroupID Property System.DirectoryServices.Property...
proxyAddresses Property System.DirectoryServices.Property...
pwdLastSet Property System.DirectoryServices.Property...
sAMAccountName Property System.DirectoryServices.Property...
sAMAccountType Property System.DirectoryServices.Property...
showInAddressBook Property System.DirectoryServices.Property...
textEncodedORAddress Property System.DirectoryServices.Property...
userAccountControl Property System.DirectoryServices.Property...
uSNChanged Property System.DirectoryServices.Property...
uSNCreated Property System.DirectoryServices.Property...
whenChanged Property System.DirectoryServices.Property...
whenCreated Property System.DirectoryServices.Property...

PS C:\>

NOTE

The MemberType parameter tells the Get-Member cmdlet to retrieve a specific type
ofmember. For example, to display the methods associated with an object, use the
get-member –MemberType Method command.

To use PowerShell effectively, you should make sure you’re familiar with the Get-Member
cmdlet. If you don’t understand how it works, figuring out what an object can and can’t
do may be at times difficult.

Now that you understand how to pull information from Active Directory, it’s time to put
together all the commands used so far:

PS C:\> $Searcher = new-object System.DirectoryServices.DirectorySearcher
PS C:\> $Searcher.Filter = ("(objectCategory=user)")
PS C:\> $Users = $Searcher.FindAll()
PS C:\> foreach ($User in $Users){$User.GetDirectoryEntry().sAMAccountName}
Administrator
Guest
krbtgt
admintyson
servmom
SUPPORT_388945a0
Tyson
Maiko
servftp
Erica
Garett

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 68

Although the list of users in this domain isn’t long, it shows that you can interrogate a set
of objects to understand their capabilities.

The same is true for static classes, however, when attempting to use the Get-Member cmdlet
in the same manner as before creates the following error:

Object Based 69

3

Fujio
Kiyomi
servsql
servdhcp
servrms
PS C:\>

PS C:\> new-object System.Net.Dns
New-Object : Constructor not found. Cannot find an appropriate constructor for
type System.Net.Dns.
At line:1 char:11
+ New-Object <<<< System.Net.Dns
PS C:\>

As you can see, the System.Net.Dns class doesn’t have a constructor, which poses a chal-
lenge when you’re trying to find out what this class does. However, the Get-Member
cmdlet can handle this challenge. With the Static parameter, you can gather information
from static classes, as shown in this example:

PS C:\> [System.Net.Dns] | get-member -Static

TypeName: System.Net.Dns

Name MemberType Definition
---- ---------- ----------
BeginGetHostAddresses Method static System.IAsyncResult BeginGetHostAddr...
BeginGetHostByName Method static System.IAsyncResult BeginGetHostByNa...
BeginGetHostEntry Method static System.IAsyncResult BeginGetHostEntr...
BeginResolve Method static System.IAsyncResult BeginResolve(Str...
EndGetHostAddresses Method static System.Net.IPAddress[] EndGetHostAdd...
EndGetHostByName Method static System.Net.IPHostEntry EndGetHostByN...
EndGetHostEntry Method static System.Net.IPHostEntry EndGetHostEnt...
EndResolve Method static System.Net.IPHostEntry EndResolve(IA...
Equals Method static System.Boolean Equals(Object objA, O...
GetHostAddresses Method static System.Net.IPAddress[] GetHostAddres...
GetHostByAddress Method static System.Net.IPHostEntry GetHostByAddr...
GetHostByName Method static System.Net.IPHostEntry GetHostByName...
GetHostEntry Method static System.Net.IPHostEntry GetHostEntry(...
GetHostName Method static System.String GetHostName()

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 69

Now that you have information about the System.Net.Dns class, you can put it to work.
As an example, use the GetHostAddress method to resolve the IP address for the Web site
www.digg.com:

CHAPTER 3 PowerShell: A More In-Depth Look70

ReferenceEquals Method static System.Boolean ReferenceEquals(Objec...
Resolve Method static System.Net.IPHostEntry Resolve(Strin...

PS C:\>

PS C:\> [System.Net.Dns]::GetHostAddresses("www.digg.com")

IPAddressToString : 64.191.203.30
Address : 516669248
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

PS C:\>

NOTE

As you have seen, the Get-Member cmdlet can be a powerful tool. It can also be time
consuming because it’s easy to spend hours exploring what you can do with different
cmdlets and classes. To help prevent Get-Member User Stress Syndrome (GUSS), try
to limit your discovery sessions to no more than a couple of hours a day.

Extended Type System (ETS)
You might think that scripting in PowerShell is typeless because you rarely need to specify
the type for a variable. PowerShell is actually type driven, however, because it interfaces
with different types of objects from the less than perfect .NET to Windows Management
Instrumentation (WMI), Component Object Model (COM), ActiveX Data Objects (ADO),
Active Directory Service Interfaces (ADSI), Extensible Markup Language (XML), and even
custom objects. However, you typically don’t need to be concerned about object types
because PowerShell adapts to different object types and displays its interpretation of an
object foryou.

In a sense, PowerShell tries to provide a common abstraction layer that makes all object
interaction consistent, despite the type. This abstraction layer is called the PSObject, a
common object used for all object access in PowerShell. It can encapsulate any base object
(.NET, custom, and so on), any instance members, and implicit or explicit access to
adapted and type-based extended members, depending on the type of base object.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 70

Furthermore, it can state its type and add members dynamically. To do this, PowerShell
uses the Extended Type System (ETS), which provides an interface that allows
PowerShell cmdlet and script developers to manipulate and change objects as needed.

NOTE

When you use the Get-Member cmdlet, the information returned is from PSObject.
Sometimes PSObject blocks members, methods, and properties from the original
object. If you want to view the blocked information, use the BaseObject property
with the PSBase standard name. For example, you could use the $Procs.PSBase |
get-member command to view blocked information for the $Procs object collection.

Needless to say, this topic is fairly advanced, as PSBase is hidden from view. The only
time you should need to use it is when the PSObject doesn’t interpret an object
correctly or you’re digging around for hidden jewels in PowerShell.

Therefore, with ETS, you can change objects by adapting their structure to your require-
ments or create new ones. One way to manipulate objects is to adapt (extend) existing
object types or create new object types. To do this, you define custom types in a custom
types file, based on the structure of the default types file, Types.ps1xml.

In the Types.ps1xml file, all types are contained in a <Type></Type> node, and each type
can contain standard members, data members, and object methods. Using this structure
as a basis, you can create your own custom types file and load it into a PowerShell session
by using the Update-TypeData cmdlet, as shown here:

Object Based 71

3

PS C:\> Update-TypeData D:\PS\My.Types.Ps1xml

You can run this command manually during each PowerShell session or add it to your
profile.ps1 file.

CAUTION

The Types.ps1xml file defines default behaviors for all object types in PowerShell. Do
not modify this file for any reason. Doing so might prevent PowerShell from working,
resulting in a “Game over”!

The second way to manipulate an object’s structure is to use the Add-Member cmdlet to
add a user-defined member to an existing object instance, as shown in this example:

PS C:\> $Procs = get-process
PS C:\> $Procs | add-member -Type scriptProperty "TotalDays" {
>> $Date = get-date
>> $Date.Subtract($This.StartTime).TotalDays}
>>
PS C:\>

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 71

This code creates a scriptProperty member called TotalDays for the collection of objects
in the $Procs variable. The scriptProperty member can then be called like any other
member for those objects, as shown in the next example:

NOTE

The $This variable represents the current object when you’re creating a script method.

CHAPTER 3 PowerShell: A More In-Depth Look72

PS C:\> $Procs | where {$_.name -Match "WINWORD"} | ft Name,
TotalDays -AutoSize

Name TotalDays
---- ---------
WINWORD 5.1238899696898148

PS C:\>

Although the new scriptProperty member isn’t particularly useful, it does demonstrate
how to extend an object. Being able to extend objects from both a scripting and cmdlet
development context is extremely useful.

Understanding Providers
Most computer systems are used to store data, often in a structure such as a file system.
Because of the amount of data stored in these structures, processing and finding informa-
tion can be unwieldy. Most shells have interfaces, or providers, for interacting with data
stores in a predictable, set manner. PowerShell also has a set of providers for presenting
the contents of data stores through a core set of cmdlets. You can then use these cmdlets
to browse, navigate, and manipulate data from stores through a common interface. To get
a list of the core cmdlets, use the following command:

PS C:\> help about_core_commands
…

ChildItem CMDLETS
Get-ChildItem

CONTENT CMDLETS
Add-Content
Clear-Content
Get-Content
Set-Content

DRIVE CMDLETS
Get-PSDrive
New-PSDrive
Remove-PSDrive

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 72

To view built-in PowerShell providers, use the following command:

Understanding Providers 73

3

ITEM CMDLETS
Clear-Item
Copy-Item
Get-Item
Invoke-Item
Move-Item
New-Item
Remove-Item
Rename-Item
Set-Item

LOCATION CMDLETS
Get-Location
Pop-Location
Push-Location
Set-Location

PATH CMDLETS
Join-Path
Convert-Path
Split-Path
Resolve-Path
Test-Path

PROPERTY CMDLETS
Clear-ItemProperty
Copy-ItemProperty
Get-ItemProperty
Move-ItemProperty
New-ItemProperty
Remove-ItemProperty
Rename-ItemProperty
Set-ItemProperty

PROVIDER CMDLETS
Get-PSProvider

PS C:\>

PS C:\> get-psprovider

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 73

The preceding list displays not only built-in providers, but also the drives each provider
currently supports. A drive is an entity that a provider uses to represent a data store
through which data is made available to the PowerShell session. For example, the Registry
provider creates a PowerShell drive for the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER
Registry hives.

To see a list of all current PowerShell drives, use the following command:

CHAPTER 3 PowerShell: A More In-Depth Look74

FileSystem Filter, ShouldProcess {C, D, E, F...}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

PS C:\>

PS C:\> get-psdrive

Name Provider Root
---- -------- ----
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
U FileSystem U
Variable Variable

PS C:\>

Accessing Drives and Data
One way to access PowerShell drives and their data is with the Set-Location cmdlet. This
cmdlet, shown in the following example, changes the working location to another speci-
fied location that can be a directory, subdirectory, location stack, or Registry location:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 74

Note that with a Registry drive, the Get-ChildItem cmdlet lists only the subkeys under a
key, not the actual Registry values. This is because Registry values are treated as properties
for a key rather than a valid item. To retrieve these values from the Registry, you use the
Get-ItemProperty cmdlet, as shown in this example:

Understanding Providers 75

3

PS C:\> set-location hklm:
PS HKLM:\> set-location software\microsoft\windows
PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> get-childitem

Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\micros
oft\windows

SKC VC Name Property
--- -- ---- --------
55 13 CurrentVersion {DevicePath, MediaPathUnexpanded, SM_...
0 16 Help {PINTLPAD.HLP, PINTLPAE.HLP, IMEPADEN...
0 36 Html Help {PINTLGNE.CHM, PINTLGNT.CHM, PINTLPAD...
1 0 ITStorage {}
0 0 Shell {}

PS HKLM:\software\microsoft\windows>

Next, use the Get-ChildItem cmdlet to list the subkeys under the Windows key:

PS HKLM:\software\microsoft\windows> get-itemproperty currentversion

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHI
NE\software\microsoft\windows\currentversion

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHI
NE\software\microsoft\windows

PSChildName : currentversion
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
DevicePath : C:\WINDOWS\inf
MediaPathUnexpanded : C:\WINDOWS\Media
SM_GamesName : Games
SM_ConfigureProgramsName : Set Program Access and Defaults
ProgramFilesDir : C:\Program Files
CommonFilesDir : C:\Program Files\Common Files
ProductId : 76487-OEM-0011903-00101
WallPaperDir : C:\WINDOWS\Web\Wallpaper
MediaPath : C:\WINDOWS\Media

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 75

As with the Get-Process command, the data returned is a collection of objects. You can
modify these objects further to produce the output you want, as this example shows:

CHAPTER 3 PowerShell: A More In-Depth Look76

ProgramFilesPath : C:\Program Files
SM_AccessoriesName : Accessories
PF_AccessoriesName : Accessories
(default) :

PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> get-itemproperty currentversion |
select ProductId

ProductId

76487-OEM-XXXXXXX-XXXXX

PS HKLM:\software\microsoft\windows>

PS HKLM:\software\microsoft\windows> set-location c:
PS C:\> set-location "C:\WINDOWS\system32\windowspowershell\v1.0"
PS C:\WINDOWS\system32\windowspowershell\v1.0> get-childitem about_a*

Directory: Microsoft.PowerShell.Core\FileSystem::C:\WINDOWS\system32\window
spowershell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
----- 9/8/2006 2:10 AM 5662 about_alias.help.txt
----- 9/8/2006 2:10 AM 3504 about_arithmetic_operators.help.txt
----- 9/8/2006 2:10 AM 8071 about_array.help.txt
----- 9/8/2006 2:10 AM 15137 about_assignment_operators.help.txt
----- 9/8/2006 2:10 AM 5622 about_associative_array.help.txt
----- 9/8/2006 2:10 AM 3907 about_automatic_variables.help.txt
...

PS C:\WINDOWS\system32\windowspowershell\v1.0>

Accessing data from a FileSystem drive is just as simple. The same type of command logic
is used to change the location and display the structure:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 76

What’s different is that data is stored in an item instead of being a property of that item.
To retrieve data from an item, use the Get-Content cmdlet, as shown in this example:

Understanding Providers 77

3

PS C:\WINDOWS\system32\windowspowershell\v1.0> get-content
about_Alias.help.txt
TOPIC

Aliases

SHORT DESCRIPTION
Using pseudonyms to refer to cmdlet names in the Windows PowerShell

LONG DESCRIPTION
An alias is a pseudonym, or "nickname," that you can assign to a
cmdlet so that you can use the alias in place of the cmdlet name.
The Windows PowerShell interprets the alias as though you had
entered the actual cmdlet name. For example, suppose that you want
to retrieve today's date for the year 1905. Without an alias, you
would use the following command:

Get-Date -year 1905
...

PS C:\WINDOWS\system32\windowspowershell\v1.0>

NOTE

Not all drives are based on a hierarchical data store. For example, the Environment,
Function, and Variable PowerShell providers aren’t hierarchical. Data accessed through
these providers is in the root location on the associated drive.

Mounting a Drive
PowerShell drives can be created and removed, which is handy when you’re working with
a location or set of locations frequently. Instead of having to change the location or use
an absolute path, you can create new drives (also referred to as “mounting a drive” in
PowerShell) as shortcuts to those locations. To do this, use the New-PSDrive cmdlet,
shown in the following example:

PS C:\> new-psdrive -name PSScripts -root D:\Dev\Scripts -psp FileSystem

Name Provider Root CurrentLocation
---- -------- ---- ---------------
PSScripts FileSystem D:\Dev\Scripts

PS C:\> get-psdrive

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 77

To remove a drive, use the Remove-PSDrive cmdlet, as shown here:

CHAPTER 3 PowerShell: A More In-Depth Look78

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER software
HKLM Registry HKEY_LOCAL_MACHINE ...crosoft\windows
PSScripts FileSystem D:\Dev\Scripts
U FileSystem U:\
Variable Variable

PS C:\>

PS C:\> remove-psdrive -name PSScripts
PS C:\> get-psdrive

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER software
HKLM Registry HKEY_LOCAL_MACHINE ...crosoft\windows
U FileSystem U:\
Variable Variable

PS C:\>

Understanding Errors
PowerShell errors are divided into two types: terminating and nonterminating.
Terminating errors, as the name implies, stop a command. Nonterminating errors are
generally just reported without stopping a command. Both types of errors are reported in

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 78

the $Error variable, which is a collection of errors that have occurred during the current
PowerShell session. This collection contains the most recent error, as indicated by
$Error[0] up to $MaximumErrorCount, which defaults to 256.

Errors in the $Error variable can be represented by the ErrorRecord object. It contains
error exception information as well as a number of other properties that are useful for
understanding why an error occurred

The next example shows the information that is contained in InvocationInfo property of
an ErrorRecord object:

Understanding Errors 79

3

PS C:\> $Error[0].InvocationInfo

MyCommand : Get-ChildItem
ScriptLineNumber : 1
OffsetInLine : -2147483648
ScriptName :
Line : dir z:
PositionMessage :

At line:1 char:4
+ dir <<<< z:

InvocationName : dir
PipelineLength : 1
PipelinePosition : 1

PS C:\>

Based on this information, you can determine a number of details about $Error[0],
including the command that caused the error to be thrown. This information is crucial to
understanding errors and handling them effectively.

Use the following command to see a full list of ErrorRecord properties:

PS C:\> $Error[0] | get-member -MemberType Property

TypeName: System.Management.Automation.ErrorRecord

Name MemberType Definition
---- ---------- ----------
CategoryInfo Property System.Management.Automation.ErrorCategoryI...
ErrorDetails Property System.Management.Automation.ErrorDetails E...
Exception Property System.Exception Exception {get;}
FullyQualifiedErrorId Property System.String FullyQualifiedErrorId {get;}

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 79

Table 3.1 shows the definitions for each of the ErrorRecord properties that are listed in the
preceding example:

TABLE 3.1 ErrorRecord Property Definitions

Property Definition

CategoryInfo Indicates under which category an error is classified
ErrorDetails Can be null, but when used provides additional information about

the error
Exception The error that occurred
FullyQualifiedErrorId Identifies an error condition more specifically
InvocationInfo Can be null, but when used explains the context in which the error

occurred
TargetObject Can be null, but when used indicates the object being operated on

Error Handling
Methods for handling errors in PowerShell can range from simple to complex. The simple
method is to allow PowerShell to handle the error. Depending on the type of error, the
command or script might terminate or continue. However, if the default error handler
doesn’t fit your needs, you can devise a more complex error-handling scheme by using
the methods discussed in the following sections.

Method One: cmdlet Preferences
In PowerShell, ubiquitous parameters are available to all cmdlets. Among them are the
ErrorAction and ErrorVariable parameters, used to determine how cmdlets handle
nonterminating errors, as shown in this example:

CHAPTER 3 PowerShell: A More In-Depth Look80

InvocationInfo Property System.Management.Automation.InvocationInfo...
TargetObject Property System.Object TargetObject {get;}

PS C:\>

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue
PS C:\> if ($Err){write-host $Err -Foregroundcolor Red}
Cannot find drive. A drive with name 'z' does not exist.
PS C:\>

The ErrorAction parameter defines how a cmdlet behaves when it encounters a nontermi-
nating error. In the preceding example, ErrorAction is defined as SilentlyContinue,
meaning the cmdlet continues running with no output if it encounters a nonterminating
error. Other options for ErrorAction are as follows:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 80

• Continue—Print error and continue (default action)

• Inquire—Ask users whether they want to continue, halt, or suspend

• Stop—Halt execution of the command or script

NOTE

The term nonterminating has been emphasized in this section because a terminating
error bypasses the defined ErrorAction and is delivered to the default or custom
error handler.

The ErrorVariable parameter defines the variable name for the error object generated by
a nonterminating error. As shown in the previous example, ErrorVariable is defined as
Err. Notice the variable name doesn’t have the $ prefix. However, to access
ErrorVariable outside a cmdlet, you use the variable’s name with the $ prefix ($Err).
Furthermore, after defining ErrorVariable, the resulting variable is valid for the current
PowerShell session or associated script block. This means other cmdlets can append error
objects to an existing ErrorVariable by using a + prefix, as shown in this example:

Error Handling 81

3

PS C:\> get-childitem z: -ErrorVariable Err -ErrorAction SilentlyContinue
PS C:\> get-childitem y: -ErrorVariable +Err -ErrorAction SilentlyContinue
PS C:\> write-host $Err[0] -Foregroundcolor Red
Cannot find drive. A drive with name 'z' does not exist.
PS C:\> write-host $Err[1] -Foregroundcolor Red
Cannot find drive. A drive with name 'y' does not exist.
PS C:\>

Method Two: Trapping Errors
When encountering a terminating error, PowerShell’s default behavior is to display the
error and halt the command or script execution. If you want to use custom error handling
for a terminating error, you must define an exception trap handler to prevent the termi-
nating error (ErrorRecord) from being sent to the default error-handling mechanism. The
same holds true for nonterminating errors as PowerShell’s default behavior is to just display
the error and continue the command or script execution.

To define a trap, you use the following syntax:

trap ExceptionType {code; keyword}

The first part is ExceptionType, which specifies the type of error a trap accepts. If no
ExceptionType is defined, a trap accepts all errors. The code part can consist of a
command or set of commands that run after an error is delivered to the trap. Defining

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 81

commands to run by a trap is optional. The last part, keyword, is what determines
whether the trap allows the statement block where the error occurred to execute or
terminate.

Supported keywords are as follows:

• Break—Causes the exception to be rethrown and stops the current scope from
executing

• Continue—Allows the current scope execution to continue at the next line where
the exception occurred

• Return [argument]—Stops the current scope from executing and returns the argu-
ment, if specified

If a keyword isn’t specified, the trap uses the keyword Return [argument]; argument is
the ErrorRecord that was originally delivered to the trap.

Trap Examples
The following two examples show how traps can be defined to handle errors. The first
trap example shows a trap being used in conjunction with a nonterminating error that is
produced from an invalid DNS name being given to the System.Net.Dns class. The second
example shows a trap being again used in conjunction with a nonterminating error that is
produced from the Get-Item cmdlet. However, in this case, because the ErrorAction
parameter has been defined as Stop, the error is in fact a terminating error that is then
handled by the trap.

Example one: errortraps1.ps1

CHAPTER 3 PowerShell: A More In-Depth Look82

$DNSName = "www.-baddnsname-.com"

trap [System.Management.Automation.MethodInvocationException]{

write-host ("ERROR: " + $_) -Foregroundcolor Red; Continue}

write-host "Getting IP address for" $DNSName

write-host ([System.Net.Dns]::GetHostAddresses("www.$baddnsname$.com"))

write-host "Done Getting IP Address"

PS C:\> .\errortraps1.ps1
Getting IP address for www.-baddnsname-.com
ERROR: Exception calling "GetHostAddresses" with "1" argument(s): "No such host
is known"
Done Getting IP Address
PS C:\>

The $_ parameter in this example represents the ErrorRecord that was delivered to the trap.

Output:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 82

Example two: errortraps2.ps1

Error Handling 83

3

write-host "Changing drive to z:"

trap {write-host("[ERROR] " + $_) -Foregroundcolor Red; Continue}

get-item z: -ErrorAction Stop

$TXTFiles = get-childitem *.txt -ErrorAction Stop

write-host "Done getting items"

NOTE

A cmdlet doesn’t generate a terminating error unless there’s a syntax error. This
means a trap doesn’t catch nonterminating errors from a cmdlet unless the error is
transformed into a terminating error by setting the cmdlet’s ErrorAction to Stop.

Output:

PS C:\> .\errortraps2.ps1
Changing drive to z:
[ERROR] Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find drive. A drive
with name 'z' does not exist.
Done getting items
PS C:\>

Trap Scopes
A PowerShell scope, as discussed in Chapter 2, “PowerShell Basics,” determines how traps
are executed. Generally, a trap is defined and executed within the same scope. For
example, you define a trap in a certain scope; when a terminating error is encountered in
that scope, the trap is executed. If the current scope doesn’t contain a trap and an outer
scope does, any terminating errors encountered break out of the current scope and are
delivered to the trap in the outer scope.

Method Three: The Throw Keyword
In PowerShell, you can generate your own terminating errors. This doesn’t mean causing
errors by using incorrect syntax. Instead, you can generate a terminating error on purpose
by using the throw keyword, as shown in the next example if a user doesn’t define the
argument for the MyParam parameter when trying to run the MyParam.ps1 script. This
type of behavior is very useful when data from functions, cmdlets, data sources, applica-
tions, etc. is not what is expected and hence may prevent the script or set of commands
from executing correctly further into the execution process.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 83

Script:

CHAPTER 3 PowerShell: A More In-Depth Look84

param([string]$MyParam = $(throw write-host "You did not define MyParam"

-Foregroundcolor Red))

write-host $MyParam

Output:

PS C:\ .\MyParam.ps1
You did not define MyParam
ScriptHalted
At C:\MyParam.ps1:1 char:33
+ param([string]$MyParam = $(throw <<<< write-host "You did not define MyParam
" -Foregroundcolor Red))
PS C:\>

PowerShell Profiles
A PowerShell profile is a saved collection of settings for customizing the PowerShell envi-
ronment. There are four types of profiles, loaded in a specific order each time PowerShell
starts. The following sections explain these profile types, where they should be located,
and the order in which they are loaded.

The All Users Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\profile.ps1.
Settings in the All Users profile are applied to all PowerShell users on the current
machine. If you plan to configure PowerShell settings across the board for users on a
machine, then this would be the profile to use.

The All Users Host-Specific Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\ShellID_
profile.ps1. Settings in the All Users host-specific profile are applied to all users of the
current shell (by default, the PowerShell console). PowerShell supports the concept of
multiple shells or hosts. For example, the PowerShell console is a host and the one most
users use exclusively. However, other applications can call an instance of the PowerShell
runtime to access and run PowerShell commands and scripts. An application that does
this is called a hosting application and uses a host-specific profile to control the
PowerShell configuration. The host-specific profile name is reflected by the host’s
ShellID. In the PowerShell console, the ShellID is the following:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 84

Putting this together, the PowerShell console’s All Users host-specific profile is named
Microsoft.PowerShell_profile.ps1. For other hosts, the ShellID and All Users host-
specific profile names are different. For example, the PowerShell Analyzer (www.power-
shellanalyzer.com) is a PowerShell host that acts as a rich graphical interface for the
PowerShell environment. Its ShellID is PowerShellAnalyzer.PSA, and its All Users host-
specific profile name is PowerShellAnalyzer.PSA_profile.ps1.

The Current User’s Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\profile.ps1.
Users who want to control their own profile settings can use the current user’s profile.
Settings in this profile are applied only to the user’s current PowerShell session and
doesn’t affect any other users.

The Current User’s Host-Specific Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\ShellID_
profile.ps1. Like the All Users host-specific profile, this profile type loads settings for the
current shell. However, the settings are user specific.

NOTE

When you start the shell for the first time, you might see a message indicating that
scripts are disabled and no profiles are loaded. You can modify this behavior by chang-
ing the PowerShell execution policy, discussed in the following section.

Understanding Security
When WSH was released with Windows 98, it was a godsend for Windows administrators
who wanted the same automation capabilities as their UNIX brethren. At the same time,
virus writers quickly discovered that WSH also opened up a large attack vector against
Windows systems.

Almost anything on a Windows system can be automated and controlled by using WSH,
which is an advantage for administrators. However, WSH doesn’t provide any security in
script execution. If given a script, WSH runs it. Where the script comes from or its
purpose doesn’t matter. With this behavior, WSH became known more as a security
vulnerability than an automation tool.

Understanding Security 85

3

PS C:\ $ShellId
Microsoft.PowerShell
PS C:\

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 85

Execution Policies
Because of past criticisms of WSH’s security, when the PowerShell team set out to build a
Microsoft shell, the team decided to include an execution policy to mitigate the security
threats posed by malicious code. An execution policy defines restrictions on how
PowerShell allows scripts to run or what configuration files can be loaded. PowerShell has
four execution policies, discussed in more detail in the following sections: Restricted,
AllSigned, RemoteSigned, and Unrestricted.

Restricted

By default, PowerShell is configured to run under the Restricted execution policy. This
execution policy is the most secure because it allows PowerShell to operate only in an
interactive mode. This means no scripts can be run, and only configuration files digitally
signed by a trusted publisher are allowed to run or load.

AllSigned

The AllSigned execution policy is a notch under Restricted. When this policy is
enabled, only scripts or configuration files that are digitally signed by a publisher you
trust can be run or loaded. Here’s an example of what you might see if the AllSigned
policy has been enabled:

CHAPTER 3 PowerShell: A More In-Depth Look86

PS C:\Scripts> .\evilscript.ps1
The file C:\Scripts\evilscript.ps1 cannot be loaded. The file
C:\Scripts\evilscript.ps1 is not digitally signed. The script will not
execute on the system. Please see "get-help about_signing" for more
details.
At line:1 char:16
+ .\evilscript.ps1 <<<<
PS C:\Scripts>

Signing a script or configuration file requires a code-signing certificate. This certificate can
come from a trusted certificate authority (CA), or you can generate one with the
Certificate Creation Tool (Makecert.exe). Usually, however, you want a valid code-signing
certificate from a well-known trusted CA, such as Verisign, Thawte, or your corporation’s
internal public key infrastructure (PKI). Otherwise, sharing your scripts or configuration
files with others might be difficult because your computer isn’t a trusted CA by default.

NOTE

Chapter 4, “Code Signing,” explains how to obtain a valid trusted code-signing certifi-
cate. Reading this chapter is strongly recommended because of the importance of digi-
tally signing scripts and configuration files.

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 86

RemoteSigned

The RemoteSigned execution policy is designed to prevent remote PowerShell scripts and
configuration files that aren’t digitally signed by a trusted publisher from running or
loading automatically. Scripts and configuration files that are locally created can be
loaded and run without being digitally signed, however.

A remote script or configuration file can be obtained from a communication application,
such as Microsoft Outlook, Internet Explorer, Outlook Express, or Windows Messenger.
Running or loading a file downloaded from any of these applications results in the
following error message:

Understanding Security 87

3

PS C:\Scripts> .\interscript.ps1
The file C:\Scripts\interscript.ps1 cannot be loaded. The file
C:\Scripts\interscript.ps1 is not digitally signed. The script will
not execute on the system. Please see "get-help about_signing" for
more details..
At line:1 char:17
+ .\interscript.ps1 <<<<
PS C:\Scripts>

To run or load an unsigned remote script or configuration file, you must specify whether
to trust the file. To do this, right-click the file in Windows Explorer and click Properties.
In the General tab, click the Unblock button (see Figure 3.1).

FIGURE 3.1 Trusting a remote script or configuration file

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 87

After you trust the file, the script or configuration file can be run or loaded. If it’s digitally
signed but the publisher isn’t trusted, PowerShell displays the following prompt:

CHAPTER 3 PowerShell: A More In-Depth Look88

PS C:\Scripts> .\signed.ps1

Do you want to run software from this untrusted publisher?
File C:\Scripts\signed.ps1 is published by CN=companyabc.com, OU=IT,
O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on
your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"):

In this case, you must choose whether to trust the file content.

NOTE

Chapter 4 explains the options in this prompt in more detail.

Unrestricted

As the name suggests, the Unrestricted execution policy removes almost all restrictions
for running scripts or loading configuration files. All local or signed trusted files can run
or load, but for remote files, PowerShell prompts you to choose an option for running or
loading that file, as shown here:

PS C:\Scripts> .\remotescript.ps1

Security Warning
Run only scripts that you trust. While scripts from the Internet can
be useful, this script can potentially harm your computer. Do you want
to run
C:\Scripts\remotescript.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is “D”):

Setting the Execution Policy
To change the execution policy, you use the Set-ExecutionPolicy cmdlet, shown here:

PS C:\> set-executionpolicy AllSigned
PS C:\>

If you want to know the current execution policy, use the Get-ExecutionPolicy cmdlet:

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 88

Understanding Security 89

3

PS C:\> get-executionpolicy
AllSigned
PS C:\>

By default, when PowerShell is first installed, the execution policy is set to Restricted. As
you know, default settings never stay default for long. In addition, if PowerShell is
installed on many machines, the likelihood of its execution policy being set to
Unrestricted increases.

Fortunately, you can control the PowerShell execution policy through a Registry setting.
This setting is a REG_SZ value named ExecutionPolicy, which is located in the
HKLM\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell key.
Controlling the execution policy through the Registry means you can enforce a policy
setting across many machines managed by a Group Policy Object (GPO).

In the past, creating a GPO to control the execution policy was simple because the
PowerShell installation includes a Group Policy Administrative Template (ADM). However,
as of the PowerShell RC2 release, the ADM is no longer part of the installation and may
or may not be available in a separate PowerShell download. If Microsoft doesn’t provide
an ADM to control the execution policy, you can always create your own, as shown in the
following example:

CLASS MACHINE

CATEGORY !!PowerShell

POLICY !!Security

KEYNAME "SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"

EXPLAIN !!PowerShell_ExecutionPolicy

PART !!ExecutionPolicy EDITTEXT REQUIRED

VALUENAME "ExecutionPolicy"

END PART

END POLICY

END CATEGORY

[strings]

PowerShell=PowerShell

Security=Security Settings

PowerShell_ExecutionPolicy=If enabled, this policy will set the PowerShell

execution policy on a machine to the defined value. Execution policy values can be

Restricted, AllSigned, RemoteSigned, and Unrestricted.

Executionpolicy=Execution Policy

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 89

You can find a working version of this ADM on the PowerShell Unleashed Reference Web
site: www.samspublishing.com. Although the PowerShellExecutionPolicy.adm file has
been tested and should work in your environment, note that the execution policy settings
in this file are considered preference settings. Preference settings are GPOs that are
Registry values found outside the approved Group Policy Registry trees. When a GPO
containing preference settings goes out of scope, the preference settings aren’t removed
from the Registry.

NOTE

As with everything provided on the PowerShell Unleashed Reference Web site, test the
ADM in a non-production environment before deploying a GPO that uses it.

To configure the PowerShellExecutionPolicy.adm file, follow these steps:

1. Log on to a GPO management machine as the GPO administrator.

2. Using the Group Policy MMC, create a GPO named PowerShell.

3. In the console tree, click to expand Computer Configuration and then
Administrative Templates.

4. Right-click Administrative Templates and click Add/Remove Templates in the
shortcut menu.

5. Navigate to the folder with the PowerShellExecutionPolicy.adm file. Select the file,
click Open, and then click Close. The PowerShell node is then displayed under the
Administrative Templates node.

6. Click the Administrative Templates node, and then click View, Filtering from the
Group Policy MMC menu. Click to clear the Only show policy settings that can be
fully managed checkbox. Clearing this option allows you to manage preference
settings.

7. Next, click the PowerShell node under Administrative Templates.

8. In the details pane, right-click Security Settings and click Properties in the shortcut
menu.

9. Click Enabled.

10. Set the Execution Policy to one of these values: Restricted, AllSigned,
RemoteSigned, or Unrestricted.

11. Close the GPO, and then close the Group Policy MMC.

Controlling the execution policy through a GPO preference setting might seem like a less
then perfect solution. After all, a preference setting doesn’t offer the same level of security
as an execution policy setting, so users with the necessary rights can modify it easily. This
lack of security is probably why Microsoft removed the original ADM file from

CHAPTER 3 PowerShell: A More In-Depth Look90

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 90

PowerShell. A future release of PowerShell might allow controlling the execution policy
with a valid GPO policy setting.

Additional Security Measures
Execution policies aren’t the only security layer Microsoft implemented in PowerShell.
PowerShell script files with the .ps1 extension can’t be run from Windows Explorer
because they are associated with Notepad. In other words, you can’t just double-click a
.ps1 file to run it. Instead, PowerShell scripts must run from a PowerShell session by
using the relative or absolute path or through the cmd command prompt by using the
PowerShell executable.

Another security measure, explained in Chapter 2, is that to run or open a file in the
current directory from the PowerShell console, you must prefix the command with
.\ or ./. This feature prevents PowerShell users from accidentally running a command
or PowerShell script without specifying its execution explicitly.

Last, by default, there’s no method for connecting to or calling PowerShell remotely.
However, that doesn’t mean you can’t write an application that allows remote PowerShell
connections. In fact, it has been done. If you’re interested in learning how, download the
PowerShell Remoting beta from www.gotdotnet.com/workspaces/workspace.aspx?id=
ce09cdaf-7da2-4f1c-bed3-f8cb35de5aea.

The PowerShell Language
From this point on, this book varies from the usual format of many books on scripting
languages, which try to explain scripting concepts instead of showing you actual working
scripts. This book focuses on the practical applications of PowerShell.

It’s assumed you have a basic understanding of scripting. In addition, because the
PowerShell scripting language is similar to Perl, C#, and even VBScript, there’s no need
tospend time reviewing for loops, if...then statements, and other fundamentals of
scripting.

Granted, there are some unique aspects to the PowerShell language, but you can consult
the PowerShell documentation for that information. This is not a language reference
book; it’s about how PowerShell can be applied in the real world. For more detailed infor-
mation about the PowerShell language, you can download the PowerShell User Guide
from www.microsoft.com/downloads/details.aspx?FamilyId=B4720B00-9A66-430F-BD56-
EC48BFCA154F&displaylang=en.

Summary
In this chapter, you have delved deeper into what PowerShell is and how it works. You
reviewed such topics as Powershell’s Providers, how it handles errors, its profiles, and its
execution policies. However, of the items reviewed the most important concept to take
from this chapter is that PowerShell is built from and around the .NET Framework. As

Summary 91

3

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 91

such, PowerShell is not like other shells because it is an object-based shell that attempts to
abstract all objects into a common form that can be used without modification (parsing) in
your commands and scripts. Going forward this and the knowledge that you have learned
from Chapters 2 and 3 will be the keystone from which you shall explore PowerShell
scripting. Moving through each chapter, the scripts will increase in complexity as we
review different aspects of how PowerShell can be used for Windows automation.

CHAPTER 3 PowerShell: A More In-Depth Look92

05_0672329530_ch03.qxd 4/3/07 5:44 PM Page 92

