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Foreword

As the Linux kernel and the applications that use it become more widely used, we are
seeing an increasing number of system software developers who wish to become involved
in the development and maintenance of Linux. Some of these engineers are motivated
purely by personal interest, some work for Linux companies, some work for hardware
manufacturers, and some are involved with in-house development projects.

But all face a common problem:The learning curve for the kernel is getting longer
and steeper.The system is becoming increasingly complex, and it is very large.And as the
years pass, the current members of the kernel development team gain deeper and broader
knowledge of the kernel’s internals, which widens the gap between them and newcomers.

I believe that this declining accessibility of the Linux source base is already a problem
for the quality of the kernel, and it will become more serious over time.Those who care
for Linux clearly have an interest in increasing the number of developers who can con-
tribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent
layout,“do one thing, do it well,” and so on.This is Linus Torvalds’ solution.

The approach that I counsel is to liberally apply commentary to the code: words that
the reader can use to understand what the coder intended to achieve at the time. (The
process of identifying divergences between the intent and the implementation is known
as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what a major
subsystem is intended to do, and of how its developers set about doing it.This, the start-
ing point of understanding, is what the written word serves best.

Robert Love’s contribution provides a means by which experienced developers can
gain that essential view of what services the kernel subsystems are supposed to provide,
and of how they set about providing them.This will be sufficient knowledge for many
people: the curious, the application developers, those who wish to evaluate the kernel’s
design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next
stage, which is making alterations to the kernel to achieve some defined objective. I
would encourage aspiring developers to get their hands dirty:The best way to under-
stand a part of the kernel is to make changes to it. Making a change forces the developer
to a level of understanding which merely reading the code does not provide.The serious
kernel developer will join the development mailing lists and will interact with other
developers.This interaction is the primary means by which kernel contributors learn



and stay abreast. Robert covers the mechanics and culture of this important part of
kernel life well.

Please enjoy and learn from Robert’s book.And should you decide to take the next
step and become a member of the kernel development community, consider yourself
welcomed in advance.We value and measure people by the usefulness of their contribu-
tions, and when you contribute to Linux, you do so in the knowledge that your work is
of small but immediate benefit to tens or even hundreds of millions of human beings.
This is a most enjoyable privilege and responsibility.

Andrew Morton



Preface

When I was first approached about converting my experiences with the Linux kernel
into a book, I proceeded with trepidation.What would place my book at the top of its
subject? I was not interested unless I could do something special, a best-in-class work.

I realized that I could offer a unique approach to the topic. My job is hacking the kernel.
My hobby is hacking the kernel. My love is hacking the kernel. Over the years, I have accu-
mulated interesting anecdotes and insider tips.With my experiences, I could write a book on
how to hack the kernel and—just as important—how not to hack the kernel. First and fore-
most, this is a book about the design and implementation of the Linux kernel.This book’s
approach differs from would-be competitors, however, in that the information is given with
a slant to learning enough to actually get work done—and getting it done right. I am a
pragmatic engineer and this is a practical book. It should be fun, easy to read, and useful.

I hope that readers can walk away from this work with a better understanding of the
rules (written and unwritten) of the Linux kernel. I intend that you, fresh from reading
this book and the kernel source code, can jump in and start writing useful, correct, clean
kernel code. Of course, you can read this book just for fun, too.

That was the first edition.Time has passed, and now we return once more to the fray.
This third edition offers quite a bit over the first and second: intense polish and revision,
updates, and many fresh sections and all new chapters.This edition incorporates changes in
the kernel since the second edition. More important, however, is the decision made by the
Linux kernel community to not proceed with a 2.7 development kernel in the near to mid-
term.1 Instead, kernel developers plan to continue developing and stabilizing the 2.6 series.
This decision has many implications, but the item of relevance to this book is that there is
quite a bit of staying power in a contemporary book on the 2.6 Linux kernel.As the Linux
kernel matures, there is a greater chance of a snapshot of the kernel remaining representative
long into the future.This book functions as the canonical documentation for the kernel,
documenting it with both an understanding of its history and an eye to the future.

Using This Book
Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker
beard.The kernel, although having some interesting rules of its own, is not much differ-
ent from any other large software endeavor.You need to master many details—as with
any big project—but the differences are quantitative, not qualitative.

1 This decision was made in the summer of 2004 at the annual Linux Kernel Developers Summit in

Ottawa, Canada. Your author was an invited attendee.



It is imperative that you utilize the source.The open availability of the source code
for the Linux system is a rare gift that you must not take for granted. It is not sufficient
only to read the source, however.You need to dig in and change some code. Find a bug
and fix it. Improve the drivers for your hardware.Add some new functionality, even if it
is trivial. Find an itch and scratch it! Only when you write code will it all come together.

Kernel Version
This book is based on the 2.6 Linux kernel series. It does not cover older kernels, except
for historical relevance.We discuss, for example, how certain subsystems are implemented
in the 2.4 Linux kernel series, as their simpler implementations are helpful teaching aids.
Specifically, this book is up to date as of Linux kernel version 2.6.34.Although the ker-
nel is a moving target and no effort can hope to capture such a dynamic beast in a time-
less manner, my intention is that this book is relevant for developers and users of both
older and newer kernels.

Although this book discusses the 2.6.34 kernel, I have made an effort to ensure the
material is factually correct with respect to the 2.6.32 kernel as well.That latter version
is sanctioned as the “enterprise” kernel by the various Linux distributions, ensuring we
will continue to see it in production systems and under active development for many
years. (2.6.9, 2.6.18, and 2.6.27 were similar “long-term” releases.)

Audience
This book targets Linux developers and users who are interested in understanding the
Linux kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide
to developing drivers or a reference on the kernel API. Instead, the goal of this book is
to provide enough information on the design and implementation of the Linux kernel
that a sufficiently accomplished programmer can begin developing code in the kernel.
Kernel development can be fun and rewarding, and I want to introduce the reader to
that world as readily as possible.This book, however, in discussing both theory and appli-
cation, should appeal to readers of both academic and practical persuasions. I have always
been of the mind that one needs to understand the theory to understand the application,
but I try to balance the two in this work. I hope that whatever your motivations for
understanding the Linux kernel, this book explains the design and implementation suffi-
ciently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and
implementation. I think this is important and deserves a moment’s discussion.A good
example is Chapter 8,“Bottom Halves and Deferring Work,” which covers a component
of device drivers called bottom halves. In that chapter, I discuss both the design and
implementation of the kernel’s bottom-half mechanisms (which a core kernel developer
or academic might find interesting) and how to actually use the exported interfaces to
implement your own bottom half (which a device driver developer or casual hacker can
find pertinent). I believe all groups can find both discussions relevant.The core kernel



developer, who certainly needs to understand the inner workings of the kernel, should
have a good understanding of how the interfaces are actually used.At the same time, a
device driver writer can benefit from a good understanding of the implementation
behind the interface.

This is akin to learning some library’s API versus studying the actual implementation
of the library.At first glance, an application programmer needs to understand only the
API—it is often taught to treat interfaces as a black box. Likewise, a library developer is
concerned only with the library’s design and implementation. I believe, however, both
parties should invest time in learning the other half.An application programmer who
better understands the underlying operating system can make much greater use of it.
Similarly, the library developer should not grow out of touch with the reality and practi-
cality of the applications that use the library. Consequently, I discuss both the design and
usage of kernel subsystems, not only in hopes that this book will be useful to either
party, but also in hopes that the whole book is useful to both parties.

I assume that the reader knows the C programming language and is familiar with
Linux systems. Some experience with operating system design and related computer sci-
ence topics is beneficial, but I try to explain concepts as much as possible—if not, the
Bibliography includes some excellent books on operating system design.

This book is appropriate for an undergraduate course introducing operating system
design as the applied text if accompanied by an introductory book on theory.This book
should fare well either in an advanced undergraduate course or in a graduate-level
course without ancillary material.

Third Edition Acknowledgments
Like most authors, I did not write this book in a cave, which is a good thing, because
there are bears in caves. Consequently many hearts and minds contributed to the com-
pletion of this manuscript.Although no list could be complete, it is my sincere pleasure
to acknowledge the assistance of many friends and colleagues who provided encourage-
ment, knowledge, and constructive criticism.

First, I would like to thank my team at Addison–Wesley and Pearson who worked
long and hard to make this a better book, particularly Mark Taber for spearheading this
third edition from conception to final product; Michael Thurston, development editor;
and Tonya Simpson, project editor.

A special thanks to my technical editor on this edition, Robert P. J. Day. His insight,
experience, and corrections improved this book immeasurably. Despite his sterling effort,
however, any remaining mistakes remain my own. I have the same gratitude to Adam
Belay, Zack Brown, Martin Pool, and Chris Rivera, whose excellent technical editing
efforts on the first and second editions still shine through.

Many fellow kernel developers answered questions, provided support, or simply wrote
code interesting enough on which to write a book.They include Andrea Arcangeli,Alan
Cox, Greg Kroah-Hartman, Dave Miller, Patrick Mochel,Andrew Morton, Nick Piggin,
and Linus Torvalds.



A big thank you to my colleagues at Google, the most creative and intelligent group
with which I have ever had the pleasure to work.Too many names would fill these pages
if I listed them all, but I will single out Alan Blount, Jay Crim, Chris Danis, Chris
DiBona, Eric Flatt, Mike Lockwood, San Mehat, Brian Rogan, Brian Swetland, Jon
Trowbridge, and Steve Vinter for their friendship, knowledge, and support.

Respect and love to Paul Amici, Mikey Babbitt, Keith Barbag, Jacob Berkman, Nat
Friedman, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Doris Love, Linda
Love, Brette Luck, Randy O’Dowd, Sal Ribaudo and mother, Chris Rivera, Carolyn
Rodon, Joey Shaw, Sarah Stewart, Jeremy VanDoren and family, Luis Villa, Steve Weisberg
and family, and Helen Whisnant.

Finally, thank you to my parents for so much, particularly my well-proportioned ears.
Happy Hacking!

Robert Love
Boston
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2
Getting Started with the Kernel

In this chapter, we introduce some of the basics of the Linux kernel: where to get its
source, how to compile it, and how to install the new kernel.We then go over the differ-
ences between the kernel and user-space programs and common programming constructs
used in the kernel.Although the kernel certainly is unique in many ways, at the end of
the day it is little different from any other large software project.

Obtaining the Kernel Source
The current Linux source code is always available in both a complete tarball (an archive
created with the tar command) and an incremental patch from the official home of the
Linux kernel, http://www.kernel.org.

Unless you have a specific reason to work with an older version of the Linux source,
you always want the latest code.The repository at kernel.org is the place to get it, along
with additional patches from a number of leading kernel developers.

Using Git
Over the last couple of years, the kernel hackers, led by Linus himself, have begun using a
new version control system to manage the Linux kernel source. Linus created this system,
called Git, with speed in mind. Unlike traditional systems such as CVS, Git is distributed,
and its usage and workflow is consequently unfamiliar to many developers. I strongly rec-
ommend using Git to download and manage the Linux kernel source.

You can use Git to obtain a copy of the latest “pushed” version of Linus’s tree:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

When checked out, you can update your tree to Linus’s latest:

$ git pull

With these two commands, you can obtain and subsequently keep up to date with the
official kernel tree.To commit and manage your own changes, see Chapter 20,“Patches,

http://www.kernel.org
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Hacking, and the Community.”A complete discussion of Git is outside the scope of this
book; many online resources provide excellent guides.

Installing the Kernel Source
The kernel tarball is distributed in both GNU zip (gzip) and bzip2 format. Bzip2 is the
default and preferred format because it generally compresses quite a bit better than gzip.
The Linux kernel tarball in bzip2 format is named linux-x.y.z.tar.bz2, where x.y.z
is the version of that particular release of the kernel source.After downloading the source,
uncompressing and untarring it is simple. If your tarball is compressed with bzip2, run

$ tar xvjf linux-x.y.z.tar.bz2

If it is compressed with GNU zip, run

$ tar xvzf linux-x.y.z.tar.gz

This uncompresses and untars the source to the directory linux-x.y.z. If you use git
to obtain and manage the kernel source, you do not need to download the tarball. Just
run the git clone command as described and git downloads and unpacks the latest source.

Where to Install and Hack on the Source
The kernel source is typically installed in /usr/src/linux. You should not use this source
tree for development because the kernel version against which your C library is compiled is
often linked to this tree. Moreover, you should not require root in order to make changes to
the kernel—instead, work out of your home directory and use root only to install new ker-
nels. Even when installing a new kernel, /usr/src/linux should remain untouched.

Using Patches
Throughout the Linux kernel community, patches are the lingua franca of communication.
You will distribute your code changes in patches and receive code from others as patches.
Incremental patches provide an easy way to move from one kernel tree to the next. Instead
of downloading each large tarball of the kernel source, you can simply apply an incremen-
tal patch to go from one version to the next.This saves everyone bandwidth and you time.
To apply an incremental patch, from inside your kernel source tree, simply run

$ patch –p1 < ../patch-x.y.z

Generally, a patch to a given version of the kernel is applied against the previous version.
Generating and applying patches is discussed in much more depth in later chapters.

The Kernel Source Tree
The kernel source tree is divided into a number of directories, most of which contain
many more subdirectories.The directories in the root of the source tree, along with their
descriptions, are listed in Table 2.1.
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A number of files in the root of the source tree deserve mention.The file COPYING is
the kernel license (the GNU GPL v2). CREDITS is a listing of developers with more than a
trivial amount of code in the kernel. MAINTAINERS lists the names of the individuals who
maintain subsystems and drivers in the kernel. Makefile is the base kernel Makefile.

Building the Kernel
Building the kernel is easy. It is surprisingly easier than compiling and installing other sys-
tem-level components, such as glibc.The 2.6 kernel series introduced a new configuration
and build system, which made the job even easier and is a welcome improvement over
earlier releases.

Table 2.1 Directories in the Root of the Kernel Source Tree

Directory Description

arch Architecture-specific source

block Block I/O layer

crypto Crypto API

Documentation Kernel source documentation

drivers Device drivers

firmware Device firmware needed to use certain drivers

fs The VFS and the individual filesystems

include Kernel headers

init Kernel boot and initialization

ipc Interprocess communication code

kernel Core subsystems, such as the scheduler

lib Helper routines

mm Memory management subsystem and the VM

net Networking subsystem

samples Sample, demonstrative code

scripts Scripts used to build the kernel

security Linux Security Module

sound Sound subsystem

usr Early user-space code (called initramfs)

tools Tools helpful for developing Linux

virt Virtualization infrastructure
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Configuring the Kernel
Because the Linux source code is available, it follows that you can configure and custom
tailor it before compiling. Indeed, it is possible to compile support into your kernel for
only the specific features and drivers you want. Configuring the kernel is a required step
before building it. Because the kernel offers myriad features and supports a varied basket
of hardware, there is a lot to configure. Kernel configuration is controlled by configuration
options, which are prefixed by CONFIG in the form CONFIG_FEATURE. For example, sym-
metrical multiprocessing (SMP) is controlled by the configuration option CONFIG_SMP. If
this option is set, SMP is enabled; if unset, SMP is disabled.The configure options are used
both to decide which files to build and to manipulate code via preprocessor directives.

Configuration options that control the build process are either Booleans or tristates.A
Boolean option is either yes or no. Kernel features, such as CONFIG_PREEMPT, are usually
Booleans.A tristate option is one of yes, no, or module.The module setting represents a con-
figuration option that is set but is to be compiled as a module (that is, a separate dynami-
cally loadable object). In the case of tristates, a yes option explicitly means to compile the
code into the main kernel image and not as a module. Drivers are usually represented by
tristates.

Configuration options can also be strings or integers.These options do not control the
build process but instead specify values that kernel source can access as a preprocessor
macro. For example, a configuration option can specify the size of a statically allocated
array.

Vendor kernels, such as those provided by Canonical for Ubuntu or Red Hat for
Fedora, are precompiled as part of the distribution. Such kernels typically enable a good
cross section of the needed kernel features and compile nearly all the drivers as modules.
This provides for a great base kernel with support for a wide range of hardware as separate
modules. For better or worse, as a kernel hacker, you need to compile your own kernels
and learn what modules to include on your own.

Thankfully, the kernel provides multiple tools to facilitate configuration.The simplest
tool is a text-based command-line utility:

$ make config

This utility goes through each option, one by one, and asks the user to interactively
select yes, no, or (for tristates) module. Because this takes a long time, unless you are paid by
the hour, you should use an ncurses-based graphical utility:

$ make menuconfig

Or a gtk+-based graphical utility:

$ make gconfig

These three utilities divide the various configuration options into categories, such as
“Processor Type and Features.” You can move through the categories, view the kernel
options, and of course change their values.
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This command creates a configuration based on the defaults for your architecture:

$ make defconfig

Although these defaults are somewhat arbitrary (on i386, they are rumored to be
Linus’s configuration!), they provide a good start if you have never configured the kernel.
To get off and running quickly, run this command and then go back and ensure that con-
figuration options for your hardware are enabled.

The configuration options are stored in the root of the kernel source tree in a file
named .config.You may find it easier (as most of the kernel developers do) to just edit
this file directly. It is quite easy to search for and change the value of the configuration
options.After making changes to your configuration file, or when using an existing con-
figuration file on a new kernel tree, you can validate and update the configuration:

$ make oldconfig

You should always run this before building a kernel.
The configuration option CONFIG_IKCONFIG_PROC places the complete kernel configu-

ration file, compressed, at /proc/config.gz.This makes it easy to clone your current
configuration when building a new kernel. If your current kernel has this option enabled,
you can copy the configuration out of /proc and use it to build a new kernel:

$ zcat /proc/config.gz > .config

$ make oldconfig

After the kernel configuration is set—however you do it—you can build it with a sin-
gle command:

$ make

Unlike kernels before 2.6, you no longer need to run make dep before building the
kernel—the dependency tree is maintained automatically.You also do not need to specify
a specific build type, such as bzImage, or build modules separately, as you did in old ver-
sions.The default Makefile rule will handle everything.

Minimizing Build Noise
A trick to minimize build noise, but still see warnings and errors, is to redirect the output
from make:

$ make > ../detritus

If you need to see the build output, you can read the file. Because the warnings and
errors are output to standard error, however, you normally do not need to. In fact, I just do

$ make > /dev/null

This redirects all the worthless output to that big, ominous sink of no return,
/dev/null.
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Spawning Multiple Build Jobs
The make program provides a feature to split the build process into a number of parallel
jobs. Each of these jobs then runs separately and concurrently, significantly speeding up the
build process on multiprocessing systems. It also improves processor utilization because the
time to build a large source tree includes significant time in I/O wait (time in which the
process is idle waiting for an I/O request to complete).

By default, make spawns only a single job because Makefiles all too often have incorrect
dependency information.With incorrect dependencies, multiple jobs can step on each
other’s toes, resulting in errors in the build process.The kernel’s Makefiles have correct
dependency information, so spawning multiple jobs does not result in failures.To build the
kernel with multiple make jobs, use

$ make -jn

Here, n is the number of jobs to spawn. Usual practice is to spawn one or two jobs per
processor. For example, on a 16-core machine, you might do

$ make -j32 > /dev/null

Using utilities such as the excellent distcc or ccache can also dramatically improve
kernel build time.

Installing the New Kernel
After the kernel is built, you need to install it. How it is installed is architecture- and boot
loader-dependent—consult the directions for your boot loader on where to copy the ker-
nel image and how to set it up to boot.Always keep a known-safe kernel or two around in
case your new kernel has problems!

As an example, on an x86 system using grub, you would copy arch/i386/boot/bzImage
to /boot, name it something like vmlinuz-version, and edit /boot/grub/grub.conf,
adding a new entry for the new kernel. Systems using LILO to boot would instead edit
/etc/lilo.conf and then rerun lilo.

Installing modules, thankfully, is automated and architecture-independent.As root,
simply run

% make modules_install

This installs all the compiled modules to their correct home under /lib/modules.
The build process also creates the file System.map in the root of the kernel source tree.

It contains a symbol lookup table, mapping kernel symbols to their start addresses.This is
used during debugging to translate memory addresses to function and variable names.

A Beast of a Different Nature
The Linux kernel has several unique attributes as compared to a normal user-space appli-
cation.Although these differences do not necessarily make developing kernel code harder
than developing user-space code, they certainly make doing so different.
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These characteristics make the kernel a beast of a different nature. Some of the usual
rules are bent; other rules are entirely new.Although some of the differences are obvious
(we all know the kernel can do anything it wants), others are not so obvious.The most
important of these differences are

n The kernel has access to neither the C library nor the standard C headers.
n The kernel is coded in GNU C.
n The kernel lacks the memory protection afforded to user-space.
n The kernel cannot easily execute floating-point operations.
n The kernel has a small per-process fixed-size stack.
n Because the kernel has asynchronous interrupts, is preemptive, and supports SMP,

synchronization and concurrency are major concerns within the kernel.
n Portability is important.

Let’s briefly look at each of these issues because all kernel developers must keep them
in mind.

No libc or Standard Headers
Unlike a user-space application, the kernel is not linked against the standard C library—or
any other library, for that matter.There are multiple reasons for this, including a chicken-
and-the-egg situation, but the primary reason is speed and size.The full C library—or even
a decent subset of it—is too large and too inefficient for the kernel.

Do not fret: Many of the usual libc functions are implemented inside the kernel. For
example, the common string manipulation functions are in lib/string.c. Just include
the header file <linux/string.h> and have at them.

Header Files
When I talk about header files in this book, I am referring to the kernel header files that are
part of the kernel source tree. Kernel source files cannot include outside headers, just as
they cannot use outside libraries.

The base files are located in the include/ directory in the root of the kernel source tree. For
example, the header file <linux/inotify.h> is located at include/linux/inotify.h in
the kernel source tree.

A set of architecture-specific header files are located in arch/<architecture>/include/asm
in the kernel source tree. For example, if compiling for the x86 architecture, your architec-
ture-specific headers are in arch/x86/include/asm. Source code includes these headers
via just the asm/ prefix, for example <asm/ioctl.h>.

Of the missing functions, the most familiar is printf().The kernel does not have
access to printf(), but it does provide printk(), which works pretty much the same as
its more familiar cousin.The printk()function copies the formatted string into the ker-
nel log buffer, which is normally read by the syslog program. Usage is similar to
printf():
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printk("Hello world! A string '%s' and an integer '%d'\n", str, i);

One notable difference between printf() and printk() is that printk() enables you
to specify a priority flag.This flag is used by syslogd to decide where to display kernel
messages. Here is an example of these priorities:

printk(KERN_ERR "this is an error!\n");

Note there is no comma between KERN_ERR and the printed message.This is inten-
tional; the priority flag is a preprocessor-define representing a string literal, which is con-
catenated onto the printed message during compilation.We use printk() throughout
this book.

GNU C
Like any self-respecting Unix kernel, the Linux kernel is programmed in C. Perhaps sur-
prisingly, the kernel is not programmed in strict ANSI C. Instead, where applicable, the
kernel developers make use of various language extensions available in gcc (the GNU
Compiler Collection, which contains the C compiler used to compile the kernel and
most everything else written in C on a Linux system).

The kernel developers use both ISO C991 and GNU C extensions to the C language.
These changes wed the Linux kernel to gcc, although recently one other compiler, the
Intel C compiler, has sufficiently supported enough gcc features that it, too, can compile
the Linux kernel.The earliest supported gcc version is 3.2; gcc version 4.4 or later is rec-
ommended.The ISO C99 extensions that the kernel uses are nothing special and, because
C99 is an official revision of the C language, are slowly cropping up in a lot of other
code.The more unfamiliar deviations from standard ANSI C are those provided by GNU
C. Let’s look at some of the more interesting extensions that you will see in the kernel;
these changes differentiate kernel code from other projects with which you might be
familiar.

Inline Functions
Both C99 and GNU C support inline functions.An inline function is, as its name suggests,
inserted inline into each function call site.This eliminates the overhead of function invo-
cation and return (register saving and restore) and allows for potentially greater optimiza-
tion as the compiler can optimize both the caller and the called function as one.As a
downside (nothing in life is free), code size increases because the contents of the function
are copied into all the callers, which increases memory consumption and instruction
cache footprint. Kernel developers use inline functions for small time-critical functions.

1 ISO C99 is the latest major revision to the ISO C standard. C99 adds numerous enhancements to the

previous major revision, ISO C90, including designated initializers, variable length arrays, C++-style

comments, and the long long and complex types. The Linux kernel, however, employs only a sub-

set of C99 features.
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Making large functions inline, especially those used more than once or that are not
exceedingly time critical, is frowned upon.

An inline function is declared when the keywords static and inline are used as part
of the function definition. For example

static inline void wolf(unsigned long tail_size)

The function declaration must precede any usage, or else the compiler cannot make
the function inline. Common practice is to place inline functions in header files. Because
they are marked static, an exported function is not created. If an inline function is used
by only one file, it can instead be placed toward the top of just that file.

In the kernel, using inline functions is preferred over complicated macros for reasons
of type safety and readability.

Inline Assembly
The gcc C compiler enables the embedding of assembly instructions in otherwise normal
C functions.This feature, of course, is used in only those parts of the kernel that are
unique to a given system architecture.

The asm() compiler directive is used to inline assembly code. For example, this inline
assembly directive executes the x86 processor’s rdtsc instruction, which returns the value
of the timestamp (tsc) register:

unsigned int low, high;

asm volatile("rdtsc" : "=a" (low), "=d" (high));

/* low and high now contain the lower and upper 32-bits of the 64-bit tsc */

The Linux kernel is written in a mixture of C and assembly, with assembly relegated
to low-level architecture and fast path code.The vast majority of kernel code is pro-
grammed in straight C.

Branch Annotation
The gcc C compiler has a built-in directive that optimizes conditional branches as either
very likely taken or very unlikely taken.The compiler uses the directive to appropriately
optimize the branch.The kernel wraps the directive in easy-to-use macros, likely() and
unlikely().

For example, consider an if statement such as the following:

if (error) {

/* ... */

}

To mark this branch as very unlikely taken (that is, likely not taken):

/* we predict 'error' is nearly always zero ... */

if (unlikely(error)) {

/* ... */

}
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Conversely, to mark a branch as very likely taken:

/* we predict 'success' is nearly always nonzero ... */

if (likely(success)) {

/* ... */

}

You should only use these directives when the branch direction is overwhelmingly
known a priori or when you want to optimize a specific case at the cost of the other case.
This is an important point:These directives result in a performance boost when the
branch is correctly marked, but a performance loss when the branch is mismarked.A
common usage, as shown in these examples, for unlikely() and likely() is error con-
ditions.As you might expect, unlikely() finds much more use in the kernel because if
statements tend to indicate a special case.

No Memory Protection
When a user-space application attempts an illegal memory access, the kernel can trap the
error, send the SIGSEGV signal, and kill the process. If the kernel attempts an illegal mem-
ory access, however, the results are less controlled. (After all, who is going to look after the
kernel?) Memory violations in the kernel result in an oops, which is a major kernel error.
It should go without saying that you must not illegally access memory, such as dereferenc-
ing a NULL pointer—but within the kernel, the stakes are much higher!

Additionally, kernel memory is not pageable.Therefore, every byte of memory you
consume is one less byte of available physical memory. Keep that in mind the next time
you need to add one more feature to the kernel!

No (Easy) Use of Floating Point
When a user-space process uses floating-point instructions, the kernel manages the transi-
tion from integer to floating point mode.What the kernel has to do when using floating-
point instructions varies by architecture, but the kernel normally catches a trap and then
initiates the transition from integer to floating point mode.

Unlike user-space, the kernel does not have the luxury of seamless support for floating
point because it cannot easily trap itself. Using a floating point inside the kernel requires
manually saving and restoring the floating point registers, among other possible chores.
The short answer is: Don’t do it! Except in the rare cases, no floating-point operations are
in the kernel.

Small, Fixed-Size Stack
User-space can get away with statically allocating many variables on the stack, including
huge structures and thousand-element arrays.This behavior is legal because user-space has
a large stack that can dynamically grow. (Developers on older, less advanced operating
systems—say, DOS—might recall a time when even user-space had a fixed-sized stack.)
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The kernel stack is neither large nor dynamic; it is small and fixed in size.The exact
size of the kernel’s stack varies by architecture. On x86, the stack size is configurable at
compile-time and can be either 4KB or 8KB. Historically, the kernel stack is two pages,
which generally implies that it is 8KB on 32-bit architectures and 16KB on 64-bit archi-
tectures—this size is fixed and absolute. Each process receives its own stack.

The kernel stack is discussed in much greater detail in later chapters.

Synchronization and Concurrency
The kernel is susceptible to race conditions. Unlike a single-threaded user-space applica-
tion, a number of properties of the kernel allow for concurrent access of shared resources
and thus require synchronization to prevent races. Specifically

n Linux is a preemptive multitasking operating system. Processes are scheduled and
rescheduled at the whim of the kernel’s process scheduler.The kernel must syn-
chronize between these tasks.

n Linux supports symmetrical multiprocessing (SMP).Therefore, without proper pro-
tection, kernel code executing simultaneously on two or more processors can con-
currently access the same resource.

n Interrupts occur asynchronously with respect to the currently executing code.
Therefore, without proper protection, an interrupt can occur in the midst of access-
ing a resource, and the interrupt handler can then access the same resource.

n The Linux kernel is preemptive.Therefore, without protection, kernel code can be
preempted in favor of different code that then accesses the same resource.

Typical solutions to race conditions include spinlocks and semaphores. Later chapters
provide a thorough discussion of synchronization and concurrency.

Importance of Portability
Although user-space applications do not have to aim for portability, Linux is a portable
operating system and should remain one.This means that architecture-independent C
code must correctly compile and run on a wide range of systems, and that architecture-
dependent code must be properly segregated in system-specific directories in the kernel
source tree.

A handful of rules—such as remain endian neutral, be 64-bit clean, do not assume the
word or page size, and so on—go a long way. Portability is discussed in depth in a later
chapter.

Conclusion
To be sure, the kernel has unique qualities. It enforces its own rules and the stakes, manag-
ing the entire system as the kernel does, are certainly higher.That said, the Linux kernel’s
complexity and barrier-to-entry is not qualitatively different from any other large soft-



22 Chapter 2 Getting Started with the Kernel

ware project.The most important step on the road to Linux development is the realiza-
tion that the kernel is not something to fear. Unfamiliar, sure. Insurmountable? Not at all.

This and the previous chapter lay the foundation for the topics we cover through this
book’s remaining chapters. In each subsequent chapter, we cover a specific kernel concept
or subsystem.Along the way, it is imperative that you read and modify the kernel source.
Only through actually reading and experimenting with the code can you ever understand
it.The source is freely available—use it!
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source code, 12
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integer atomic operations, 176-179

64-bit atomic operations, 180-181
interfaces

atomic operations, 176
filesystem, 261-262
slab layers, 249-252
wrapping, 402

internal representation, jiffies global
variable, 213-214

internal values, timers, 222

interprocess communication (IPC)
mechanism, 7

interrupt context, 5

kernels, 122
stack space, 122-123

interrupt handlers, 5, 113

bottom halves, 115-116, 133-135
benefits, 134-135
BH interface, 135-136
softirqs, 136-141
task queues, 135
tasklets, 136

controlling interrupts, 127-130
do_IRQ() function, 123-125
flags, 116-117
freeing, 118
free_irq() function, 118
function of, 114-115
implementing, 123-126
interrupt-safe code, 168
limitations, 133
locks, 185-186
reentrancy, 119
registering, 116
request_irq() function, 118
RTC (real-time clock) driver, 120-122
shared, 119-120

speed of, 122
timer, 217-220
top half, 115
top halves, 133
when to use, 135
writing, 118-119

interrupt request (IRQ), 114

interrupt service routine (ISR). See interrupt
handlers

interrupt stacks, 122

interrupt-safe code, 168

interrupts, 5, 113-114, 117, 131

asynchronous, 114
concurrency, 167
context, 115
controlling, 127-130
disable irq nosync() function, 130
disabling, 127-129
enable irq() function, 130
enabling, 127-128
in interrupt() function, 130
in irq() function, 130
irqs disabled() function, 130
local irq disable() function, 130
local irq enable() function, 130
local irq save() function, 130
synchronous, 114
timers, frequencies, 209

ioctl() method, 284

IPC (interprocess communication)
mechanism, 7

ipc directory, kernel source tree, 13

IRIX (SGI), 2

IRQ (interrupt request), 114

irqs_disabled() function, 130

ISR (interrupt service routine), 114

iterating linked lists, 94-95
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jiffies, 391

origins of term, 212-213
sequential locks, 200

jiffies global variable, 212-213

HZ values, 216
internal representation, 213-214
wraparounds, 214-216

K
kallsyms, 369-370

Karels, Michael J., 408

kbuild build system, building modules,
340-342

KERN ALERT loglevel, printk() function, 366

KERN CRIT loglevel, printk() function, 366

KERN DEBUG loglevel, printk() function, 366

KERN EMERG loglevel, printk() function, 366

KERN ERR loglevel, printk() function, 366

KERN INFO loglevel, printk() function, 366

KERN NOTICE loglevel, printk() function, 366

KERN WARNING loglevel, printk() function,
366

kernel

applications, relationship, 6
building, 13-16
C library, 17
concurrency, 21
configuring, 14-15
debugging help resources, 377
defined, 4
development kernel, 8-10
downloading, 11
fixed-size stack, 20
floating point instructions, 20
hardware, 5

relationship, 6

implementing, linked lists, 88-90
installing, 16
interrupt context, 5
interrupt handlers, 5
lack of memory protection, 20
modules, 7
monolithic, 7
naming conventions, 9
portability, 21
preemption, concurrency, 167
producer and consumer 

pattern, 96
root directories, 12-13
rules, 16-21
small, fixed-size, 21
source tree, 12-13
stable kernel, 8-9, 11
structure, 88
synchronization, 21
system calls, 71
vendor kernels, 14

kernel directory, kernel source 
tree, 13

Kernel Event Layer

D-BUS, 361
kobjects, 361-362
netlink, 361
parameters, 362
payloads, 361
verb strings, 361

kernel locked() function, 199

kernel maintainer, 403

kernel messages

klogd daemon, 367
log buffer, 366-367
oops, 367-370
syslogd daemon, 367
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Kernel Newbies website, 395

kernel objects, 337

kernel preemption, 7, 393

per-CPU data, 256
process scheduler, 63-64

kernel random number 
generator, 338

kernel threads, 35-36

memory descriptor, 309
pdflush task, 35

kernel timers. See timers

Kernel Traffic website, 395

kernel-space, 29

Kernel.org, 409

Kernighan, Brian, 399, 409

kfifo queues, 97-100

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
obtaining size of, 98
resetting, 99

kfree() function, 243-244

kgdb, 373

klogd daemon, kernel 
messages, 367

kmalloc() function, 238-244, 259

gfp_mask flags, 238-243
Knuth, Donald, 409

kobjects

device model, 349-350
managing, 352-353

file attributes, 358-359
conventions, 360-361
creating, 359-360
destroying, 360

sysfs filesystem, 355
adding and removing from,

357-358
adding files, 358-361
dentries, 355
Kernel Event Layer, 361-362
root directories, 357

kobject_create() function, 353

Kogan, Michael, 408

kqdb debugger, 373

kref structure, device model reference
counts, 354-355

kref_put() function, 354

Kroah-Hartman, Greg, 408

ksets, device model, 351

ksoftirqd task, 35

ksoftirqd threads, tasklets, 146-147

kthreadd kernel process, 36

kthread_create() function, 36

ktypes, device model, 350-351

kupdated kernel thread, 333-334

kysmoops, 369

L
laptop mode, page writeback, 333

last-in/first-out (LIFO) ordering, 94

least recently used (LRU), cache eviction,
325

lib directory, kernel source tree, 13

libc functions, 17

lifecycle, processes, 24

lightweight processes, threads, 34

likely() function, 20

limitations, interrupt handlers, 133

line length, coding style, 399-400

linked lists, 85

circular linked lists, 86-87

424 Kernel Newbies website



declaring, 88
defining, 89-90
doubly linked lists, 85-86
iterating through backward, 94
iterating while removing, 95
kernel implementation, 88-90
manipulating, 90-92
memory, 313
navigating through, 87-88
nodes

adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

singly linked lists, 85-86
traversing, 93-96

Linus Elevator, I/O schedulers, 299-300

Linux, 1

development history, 3
dynamic loading, 8
filesystems, support, 288
kernel development community, 10
object-oriented device model, 8
open source status, 4
portability, 380-381
preemptive nature, 8
scalability, 171
symmetrical multiprocessor (SMP), 8
thread implementation, 33-36
thread support, 8
Unix, 3
versus Unix kernel, 6, 8

Linux Device Drivers, 408

Linux kernel community, 395

Linux Kernel Mailing List (lkml), 10, 395

Linux System Programming, 409

Linux Weekly News, 395, 409

list for each() function, 93

list move() function, 92

list splice() function, 92

lists, VMAs (virtual memory areas), 313-314

list_add() function, 91

list_del() function, 91

list_for_each_entry() function, 96

little-endian byte ordering, 389-391

lkml (Linux Kernel Mailing List), 10, 395

loading

modules, 343-344
managing configuration options,

344-346
local bh disable() function, 157

local bh enable() function, 157-158

local_irq_disable() function, 130

local_irq_enable() function, 130

local_irq_restore() function, 130

local_irq_save() function, 130

lock contention, 171

lock kernel() function, 199

locking

coarse locking, 172
granularity, 171
need of protection, 168-169
race conditions, 165-166

locking between bottom halves, 157

locks, 165

acquiring, 193
advisory, 166
BKL (Big Kernel Lock), 198-199
busying wait, 166
contention, 171
deadlocks, threads, 169-171
debugging, 186
functions, 193
mutexes, 195-197
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non-recursive nature, 185
releasing, 193
semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

sequential locks, 200-201
spin locks, 183-187

bottom halves, 187-188
debugging, 186
methods, 184-187
reader-writer spin locks, 188-190

use in interrupt handlers, 185-186
versus code, 186
voluntary, 166

log buffers, kernel messages, 366-367

loglevels, printk() function, 365-366

looking up UIDs (unique identification 
numbers), 102-103
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LRU (least recently used), cache eviction,
325

M
Mac OS X Internals: A Systems 

Approach, 408

Magic SysRq key commands,
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maintainers, 403

malloc() function, 238, 306

map type flags, 319

mapping, 100

anonymous mapping, 318
file-backed mapping, 318

VMAs (virtual memory areas), 312
mappings (high memory), 253

permanent mappings, 254
temporary mappings, 254-255
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kfree() function, 243-244
kmalloc() function, 238-244
pages, 231-232, 235-237
per-CPU allocations, 255-258
slab layers, 245-252
statically allocating on stack,

252-253
vmalloc() function, 244-245
zones, 233-235

high memory, 393
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memory areas, 305-306
memory descriptor, 306
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MMUs (memory management 

units), 231
objects, pinned, 353

426 locks



pages, 231-233
freeing, 237
obtaining, 235-244
zeroed pages, 236-237
zones, 233-235

process address space, 305
red-black tree, 313
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
locating, 316-317
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

memory areas, 314-315. See also VMAs 
(virtual memory areas)

lists, 313-314
manipulating, 315-318
trees, 313-314

memory descriptor, 306

allocating, 308
destroying, 309
fields, 307-308
kernel threads, 309
mm struct, 309

memory maps, 306

memory-management unit (MMU), 6

memory protection, kernel, lack of, 20

memory reads/writes, 203-206

memset() function, 353

merging functions, I/O scheduler, 298-299

message passing, 7

metadata files, 264

methods

context_switch(), 380

ioctl(), 284
readpage(), 328
spin locks, 184-187
switch_mm(), 380
switch_to(), 380
synchronization methods, 175

64-bit atomic operations, 180-181
atomic operations, 175-179
barriers, 203-206
bitwise atomic operations, 181-183
BKL (Big Kernel Lock), 198-199
completion variables, 197-198
mutexes, 195-197
nonatomic bit operations, 183
ordering, 203-206
preemption disabling, 201-202
semaphores, 190-195
sequential locks, 200-201
spin locks, 183-190

writepage(), 328
microkernel designs, monolithic designs,

compared, 7

microkernels, message passing, 7

migration threads, 66

miscellaneous devices, 338

mm directory, kernel source tree, 13

mm struct, memory descriptor, 309

mmap() function, 306, 319

MMUs (memory management units), 6, 231

mod timer() function, 223

Modern Operating Systems, 407

modprobe command, 343

modules, 14, 337-338

building, 340-342
configuration options, managing,

344-346
dependencies, generating, 342
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exported symbols, 348
Hello,World!, 338-340
installing, 342
kernel, 7
living externally of kernel source 

tree, 342
loading, 343-344
parameters, 346-347
removing, 343
source trees, 340-342

MODULE_AUTHOR() macro, 340

MODULE_DESCRIPTION() macro, 340

module_exit() function, 339

module_init() macro, 339

MODULE_LICENSE() macro, 340

monolithic kernel, microkernel designs,
compared, 7
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Morton, Andrew, 9

mount flags, 286

mount points, 263

multiplexing system calls, 74

multiprocessing, symmetrical 
multiprocessing, 161

concurrency, 167
multitasking, 41-42

munmap() function, 320

mutexes, 191, 195-197

N
name pointer, device model, 349

namespace data structure, 287-288

namespaces, 263

naming conventions

coding style, 400
kernel, 9

net directory, kernel source tree, 13

NET_RX_SOFTIRQ tasklet, 140

NET_TX_SOFTIRQ tasklet, 140

netlink, Kernel Event Layer, 361

network devices, 338
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nice values, processes, 44

nice() function, 66

nodes, 85

linked lists
adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

nonatomic bit operations, 183

Noop I/O scheduler, 303-304

notation, Hungarian notation, 400

numbers, system calls, 72

O
O(1) scheduler, 42-43

object-oriented device model, Linux, 8

objects

pinned, 353
VFS (Virtual Filesystem), 265-266

dentry, 265, 275-279
directory, 265
file, 265, 279-284
inode, 265, 270-274
operations, 265
superblock, 265-269

occurrence limiting, debugging, 375-376

oops, kernel messages, 367-370
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open softirq() function, 141
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open() system call, 261

Operating System Concepts, 407

operating systems, 4

general activities, 5
idle process, 6
kernel-space, 5
multitasking, 41
portability, 379-380
scalability, 171
supervisor, 4
system calls, 5
tickless operations, 212

Operating Systems, 407

Operating Systems: Design and
Implementation, 407

operations object, VFS (Virtual 
Filesystem), 265

order preservation, 100

ordering

atomicity, compared, 179
barrier operations, 179
memory reads/writes, 203-206
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P
PAE (Physical Address Extension), 253

page caches, 323-326

address_space object, 326-328
address_space operations, 328-330
buffer caches, 330-331
filesystem files, 326
flusher threads, 331-335
global hash, 330
radix tree, 330
readpage() method, 328
writepage() method, 328

page_count() function, 232

page global directory (PGD), 321

page middle directory (PMD), 321

page protection flags, 319

page size, architectures, 391-392

page tables, 320-322

future management possibilities, 322
levels, 320-321

page writeback, 323

bdflush kernel thread, 333-334
dirty page writeback, 331
kupdated kernel thread, 333-334
laptop mode, 333
pdflush kernel thread, 333-334
settings, 332

pageable kernel memory, 8

pages (memory), 231-233

freeing, 237
obtaining, 235-236

kfree() function, 243-244
kmalloc() function, 238-244
vmalloc() function, 244-245
zeroed pages, 236-237

word size, 381
zones, 233-235

panic() function, 371

parallelism, threads, 33

parameter passing, system calls, 74
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Kernel Event Layer, 362
modules, 346-347
system calls, verifying, 75-78

parent pointer, device model, 350

parentless tasks, 38-40

patches

generating, 404-405
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payloads, Kernel Event Layer, 361

pdflush kernel thread, 333-334

pdflush task, 35

per-CPU allocations, 255-256

percpu interface, 256-258
per-CPU data

benefits, 258-259
thrashing the cache, 258

percpu interface, 256-258

at compile-time, 256-257
at runtime, 257-258

performance, system calls, 72

permanent high memory mappings, 254

PGD (page global directory), 321

PID (process identification), 26

pid_t data type, 384

pinned objects, 353

PIT (programmable interrupt timer), 217

PMD (page middle directory), 321

Pointers, dereferences, 92

policy (scheduler), 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

poll() system call, 211

polling, 113

popping, timers, 208

portability, 21, 379

byte ordering, 389-391
data alignment, 386-389
data types, 384
high memory, 393
implications of, 393
kernel preemption, 393
Linux, 380-381
operating systems, 379-380

page size architecture, 391
processor ordering, 392
scheduler, 380
SMP (symmetrical multiprocessing), 393
time, 391
word size, 381-384

POSIX, system calls, 70

preempt count() function, 202

preempt disable() function, 202

preempt enable no resched() function, 202

preempt enable() function, 202

preemption

kernel, concurrency, 167
process scheduler, 62

kernel preemption, 63-64
user preemption, 62-63

preemption disabling, 201-202

preemptive multitasking, process 
scheduler, 41

printf() function, 5, 17, 364

loglevels, 365-366
transposing, 367

printing, debugging, 364-367

printk() function, 17, 375

debugging, 364-366
loglevels, 365-366
nonrobustness of, 365
robustness of, 365
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priority-based scheduling, 44

private mapping, VMAs (virtual memory
areas), 312

/proc/interrupts file, 126-127

process address space
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creating, 318-319
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flat versus segmented, 305
memory areas, manipulating, 315-318
memory descriptors, 306-308

allocating, 308
destroying, 309
kernel threads, 309
mm struct, 309

overview, 305
page tables, 320-322
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
operations, 312-313
trees, 313-314

process descriptors

allocating, 25-26
states, 27-29
storing, 26-27
task list, 24
TASK_INTERRUPTIBLE 

process, 27
TASK_RUNNING process, 27
TASK_STOPPED process, 28
TASK_UNINTERRUPTIBLE

process, 28
process descriptors (task list), 24-25

process scheduler, 41

algorithm, 46-50
classes, 46-47
Completely Fair Scheduler 

scheduler, 43
context switching, 62
cooperative multitasking, 41-42
entity structure, 50
entry point, 57-58
evolution, 42-43
fair scheduling, 48-50

implementing, 50-59, 61
O(1) scheduler, 42-43
policy, 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

preemption, 62-64
preemptive multitasking, 41
process selection, 52-57
real-time scheduling policies, 64-65
Rotating Staircase Deadline 

scheduler, 43
system calls, 65-67
time accounting, 50-52
timeslices, 42
Unix systems, 47-48
virtual runtime, 51-52
yielding, 42

process states, 27-29
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adding to trees, 54-55
address space, 23
context, 29
creating, 31
data structures, 286-288
defined, 23
I/O-bound processes, 43-44
lifecycle of, 24
nice values, 44
real-time, 44
real-time processes, 44
removing from trees, 56-57
resources, 23-24
runnable processes, 41
scalability, 171
task list, 24
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tasks, 24
terminating, 24, 36-40
threads, 305
timeslice count, 211
virtual memory, 23
virtual processor, 23

processor affinity system calls, 66

processor ordering, 392

processor time, yielding, 66

processor-bound processors versus 
I/O-bound processes, 43-44

procfs virtual filesystem, 126-127
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dequeuing data, 98
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multiple threads of execution, 162
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Rago, Stephen, 409

raise softirq irqoff() function, 141

raise softirq() function, 141
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read lock() function, 189
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read seqretry() function, 220

read unlock irq() function, 189

read unlock irqrestore() function, 189
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REPORTING-BUGS file, 404

request queues, I/O block layer, 297
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Ritchie, Dennis, 1-3, 399, 409

rmb() function, 204-205

432 processes



root directories, sysfs file system, 357
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run_local_timers() function, 224
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self-balanced binary search trees, 105

rbtrees, 106-108
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tenets of, 246

sleep, wait queues, 229

sleeping concurrency, 167

sleeping locks, 192

behaviors, 191
mutexes, 195-197

versus semaphores, 197
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spin_lock_irq() method, 186
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