
IN THIS CHAPTER

• Working with the Linux File
System

• Logging In to and Working
with Linux

• Changing Your User
Information

• Reading Documentation

• Using the Shell

• Using the Text Editors

• Working with Permissions

• Working As Root

• Reference

CHAPTER 5

First Steps with Fedora

Most modern Linux distros are a world away from
versions that were available only four or five years ago.
Sporting a highly polished graphical interface, Fedora gives
you graphical tools with which to carry out most system
administration tasks. However, things can occasionally go
wrong and it is important that you know what to do in the
event that you cannot use the GUI interface. In this
chapter we will look at some of the basics of Fedora, laying
the foundations for other chapters in this book. We will
cover the Linux file system, as well as working with essen-
tial user information and accessing useful documentation
available for Fedora. We will also take a look at working
with the shell, otherwise known as the command line
interface. Then we will explore the various text editors that
can be used with Fedora, as well as examine the fundamen-
tals of file permissions. Finally, we will clearly explain the
importance of the root or super-user account in the main-
tenance and administration of your system.

Some of the basic command-line skills covered in this
chapter include

• Performing routine tasks—Logging in and out, using
the text console, changing passwords, and listing and
navigating directories

• Basic file management—Creating, renaming, and
deleting files and directories

• Basic user management—Creating and deleting
users from the command line

• Basic system management—Shutting down and
rebooting, reading man pages and other documenta-
tion, and using text-based tools to edit system
configuration files

Read this chapter if you are migrating to Linux from another platform; the information
here is valuable for individual users or system administrators who are new to Linux and
are learning to use the command line for the first time.

TIP

For those of you who have used MS-DOS in the past, delving into the command line does not
seem as scary as for those who, when faced with a black screen, automatically press the speed-
dial button allocated for their neighborhood geek. Regardless of which user you are, knowledge
of the command line serves you well. Because Linux is a UNIX-style operating system, if you
learn the command line functions on Linux, it will be easier for you to use other UNIX-like oper-
ating systems, such as the BSD’s and even Max OS X.

NOTE

On the whole, there are two types of users that access a Linux system: normal day-to-day users
and the root user or super user. At large organizations, a few people might be granted access
rights to the root or super-user account in order to complete necessary system administration
tasks. Normal users do not normally need to have root access.

However, if you have Linux installed on your machine as a standalone PC, you automatically
have access to the root account. This is so that you can complete necessary configuration and
other tasks that require interacting with the system.

This particular aspect of Linux is the victim of a lot of bad press because new users can see it as
a significant obstacle to them getting their work done. This is not the case: The root account,
as mentioned earlier, is fundamental to a successful Linux system. A lot of work has gone into
creating easy-to-use administration tools that take away a lot of the difficulty in maintaining your
system. It is still the case that a bit of command-line knowledge serves you well, especially in an
emergency.

Working with the Linux File System
Fedora uses a file system, or layout of hierarchical directories similar to that used by other
UNIX variants (such as Mac OS X). Nearly all Linux distributions use a similar directory
structure, and Linux distribution vendors have generally agreed on the naming and loca-
tion of critical Linux files and directories.

NOTE

The effort to build a consensus regarding the Linux directory structure began in 1993 with the
Filesystem Hierarchy Standard (FHS), a draft proposal that addressed not only Linux issues, but
also those of other operating systems, such as BSD. Red Hat has stated that it is committed to
staying compliant with the FHS, which specifies the location and names of files and directories.

Fedora uses the current 2.3 standard. Key additions to this include the creation of a /media
directory for removable storage devices such as DVD drives and zip disks (although keeping /mnt
as a temporary mount point). udev has also been added to Fedora; although it is not a part of

CHAPTER 5 First Steps with Fedora120

FHS 2.3, it enables /dev to become a dynamically managed folder allowing the hot-plugging of
devices onto the system and the creation (on demand) of device nodes.

The commonality of how the Linux directory structure is laid out is very useful for open
source developers because it cuts down the amount of work they have to do to get their
programs to work with different distributions. For a programmer to know, for example,
that the useradd command is always under /usr/sbin means that he can create shell
scripts and other utilities that take advantage of this, and know that they will work
universally. Perhaps unsurprisingly, given the ancestry of Linux, you will find that other
UNIX-like operating systems follow the same directory organization. Of course, you do
not get the most of knowing this secret unless you actually learn a little about how the
directories are organized, along with the contents of files and directories, and where soft-
ware should be installed and files stored.

A good knowledge of the Linux file system pays dividends to pretty much every system
administrator. Because you have full control (through the root or super-user account), this
information is invaluable in keeping your system running smoothly and securely.

Viewing the Linux File System
Look at the layout of a typical Fedora system by using the list directory contents
command, ls, like this:

$ ls /

bin dev home lib media mnt proc sbin srv tftpboot usr

boot etc initrd lost+found misc opt root selinux sys tmp var

NOTE

This section provides an overview of the Fedora file system. You might find a fewer or greater
number of directories than discussed here in your own system. When some software packages
are installed, they create new directories. Updating software packages might also remove or
change the name of some directories. See Chapter 7, “Managing Software and System
Resources,” for more information on installing, upgrading, and removing software from your
Linux system.

To get a more detailed picture, use the tree command to show the root or base directory
layout, along with associated subdirectories, like this (note that your system’s /usr/src
directory might be somewhat different, depending on the version of Fedora you have
installed or if you have updated Fedora with a new kernel, and that not all subdirectories
are listed):

$ tree -dx /

/

|-- bin

|-- boot

|-- dev

Working with the Linux File System 121

5

|-- etc

| |-- 4Suite

| |-- X11

| |-- cron.d

| |-- ppp

| |-- rc.d

| |-- selinux

| |-- sysconfig

|-- home

| `-- andrew

|-- lib

| |-- modules

|-- lost+found

|-- media

| |-- cdrom

| `-- floppy

|-- misc

|-- mnt

| `-- hgfs

|-- net

|-- opt

|-- proc

|-- root

|-- sbin

|-- selinux

|-- srv

|-- sys

|-- tmp

|-- usr

| |-- X11R6

| | |-- bin

| | |-- lib

| |-- bin

| |-- include

| |-- lib

| |-- local

| |-- sbin

| |-- share

| |-- src

| | |-- kernels

| | `-- redhat

`-- var

|-- ftp

|-- log

`-- spool

CHAPTER 5 First Steps with Fedora122

This example (pruned from more than 30,000 directories) shows the higher-level directo-
ries and corresponds to the directories and descriptions in Table 5.1.

TABLE 5.1 Basic Linux Directories

Name Description

/ The root directory

/bin Essential commands

/boot Boot loader files, Linux kernel

/dev Device files

/etc System configuration files

/home User home directories

/initrd Initial RAM disk boot support (used during boot time)

/lib Shared libraries, kernel modules

/lost+found Directory for recovered files (if found after a file system check)

/media Mount point for removable media such as DVDs and floppy disks

/mnt Usual mount point for local, remote file systems

/opt Add-on software packages

/proc Kernel information, process control

/root Super-user (root home)

/sbin System commands (mostly root only)

/selinux Holds the data for SELinux, the security component of Fedora

/sys Real-time information on devices used by the kernel

/tftpboot Network boot support

/tmp Temporary files

/usr Secondary software file hierarchy

/var Variable data (such as logs); spooled files

Some of the important directories in Table 5.1, such as those containing user and root
commands or system configuration files, are discussed in the following sections. You use
and edit files under these directories when you use Fedora.

Use Essential Commands from the /bin and /sbin Directories
The /bin directory (about 5MB if you do a full install) contains essential commands used
by the system when running and booting Linux. In general, only the root operator uses
the commands in the /sbin directory. Many (though not all) of these commands are stati-
cally linked; such commands do not depend on software libraries residing under the /lib
or /usr/lib directories. Nearly all the other applications on your system are dynamically
linked—meaning that they require external software libraries (also known as shared
libraries) in order to run.

Working with the Linux File System 123

5

TIP

Because the system contains dynamically linked applications, you might sometimes get depen-
dency errors when installing or upgrading software packages; in those situations, a supporting
library (or application) might not be present. See Chapter 7 for more information on working
with dynamically linked applications and other methods of avoiding such problems. Thankfully,
“dependency hell” is largely a thing of the past due to programs such as yum.

Store the Booted Kernel and View Stored Devices in the /boot and
/dev Directories
The /boot directory contains a compressed version of the Linux kernel (loaded at boot
time), along with other files that describe the kernel or provide information for booting
Linux. When you rebuild or install a new kernel, the kernel and related files are placed in
this directory (see Chapter 39, “Kernel and Module Management,” for more information
on rebuilding or installing a kernel).

Linux device files are contained under the /dev directory. Note that under Linux, nearly
everything on your system is a file. This means that (with the exception of network inter-
faces; see the note that follows the upcoming list) regular files; directories; hard drive
partitions; serial, printer, or USB ports; and video and sound devices all are files!

The /dev directory contains more than 7,500 files representing devices that may or may
not be in use on your system. Some of the most commonly used devices in this directory
include

• IDE (Integrated Drive Electronics) hard drives, such as /dev/hda and /dev/hdb

• CD-ROM drives; some which are IDE, others which are CD-RW (CD read/write)
drives emulated as SCSI (Small Computer Systems Interface) devices, such as
/dev/scd0

• Serial ports, such as /dev/ttyS0 for COM1, /dev/ttyS1 for COM2, and so on

• Pointing devices, including /dev/input/mice and others

• Printers, such as /dev/lp0

NOTE

Network interfaces (such as eth0 or ppp0) are not represented by Linux device files, but
are created in memory when activated. See Chapter 18, “Network Connectivity,” for more
information.

Use and Edit Files in the /etc Directory
More than 65MB of system configuration files and directories reside under the /etc direc-
tory if you install all the software included with this book. Some major software packages,

CHAPTER 5 First Steps with Fedora124

such as Apache, OpenSSH, and xinetd, have directories of configuration files under /etc.
Other important system-related configuration files in /etc are

• fstab—The file system table is a text file listing each hard drive, CD-ROM, floppy,
or other storage device attached to your PC. The table indexes each device’s parti-
tion information with a place in your Linux file system (directory layout) and lists
other options for each device when used with Linux (see Chapter 39, “Managing
the File System”). Nearly all entries in fstab can be manipulated by root using the
mount command.

• inittab—The system initialization table defines the default runlevel, also known as
run-control level or system state. Changes to this file can determine whether your
system boots to a graphical or text login, as well as whether dial-up remote access is
enabled. (You learn about default runlevels in the section “System Services and
Runlevels” located in Chapter 15, “Automating Tasks.” See the section “Starting X,”
located in Chapter 6, to learn more about changing inittab to boot to a graphical
interface. The section “Configuring a Dial-In PPP Server” in Chapter 18 discusses
editing inittab to enable dial-up remote access.)

• modprobe.conf—This configuration file contains directions and options used when
loading kernel modules to enable various types of hardware, such as sound, USB,
networking, and so on (discussed in the section “Managing Modules” in Chapter
39). The contents of this file are used during boot time, and the file can be manu-
ally edited or automatically updated by Fedora’s kudzu hardware management tool
(if enabled, as you learn later in this section).

• passwd—The list of users for the system, along with user account information. The
contents of this file can be changed by various programs, such as useradd or chsh.

• printcap—The system’s printer capabilities database (discussed in the section
“Overview of Fedora Printing” in Chapter 12, “Printing with Fedora”).

• shells—A list of approved shells (command-line interfaces).

One of the most important directories under /etc for Fedora is sysconfig. This directory
contains network activation scripts and hardware- and software-related information:

$ tree -afx /etc/sysconfig

/etc/sysconfig

|-- /etc/sysconfig/apm-scripts

| `-- /etc/sysconfig/apm-scripts/apmscript

|-- /etc/sysconfig/apmd

|-- /etc/sysconfig/auditd

|-- /etc/sysconfig/authconfig

|-- /etc/sysconfig/autofs

|-- /etc/sysconfig/bluetooth

|-- /etc/sysconfig/clock

|-- /etc/sysconfig/console

|-- /etc/sysconfig/crond

Working with the Linux File System 125

5

|-- /etc/sysconfig/desktop

|-- /etc/sysconfig/diskdump

|-- /etc/sysconfig/dund

|-- /etc/sysconfig/firstboot

|-- /etc/sysconfig/grub

|-- /etc/sysconfig/harddisks

|-- /etc/sysconfig/hidd

|-- /etc/sysconfig/httpd

|-- /etc/sysconfig/hwconf

|-- /etc/sysconfig/i18n

|-- /etc/sysconfig/init

|-- /etc/sysconfig/installinfo

|-- /etc/sysconfig/iptables

|-- /etc/sysconfig/iptables-config

|-- /etc/sysconfig/irda

|-- /etc/sysconfig/kernel

|-- /etc/sysconfig/keyboard

|-- /etc/sysconfig/kudzu

|-- /etc/sysconfig/lm_sensors

|-- /etc/sysconfig/modules

|-- /etc/sysconfig/mouse

|-- /etc/sysconfig/mouse.BeforeVMwareToolsInstall

|-- /etc/sysconfig/named

|-- /etc/sysconfig/netdump

|-- /etc/sysconfig/netdump_id_dsa

|-- /etc/sysconfig/netdump_id_dsa.pub

|-- /etc/sysconfig/network

|-- /etc/sysconfig/network-scripts

| |-- /etc/sysconfig/network-scripts/ifcfg-eth0

| |-- /etc/sysconfig/network-scripts/ifcfg-lo

| |-- /etc/sysconfig/network-scripts/ifdown -> ../../../sbin/ifdown

| |-- /etc/sysconfig/network-scripts/ifdown-aliases

| |-- /etc/sysconfig/network-scripts/ifdown-bnep

| |-- /etc/sysconfig/network-scripts/ifdown-eth

| |-- /etc/sysconfig/network-scripts/ifdown-ippp

| |-- /etc/sysconfig/network-scripts/ifdown-ipsec

| |-- /etc/sysconfig/network-scripts/ifdown-ipv6

| |-- /etc/sysconfig/network-scripts/ifdown-isdn -> ifdown-ippp

| |-- /etc/sysconfig/network-scripts/ifdown-post

| |-- /etc/sysconfig/network-scripts/ifdown-ppp

| |-- /etc/sysconfig/network-scripts/ifdown-sit

| |-- /etc/sysconfig/network-scripts/ifdown-sl

| |-- /etc/sysconfig/network-scripts/ifup -> ../../../sbin/ifup

| |-- /etc/sysconfig/network-scripts/ifup-aliases

| |-- /etc/sysconfig/network-scripts/ifup-bnep

CHAPTER 5 First Steps with Fedora126

| |-- /etc/sysconfig/network-scripts/ifup-eth

| |-- /etc/sysconfig/network-scripts/ifup-ippp

| |-- /etc/sysconfig/network-scripts/ifup-ipsec

| |-- /etc/sysconfig/network-scripts/ifup-ipv6

| |-- /etc/sysconfig/network-scripts/ifup-ipx

| |-- /etc/sysconfig/network-scripts/ifup-isdn -> ifup-ippp

| |-- /etc/sysconfig/network-scripts/ifup-plip

| |-- /etc/sysconfig/network-scripts/ifup-plusb

| |-- /etc/sysconfig/network-scripts/ifup-post

| |-- /etc/sysconfig/network-scripts/ifup-ppp

| |-- /etc/sysconfig/network-scripts/ifup-routes

| |-- /etc/sysconfig/network-scripts/ifup-sit

| |-- /etc/sysconfig/network-scripts/ifup-sl

| |-- /etc/sysconfig/network-scripts/ifup-wireless

| |-- /etc/sysconfig/network-scripts/init.ipv6-global

| |-- /etc/sysconfig/network-scripts/network-functions

| `-- /etc/sysconfig/network-scripts/network-functions-ipv6

|-- /etc/sysconfig/networking

| |-- /etc/sysconfig/networking/devices

| | `-- /etc/sysconfig/networking/devices/ifcfg-eth0

| `-- /etc/sysconfig/networking/profiles

| `-- /etc/sysconfig/networking/profiles/default

| |-- /etc/sysconfig/networking/profiles/default/hosts

| |-- /etc/sysconfig/networking/profiles/default/ifcfg-eth0

| `-- /etc/sysconfig/networking/profiles/default/resolv.conf

|-- /etc/sysconfig/ntpd

|-- /etc/sysconfig/pand

|-- /etc/sysconfig/pcmcia

|-- /etc/sysconfig/prelink

|-- /etc/sysconfig/rhn

| |-- /etc/sysconfig/rhn/clientCaps.d

| |-- /etc/sysconfig/rhn/rhn-applet

| |-- /etc/sysconfig/rhn/rhnsd

| |-- /etc/sysconfig/rhn/sources

| |-- /etc/sysconfig/rhn/up2date

| |-- /etc/sysconfig/rhn/up2date-keyring.gpg

| `-- /etc/sysconfig/rhn/up2date-uuid

|-- /etc/sysconfig/samba

|-- /etc/sysconfig/saslauthd

|-- /etc/sysconfig/selinux -> /etc/selinux/config

|-- /etc/sysconfig/sendmail

|-- /etc/sysconfig/spamassassin

|-- /etc/sysconfig/squid

|-- /etc/sysconfig/syslog

|-- /etc/sysconfig/system-config-securitylevel

Working with the Linux File System 127

5

|-- /etc/sysconfig/system-config-users

|-- /etc/sysconfig/tux

|-- /etc/sysconfig/vncservers

`-- /etc/sysconfig/xinetd

10 directories, 94 files

For brevity, not all directories and files are discussed here. /etc/sysconfig contains many
different hardware and software settings critical to the operation of your Fedora system.
Knowing the location and contents of these files can be helpful if you need to trouble-
shoot new hardware configurations.

The settings in various files under /etc/sysconfig (such as keyboard, mouse, sound, and
so on) are usually created automatically by a related Fedora graphical or console-based
configuration utility.

These contents might dynamically change if you use the kudzu hardware configuration
service. The kudzu service also prompts you at boot time to remove, configure, or ignore
a related setting if kudzu detects new or different hardware (such as a new USB keyboard,
network card, or monitor). kudzu creates a file called hwconf that contains a hardware
profile of your PC’s current state. Note that if kudzu is not enabled or running, you can
use device-specific configuration utilities such as system-config-keyboard, or you can
manually edit configuration files.

Information about the type of pointing device attached to the PC, for example, is
contained in the file /etc/sysconfig/mouse:

MOUSETYPE=”ps/2”

XMOUSETYPE=”PS/2”

FULLNAME=”Generic 3 Button Mouse (PS/2)”

XEMU3=no

If a different mouse, say a three-button USB device, is attached to the computer, you can
edit this information to reflect the hardware change:

MOUSETYPE=”ps/2”

XMOUSETYPE=”IMPS/2”

FULLNAME=”Generic 3 Button Mouse (USB)”

XEMU3=no

CAUTION

If you are new to Linux, the system-config-mouse client is the best tool to use to configure a
new mouse. You should manually edit system hardware configuration files used by graphical
management clients only as a last resort.

CHAPTER 5 First Steps with Fedora128

Protect the Contents of User Directories—/home
The most important data on a Linux system resides in user’s directories, found under the
/home directory. Segregating the system and user data can be helpful in preventing data
loss and making the process of backing up easier. For example, having user data reside on
a separate file system or mounted from a remote computer on the network might help
shield users from data loss in the event of a system hardware failure.

Use the Contents of the /proc Directory to Interact with the Kernel
The content of the /proc directory is created from memory and only exists while Linux is
running. This directory contains special “files” that either extract information from or
send information to the kernel. Many Linux utilities extract information from dynami-
cally created directories and files under this directory, also known as a virtual file system.
For example, the free command obtains its information from a file named meminfo:

$ free

total used free shared buffers cached

Mem: 255040 250752 4288 0 1716 90964

-/+ buffers/cache: 158072 96968

Swap: 524280 760 523520

This information constantly changes as the system is used. You can get the same informa-
tion by using the cat command to see the contents of the meminfo file:

$ cat /proc/meminfo

MemTotal: 255040 kB

MemFree: 4412 kB

Buffers: 2164 kB

Cached: 90580 kB

SwapCached: 0 kB

Active: 208884 kB

Inactive: 8976 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 255040 kB

LowFree: 4412 kB

SwapTotal: 524280 kB

SwapFree: 523520 kB

Dirty: 48 kB

Writeback: 0 kB

Mapped: 201520 kB

Slab: 24772 kB

CommitLimit: 651800 kB

Committed_AS: 341544 kB

PageTables: 2880 kB

VmallocTotal: 770040 kB

VmallocUsed: 3432 kB

Working with the Linux File System 129

5

VmallocChunk: 762312 kB

HugePages_Total: 0

HugePages_Free: 0

Hugepagesize: 4096 kB

The /proc directory can also be used to dynamically alter the behavior of a running Linux
kernel by echoing numerical values to specific files under the /proc/sys directory. For
example, to turn on kernel protection against one type of denial of service (DOS) attack
known as SYN flooding, use the echo command to send the number 1 (one) to the follow-
ing /proc path:

echo 1 >/proc/sys/net/ipv4/tcp_syncookies

NOTE

The Linux kernel has a number of built-in protections, but good system administration security
policies and a secure firewall protecting your gateway, router, or Internet-connected system are
the best protection you can use. See the section “Securing Your Network” in Chapter 18 for an
overview of firewalling and examples of how to implement Red Hat’s network security tools
included with Fedora.

Other ways to use the /proc directory include

• Getting CPU information, such as the family, type, and speed from /proc/cpuinfo.

• Viewing important networking information under /proc/net, such as active inter-
faces information under /proc/net/dev, routing information in /proc/net/route,
and network statistics in /proc/net/netstat.

• Retrieving file system information.

• Reporting media mount point information via USB; for example, the Linux kernel
reports what device to use to access files (such as /dev/sda) if a USB camera or hard
drive is detected on the system. You can use the dmesg command to see this infor-
mation or find information about these devices under the Device File System direc-
tory /proc/devfs (see the Linux Devfs FAQ at http://www.atnf.csiro.au/~rgooch/
linux/docs/devfs.html if the source code for the Linux kernel is installed). The file
/usr/src/linux-2.6/Documentation/usb/proc_usb_info.txt contains general
information about USB and the /proc directory, as well as what to expect in files
under this directory. Note that devfs might be supported, but will generally be
obsolete in the 2.6 kernel because /proc/udev replaces it as a way of managing hot-
plug devices on your system.

• Getting the kernel version in /proc/version, performance information such as
uptime in /proc/uptime, or other statistics such as CPU load, swap file usage, and
processes in /proc/stat.

CHAPTER 5 First Steps with Fedora130

http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html
http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

Work with Shared Data in the /usr Directory
The /usr directory (nearly 5GB in size if you do a full install) contains software applica-
tions, libraries, and other types of shared data for use by anyone on the system. Many
Linux system administrators give /usr its own partition. A number of subdirectories
under /usr contain the X Window System (/usr/X11R6), man pages (/usr/share/man),
software package shared files (/usr/share/name_of_package, such as /usr/share/emacs),
additional application or software package documentation (/usr/share/doc), and an
entire subdirectory tree of locally built and installed software, /usr/local.

Temporary File Storage in the /tmp Directory
As its name implies, the /tmp directory is used for temporary file storage; as you use
Linux, various programs create files in this directory. The /tmp directory is cleaned of stale
files each day by the tmpwatch command. (A stale file is any file not used after 10 days.)
Fedora is configured by default to use tmpwatch to check /tmp each day by settings in your
system’s scheduling table, /etc/crontab.

Access Variable Data Files in the /var Directory
The /var directory contains subdirectories used by various system services for spooling
and logging. Many of these variable data files, such as print spooler queues, are tempo-
rary, whereas others, such as system and kernel logs, are renamed and rotated in use.
Incoming electronic mail is usually directed to files under /var/spool/mail.

Linux also uses /var for other important system services. These include the topmost File
Transfer Protocol (FTP) directory under /var/ftp (see Chapter 24, “Remote File Serving
with FTP”), and the Apache web server’s initial home page directory for the system,
/var/www/html. (See Chapter 21, “Apache Web Server Management,” for more informa-
tion on using Apache.)

Logging In to and Working with Linux
You can access and use a Linux system in a number of ways. One way is at the console
with a monitor, keyboard, and mouse attached to the PC. Another way is via a serial
console, either by dial-up via a modem or a PC running a terminal emulator and
connected to the Linux PC via a null modem cable. You can also connect to your system
through a wired or wireless network using the telnet or ssh commands. The information
in this section shows you how to access and use the Linux system using physical and
remote text-based logins.

NOTE

This chapter focuses on text-based logins and use of Linux. Graphical logins and using a graphi-
cal desktop are described in the section “Starting X” in Chapter 6.

Logging In to and Working with Linux 131

5

Text-Based Console Login
If you sit down at your PC and log in to a Linux system that has not been booted to a
graphical login, you see a prompt similar to this one:

Fedora release 4 (Stentz)

Kernel 2.6.13-1.1532_FC4 on an i686

login:

Your prompt might vary, depending on the version of Fedora you are using. In any event,
at this prompt, type in your username and press Enter. When you are prompted for your
password, type it in and press Enter.

NOTE

Note that your password is not echoed back to you, which is a good idea. Why is it a good
idea? Well, people are prevented from looking over your shoulder and seeing your screen input.
It is not difficult to guess that a five-letter password might correspond to the user’s spouse’s
first name!

Working with Virtual Consoles
After logging in, you are using an interactive command prompt known as a shell in the
Linux text-based or console mode. While you are sitting at your command prompt, you
can also use one or more virtual consoles or terminals. Virtual consoles allow you to log in
to Linux multiple times. (Each login is called a session.) This can be useful if you are not
using a graphical desktop, but want to use several interactive programs, such as a text
editor and web browser, at the same time. To do so, after you log in, run a program and
then jump to another login prompt, log in, and start another session. Linux supports 63
virtual consoles, but only the first 6 are configured for use. (You can use 7 if you do not
run X11.) Here’s how to use virtual Linux consoles:

1. Log in. You use the first virtual console, or vt1 by default.

2. Press F2. You should then see another login prompt. Log in again, and you are then
using vt2, the second Linux console.

3. Press Alt+F1 to jump back to vt1.

4. Press Alt+F2 to jump back to vt2.

You can jump back and forth between sessions by using the Alt key plus the F key
number of the desired session, such as F3, F4, F5, or F6.

One caveat when using virtual consoles is that there is a default limit on the available
number (usually six) if an active X Window session is occupying vt7. To jump to a virtual
console from an X session, press Ctrl+Alt+F2; you will be at vt2. You can then jump back
to your X session from the text console by pressing Alt+F7 (to go to vt7, in use by X). You

CHAPTER 5 First Steps with Fedora132

should also be careful to save any work in progress before you exit each session and to log
out of each session when finished. If you do not, you could leave an open login and shell
prompt available at the keyboard to anyone who walks by!

NOTE

In addition to virtual console keystrokes, the Linux console might also recognize the three-
fingered salute (or Vulcan neck pinch), Ctrl+Alt+Del. This behavior (and the number of virtual
terminals) can be controlled by the system administrator by editing the system’s initialization
table, /etc/inittab. See the Keyboard and Console HOWTO at http://www.tldp.org/ for more
details.

Using Simple Keyboard and Mouse Techniques in a Linux Console
Session
Working with Linux in a console-based session usually involves entering commands from
the keyboard. However, you can also use simple mouse controls as well. Linux keyboard
combinations and mouse support help provide virtual console navigation, start special
system actions (such as rebooting or shutting down), provide shortcuts to save typing,
and can aid in reading files or viewing program output.

For example, you can scroll the contents of your screen from the console by pressing
Shift+PageUp or Shift+PageDown, and can copy and paste text using your mouse buttons.
This section shows you how to access default or custom menus at the text console, which
can be helpful to get system information or to launch new programs.

If you use a mouse with Linux (and you most likely do), you can use your pointing device
for copy and paste operations. This support is provided by gpm, the general purpose
mouse server. The gpm server must be enabled or started while booting Linux (see Chapter
15 for more details in the section “Controlling Services at Boot Using Administrative
Tools”). To copy a section of text, click and drag text with the left mouse button (button
1) held down. To paste text, click an insertion point, and then press the middle mouse
button (button 2).

Button assignment, like all mouse controls during text console use, is managed by
command-line options given to gpm when it is started. For example, if you look at the gpm
startup script named gpm under the /etc/rc.d/init.d/ directory, you will see that it uses
the file named mouse under the /etc/sysconfig directory to hold options:

Additional options for gpm (e.g. acceleration), device

OPTIONS=””

DEVICE=”/dev/mouse”

You can add options, detailed in the gpm man page, to change how your mouse works,
enable or disable features, or assign special commands to a specific mouse button click.
For example, to change your button order from 123 (left, middle, and right) to 321, edit
the /etc/sysconfig/mouse file as root and change the OPTIONS entry like so:

OPTIONS=”-B 321”

Logging In to and Working with Linux 133

5

http://www.tldp.org/

After saving your changes, restart gpm like so:

/etc/rc.d/init.d/gpm restart

Your mouse buttons are now reversed!

To aid users with a two-button mouse, Linux supports three-button emulation; emulation
lets users simultaneously press the right and left mouse buttons to simulate a press of
the middle button. You can enable this feature during installation or by using the
mouseconfig command. Refer to the section “Configuring Pointing Devices in Linux”
in Chapter 4, “Post-Installation Configuration,” to see how to use mouseconfig.

The gpm server also provides the ability to reboot or shut down the system with the
mouse. Depending on the combination of mouse buttons you press, you have several
reboot or shutdown options. Begin by holding down either the left or right mouse button
and triple-clicking the opposite button; depending on which mouse button you press
next, one of these actions occurs:

• Pressing the left button causes an immediate reboot using the init command.

• Pressing the middle button reboots the system using the shutdown command.

• Pressing the right button causes the system to shut down immediately with the
shutdown command.

You can also create custom menus that pop up at a text-based Linux console by editing
the file /etc/gpm-root.conf (as root) and starting the gpm-root command. When you run
gpm-root without making changes to its configuration file, by default a system status
dialog (with the date, time, CPU load, free memory, and swap file usage) appears if you
hold down the Ctrl key and press the middle mouse button.

You can change your keyboard layouts by using the loadkeys command. To use a differ-
ent font for the console, try the setfont command. Fedora Linux comes with nearly 150
different console fonts, which are found under the /lib/kbd/consolefonts directory.
Refer to the section “Configuring Keyboards with Linux” in Chapter 4 to see how to use
these commands.

NOTE

A text-based, dial-up login, also known as a shell account, looks much the same as a text-based
login at a PC running Linux. Details about setting up Linux to answer the phone and provide a
login prompt via a modem are in Chapter 18. Using dial-up access has some limitations, such as
the inability to use virtual consoles. From a shell account, however, you can start programs in
the background (using the ampersand, &), run programs after logging out with the nohup
command, or use the screen command to simulate virtual terminals (an approach that works
much like using virtual consoles). For more information on different shells included with Linux,
see Chapter 15.

CHAPTER 5 First Steps with Fedora134

Logging Out
Use the exit or logout commands to exit your session. Type the command and press
Enter. You are then returned to the login prompt. If you use virtual consoles, remember to
exit each console before leaving your PC. (Otherwise, someone could easily sit down and
use your account.)

Logging In and Out from a Remote Computer
Although you can happily log in on your computer, an act known as a local log in, you
can also log in to your computer via a network connection from a remote computer.
Linux-based operating systems provide a number of remote access commands you can use
to log in to other computers on your local area network (LAN), wide area network (WAN),
or the Internet. Note that not only must you have an account on the remote computer,
but the remote computer must be configured to support remote logins—otherwise, you
won’t be able to log in.

NOTE

See Chapter 18 to see how to set up network interfaces with Linux to support remote network
logins and Chapter 15 to see how to start remote access services (such as sshd).

The best and most secure way (barring future exploits) to log in to a remote Linux
computer is to use the ssh or Secure Shell client. Your login and session are encrypted
while you work on the remote computer. The ssh client features many different
command-line options, but can be simply used with the name of the remote computer,
like this:

[andrew@laptop ~]$ ssh desktop

The authenticity of host ‘desktop (192.168.2.3)’ can’t be established.

RSA key fingerprint is 91:7d:74:4b:1c:a1:96:06:ba:2f:d4:cf:78:44:ff:d7.

Are you sure you want to continue connecting (yes/no)? yes

The first time you connect with a remote computer using ssh, Linux displays the remote
computer’s encrypted identity key and asks you to verify the connection. After you type
yes and press Enter, you are warned that the remote computer’s identity (key) has been
entered in a file named known_hosts under the .ssh directory in your home directory.
You are also prompted to enter your password:

Warning: Permanently added ‘desktop,192.168.2.3’ (RSA) \

to the list of known hosts.

andrew@’desktop’s password:

/usr/X11R6/bin/xauth: creating new authority file /home/winky/.Xauthority

[andrew@desktop andrew]$

Logging In to and Working with Linux 135

5

After entering your password, you can then work on the remote computer. Again, every-
thing you enter on the keyboard in communication with the remote computer is
encrypted. Use the exit or logout commands to exit your session and return to the shell
on your computer.

CAUTION

The next remote access command, telnet, is shown as an example because it is included with
most Linux distributions, but you shouldn’t use it: telnet transmits your username and pass-
word in clear text across the network, posing a huge security risk for your system. Also, note that
this service must be explicitly turned on and allowed on the remote computer (by editing the
file named telnet under the /etc/xinetd.d directory and then restarting xinetd; see the
section “Starting and Stopping Services Manually” in Chapter 15 for more information on start-
ing or restarting a system service).

The telnet command can be used, along with the name of a remote host or Internet
Protocol (IP) address, to log in to a remote computer. For example, to log in to the host
named desktop from the host named laptop, you would enter the following:

[andrew@laptop andrew]$ telnet desktop

After you press Enter, you see some information presented by the remote computer, and
you are then prompted for your username on the remote system:

Trying 192.168.2.70...

Connected to desktop.andbhudson.co.uk (192.168.2.73).

Escape character is ‘^]’.

Linux 2.6.10-1.741_FC3 (desktop.andbhudson.co.uk) (15:43 on Friday, 4 February

2005)

login: andrew

After you type your username (andrew in this example), press Enter, and you are
prompted for your password on the remote system:

Password:

Last login: Fri Feb 4 15:42:26 from 192.168.2.2

[andrew@desktop andrew]$

After you type your password and press Enter (your password is not echoed back), you are
informed of the last time you logged in, and you can then work on the remote computer.
Use the exit or logout command to exit your session and return to the shell on your
computer.

Although it is possible to use telnet to log in to a remote computer over a wired and
wireless network, such use is not recommended, especially via the Internet. When you
type your username, press Enter, and type your password, your username and password

CHAPTER 5 First Steps with Fedora136

are transmitted without encryption over the network. Transmitting usernames and pass-
words over a network without encryption is a bad idea for obvious reasons. However, if
you have a physically secure internal network not connected to the Internet, have firewall
policies in place, and don’t use wireless networking, there is nothing wrong with using
telnet. In fact, the encryption overhead of using ssh can reduce network transmission
rates in some cases.

NOTE

It is possible to use telnet securely over an encrypted Virtual Private Network (VPN), but that is
beyond the scope of this chapter and book. Besides, why bother when you can use SSH?

Changing Your User Information
Linux users are assigned a name, known as a username, by the root operator. One method
of assigning usernames is to use one’s first initial and last name in lowercase; for example,
Bernice Hudson would have a username of bhudson. Each user must also have a password,
which is used with the username either at a graphical or text-based login.

NOTE

Older versions of Linux operating systems limited the length of usernames to 8 characters.
The current version of Fedora limits usernames to 32 characters. Good passwords should be a
minimum of 8 characters long and contain uppercase and lowercase letters, along with
numbers. Random passwords for users can be generated using the mkpasswd command (which
is included with the expect software package). For example, to generate a 10-character pass-
word automatically with three numbers and three digits, use mkpasswd -l 10 -d 3 -C 3.
Good passwords are not birthdays, anniversaries, your pet’s name, the name of your significant
other, or the model of your first car!

You cannot change your username, but you can change your user information, such as
address, phone, and so on. You make these changes using the chfn or change finger infor-
mation command. This command modifies the contents of your entry in the system pass-
word file /etc/passwd, which is used by the finger command to display information
about a system’s user. For example, type chfn at the command line and press Enter:

$ chfn

Changing finger information for bhudson.

Password:

Name []: Bernice Hudson

Office []: Suite 56 N. Centennial Blvd.

Office Phone []: 919 555-1212

Home Phone []: 919 555-1213

Finger information changed.

Changing Your User Information 137

5

You are led through a series of prompts to enter new or updated information. Note that
the chfn command does not let you use any commas when entering information. You
can verify this information in a couple ways, for example, by looking at the contents of
/etc/passwd:

$ grep bhdudson /etc/passwd

bhudson:x:501:501:Bernice Hudson,Suite 56 N. Centennial Blvd.,\

919 555-1212,919 555-1213:/home/bhudson:/bin/bash

You also can verify the updated user information by using the finger command:

$ finger bhudson

Login: bhudson Name: Bernice Hudson

Directory: /home/bhudson Shell: /bin/bash

Office: Suite 56 N. Centennial Blvd. Office Phone: 919 555-1212

Home Phone: 919 555-1213

Never logged in.

No mail.

No Plan.

Reading Documentation
Although you learn the basics of using Fedora in this book, you need time and practice to
master and troubleshoot more complex aspects of the Linux operating system and your
distribution. As with any operating system, you can expect to encounter some problems
or perplexing questions as you continue to work with Linux. The first place to turn for
help with these issues is the documentation included with your system; if you cannot
find the information you need there, check Fedora’s website.

NOTE

Checking Fedora’s website for security updates and bug fixes is a good idea. Browse to http://
fedora.redhat.com/download/. Alternatively, you can always do a quick yum update to make sure
that your system has the most up-to-date software available.

Linux, like UNIX, is a self-documenting system, with man pages accessible through the
man command. Linux offers many other helpful commands for accessing its documenta-
tion. You can use the apropos command—for example, with a keyword such as
partition—to find commands related to partitioning, like this:

$ apropos partition

diskdumpfmt (8) - format a dump device or a partition

fdisk (8) - Partition table manipulator for Linux

GNU Parted [parted] (8) - a partition manipulation program

mpartition (1) - partition an MSDOS hard disk

MPI_Cart_sub (3) - Partitions a communicator into subgroups which form

lower-dimensional cartesian subgrids

CHAPTER 5 First Steps with Fedora138

http://fedora.redhat.com/download/
http://fedora.redhat.com/download/

partprobe (8) - inform the OS of partition table changes

pvcreate (8) - initialize a disk or partition for use by LVM

sfdisk (8) - Partition table manipulator for Linux

To find a command and its documentation, you can use the whereis command. For
example, if you are looking for the fdisk command, you can do this:

$ whereis fdisk

fdisk: /sbin/fdisk /usr/share/man/man8/fdisk.8.gz

Using Man Pages
To learn more about a command or program, use the man command, followed by the
name of the command. Man pages for Linux and X Window commands are within the
/usr/share/man, /usr/local/share/man, and /usr/X11R6/man directories; so, for example,
to read the rm command’s man page, use the man command like this:

$ man rm

After you press Enter, the less command (a Linux command known as a pager) displays
the man page. The less command is a text browser you can use to scroll forward and
backward (even sideways) through the document to learn more about the command.
Type the letter h to get help, use the forward slash to enter a search string, or press q to
quit.

NOTE

Although nearly all the hundreds of GNU commands included with Linux each have a man
page, detailed information about using a GNU command must be read using the info
command. For example, to learn even more about bash (which has a rather extensive manual
page), use the info command like this:

$ info bash

Press the n and p keys to navigate through the document, or scroll down to a menu item on the
screen and press Enter to read about a specific feature. Press q to quit reading.

Finding and Reading Software Package Documentation
Documentation for various software packages is included in the /usr/share/doc
directory; that directory is stored in another directory that’s labeled with the associated
package’s name. You can find other Linux documentation, known as HOWTOs and
Frequently Asked Questions (FAQs), online by browsing to http://www.tldp.org/. HOWTO
documents contain specific information related to a particular subject, such as printing,
setting up a network, programming a serial port, or using a CD-ROM drive with Linux.
These documents can be read by using your web browser. Of course, one of the best
online tools you can use is a good search engine, such as Google.

Reading Documentation 139

5

http://www.tldp.org/

You can read document formats such as text with less or another pager or text reader.
For example, to read a copy of the GNU General Public License (GPL), a file named
GPL_V2 under the /usr/share/apps/LICENSES directory, use less like this:

$ less /usr/share/apps/LICENSES/GPL_V2

After you press Enter, you can scroll back and forth through the file. Press q to quit
reading. If a document is in compressed form (ending in .gz), use the zless pager, which
decompresses a document first:

$ zless /usr/share/man/es/man1/README.gz

Most users read document formats such as HTML using a web browser in a graphical
desktop. Fedora includes at least two versatile text-based web browsers, however, accessed
with the lynx and links commands. To browse an HTML file on your system without
using X11, use either command, along with the path to the file. For example, to read an
HTML version of the GNU GPL with links, use the command like this:

$ links /usr/share/doc/HTML/en/common/gpl-license.html

After you press Enter, use your Up and Down cursor keys to scroll back and forth through
the file. Press q, Enter to quit reading. If you have configured a mouse, click the left
button near the top of the screen, and links displays its menus.

Using the Shell
The shell is an interactive command prompt with many different features:

• Input and output redirection

• Background processing

• Job control

• History editing

• Built-in help

• Command-line completion

• Command-line editing

The shell interprets keyboard commands and is generally used to launch other commands
or programs using the shell’s interpreter language known as shell scripts.

NOTE

Shell scripts are discussed in Chapter 15.

CHAPTER 5 First Steps with Fedora140

The shell you use is assigned by the last field in your entry in the system’s /etc/passwd
file. This example, for a user named andrew, shows that the login shell is bash:

andrew:x:502:502::/home/andrew:/bin/bash

The default shell for most Linux distributions, including Fedora, is the GNU bash or
Bourne Again SHell, but other shells, such as tcsh, ksh, and zsh are available for use. You
can use a different shell by typing its name at the command line. Alternatively, the root
operator might assign a user to another shell when creating that user account (see
“Working As Root,” later in this chapter).

CAUTION

If you are interested in trying a different shell with Linux, you can change your login shell using
the chsh command, but make sure that the shell is actually installed on your system. For
example, to change your default shell to tcsh, first use the which command to verify that it is
installed:

$ which tcsh

/bin/tcsh

This example shows that the tcsh shell is installed under the /bin directory. The tcsh shell
should also be listed in your system’s list of approved shells, /etc/shells. Check to make sure
that it is listed:

$ grep tcsh /etc/shells

/bin/tcsh

You can also use the chsh command’s -l option to list valid system shells in order to verify that
using tcsh is allowed. Because tcsh is installed and listed in /etc/shells, you can then change
your shell using the chsh command:

$ chsh

Changing shell for andrew.

Password:

New shell [/bin/bash]: /bin/ksh

chsh: “/bin/ksh” does not exist.

Note that the chsh command reports an error if you enter the name of a shell not installed on
your system.

$ chsh -s /bin/tcsh

Changing shell for andrew.

Password:

Shell changed.

If you now take a look at your /etc/passwd entry, you will see /bin/tcsh as your default shell.
The next time you log in, you can use tcsh.

Using the Shell 141

5

Using Environment Variables
A number of in-memory variables are assigned and loaded by default when the user logs
in. These variables are known as shell environment variables, which can be used by various
commands to get information about your environment, such as the type of system you
are running, your home directory, and the shell in use. Environment variables are used by
Linux operating systems to help tailor the computing environment of your system, and
include helpful specifications and setup, such as default locations of executable files and
software libraries. If you begin writing shell scripts, you might use environment variables
in your scripts. Until then, you only need to be aware of what environment variables are
and do.

The following list includes a number of environment variables, along with descriptions of
how the shell uses them:

• PWD—To provide the name of the current working directory, used by the pwd
command (such as /home/andrew/foo)

• USER—To declare the user’s name, such as andrew

• LANG—To set language defaults, such as English

• SHELL—To declare the name and location of the current shell, such as /bin/bash

• PATH—To set the default location of executable files, such as /bin, /usr/bin, and
so on

• LD_LIBRARY_PATH—To declare the location of important software libraries (because
most, but not all, Linux commands use shared resources)

• TERM—To set the type of terminal in use, such as vt100, which can be important
when using screen-oriented programs, such as text editors

• MACHINE—To declare system type, system architecture, and so on

NOTE

Each shell can have its own feature set and language syntax, as well as a unique set of default
environment variables. See Chapter 15 for more information about using the different shells
included with Fedora.

At the command line, you can use the env or printenv commands to display these envi-
ronment variables, like so:

$ env

PWD=/home/andrew

HOSTNAME=laptop.andbhudson.co.uk

USER=andrew

MACHTYPE=i386-redhat-linux-gnu

MAIL=/var/spool/mail/andrew

CHAPTER 5 First Steps with Fedora142

BASH_ENV=/home/andrew/.bashrc

LANG=en_GB

DISPLAY=0:0

LOGNAME=andrew

SHLVL=1

PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin: \

/usr/X11R6/bin:/home/andrew/bin

SHELL=/bin/bash

HOSTTYPE=i386

OSTYPE=linux-gnu

HISTSIZE=1000

TERM=xterm

HOME=/home/andrew

This abbreviated list shows a few common variables. These variables are set by configura-
tion or resource files contained in the /etc, /etc/skel, or user /home directory. You can
find default settings for bash, for example, in /etc/profile, /etc/bashrc, .bashrc, or
.bash_profile files installed in your home directory. Read the man page for bash for
details about using these configuration files.

One of the most important environment variables is $PATH, which defines the location of
executable files. For example: If, as a regular user, you try to use a command that is not
located in your $PATH (such as the ifconfig command), you will see something like this:

$ ifconfig

-bash: ifconfig: command not found

However, you might know that ifconfig is definitely installed on your system, and you
can verify this using the whereis command like so:

$ whereis ifconfig

ifconfig: /sbin/ifconfig /usr/share/man/man8/ifconfig.8.gz

You can also run the command by typing its full pathname, or complete directory specifi-
cation like this:

$ /sbin/ifconfig

As you can see in this example, the ifconfig command is indeed installed. What
happened is that by default, the /sbin directory is not in your $PATH. One of the reasons
for this is that commands under the /sbin directory are normally intended to be run only
by root. You can add /sbin to your $PATH by editing the file .bash_profile in your home
directory (if you use the bash shell by default, like most Linux users). Look for the follow-
ing line:

PATH=$PATH:$HOME/bin

Using the Shell 143

5

You can then edit this file, perhaps using the vi editor (discussed in this chapter), to add
the /sbin directory like so:

PATH=$PATH:/sbin:$HOME/bin

Save the file. The next time you log in, the /sbin directory is in your $PATH. One way to
use this change right away is to read in the new settings in .bash_profile by using the
bash shell’s source command like so:

$ source .bash_profile

You can now run ifconfig without the need to explicitly type its full pathname.

Some Linux commands also use environment variables, for example, to acquire configura-
tion information (such as a communications program looking for a variable such as
BAUD_RATE, which might denote a default modem speed).

To experiment with the environment variables, you can modify the PS1 variable to
manipulate the appearance of your shell prompt. If you are working with bash, you can
use its built-in export command to change the shell prompt. For example, if your default
shell prompt looks like

[andrew@laptop ~]$

You can change its appearance by using the PS1 variable like this:

$ PS1=’$OSTYPE r00lz ->’

After you press Enter, you see

linux-gnu r00lz ->

NOTE

See the bash man page for other variables you can use for prompt settings.

Navigating and Searching with the Shell
Use the cd command (built into the shell) to navigate through the Fedora file system.
This command is generally used with a specific directory location, or pathname like this:

$ cd /usr/X11R6/lib/X11/doc

Under Fedora, the cd command can also be used with several shortcuts. For example, to
quickly move up to the parent (higher-level) directory, use the cd command like this:

$ cd ..

CHAPTER 5 First Steps with Fedora144

To return to one’s home directory from anywhere in the Linux file system, use the cd
command like this:

$ cd

You can also use the $HOME shell environment variable to accomplish the same thing.
Type this command and press Enter to return to your home directory:

$ cd $HOME

You can accomplish the same thing by using the tilde (~) like this:

$ cd ~

Linux also includes a number of GNU commands you can use to search the file system.
These include

• whereis command—Returns the location of the command and its man page.

• whatis command—Returns a one-line synopsis from the command’s man page.

• locate file—Returns locations of all matching file(s); an extremely fast method of
searching your system because locate searches a database containing an index of all
files on your system. However, this database (about 4MB in size and named
slocate.db under the /var/lib/slocate directory) is built daily at 4:20 a.m. by
default, and does not contain pathnames to files created during the workday or in
the evening. If you do not keep your machine on constantly, you can run the
updatedb command as the super-user to manually start the building of the database.

• apropos subject—Returns a list of commands related to subject.

Managing Files with the Shell
Managing files in your home directory involves using one or more easily remembered
commands. If you have any familiarity with the now-ancient DOS, you recognize some of
these commands (although their names are different from those you remember). Basic file
management operations include paging (reading), moving, renaming, copying, searching,
and deleting files and directories. These commands include

• cat filename—Outputs contents of filename to display

• less filename—Allows scrolling while reading contents of filename

• mv file1 file2—Renames file1 to file2

• mv file dir—Moves file to specified directory

• cp file1 file2—Copies file1 and creates file2

• rm file—Deletes file

Using the Shell 145

5

• rmdir dir—Deletes directory (if empty)

• grep string file(s)—Searches through files(s) and displays lines containing
matching string

Note that each of these commands can be used with pattern-matching strings known as
wildcards or expressions. For example, to delete all files in the current directory beginning
with the letters abc, you can use an expression beginning with the first three letters of the
desired filenames. An asterisk (*) is then appended to match all these files. Use a
command line with the rm command like this:

$ rm abc*

Linux shells recognize many types of filenaming wildcards, but this is different from the
capabilities of Linux commands supporting the use of more complex expressions. You
learn more about using wildcards in Chapter 15.

NOTE

Learn more about using expressions by reading the ex or grep man pages.

Compressing and Decompressing Files Through the Shell
Another file management operation is compression and decompression of files, or the
creation, listing, and expansion of file and directory archives. Linux distributions usually
include several compression utilities that you can use to create, compress, expand, or list
the contents of compressed files and archives. These commands include

• bunzip2—Expands a compressed file

• bzip2—Compresses or expands files and directories

• gunzip—Expands a compressed file

• gzip—Compresses or expands files and directories

• shar file—Creates a shell archive of files

• tar—Creates, expands, or lists the contents of compressed or uncompressed file or
directory archives known as tape archives or tarballs

• unshar—Reassembles files from the shell archive

• uudecode file.uu—Decodes an uuencoded text file to its binary form

• uuencode file—Encodes a binary file to text file format for transmission via email

CHAPTER 5 First Steps with Fedora146

NOTE

The rpm command can also be used to manage archived data, but is generally used for software
development and management. See Chapter 8 for more information on using RPM.

Most of these commands are easy to use. The tar command, however, has a somewhat
complex (although capable) set of command-line options and syntax. Even so, you can
quickly learn to use tar by remembering a few simple invocations on the command line.
For example, to create a compressed archive of a directory, use tar’s czf options like this:

$ tar czf dirname.tgz dirname

The result is a compressed archive (a file ending in .tgz) of the specified directory (and all
files and directories under it). Add the letter v to the preceding options to view the list of
files added during compression and archiving. To list the contents of the compressed
archive, substitute the c option with the letter t, like this:

$ tar tzf archive

Of course, if many files are in the archive, a better invocation (to easily read or scroll
through the output) is

$ tar tzf archive | less

To expand the contents of a compressed archive, use tar’s zxf options, like so:

$ tar zxf archive

tar decompresses the specified archive and extracts the contents in the current directory.

Using the Text Editors
Linux distributions include a number of applications known as text editors that you can
use to create text files or edit system configuration files. Text editors are similar to word
processing programs, but generally have fewer features, work only with text files, and
might or might not support spell checking or formatting. The text editors range in
features and ease of use, but are found on nearly every Linux distribution. The number of
editors installed on your system depends on what software packages you’ve installed on
the system.

Some of the console-based text editors are

• ed—A simple line editor without cursor support

• emacs—The comprehensive GNU emacs editing environment, which is much more
than an editor; see the section “Working with emacs” later in this chapter

• jed—A programmer’s text editor with features such as colorized highlighting of text
to help syntax checking and editing of programs

Using the Text Editors 147

5

• joe—Joe’s Own Editor, a text editor, which can be used to emulate other editors

• mcedit—A DOS-like text editor for UNIX-like systems

• nano—A simple text editor similar to the pico text editor included with the pine
email program

• sed—A stream editor usually used in shell scripts (discussed in Chapter 15)

• vim—An improved, compatible version of the vi text editor (which we call vi in the
rest of this chapter because it has a symbolic link named vi and a symbolically
linked manual page)

Note that not all text editors described here are screen-oriented; editors such as ed and sed

work on a line-by-line basis, or a stream of text, and do not support movement of a
cursor on the screen. Some of the text editors for the X Window System, which provide
a graphical interface, such as menu bars, buttons, scrollbars and so on, are

• gedit—A GUI text editor for GNOME

• kate—A simple KDE text editor

• kedit—A simple KDE text editor

• nedit—A programming text editor

• kwrite—A simple KDE text editor

A good reason to learn how to use a text-based editor, such as vi, is that system mainte-
nance and recovery operations generally never take place during X Window sessions
(negating the use of a GUI editor). Many larger, more complex and capable editors do not
work when Linux is booted to its single-user or maintenance mode. See Chapter 15 for
more information about how Fedora boots. If anything does go wrong with your system,
you probably won’t be able to get into the X Window system, making knowledge and
experience of using both the command line and text editors such as vi important. Make a
point of opening some of the editors and playing around with them; you never know,
you might just thank me someday!

Another reason to learn how to use a text-based editor under the Linux console mode is
so that you can edit text files through dial-up or network shell sessions because many
servers do not host graphical desktops.

Working with vi
The editor found on nearly every UNIX and Linux system is, without a doubt, the vi
editor, originally written by Bill Joy. This simple-to-use but incredibly capable editor
features a somewhat cryptic command set, but you can put it to use with only a few
commands. Although more experienced UNIX and Linux users continue to use vi exten-
sively during computing sessions, many newer users might prefer learning an easier-to-use
text editor such as pico or GNU nano. Die-hard GNU fans and programmers definitely use
emacs.

CHAPTER 5 First Steps with Fedora148

That said, learning how to use vi is a good idea. You might need to edit files on a Linux
system with a minimal install, or a remote server without a more extensive offering of
installed text editors. Chances are better than good that vi will be available.

You can start an editing session by using the vi command like this:

$ vi file.txt

The vi command works by using an insert, or editing mode, and a viewing (or command)
mode.

When you first start editing, you are in the viewing mode. You can use your cursor or
other navigation keys (as shown later) to scroll through the text. To start editing, press
the i key to insert text or the a key to append text. When finished, use the Esc key to
toggle out of the insert or append modes and into the viewing (or command) mode. To
enter a command, type a colon (:), followed by the command, such as w to write the file,
and press Enter.

Although vi supports many complex editing operations and numerous commands, you
can accomplish work by using a few basic commands. These basic vi commands are

• Cursor movement—h, j, k, l (left, down, up, and right)

• Delete character—x

• Delete line—dd

• Mode toggle—Esc, Insert (or i)

• Quit—:q

• Quit without saving—:q!

• Run a shell command—:sh (use ‘exit’ to return)

• Save file—:w

• Text search—/

NOTE

Use the vimtutor command to quickly learn how to use vi’s keyboard commands. The tutorial
takes less than 30 minutes, and it teaches new users how to start or stop the editor, navigate
files, insert and delete text and perform search, replace, and insert operations.

Working with emacs
Richard M. Stallman’s GNU emacs editor, like vi, is included with Linux and nearly every
other Linux distribution. Unlike other UNIX and Linux text editors, emacs is much more
than a simple text editor—it is an editing environment and can be used to compile and
build programs, act as an electronic diary, appointment book and calendar, compose and

Using the Text Editors 149

5

send electronic mail, read Usenet news, and even play games. The reason for this capabil-
ity is that emacs contains a built-in language interpreter that uses the Elisp (emacs LISP)
programming language.

The GNU version of this editor requires more than 30MB of hard drive space. However,
there are versions with less resource requirements, and at least one other text editor
included with Linux, named joe, can be used as an emacs clone (albeit with fewer
features).

You can start an emacs editing session like this:

$ emacs file.txt

TIP

If you start emacs when using X11, the editor launches in its own floating window. To force
emacs to display inside a terminal window instead of its own window (which can be useful if the
window is a login at a remote computer), use the -nw command-line option like this: emacs -nw
file.txt.

The emacs editor uses an extensive set of keystroke and named commands, but you can
work with it using a basic command subset. Many of these basic commands require you
to hold down the Ctrl key, or to first press a meta key (generally mapped to the Alt key).
The basic commands are listed in Table 5.2.

TABLE 5.2 emacs Editing Commands

Action Command

Abort Ctrl+g

Cursor left Ctrl+b

Cursor down Ctrl+n

Cursor right Ctrl+f

Cursor up Ctrl+p

Delete character Ctrl+d

Delete line Ctrl+k

Go to start of line Ctrl+a

Go to end of line Ctrl+e

Help Ctrl+h

Quit Ctrl+x, Ctrl+c

Save As Ctrl+x, Ctrl+w

Save file Ctrl+x, Ctrl+s

Search backward Ctrl+r

Search forward Ctrl+s

Start tutorial Ctrl+h, t

Undo Ctrl+x, u

CHAPTER 5 First Steps with Fedora150

TIP

One of the best reasons to learn how to use emacs is that you can use nearly all the same
keystrokes to edit commands on the bash shell command line. Another reason is that like vi,
emacs is universally available on nearly every UNIX and Linux system, including Apple’s Mac
OS X.

Working with Permissions
Under Linux (and UNIX), everything in the file system, including directories and devices,
is a file. And every file on your system has an accompanying set of permissions based on
ownership. These permissions form the basis for security under Linux, and designate each
file’s read, write, and execute permission for you, members of your group, and all others
on the system.

You can examine the default permissions for a file you create by using the umask
command, or as a practical example, by using the touch command and then the ls
command’s long-format listing like this:

$ touch file

$ ls -l file

-rw-rw-r-- 1 andrew andrew 0 Nov 11 12:28 file

In this example, the touch command is used to quickly create a file. The ls command
then reports on the file, displaying information (from left to right) in the first field of
output (such as -rw-rw-r-- previously):

• The first character of the field is the type of file created—Common indicators of
the type of file are a leading letter in the output. A blank (which is represented by a
dash in the preceding example) designates a plain file, d designates a directory, c
designates a character device (such as /dev/ttyS0), and b is used for a block device
(such as /dev/hda).

• Permissions—Read, write, and execute permissions for the owner, group, and all
others on the system. (You learn more about these permissions later in this section.)

• Number of links to the file—The number one (1) designates that there is only one
file, whereas any other number indicates that there might be one or more hard-
linked files. Links are created with the ln command. A hard-linked file is an exact
copy of the file, but it might be located elsewhere on the system. Symbolic links of
directories can also be created, but only the root operator can create a hard link of a
directory.

• The owner—The account that created or owns the file; you can change this desig-
nation by using the chown command.

• The group—The group of users allowed to access the file; you can change this desig-
nation by using the chgrp command.

Working with Permissions 151

5

• File size and creation/modification date—The last two elements indicate the size
of the file in bytes and the date the file was created or last modified.

Assigning Permissions
Under Linux, permissions are grouped by owner, group, and others, with read, write, and
execute permission assigned to each, like so:

Owner Group Others

rwx rwx rxw

Permissions can be indicated by mnemonic or octal characters. Mnemonic characters are

• r indicates permission for an owner, member of the owner’s group, or others to
open and read the file.

• w indicates permission for an owner, member of the owner’s group, or others to
open and write to the file.

• x indicates permission for an owner, member of the owner’s group, or others to
execute the file (or read a directory).

In the previous example for the file named file, the owner, andrew, has read and write
permission, as does any member of the group named andrew. All other users may only
read the file. Also note that default permissions for files created by the root operator will
be different! This is because of umask settings assigned by the shell.

Many users prefer to represent permissions using numeric codes, based on octal (base 8)
values. Here’s what these values mean:

• 4 indicates read permission.

• 2 indicates write permission.

• 1 indicates execute permission.

In octal notation, the previous example file has a permission setting of 664 (read+write or
4+2, read+write or 4+2, read-only or 4). Although you can use either form of permissions
notation, octal is easy to use quickly after you visualize and understand how permissions
are numbered.

NOTE

In Linux, you can create groups to assign a number of users access to common directories and
files, based on permissions. You might assign everyone in accounting to a group named
accounting, for example, and allow that group access to accounts payable files while disallow-
ing access by other departments. Defined groups are maintained by the root operator, but you
can use the newgrp command to temporarily join other groups in order to access files (as long as
the root operator has added you to the other groups). You can also allow or deny access to your
files by other groups by modifying the group permissions of your files.

CHAPTER 5 First Steps with Fedora152

Directory Permissions
Directories are also files under Linux. For example, again use the ls command to show
permissions like this:

$ mkdir foo

$ ls -ld foo

drwxrwxr-x 2 andrew andrew 4096 Jan 23 12:37 foo

In this example, the mkdir command is used to create a directory. The ls command and
its -ld option is used to show the permissions and other information about the directory
(not its contents). Here you can see that the directory has permission values of 775
(read+write+execute or 4+2+1, read+write+execute or 4+2+1, and read+execute or 4+1).

This shows that the owner and group members can read and write to the directory and,
because of execute permission, also list the directory’s contents. All other users can only
list the directory contents. Note that directories require execute permission in order for
anyone to be able to view their contents.

You should also notice that the ls command’s output shows a leading d in the permis-
sions field. This letter specifies that this file is a directory; normal files have a blank field
in its place. Other files, such as those specifying a block or character device, have a differ-
ent letter (see the section “Managing Files for Character Devices, Block Devices, and
Special Devices” in Chapter 39 for more information about block devices).

For example, if you examine the device file for a Linux serial port, you will see

$ ls -l /dev/ttyS0

crw-rw---- 1 root uucp 4, 64 Jan 23 23:38 /dev/ttyS0

Here, /dev/ttyS0 is a character device (such as a serial communications port and desig-
nated by a c) owned by root and available to anyone in the uucp group. The device has
permissions of 660 (read+write, read+write, no permission).

On the other hand, if you examine the device file for an IDE hard drive, you see

$ ls -l /dev/hda

brw-rw---- 1 root disk 3, 0 Jan 23 23:37 /dev/hda

In this example, b designates a block device (a device that transfers and caches data in
blocks) with similar permissions. Other device entries you will run across on your Linux
system include symbolic links, designated by s.

You can use the chmod command to alter a file’s permissions. This command uses various
forms of command syntax, including octal or a mnemonic form (such as u, g, o, or a and
rwx, and so on) to specify a desired change. The chmod command can be used to add,
remove, or modify file or directory permissions to protect, hide, or open up access to a
file by other users (except for root, which can access any file or directory on a Linux
system).

Working with Permissions 153

5

The mnemonic forms of chmod’s options (when used with a plus character, +, to add, or a
minus sign, -, to take away) designate the following:

u—Adds or removes user (owner) read, write, or execute permission

g—Adds or removes group read, write, or execute permission

o—Adds or removes read, write, or execute permission for others not in a file’s group

a—Adds or removes read, write, or execute permission for all users

r—Adds or removes read permission

w—Adds or removes write permission

x—Adds or removes execution permission

For example, if you create a file, such as a readme.txt, the file will have default permis-
sions (set by the umask setting in /etc/bashrc) of

-rw-rw-r-- 1 andrew andrew 12 Jan 2 16:48 readme.txt

As you can see, you and members of your group can read and write the file. Anyone else
can only read the file (and only if it is outside of your home directory, which will have
read, write, and execute permission set only for you, the owner). You can remove all write
permission for anyone by using chmod, the minus sign, and aw like so:

$ chmod -aw readme.txt

$ ls -l readme.txt

-r--r--r-- 1 andrew andrew 12 Jan 2 16:48 readme.txt

Now, no one can write to the file (except you, if the file is in your home or /tmp directory
because of directory permissions). To restore read and write permission for only you as the
owner, use the plus sign and the u and rw options like so:

$ chmod u+rw readme.txt

$ ls -l readme.txt

-rw------- 1 andrew andrew 12 Jan 2 16:48 readme.txt

You can also use the octal form of the chmod command, for example, to modify a file’s
permissions so that only you, the owner, can read and write a file. Use the chmod
command and a file permission of 600, like this:

$ chmod 600 readme.txt

If you take away execution permission for a directory, files might be hidden inside and
may not be listed or accessed by anyone else (except the root operator, of course, who has
access to any file on your system). By using various combinations of permission settings,
you can quickly and easily set up a more secure environment, even as a normal user in
your home directory.

CHAPTER 5 First Steps with Fedora154

Understanding Set User ID and Set Group ID Permissions
Another type of permission is “set user ID,” known as suid, and “set group ID” (sgid)
permissions. These settings, when used in a program, enable any user running that
program to have program owner or group owner permissions for that program. These
settings enable the program to be run effectively by anyone, without requiring that each
user’s permissions be altered to include specific permissions for that program.

One commonly used program with suid permissions is the passwd command:

$ ls -l /usr/bin/passwd

-r-s--x--x 1 root root 13536 Jan 12 2000 /usr/bin/passwd

This setting allows normal users to execute the command (as root) to make changes to a
root-only accessible file, /etc/passwd.

You also can assign similar permission using the chfn command. This command allows
users to update or change finger information in /etc/passwd. You accomplish this
permission modification by using a leading 4 (or the mnemonic s) in front of the three
octal values.

NOTE

Other files that might have suid or guid permissions include at, rcp, rlogin, rsh, chage, chsh,
ssh, crontab, sudo, sendmail, ping, mount, and several UNIX-to-UNIX Copy (UUCP) utilities.
Many programs (such as games) might also have this type of permission in order to access a
sound device.

Files or programs that have suid or guid permissions can sometimes present security holes
because they bypass normal permissions. This problem is especially compounded if the
permission extends to an executable binary (a command) with an inherent security flaw
because it could lead to any system user or intruder gaining root access. In past exploits,
this typically happened when a user fed a vulnerable command with unexpected input
(such as a long pathname or option); the command would bomb out, and the user would
be presented a root prompt. Although Linux developers are constantly on the lookout for
poor programming practices, new exploits are found all the time, and can crop up unex-
pectedly, especially in newer software packages that haven’t had the benefit of peer devel-
oper review.

Savvy Linux system administrators keep the number of suid or guid files present on a
system to a minimum. The find command can be used to display all such files on your
system:

find / -type f -perm +6000 -exec ls -l {} \;

Working with Permissions 155

5

NOTE

The find command is quite helpful and can be used for many purposes, such as before or
during backup operations. See the section “Using Backup Software” in Chapter 17, “Backing Up,
Restoring, and Recovery.”

Note that the programs do not necessarily have to be removed from your system. If your
users really do not need to use the program, you can remove execute permission of the
program for anyone. You have to decide, as the root operator, whether your users are
allowed to, for example, mount and unmount CD-ROMs or other media on your system.
Although Linux-based operating systems can be set up to accommodate ease of use and
convenience, allowing programs such as mount to be suid might not be the best security
policy. Other candidates for suid permission change could include the chsh, at, or chage
commands.

Working As Root
The root, or super-user account, is a special account and user on UNIX and Linux
systems. Super-user permissions are required in part because of the restrictive file permis-
sions assigned to important system configuration files. You must have root permission to
edit these files or to access or modify certain devices (such as hard drives). When logged
in as root, you have total control over your system, which can be dangerous.

When you work in root, you have the ability to destroy a running system with a simple
invocation of the rm command like this:

rm -fr /

This command line not only deletes files and directories, but also could wipe out file
systems on other partitions and even remote computers. This alone is reason enough to
take precautions when using root access.

The only time you should run Linux as the super-user is when booting to runlevel 1, or
system maintenance mode, to configure the file system, for example, or to repair or main-
tain the system. Logging in and using Linux as the root operator isn’t a good idea because
it defeats the entire concept of file permissions.

Knowing how to run commands as root without logging in as root can help avoid serious
missteps when configuring your system. Linux comes with a command named su that
allows you to run one or more commands as root and then quickly return you to normal
user status. For example, if you would like to edit your system’s file system table (a simple
text file that describes local or remote storage devices, their type, and location), you can
use the su command like this:

$ su -c “nano -w /etc/fstab”

Password:

CHAPTER 5 First Steps with Fedora156

After you press Enter, you are prompted for a password that gives you access to root. This
extra step can also help you “think before you leap” into the command. Enter the root
password, and you are then editing /etc/fstab using the nano editor with line wrapping
disabled.

CAUTION

Before editing any important system or software service configuration file, make a backup copy.
Then make sure to launch your text editor with line wrapping disabled. If you edit a configura-
tion file without disabling line wrapping, you could insert spurious carriage returns and line
feeds into its contents, causing the configured service to fail when restarting. By convention,
nearly all configuration files are formatted for 80-character text width, but this is not always the
case. By default, the vi and emacs editors don’t use line wrap.

You can use sudo to assign specific users permission to perform specific tasks (similar to
BSD UNIX and its “wheel” group of users). The sudo command works by first examining
the file named sudoers under the /etc directory; you modify this file with the visudo
command. See the section “Granting Root Privileges on Occasion—The sudo Command”
in Chapter 14, “Managing Users,” for details on how to configure and use sudo.

Creating Users
When a Linux system administrator creates a user, an entry in /etc/passwd for the user is
created. The system also creates a directory, labeled with the user’s username, in the /home
directory. For example, if you create a user named bernice, the user’s home directory is
/home/bernice.

NOTE

In this chapter, you learn how to manage users from the command line. See Chapter 14 for
more information on user administration with Fedora using graphical administration utilities,
such as the system-config-users client.

Use the useradd command, along with a user’s name to quickly create a user:

useradd andrew

After creating the user, you must also create the user’s initial password with the passwd
command:

passwd andrew

Changing password for user andrew.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Working As Root 157

5

Enter the new password twice. If you do not create an initial password for a new user, the
user will not be able to log in.

You can view useradd’s default new user settings by using the command and its -D option
like this:

useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

These options display the default group ID, home directory, account and password policy
(active forever with no password expiration), the default shell, and the directory contain-
ing defaults for the shell.

The useradd command has many different command-line options. The command can be
used to set policies and dates for the new user’s password, assign a login shell, assign
group membership, and other aspects of a user’s account.

Deleting Users
Use the userdel command to delete users from your system. This command removes a
user’s entry in the system’s /etc/passwd file. You should also use the command’s -r
option to remove all the user’s files and directories (such as the user’s mail spool file
under /var/spool/mail):

userdel -r winky

If you do not use the -r option, you have to manually delete the user’s directory under
/home, along with the user’s /var/spool/mail queue.

Shutting Down the System
Use the shutdown command to shut down your system. The shutdown command has a
number of different command-line options (such as shutting down at a predetermined
time), but the fastest way to cleanly shut down Linux is to use the -h or halt option,
followed by the word now or the numeral zero (0), like this:

shutdown -h now

or

shutdown -h 0

CHAPTER 5 First Steps with Fedora158

To incorporate a timed shutdown and a pertinent message to all active users, use
shutdown’s time and message options, like so:

shutdown -h 18:30 “System is going down for maintenance this evening”

This example shuts down your system and provides a warning to all active users 15
minutes before the shutdown (or reboot). Shutting down a running server can be consid-
ered drastic, especially if there are active users or exchanges of important data occurring
(such as a backup in progress). One good approach is to warn users ahead of time. This
can be done by editing the system Message of the Day (MOTD) motd file, which displays a
message to users after login. To create your custom MOTD, use a text editor and change
the contents of /etc/motd. You can also make downtimes part of a regular schedule,
perhaps to coincide with security audits, software updates, or hardware maintenance.

You should shut down Fedora only for a few very specific reasons:

• You are not using the computer and want to conserve electrical power.

• You need to perform system maintenance that requires any or all system services to
be stopped.

• You want to replace integral hardware.

TIP

Do not shut down your computer if you suspect that one or more intruders has infiltrated your
system; instead, disconnect the machine from any or all networks and make a backup copy of
your hard drives. You might want to also keep the machine running to examine the contents of
memory and to examine system logs. See Chapter 18 and the section “Securing Your Network”
on how to protect and monitor a network-connected system.

Rebooting the System
You should also use the shutdown command to reboot your system. The fastest way to
cleanly reboot Linux is to use the -r option, and the word now or the numeral zero (0):

shutdown -r now

or

shutdown -r 0

Both rebooting and shutting down can both have dire consequences if performed at the
wrong time (such as during backups or critical file transfers, which arouse the ire of your
system’s users). However, Linux-based operating systems are designed to properly stop
active system services in an orderly fashion. Other commands you can use to shut down
and reboot Linux are the halt and reboot commands, but the shutdown command is
more flexible.

Working As Root 159

5

RELATED FEDORA AND LINUX COMMANDS

The following programs and built-in shell commands are commonly used when working at the
command line. These commands are organized by category to help you understand the
command’s purpose. If you need to find full information for using the command, you can find
that information under the command’s man page.

Managing users and groups—chage, chfn, chsh, edquota, gpasswd, groupadd, groupdel,

groupmod, groups, mkpasswd, newgrp, newusers, passwd, umask, useradd, userdel, usermod

Managing files and file systems—cat, cd, chattr, chmod, chown, compress, cp, dd, fdisk, find,

gzip, ln, mkdir, mksfs, mount, mv, rm, rmdir, rpm, sort, swapon, swapoff, tar, touch, umount,

uncompress, uniq, unzip, zip

Managing running programs—bg, fg, kill, killall, nice, ps, pstree, renice, top, watch

Getting information—apropos, cal, cat, cmp, date, diff, df, dir, dmesg, du, env, file, free,

grep, head, info, last, less, locate, ls, lsattr, man, more, pinfo, ps, pwd, stat, strings, tac,

tail, top, uname, uptime, vdir, vmstat, w, wc, whatis, whereis, which, who, whoami

Console text editors—ed, jed, joe, mcedit, nano, red, sed, vim

Console Internet and network commands—bing, elm, ftp, host, hostname, ifconfig, links,

lynx, mail, mutt, ncftp, netconfig, netstat, pine, ping, pump, rdate, route, scp, sftp, ssh,

tcpdump, traceroute, whois, wire-test

Reference
The migration to a new computer operating system does not have to be painful to
management and users. Providing easy-to-understand directions, some background infor-
mation, and preconfiguration of an installed system can help the transition.

This section lists some additional points of reference with background information on the
standards and commands discussed in this chapter. Browse these links to learn more
about some of the concepts discussed in this chapter and to expand your knowledge of
your new Linux community.

http://www.winntmag.com/Articles/Index.cfm?ArticleID=7420—An article by a Windows
NT user who, when experimenting with Linux, blithely confesses to rebooting the system
after not knowing how to read a text file at the Linux console.

http://standards.ieee.org/regauth/posix/—IEEE’s POSIX information page.

http://www.itworld.com/Comp/2362/lw-01-government/#sidebar—Discussion of Linux
and POSIX compliance.

http://www.pathname.com/fhs/—Home page for the Linux FHS (Linux Filesystem
Hierarchy Standard).

CHAPTER 5 First Steps with Fedora160

http://www.winntmag.com/Articles/Index.cfm?ArticleID=7420
http://standards.ieee.org/regauth/posix/
http://www.itworld.com/Comp/2362/lw-01-government/#sidebar
http://www.pathname.com/fhs/

http://www.tldp.org/—Browse the HOWTO section to find and read The Linux Keyboard
and Console HOWTO—Andries Brouwer’s somewhat dated but eminently useful guide to
using the Linux keyboard and console.

http://www.gnu.org/software/emacs/emacs.html—Home page for the FSF’s GNU emacs
editing environment; you can find additional documentation and links to the source code
for the latest version here.

http://www.vim.org/—Home page for the vim (vi clone) editor included with Linux distri-
butions. Check here for updates, bug fixes, and news about this editor.

http://www.courtesan.com/sudo/—Home page for the sudo command. Check here for the
latest updates, security features, and bug fixes.

Reference 161

5

http://www.tldp.org/
http://www.gnu.org/software/emacs/emacs.html
http://www.vim.org/
http://www.courtesan.com/sudo/

This page intentionally left blank

