Ben Forta

Sams Teach Yourself

Oracle® PL/SQL

in 10 Minutes

800 East 96th Street, Indianapolis, Indiana 46240
Contents

Introduction 1
What Is This Book? ... 1
Who Is This Book For? ... 2
Companion Website .. 3
Conventions Used in This Book... 3

1 **Understanding SQL** 5
Database Basics .. 5
What Is SQL? ... 10
Try It Yourself... 11
Summary .. 12

2 **Getting Started with Oracle and PL/SQL** 13
What Is Oracle? .. 13
Getting Set Up ... 16
Summary .. 20

3 **Working with Oracle** 21
Creating a Working Environment .. 21
Making the Connection ... 25
A Quick Introduction to Oracle SQL Developer 27
Creating and Populating the Example Tables 28
One More Look at Oracle SQL Developer 32
Summary .. 32
4 Retrieving Data .. 33

The SELECT Statement ... 33
Retrieving Individual Columns 33
Retrieving Multiple Columns 36
Retrieving All Columns .. 37
Retrieving Distinct Rows .. 38
Using Fully Qualified Table Names 40
Using Comments .. 40
Summary ... 42

5 Sorting Retrieved Data .. 43

Sorting Data .. 43
Sorting by Multiple Columns 45
Specifying Sort Direction 47
Summary ... 49

6 Filtering Data .. 51

Using the WHERE Clause 51
The WHERE Clause Operators 53
Summary ... 59

7 Advanced Data Filtering 61

Combining WHERE Clauses 61
Using the IN Operator ... 65
Using the NOT Operator ... 67
Summary ... 68
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Using Wildcard Filtering</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Using the LIKE Operator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tips for Using Wildcards</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>Searching Using Regular Expressions</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Understanding Regular Expressions</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Using Oracle PL/SQL Regular Expressions</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>Creating Calculated Fields</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Understanding Calculated Fields</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Concatenating Fields</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Performing Mathematical Calculations</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>Using Data Manipulation Functions</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Understanding Functions</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Using Functions</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>107</td>
</tr>
<tr>
<td>12</td>
<td>Summarizing Data</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Using Aggregate Functions</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Aggregates on Distinct Values</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Combining Aggregate Functions</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>119</td>
</tr>
</tbody>
</table>
13 Grouping Data .. 121
Understanding Data Grouping 121
Creating Groups ... 122
Filtering Groups .. 123
Grouping and Sorting ... 126
SELECT Clause Ordering .. 129
Summary ... 129

14 Working with Subqueries 131
Understanding Subqueries 131
Filtering by Subquery .. 131
Using Subqueries as Calculated Fields 136
Summary ... 140

15 Joining Tables ... 141
Understanding Joins .. 141
Creating a Join ... 144
Summary ... 152

16 Creating Advanced Joins 153
Using Table Aliases ... 153
Using Different Join Types 154
Using Joins with Aggregate Functions 160
Using Joins and Join Conditions 161
Summary ... 162
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Combining Queries</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Understanding Combined Queries</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Creating Combined Queries</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>169</td>
</tr>
<tr>
<td>18</td>
<td>Inserting Data</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Understanding Data Insertion</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Inserting Complete Rows</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Inserting Retrieved Data</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>178</td>
</tr>
<tr>
<td>19</td>
<td>Updating and Deleting Data</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Updating Data</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Deleting Data</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Guidelines for Updating and Deleting Data</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>184</td>
</tr>
<tr>
<td>20</td>
<td>Creating and Manipulating Tables</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Creating Tables</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Updating Tables</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Deleting Tables</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Renaming Tables</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>194</td>
</tr>
</tbody>
</table>
21 **Using Views** 195

Understanding Views .. 195
Using Views .. 197
Summary .. 204

22 **Working with Stored Procedures** 205

Understanding Stored Procedures .. 205
Why Use Stored Procedures ... 206
Using Stored Procedures ... 207
Summary .. 214

23 **Using Cursors** 215

Understanding Cursors .. 215
Working with Cursors ... 216
Summary .. 222

24 **Using Triggers** 223

Understanding Triggers .. 223
Creating Triggers ... 224
Dropping Triggers ... 225
Using Triggers ... 225
Summary .. 232

25 **Managing Transaction Processing** 233

Understanding Transaction Processing............................... 233
Controlling Transactions ... 235
Summary .. 238
Contents

26 Managing Security 239
 Understanding Access Control... 239
 Managing Users .. 240
 Summary ... 244

A The Example Tables 245
 Understanding the Sample Tables 245

B Oracle PL/SQL Datatypes 251
 String Datatypes ... 252
 Numeric Datatypes .. 253

C Oracle PL/SQL Reserved Words and Keywords 255
 Index .. 259
About the Author

Ben Forta has three decades of experience in the computer industry in product design and development, support, training, and marketing. As Adobe Inc.’s Senior Director of Education Initiatives, he spends a considerable amount of time teaching, talking, and writing about Adobe products, coding and application development, creativity, and digital literacy and provides feedback to help shape the future direction of Adobe products.

Ben is the author of more than 40 books, including the world’s best-selling title on SQL, as well as titles on topics as diverse as Regular Expressions, mobile development, and Adobe ColdFusion. More than 750,000 copies of his books are in print in English, and titles have been translated into fifteen languages. Many of these titles are used as textbooks in colleges and universities worldwide.

Education is Ben’s passion. Between writing, lecturing, and in-classroom experience, Ben has dedicated his professional and personal lives to teaching, inspiring, and sharing his love for technology and creativity. He is immensely grateful to have had the opportunity to share with millions worldwide.

Ben is also a successful entrepreneur with experience creating, building, and selling start-ups. He is a sought-after public speaker, a writer, and a blogger, and he presents on education and development topics worldwide.
It's been sixteen years since the publication of my first book on SQL, *Sams Teach Yourself SQL in 10 Minutes*. That book was met with such positive feedback that it has been updated three times, has spawned four spin-off titles (the most recent being the book you are reading right now), and has been translated more than a dozen times. In all of its various flavors and iterations, this little book has helped hundreds of thousands learn the basics of SQL. So, first and foremost, thanks to all of you who have trusted me and this book over the years; your support is both incredibly humbling and a source of great pride.

I am blessed with some very vocal and opinionated readers who regularly share ideas, comments, suggestions, and occasionally criticism. These books continue to improve directly in response to that feedback, so thanks, and please keep it coming.

Thanks to the numerous schools and colleges the world over who have made this series part of their curriculum. Seeing students use my writing as part of their studies never ceases to thrill.

And finally, thanks to my partners at Pearson with whom I’ve now published more than 40 titles, and without whose support none would have seen the light of day. In particular, thanks to Betsy Gratner for shepherding this book through the process, Paula Lowell for her editing help, and Mark Taber for once again patiently and encouragingly supporting whatever I toss his way.

Ben Forta
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

Oracle Database (or Oracle RDBMS) is so prevalent and well established that most users simple refer to it as “Oracle” (ignoring the fact that Oracle, the company, produces other software, and even hardware). Oracle Database (I’ll do what most do and just call it “Oracle” to simplify things) has been around since the 1970s, making it one of the earliest database management systems. Oracle is one of the most used database management systems (DBMS) in the world. In fact, most surveys rank it as #1 in database use and popularity worldwide, especially among corporate users, and over the years it has proven itself to be a solid, reliable, fast, and trusted solution to all sorts of data storage needs.

That’s the good news. The not-so-good news is that getting started with Oracle can be tricky, especially when compared to some of the alternative DBMSs. Oracle’s power, capabilities, security, and more are an important part of why it is so trusted. But that makes installation, configuration, and even the tooling a little more complex, too. On top of that, Oracle’s implementation of the SQL language, called PL/SQL, tends to differ subtly from other SQL implementations, and this can make using Oracle just a bit trickier.

What Is This Book?

This book is based on my best-selling Sams Teach Yourself SQL in 10 Minutes. That book has become one of the most used SQL tutorials in the world, with an emphasis on teaching what you really need to know—methodically, systematically, and simply. However, as popular and as successful as that book is, it does have some limitations:

- In covering all the major DBMSs, coverage of DBMS-specific features and functionality had to be kept to a minimum.
- To simplify the SQL taught, the lowest common denominator had to be found—SQL statements that would (as much as possible) work with all major DBMSs. This requirement necessitated that better DBMS-specific solutions not be covered.
Introduction

- Although basic SQL tends to be rather portable between DBMSs, more advanced SQL most definitely is not. As such, that book could not cover advanced topics, such as triggers, cursors, stored procedures, access control, transactions, and more, in any real detail.

And that is where this book comes in. *Sams Teach Yourself Oracle PL/SQL in 10 Minutes* builds on the proven tutorials and structure of *Sams Teach Yourself SQL in Ten Minutes*, without getting bogged down with anything but Oracle and PL/SQL. Starting with simple data retrieval and working toward more complex topics, including the use of joins, subqueries, regular expressions, full text-based searches, stored procedures, cursors, triggers, table constraints, and much more. You’ll learn what you need to know methodically, systematically, and simply—in highly focused lessons designed to make you immediately and effortlessly productive.

Who Is This Book For?

This book is for you if

- You are new to SQL.
- You are just getting started with Oracle PL/SQL and want to hit the ground running.
- You want to quickly learn how to get the most out of Oracle and PL/SQL.
- You want to learn how to use Oracle in your own application development.
- You want to be productive quickly and easily using Oracle without having to call someone for help.

It is worth noting that this book is not intended for all readers. If you are an experienced SQL user, then you might find the content in this book to be too elementary. However, if the preceding list describes you and your needs relative to Oracle, you’ll find *Sams Teach Yourself Oracle PL/SQL in 10 Minutes* to be the fastest and easiest way to get up to speed with Oracle.
Companion Website

This book has a companion website at fortas.com/books/0672328666. Visit the site to

- Access table creation and population scripts for creating the example tables used throughout this book
- Visit the online support forum
- Access online errata (if one might be required)
- Find other books that might be of interest to you

Conventions Used in This Book

This book uses different typefaces to differentiate between code and regular English, and also to help you identify important concepts.

Text that you type and text that should appear on your screen appears in monospace type. It looks like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You should replace the placeholder with the specific value it represents.

This arrow (➥) at the beginning of a line of code means that a single line of code is too long to fit on the printed page. Continue typing all the characters after the ➥ as if they were part of the preceding line.

NOTE
A Note presents interesting pieces of information related to the surrounding discussion.

TIP
A Tip offers advice or teaches an easier way to do something.
Introduction

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Caution advises you about potential problems and helps you steer clear of disaster.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>sidebars provide clear definitions of new, essential terms.</td>
</tr>
</tbody>
</table>

Input ▼

The Input icon identifies code that you can type in yourself. It usually appears by a listing.

Output ▼

The Output icon highlights the output produced by running Oracle PL/SQL code. It usually appears after a listing.

Analysis ▼

The Analysis icon alerts you to the author’s line-by-line analysis of input or output.
LESSON 4

Retrieving Data

In this lesson, you’ll learn how to use the SELECT statement to retrieve one or more columns of data from a table.

The SELECT Statement

NOTE: Sample Tables Required
From this point on, all lessons use the sample database tables. If you have yet to install these, please refer to Lesson 3, “Working with Oracle,” before proceeding.

As explained in Lesson 1, “Understanding SQL,” SQL statements are made up of plain English terms. These terms are called keywords, and every SQL statement is made up of one or more keywords. The SQL statement you’ll probably use most frequently is the SELECT statement. Its purpose is to retrieve information from one or more tables.

To use SELECT to retrieve table data, you must, at a minimum, specify two pieces of information—what you want to select, and from where you want to select it.

Retrieving Individual Columns

We’ll start with a simple SQL SELECT statement, as follows:

\[
\text{Input ▼}
\]

```
SELECT prod_name
FROM products;
```
The previous statement uses the `SELECT` statement to retrieve a single column called `prod_name` from the `products` table. The desired column name is specified right after the `SELECT` keyword, and the `FROM` keyword specifies the name of the table from which to retrieve the data. The following shows the output from this statement:

```
+----------------+
<table>
<thead>
<tr>
<th>prod_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5 ton anvil</td>
</tr>
<tr>
<td>1 ton anvil</td>
</tr>
<tr>
<td>2 ton anvil</td>
</tr>
<tr>
<td>Oil can</td>
</tr>
<tr>
<td>Fuses</td>
</tr>
<tr>
<td>Sling</td>
</tr>
<tr>
<td>TNT (1 stick)</td>
</tr>
<tr>
<td>TNT (5 sticks)</td>
</tr>
<tr>
<td>Bird seed</td>
</tr>
<tr>
<td>Carrots</td>
</tr>
<tr>
<td>Safe</td>
</tr>
<tr>
<td>Detonator</td>
</tr>
<tr>
<td>JetPack 1000</td>
</tr>
<tr>
<td>JetPack 2000</td>
</tr>
</tbody>
</table>
+----------------+
```

TIP: Type Then Execute

By now it should be obvious, but I’ll remind you one last time. Type the SQL code in the Oracle SQL Developer Worksheet screen, and then click the Run Script button to execute it. Results appear in a screen below the Worksheet. If you need more room, you can drag and resize all the screens.

Analysis ▼

The previous statement uses the `SELECT` statement to retrieve a single column called `prod_name` from the `products` table. The desired column name is specified right after the `SELECT` keyword, and the `FROM` keyword specifies the name of the table from which to retrieve the data. The following shows the output from this statement:

Output ▼

```
+----------------+
<table>
<thead>
<tr>
<th>prod_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5 ton anvil</td>
</tr>
<tr>
<td>1 ton anvil</td>
</tr>
<tr>
<td>2 ton anvil</td>
</tr>
<tr>
<td>Oil can</td>
</tr>
<tr>
<td>Fuses</td>
</tr>
<tr>
<td>Sling</td>
</tr>
<tr>
<td>TNT (1 stick)</td>
</tr>
<tr>
<td>TNT (5 sticks)</td>
</tr>
<tr>
<td>Bird seed</td>
</tr>
<tr>
<td>Carrots</td>
</tr>
<tr>
<td>Safe</td>
</tr>
<tr>
<td>Detonator</td>
</tr>
<tr>
<td>JetPack 1000</td>
</tr>
<tr>
<td>JetPack 2000</td>
</tr>
</tbody>
</table>
+----------------+
```

NOTE: Unsorted Data

If you tried this query yourself, you might have discovered that the data displayed in a different order than shown here. If this is the case, don’t worry—it is working exactly as it is supposed to. If
A simple `SELECT` statement like the one just shown returns all the rows in a table. Data is not filtered (so as to retrieve a subset of the results), nor is it sorted. We’ll discuss these topics in the next few lessons.

NOTE: Terminating Statements

Multiple SQL statements must be separated by semicolons (the `;` character). Oracle (like most DBMSs) does not require that a semicolon be specified after single statements. That said, most SQL developers get in the habit of always terminating their SQL statements with semicolons, even when they are not needed.

NOTE: SQL Statements and Case

Note that SQL statements are not case sensitive, so `SELECT` is the same as `select`, which is the same as `Select`. Many SQL developers find that using uppercase for all SQL keywords and lowercase for column and table names makes code easier to read and debug.

However, be aware that while the SQL language is not case sensitive, identifiers (the names of databases, tables, and columns) might be. As a best practice, pick a case convention, and use it consistently.

TIP: Use of White Space

All extra white space within a SQL statement is ignored when that statement is processed. You can specify SQL statements on one long line or break them up over many lines. Most SQL developers find that breaking up statements over multiple lines makes them easier to read and debug.
Retrieving Multiple Columns

To retrieve multiple columns from a table, you use the same `SELECT` statement. The only difference is that you must specify multiple column names after the `SELECT` keyword, and separate each column by a comma.

TIP: Take Care with Commas

When selecting multiple columns, be sure to specify a comma between each column name, but not after the last column name. Doing so generates an error.

The following `SELECT` statement retrieves three columns from the `products` table:

Input ▼

```
SELECT prod_id, prod_name, prod_price
FROM products;
```

Analysis ▼

Just as in the prior example, this statement uses the `SELECT` statement to retrieve data from the `products` table. In this example, three column names are specified, each separated by a comma. The output from this statement is as follows:

Output ▼

```
+---------+----------------+------------+
| prod_id | prod_name      | prod_price |
+---------+----------------+------------+
| ANV01   | .5 ton anvil   | 5.99       |
| ANV02   | 1 ton anvil    | 9.99       |
| ANV03   | 2 ton anvil    | 14.99      |
| OL1     | Oil can        | 8.99       |
| FU1     | Fuses          | 3.42       |
| SLING   | Sling          | 4.49       |
| TNT1    | TNT (1 stick)  | 2.5        |
| TNT2    | TNT (5 sticks) | 10         |
| FB      | Bird seed      | 10         |
```
FC	Carrots	2.5
SAFE	Safe	50
DTNTR	Detonator	13
JP1000	JetPack 1000	35

NOTE: Presentation of Data

SQL statements typically return raw, unformatted data. Data formatting is a presentation issue, not a retrieval issue. Therefore, presentation (for example, alignment and displaying the price values as currency amounts with the currency symbol and commas) is typically specified in the application that displays the data. Actual raw retrieved data (without application-provided formatting) is rarely displayed as is.

Retrieving All Columns

In addition to being able to specify desired columns (one or more, as shown previously), you can also use `SELECT` statements to request all columns without having to list them individually. This is done using the asterisk (*) wildcard character in lieu of actual column names, as follows:

Input ▼

```
SELECT *
FROM products;
```

Analysis ▼

When you specify a wildcard (*), all the columns in the table are returned. The columns are in the order in which the columns appear in the table definition. However, you cannot rely on this because changes to table schemas (adding and removing columns, for example) could cause ordering changes.
LESSON 4: Retrieving Data

CAUTION: Using Wildcards
As a rule, you are better off not using the * wildcard unless you really do need every column in the table. Even though use of wildcards might save you the time and effort needed to list the desired columns explicitly, retrieving unnecessary columns usually slows down the performance of your retrieval and your application.

TIP: Retrieving Unknown Columns
There is one big advantage to using wildcards. As you do not explicitly specify column names (because the asterisk retrieves every column), it is possible to retrieve columns whose names are unknown.

Retrieving Distinct Rows
As you have seen, SELECT returns all matched rows. But what if you did not want every occurrence of every value? For example, suppose you wanted the vendor ID of all vendors with products in your products table:

Input ▼

```
SELECT vend_id
FROM products;
```

Output ▼

```
+--------+
| vend_id |
+--------+
| 1001   |
| 1001   |
| 1001   |
| 1002   |
| 1002   |
| 1003   |
| 1003   |
| 1003   |
| 1003   |
```
The `SELECT` statement returned 14 rows (even though only 4 vendors are in that list) because 14 products are listed in the `products` table. So how could you retrieve a list of distinct values?

The solution is to use the `DISTINCT` keyword which, as its name implies, instructs Oracle to only return distinct values:

Input ▼

```sql
SELECT DISTINCT vend_id
FROM products;
```

Analysis ▼

`SELECT DISTINCT vend_id` tells Oracle to only return distinct (unique) `vend_id` rows, and so only 4 rows are returned, as shown in the following output. If you use it, you must place the `DISTINCT` keyword directly in front of the column names:

Output ▼

```
+---------+
| vend_id |
+---------+
|    1001 |
|    1002 |
|    1003 |
|    1005 |
+---------+
```

CAUTION: Can’t Be Partially DISTINCT

The `DISTINCT` keyword applies to all columns, not just the one it precedes. If you were to specify `SELECT DISTINCT vend_id, prod_price`, all rows would be retrieved unless both of the specified columns were distinct.
Using Fully Qualified Table Names

The SQL examples used thus far have referred to columns by just the column names. Referring to columns using fully qualified names (using both the table and column names) is also possible. Look at this example:

Input ▼

```sql
SELECT products.prod_name
FROM products;
```

This SQL statement is functionally identical to the first one used in this lesson, but here a fully qualified column name is specified.

Table names, too, may be fully qualified, as shown here:

Input ▼

```sql
SELECT products.prod_name
FROM crashcourse.products;
```

Once again, this statement is functionally identical to the one just used (assuming, of course, that the `products` table is indeed in the `crashcourse` database).

Situations exist where fully qualified names are required, as we will see in later lessons. For now, it is worth noting this syntax so you’ll know what it is if you run across it.

Using Comments

As you have seen, SQL statements are instructions that Oracle processes. But what if you wanted to include text that you do not want processed and executed? Why would you ever want to do this? Here are a few reasons:

- The SQL statements we’ve been using here are all very short and very simple. But, as your SQL statement grows (in length and complexity), you’ll want to include descriptive comments (for your own future reference or for whoever has to work on the project next). You need to embed these comments in the SQL scripts, but they are obviously not intended for Oracle
processing. (For an example of this, see the create.sql and populate.sql files you used in Lesson 3.)

- The same is true for headers at the top of a SQL file, perhaps containing the programmer contact information and a description and notes. (You also see this use case in the create.sql and populate.sql files.)

- Another important use for comments is to temporarily stop SQL code from being executed. If you were working with a long SQL statement and wanted to test just part of it, you could comment out some of the code so that Oracle saw it as comments and ignored it.

Oracle supports two forms of comment syntax. We’ll start with inline comments:

Input ▼

```
SELECT prod_name -- this is a comment
FROM products;
```

Analysis ▼

You may embed comments inline using -- (two hyphens). Anything after the -- is considered comment text, making this a good option for describing columns in a CREATE TABLE statement, for example.

Here is another form of inline comment:

Input ▼

```
-- This is a comment
SELECT prod_name
FROM products;
```

Analysis ▼

A -- at the start of a line makes the entire line a comment. You can see this format comment used in the accompanying create.sql and populate.sql scripts.
You can also create multi-line comments, and comments that stop and start anywhere within the script:

Input ▼

```sql
/* SELECT prod_name, vend_id 
FROM products; */
SELECT prod_name 
FROM products;
```

Analysis ▼

/* starts a comment, and */ ends it. Anything between /* and */ is comment text. This type of comment is often used to comment out code, as shown in this example. Here, two `SELECT` statements are defined, but the first won’t execute because it has been commented out.

TIP: Oracle SQL Developer Color Coding

You might have noticed that Oracle SQL Developer color codes your PL/SQL. SQL statements are usually displayed in blue, identifiers (like table and column names) are in black, and so on. Color coding makes it easier to read your code and to find mistakes; if you’ve mistyped a PL/SQL statement, it’ll probably appear in the wrong color. Oracle SQL Developer also color codes any comments (inline or multi-line) and displays them in a light gray. This makes it easy to locate comments and commented-out code (and can also help you find code that you no longer want commented out).

Summary

In this lesson, you learned how to use the SQL `SELECT` statement to retrieve a single table column, multiple table columns, and all table columns. You also learned about commenting and saw various ways that you can use comments. In the next lesson, you’ll learn how to sort the retrieved data.
This page intentionally left blank
Symbols

|| operator, 93–94
% (percent sign), 70
; (semicolon), 35
_ (underscore), 72–73
* (wildcard), 37

A

ABS() function, 107
access control, 239–240
access rights, setting, 242–243
passwords, 244
user accounts, 241
users, 240–241
access rights, setting, 242–243
Add_Month(), 103
advantages
of IN operator, 67
of SQL, 11
AFTER trigger, 225, 228
aggregate functions, 109–110
ALL argument, 117
AVG(), 110–111
combining, 118–119
COUNT(), 112–113
defined, 109
DISTINCT argument, 117
distinct values, 117–118
joins, 160–161
MAX(), 113–114
MIN(), 114–115
naming aliases, 119
overview, 109
SUM(), 115–116
aliases
alternative uses, 96
concatenating fields, 95–96
creating, 153
fields, concatenating, 95–96
table names, 153–154
alphabetical sort order, 47–49
ALTER TABLE, 190–193
ALTER USER, 244
anchors, regular expressions
(PL/SQL), 87–88
AND keyword, 58
AND operator, combining WHERE
clause, 61–62
Application Express, 25
applications, filtering query results,
52
ASC keyword, query results sort
order, 49
AS keyword, 95–96
auto increment, 174
AVG() function, 110–111
DISTINCT argument, 117

B

basic character matching, regular
expressions (PL/SQL), 76–79
basic syntax, stored procedures,
208–209
BEFORE triggers, 225, 228
best practices
joins, 161
primary keys, 10
BETWEEN keyword, 58
BETWEEN operator (WHERE
clause), 57
breaking up, data, 8

C

calculated fields, 91–92
concatenating fields, 92–94
column aliases, 95–96
calculated fields

- mathematical calculations, 96–98
- overview, 91–92
- subqueries, 136–139
- views, 202–203
- calculated values, totaling, 116
- calculations, testing, 98
- cartesian product, 145
- case insensitive equality comparisons, 55
- case sensitivity, 71
- query result sort order, 49
- SQL statements, 35
- character classes, matching, 84–85
- characters
 - % (percent sign) wildcard, 70–71
 - _ (underscore) wildcard, 72
- clauses, 44
- GROUP BY clause, 122–123, 126–128
- HAVING clause, 124–125
- ORDER BY clause, 45–46, 52, 126–128
- positioning, 53, 59
- SELECT clause, ordering, 129
- WHERE clause. See WHERE clause
- client-based results formatting, 92
- clients, 14
- client-server software, Oracle, 13–15
- client tools, Oracle, 15–16
- CLOSE statement, 217
- closing cursors, 217–218
- color coding, Oracle SQL Developer, 42
- column aliases
 - alternative uses, 96
 - concatenating fields, 95–96
 - columns, 7–8, 92. See also fields concepts, 7–8
 - derived columns, 96
 - fully qualified names, 145
 - GROUP BY clause, 123
 - individual columns, 111

- INSERT SELECT statements, 177
- INSERT statement and, 173
- INSERT statement, omitting columns, 175
- multiple, sorting query results by, 45–46
- NULL value columns, 187–189
- omitting, 175
- padded spaces, RTrim() function, 94–95
- primary keys, 9–10
- retrieving, 33–37
 - all columns, 37–38
- separating names in queries, 36
- sorting data
 - descending on multiple columns, 49
 - multiple columns, 45–47
- subquery result restrictions, 135
- updating multiple, 181
- values, deleting, 181
- combined queries, 163
- creating, 164–166
- duplicate rows and, 167–168
- including/eliminating duplicate rows, 167
- overview, 163
- rules, 166
- sorting results, 168–169
- combining
 - aggregate functions, 118–119
 - WHERE clause, 61
 - AND operator, 61–62
 - order of evaluation, 63–65
 - OR operator, 62–63
- commits (transaction processing), defined, 235
- COMMIT statement (transaction processing), 236–237
concatenating, 93
fields, 92–95
 aliases, 95–96
 column aliases, 95–96
 mathematical calculations, 96–98
connecting Oracle SQL Developer to Oracle servers, 25–26
constructs, programming constructs (stored procedures), 209–210
controlling transactions, 235
 COMMIT, 236–237
 ROLLBACK, 236
 SAVEPOINT, 237–238
correlated subqueries, 138
COS() function, 107
COUNT() function, 110–113
 DISTINCT argument, 118
 joins and, 160
COUNT* subquery, 136
CREATE OR REPLACE TRIGGER, 227
CREATE PROCEDURE, 208
create.sql, 30
CREATE TABLE, 185–187
 DEFAULT keyword, 189–190
CREATE TRIGGER, 224
CREATE USER statement, 241
CREATE VIEW statement, 197
cursor data, 220–222
 fetching, 218–220
cursors, 215
 closing, 217–218
 creating, 216–217
 data, fetching, 218–220
 explicit cursors, 216
 implementing, 216
 implicit cursors, 216
 opening, 217–218
 overview, 215
customers table, 247
custom workspaces, creating, 24–25
D
data
 breaking correctly (columns), 8
 breaking up, 8
cursor data, 220–222
 fetching, 218–220
deleting, 181–182
 guidelines, 183
filtering
 IN operator, 65–67
 NOT operator, 67–68
 WHERE clause, 51–53
inserting, 171
 complete rows, 172–176
 retrieved data, 176–177
retrieving
 all columns, 37–38
 distinct rows, 38–39
 individual columns, 33–35
 multiple columns, 36–37
sorting, 43–45
 by multiple columns, 45–47
 by nonselected columns, 45
 specifying sort direction, 47–49
updating, 179
 guidelines, 183
database management systems. See DBMS (Database Management System)
databases, 5–8. See also tables
 columns, 7–8
 concepts, 5–6
datatyps, 7–8
 defined, 6
 primary keys, 9–10
 rows, 8–9
 schemas, 7
database servers, 14
data grouping, 121–122
data insertion, 171
E

empty strings, 189
equality operator (WHERE clause), 53, 243
equijoins, 148
escaping, 72
ETrim() function, 95
example tables, 28–29
creating, 30–31
obtaining table scripts, 28–30
execute, 28
executing stored procedures, 209
EXP() function, 107
explicit commits, 236
explicit cursors, 216
Extract(), 103

F

FETCH, 218–220
fetching cursor data, 218–220
fields, 92. See also columns
calculated fields, 91–92
concatenating fields, 92–96
mathematical calculations, 96–98
overview, 91–92
performing mathematical calculations, 96–98
subqueries, 136–139
views, 202–203
concatenating, 92–95
aliases, 95–96
filter condition, 51
filtering
AND operator, 61–62
application level, 52
data
IN operator, 65–67
NOT operator, 67–68
WHERE clause, 51–53
by date, 104
groups, 123–126
IN operator, 65–67
multiple criteria, 61
NOT operator, 67–68
order of evaluation, 63–65
OR operator, 62–63
by subqueries, 131–135
views, unwanted data, 201–202
filters
% (percent sign) wildcard, 70–71
_ (underscore) wildcard, 72–73
foreign keys, 142
ALTER TABLE, 192
formatting
retrieved data with views, 199–200
server–based compared to client–based, 92
statements, 187
subqueries, 134
four-digit years, 104
FROM clause
creating joins, 144
subqueries, 139
FROM keyword, 34
fully qualified column names, 145
fully qualified table names, 40
functions, 99, 207
aggregate functions, 109–110
AVG() function, 110–111
combining, 118–119
COUNT() function, 112–113
distinct values, 117–118
joins, 160–161
MAX() function, 113–114
MIN() function, 114–115
SUM() function, 115–116
date and time functions, 100,
103–107
defined, 99
numeric functions, 100, 107
RTrim(), 94–95
system functions, 100
text functions, 100
text manipulation functions,
100–102
types of, 100
G
GRANT, 242–243
greater than operator (WHERE clause), 53
greater than or equal to operator (WHERE clause), 53
GROUP BY clause, 122–123,
126–128
grouping versus sorting, 126–128
grouping data, 121–122
filtering groups, 123–126
GROUP BY clause, 122–123
nested groups, 123
groups
creating, 122–123
filtering, 123–126
nested groups, 123
guidelines for updating/deleting
data, 183
H
HAVING clause, 124–125
grouping data, 124
I
implicit commit, 236
implicit cursors, 216
IN keyword, 67
inner joins, 148–149
IN operator, 65–67
INSERT, 171–175
inserting data, 171
complete rows, 172–176
retrieved data, 176–177
INSERT SELECT, 176–177
INSERT statement
columns lists, 175
completing rows, 172–174
omitting columns, 175
overview, 171
query data, 176–177
security privileges, 171
VALUES, 175
INSERT trigger, 225–228
installing Oracle, 19–20
instances
dedicated Oracle instances,
creating, 22
default system instance, 22
matching multiple instances,
regular expressions, 85–87

JOINING

JOINING multiple tables, 149–151
JOINS, 141
aggregate functions, 160–161
best practices, 161
complex joins, views, 198–199
creating, 144–145
cross joins, 148
equi joins, 148
inner joins, 148–149
left outer join, 160
natural joins, 157–158
outer joins, 158–160
performance, 150
reasons for using, 143
right outer join, 160
self joins, 154–157
-versus subqueries, 157
views, 198–199
WHERE clause, 145–148

KEYS

keys
foreign keys, 142
ALTER TABLE, 192
primary keys, 9–10, 142
keywords, 33, 255–257
AND, 62
AS, 95–96
ASC, query results sort order, 49
BETWEEN, 58
DEFAULT, table values, 189–190
DESC, 47–49
DISTINCT, 39
FROM, 34
IN, 67
NOT, 67
OR, 63

LANGUAGES

languages, SQL, 11
Last_Day(), 103
left outer join, 160
Length(), 101
less than operator (WHERE clause), 53
less than or equal to operator (WHERE clause), 53
LIKE operator, 69, 88
-searching with percent sign (%), 70
underscore (_), 72–73
LOOP statement, 222
Lower() function, 101
LTrim() function, 95, 101

MAC USERS

Mac users, Oracle, 17
matching character classes, regular expressions (PL/SQL), 84–85
matching multiple instances, regular expressions (PL/SQL), 85–87
matching one of several characters, regular expressions (PL/SQL), 80–81
matching ranges, regular expressions (PL/SQL), 82–83
matching special characters, regular expressions (PL/SQL), 83–84
mathematical calculations, performing in fields, 96–98
mathematical operators, 98
MAX() function, 110, 113–114
non–numeric data, 114
NULL values, 114
MIN() function, 110, 114–115
DISTINCT argument, 118
NULL values, 115
Months_Between(), 103
multi-event triggers, 231
multiple columns
retrieving, 36–37
sorting data, 45–47
multiple instances, matching regular
expressions, 85–87
multiple tables, joining, 149–151
multiple worksheets, 28

N

names
fully qualified column
names, 145
fully qualified table names, 40
natural joins, 157–158
navigating tables, cursors, 215
nested groups, 123
Next_Day(), 103
non–equality operator (WHERE
clause), 53, 243
NOT NULL, 189
NOT operator, 67–68
NULL, 59
NULL keyword, updating columns,
181
NULL values, 187–189
AVG() function, 110–111
compared to empty strings, 189
COUNT() function, 113
empty strings, 189
table columns, 187–189
numeric datatypes, 253–254
numeric functions, 100, 107

O

omitting columns, 175
opening cursors, 217–218
OPEN statement, 217
operators
defined, 61
grouping related, 64
HAVING clause, 124
IN operator, 65–67
LIKE operator, 69
mathematical operators, 98
NOT operator, 67–68
|| operator, 93–94
WHERE clause, 53
checking against a single
value, 54–56
checking for nonmatches, 56–57
checking for no value,
58–59
checking for range of
values, 57–58
Oracle, 13
client–server software, 13–15
client tools, 15–16
installing, 19–20
Mac users, 17
PL/SQL, 15
savepoints, 237
setting up
installing software, 19–20
obtaining software, 18–19
required software, 16–18
Oracle Database Express Edition, 18
Oracle Express Edition, creating
custom workspaces, 24–25
Oracle servers connecting to Oracle
SQL Developer, 25–26
Oracle SQL Developer, 19, 32
color coding, 42
connecting to Oracle servers,
25–26
overview, 27–28
ORDER BY clause, 45–46, 52, 126–128
- ascending/descending sort order, 47–49
- compared to GROUP BY clause, 126–128
- SELECT statement, 44
 - sorting by multiple columns, 45–46
- views, 197

ordering
- SELECT clause, 129
 - sequence number, 47
- orderitems table, 248–249
- order of evaluation, combining
 (WHERE clause), 63–65
- orders table, 248
- OR matches, regular expressions (PL/SQL), 79–80
- OR operator, combining (WHERE clause), 62–63
- outer joins, 158–160

parentheses, WHERE clause, 65
passwords, access control, 244
percent sign (%), wildcard searches, 70
performance, 151
- joins, 150
- subqueries, 136
- views, 197

performing mathematical calculations, calculated fields, 96–98
PI() function, 107
placeholders, 235–238
PL/SQL (Procedural Language/Structured Query Language), 15
- regular expressions, 76
 - anchors, 87–88
 - basic character matching, 76–79
 - matching character classes, 84–85

queries, 131
- calculated fields, 136–139
- concatenating fields, 92–96
- mathematical calculations, 96–98
- overview, 91–92
combined queries, 163
creating, 164–166
including/eliminating duplicate rows, 167
sorting results, 168–169
comparing RTrim() function, 94–95, 99–101
relational databases, sort order and, 44
relational tables, 141–143
removing views, 197
renaming tables, 193
result sets, 215
retrieved data
inserting, 176–177
reformatting with views, 199–201
retrieving data
all columns, 37–38
distinct rows, 38–39
individual columns, 33–35
multiple columns, 36–37
reusable views, 199
REVOKE statement, 243–244
RIGHT keyword (outer joins), 159
right outer join, 160
ROLLBACK command (transaction processing), 236
rollback (transaction processing)
COMMIT statement, 237
defined, 235
ROLLBACK command, 236
savepoints and, 237–238
statements, 238
rows, 8–9
cursors, 215
duplicate rows, 167
inserting complete rows, 172–176
INSERT statement, 172–174
retrieving distinct rows, 38–39
RTrim() function, 37–38
sorting results
ascending/descending order, 47–49
case sensitivity, 49
by multiple columns, 45–46
nonselected columns and, 45
subqueries, 139
table aliases, 154
views, 195
wildcards (*), 37–38
quotes, WHERE clause, 57
R
records, compared to rows, 9
referential integrity, 143
reformatting retrieved data with views, 199–201
REGEXP_INSTR(), 76
REGEXP_LIKE(), 76, 88
REGEXP_REPLACE(), 76
REGEXP_SUBSTR(), 76
regular expressions, 75
PL/SQL, 76
anchors, 87–88
basic character matching, 76–79
matching character classes, 84–85
matching multiple instances, 85–87
matching one of several characters, 80–81
matching ranges, 82–83
matching special characters, 83–84
OR matches, 79–80
retrieving data
all columns, 37–38
distinct rows, 38–39
individual columns, 33–35
multiple columns, 36–37
reusable views, 199
REVOKE statement, 243–244
RIGHT keyword (outer joins), 159
right outer join, 160
ROLLBACK command (transaction processing), 236
rollback (transaction processing)
COMMIT statement, 237
defined, 235
ROLLBACK command, 236
savepoints and, 237–238
statements, 238
rows, 8–9
cursors, 215
duplicate rows, 167
inserting complete rows, 172–176
INSERT statement, 172–174
retrieving distinct rows, 38–39
RTrim() function, 94–95, 99–101
rules
 UNION, 166
views, 197
run scripts versus run statements, 28
run statements, 28

S
sample tables, 245
customers table, 247
orderitems table, 248–249
orders table, 248
productnotes table, 249–250
products table, 247
vendors table, 246
grouping, 126–128

security
access control, 239–240
deleting user accounts, 241
passwords, 244
setting access rights,
242–243
user accounts, 241
users, 240–241
UPDATE statement, 179, 182

SELECT clause, ordering, 129
SELECT statement, 33
AS keyword, 95–96
AVG() function, 111
combined queries, 163
combining, 61
concatenating fields, 94
COUNT() function, 113
IS NULL clause, 58
ORDER BY clause, 44
retrieving
 all columns, 37–38
distinct rows, 38

SQL, 10–11, 15
 advantages of, 11
deleting/updating data, 183
overview, 10
PL/SQL, 15
SQL statements, 30, 33
case sensitivity, 35
comments, 40–42
terminating, 35
white space, 35

SQRT() function, 107

Statements
ALTER TABLE, 190
clauses, 44
COMMIT, 237
CREATE TABLE, 185–186
CREATE VIEW, 197
DELETE, 181–183
DROP TABLE, 193
formatting, 187
grouping related operators, 64
INSERT. See INSERT statement
rollbacks, 238
defined, 235
SELECT. See SELECT statement
stored procedures
disadvantages of, 207
overview, 205–206
usefulness of, 206
UPDATE, 179–183
stored procedures, 205–208
basic syntax, 208–209
building intelligent stored procedures, 210–213
creating, 208
disadvantages of, 207
dropping, 213
executing, 209
overview, 205–206
programming constructs, 209–210
reasons for using, 206–207
usefulness of, 206

Subqueries, 131
as calculated fields, 136–139
building queries, 139
correlated subqueries, 138
filtering by, 131–135
FROM clause, 139
maximum amount of, 135
SELECT statements, 133–134
self joins and, 155–157
UPDATE statement, 181
WHERE clause, 135

SUM() function, 110, 115–116
multiple columns, 116
NULL values, 116
syntax, stored procedures, 208–209
Sysdate(), 103
SYS logins, 240
system functions, 100
SYSTEM login, 240

T

Table aliases, 153–154
Table rights, 243
Tables, 6–7
calculated fields
concatenating fields, 92–96
mathematical calculations, 96–98
overview, 91–92
Cartesian Product, 145
concepts, 6–7
creating, 144, 185–187
CREATE TABLE, 186
default values, 189–190
NULL values, 187–189
overview, 185
customers table, 247
default values, 189–190
deleting, 193
example tables, 28–29
creating, 30–31
OBTAINING Table Scripts, 28–30
populating, 31–32
transactions
 controlling, 235
 COMMIT, 236–237
 ROLLBACK, 236
 SAVEPOINT, 237–238
defined, 235
triggers, 223–224
 AFTER trigger, 228
 BEFORE triggers, 228
creating, 224–225
 DELETE triggers, 228–230
dropping, 225
 INSERT trigger, 225–228
 multi-event triggers, 231
 overview, 232
 UPDATE triggers, 230–231
Trim() function, 95
trimming padded spaces, 94–95

U
underscore (_), 72–73
UNION
 creating combined queries, 164–166
duplicate rows, 167
rules for, 166
sorting combined query results, 168–169
 versus WHERE clause, 168
unions, 163.
 See also combined queries
unknown, 59
unsorted data, query results, 34
UPDATE, 179–181
guidelines, 183
 security privileges, 179, 182
subqueries, 181
UPDATE triggers, 230–231
updating
data, 179
guidelines, 183
table data, 179–181
 deleting data, 181–182
writing stored procedures

271

tables, 190–191
 primary keys, 191–192
views, 198, 203–204
Upper() function, 101
user accounts, 241
users, access control, 240–241

V
values
 concatenation, 93
 trimming padded space, 95
VALUES, 175
vendors table, 246
views, 195–196
 calculated fields, 202–203
 complex joins, 198–199
 creating, 197
 data retrieval, 204
 filtering data, 201–202
 joins, simplifying, 198–199
 ORDER BY clause, 197
 overview, 195
 performance, 197
 reasons for using, 196
 reformatting retrieved data, 199–201
 removing, 197
 restrictions, 197
 reusable, 199
 rules, 197
 updating, 198, 203–204
 usefulness of, 196
 virtual tables. See views

W–X–Y–Z
websites, example table download site, 29
WHERE clause, 51–53. See also HAVING clause
 checking against single value, 54
 checking for nonmatches, 56–57
 checking for NULL value, 58
 checking for range of values, 57–58
 combining, 61
 AND operator, 61–62
 order of evaluation, 63–65
 OR operator, 62–63
 in queries, 163
 data retrieval, 202
 DELETE statements, 182
 filtering data, 124
 filtering groups, 125
 joins, 145–148
 operators, 53
 checking against a single value, 54–56
 checking for nonmatches, 56–57
 checking for no value, 58–59
 checking for range of values, 57–58
 parentheses, 65
 quotes, 57
 Soundex() function, 102
 subqueries, 134–135
 UPDATE statements, 179–180
 versus UNION, 168
 wildcards, 69
 white space, SQL statements, 35
 wildcard (*), 37
 wildcards, 37–38, 69
 natural joins, 158
 wildcard searches
 LIKE operators, 69
 percent sign (%), 70
 tips for, 74
 trailing spaces, 72
 underscore (_), 72–73
 working environments, 21
 creating
 custom workspaces, 24–25
dedicated Oracle instances, 22–24
 worksheets, multiple worksheets, 28
 writing stored procedures, 207