Memory Management

ONE OF THE MOST JARRING DIFFERENCES BETWEEN A MANAGED language like PHP,
and an unmanaged language like C is control over memory pointers.

Memory

In PHP, populating a string variable is as simple as <?php $str = ‘hello world’; 2>
and the string can be freely modified, copied, and moved around. In C, on the other
hand, although you could start with a simple static string such as char *str = “hello
world” ;, that string cannot be modified because it lives in program space.To create a
manipulable string, you'd have to allocate a block of memory and copy the contents in
using a function such as strdup ().

{

char *str;

str = strdup(“hello world”);
if (!str) {
fprintf (stderr, “Unable to allocate memory!”);

}

For reasons you’ll explore through the course of this chapter, the traditional memory
management functions (malloc (), free(), strdup (), realloc(), calloc (), and so on)
are almost never used directly by the PHP source code.

Free the Mallocs

Memory management on nearly all platforms is handled in a request and release fashion.
An application says to the layer above it (usually the operating system) “I want some
number of bytes of memory to use as I please.” If there is space available, the operating
system offers it to the program and makes a note not to give that chunk of memory out
to anyone else.

36

Chapter 3 Memory Management

When the application is done using the memory, it’s expected to give it back to the
OS so that it can be allocated elsewhere. If the program doesn’t give the memory back,
the OS has no way of knowing that it’s no longer being used and can be allocated again
by another process. If a block of memory is not freed, and the owning application has
lost track of it, then it’s said to have “leaked” because it’s simply no longer available to
anyone.

In a typical client application, small infrequent leaks are sometimes tolerated with the
knowledge that the process will end after a short period of time and the leaked memory
will be implicitly returned to the OS.This is no great feat as the OS knows which pro-
gram it gave that memory to, and it can be certain that the memory is no longer needed
when the program terminates.

With long running server daemons, including web servers like Apache and by exten-
sion mod_php, the process is designed to run for much longer periods, often indefinitely.
Because the OS can’t clean up memory usage, any degree of leakage—no matter how
small—will tend to build up over time and eventually exhaust all system resources.

Consider the userspace stristr () function;in order to find a string using a case-
insensitive search, it actually creates a lowercase copy of both the haystack and the
needle, and then performs a more traditional case-sensitive search to find the relative
offset. After the offset of the string has been located, however, it no longer has use for
the lowercase versions of the haystack and needle strings. If it didn’t free these copies,
then every script that used stristr () would leak some memory every time it was
called. Eventually the web server process would own all the system memory, but not be
able to use it.

The ideal solution, I can hear you shouting, is to write good, clean, consistent code,
and that’s absolutely true. In an environment like the PHP interpreter, however, that’s
only half the solution.

Error Handling

In order to provide the ability to bail out of an active request to userspace scripts and the
extension functions they rely on, a means needs to exist to jump out of an active request
entirely. The way this is handled within the Zend Engine is to set a bailout address at the
beginning of a request, and then on any die () or exit () call, or on encountering any
critical error (E_ERROR) perform a longjmp () to that bailout address.

Although this bailout process simplifies program flow, it almost invariably means that
resource cleanup code (such as free () calls) will be skipped and memory could get
leaked. Consider this simplified version of the engine code that handles function calls:

void call_function(const char *fname, int fname_len TSRMLS_DC)

{

zend function *fe;
char *lcase_ fname;

Memory

/* PHP function names are case-insensitive

* to simplify locating them in the function tables
* all function names are implicitly

* translated to lowercase

*/

lcase fname = estrndup(fname, fname len);
zend_str tolower (lcase fname, fname len);

if (zend_hash find(EG(function_table),

lcase_fname, fname len + 1, (void **)&fe) == FAILURE) {
zend execute (fe->op_array TSRMLS CC);
} else {
php_error docref (NULL TSRMLS_CC, E_ERROR,
“Call to undefined function: %s()”, fname);

}

efree(lcase fname);

}

When the php _error docref () line is encountered, the internal error handler sees that
the error level is critical and invokes longjmp () to interrupt the current program flow
and leave call function() without ever reaching the efree (lcase fname) line. Again,
you're probably thinking that the efree () line could just be moved above the
zend_error () line, but what about the code that called this call function() routine
in the first place? Most likely £name itself was an allocated string and you can’t free that
before it has been used in the error message.

Note

The php error docref () function is an internals equivalent to trigger error (). The first
parameter is an optional documentation reference that will be appended to docref . root if such is
enabled in php. ini. The third parameter can be any of the familiar E_* family of constants indicating
severity. The fourth and later parameters follow printf () style formatting and variable argument lists.

Zend Memory Manager

The solution to memory leaks during request bailout is the Zend Memory Management
(ZendMM) layer. This portion of the engine acts in much the same way the operating
system would normally act, allocating memory to calling applications. The difference is
that it 1s low enough in the process space to be request-aware so that when one request
dies, it can perform the same action the OS would perform when a process dies. That is,
it implicitly frees all the memory owned by that request. Figure 3.1 shows ZendMM in
relation to the OS and the PHP process.

37

38 Chapter 3 Memory Management

PHP and Extension Source Code

Per-Request Allocations
pemalloc(...,0) emalloc()
pestrdup(...,0) estrdup()
perealloc(...,0) erealloc()

Persistent Allocations
pemalloc(...,1)
pestrdup(...,1)
perealloc(...,1)

~

Zend Memory Manager

Translated to standard .
Memory allocated using

system calls: o
malloc() traditional calls, then

memcpy() flagged with per-request
realloc() identifier. End of request

will free all flagged
memory blocks.

J
~

Operating System Allocation Routines

System Memory Pool

J

Figure 3.1 Zend Memory Manager replaces system calls for per-request

allocations.

In addition to providing implicit memory cleanup, ZendMM also controls the per-
request memory usage according to the php.ini setting: memory limit. If a script
attempts to ask for more memory than is available to the system as a whole, or more
than is remaining in its per-request limit, ZendMM will automatically issue an
E_ERROR message and begin the bailout process. An added benefit of this is that the
return value of most memory allocation calls doesn’t need to be checked because failure
results in an immediate longjmp () to the shutdown part of the engine.

Hooking itself in between PHP internal code and the OS’s actual memory manage-
ment layer is accomplished by nothing more complex than requiring that all memory
allocated internally is requested using an alternative set of functions. For example,
rather than allocate a 16-byte block of memory using malloc (16), PHP code will use
emalloc (16). In addition to performing the actual memory allocation task, ZendMM
will flag that block with information concerning what request it’s bound to so that
when a request bails out, ZendMM can implicitly free it.

Often, memory needs to be allocated for longer than the duration of a single request.
These types of allocations, called persistent allocations because they persist beyond the
end of a request, could be performed using the traditional memory allocators because
these do not add the additional per-request information used by ZendMM. Sometimes,
however, it’s not known until runtime whether a particular allocation will need to be

Memory

persistent or not, so ZendMM exports a set of helper macros that act just like the other
memory allocation functions, but have an additional parameter at the end to indicate
persistence.

If you genuinely want a persistent allocation, this parameter should be set to one, in
which case the request will be passed through to the traditional malloc () family of
allocators. If runtime logic has determined that this block does not need to be persistent
however, this parameter may be set to zero, and the call will be channeled to the per-
request memory allocator functions.

For example, pemalloc (buffer len, 1) maps to malloc (buffer len), whereas
pemalloc (buffer len, 0) maps to emalloc (buffer len) using the following
#define in Zend/zend alloc.h:

#define pemalloc (size, persistent) \
((persistent) ?malloc (size) :emalloc (size))

Each of the allocator functions found in ZendMM can be found below along with their
more traditional counterparts.

Table 3.1 shows each of the allocator functions supported by ZendMM and their
e/pe counterparts:

Table 3.1 Traditional versus PHP-specific allocators

Allocator funtion e/pe counterpart

void *malloc(size_t count) ; void *emalloc(size_t count);

void *pemalloc(size_ t count,
char persistent) ;

void *calloc(size_t count); void *ecalloc(size_t count);

void *pecalloc(size t count,
char persistent) ;

void *realloc(void *ptr, void *erealloc (void *ptr,
size_t count); size_t count);

void *perealloc (void *ptr,
size_t count,
char persistent);

void *strdup (void *ptr); void *estrdup(void *ptr);
void *pestrdup (void *ptr,
char persistent) ;
void free(void *ptr); void efree(void *ptr);
void pefree(void *ptr,
char persistent) ;

You’ll notice that even pefree () requires the persistency flag. This is because at the time
that pefree () is called, it doesn’t actually know if ptr was a persistent allocation or not.
Calling free () on a non-persistent allocation could lead to a messy double free, whereas

40

Chapter 3 Memory Management

calling efree () on a persistent one will most likely lead to a segmentation fault as the
memory manager attempts to look for management information that doesn’t exist. Your
code is expected to remember whether the data structure it allocated was persistent or
not.

In addition to the core set of allocator functions, a few additional and quite handy
ZendMM specific functions exist:

void *estrndup (void *ptr, int len);

Allocate len+1 bytes of memory and copy len bytes from ptr to the newly allocated
block. The behavior of estrndup () is roughly the following:

void *estrndup(void *ptr, int len)

{

char *dst = emalloc(len + 1);
memcpy (dst, ptr, len);
dst([len] = 0;

return dst;

}

The terminating NULL byte implicitly placed at the end of the buffer here ensures that
any function that uses estrndup () for string duplication doesn’t need to worry about
passing the resulting bufter to a function that expects NULL terminated strings such as
printf (). When using estrndup () to copy non-string data, this last byte is essentially
wasted, but more often than not, the convenience outweighs the minor inefficiency.

void *safe emalloc(size t size, size t count, size t addtl);
void *safe pemalloc(size t size, size t count, size t addtl, char persistent);

The amount of memory allocated by these functions is the result of ((size * count)

+ addtl).You may be asking, “Why an extra function at all? Why not just use
emalloc/pemalloc and do the math myself?” The reason comes in the name: safe.
Although the circumstances leading up to it would be exceedingly unlikely, it’s possible
that the end result of such an equation might overflow the integer limits of the host
platform. This could result in an allocation for a negative number of bytes, or worse, a
positive number that is significantly smaller than what the calling program believed it
requested. safe_emalloc () avoids this type of trap by checking for integer overflow and
explicitly failing if such an overflow occurs.

Note

Not all memory allocation routines have a p* counterpart. For example, there is no pestrndup (), and
safe pemalloc () does not exist prior to PHP 5.1. Occasionally you'll need to work around these gaps
in the ZendAPI.

Reference Counting

Reference Counting

Careful memory allocation and freeing is vital to the long term performance of a
multirequest process like PHP, but it’s only half the picture. In order for a server that
handles thousands of hits per second to function efficiently, each request needs to use as
little memory as possible and perform the bare minimum amount of unnecessary data
copying. Consider the following PHP code snippet:

<?php
$Sa = ‘Hello World’;
$b = Sa;
unset ($a) ;

?>

After the first call, a single variable has been created, and a 12 byte block of memory has
been assigned to it holding the string ‘Hello World” along with a trailing NULL. Now
look at the next two lines: $b is set to the same value as $a, and then $a is unset (freed).

If PHP treated every variable assignment as a reason to copy variable contents, an
extra 12 bytes would need to be copied for the duplicated string and additional
processor load would be consumed during the data copy. This action starts to look
ridiculous when the third line has come along and the original variable is unset making
the duplication of data completely unnecessary. Now take that one further and imagine
what could happen when the contents of a 10MB file are loaded into two variables. That
could take up 20MB where 10 would have been sufficient. Would the engine waste so
much time and memory on such a useless endeavor?

You know PHP is smarter than that.

Remember that variable names and their values are actually two different concepts
within the engine. The value itself is a nameless zval* holding, in this case, a string
value. It was assigned to the variable $a using zend _hash add (). What if two variable
names could point to the same value?

{

zval *helloval;
MAKE_STD ZVAL (helloval) ;
ZVAL_STRING (helloval, “Hello World”, 1);
zend_hash_add (EG (active symbol table), “a”, sizeof(“a”),

&helloval, sizeof (zval*), NULL);
zend hash add(EG(active symbol table), “b”, sizeof (“b”),

&helloval, sizeof (zval*), NULL) ;

}

At this point you could actually inspect either $a or $b and see that they both contain
the string “Hello World”. Unfortunately, you then come to the third line: unset ($a) ;.
In this situation, unset () doesn’t know that the data pointed to by the $a variable is also
in use by another one so it just frees the memory blindly. Any subsequent accesses to $b
will be looking at already freed memory space and cause the engine to crash. Hint: You
don’t want to crash the engine.

41

42

Chapter 3 Memory Management

This is solved by the third of a zval’s four members: refcount. When a variable is first
created and set, its refcount is initialized to 1 because it’s assumed to only be in use by
the variable it is being created for. When your code snippet gets around to assigning
helloval to $b, it needs to increase that refcount to 2 because the value is now “refer-
enced” by two variables:

{

zval *helloval;
MAKE_STD_ZVAL (helloval) ;
ZVAL_STRING (helloval, “Hello World”, 1);
zend _hash add(EG(active symbol table), “a”, sizeof(“a”),
&helloval, sizeof (zval*), NULL);
ZVAL_ADDREF (helloval) ;
zend_hash add(EG(active_symbol table), “b”, sizeof (“b"),
&helloval, sizeof (zval*), NULL);

}

Now when unset () deletes the $a copy of the variable, it can see from the refcount
parameter that someone else is interested in that data and it should actually just
decrement the refcount and otherwise leave it alone.

Copy on Write

Saving memory through refcounting is a great idea, but what happens when you only
want to change one of those variables? Consider this code snippet:

<?php
Sa = 1;
$b = $a;
Sb += 5;
?>

Looking at the logic flow you would of course expect $a to still equal 1, and $b to now
be 6. At this point you also know that Zend is doing its best to save memory by having
$a and $b refer to the same zval after the second line, so what happens when the third
line is reached and $b must be changed?

The answer is that Zend looks at refcount, sees that it’s greater than one and
separates it. Separation in the Zend engine is the process of destroying a reference pair
and is the opposite of the process you just saw:

zval *get var and separate(char *varname, int varname len TSRMLS DC)
zval **varval, *varcopy;
if (zend hash find(EG(active_symbol_table),
varname, varname len + 1, (void**)s&varval) == FAILURE) {

Reference Counting

/* Variable doesn’t actually exist — fail out */
return NULL;
}
if ((*varval)->refcount < 2) {
/* varname is the only actual reference,
* no separating to do
*/
return *varval;
}
/* Otherwise, make a copy of the zval* value */
MAKE STD ZVAL (varcopy) ;
varcopy = *varval;
/* Duplicate any allocated structures within the zvalx* */
zval _copy ctor (varcopy) ;

/* Remove the old version of varname
* This will decrease the refcount of varval in the process
*/

zend_hash del (EG(active_symbol table), varname, varname len + 1);

/* Initialize the reference count of the

* newly created value and attach it to

* the varname variable

*/
varcopy->refcount = 1;
varcopy->is_ref = 0;

zend_hash_add(EG(active symbol table), varname, varname len + 1,

&varcopy, sizeof (zval*), NULL);

/* Return the new zval* */
return varcopy;

}

Now that the engine has a zval* that it knows is only owned by the $b variable, it can
convert it to a long and increment it by 5 according to the script’s request.

Change on Write

The concept of reference counting also creates a new possibility for data manipulation in
the form of what userspace scripters actually think of in terms of “referencing”.
Consider the following snippet of userspace code:

<?php
$a = 1;
$b = &$a;
Sb += 5;

?>

43

44

Chapter 3 Memory Management

Being experienced in the ways of PHP code, you’ll instinctively recognize that the value
of sa will now be 6 even though it was initialized to 1 and never (directly) changed.
This happens because when the engine goes to increment the value of $b by 5, it notices
that sb is a reference to $a and says, “It’s okay for me to change the value without
separating it, because I want all reference variables to see the change.”

But how does the engine know? Simple, it looks at the fourth and final element of
the zval struct: is_ref.This is just a simple on/off bit value that defines whether the
value is, in fact, part of a userspace-style reference set. In the previous code snippet,
when the first line is executed, the value created for $a gets a refcount of 1, and an
is_ref value of 0 because its only owned by one variable ($a), and no other variables
have a change on write reference to it. At the second line, the refcount element of this
value is incremented to 2 as before, except that this time, because the script included an
ampersand to indicate full-reference, the is_ref element is set to 1.

Finally, at the third line, the engine once again fetches the value associated with $b
and checks if separation is necessary. This time the value is not separated because of a
check not included earlier. Here’s the refcount check portion of’
get_var_and separate () again, with an extra condition:

if ((*varval)->is ref || (*varval)-srefcount < 2) {
/* varname is the only actual reference,
* or it’s a full reference to other variables
* either way: no separating to be done
*/
return *varval;

}

This time, even though the refcount is 2, the separation process is short-circuited by the
fact that this value is a full reference. The engine can freely modify it with no concern
about the values of other variables appearing to change magically on their own.

Separation Anxiety

With all this copying and referencing, there are a couple of combinations of events that
can’t be handled by clever manipulation of is_ref and refcount. Consider this block of
PHP code:

<?php
$a = 1;
$b = S$a;
$c = &Sa;
?>

Here you have a single value that needs to be associated with three different variables,
two in a change-on-write full reference pair, and the third in a separable copy-on-write
context. Using just is_ref and refcount to describe this relationship, what values will
work?

Reference Counting

The answer is: none. In this case, the value must be duplicated into two discrete

zvalxs, even though both will contain the exact same data (see Figure 3.2).

“

»”

First zval
type = IS_LONG
value.lval = 1
is_ref=0
refcount = 1

First zval
type = IS_LONG
value.lval = 1
is_ref=0
refcount = 2

First zval
type = IS_LONG
value.lval = 1
is_ref=0
refcount = 1

Second zval
type = IS_LONG
value.lval = 1
is_ref =1
refcount = 2

<?php $a=1; 7>

A new zval is created.

<?php $b =$a; ?>

The original zval is used with a second variable,
but not as a full reference.

<?php $c = &$a; ?>

The zval is split (separated) into two identical
copies. One for the previously made
non-reference variable, the other for a new
full-reference set.

Figure 3.2 Forced separation on reference.

Similarly, the following code block will cause the same conflict and force the value to

separate into a copy (see Figure 3.3).

$a =

$c =

<?php
$b
?>

1;
&$Sa;
$a;

Notice here that in both cases here, $b is associated with the original zval object because
at the time separation occurs, the engine doesn’t know the name of the third variable
involved in the operation.

45

46 Chapter 3 Memory Management

First zval <?php $a=1; 7>

type = IS_LONG
value.lval = 1 A new zval is created.
is_ref=0
refcount = 1

n First zval <?php $b = &$a; ?>

n type = IS_LONG The original zval is used with a second variable,
value.lval = 1 as a full reference.
is_ref =1
refcount = 2

H First zval <?php $c =$a; ?>

m type = IS_LONG The zval is split (separated) into two identical
value.lval =1 copies. One for the previously made
is_ref =1 full-reference pair, the other for a newly
refcount = 2 -

created non-reference copy.
“c” Second zval

type = IS_LONG
value.lval = 1
is_ref=0
refcount = 1

Figure 3.3 Forced separation on copy.

Summary

PHP is 2 managed language. On the userspace side of things, this careful control of
resources and memory means easier prototyping and fewer crashes. After you delve
under the hood though, all bets are oft and it’s up to the responsible developer to
maintain the integrity of the runtime environment.

