
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672326660
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672326660
https://plusone.google.com/share?url=http://www.informit.com/title/9780672326660
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672326660
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672326660/Free-Sample-Chapter

Programming in C

Third Edition

Developer’s Library

Programming in Objective-C
Stephen G. Kochan
0-672-32586-1

Unix Shell Programming,Third Edition
Stephen G. Kochan
0-672-32490-3

Microsoft Visual C# .NET 2003
Developer’s Cookbook

Mark Schmidt, Simon Robinson
0-672-32580-2

ASP.NET Developer’s Cookbook
Steven Smith, Rob Howard
0-672-32524-1

PHP and MySQL Web Development,
2nd Edition

Luke T.Welling, Laura Thomson
0-672-32525-X

Advanced PHP Programming
George Schlossnagle
0-672-32561-6

Perl Developer’s Dictionary
Clinton Pierce
0-672-32067-3

MySQL, Second Edition
Paul Dubois
0-7357-1212-3

Apache Administrator’s Handbook
Rich Bowen, Daniel Ridrueio,Allan
Liska
0-672-32274-9

HTTP Developer’s Handbook
Chris Shiflett
0-672-32454-7

mod_perl Developer’s Cookbook
Geoffrey Young, Paul Lindner, Randy
Kobes
0-672-32240-4

PostgreSQL Developer’s Handbook
Ewald Geschwinde, Hans-Juergen
Schoenig
0-672-32260-9

Programming in C

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240

DEVELOPER’S
LIBRARY

Stephen G. Kochan

Third Edition

Programming in C,Third Edition
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32666-3

Library of Congress Catalog Card Number: 2004093272

Printed in the United States of America

First Printing: July 2004

07 06 6 5 4

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact

International Sales
international@pearsoned.com

Associate Publisher
Michael Stephens

Development Editor
Mark Renfrow

Managing Editor
Charlotte Clapp

Project Editor
Dan Knott

Copy Editor
Karen Annett

Indexer
Chris Barrick

Proofreader
Eileen Dennie

Technical Editor
Bradley L. Jones

Publishing Coordinator
Cindy Teeters

Interior Designer
Gary Adair

Cover Designer
Alan Clements

❖

To my mother and father

❖

Contents At a Glance
Preface xvii

1 Introduction 1

2 Some Fundamentals 5

3 Compiling and Running Your First Program 11

4 Variables, Data Types, and Arithmetic
Expressions 21

5 Program Looping 43

6 Making Decisions 65

7 Working with Arrays 95

8 Working with Functions 119

9 Working with Structures 165

10 Character Strings 195

11 Pointers 235

12 Operations on Bits 279

13 The Preprocessor 299

14 More on Data Types 321

15 Working with Larger Programs 333

16 Input and Output Operations in C 347

17 Miscellaneous and Advanced Features 373

18 Debugging Programs 389

19 Object-Oriented Programming 411

A C Language Summary 425

B The Standard C Library 467

C Compiling Programs with gcc 493

D Common Programming Mistakes 497

E Resources 501

Index 505

Table of Contents

1 Introduction 1

2 Some Fundamentals 5
Programming 5
Higher-Level Languages 6
Operating Systems 6
Compiling Programs 7
Integrated Development Environments 10
Language Interpreters 10

3 Compiling and Running Your First
Program 11
Compiling Your Program 11
Running Your Program 12
Understanding Your First Program 13
Displaying the Values of Variables 15
Comments 17
Exercises 19

4 Variables, Data Types, and Arithmetic
Expressions 21
Working with Variables 21
Understanding Data Types and Constants 23

The Basic Integer Type int 23
The Floating Number Type float 24
The Extended Precision Type double 25
The Single Character Type char 25
The Boolean Data Type _Bool 26
Type Specifiers: long, long long, short,
unsigned, and signed 28

Working with Arithmetic Expressions 30
Integer Arithmetic and the Unary Minus
Operator 33
The Modulus Operator 35
Integer and Floating-Point Conversions 36

viii Contents

Combining Operations with Assignment:The
Assignment Operators 38
Types _Complex and _Imaginary 39
Exercises 40

5 Program Looping 43
The for Statement 44

Relational Operators 46
Aligning Output 50
Program Input 51
Nested for Loops 53
for Loop Variants 54

The while Statement 56
The do Statement 60

The break Statement 62
The continue Statement 62

Exercises 63

6 Making Decisions 65
The if Statement 65

The if-else Construct 69
Compound Relational Tests 72
Nested if Statements 75
The else if Construct 76

The switch Statement 84
Boolean Variables 87
The Conditional Operator 91
Exercises 93

7 Working with Arrays 95
Defining an Array 96

Using Array Elements as Counters 100
Generating Fibonacci Numbers 103
Using an Array to Generate Prime Numbers
104

Initializing Arrays 106

ixContents

Character Arrays 108
Base Conversion Using Arrays 109
The const Qualifier 111

Multidimensional Arrays 113
Variable-Length Arrays 115
Exercises 117

8 Working with Functions 119
Defining a Function 119
Arguments and Local Variables 122

Function Prototype Declaration 124
Automatic Local Variables 124

Returning Function Results 126
Functions Calling Functions Calling… 131

Declaring Return Types and Argument Types
134
Checking Function Arguments 135

Top-Down Programming 137
Functions and Arrays 137

Assignment Operators 142
Sorting Arrays 143
Multidimensional Arrays 146

Global Variables 152
Automatic and Static Variables 156
Recursive Functions 159
Exercises 162

9 Working with Structures 165
A Structure for Storing the Date 166

Using Structures in Expressions 168
Functions and Structures 171

A Structure for Storing the Time 177
Initializing Structures 180

Compound Literals 181
Arrays of Structures 182
Structures Containing Structures 185

x Contents

Structures Containing Arrays 187
Structure Variants 190
Exercises 191

10 Character Strings 195
Arrays of Characters 196
Variable-Length Character Strings 198

Initializing and Displaying Character
Strings 201
Testing Two Character Strings for Equality 204
Inputting Character Strings 206
Single-Character Input 208
The Null String 213

Escape Characters 216
More on Constant Strings 218
Character Strings, Structures, and Arrays 219

A Better Search Method 222
Character Operations 227
Exercises 230

11 Pointers 235
Defining a Pointer Variable 235
Using Pointers in Expressions 239
Working with Pointers and Structures 240

Structures Containing Pointers 243
Linked Lists 244

The Keyword const and Pointers 253
Pointers and Functions 254
Pointers and Arrays 259

A Slight Digression About Program
Optimization 263
Is It an Array or Is It a Pointer? 264
Pointers to Character Strings 266
Constant Character Strings and Pointers 267
The Increment and Decrement Operators
Revisited 268

Operations on Pointers 272

xiContents

Pointers to Functions 273
Pointers and Memory Addresses 274
Exercises 276

12 Operations on Bits 279
Bit Operators 280

The Bitwise AND Operator 281
The Bitwise Inclusive-OR Operator 283
The Bitwise Exclusive-OR Operator 284
The Ones Complement Operator 285
The Left Shift Operator 287
The Right Shift Operator 287
A Shift Function 288
Rotating Bits 290

Bit Fields 292
Exercises 297

13 The Preprocessor 299
The #define Statement 299

Program Extendability 303
Program Portability 305
More Advanced Types of Definitions 306
The # Operator 312
The ## Operator 313

The #include Statement 313
System Include Files 316

Conditional Compilation 316
The #ifdef, #endif, #else, and #ifndef
Statements 316
The #if and #elif Preprocessor
Statements 318
The #undef Statement 319

Exercises 320

14 More on Data Types 321
Enumerated Data Types 321
The typedef Statement 325

xii Contents

Data Type Conversions 327
Sign Extension 329
Argument Conversion 329

Exercises 330

15 Working with Larger Programs 333
Dividing Your Program into Multiple Files 333

Compiling Multiple Source Files from the
Command Line 334

Communication Between Modules 336
External Variables 336
StaticVersus ExternVariables and
Functions 339
Using Header Files Effectively 341

Other Utilities for Working with Larger
Programs 342

The make Utility 343
The cvs Utility 344
Unix Utilities: ar, grep, sed, and so on 345

16 Input and Output Operations in C 347
Character I/O: getchar and putchar 348
Formatted I/O: printf and scanf 348

The printf Function 348
The scanf Function 355

Input and Output Operations with Files 359
Redirecting I/O to a File 359
End of File 361

Special Functions for Working with Files 363
The fopen Function 363
The getc and putc Functions 365
The fclose Function 365
The feof Function 367
The fprintf and fscanf Functions 368
The fgets and fputs Functions 368
stdin, stdout, and stderr 369
The exit Function 370
Renaming and Removing Files 371

Exercises 371

xiiiContents

17 Miscellaneous and Advanced Features 373
Miscellaneous Language Statements 373

The goto Statement 373
The null Statement 374

Working with Unions 375
The Comma Operator 378
Type Qualifiers 378

The register Qualifier 378
The volatile Qualifier 379
The restrict Qualifier 379

Command-Line Arguments 380
Dynamic Memory Allocation 383

The calloc and malloc Functions 384
The sizeof Operator 385
The free Function 387

18 Debugging Programs 389
Debugging with the Preprocessor 389
Debugging Programs with gdb 395

Working with Variables 398
Source File Display 399
Controlling Program Execution 400
Getting a Stack Trace 405
Calling Functions and Setting Arrays and
Structures 405
Getting Help with gdb Commands 406
Odds and Ends 408

19 Object-Oriented Programming 411
What Is an Object Anyway? 411
Instances and Methods 412
Writing a C Program to Work with Fractions 413
Defining an Objective-C Class to Work with
Fractions 414
Defining a C++ Class to Work with Fractions 419
Defining a C# Class to Work with Fractions 422

xiv Contents

A C Language Summary 425
1.0 Digraphs and Identifiers 425

1.1 Digraph Characters 425
1.2 Identifiers 425

2.0 Comments 426
3.0 Constants 427

3.1 Integer Constants 427
3.2 Floating-Point Constants 427
3.3 Character Constants 428
3.4 Character String Constants 429
3.5 Enumeration Constants 430

4.0 Data Types and Declarations 430
4.1 Declarations 430
4.2 Basic Data Types 430
4.3 Derived Data Types 432
4.4 Enumerated Data Types 438
4.5 The typedef Statement 438
4.6 Type Modifiers const, volatile, and
restrict 439

5.0 Expressions 439
5.1 Summary of C Operators 440
5.2 Constant Expressions 442
5.3 Arithmetic Operators 443
5.4 Logical Operators 444
5.5 Relational Operators 444
5.6 Bitwise Operators 445
5.7 Increment and Decrement Operators 445
5.8 Assignment Operators 446
5.9 Conditional Operators 446
5.10 Type Cast Operator 446
5.11 sizeof Operator 447
5.12 Comma Operator 447
5.13 Basic Operations with Arrays 447
5.14 Basic Operations with Structures 448
5.15 Basic Operations with Pointers 448
5.16 Compound Literals 450
5.17 Conversion of Basic Data Types 451

xvContents

6.0 Storage Classes and Scope 452
6.1 Functions 452
6.2 Variables 452

7.0 Functions 454
7.1 Function Definition 454
7.2 Function Call 455
7.3 Function Pointers 456

8.0 Statements 456
8.1 Compound Statements 456
8.2 The break Statement 456
8.3 The continue Statement 457
8.4 The do Statement 457
8.5 The for Statement 457
8.6 The goto Statement 458
8.7 The if Statement 458
8.8 The null Statement 458
8.9 The return Statement 459
8.10 The switch Statement 459
8.11 The while Statement 460

9.0 The Preprocessor 460
9.1 Trigraph Sequences 460
9.2 Preprocessor Directives 461
9.3 Predefined Identifiers 466

B The Standard C Library 467
Standard Header Files 467

<stddef.h> 467
<limits.h> 468
<stdbool.h> 469
<float.h> 469
<stdint.h> 469

String Functions 470
Memory Functions 472
Character Functions 473
I/O Functions 473
In-Memory Format Conversion Functions 478
String-to-Number Conversion 479

xvi Contents

Dynamic Memory Allocation Functions 481
Math Functions 482

Complex Arithmetic 488
General Utility Functions 490

C Compiling Programs with gcc 493
General Command Format 493
Command-Line Options 494

D Common Programming Mistakes 497

E Resources 501
Answers to Exercises, Errata, etc. 501
The C Programming Language 501

Books 501
Web Sites 502
Newsgroups 502

C Compilers and Integrated Development
Environments 502

gcc 502
MinGW 502
CygWin 502
Visual Studio 503
CodeWarrior 503
Kylix 503

Miscellaneous 503
Object-Oriented Programming 503
The C++ Language 503
The C# Language 503
The Objective-C Language 503
Development Tools 504

Index 505

Preface
It’s hard to believe that 20 years have passed since I first wrote Programming in C. At that
time the Kernighan & Ritchie book The C Programming Language was the only other
book on the market. How times have changed!

When talk about an ANSI C standard emerged in the early 1980s, this book was split
into two titles:The original was still called Programming in C, and the title that covered
ANSI C was called Programming in ANSI C.This was done because it took several years
for the compiler vendors to release their ANSI C compilers and for them to become
ubiquitous. I felt it was too confusing to try to cover both ANSI and non-ANSI C in
the same tutorial text, thus the reason for the split.

The ANSI C standard has changed several times since the first standard was published
in 1989.The latest version, called C99, is the major reason for this edition.This edition
addresses the changes made to the language as a result of that standard.

In addition to covering C99 features, this book also includes two new chapters. The
first discusses debugging C programs.The second offers a brief overview of the pervasive
field of object-oriented programming, or OOP.This chapter was added because several
popular OOP languages are based on C: C++, C#, Java, and Objective-C.

For those who have stayed with this text through the years, I am sincerely grateful.
The feedback I have received has been enormously gratifying. It remains my main moti-
vation for continuing to write today.

For newcomers, I welcome your input and hope that this book satisfies your expecta-
tions.
Stephen Kochan
June 2004
steve@kochan-wood.com

About the Author
Stephen Kochan has been developing software with the C programming language for
over 20 years. He is the author and coauthor of several bestselling titles on the C
language, including Programming in C, Programming in ANSI C, and Topics in C
Programming, and several Unix titles, including Exploring the Unix System, Unix Shell
Programming, and Unix System Security. Mr. Kochan’s most recent title, Programming in
Objective-C, is a tutorial on an object-oriented programming language that is based on C.

Acknowledgements
I wish to thank the following people for their help in the preparation of various versions
of this text: Douglas McCormick, Jim Scharf, Henry Tabickman, Dick Fritz, Steve Levy,
Tony Ianinno, and Ken Brown. I also want to thank Henry Mullish of New York
University for teaching me so much about writing and for getting me started in the
publishing business.

From Sams Publishing, I’d like to thank my development editor Mark Renfrow and
my project editor Dan Knott.Thanks also to my copy editor, Karen Annett, and my
technical editor, Bradley Jones. Finally, I’d like to thank all the other people from Sams
who were involved on this project, even if I did not work with them directly.

We Want to Hear from You
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams Publishing, I welcome your comments.You can
email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.
Email: feedback@samspublishing.com
Mail: Michael Stephens

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web
site at www.samspublishing.com.Type the ISBN (excluding hyphens) or the title of a
book in the Search field to find the page you’re looking for.

www.samspublishing.com

3
Compiling and Running Your

First Program

IN THIS CHAPTER,YOU ARE INTRODUCED to the C language so that you can see what
programming in C is all about.What better way to gain an appreciation for this language
than by taking a look at an actual program written in C?

To begin with, you’ll choose a rather simple example—a program that displays the
phrase “Programming is fun.” in your window. Program 3.1 shows a C program to
accomplish this task.

Program 3.1 Writing Your First C Program

#include <stdio.h>

int main (void)

{

printf ("Programming is fun.\n");

return 0;

}

In the C programming language, lowercase and uppercase letters are distinct. In addition,
in C, it does not matter where on the line you begin typing—you can begin typing your
statement at any position on the line.This fact can be used to your advantage in devel-
oping programs that are easier to read.Tab characters are often used by programmers as a
convenient way to indent lines.

Compiling Your Program
Returning to your first C program, you first need to type it into a file.Any text editor
can be used for this purpose. Unix users often use an editor such as vi or emacs.

12 Chapter 3 Compiling and Running Your First Program

Most C compilers recognize filenames that end in the two characters “.” and “c” as C
programs. So, assume you type Program 3.1 into a file called prog1.c. Next, you need to
compile the program.

Using the GNU C compiler, this can be as simple as issuing the gcc command at the
terminal followed by the filename, like this:

$ gcc prog1.c

$

If you’re using the standard Unix C compiler, the command is cc instead of gcc. Here,
the text you typed is entered in bold.The dollar sign is your command prompt if you’re
compiling your C program from the command line.Your actual command prompt might
be some characters other than the dollar sign.

If you make any mistakes keying in your program, the compiler lists them after you
enter the gcc command, typically identifying the line numbers from your program that
contain the errors. If, instead, another command prompt appears, as is shown in the pre-
ceding example, no errors were found in your program.

When the compiler compiles and links your program, it creates an executable version
of your program. Using the GNU or standard C compiler, this program is called a.out
by default. Under Windows, it is often called a.exe instead.

Running Your Program
You can now run the executable by simply typing its name on the command line1:

$ a.out

Programming is fun.

$

You can also specify a different name for the executable file at the time the program is
compiled.This is done with the –o (that’s the letter O) option, which is followed by the
name of the executable. For example, the command line

$ gcc prog1.c –o prog1

compiles the program prog1.c, placing the executable in the file prog1, which can sub-
sequently be executed just by specifying its name:

$ prog1

Programming is fun.

$

1. If you get an error like this: a.out: No such file or directory, then it probably means
the current directory is not in your PATH.You can either add it to your PATH or type the fol-
lowing instead at the command prompt: ./a.out.

13Understanding Your First Program

Understanding Your First Program
Take a closer look at your first program.The first line of the program

#include <stdio.h>

should be included at the beginning of just about every program you write. It tells the
compiler information about the printf output routine that is used later in the program.
Chapter 13,“The Preprocessor,” discusses in detail what this line does.

The line of the program that reads

int main (void)

informs the system that the name of the program is main, and that it returns an integer
value, which is abbreviated “int.” main is a special name that indicates precisely where the
program is to begin execution.The open and close parentheses immediately following
main specify that main is the name of a function.The keyword void that is enclosed in
the parentheses specifies that the function main takes no arguments (that is, it is void of
arguments).These concepts are explained in great detail in Chapter 8,“Working with
Functions.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all program statements of the
routine within a pair of curly braces.All program statements included between the braces
are taken as part of the main routine by the system. In Program 3.1, you have only two
such statements.The first statement specifies that a routine named printf is to be
invoked or called.The parameter or argument to be passed to the printf routine is the
string of characters

"Programming is fun.\n"

The printf routine is a function in the C library that simply prints or displays its argu-
ment (or arguments, as you will see shortly) on your screen.The last two characters in
the string, namely the backslash (\) and the letter n, are known collectively as the newline
character.A newline character tells the system to do precisely what its name implies—
that is, go to a new line.Any characters to be printed after the newline character then
appear on the next line of the display. In fact, the newline character is similar in concept
to the carriage return key on a typewriter. (Remember those?)

All program statements in C must be terminated by a semicolon (;).This is the reason
for the semicolon that appears immediately following the closing parenthesis of the
printf call.

The last statement in main that reads

return 0;

says to finish execution of main, and return to the system a status value of 0.You can use
any integer here. Zero is used by convention to indicate that the program completed
successfully—that is, without running into any errors. Different numbers can be used to
indicate different types of error conditions that occurred (such as a file not being found).
This exit status can be tested by other programs (such as the Unix shell) to see whether
the program ran successfully.

14 Chapter 3 Compiling and Running Your First Program

Now that you’ve finished analyzing your first program, you can modify it to also dis-
play the phrase “And programming in C is even more fun.”This can be done by the
simple addition of another call to the printf routine, as shown in Program 3.2.
Remember that every C program statement must be terminated by a semicolon.

Program 3.2

#include <stdio.h>

int main (void)

{

printf ("Programming is fun.\n");

printf ("And programming in C is even more fun.\n");

return 0;

}

If you type in Program 3.2 and then compile and execute it, you can expect the follow-
ing output in your program’s output window, sometimes called the “console.”

Program 3.2 Output

Programming is fun.

And programming in C is even more fun.

As you will see from the next program example, it is not necessary to make a separate
call to the printf routine for each line of output. Study the program listed in Program
3.3 and try to predict the results before examining the output. (No cheating now!)

Program 3.3 Displaying Multiple Lines of Output

#include <stdio.h>

int main (void)

{

printf ("Testing...\n..1\n...2\n....3\n");

return 0;

}

Program 3.3 Output

Testing...

..1

...2

....3

15Displaying the Values of Variables

Displaying the Values of Variables
The printf routine is the most commonly used routine in this book.This is because it
provides an easy and convenient means to display program results. Not only can simple
phrases be displayed, but the values of variables and the results of computations can also
be displayed. In fact, Program 3.4 uses the printf routine to display the results of adding
two numbers, namely 50 and 25.

Program 3.4 Displaying Variables

#include <stdio.h>

int main (void)

{

int sum;

sum = 50 + 25;

printf ("The sum of 50 and 25 is %i\n", sum);

return 0;

}

Program 3.4 Output

The sum of 50 and 25 is 75

In Program 3.4, the first C program statement declares the variable sum to be of type inte-
ger. C requires that all program variables be declared before they are used in a program.
The declaration of a variable specifies to the C compiler how a particular variable will
be used by the program.This information is needed by the compiler to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable
declared as type int can only be used to hold integral values; that is, values without dec-
imal places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal
places, such as 3.14, 2.455, and 27.0, for example, are known as floating-point or real num-
bers.

The integer variable sum is used to store the result of the addition of the two integers
50 and 25.A blank line was intentionally left following the declaration of this variable to
visually separate the variable declarations of the routine from the program statements;
this is strictly a matter of style. Sometimes, the addition of a single blank line in a pro-
gram can help to make the program more readable.

The program statement

sum = 50 + 25;

reads as it would in most other programming languages:The number 50 is added (as
indicated by the plus sign) to the number 25, and the result is stored (as indicated by the
assignment operator, the equal sign) in the variable sum.

16 Chapter 3 Compiling and Running Your First Program

The printf routine call in Program 3.4 now has two items or arguments enclosed
within the parentheses.These arguments are separated by a comma.The first argument to
the printf routine is always the character string to be displayed. However, along with
the display of the character string, you might also frequently want to have the value of
certain program variables displayed. In this case, you want to have the value of the vari-
able sum displayed at the terminal after the characters

The sum of 50 and 25 is

are displayed.The percent character inside the first argument is a special character recog-
nized by the printf function.The character that immediately follows the percent sign
specifies what type of value is to be displayed at that point. In the preceding program, the
letter i is recognized by the printf routine as signifying that an integer value is to be
displayed.2

Whenever the printf routine finds the %i characters inside a character string, it
automatically displays the value of the next argument to the printf routine. Because
sum is the next argument to printf, its value is automatically displayed after the charac-
ters “The sum of 50 and 25 is” are displayed.

Now try to predict the output from Program 3.5.

Program 3.5 Displaying Multiple Values

#include <stdio.h>

int main (void)

{

int value1, value2, sum;

value1 = 50;

value2 = 25;

sum = value1 + value2;

printf ("The sum of %i and %i is %i\n", value1, value2, sum);

return 0;

}

Program 3.5 Output

The sum of 50 and 25 is 75

2. Note that printf also allows you to specify %d format characters to display an integer.This
book consistently uses %i throughout the remaining chapters.

17Comments

The first program statement declares three variables called value1, value2, and sum all to
be of type int.This statement could have equivalently been expressed using three sepa-
rate declaratory statements as follows:

int value1;

int value2;

int sum;

After the three variables have been declared, the program assigns the value 50 to the
variable value1 and then assigns 25 to value2.The sum of these two variables is then
computed, and the result is assigned to the variable sum.

The call to the printf routine now contains four arguments. Once again, the first
argument, commonly called the format string, describes to the system how the remaining
arguments are to be displayed.The value of value1 is to be displayed immediately fol-
lowing the display of the characters “The sum of.” Similarly, the values of value2 and
sum are to be printed at the appropriate points, as indicated by the next two occurrences
of the %i characters in the format string.

Comments
The final program in this chapter (Program 3.6) introduces the concept of the comment.
A comment statement is used in a program to document a program and to enhance its
readability.As you will see from the following example, comments serve to tell the reader
of the program—the programmer or someone else whose responsibility it is to maintain
the program—just what the programmer had in mind when he or she wrote a particular
program or a particular sequence of statements.

Program 3.6 Using Comments in a Program

/* This program adds two integer values

and displays the results */

#include <stdio.h>

int main (void)

{

// Declare variables

int value1, value2, sum;

// Assign values and calculate their sum

value1 = 50;

value2 = 25;

sum = value1 + value2;

18 Chapter 3 Compiling and Running Your First Program

// Display the result

printf ("The sum of %i and %i is %i\n", value1, value2, sum);

return 0;

}

Program 3.6 Output

The sum of 50 and 25 is 75

There are two ways to insert comments into a C program.A comment can be initiat-
ed by the two characters / and *.This marks the beginning of the comment.These types
of comments have to be terminated.To end the comment, the characters * and / are used
without any embedded spaces.All characters included between the opening /* and the
closing */ are treated as part of the comment statement and are ignored by the C com-
piler.This form of comment is often used when comments span several lines in the pro-
gram.The second way to add a comment to your program is by using two consecutive
slash characters //.Any characters that follow these slashes up to the end of the line are
ignored by the compiler.

In Program 3.6, four separate comment statements were used.This program is other-
wise identical to Program 3.5.Admittedly, this is a contrived example because only the
first comment at the head of the program is useful. (Yes, it is possible to insert so many
comments into a program that the readability of the program is actually degraded instead
of improved!)

The intelligent use of comment statements inside a program cannot be overempha-
sized. Many times, a programmer returns to a program that he coded perhaps only six
months ago, only to discover to his dismay that he could not for the life of him remem-
ber the purpose of a particular routine or of a particular group of statements.A simple
comment statement judiciously inserted at that particular point in the program might
have saved a significant amount of time otherwise wasted on rethinking the logic of the
routine or set of statements.

It is a good idea to get into the habit of inserting comment statements into the pro-
gram as the program is being written or typed in.There are good reasons for this. First, it
is far easier to document the program while the particular program logic is still fresh in
your mind than it is to go back and rethink the logic after the program has been com-
pleted. Second, by inserting comments into the program at such an early stage of the
game, you get to reap the benefits of the comments during the debug phase, when pro-
gram logic errors are being isolated and debugged.A comment can not only help you
read through the program, but it can also help point the way to the source of the logic
mistake. Finally, I have yet to discover a programmer who actually enjoyed documenting
a program. In fact, after you have finished debugging your program, you will probably

Program 3.6 Continued

19Exercises

not relish the idea of going back to the program to insert comments. Inserting
comments while developing the program makes this sometimes tedious task a bit easier
to swallow.

This concludes this introductory chapter on developing programs in C. By now, you
should have a good feel as to what is involved in writing a program in C, and you
should be able to develop a small program on your own. In the next chapter, you begin
to learn some of the finer intricacies of this wonderfully powerful and flexible program-
ming language. But first, try your hand at the following exercises to make certain you
understand the concepts presented in this chapter.

Exercises
1. Type in and run the six programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Write a program that prints the following text at the terminal.

1. In C, lowercase letters are significant.

2. main is where program execution begins.

3. Opening and closing braces enclose program statements in a routine.

4. All program statements must be terminated by a semicolon.

3. What output would you expect from the following program?
#include <stdio.h>

int main (void)

{

printf ("Testing...");

printf ("....1");

printf ("...2");

printf ("..3");

printf ("\n");

return 0;

}

4. Write a program that subtracts the value 15 from 87 and displays the result,
together with an appropriate message, at the terminal.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to ensure you have correctly identified all the mistakes.
#include <stdio.h>

int main (Void)

(

20 Chapter 3 Compiling and Running Your First Program

INT sum;

/* COMPUTE RESULT

sum = 25 + 37 - 19

/* DISPLAY RESULTS //

printf ("The answer is %i\n" sum);

return 0;

}

6. What output might you expect from the following program?
#include <stdio.h>

int main (void)

{

int answer, result;

answer = 100;

result = answer - 10;

printf ("The result is %i\n", result + 5);

return 0;

}

Symbols
\’ (single quote) escape character, 217

\” (double quote) escape character,
217

\? (question mark) escape character,
217

\a (audible alert) escape character, 216

\b (backspace) escape character, 216

\n (newline character), program
syntax, 13

\nnn (octal character value) escape
character, 217

\t (horizontal tab) escape character,
216

\xnn (hexadecimal character value)
escape character, 217

\\ (backslash) escape character, 217

^ (bitwise Exclusive-OR) operator,
284-285

_Bool data type, 23, 26

_Complex data type, 39

_Imaginary data type, 39

{} (braces), program syntax, 13

| (bitwise Inclusive-OR) operator,
283-284

|| (logical OR) operator, compound
relationship tests, 72-73

; (semicolon)
#define statement, 306-307
program syntax, 13

! (logical negation) operator, Boolean
variables, 90

!= (not equal to) operator, 46-50

’ (single quotation marks), char data
type, 25-26

” (double quotation marks), char data
type, 25-26

operator, macros, 312

operator, macros, 313

#define statement, 299-303, 461-463
arguments, 308-311
defined names, 300
definition types, 306-308
Introducing the #define Statement

(Program 13.1), 300-302
macros, 308-311

converting character case, 311

defining number of arguments, 311

testing for lowercase characters, 310
More on Working with Defines

(Program 13.2), 302-303
program extendability, 303-305
program portability, 305-306
semicolon (;), 306-307

#elif statement, 318-319

#else statement, conditional
compilation, 316-318

#endif statement, conditional
compilation, 316-318

#error statement, 463

#if statement, 318-319, 463

#ifdef statement, 316-318, 464

#ifndef statement, 316-318, 464

#include statement, 464-465
macro definition collections, 313-315
Using the #include Statement (Program

13.3), 314-315

Index

506 #line statement

#line statement, 465

#pragma statement, 465

#undef statement, 319, 465

% (modulus) arithmetic operator,
35-36

& (address) operator, 236, 260

& (bitwise AND) operator, 281-283

&& (logical AND) operator,
compound relationship tests, 72-73

* (indirection) operator, 236

* (multiplication sign) arithmetic
operator, 30-33

*/ (closing comments), 18

*= (times equal) operator, 143

+ (plus sign) arithmetic operator,
30-33

++ (increment) operator, 49, 262, 268

- (minus sign)
arithmetic operator, 30-33
unary arithmetic operator, 33-34

-- (decrement) operator, 50, 262, 268,
445

/ (division sign) arithmetic operator,
30-33

/* (opening comments), 18

< (less than) operator, 46-50

<< (left shift) bitwise operator, 287

<= (less than or equal to) operator,
46-50

= (assignment) operator, 15

== (equal to) operator, 46-50

?\ (conditional) operator, ternary
nature of, 91-92

A
A Simple Program for Use with gdb
(Program 18.4), 396-398

abs() function, 490

absolute value of numbers,
calculating, 129-131

absolute_value() function, 129-131

acos() function, 483

Adding Debug Statements with the
Preprocessor (Program 18.1),
389-391

address (&) operator, 236, 260

adjacent strings, 218

algorithms
binary search, 223-227
function of, 5
Sieve of Erastosthenes (prime numbers),

118

aligning triangular number output,
50-51

field width specification, 51
right justification, 51

alphabetic() function, 212-214

American National Standard Institute.
See ANSI

ANSI (American National Standards
Institute), 1

C standardization efforts, 1
C99 standard, 425
Web site, 502

ar utility, programming functionality,
345

argc argument, 380

arguments, 16
#define statement (macros), 308-311
argc, 380
argv, 380
calling, 13
command-line, 380

File Copy Program Using
Command-Line Arguments (Program
17.1), 382-383

main() function, 380-381

storing, 383
data types, conversion of, 329-330
format string, 17

507arrays

functions, 122-123

declaring, 134-135

formal parameter name, 124

values, checking, 135-137
pointer arguments, passing, 254-257
sizeof operator, 385

argv argument, 380

arithmetic operators, 443-444
associative property, 30
binary, 30-33
division sign (/), 30-33
joining with assignment operators,

38-39
minus sign (-), 30-33
modulus (%), 35-36
More Examples with Arithmetic

Operators (Program 4.3), 33-34
multiplication sign (*), 30-33
plus sign (+), 30-33
precedence, 30

rules example, 34
type cast, precedence rules, 38
unary minus, 33-34
Using the Arithmetic Operators

(Program 4.2), 30-31

arithmetic right shift, 288

array of characters, Concatenating
Character Arrays (Program 10.1),
196-198

array operators, 447-448

array_sum() function, 262-264

arrays
characters, 108-109

memory functions, 472
const variable, 111-113
containment by structures, 187-189
declaring, 97-98
defining with unions, 376-377
dynamic memory allocation, 117

elements

as counters, 100-103

initializing, 106-108

sequencing through, 96-100
Fibonacci numbers, generating, 103-104
function of, 95
functions, passing multidimensional

arrays, 146-152
integer bases, conversion of, 109-111
multidimensional, 113-114, 433-434

initializing, 114-115

passing to functions, 146-152
multidimensional arrays, declaring, 114
passing to functions, 137-142

assignment operators, 142-143
pointers to, 259-260, 449-450

to character string, 266-267

decrement (--) operator, 262, 268

increment (++) operator, 262, 268

postdecrement operator, 269-271

postincrement operator, 269-271

predecrement operator, 269-271

preincrement operator, 269-271

program optimization, 263-264

sequencing through pointer elements, 261
prime numbers, generating, 104-106
programs

Converting a Positive Integer to Another
Base (7.7), 110-111

Demonstrating an Array of Counters
(7.2), 101-103

Finding the Minimum Value in an Array
(8.9), 138-140

Generating Fibonacci Numbers (7.3),
103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (7.8),
115-117

Illustrating Structures and Arrays (9.7),
188-189

How can we make this index more useful? Email us at indexes@samspublishing.com

508 arrays

Initializing Arrays (7.5), 107-108

Introducing Character Arrays (7.6),
108-109

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

Revising the Program to Generate Prime
Numbers,Version 2 (7.4), 105-106

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Using Multidimensional Arrays and
Functions (8.13), 147-150

Working with an Array (7.1), 98-100
sequencing through elements with

pointers to arrays, 261
single-dimensional, 432-433
sorting, 143-146, 490-491
structures

defining, 182

initializing, 183

Using the Dictionary Lookup Program
(Program 10.9), 220-222

subscripts, 96
summing elements, 262-264
uses, 95
values, storing, 96
variable-length, 115-117, 433
variables, defining, 96-98
versus pointers, differentiating, 264-265

asin() function, 483

asinh() function, 483

Asking the User for Input (Program
5.4), 51-52

assemblers, 6
programs, compiling, 9

assigning structure values via
compound literals, 181-182

assignment operators, 15, 142-143, 446
joining with arithmetic operators, 38-39

AT&T Bell Laboratories, 1

atan() function, 484

atan2() function, 484

atanh() function, 484

atof() function, 480

atoi() function, 230, 480

atol() function, 480

audible alert (\a) escape character, 216

auto keyword, 124-126, 156

auto_static() function, 157-158

automatic local variables, 156
functions, 124-126

B
backslash (\\) escape character, 217

backspace (\b) escape character, 216

backtrace command (gdb debugger),
405

base notations, int data types, 23-24

bases, integers, converting via arrays,
109-111

basic data types
C language specifications, 430-432
usual arithmetic conversion, 451-452

BASIC programming language, 10

beginning comments, character
syntax, 18

binary arithmetic operators, 30-33

binary files, opening, 475

binary search algorithm, 223-227

bit fields, 292-294
declaring, 296
defining, 294-295
extracting values, 295
units, 296

509C language

bits, 279
bit fields, 292-294
high-order, 279
least significant, 279
low-order, 279
most significant, 279
operators, 280

& (bitwise AND), 281-283

<< (left shift), 287

^ (bitwise Exclusive-OR), 284-285

| (bitwise Inclusive-OR), 283-284
rotating values, 290, 292

bitwise operators, 445
Illustrating Bitwise Operators (Program

12.2), 286-287

book resources
The C Programming Language, 501
The C Reference Manual, 501
C# Programming in the Key of C#, 503
C++ Primer Plus, 4th Edition, 503
Introduction of Object-Oriented

Programming, 3rd Edition, 503
Objective-C Programming Language, 504
Programming in Objective-C, 503
The Standard C Library, 501

Boolean variables
logical negation (!) operator, 90
programs

Generating a Table of Prime Numbers
(6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (6.10A), 90-91

braces ({}), program syntax, 13

break command (gdb debugger), 400,
409

break statement, 62, 84, 456

breakpoints in programs, debugging
(gdb tool), 400

bugs in programs, 9

bytes, 279

C
C language

ANSI standardization efforts, 1
arithmetic operators, 443-444
array pointers, 449-450
arrays

multidimensional, 433-434

operators, 447-448

single-dimensional, 432-433

variable-length, 433
assignment operators, 446
AT&T Bell Laboratories, 1
basic data type conversion, usual

arithmetic conversion, 451-452
as basis for Unix operating system, 1
bitwise operators, 445
book resources

The C Programming Language, 501

The C Reference Manual, 501

The Standard C Library, 501
character constants, 428

escape sequences, 428-429

wide character, 429
character string constants, 429

concatenation, 429

multibyte, 429
comma operators, 447
comments, 426
compound literals, 450-451
conditional operators, 446
constant expressions, 442-443
data types

basic, 430-432

declarations, 430

derived, 432-438

enumerated, 438

modifiers, 439

typedef statement, 438-439
decrement operators, 445

How can we make this index more useful? Email us at indexes@samspublishing.com

510 C language

digraph characters, 425
enumeration constants, 430
expressions, specifications, 439
filename extension, 7
floating-point constants, 427-428
fractions program, writing, 413-414
functions

calls, 455-456

definition of, 454-455

pointers, 456
identifiers, 425

keywords, 426

universal character names, 426
increment operators, 445
integer constants, 427
interpreters, 10
ISO standardization efforts, 1
logical operators, 444
operators, summary table, 440-442
origins, 1
pointers

declarations, 437-438

operators, 448
predefined identifiers, 466
preprocessor, 460

directives, 461-465

trigraph sequences, 460-461
relational operators, 444-445
scopes, 452
sizeof operators, 447
statements

break, 456

compound, 456

continue, 457

do, 457

for, 457

goto, 458

if, 458

null, 458

return, 459

switch, 459-460

while, 460
storage classes

functions, 452

variables, 452-454
structures

declarations, 434-436

operators, 448

pointers, 450
text editors, 7
type cast operators, 446
unions, declarations, 436-437
vendor marketing, 1
Web site resources, Kochan-Wood.com,

502

C preprocessor
conditional compilation, 316

#else statement, 316-318

#endif statement, 316-318

#ifdef statement, 316-318

#ifndef statement, 316-318
statements, #define, 299-303

The C Programming Language, 501

The C Reference Manual, 501

C# language
development history, 422
fractions program, writing, 422-424

C# Programming in the Key of C#, 503

C++ language
development history, 419
fractions program, writing, 419-421

C++ Primer Plus, 4th Edition, 503

cabs() function, 488

cacos() function, 488

cacosh() function, 488

511character strings

calculating
absolute value of numbers, 129-131
square roots, 131-133
triangular numbers

nested for loops (program looping), 53-54

output alignment (program looping),
50-51

program looping, 43-45

user input (program looping), 51-52

Calculating Factorials Recursively
(Program 8.16), 159-161

Calculating the 200th Triangular
Number (Program 5.2), 44-45

Calculating the Absolute Value
(Program 8.7), 129-131

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

Calculating the Eighth Triangular
Number (Program 5.1), 43

Calculating the nth Triangular
Number (Program 8.4), 123

Calculating the Square Root of a
Number (Program 8.8), 132-133

call stacks (traces), 405

calling
functions, 121-122

C language specifications, 455-456
statements, 13

Calling Functions (Program 8.2), 121

calloc() function, 386, 481
dynamic memory allocation, 384-385

carq() function, 488

case sensitivity in programming, 11

casin() function, 488

casinh() function, 488

catan() function, 489

catanh() function, 489

Categorizing a Single Character
Entered at the Terminal (Program
6.7), 78-80

cc command (Unix), 7-9

ccos() function, 489

ccosh() function, 489

ceil() function, 484

cexp() function, 489

Changing Array Elements in
Functions (Program 8.11), 142-143

char data type, 23
quote usage, 25-26

character arrays, 108-109, 196-198

character constants
C language specifications, 428

escape sequences, 428-429

wide character, 429
in expressions, 227-230

character functions, 473

character I/O operations
getchar() function, 348
putchar() function, 348

character string constants
C language specifications

concatenation, 429

multibyte, 429
pointers, 267-268

character strings, 195
adjacent, 218
combining with array of structures,

219-222
comparing, 204-206
concatenating, 196
Concatenating Character Strings

(Program 10.3), 202-203
continuation of, 218-219
Converting a String to its Integer

Equivalent (Program 10.11), 228-230
converting into integers, 228

How can we make this index more useful? Email us at indexes@samspublishing.com

512 character strings

copying, 266-267, 271
delimiting, 195
displaying, 201-203
escape characters, 216-218
initializing, 201-203
inputting, 206-208
length, 199, 272
null string, 213-215
pointers to, 266-267
Reading Strings with scanf (Program

10.5), 207-208
testing for equality, 204-206
Testing Strings for Equality (Program

10.4), 204-206
universal character name, 218
variable length, 198-200

characters
arrays of

comparing, 472

copying, 472

initializing, 107

memory functions, 472

searching, 472
files

reading (getc() function), 365

reading (putc() function), 365
formation of valid variables, 22
pointers to, 238-239
sign extensions, 329
single-character input, 208-212
whitespace, scanf() function, 355

cimaq() function, 489

classes (OOP)
instances, 412-413
methods, 412-413

clear command (gdb debugger), 409

clearerr() function, 474

clearing end of file indicators, 474

cloq() function, 489

closing files, 474
fclose() function, 365-367

Code Warrior Web site, 503

comma operators, 378, 447

command lines, multiple source files,
compiling, 334-336

command-line arguments, 380
File Copy Program Using

Command-Line Arguments
(Program 17.1), 382-383

main() function, 380-381
storing, 383

comments
C language specifications, 426
character syntax

beginning, 18

terminating, 18
including in programs, 17-19
proper usage of, 18-19
Using Comments in a Program

((Program 3.6), 17-19

communication between modules
external variables, 336-338
include files, 341-342
prototype declarations, 336
static variables, 339-340

compare_strings() function, 224

comparing
arrays of characters, 472
character strings, 204-206
strings, 470-471

compilers, 6-9
GNU C, 12
Unix C, 12

compiling programs, 7-12
assemblers, 9
debugging phase, 9
errors

semantic, 7-9

syntactic, 7-9
multiple source files from command

lines, 334-336

513copying

Compiling the Debug Code (Program
18.2), 391-393

complex arithmetic functions, 488-490

compound literals, 450-451
structural values, assigning, 181-182

compound relationship tests
if statement, 72-74

Determining if a Year Is a Leap Year
(Program 6.5), 73-74

logical AND operator, 72-73

logical OR operator, 72-73

compound statements, C language
specifications, 456

concat() function, 196, 201-203

concatenating
character string constants, C language

specifications, 429
character strings, 196
strings, 470

Concatenating Character Arrays
(Program 10.1), 196-198

Concatenating Character Strings
(Program 10.3), 202-203

conditional (?\) operator, ternary
nature of, 91-92

conditional compilation, 316
#else statement, 316-318
#endif statement, 316-318
#ifdef statement, 316-318
#ifndef statement, 316-318

conditional expression operator,
#define statement in macros, 310

conditional operators, 446

conj() function, 489

console windows, 9

const modifier, C language
specifications, 439

const variable (arrays), 111-113

constant expressions, 23, 442-443

constant FILE pointers
stderr, 369-370
stdin, 369-370
stdout, 369-370

constant keyword (pointers), 253

constants (C language specifications)
character constants, 428-429

in expressions, 227-230
character strings, 267-268, 429
enumeration constants, 430
floating-point constants, 427-428
integer constants, 427
wide character constants, 429

continue statement, 62-63
C language specifications, 457

convert_number() function, 152

converting
arguments, data types, 329-330
character strings into integers, 228-229
data types

float to int, 36-38

in expressions, 327-329

int to float, 36-38

sign extension, 329
strings to numbers, 479-481

Converting a Positive Integer to
Another Base

Program 7.7, 110-111
Program 8.14, 153-156

Converting a String to its Integer
Equivalent (Program 10.11), 228-230

Converting Between Integers and
Floats (Program 4.5), 36-38

copy_string() function, 266-267, 271

copying
arrays of characters, 472
character strings, 266-267, 271
strings, 470-471

How can we make this index more useful? Email us at indexes@samspublishing.com

514 Copying Characters from Standard Input to Standard Output

Copying Characters from Standard
Input to Standard Output (Program
16.2), 361-362

Copying Files (Program 16.3), 366-367

copysign() function, 484

cos() function, 484

cosh() function, 484

counters, array elements, 100-103

Counting the Characters in a String
(Program 10.2), 199-200

Counting Words (Program 10.7),
210-212

countWords() function, 210-215

cpow() function, 489

cproj() function, 489

creal() function, 489

csin() function, 489

csinh() function, 489

csqrt() function, 489

ctan() function, 490

ctanh() function, 490

cvs utility, programming functionality,
344

CygWin Web site, 502

D
data encapsulation (OOP), 417

data types
arguments, conversion of, 329-330
arrays, declaring, 97-98
C language specifications

basic, 430-432

declarations, 430

derived, 432-438

enumerated, 438

modifiers, 439

typedef statement, 438-439
char, 23

quote usage, 25-26

conversions

order in evaluating expressions, 327-329

sign extension, 329
Converting Between Integers and Floats

(Program 4.5), 36-38
converting to float, 36-38
converting to int, 36-38
double, 23-25
enumerated

defining, 321-322, 324

Using Enumerated Data Types (14.1),
322-324

float, 23

decimal notation, 24

hexadecimal notation, 25

scientific notation, 24-25
int, 23

base notations, 23-24

machine-dependent ranges, 24

ranges, 24

storage sizes, 24

valid examples of, 23
naming (typedef statement), 325-327
specifiers

long, 28-30

long long, 28-30

short, 28-30

signed, 28-30

unsigned, 28-30
storage of differing types (unions),

375-378
Using the Basic Data Types (Program

4.1), 26-27
void, 128

value storage, 26

debugging
gdb tool, 395-398

backtrace command, 405

break command, 400, 409

515derived data types

breakpoint deletion, 404-405

clear command, 409

function calls, 405-406

help command, 406-408

info break command, 404-405

info source command, 409

inserting breakpoints, 400

list command, 399-400, 409

miscellaneous features, 408

next command, 409

print command, 409

program execution controls, 400

quit command, 409

run command, 400, 409

session example, 402-404

set var command, 398-399, 409

single stepping, 401-404

stacktrace retrieval, 405

step command, 401-404, 409

viewing source files, 399-400
preprocessor, 389-395
programs

A Simple Program for Use with gdb
(18.4), 396-398

Adding Debug Statements with the
Preprocessor (18.1), 389-391

Compiling the Debug Code (18.2),
391-393

Defining the DEBUG Macro (18.3),
393-395

Working with gdb (18.5), 401-402

decimal notation in float data types,
24

declaring
arguments in functions, 134-135
arrays

data types, 97-98

multidimensional, 114
bit fields, 296

data types, C language specifications,
430

return types in functions, 126, 134-135
structures, 166
unions, 375
variables, 15

in for loops, 55-56

decrement (--) operator, 50, 262, 268,
445

defined names
NULL, 301
values, 300

defined values, referencing (#define
statement), 307-308

defining
arrays

of structures, 182

with unions, 376-377
bit fields, 294-295
data types, enumerated, 321-324
external variables, 337
functions, 119-122
local variables in functions, 124-126
pointer variables, 235-239
structures, 166-168

global structure definition, 173
unions, members, 376
variables in arrays, 96-98

Defining the DEBUG Macro
(Program 18.3), 393-395

deleting files via remove() function,
371

delimiting character strings, 195

Demonstrating an Array of Counters
(Program 7.2), 101-103

derived data types
C language specifications, 432

multidimensional arrays, 433-434

pointers, 437-438

single-dimensional arrays, 432-433

How can we make this index more useful? Email us at indexes@samspublishing.com

516 derived data types

structures, 434-436

unions, 436-437

variable-length arrays, 433

Determining if a Number Is Even or
Odd (Program 6.3), 69-71

Determining if a Year Is a Leap Year
(Program 6.5), 73-74

Determining Tomorrow’s Date
(Program 9.2), 169-171

digraph characters, C language
specifications, 425

directives, 299
preprocessors, 461

#define, 461-463

#error, 463

#if, 463

#ifdef, 464

#ifndef, 464

#include, 464-465

#line, 465

#pragma, 465

#undef, 465

dispatch tables, 274

display_converted_number() function,
152

Displaying Multiple Lines of Output
(Program 3.3), 14

Displaying Multiple Variables
(Program 3.5), 16-17

Displaying Variables (Program 3.4),
15-16

division sign (/), arithmetic operator,
30-33

do statement, 60-62
C language specifications, 457
Implementing a Revised Program to

Reverse the Digits of a Number
(Program 5.9), 61-62

programming looping usage, 44

double data type, 23-25

double quotation marks (“)
char data types, 25-26
character strings, declaring, 195

double quote (\”) escape character,
217

doubly linked lists (pointers), 244-252

dynamic memory allocation, 383-384
arrays, 117
calloc() function, 384-386
free() function, 387-388
functions, 481
linked lists, 387-388
malloc() function, 384-386
returning memory to system, 387-388
sizeof operator, 385-387

E
editing programs with modular
programming, 333-334

elements (array)
counters, 100-103
initializing, 106-108
sequencing through, 96-100
summing, 262-264
values, storing, 96

else if construct (if statement), 76-83
Categorizing a Single Character Entered

at the Terminal (Program 6.7), 78-80
Evaluating Simple Expressions (Program

6.8), 80-82
Implementing the Sign Function

(Program 6.6), 77-78
Revising the Program to Evaluate

Simple Expressions (Program 6.8A),
82-83

sign function, 76

emacs text editor, 11

end-of-file conditions
clearing, 474
I/O operations, 361-362

enum keyword, 321-324

517file I/O operations

enumerated data types
C language specifications, 438
defining, 321-324
Using Enumerated Data Types (14.1),

322-324

enumeration constants, C language
specifications, 430

EOF values, getchar() function, 362

equal to (= =) operator, 46-50

equal_strings() function, 204

errors in programming,
troubleshooting, 497-500

escape characters, 216-218

escape sequences, C language
specifications, 428-429

evaluating order of operators, 442

Evaluating Simple Expressions
(Program 6.8), 80-82

.exe filename extension, 9

exf() function, 484

exfc() function, 484

exit() function, 490
programs, terminating, 370-371

exiting
loops, 62
programs, 490

exp() function, 484

expml() function, 484

expressions
C language specifications, 439

constant expressions, 442-443

summary table, 440-442
character constants in, 227-230
constant, 23
data types, conversion order, 327-329
pointers, 239-240
structures, 168-171

extensions (filenames), 9

external variables
defining, 337
modules, communicating between,

336-338
versus static variables, 339-340

F
fabs() function, 484

factorial() function, 159

fclose() function, 474
files, closing, 365-367

fdim() function, 484

feof() function, 474
testing files for EOF conditions,

367-368

ferror() function, 474

fflush() function, 474

fgetc() function, 474

fgetpos() function, 474

fgets() function, 474
files, reading to, 368

Fibonacci numbers, generating,
103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (Program 7.8),
115-117

field width specification, triangular
number output, 51

fields, omitting in for loops, 55

File Copy Program Using
Command-Line Arguments
(Program 17.1), 382-383

file I/O operations
fclose() function, 365-367
feof() function, 367-368
fgets() function, 368
fopen() function, 363-364
fprint() function, 368
fputs() function, 368
getc() function, 365

How can we make this index more useful? Email us at indexes@samspublishing.com

518 file I/O operations

putc() function, 365
remove() function, 371
rename() function, 371

FILE pointers
stderr, 369-370
stdin, 369-370
stdout, 369-370

filename extensions, 9

files
a.out (Unix executable), 9
characters

reading (getc() function), 365

reading (putc() function), 365
closing (fclose() function), 365-367, 474
copying (Program 16.3), 366-367
current position, returning, 474
deleting (remove() function), 371
EOF conditions, testing (fclose()

function), 367-368
executable (Unix), 9
header, 467
I/O operations

end-of-file conditions, 361-362

redirection of, 359-361
include, 341-342
modular programming organization,

333-334
naming, 7
opening, 475
opening (fopen() function), 363-364
printing (fprint() function), 368
programming utilities

ar, 345

cvs, 344

grep, 345

make, 343-344

sed, 345
reading to (fgets() function), 368
renaming (rename() function), 371, 478
temporary files, creating, 478
writing to (fputs() function), 368

find_entry() function, 257

Finding the Greatest Common
Divisor and Returning the Results
(Program 8.6), 127-128

Finding the Minimum Value in an
Array (Program 8.9), 138-140

float data type, 23
converting to, 36-38
decimal notation, 24
hexadecimal notation, 25
scientific notation, 24-25

float.h header file, 316, 469

floating point numbers, 15

floating-point constants, C language
specifications, 427-428

floor() function, 484

fma() function, 485

fmax() function, 485

fmin() function, 485

fmod() function, 485

fopen() function, 363-364, 475

for statement
array elements, sequencing through,

98-100
C language specifications, 457
init expression, 45
loop condition, 45
loop expression, 45
nested, 53-54
program looping

relational operators, 46-50

triangular number calculation, 44-45
programming looping usage, 44
variants, 54

field omission, 55

multiple expressions, 55

variable declaration, 55-56

formal parameter name, function
arguments, 124

format string, 17

519functions

formatted I/O operations
printf() function, 348

conversion characters, 350

flags, 348

Illustrating the printf Formats (Program
16.1), 350-355

type modifiers, 349

width and precision modifiers, 349
scanf() function, 355

conversion characters, 356-359

conversion modifiers, 355

FORTRAN (FORmula TRANslation)
language, 6

fpclassify() function, 482

fprintf() function, 368, 475

fputc() function, 475

fputs() function, 368, 475

fractions program
Working with Fractions in C (19.1),

413-414
Working with Fractions in C# (19.4),

422-424
Working with Fractions in C++ (19.3),

419-421
Working with Fractions in Objective-C

(19.2), 414-419
writing in C, 413-414
writing in C#, 422-424
writing in C++, 419-421
writing in Objective-C, 414-419

fread() function, 475

free() function, 387-388, 481

freopen() function, 475

frexp() function, 485

fscanf() function, 476

fseek() function, 476

fsetpos() function, 476

ftell() function, 476

function calls (gdb debugger), 405-406

functions, 119
abs(), 490
absolute value of numbers, calculating,

129-131
absolute_value(), 129-131
acos(), 483
alphabetic(), 212, 214
arguments, 16, 122-123

checking values, 135-137

declaring, 134-135

formal parameter name, 124

format string, 17

pointer arguments, passing, 254-257
array_sum(), 262-264
arrays

passing multidimensional arrays,
146-152

passing to, 137-142
asin(), 483
asinh(), 483
atan(), 484
atan2(), 484
atanh(), 484
atof(), 480
atoi(), 230, 480
atol(), 480
auto_static(), 157-158
automatic local variables, 124-126, 156
C language specifications, 452

calls, 455-456

definition of, 454-455

pointers, 456
cabs(), 488
cacos(), 488
cacosh(), 488
calling, 121-122
calloc(), 386, 481
carq(), 488
casin(), 488
casinh(), 488

How can we make this index more useful? Email us at indexes@samspublishing.com

520 functions

catan(), 489
catanh(), 489
ccos(), 489
ccosh(), 489
ceil(), 484
cexp(), 489
character functions, 473
cimaq(), 489
clearerr(), 474
cloq(), 489
compare_strings(), 224
complex arithmetic functions, 488-490
concat(), 196, 201-203
conj(), 489
convert_number(), 152
copy_string(), 266-267, 271
copysign(), 484
cos(), 484
cosh(), 484
count_words(), 210, 214-215
cpow(), 489
cproj(), 489
creal(), 489
csin(), 489
csinh(), 489
csqrt(), 489
ctan(), 490
ctanh(), 490
declaring return value type, 126
defining, 119-122

global structure definition, 173
display_converted_number(), 152
dynamic memory allocation

calloc(), 384-385

functions, 481

malloc(), 384-385
equal_strings(), 204
exf(), 484
exfc(), 484

exit(), 490
exp(), 484
expml(), 484
fabs(), 484
factorial(), 159
fclose(), 474
fdim(), 484
feof(), 474
ferror(), 474
fflush(), 474
fgetc(), 474
fgetpos(), 474
fgets(), 474
find_entry(), 257
floor(), 484
fma(), 485
fmax(), 485
fmin(), 485
fmod(), 485
fopen(), 475
fpclassify(), 482
fprintf(), 475
fputc(), 475
fputs(), 475
fread(), 475
free(), 387-388, 481
freopen(), 475
frexp(), 485
fscanf(), 476
fseek(), 476
fsetpos(), 476
ftell(), 476
fwrite(), 477
get_number_and_base(), 152
getc(), 477
getchar(), 208-210, 477
getenv(), 490
gets(), 209-212, 477
global variables, 152-156
hypot(), 485

521functions

I/O, 473-478

fclose(), 365-367

feof(), 367-368

fgets(), 368

fopen(), 363-364

fprint(), 368

fputs(), 368

getc(), 365

getchar(), 348

printf(), 348-355

putc(), 365

putchar(), 348

remove(), 371

rename(), 371

scanf(), 355-359
ilogb(), 485
in-memory format conversion, 478-479
is_leap_year(), 174
isalnum(), 473
isalpha(), 230, 473
iscntrl(), 473
isdigit(), 230, 473
isfin(), 482
isgraph(), 473
isgreater(), 482
isgreaterequal(), 482
isinf(), 482
islessequal(), 483
islessgreater(), 483
islower(), 230, 473
isnan(), 483
isnormal(), 483
isprint(), 473
ispunct(), 473
isspace(), 473
isunordered(), 483
isupper(), 230, 473
isxdigit(), 473
labs(), 490

ldexp(), 485
lgamma(), 485
llabs(), 490
llrint(), 486
llround(), 486
local variables, defining, 124-126
log(), 485
log1(), 486
log2(), 485
logb(), 485
loglb(), 485
lookup(), 219-223
lrint(), 486
main(), 120

program syntax, 13
malloc(), 386, 481
math functions, 482-487
memchr(), 472
memcmp(), 472
memcpy(), 472
memmove(), 472
memory functions, 472
minimum(), 138
modf(), 486
modules, 333
nan(), 486
nearbyint(), 486
Newton-Raphson Iteration Technique,

131-133
nextafter(), 486
nexttoward(), 486
number_of_days(), 171-174
passing arrays to assignment operators,

142-143
perror(), 477
pointers, returning, 257
pointers to, 273-274
pow(), 486
print_message(), 120
printf(), 16, 477

program syntax, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

522 functions

programs

Calculating Factorials Recursively
(8.16), 159-161

Calculating the Absolute Value (8.7),
129-131

Calculating the nth Triangular Number
(8.4), 123

Calculating the Square Root of a
Number (8.8), 132-133

Calling Functions (8.2), 121

Changing Array Elements in Functions
(8.11), 142-143

Converting a Positive Integer to Another
Base (8.14), 153-156

Finding the Greatest Common Divisor
and Returning the Results (8.6),
127-128

Finding the Minimum Value in an Array
(8.9), 138, 140

Illustrating Static and Automatic Variables
(8.15), 157-158

More on Calling Functions (8.3), 122

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

Revising the Program to Find the
Greatest Common Divisor (8.5),
125-126

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Updating the Time by One Second
(9.5), 178-180

Using Multidimensional Arrays and
Functions (8.13), 147-150

Writing a Function in C (8.1),
120-121

prototype declaration, 124
putc(), 477
putchar(), 477
puts(), 478

qsort(), 274, 490-491
rand(), 491
read_line(), 213-215
realloc(), 481
recursive, 159-161
remainder(), 486
remove(), 478
rename(), 478
returning results from, 126-135
rewind(), 478
rint(), 487
rotate(), 290-292
round(), 487
scalar_multiply(), 147
scalbln(), 487
scalbn(), 487
scanf(), 206, 478

input values, 51-52
shift functions, 288-290
shift(), 289
signbit(), 483
sin(), 487
sinh(), 487
sort(), 143-144, 146
sprintf(), 478-479
sqrt(), 487
square_root(), 133
srand(), 491
sscanf(), 478-479
static functions, 339
static variables, 156
strcat(), 230, 470
strchr(), 470
strcmp(), 230, 470
strcpy, 470-471
strcpy(), 230
string functions, 470-472
string-to-number conversions, 479-481
string_length(), 199, 272
string_to_integer(), 228-230
strlen(), 230, 471

523grep utility

strncat(), 471
strncmp(), 471
strncpy(), 471
strrchr(), 471
strstr(), 471-472
strtod(), 480
strtol(), 480
strtoul(), 481
structures, 171-174, 177
system(), 491
tan(), 487
tanh(), 487
tgamma(), 487
time_update(), 178-180, 183
tmpfile(), 478
tolower(), 473
toupper(), 473
trunc(), 487
ungetc(), 478
utility functions, 490-491

fwrite() function, 477

G
gcc compiler, command-line options,
493-495

gcc Web site, 493, 502

gdb tool, debugging with, 395-398
backtrace command, 405
break command, 400, 409
breakpoint deletion, 404-405
clear command, 409
function calls, 405-406
help command, 406-408
info break command, 404-405
info source command, 409
inserting breakpoints, 400
list command, 399-400, 409
miscellaneous features, 408
next command, 409
print command, 409

program execution controls, 400
quit command, 409
run command, 400, 409
session example, 402-404
set var command, 398-399, 409
single stepping, 401-404
stacktrace retrieval, 405
step command, 401-404, 409
viewing source files, 399-400

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Generating a Table of Triangular
Numbers (Program 5.3), 47-50

Generating Fibonacci Numbers
(Program 7.3), 103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (Program
7.8), 115-117

get_number_and_base() function, 152

getc() function, 365, 477

getchar() function, 208-210, 348, 477

getenv() function, 490

gets() function, 209-212, 477

getter methods (OOP), 417

global variables
default initial values, 155
functions, 152-156

GNU C compiler, 12

GNU.org Web site, command-line
tools, 504

Google Groups Web site, 502

goto statement
C language specifications, 458
execution of, 373
labels, 373
programming abuse, 374

greater than or equal to (>=)
operator, 46-50

grep utility, programming
functionality, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

524 header files

H
header files

#include statement, 313-315
float.h, 316, 469
limits.h, 316, 468
math.h, 482
modular programming, use of, 341-342
stdbool.h, 469
stddef.h, 467
stdint.h, 469-470
stdlib.h, 490-491

help command (gdb debugger),
406-408

hexadecimal character value (\xnn)
escape character, 217

hexadecimal notation
float data types, 25
int data type, 23-24

high-order bit, 279

higher-level languages, 6
assembly languages, 6
compilers, 6
FORTRAN, 6
interpreters, 10
syntax standardization, 6

horizontal tab (\t) escape character,
216

hypot() function, 485

I
I/O functions, 473-478

I/O operations, 347
character functions

getchar(), 348

putchar(), 348
Copying Characters from Standard

Input to Standard Output (Program
16.2), 361-362

file functions

fclose(), 365-367

feof(), 367-368

fgets(), 368

fopen(), 363-364

fprint(), 368

fputs(), 368

getc(), 365

putc(), 365

remove(), 371

rename(), 371
files

end-of-file conditions, 361-362

redirecting to, 359-361
formatted functions

printf(), 348-355

scanf(), 355-359
function calls, 347

identifiers, C language specifications,
425

keywords, 426
predefined, 466
universal character names, 426

IDEs (Integrated Development
Environments), 10, 334

function of, 10
Linux, 10
Mac OS X

CodeWarrior, 10

Xcode, 10
Windows OS,Visual Studio, 10

if statement, 65
C language specifications, 458
compound relational tests, 72-74
else if construct, 77-83
general format, 65
if-else construct, 69-72
nested, 75-76

525int data type

programs

Calculating the Absolute Value of an
Integer (6.1), 66-67

Calculating the Average of a Set of
Grades (6.2), 67-69

Determining if a Number Is Even or
Odd (6.3), 69-71

Revising the Program to Determine if a
Number Is Even or Odd (6.4), 71-72

if-else construct (if statement), 69-72
Determining if a Number Is Even or

Odd (Program 6.3), 69-71
Revising the Program to Determine if a

Number Is Even or Odd (Program
6.4), 71-72

Illustrating a Structure (Program 9.1),
166-168

Illustrating Arrays of Structures
(Program 9.6), 183-184

Illustrating Bitwise Operators
(Program 12.2), 286-287

Illustrating Pointers (Program 11.1),
236-237

Illustrating Static and Automatic
Variables (Program 8.15), 157-158

Illustrating Structures and Arrays
(Program 9.7), 188-189

Illustrating the Modulus Operator
(Program 4.4), 35-36

ilogb() function, 485

Implementing a Revised Program to
Reverse the Digits of a Number
(Program 5.9), 61-62

Implementing a Rotate Function
(Program 12.4), 290-292

Implementing a Shift Function
(Program 12.3), 288-290

Implementing the Sign Function
(Program 6.6), 77-78

in-memory format conversion
functions, 478-479

include files, modular programming,
341-342

include statement, program syntax, 13

increment (++) operator, 49, 262, 268,
445

index number (arrays), 96

indirection, 235-236

infinite loops, 65

info break command (gdb debugger),
404-405

info source command (gdb debug-
ger), 409

init expressions (for statement), 45

initializing
arrays

characters, 107

elements, 106-108

multidimensional arrays, 114-115

of structures, 183
character strings, 201-203
structures, 180-181
union variables, 376
variables (static), 156-158

Initializing Arrays (Program 7.5),
107-108

input
programs, 9
single-character, 208-212

input/output operations. See I/O
operations

inputting character strings, 206-208

instances, classes (OOP), 412-413

instruction sets, 5

int data type, 23
base notations, 23-24
converting to, 36-38
machine-dependent ranges, 24
ranges, 24
storage sizes, 24
valid examples of, 23

How can we make this index more useful? Email us at indexes@samspublishing.com

526 integers

integers
base conversion via arrays, 109-111
constants, C language specifications, 427
pointers, 239-240

Integrated Development
Environments. See IDEs

International Standard Organization
(ISO), 1

interpreters, 10

Introducing Character Arrays
(Program 7.6), 108-109

Introducing the #define Statement
(Program 13.1), 300-302

Introduction of Object-Oriented
Programming, 3rd Edition, 503

isalnum() function, 473

isalpha() function, 230, 473

iscntrl() function, 473

isdigit() function, 230, 473

isfin() function, 482

isgraph() function, 473

isgreater() function, 482

isgreaterequal() function, 482

isinf() function, 482

islessequal() function, 483

islessgreater() function, 483

islower() function, 230, 473

isnan() function, 483

isnormal() function, 483

ISO (International Standard
Organization), 1

isprint() function, 473

ispunct() function, 473

isspace() function, 473

isunordered() function, 483

isupper() function, 230, 473

isxdigit() function, 473

J - K
JAVA programming language, inter-
pretive nature of, 10

joining tokens in macros (## opera-
tor), 313

keywords
auto, 124-126, 156
C language specifications, 426
enum, 321-324
static, 156
void, 128

Kochan-Wood Web site, 502
book exercises and errata resources, 501

Kylix (Linux IDE), 10

L
labels in goto statements, 373

labs() function, 490

ldexp() function, 485

least significant bit, 279

left shift (<<) bitwise operator, 287

length of strings, 471

less than (<) operator, 46-50

less than or equal to (<=) operator,
46-50

lgamma() function, 485

limits.h header file, 316, 468

linked lists
dynamic memory allocation, 387-388
pointers, 244-252

linking programs, 9

Linux, Kylix IDE, 10

list command (gdb debugger),
399-400, 409

llabs() function, 490

llrint() function, 486

527macros

llround() function, 486

loading programs, 9

local variables
automatic (functions), 124-126, 156
defining (functions), 124-126

log() function, 485

log1() function, 486

log2() function, 485

logb() function, 485

logical AND (&&) operator,
compound relationship tests, 72-73

logical negation (!) operator, Boolean
variables, 90

logical operators, 444

logical OR (||) operator, compound
relationship tests, 72-73

logical right shift, 288

loglb() function, 485

long long specifier (data types), 28-30

long specifier (data types), 28-30

lookup() function, 219-223

loop condition (for statement), 45

loop expressions (for statement), 45

loops
Boolean variables

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (Program 6.10A),
90-91

break statement, 62, 84
continue statement, 62-63
do statement, 60-62
for statement, 44-45

field omission, 55

multiple expressions, 55

nested, 53-54

sequencing through array elements,
98-100

variable declaration, 55-56

variants, 54-56
if statement, 65

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

if-else construct, 69-72
infinite, 65
null statement, 374
relational operators, 46-50
switch statement, 84

Revising the Program to Evaluate Simple
Expressions,Version 2 (Program 6.9),
85-86

while statement, 56-60

low-order bit, 279

lrint() function, 486

M
Mac OS X

IDEs

CodeWarrior, 10

Xcode, 10
Objective-C language usage, 414

macros
operator, 312
operator, 313
#define statement, 308-311

conditional expression operator, 310

converting character case, 311

defining number of arguments, 311

testing for lowercase characters, 310
#include statement, header files,

313-315
tokens, joining (## operator), 313

How can we make this index more useful? Email us at indexes@samspublishing.com

528 main() function

main() function, 120
command-line arguments, 380-381
program syntax, 13

make utility, programming
functionality, 343-344

malloc() function, 386, 481
dynamic memory allocation, 384-385

math functions, 482-487

math.h header file, 482

members (unions)
arithmetic rules, 376
defining, 376

memchr() function, 472

memcmp() function, 472

memcpy() function, 472

memmove() function, 472

memory, dynamic memory allocation,
383-384

calloc() function, 386
free() function, 387-388
functions, 481
linked lists, 387-388
malloc() function, 386
returning memory to system, 387-388
sizeof operator, 385-386

memory addresses (pointers), 274-276

memory functions, 472

message expressions (OOP), 412-413

methods, classes (OOP), 412-413
getters, 417
setters, 417

Metrowerks Web site, 503

MinGW Web site, 502

minimum() function, 138

minus sign (-), arithmetic operator,
30-33

modf() function, 486

modifiers, C language specifications,
439

Modifying the Dictionary Lookup
Using Binary Search (Program
10.10), 224-227

modular programming
file organization, 333-334
header files, use of, 341-342
IDE (Integrated Development

Environment), 334
multiple source files, compiling from

command line, 334-336

modules, 333
communicating between

include files, 341-342

static variables, 339-340
compiling, 334-336
external variables, communicating

between, 336-338
prototype declarations, communicating

between, 336

modulus (%) arithmetic operator,
35-36

More Examples with Arithmetic
Operators (Program 4.3), 33-34

More on Calling Functions (Program
8.3), 122

More on Working with Defines
(Program 13.2), 302-303

More Pointer Basics (Program 11.2),
238

most significant bit, 279

multidimensional arrays, 113-114,
433-434

declaring, 114
initializing, 114-115
Multidimensional Variable-Length Arrays

(Program 8.13A), 150-152
passing to functions, 146-152
variable-length, 150-152

Multidimensional Variable-Length
Arrays (Program 8.13A), 150-152

multiple expressions, use in for loops,
55

529OOP

multiple source files, compiling from
command line, 334-336

multiplication sign (*), arithmetic
operator, 30-33

N
naming

data types (typedef statement), 325-327
files, 7
program constants, #define statement,

299-303
variables, 21

reserved names, 22

rules, 22

nan() function, 486

nearbyint() function, 486

negative numbers, 279-280

nested for loops, 53-54

nested if statements, 75-76

newline character (\n), program
syntax, 13

newsgroups, C programming
resources, 502

Newton-Raphson Iteration Technique,
131-133

next command (gdb debugger), 409

NeXT Software, 414

nextafter() function, 486

nexttoward() function, 486

not equal to (!=) operator, 46-50

null character (‘\0’), 199

null statement
C language specifications, 458
example of, 374-375
loop control, 374
programming uses, 374

null strings, 213-215

number_of_days() function, 171-174

numbers
absolute values, calculating, 129-131
Fibonacci, generation of, 103-104
negative, 279-280
prime, generating with arrays, 104-106
square roots, calculating, 131-133

O
object-oriented programming. See
OOP

Objective-C language
as basis for Mac OS X, 414
development history, 414
fractions program, writing, 414-419

Objective-C Programming Language, 504

octal character value (\nnn) escape
character, 217

octal notation, int data type, 23

omitting fields in for loops, 55

OOP (object-oriented programming),
411

C# language, development history, 422
C++ language, development history, 419
car analogy, 411-412
classes

instances, 412-413

methods, 412-413
data encapsulation, 417
Introduction of Object-Oriented

Programming, 3rd Edition, 503
languages, 411
message expressions, 412-413
methods

getters, 417

setters, 417
Objective-C language,Working with

Fractions in Objective-C (Program
19.2), 414-419

overview, 411-412
versus procedural languages, 413

How can we make this index more useful? Email us at indexes@samspublishing.com

530 openf() function modes

openf() function modes
append, 364
read, 364
update, 364
write, 364

opening files
binary files, 475
fopen() function, 363-364

operating systems
function of, 6
Unix

development of, 6

spin-offs, 6
Windows XP, 7

operators
#, macro definitions, 312
##, macro definitions, 313
assignment operators, 15, 142-143

joining with arithmetic operators, 38-39
bit operators, 280

& (bitwise AND), 281-283

<< (left shift), 287

^ (bitwise Exclusive-OR), 284-285

| (bitwise Inclusive-OR), 283-284
C language specifications

arithmetic operators, 443-444

array operators, 447-448

array pointers, 449-450

assignment operators, 446

bitwise operators, 445

comma operators, 447

conditional operators, 446

decrement operators, 445

increment operators, 445

logical operators, 444

pointer operators, 448

relational operators, 444-445

sizeof operators, 447

structure operators, 448

structure pointers, 450

type cast operators, 446
comma, 378
conditional expression in macros, 310
evaluation order, 442
pointer operators, 236
precedence rules, 441-442
relational operators, 46-50
sizeof

arguments, 385

dynamic memory allocation, 385-387
summary table, 440-442
type cast, 69

output operations
end-of-file conditions, 361-362
redirecting to files, 359-361

P
passing arrays to functions, 137-142

assignment operators, 142-143
multidimensional arrays, 146-152

perror() function, 477

plus sign (+) arithmetic operator,
30-33

pointer operators, 448

Pointer Version of copyString()
function (Program 11.13), 266-267

pointers, 235
& (address) operator, 236, 260
* (indirection) operator, 236
arrays, 259-260

decrement (--) operator, 262, 268

increment (++) operator, 262

postdecrement operator, 269-271

postincrement operator, 269-271

predecrement operator, 269-271

preincrement operator, 269-271

program optimization, 263-264

sequencing through array elements, 261

531prime numbers

character string constants, 266-268
const keyword, 253
declarations, 437-438
defining, 235-239
expressions, 239-240
functions, 273-274

C language specifications, 456

passing pointer arguments, 254-257

returning pointers, 257
indirection, 235
integers, 240
memory addresses, 274-276
programs

Illustrating Pointers (11.1), 236-237

More Pointer Basics (11.2), 238

Pointer Version of copyString() function
(11.13), 266-267

Returning a Pointer from a Function
(11.10), 257-259

Revised Version of copyString() function
(11.14), 271-272

Summing the Elements of an Array
(11.12), 264-265

Traversing a Linked List (11.7),
250-252

Using Linked Lists (11.6), 246-250

Using Pointers and Functions (11.8),
254-255

Using Pointers in Expressions (11.3),
239-240

Using Pointers to Exchange Values
(11.9), 255-257

Using Pointers to Find Length of a
String (11.15), 272-273

Using Pointers to Structures (11.4),
241-243

Using Structures Containing Pointers
(11.5), 243-244

Working with Pointers to Arrays
(11.11), 262-263

structures, 240-243

linked lists, 244-252

structures containing pointers, 243-244
subtracting, 272
versus arrays, differentiating, 264-265

postdecrement operators, 269-271

postincrement operators, 269-271

pow() function, 486

precedence rules
arithmetic operators, 30
operators, 441-442
rules example, 34

precision modifiers, 69

predecrement operators, 269-271

predefined identifiers (directives), 466

preincrement operators, 269-271

preprocessor
Adding Debug Statements with the

Preprocessor (Program 18.1), 389-391
C language specifications, 460

directives, 461-465

trigraph sequences, 460-461
debugging with, 389-395

preprocessor statements, 299
#define, 299-303

arguments, 308-311

definition types, 306-308

macros, 308-311

program extendability, 303-305

program portability, 305-306
#elif, 318-319
#if, 318-319
#include, macro definition collections,

313-315
#undef, 319

prime numbers
Generating a Table of Prime Numbers

(Program 6.10), 87-90
generating via arrays, 104-106

How can we make this index more useful? Email us at indexes@samspublishing.com

532 prime numbers

Revising the Program to Generate a
Table of Prime Numbers (Program
6.10A), 90-91

Sieve of Erastosthenes algorithm, 118

print_message() function, 120

print command (gdb debugger), 409

printf routine
output, 14
variables

displaying multiple values, 16-17

displaying values, 15-16

printf() function, 16, 348, 477
conversion characters, 350
flags, 348
Illustrating the printf Formats (Program

16.1), 350-355
program syntax, 13
type modifiers, 349
width and precision modifiers, 349

printing files via fprint() function,
368

procedural languages versus OOP lan-
guages, 413

program constants, symbolic names,
299-303

program looping
break statement, 62
Calculating the Eighth Triangular

Number (Program 5.1), 43
continue statement, 62-63
do statement, 44, 60-62
for statement, 44

Generating a Table of Triangular
Numbers (5.3), 47-50

relational operators, 46-50
scanf() function,Asking the User for

Input (Program 5.4), 51-52
triangular number calculation, 43-45

nested for loops, 53-54

output alignment, 50-51

user input, 51-52
while statement, 44, 56-60

programming
algorithms, 5
assembly languages, 6
case sensitivity, 11
common mistakes, troubleshooting,

497-500
higher-level languages, 6
instruction sets, 5
modular programming, 333-334
overview, 5
top-down, 137

Programming in Objective-C, 503

programming utilities
ar, 345
cvs, 344
grep, 345
make, 343-344
sed, 345

programs
#define statement

Introducing the #define Statement
(13.1), 300-302

More on Working with Defines (13.2),
302-303

A Simple Program for Use with gdb
(18.4), 396-398

Adding Debug Statements with the
Preprocessor (18.1), 389-391

arguments, calling, 13
arrays

Converting a Positive Integer to Another
Base (7.7), 110-111

Generating Fibonacci Numbers Using
Variable -Length Arrays (7.8),
115-117

Introducing Character Arrays (7.6),
108-109

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Asking the User for Input (5.4), 51-52
assemblers, 6, 9

533programs

bitwise operators, Illustrating Bitwise
Operators (12.2), 286-287

bugs, 9
Calculating the Eighth Triangular

Number (5.1), 43
Calculating the 200th Triangular

Number (5.2), 44-45
Categorizing a Single Character Entered

at the Terminal (6.7), 78-80
comment statements, including, 17-19
compiling, 7-12

debugging phase, 9

semantic errors, 7-9

syntactic errors, 7-9
Compiling the Debug Code (18.2),

391-393
compound relational tests, Determining

if a Year Is a Leap Year (Program 6.5),
73-74

Concatenating Character Arrays (10.1),
196-198

Concatenating Character Strings (10.3),
202-203

Converting a String to its Integer
Equivalent (10.11), 228-230

Converting Between Integers and Floats
(4.5), 36-38

Copying Files (16.3), 366-367
Counting the Characters in a String

(Program 10.2), 199-200
Counting Words (Program 10.7),

210-212
Counting Words in a Piece of Text

(10.8), 214-215
debugging, 9
Defining the DEBUG Macro (18.3),

393-395
Demonstrating an Array of Counters

(7.2), 101-103
Determining if a Number Is Even or

Odd (6.3), 69-71
Displaying Multiple Lines of Output

(3.3), 14
Displaying Multiple Variables (3.5),

16-17

Displaying Variables (3.4), 15-16
editing (modular programming),

333-334
Evaluating Simple Expressions (6.8),

80-82
exiting, 490
File Copy Program Using

Command-Line Arguments (17.1),
382-383

Finding the Greatest Common Divisor
(5.7), 58-59

fractions

writing in C, 413-414

writing in C#, 422-424

writing in C++, 419-421

writing in Objective-C, 414-419
functions

Calculating Factorials Recursively
(8.16), 159-161

Calculating the Absolute Value (8.7),
129-131

Calculating the nth Triangular Number
(8.4), 123

Calculating the Square Root of a
Number (8.8), 132-133

Calling Functions (8.2), 121

Changing Array Elements in Functions
(8.11), 142-143

Converting a Positive Integer to Another
Base (8.14), 153-156

defining, 119-122

Finding the Greatest Common Divisor
and Returning the Results (8.6),
127-128

Finding the Minimum Value in an Array
(8.9), 138-140

Illustrating Static and Automatic Variables
(8.15), 157-158

More on Calling Functions (8.3), 122

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

How can we make this index more useful? Email us at indexes@samspublishing.com

534 programs

Revising the Program to Find the
Greatest Common Divisor (8.5),
125-126

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Updating the Time by One Second
(9.5), 178-180

Using Multidimensional Arrays and
Functions (8.13), 147-150

Writing in Function in C (8.1),
120-121

Generating a Table of Prime Numbers
(6.10), 87-90

Generating a Table of Triangular
Numbers (5.3), 47-50

Generating Fibonacci Numbers (7.3),
103-104

I/O operations, Copying Characters
from Standard Input to Standard
Output (16.2), 361-362

Illustrating Pointers (11.1), 236-237
Illustrating the Modulus Operator (4.4),

35-36
Illustrating the printf Formats (16.1),

350-355
Implementing a Revised Program to

Reverse the Digits of a Number (5.9),
61-62

Implementing the Sign Function (6.6),
77-78

Initializing Arrays (7.5), 107-108
input, 9
interpreting, 10
Introducing the while Statement (5.6),

56-58
linking, 9
loading, 9
Modifying the Dictionary Lookup

Using Binary Search (10.10), 224-227
More Examples with Arithmetic

Operators (4.3), 33-34
More Pointer Basics (11.2), 238
output, 9
Pointer Version of copyString()

function (11.13), 266-267

portability of, 6
proper termination of, 383
Reading Lines of Input (10.6), 209-210
Reading Strings with scanf (10.5),

207-208
Returning a Pointer from a Function

(11.10), 257-259
Reversing the Digits of a Number (5.8),

59-60
Revised Version of copyString()

function (11.14), 271-272
Revising the Program to Determine if a

Number Is Even or Odd (6.4), 71-72
Revising the Program to Evaluate

Simple Expressions (6.8A), 82-83
Revising the Program to Evaluate

Simple Expressions,Version 2 (6.9),
85-86

Revising the Program to Generate a
Table of Prime Numbers (6.10A),
90-91

Revising the Program to Generate
Prime Numbers,Version 2 (7.4),
105-106

rotating bit values, Implementing a
Rotate Function (12.4), 290-292

running, 12
shift functions, Implementing a Shift

Function (12.3), 288-290
statements, calling, 13
structures

Determining Tomorrow’s Date (9.2),
169-171

Illustrating a Structure (9.1), 166-168

Illustrating Arrays of Structures (9.6),
183-184

Illustrating Structures and Arrays (9.7),
188-189

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

Summing the Elements of an Array
(11.12), 264-265

535referencing defined values

syntax

braces ({}), 13

include statement, 13

main() function, 13

newline character (\n), 13

printf() function, 13
terminating (exit() function), 370-371
Testing Strings for Equality (10.4),

204-206
Traversing a Linked List (11.7), 250-252
undefined exit status, 383
Using Comments in a Program (3.6),

17-19
Using Enumerated Data Types (14.1),

322-324
Using Linked Lists (11.6), 246-250
Using Nested for Loops (5.5), 53-54
Using Pointers and Functions (11.8),

254-255
Using Pointers in Expressions (11.3),

239-240
Using Pointers to Exchange Values

(11.9), 255-257
Using Pointers to Find Length of a

String (11.15), 272-273
Using Pointers to Structures (11.4),

241-243
Using Structures Containing Pointers

(11.5), 243-244
Using the #include Statement (13.3),

314-315
Using the Arithmetic Operators (4.2),

30-31
Using the Basic Data Types (4.1), 26-27
Using the Dictionary Lookup Program

(10.9), 220-222
Working with an Array (7.1), 98, 100
Working with Fractions in C (19.1),

413-414
Working with Fractions in C# (19.4),

422-424
Working with Fractions in C++ (19.3),

419-421

Working with Fractions in Objective-C
(19.2), 414-419

Working with gdb (18.5), 401-402
Working with Pointers to Arrays

(11.11), 262-263
Writing Your First C Program (3.1), 11

prototype declarations
functions, 124
modules, communicating between, 336

putc() function, 365, 477

putchar() function, 348, 477

puts() function, 478

Python programming language, 10

Q - R
qsort() function, 274, 490-491

qualifiers (variables)
register, 378-379
restrict, 379
volatile, 379

question mark (\?) escape character,
217

quit command (gdb debugger), 409

quotation marks, declaring character
strings, 195

rand() function, 491

read_line() function, 213-215

reading files via fgets() function, 368

Reading Lines of Data (Program
10.6), 209-210

Reading Strings with scanf (Program
10.5), 207-208

real numbers, 15

realloc() function, 481

recursive functions, 159-161

redirecting I/O operations to files,
359-361

referencing defined values (#define
statement), 307-308

How can we make this index more useful? Email us at indexes@samspublishing.com

536 register qualifier

register qualifier (variables), 378-379

relational operators, 46-50, 444-445

remainder() function, 486

remove() function, 478
files, deleting, 371

rename() function, 478
files, renaming, 371

renaming files, 478
rename() function, 371

reserved names (variables), 22

restrict modifier, C language
specifications, 439

restrict qualifier (variables), 379

return statement (functions), 126
C language specifications, 459

returning
function results, 126-131

declaring return types, 134-135
pointers, 257

Returning a Pointer from a Function
(Program 11.10), 257-259

Revised Version of copyString()
function (Program 11.14), 271-272

Revising the Function to Find the
Minimum Value in an Array
(Program 8.10), 140-142

Revising the Program to Determine if
a Number Is Even or Odd (Program
6.4), 71-72

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

Revising the Program to Evaluate
Simple Expressions (Program 6.8A),
82-83

Revising the Program to Evaluate
Simple Expressions,Version 2
(Program 6.9), 85-86

Revising the Program to Find the
Greatest Common Divisor (Program
8.5), 125-126

Revising the Program to Generate a
Table of Prime Numbers (Program
6.10A), 90-91

Revising the Program to Generate
Prime Numbers,Version 2 (Program
7.4), 105-106

rewind() function, 478

right justification, triangular number
output, 51

right shift () bitwise operator,
287-288

rint() function, 487

Ritchie, Dennis, 1

rotate() function, 290-292

rotating bit values, 290-292

round() function, 487

routines. See also functions
printf, 14

displaying multiple variable values, 16-17

displaying variable values, 15-16

output, 14

run command (gdb debugger), 400,
409

S
scalar_multiply() function, 147

scalbln() function, 487

scalbn() function, 487

scanf() function, 206, 355, 478
%s format characters, 206
conversion characters, 356-359
conversion modifiers, 355
input values, 51-52
skipping fields, 358

scientific notation, float data types,
24-25

scopes, 452

537statements

search methods
binary search algorithm, 223-227
lookup() function, 222-223

searches
arrays of characters, 472
strings, 470-471

sed utility, programming functionality,
345

semantic errors in programs,
compiling, 7-9

semicolon (;)
#define statement, 306-307
program syntax, 13

set var command (gdb debugger),
398-399, 409

setters, methods (OOP), 417

shell programming language, 10

shift functions, 288-290
programs, Implementing a Shift

Function (12.3), 288-290

shift() function, 289

short specifier (data types), 28-30

Sieve of Erastosthenes algorithm,
prime number generation, 118

sign bit, 279-280

sign extension, data type conversions,
329

sign function
else if construct (if statement), 76-83

Categorizing a Single Character Entered
at the Terminal (Program 6.7), 78-80

Implementing the Sign Function
(Program 6.6), 77-78

signbit() function, 483

sin() function, 487

single quotation marks (‘)
char data types, 25-26
character strings, declaring, 195

single quote (\’) escape character, 217

single-character input, 208-213
Counting Words (Program 10.7),

210-212
Reading Lines of Data (Program 10.6),

209-210

single-dimensional arrays, 432-433

sinh() function, 487

sizeof operators, 447
arguments, 385
dynamic memory allocation, 385-387

sort() function, 143-144

sorting arrays, 143-146, 490-491

Sorting an Array of Integers into
Ascending Order (Program 8.12),
144-146

source programs, 7

specifiers (data types)
long, 28-30
long long, 28-30
short, 28-30
unsigned, 28-30

sprintf() function, 478-479

sqrt() function, 487

square roots, calculating, 131-133

square_root() function, 133

srand() function, 491

sscanf() function, 478-479

The Standard C Library, 501

statements
#define, 299-303

arguments, 308-311

definition types, 306-308

macros, 308-311

program extendability, 303-305

program portability, 305-306
#elif, 318-319
#if, 318-319
#include, macro definition collections,

313-315
#undef, 319

How can we make this index more useful? Email us at indexes@samspublishing.com

538 statements

break, 62, 84
C language specifications, 456

break, 456

compound, 456

continue, 457

do, 457

for, 457

goto, 458

if, 458

null, 458

return, 459

switch, 459-460

while, 460
calling, 13
conditional compilation

#else, 316-318

#endif, 316-318

#ifdef, 316-318

#ifndef, 316-318
continue, 62-63
do, 60-62
for, 44-45

nested, 53-54
FORTRAN statements, 6
goto

execution of, 373

programming abuse, 374
if, 65

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

compound relational tests, 72-74

else if construct, 76-83

general format, 65

if-else construct, 69-72

nested, 75-76
include, program syntax, 13

null

example of, 374-375

programming uses, 374
return (functions), 126
switch, 84

Revising the Program to Evaluate Simple
Expressions,Version 2 (Program 6.9),
85-86

terminating, 14
typedef, data types, naming, 325-327
while, 56-60

static functions, 339

static keyword, 156

static variables, 156
initializing, 156-158
versus external variables, 339-340

stdbool.h header file, 469

stddef.h header file, 467

stderr FILE pointer, 369-370

stdin FILE pointer, 369-370

stdint.h header file, 469-470

stdlib.h header file, 490-491

stdout FILE pointer, 369-370

step command (gdb debugger),
401-404, 409

storage classes
functions, 452
variables, 452-454

storing
different data types (unions), 375-378
time in programs, 177-180
values in arrays, 96
variables via dynamic memory

allocation, 383-384

strcat() function, 230, 470

strchr() function, 470

strcmp() function, 230, 470

strcpy() function, 230, 470-471

string functions, 470-472

539summing array elements

string_length() function, 199, 272

string_to_integer() function, 228-230

strings
character strings, 195

adjacent, 218

combining with array of structures,
219-222

comparing, 204-206

concatenating, 196

continuation of, 218-219

converting into integers, 228-229

copying, 266-267, 271

delimiting, 195

displaying, 201-203

escape characters, 216-218

initializing, 201-203

inputting, 206-208

length, 199, 272

pointers to, 266-267

testing for equality, 204-206

variable-length, 198-200
comparing, 470-471
concatenating, 470
converting to numbers, 479-481
copying, 470-471
length, 471
null, 213-215
searches, 470-471
searching, 471

strlen() function, 230, 471

strncat() function, 471

strncmp() function, 471

strncpy() function, 471

strrchr() function, 471

strstr() function, 471-472

strtod() function, 480

strtol() function, 480

strtoul() function, 481

structure operators, 448

structure pointers, 241, 450

structures
arrays of, 182

combining with character strings,
219-222

defining, 182

initializing, 183
compound literal values, assigning,

181-182
containing arrays, 187-189
containing other structures, 185-187
containing pointers, 243-244
declarations, 166, 434-436
defining, 166-168
expressions, 168-171
function of, 165
functions, 171-174, 177
initializing, 180-181
pointers to, 240-243

linked lists, 244-252
programs

Determining Tomorrow’s Date (9.2),
169-171

Illustrating a Structure (9.1), 166-168

Illustrating Arrays of Structures (9.6),
183-184

Illustrating Structures and Arrays (9.7),
188-189

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

time, updating, 177-180, 183
uses, 165
variants, 190-191

subscripts (arrays), 96

subtracting pointers, 272

summing array elements, 262-264

How can we make this index more useful? Email us at indexes@samspublishing.com

540 Summing the Elements of an Array

Summing the Elements of an Array
(Program 11.12), 264-265

switch statement, 84
C language specifications, 459-460
programs, Revising the Program to

Evaluate Simple Expressions,Version 2
(6.9), 85-86

symbolic names, program constants,
299-303

syntactic errors, programs, compiling,
7-9

system include files
float.h file, 316
limits.h file, 316

system() function, 491

T
tan() function, 487

tanh() function, 487

temporary files, creating, 478

terminating
comments, character syntax, 18
programs

exit() function, 370-371

proper methods, 383
statements, 14

ternary operator, 91-92

testing
character strings for equality, 204-206
files for EOF conditions, 367-368

Testing Strings for Equality (Program
10.4), 204-206

text editors
C programming, 7
emacs, 11
vi, 7, 11

tgamma() function, 487

time, updating, 177-180
with array of structures, 183

time_update() function, 178-180, 183

times equal (*=) operator, 143

tmpfile() function, 478

tokens, joining (## operator), 313

tolower() function, 473

top-down programming, 137

toupper() function, 473

Traversing a Linked List (Program
11.7), 250-252

trees, pointers, 244-252

triangular numbers, calculating, 43-45
nested for loops (program looping),

53-54
output alignment (program looping),

50-51
user input (program looping), 51-52

trigraph sequences, preprocessors,
460-461

troubleshooting programming errors,
common mistakes, 497-500

trunc() function, 487

truth tables
& (bitwise AND) operator, 281
^ (bitwise Exclusive-OR) operator, 284
| (bitwise Inclusive-OR) operator, 283

twos complement notation, 279-280

type cast operators, 69, 446
precedence rules, 38

typedef statement
C language specifications, 438-439
data types, naming, 325-327

U
unary minus arithmetic operator,
33-34

undefined exit statuses, 383

ungetc() function, 478

541variable-length character strings

unions
arrays, defining, 376-377
data types, storage, 375-378
declarations, 436-437
declaring, 375
members

arithmetic rules, 376

defining, 376
variables, initializing, 376

units, bit fields, 296

universal character names, 218
C language specifications, 426

Unix operating system
commands, 7
compiler, 12
development of, 6
naming files, 7
programming utilities

ar, 345

grep, 345

sed, 345
programs, linking, 9
roots in C programming language, 1
spin-offs, 6

unsigned specifier (data types), 28-30

updating time in programs, 177-180

Updating the Time by One Second
(Program 9.5), 178-180

Using Comments in a Program
(Program 3.6), 17-19

Using Enumerated Data Types
(Program 14.1), 322-324

Using Linked Lists (Program 11.6),
246-250

Using Multidimensional Arrays and
Functions (Program 8.13), 147-150

Using Nested for Loops (Program
5.5), 53-54

Using Pointers and Functions
(Program 11.8), 254-255

Using Pointers in Expressions
(Program 11.3), 239-240

Using Pointers to Exchange Values
(Program 11.9), 255-257

Using Pointers to Find Length of a
String (Program 11.15), 272-273

Using Pointers to Structures (Program
11.4), 241-243

Using Structures Containing Pointers
(Program 11.5), 243-244

Using the #include Statement
(Program 13.3), 314-315

Using the Arithmetic Operators
(Program 4.2), 30-31

Using the Basic Data Types (Program
4.1), 26-27

Using the Dictionary Lookup
Program (Program 10.9), 220-222

usual arithmetic conversion, basic data
types, 451-452

utilities (programming)
a, 345
cv, 344
gre, 345
mak, 343-344
se, 345

utility functions, 490-491

V
values

arrays, storing, 96
defined

names, 300

referencing (#define statement), 307-308

variable-length arrays, 433
Generating Fibonacci Numbers Using

Variable-Length Arrays (Program 7.8),
115-117

multidimensional, 150-152

variable-length character strings,
198-200

How can we make this index more useful? Email us at indexes@samspublishing.com

542 variables

variables
arrays, defining, 96-98
Boolean

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (Program 6.10A),
90-91

C language specifications, 452-454
const (arrays), 111-113
data storage types, 21
declarations, 15

in for loops, 55-56
external, 336-338

defining, 337

versus static, 339-340
global (functions), 152-156
initializing static variables, 156-158
local

automatic (functions), 124-126, 156

defining (functions), 124-126
names, 21

reserved names, 22

rules, 22
pointers, defining, 235-239
qualifiers

register, 378-379

restrict, 379

volatile, 379
static, 156

initializing, 156-158

versus external, 339-340
storing via dynamic memory allocation,

383-384
union, initializing, 376
valid characters, 22

variants, structures of, 190-191

vi text editor, 7, 11

Visual Studio
Web site, 503
Windows IDE, 10

void data type, 128

void keyword, 128

volatile modifiers, C language
specifications, 439

volatile qualifiers, 379

W - Z
Web sites

C language resources

ANSI.org, 502

Code Warrior, 503

CygWin, 502

gcc compiler, 502

Kochan-Wood.com, 502

Kylix, 503

Metrowerks, 503

MinGW, 502

newsgroups, 502

Visual Studio, 503
gcc, 493
GNU.org, 504
Google Groups, 502
Kochan-Wood, book exercises and

errata, 501
OOP book resources

C# Programming in the Key of C#,
503

C++ Primer Plus, 503

Code Warrior, 503

Programming in Objective-C,
503-504

while statement, 56-60
C language specifications, 460
Finding the Greatest Common Divisor

(Program 5.7), 58-59

543Xcode

Introducing the while Statement
(Program 5.6), 56-58

programming looping usage, 44
Reversing the Digits of a Number

(Program 5.8), 59-60

whitespace characters, scanf()
function, 355

wide character constants, C language
specifications, 429

Working with an Array (Program 7.1),
98, 100

Working with Fractions in C
(Program 19.1), 413-414

Working with Fractions in C#
(Program 19.4), 422-424

Working with Fractions in C++
(Program 19.3), 419-421

Working with Fractions in
Objective-C (Program 19.2), 414-419

Working with gdb (Program 18.5),
401-402

Working with Pointers to Arrays
(Program 11.11), 262-263

writing
files with fputs() function, 368
programs

for handling fractions (C language),
413-414

for handling fractions (C# language),
422-424

for handling fractions (C++ language),
419-421

for handling fractions (Objective-C
language), 414-419

Writing in Function in C (Program
8.1), 120-121

Writing Your First C Program
(Program 3.1), 11

X3J11 committee (ANSI C), 1

Xcode, Mac OS X IDE, 10

XOR operator, 284-285

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	3 Compiling and Running Your First Program
	Compiling Your Program
	Running Your Program
	Understanding Your First Program
	Displaying the Values of Variables
	Comments
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K
	L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W - Z

