
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672325618
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672325618
https://plusone.google.com/share?url=http://www.informit.com/title/9780672325618
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672325618
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672325618/Free-Sample-Chapter

Advanced PHP
Programming

This page intentionally left blank

Advanced PHP
Programming

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240 USA

DEVELOPER’S
LIBRARY

A practical guide to developing large-scale
Web sites and applications with PHP 5

George Schlossnagle

Advanced PHP Programming
Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32561-6

Library of Congress Catalog Card Number: 2003100478

Printed in the United States of America

First Printing: March 2004

06 05 4 3

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information,
please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Shelley Johnston

Development Editor
Damon Jordan

Managing Editor
Charlotte Clapp

Project Editor
Sheila Schroeder

Copy Editor
Kitty Jarrett

Indexer
Mandie Frank

Proofreader
Paula Lowell

Technical Editors
Brian France
Zak Greant
Sterling Hughes

Publishing Coordinator
Vanessa Evans

Interior Designer
Gary Adair

Cover Designer
Alan Clements

Page Layout
Michelle Mitchell

vContents

Contents at a Glance
Introduction

I Implementation and Development
Methodologies

1 Coding Styles

2 Object-Oriented Programming Through Design
Patterns

3 Error Handling

4 Implementing with PHP:Templates and the Web

5 Implementing with PHP: Standalone Scripts

6 Unit Testing

7 Managing the Development Environment

8 Designing a Good API

II Caching

9 External Performance Tunings

10 Data Component Caching

11 Computational Reuse

III Distributed Applications

12 Interacting with Databases

13 User Authentication and Session Security

14 Session Handling

15 Building a Distributed Environment

16 RPC: Interacting with Remote Services

vi Contents

IV Performance

17 Application Benchmarks:Testing an Entire
Application

18 Profiling

19 Synthetic Benchmarks: Evaluating Code Blocks and
Functions

V Extensibility

20 PHP and Zend Engine Internals

21 Extending PHP: Part I

22 Extending PHP: Part II

23 Writing SAPIs and Extending the Zend Engine

Index

viiContents

Table of Contents

Introduction 1

I Implementation and Development
Methodologies

1 Coding Styles 9
Choosing a Style That Is Right for You 10

Code Formatting and Layout 10
Indentation 10
Line Length 13
Using Whitespace 13
SQL Guidelines 14
Control Flow Constructs 14

Naming Symbols 19
Constants and Truly Global Variables 21
Long-Lived Variables 22
Temporary Variables 23
Multiword Names 24
Function Names 24
Class Names 25
Method Names 25
Naming Consistency 25
Matching Variable Names to Schema Names 26

Avoiding Confusing Code 27
Avoiding Using Open Tags 27
Avoiding Using echo to Construct HTML 27
Using Parentheses Judiciously 28

Documentation 29
Inline Comments 29
API Documentation 30

Further Reading 35

viii Contents

2 Object-Oriented Programming Through
Design Patterns 37
Introduction to OO Programming 38

Inheritance 40
Encapsulation 41
Static (or Class) Attributes and Methods 41
Special Methods 42

A Brief Introduction to Design Patterns 44
The Adaptor Pattern 44
The Template Pattern 49
Polymorphism 50
Interfaces and Type Hints 52
The Factory Pattern 54
The Singleton Pattern 56

Overloading 58
SPL 63
__call() 68
__autoload() 70

Further Reading 71

3 Error Handling 73
Handling Errors 75

Displaying Errors 76
Logging Errors 77
Ignoring Errors 78
Acting On Errors 79

Handling External Errors 80
Exceptions 83

Using Exception Hierarchies 86
A Typed Exceptions Example 88
Cascading Exceptions 94
Handling Constructor Failure 97
Installing a Top-Level Exception Handler 98
Data Validation 100

When to Use Exceptions 104
Further Reading 105

ixContents

4 Implementing with PHP:Templates
and the Web 107
Smarty 108

Installing Smarty 109
Your First Smarty Template: Hello World! 110
Compiled Templates Under the Hood 111
Smarty Control Structures 111
Smarty Functions and More 114
Caching with Smarty 117
Advanced Smarty Features 118

Writing Your Own Template Solution 120
Further Reading 121

5 Implementing with PHP: Standalone
Scripts 123
Introduction to the PHP Command-Line Interface
(CLI) 125
Handling Input/Output (I/O) 125
Parsing Command-Line Arguments 128
Creating and Managing Child Processes 130

Closing Shared Resources 131
Sharing Variables 132
Cleaning Up After Children 132
Signals 134

Writing Daemons 138
Changing the Working Directory 140
Giving Up Privileges 140
Guaranteeing Exclusivity 141

Combining What You’ve Learned: Monitoring
Services 141
Further Reading 150

6 Unit Testing 153
An Introduction to Unit Testing 154

Writing Unit Tests for Automated Unit
Testing 155
Writing Your First Unit Test 155
Adding Multiple Tests 156

x Contents

Writing Inline and Out-of-Line Unit Tests 157
Inline Packaging 158
Separate Test Packaging 159
Running Multiple Tests Simultaneously 161

Additional Features in PHPUnit 162
Creating More Informative Error Messages 163
Adding More Test Conditions 164
Using the setUp() and tearDown()
Methods 165
Adding Listeners 166
Using Graphical Interfaces 167

Test-Driven Design 168
The Flesch Score Calculator 169
Testing the Word Class 169
Bug Report 1 177

Unit Testing in a Web Environment 179
Further Reading 182

7 Managing the Development
Environment 183
Change Control 184

CVS Basics 185
Modifying Files 188
Examining Differences Between Files 189
Helping Multiple Developers Work on
the Same Project 191
Symbolic Tags 193
Branches 194
Maintaining Development and Production
Environments 195

Managing Packaging 199
Packaging and Pushing Code 201
Packaging Binaries 203
Packaging Apache 204
Packaging PHP 205

Further Reading 206

xiContents

8 Designing a Good API 207
Design for Refactoring and Extensibility 208

Encapsulating Logic in Functions 208
Keeping Classes and Functions Simple 210
Namespacing 210
Reducing Coupling 212

Defensive Coding 213
Establishing Standard Conventions 214
Using Sanitization Techniques 214

Further Reading 216

II Caching

9 External Performance Tunings 219
Language-Level Tunings 219

Compiler Caches 219
Optimizers 222
HTTP Accelerators 223
Reverse Proxies 225
Operating System Tuning for High
Performance 228
Proxy Caches 229

Cache-Friendly PHP Applications 231
Content Compression 235
Further Reading 236

RFCs 236
Compiler Caches 236
Proxy Caches 236
Content Compression 237

10 Data Component Caching 239
Caching Issues 239
Recognizing Cacheable Data Components 241
Choosing the Right Strategy: Hand-Made or
Prefab Classes 241
Output Buffering 242
In-Memory Caching 244

xii Contents

Flat-File Caches 244
Cache Size Maintenance 244
Cache Concurrency and Coherency 245

DBM-Based Caching 251
Cache Concurrency and Coherency 253
Cache Invalidation and Management 253

Shared Memory Caching 257
Cookie-Based Caching 258

Cache Size Maintenance 263
Cache Concurrency and Coherency 263

Integrating Caching into Application Code 264
Caching Home Pages 266
Using Apache’s mod_rewrite for Smarter
Caching 273
Caching Part of a Page 277
Implementing a Query Cache 280

Further Reading 281

11 Computational Reuse 283
Introduction by Example: Fibonacci Sequences 283
Caching Reused Data Inside a Request 289
Caching Reused Data Between Requests 292
Computational Reuse Inside PHP 295

PCREs 295
Array Counts and Lengths 296

Further Reading 296

III Distributed Applications

12 Interacting with Databases 299
Understanding How Databases and Queries
Work 300

Query Introspection with EXPLAIN 303
Finding Queries to Profile 305

Database Access Patterns 306
Ad Hoc Queries 307
The Active Record Pattern 307

xiiiContents

The Mapper Pattern 310
The Integrated Mapper Pattern 315

Tuning Database Access 317
Limiting the Result Set 317
Lazy Initialization 319

Further Reading 322

13 User Authentication and Session
Security 323
Simple Authentication Schemes 324

HTTP Basic Authentication 325
Query String Munging 325
Cookies 326

Registering Users 327
Protecting Passwords 327
Protecting Passwords Against Social
Engineering 330

Maintaining Authentication: Ensuring That You
Are Still Talking to the Same Person 331

Checking That $_SERVER[REMOTE_IP]
Stays the Same 331
Ensuring That $_SERVER[‘USER_AGENT’]
Stays the Same 331
Using Unencrypted Cookies 332
Things You Should Do 332
A Sample Authentication Implementation 334

Single Signon 339
A Single Signon Implementation 341

Further Reading 346

14 Session Handling 349
Client-Side Sessions 350

Implementing Sessions via Cookies 351
Building a Slightly Better Mousetrap 353

Server-Side Sessions 354
Tracking the Session ID 356
A Brief Introduction to PHP Sessions 357

xiv Contents

Custom Session Handler Methods 360
Garbage Collection 365
Choosing Between Client-Side and
Server-Side Sessions 366

15 Building a Distributed Environment 367
What Is a Cluster? 367
Clustering Design Essentials 370

Planning to Fail 371
Working and Playing Well with Others 371
Distributing Content to Your Cluster 373
Scaling Horizontally 374
Specialized Clusters 375

Caching in a Distributed Environment 375
Centralized Caches 378
Fully Decentralized Caches Using Spread 380

Scaling Databases 384
Writing Applications to Use Master/Slave
Setups 387
Alternatives to Replication 389
Alternatives to RDBMS Systems 390

Further Reading 391

16 RPC: Interacting with Remote
Services 393
XML-RPC 394

Building a Server: Implementing the
MetaWeblog API 396
Auto-Discovery of XML-RPC Services 401

SOAP 403
WSDL 405
Rewriting system.load as a SOAP Service 408
Amazon Web Services and Complex Types 410
Generating Proxy Code 412

SOAP and XML-RPC Compared 413
Further Reading 414

SOAP 414
XML-RPC 414

xvContents

Web Logging 415
Publicly Available Web Services 415

IV Performance

17 Application Benchmarks:Testing an
Entire Application 419
Passive Identification of Bottlenecks 420
Load Generators 422

ab 422
httperf 424
Daiquiri 426

Further Reading 427

18 Profiling 429
What Is Needed in a PHP Profiler 430
A Smorgasbord of Profilers 430
Installing and Using APD 431
A Tracing Example 433
Profiling a Larger Application 435
Spotting General Inefficiencies 440
Removing Superfluous Functionality 442
Further Reading 447

19 Synthetic Benchmarks: Evaluating
Code Blocks and Functions 449
Benchmarking Basics 450
Building a Benchmarking Harness 451

PEAR’s Benchmarking Suite 451
Building a Testing Harness 454
Adding Data Randomization on Every
Iteration 455
Removing Harness Overhead 456
Adding Custom Timer Information 458
Writing Inline Benchmarks 462

xvi Contents

Benchmarking Examples 462
Matching Characters at the Beginning of a
String 463
Macro Expansions 464
Interpolation Versus Concatenation 470

V Extensibility

20 PHP and Zend Engine Internals 475
How the Zend Engine Works: Opcodes and
Op Arrays 476
Variables 482
Functions 486
Classes 487

The Object Handlers 489
Object Creation 490
Other Important Structures 490

The PHP Request Life Cycle 492
The SAPI Layer 494
The PHP Core 496
The PHP Extension API 497
The Zend Extension API 498
How All the Pieces Fit Together 500

Further Reading 502

21 Extending PHP: Part I 503
Extension Basics 504

Creating an Extension Stub 504
Building and Enabling Extensions 507
Using Functions 508
Managing Types and Memory 511
Parsing Strings 514
Manipulating Types 516
Type Testing Conversions and Accessors 520
Using Resources 524
Returning Errors 529
Using Module Hooks 529

xviiContents

An Example:The Spread Client Wrapper 537
MINIT 538
MSHUTDOWN 539
Module Functions 539
Using the Spread Module 547

Further Reading 547

22 Extending PHP: Part II 549
Implementing Classes 549

Creating a New Class 550
Adding Properties to a Class 551
Class Inheritance 554
Adding Methods to a Class 555
Adding Constructors to a Class 557
Throwing Exceptions 558
Using Custom Objects and Private
Variables 559
Using Factory Methods 562
Creating and Implementing Interfaces 562

Writing Custom Session Handlers 564
The Streams API 568
Further Reading 579

23 Writing SAPIs and Extending the Zend
Engine 581
SAPIs 581

The CGI SAPI 582
The Embed SAPI 591
SAPI Input Filters 593

Modifying and Introspecting the Zend Engine 598
Warnings as Exceptions 599
An Opcode Dumper 601
APD 605
APC 606
Using Zend Extension Callbacks 606

Homework 609

Index 611

❖

For Pei, my number one.

❖

About the Author
George Schlossnagle is a principal at OmniTI Computer Consulting, a Maryland-
based tech company that specializes in high-volume Web and email systems. Before join-
ing OmniTI, he led technical operations at several high-profile community Web sites,
where he developed experience managing PHP in very large enterprise environments.
He is a frequent contributor to the PHP community and his work can be found in the
PHP core, as well as in the PEAR and PECL extension repositories.

Before entering the information technology field, George trained to be a mathe-
matician and served a two-year stint as a teacher in the Peace Corps. His experience has
taught him to value an interdisciplinary approach to problem solving that favors root-
cause analysis of problems over simply addressing symptoms.

Acknowledgments
Writing this book has been an incredible learning experience for me, and I would like
to thank all the people who made it possible.To all the PHP developers:Thank you for
your hard work at making such a fine product.Without your constant efforts, this book
would have had no subject.

To Shelley Johnston, Damon Jordan, Sheila Schroeder, Kitty Jarrett, and the rest of the
Sams Publishing staff:Thank you for believing in both me and this book.Without you,
this would all still just be an unrealized ambition floating around in my head.

To my tech editors, Brian France, Zak Greant, and Sterling Hughes:Thank you for
the time and effort you spent reading and commenting on the chapter drafts.Without
your efforts, I have no doubts this book would be both incomplete and chock full of
errors.

To my brother Theo:Thank you for being a constant technical sounding board and
source for inspiration as well as for picking up the slack at work while I worked on fin-
ishing this book.

To my parents:Thank you for raising me to be the person I am today, and specifically
to my mother, Sherry, for graciously looking at every chapter of this book. I hope to
make you both proud.

Most importantly, to my wife, Pei:Thank you for your unwavering support and for
selflessly sacrificing a year of nights and weekends to this project.You have my undying
gratitude for your love, patience, and support.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: opensource@samspublishing.com
Mail: Mark Taber

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or others from Sams Publishing, visit our Web site
at www.samspublishing.com.Type the ISBN (excluding hyphens) or the title of the
book in the Search box to find the book you’re looking for.

www.samspublishing.com

Foreword
I have been working my way through the various William Gibson books lately and in
All Tomorrow’s Parties came across this:

That which is over-designed, too highly specific, anticipates outcome; the anticipation
of outcome guarantees, if not failure, the absence of grace.

Gibson rather elegantly summed up the failure of many projects of all sizes. Drawing
multicolored boxes on whiteboards is fine, but this addiction to complexity that many
people have can be a huge liability.When you design something, solve the problem at
hand. Don’t try to anticipate what the problem might look like years from now with a
large complex architecture, and if you are building a general-purpose tool for something,
don’t get too specific by locking people into a single way to use your tool.

PHP itself is a balancing act between the specificity of solving the Web problem and
avoiding the temptation to lock people into a specific paradigm for solving that problem.
Few would call PHP graceful.As a scripting language it has plenty of battle scars from
years of service on the front lines of the Web.What is graceful is the simplicity of the
approach PHP takes.

Every developer goes through phases of how they approach problem solving. Initially
the simple solution dominates because you are not yet advanced enough to understand
the more complex principles required for anything else.As you learn more, the solutions
you come up with get increasingly complex and the breadth of problems you can solve
grows.At this point it is easy to get trapped in the routine of complexity.

Given enough time and resources every problem can be solved with just about any
tool.The tool’s job is to not get in the way. PHP makes an effort to not get in your way.
It doesn’t impose any particular programming paradigm, leaving you to pick your own,
and it tries hard to minimize the number of layers between you and the problem you are
trying to solve.This means that everything is in place for you to find the simple and
graceful solution to a problem with PHP instead of getting lost in a sea of layers and
interfaces diagrammed on whiteboards strewn across eight conference rooms.

Having all the tools in place to help you not build a monstrosity of course doesn’t
guarantee that you won’t.This is where George and this book come in. George takes
you on a journey through PHP which closely resembles his own journey not just with
PHP, but with development and problem solving in general. In a couple of days of read-
ing you get to learn what he has learned over his many years of working in the field.
Not a bad deal, so stop reading this useless preface and turn to Chapter 1 and start your
journey.

Rasmus Lerdorf

This page intentionally left blank

Introduction

THIS BOOK STRIVES TO MAKE YOU AN expert PHP programmer. Being an expert pro-
grammer does not mean being fully versed in the syntax and features of a language
(although that helps); instead, it means that you can effectively use the language to solve
problems.When you have finished reading this book, you should have a solid under-
standing of PHP’s strengths and weaknesses, as well as the best ways to use it to tackle
problems both inside and outside the Web domain.

This book aims to be idea focused, describing general problems and using specific
examples to illustrate—as opposed to a cookbook method, where both the problems and
solutions are usually highly specific.As the proverb says:“Give a man a fish, he eats for a
day.Teach him how to fish and he eats for a lifetime.”The goal is to give you the tools to
solve any problem and the understanding to identify the right tool for the job.

In my opinion, it is easiest to learn by example, and this book is chock full of practi-
cal examples that implement all the ideas it discusses. Examples are not very useful with-
out context, so all the code in this book is real code that accomplishes real tasks.You will
not find examples in this book with class names such as Foo and Bar; where possible,
examples have been taken from live open-source projects so that you can see ideas in
real implementations.

PHP in the Enterprise
When I started programming PHP professionally in 1999, PHP was just starting its
emergence as more than a niche scripting language for hobbyists.That was the time of
PHP 4, and the first Zend Engine had made PHP faster and more stable. PHP deploy-
ment was also increasing exponentially, but it was still a hard sell to use PHP for large
commercial Web sites.This difficulty originated mainly from two sources:

n Perl/ColdFusion/other-scripting-language developers who refused to update their
understanding of PHP’s capabilities from when it was still a nascent language.

n Java developers who wanted large and complete frameworks, robust object-
oriented support, static typing, and other “enterprise” features.

Neither of those arguments holds water any longer. PHP is no longer a glue-language
used by small-time enthusiasts; it has become a powerful scripting language whose design
makes it ideal for tackling problems in the Web domain.

2 Introduction

A programming language needs to meet the following six criteria to be usable in
business-critical applications:

n Fast prototyping and implementation
n Support for modern programming paradigms
n Scalability
n Performance
n Interoperability
n Extensibility

The first criterion—fast prototyping—has been a strength of PHP since its inception.A
critical difference between Web development and shrink-wrapped software development
is that in the Web there is almost no cost to shipping a product. In shipped software
products, however, even a minor error means that you have burned thousands of CDs
with buggy code. Fixing that error involves communicating with all the users that a bug
fix exists and then getting them to download and apply the fix. In the Web, when you
fix an error, as soon as a user reloads the page, his or her experience is fixed.This allows
Web applications to be developed using a highly agile, release-often engineering
methodology.

Scripting languages in general are great for agile products because they allow you to
quickly develop and test new ideas without having to go through the whole compile,
link, test, debug cycle. PHP is particularly good for this because it has such a low learn-
ing curve that it is easy to bring new developers on with minimal previous experience.

PHP 5 has fully embraced the rest of these ideas as well.As you will see in this book,
PHP’s new object model provides robust and standard object-oriented support. PHP is
fast and scalable, both through programming strategies you can apply in PHP and
because it is simple to reimplement critical portions of business logic in low-level lan-
guages. PHP provides a vast number of extensions for interoperating with other servic-
es—from database servers to SOAP. Finally, PHP possesses the most critical hallmark of a
language: It is easily extensible. If the language does not provide a feature or facility you
need, you can add that support.

This Book’s Structure and Organization
This book is organized into five parts that more or less stand independently from one
another.Although the book was designed so that an interested reader can easily skip
ahead to a particular chapter, it is recommended that the book be read front to back
because many examples are built incrementally throughout the book.

This book is structured in a natural progression—first discussing how to write good
PHP, and then specific techniques, and then performance tuning, and finally language
extension.This format is based on my belief that the most important responsibility of a
professional programmer is to write maintainable code and that it is easier to make well-
written code run fast than to improve poorly written code that runs fast already.

3Introduction

Part I, “Implementation and Development Methodologies”

Chapter 1, “Coding Styles”

Chapter 1 introduces the conventions used in the book by developing a coding style
around them.The importance of writing consistent, well-documented code is discussed.

Chapter 2, “Object-Oriented Programming Through Design Patterns”

Chapter 2 details PHP 5’s object-oriented programming (OOP) features.The capabilities
are showcased in the context of exploring a number of common design patterns.With a
complete overview of both the new OOP features in PHP 5 and the ideas behind the
OOP paradigm, this chapter is aimed at both OOP neophytes and experienced pro-
grammers.

Chapter 3, “Error Handling”

Encountering errors is a fact of life. Chapter 3 covers both procedural and OOP error-
handling methods in PHP, focusing especially on PHP 5’s new exception-based error-
handling capabilities.

Chapter 4, “Implementing with PHP:Templates and the Web”

Chapter 4 looks at template systems—toolsets that make bifurcating display and applica-
tion easy.The benefits and drawbacks of complete template systems (Smarty is used as
the example) and ad hoc template systems are compared.

Chapter 5, “Implementing with PHP: Standalone Scripts”

Very few Web applications these days have no back-end component.The ability to reuse
existing PHP code to write batch jobs, shell scripts, and non-Web-processing routines is
critical to making the language useful in an enterprise environment. Chapter 5 discusses
the basics of writing standalone scripts and daemons in PHP.

Chapter 6, “Unit Testing”

Unit testing is a way of validating that your code does what you intend it to do. Chapter
6 looks at unit testing strategies and shows how to implement flexible unit testing suites
with PHPUnit.

Chapter 7, “Managing the Development Environment”

Managing code is not the most exciting task for most developers, but it is nonetheless
critical. Chapter 7 looks at managing code in large projects and contains a comprehen-
sive introduction to using Concurrent Versioning System (CVS) to manage PHP proj-
ects.

Chapter 8, “Designing a Good API”

Chapter 8 provides guidelines on creating a code base that is manageable, flexible, and
easy to merge with other projects.

4 Introduction

Part II, “Caching”

Chapter 9, “External Performance Tunings”

Using caching strategies is easily the most effective way to increase the performance and
scalability of an application. Chapter 9 probes caching strategies external to PHP and
covers compiler and proxy caches.

Chapter 10, “Data Component Caching”

Chapter 10 discusses ways that you can incorporate caching strategies into PHP code
itself. How and when to integrate caching into an application is discussed, and a fully
functional caching system is developed, with multiple storage back ends.

Chapter 11, “Computational Reuse”

Chapter 11 covers making individual algorithms and processes more efficient by having
them cache intermediate data. In this chapter, the general theory behind computational
reuse is developed and is applied to practical examples.

Part III, “Distributed Applications”

Chapter 12, “Interacting with Databases”

Databases are a central component of almost every dynamic Web site. Chapter 12 focuses
on effective strategies for bridging PHP and database systems.

Chapter 13, “User Authentication and Session Security”

Chapter 13 examines methods for managing user authentication and securing
client/server communications.This chapter’s focuses include storing encrypted session
information in cookies and the full implementation of a single signon system.

Chapter 14, “Session Handling”

Chapter 14 continues the discussion of user sessions by discussing the PHP session
extension and writing custom session handlers.

Chapter 15, “Building a Distributed Environment”

Chapter 15 discusses how to build scalable applications that grow beyond a single
machine.This chapter examines the details of building and managing a cluster of
machines to efficiently and effectively manage caching and database systems.

Chapter 16, “RPC: Interacting with Remote Services”

Web services is a buzzword for services that allow for easy machine-to-machine commu-
nication over the Web.This chapter looks at the two most common Web services proto-
cols: XML-RPC and SOAP.

5Introduction

Part IV, “Performance”

Chapter 17, “Application Benchmarks:Testing an Entire Application”

Application benchmarking is necessary to ensure that an application can stand up to the
traffic it was designed to process and to identify components that are potential bottle-
necks. Chapter 17 looks at various application benchmarking suites that allow you to
measure the performance and stability of an application.

Chapter 18, “Profiling”

After you have used benchmarking techniques to identify large-scale potential bottle-
necks in an application, you can use profiling tools to isolate specific problem areas in
the code. Chapter 18 discusses the hows and whys of profiling and provides an in-depth
tutorial for using the Advanced PHP Debugger (APD) profiler to inspect code.

Chapter 19, “Synthetic Benchmarks: Evaluating Code Blocks and Functions”

It’s impossible to compare two pieces of code if you can’t quantitatively measure their
differences. Chapter 19 looks at benchmarking methodologies and walks through imple-
menting and evaluating custom benchmarking suites.

Part V, “Extensibility”

Chapter 20, “PHP and Zend Engine Internals”

Knowing how PHP works “under the hood” helps you make intelligent design choices
that target PHP’s strengths and avoid its weaknesses. Chapter 20 takes a technical look at
how PHP works internally, how applications such as Web servers communicate with
PHP, how scripts are parsed into intermediate code, and how script execution occurs in
the Zend Engine.

Chapter 21, “Extending PHP: Part I”

Chapter 21 is a comprehensive introduction to writing PHP extensions in C. It covers
porting existing PHP code to C and writing extensions to provide PHP access to third-
party C libraries.

Chapter 22, “Extending PHP: Part II”

Chapter 22 continues the discussion from Chapter 21, looking at advanced topics such as
creating classes in extension code and using streams and session facilities.

Chapter 23, “Writing SAPIs and Extending the Zend Engine”

Chapter 23 looks at embedding PHP in applications and extending the Zend Engine to
alter the base behavior of the language.

6 Introduction

Platforms and Versions
This book targets PHP 5, but with the exception of about 10% of the material (the new
object-oriented features in Chapters 2 and 22 and the SOAP coverage in Chapter 16),
nothing in this book is PHP 5 specific.This book is about ideas and strategies to make
your code faster, smarter, and better designed. Hopefully you can apply at least 50% of
this book to improving code written in any language.

Everything in this book was written and tested on Linux and should run without
alteration on Solaris, OS X, FreeBSD, or any other Unix clone. Most of the scripts
should run with minimal modifications in Windows, although some of the utilities used
(notably the pcntl utilities covered in Chapter 5) may not be completely portable.

3
Error Handling

ERRORS ARE A FACT OF LIFE. Mr. Murphy has an entire collection of laws detailing the
prevalence and inescapability of errors. In programming, errors come in two basic flavors:

n External errors—These are errors in which the code takes an unanticipated path
due to a part of the program not acting as anticipated. For example, a database
connection failing to be established when the code requires it to be established
successfully is an external error.

n Code logic errors—These errors, commonly referred to as bugs, are errors in
which the code design is fundamentally flawed due to either faulty logic (“it just
doesn’t work that way”) or something as simple as a typo.

These two categories of errors differ significantly in several ways:
n External errors will always occur, regardless of how “bug free” code is.They are

not bugs in and of themselves because they are external to the program.
n External errors that aren’t accounted for in the code logic can be bugs. For exam-

ple, blindly assuming that a database connection will always succeed is a bug
because the application will almost certainly not respond correctly in that case.

n Code logic errors are much more difficult to track down than external errors
because by definition their location is not known.You can implement data consis-
tency checks to expose them, however.

PHP has built-in support for error handling, as well as a built-in severity system that
allows you to see only errors that are serious enough to concern you. PHP has three
severity levels of errors:

n E_NOTICE

n E_WARNING

n E_ERROR

74 Chapter 3 Error Handling

E_NOTICE errors are minor, nonfatal errors designed to help you identify possible bugs
in your code. In general, an E_NOTICE error is something that works but may not do
what you intended.An example might be using a variable in a non-assignment expres-
sion before it has been assigned to, as in this case:

<?php

$variable++;

?>

This example will increment $variable to 1 (because variables are instantiated as
0/false/empty string), but it will generate an E_NOTICE error. Instead you should use
this:

<?php

$variable = 0;

$variable++;

?>

This check is designed to prevent errors due to typos in variable names. For example,
this code block will work fine:

<?php

$variable = 0;

$variabel++;

?>

However, $variable will not be incremented, and $variabel will be. E_NOTICE
warnings help catch this sort of error; they are similar to running a Perl program with
use warnings and use strict or compiling a C program with –Wall.

In PHP, E_NOTICE errors are turned off by default because they can produce rather
large and repetitive logs. In my applications, I prefer to turn on E_NOTICE warnings in
development to assist in code cleanup and then disable them on production machines.

E_WARNING errors are nonfatal runtime errors.They do not halt or change the con-
trol flow of the script, but they indicate that something bad happened. Many external
errors generate E_WARNING errors.An example is getting an error on a call to fopen()
to mysql_connect().

E_ERROR errors are unrecoverable errors that halt the execution of the running
script. Examples include attempting to instantiate a non-existent class and failing a type
hint in a function. (Ironically, passing the incorrect number of arguments to a function is
only an E_WARNING error.)

PHP supplies the trigger_error() function, which allows a user to generate his
or her own errors inside a script.There are three types of errors that can be triggered by
the user, and they have identical semantics to the errors just discussed:

n E_USER_NOTICE

n E_USER_WARNING

n E_USER_ERROR

75Handling Errors

You can trigger these errors as follows:

while(!feof($fp)) {

$line = fgets($fp);

if(!parse_line($line)) {

trigger_error(“Incomprehensible data encountered”, E_USER_NOTICE);
}

}

If no error level is specified, E_USER_NOTICE is used.
In addition to these errors, there are five other categories that are encountered some-

what less frequently:
n E_PARSE—The script has a syntactic error and could not be parsed.This is a fatal

error.
n E_COMPILE_ERROR—A fatal error occurred in the engine while compiling the

script.
n E_COMPILE_WARNING—A nonfatal error occurred in the engine while parsing

the script.
n E_CORE_ERROR—A fatal runtime error occurred in the engine.
n E_CORE_WARNING—A nonfatal runtime error occurred in the engine.

In addition, PHP uses the E_ALL error category for all error reporting levels.
You can control the level of errors that are percolated up to your script by using the
php.ini setting error_reporting. error_reporting is a bit-field test set that uses
defined constants, such as the following for all errors:

error_reporting = E_ALL

error_reporting uses the following for all errors except for E_NOTICE, which can
be set by XOR’ing E_ALL and E_NOTICE:

error_reporting = E_ALL ~ E_NOTICE

Similarly, error_reporting uses the following for only fatal errors (bitwise OR of the
two error types):

error_reporting = E_ERROR | E_USER_ERROR

Note that removing E_ERROR from the error_reporting level does not allow you to
ignore fatal errors; it only prevents an error handler from being called for it.

Handling Errors
Now that you’ve seen what sort of errors PHP will generate, you need to develop a plan
for dealing with them when they happen. PHP provides four choices for handling errors
that fall within the error_reporting threshold:

76 Chapter 3 Error Handling

n Display them.
n Log them.
n Ignore them.
n Act on them.

None of these options supersedes the others in importance or functionality; each has an
important place in a robust error-handling system. Displaying errors is extremely benefi-
cial in a development environment, and logging them is usually more appropriate in a
production environment. Some errors can be safely ignored, and others demand reaction.
The exact mix of error-handling techniques you employ depends on your personal
needs.

Displaying Errors
When you opt to display errors, an error is sent to the standard output stream, which in
the case of a Web page means that it is sent to the browser.You toggle this setting on and
off via this php.ini setting:

display_errors = On

display errors is very helpful for development because it enables you to get instant
feedback on what went wrong with a script without having to tail a logfile or do any-
thing but simply visit the Web page you are building.

What’s good for a developer to see, however, is often bad for an end user to see.
Displaying PHP errors to an end user is usually undesirable for three reasons:

n It looks ugly.
n It conveys a sense that the site is buggy.
n It can disclose details of the script internals that a user might be able to use for

nefarious purposes.

The third point cannot be emphasized enough. If you are looking to have security holes
in your code found and exploited, there is no faster way than to run in production with
display_errors on. I once saw a single incident where a bad INI file got pushed out
for a couple errors on a particularly high-traffic site.As soon as it was noticed, the cor-
rected file was copied out to the Web servers, and we all figured the damage was mainly
to our pride.A year and a half later, we tracked down and caught a cracker who had
been maliciously defacing other members’ pages. In return for our not trying to prose-
cute him, he agreed to disclose all the vulnerabilities he had found. In addition to the
standard bag of JavaScript exploits (it was a site that allowed for a lot of user-developed
content), there were a couple particularly clever application hacks that he had developed
from perusing the code that had appeared on the Web for mere hours the year before.

We were lucky in that case:The main exploits he had were on unvalidated user input
and nondefaulted variables (this was in the days before register_global).All our

77Handling Errors

database connection information was held in libraries and not on the pages. Many a site
has been seriously violated due to a chain of security holes like these:

n Leaving display_errors on.
n Putting database connection details (mysql_connect()) in the pages.
n Allowing nonlocal connections to MySQL.

These three mistakes together put your database at the mercy of anyone who sees an
error page on your site.You would (hopefully) be shocked at how often this occurs.

I like to leave display_errors on during development, but I never turn it on in
production.

Production Display of Errors
How to notify users of errors is often a political issue. All the large clients I have worked for have had strict

rules regarding what to do when a user incurs an error. Business rules have ranged from display of a cus-

tomized or themed error page to complex logic regarding display of some sort of cached version of the con-

tent they were looking for. From a business perspective, this makes complete sense: Your Web presence is

your link to your customers, and any bugs in it can color their perceptions of your whole business.

Regardless of the exact content that needs to be returned to a user in case of an unexpected error, the last

thing I usually want to show them is a mess of debugging information. Depending on the amount of infor-

mation in your error messages, that could be a considerable disclosure of information.

One of the most common techniques is to return a 500 error code from the page and set a custom error

handler to take the user to a custom error page. A 500 error code in HTTP signifies an internal server error.

To return one from PHP, you can send this:

header(“HTTP/1.0 500 Internal Server Error”);

Then in your Apache configuration you can set this:

ErrorDocument 500 /custom-error.php

This will cause any page returning a status code of 500 to be redirected (internally—meaning transparently

to the user) to /custom-error.php.

In the section “Installing a Top-Level Exception Handler,” later in this chapter, you will see an alternative,

exception-based method for handling this.

Logging Errors
PHP internally supports both logging to a file and logging via syslog via two settings
in the php.ini file.This setting sets errors to be logged:

log_errors = On

78 Chapter 3 Error Handling

And these two settings set logging to go to a file or to syslog, respectively:

error_log = /path/to/filename

error_log = syslog

Logging provides an auditable trace of any errors that transpire on your site.When diag-
nosing a problem, I often place debugging lines around the area in question.
In addition to the errors logged from system errors or via trigger_error(), you can
manually generate an error log message with this:

error_log(“This is a user defined error”);

Alternatively, you can send an email message or manually specify the file. See the PHP
manual for details. error_log logs the passed message, regardless of the
error_reporting level that is set; error_log and error_reporting are two com-
pletely different entries to the error logging facilities.

If you have only a single server, you should log directly to a file. syslog logging is
quite slow, and if any amount of logging is generated on every script execution (which is
probably a bad idea in any case), the logging overhead can be quite noticeable.

If you are running multiple servers, though, syslog’s centralized logging abilities
provide a convenient way to consolidate logs in real-time from multiple machines in a
single location for analysis and archival.You should avoid excessive logging if you plan
on using syslog.

Ignoring Errors
PHP allows you to selectively suppress error reporting when you think it might occur
with the @ syntax.Thus, if you want to open a file that may not exist and suppress any
errors that arise, you can use this:

$fp = @fopen($file, $mode);

Because (as we will discuss in just a minute) PHP’s error facilities do not provide any
flow control capabilities, you might want to simply suppress errors that you know will
occur but don’t care about.

Consider a function that gets the contents of a file that might not exist:

$content = file_get_content($sometimes_valid);

If the file does not exist, you get an E_WARNING error. If you know that this is an
expected possible outcome, you should suppress this warning; because it was expected,
it’s not really an error.You do this by using the @ operator, which suppresses warnings on
individual calls:

$content = @file_get_content($sometimes_valid);

79Handling Errors

In addition, if you set the php.ini setting track_errors = On, the last error mes-
sage encountered will be stored in $php_errormsg.This is true regardless of whether
you have used the @ syntax for error suppression.

Acting On Errors
PHP allows for the setting of custom error handlers via the set_error_handler()
function.To set a custom error handler, you define a function like this:

<?php

require “DB/Mysql.inc”;
function user_error_handler($severity, $msg, $filename, $linenum) {

$dbh = new DB_Mysql_Prod;

$query = “INSERT INTO errorlog
(severity, message, filename, linenum, time)

VALUES(?,?,?,?, NOW())”;
$sth = $dbh->prepare($query);

switch($severity) {

case E_USER_NOTICE:

$sth->execute(‘NOTICE’, $msg, $filename, $linenum);
break;

case E_USER_WARNING:

$sth->execute(‘WARNING’, $msg, $filename, $linenum);
break;

case E_USER_ERROR:

$sth->execute(‘FATAL’, $msg, $filename, $linenum);
print “FATAL error $msg at $filename:$linenum
”;
break;

default:

print “Unknown error at $filename:$linenum
”;
break;

}

}

?>

You set a function with this:

set_error_handler(“user_error_handler”);

Now when an error is detected, instead of being displayed or printed to the error log, it
will be inserted into a database table of errors and, if it is a fatal error, a message will be
printed to the screen. Keep in mind that error handlers provide no flow control. In the
case of a nonfatal error, when processing is complete, the script is resumed at the point
where the error occurred; in the case of a fatal error, the script exits after the handler is
done.

80 Chapter 3 Error Handling

Mailing Oneself
It might seem like a good idea to set up a custom error handler that uses the mail() function to send an

email to a developer or a systems administrator whenever an error occurs. In general, this is a very bad idea.

Errors have a way of clumping up together. It would be great if you could guarantee that the error would

only be triggered at most once per hour (or any specified time period), but what happens more often is that

when an unexpected error occurs due to a coding bug, many requests are affected by it. This means that

your nifty mailing error_handler() function might send 20,000 mails to your account before you are

able to get in and turn it off. Not a good thing.

If you need this sort of reactive functionality in your error-handling system, I recommend writing a script

that parses your error logs and applies intelligent limiting to the number of mails it sends.

Handling External Errors
Although we have called what we have done so far in this chapter error handling, we real-
ly haven’t done much handling at all.We have accepted and processed the warning mes-
sages that our scripts have generated, but we have not been able to use those techniques
to alter the flow control in our scripts, meaning that, for all intents and purposes, we
have not really handled our errors at all.Adaptively handling errors largely involves being
aware of where code can fail and deciding how to handle the case when it does.
External failures mainly involve connecting to or extracting data from external processes.

Consider the following function, which is designed to return the passwd file details
(home directory, shell, gecos information, and so on) for a given user:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);
while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“;”, $line);
if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

As it stands, this code has two bugs in it: One is a pure code logic bug, and the second
is a failure to account for a possible external error.When you run this example, you get
an array with elements like this:

<?php

print_r(get_passwd_info(‘www’));
?>

81Handling External Errors

Array

(

[0] => www:*:70:70:World Wide Web Server:/Library/WebServer:/noshell

)

This is because the first bug is that the field separator in the passwd file is :, not ;. So
this:

$fields = explode(“;”, $line);

needs to be this:

$fields = explode(“:”, $line);

The second bug is subtler. If you fail to open the passwd file, you will generate an
E_WARNING error, but program flow will proceed unabated. If a user is not in the pass-
wd file, the function returns false. However, if the fopen fails, the function also ends
up returning false, which is rather confusing.

This simple example demonstrates one of the core difficulties of error handling in
procedural languages (or at least languages without exceptions): How do you propagate
an error up to the caller that is prepared to interpret it?

If you are utilizing the data locally, you can often make local decisions on how to
handle the error. For example, you could change the password function to format an
error on return:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);
if(!is_resource($fp)) {

return “Error opening file”;
}

while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“:”, $line);
if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

Alternatively, you could set a special value that is not a normally valid return value:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);
if(!is_resource($fp)) {

return -1;

82 Chapter 3 Error Handling

}

while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“:”, $line);
if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

You can use this sort of logic to bubble up errors to higher callers:

<?php

function is_shelled_user($user) {

$passwd_info = get_passwd_info($user);

if(is_array($passwd_info) && $passwd_info[7] != ‘/bin/false’) {
return 1;

}

else if($passwd_info === -1) {

return -1;

}

else {

return 0;

}

}

?>

When this logic is used, you have to detect all the possible errors:

<?php

$v = is_shelled_user(‘www’);
if($v === 1) {

print “Your Web server user probably shouldn’t be shelled.\n”;
}

else if($v === 0) {

print “Great!\n”;
}

else {

print “An error occurred checking the user\n”;
}

?>

If this seems nasty and confusing, it’s because it is.The hassle of manually bubbling up
errors through multiple callers is one of the prime reasons for the implementation of
exceptions in programming languages, and now in PHP5 you can use exceptions in
PHP as well.You can somewhat make this particular example work, but what if the

83Exceptions

function in question could validly return any number? How could you pass the error up
in a clear fashion then? The worst part of the whole mess is that any convoluted error-
handling scheme you devise is not localized to the functions that implement it but needs
to be understood and handled by anyone in its call hierarchy as well.

Exceptions
The methods covered to this point are all that was available before PHP5, and you can
see that this poses some critical problems, especially when you are writing larger applica-
tions.The primary flaw is in returning errors to a user of a library. Consider the error
checking that you just implemented in the passwd file reading function.

When you were building that example, you had two basic choices on how to handle
a connection error:

n Handle the error locally and return invalid data (such as false) back to the caller.
n Propagate and preserve the error and return it to the caller instead of returning the

result set.

In the passwd file reading function example, you did not select the first option because
it would have been presumptuous for a library to know how the application wants it to
handle the error. For example, if you are writing a database-testing suite, you might want
to propagate the error in high granularity back to the top-level caller; on the other hand,
in a Web application, you might want to return the user to an error page.

The preceding example uses the second method, but it is not much better than the
first option.The problem with it is that it takes a significant amount of foresight and
planning to make sure errors can always be correctly propagated through an application.
If the result of a database query is a string, for example, how do you differentiate
between that and an error string?

Further, propagation needs to be done manually:At every step, the error must be
manually bubbled up to the caller, recognized as an error, and either passed along or
handled.You saw in the last section just how difficult it is to handle this.

Exceptions are designed to handle this sort of situation.An exception is a flow-control
structure that allows you to stop the current path of execution of a script and unwind
the stack to a prescribed point.The error that you experienced is represented by an
object that is set as the exception.

Exceptions are objects.To help with basic exceptions, PHP has a built-in Exception
class that is designed specifically for exceptions.Although it is not necessary for excep-
tions to be instances of the Exception class, there are some benefits of having any class
that you want to throw exceptions derive from Exception, which we’ll discuss in a
moment.To create a new exception, you instantiate an instance of the Exception class
you want and you throw it.

When an exception is thrown, the Exception object is saved, and execution in the
current block of code halts immediately. If there is an exception-handler block set in the

84 Chapter 3 Error Handling

current scope, the code jumps to that location and executes the handler. If there is no
handler set in the current scope, the execution stack is popped, and the caller’s scope is
checked for an exception-handler block.This repeats until a handler is found or the
main, or top, scope is reached.

Running this code:

<?php

throw new Exception;

?>

returns the following:

> php uncaught-exception.php

Fatal error: Uncaught exception ‘exception’! in Unknown on line 0

An uncaught exception is a fatal error.Thus, exceptions introduce their own mainte-
nance requirements. If exceptions are used as warnings or possibly nonfatal errors in a
script, every caller of that block of code must know that an exception may be thrown
and must be prepared to handle it.

Exception handling consists of a block of statements you want to try and a second
block that you want to enter if and when you trigger any errors there. Here is a simple
example that shows an exception being thrown and caught:

try {

throw new Exception;

print “This code is unreached\n”;
}

catch (Exception $e) {

print “Exception caught\n”;
}

In this case you throw an exception, but it is in a try block, so execution is halted and
you jump ahead to the catch block. catch catches an Exception class (which is the
class being thrown), so that block is entered. catch is normally used to perform any
cleanup that might be necessary from the failure that occurred.

I mentioned earlier that it is not necessary to throw an instance of the Exception
class. Here is an example that throws something other than an Exception class:

<?php

class AltException {}

try {

throw new AltException;

}

catch (Exception $e) {

85Exceptions

print “Caught exception\n”;
}

?>

Running this example returns the following:

> php failed_catch.php

Fatal error: Uncaught exception ‘altexception’! in Unknown on line 0

This example failed to catch the exception because it threw an object of class
AltException but was only looking to catch an object of class Exception.

Here is a less trivial example of how you might use a simple exception to facilitate
error handling in your old favorite, the factorial function.The simple factorial function is
valid only for natural numbers (integers > 0).You can incorporate this input checking
into the application by throwing an exception if incorrect data is passed:

<?php

// factorial.inc

// A simple Factorial Function

function factorial($n) {

if(!preg_match(‘/^\d+$/’,$n) || $n < 0) {
throw new Exception;

} else if ($n == 0 || $n == 1) {

return $n;

}

else {

return $n * factorial($n – 1);

}

}

?>

Incorporating sound input checking on functions is a key tenant of defensive program-
ming.

Why the regex?
It might seem strange to choose to evaluate whether $n is an integer by using a regular expression instead

of the is_int function. The is_int function, however, does not do what you want. It only evaluates

whether $n has been typed as a string or as integer, not whether the value of $n is an integer. This is a

nuance that will catch you if you use is_int to validate form data (among other things). We will explore

dynamic typing in PHP in Chapter 20, “PHP and Zend Engine Internals.”

When you call factorial, you need to make sure that you execute it in a try block if
you do not want to risk having the application die if bad data is passed in:

<html>

<form method=”POST”>
Compute the factorial of

86 Chapter 3 Error Handling

<input type=”text” name=”input” value=”<?= $_POST[‘input’] ?>”>

<?php

include “factorial.inc”;
if($_POST[‘input’]) {

try {

$input = $_POST[‘input’];
$output = factorial($input);

echo “$_POST[input]! = $output”;
}

catch (Exception $e) {

echo “Only natural numbers can have their factorial computed.”;
}

}

?>

<input type=submit name=posted value=”Submit”>
</form>

Using Exception Hierarchies
You can have try use multiple catch blocks if you want to handle different errors dif-
ferently. For example, we can modify the factorial example to also handle the case where
$n is too large for PHP’s math facilities:

class OverflowException {}

class NaNException {}

function factorial($n)

{

if(!preg_match(‘/^\d+$/’, $n) || $n < 0) {
throw new NaNException;

}

else if ($n == 0 || $n == 1) {

return $n;

}

else if ($n > 170) {

throw new OverflowException;

}

else {

return $n * factorial($n - 1);

}

}

Now you handle each error case differently:

<?php

if($_POST[‘input’]) {
try {

$input = $_POST[‘input’];

87Exceptions

$output = factorial($input);

print “$_POST[input]! = $output”;
}

catch (OverflowException $e) {

print “The requested value is too large.”;
}

catch (NaNException $e) {

print “Only natural numbers can have their factorial computed.”;
}

}

?>

As it stands, you now have to enumerate each of the possible cases separately.This is both
cumbersome to write and potentially dangerous because, as the libraries grow, the set of
possible exceptions will grow as well, making it ever easier to accidentally omit one.

To handle this, you can group the exceptions together in families and create an inher-
itance tree to associate them:

class MathException extends Exception {}

class NaNException extends MathException {}

class OverflowException extends MathException {}

You could now restructure the catch blocks as follows:

<?php

if($_POST[‘input’]) {
try {

$input = $_POST[‘input’];
$output = factorial($input);

print “$_POST[input]! = $output”;
}

catch (OverflowException $e) {

print “The requested value is too large.”;
}

catch (MathException $e) {

print “A generic math error occurred”;
}

catch (Exception $e) {

print “An unknown error occurred”;
}

}

?>

In this case, if an OverflowException error is thrown, it will be caught by the first
catch block. If any other descendant of MathException (for example,
NaNException) is thrown, it will be caught by the second catch block. Finally, any
descendant of Exception not covered by any of the previous cases will be caught.

88 Chapter 3 Error Handling

This is the benefit of having all exceptions inherit from Exception: It is possible to
write a generic catch block that will handle all exceptions without having to enumer-
ate them individually. Catchall exception handlers are important because they allow you
to recover from even the errors you didn’t anticipate.

A Typed Exceptions Example
So far in this chapter, all the exceptions have been (to our knowledge, at least) attribute
free. If you only need to identify the type of exception thrown and if you have been
careful in setting up our hierarchy, this will satisfy most of your needs. Of course, if the
only information you would ever be interested in passing up in an exception were
strings, exceptions would have been implemented using strings instead of full objects.
However, you would like to be able to include arbitrary information that might be use-
ful to the caller that will catch the exception.

The base exception class itself is actually deeper than indicated thus far. It is a built-in
class, meaning that it is implemented in C instead of PHP. It basically looks like this:

class Exception {

Public function _ _construct($message=false, $code=false) {

$this->file = _ _FILE_ _;

$this->line = _ _LINE_ _;

$this->message = $message; // the error message as a string

$this->code = $code; // a place to stick a numeric error code

}

public function getFile() {

return $this->file;

}

public function getLine() {

return $this->line;

}

public function getMessage() {

return $this->message;

}

public function getCode() {

return $this->code;

}

}

Tracking _ _FILE_ _ and _ _LINE_ _ for the last caller is often useless information.
Imagine that you decide to throw an exception if you have a problem with a query in
the DB_Mysql wrapper library:

class DB_Mysql {

// ...

public function execute($query) {

if(!$this->dbh) {

$this->connect();

89Exceptions

}

$ret = mysql_query($query, $this->dbh);

if(!is_resource($ret)) {

throw new Exception;

}

return new MysqlStatement($ret);

}

}

Now if you trigger this exception in the code by executing a syntactically invalid query,
like this:

<?php

require_once “DB.inc”;
try {

$dbh = new DB_Mysql_Test;

// ... execute a number of queries on our database connection

$rows = $dbh->execute(“SELECT * FROM”)->fetchall_assoc();
}

catch (Exception $e) {

print_r($e);

}

?>

you get this:

exception Object

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/DB.inc

[line] => 42

)

Line 42 of DB.inc is the execute() statement itself! If you executed a number of
queries within the try block, you would have no insight yet into which one of them
caused the error. It gets worse, though: If you use your own exception class and manually
set $file and $line (or call parent::_ _construct to run Exception’s construc-
tor), you would actually end up with the first callers _ _FILE_ _ and _ _LINE_ _ being
the constructor itself! What you want instead is a full backtrace from the moment the
problem occurred.

You can now start to convert the DB wrapper libraries to use exceptions. In addition
to populating the backtrace data, you can also make a best-effort attempt to set the
message and code attributes with the MySQL error information:

class MysqlException extends Exception {

public $backtrace;

public function _ _construct($message=false, $code=false) {

if(!$message) {

$this->message = mysql_error();

90 Chapter 3 Error Handling

}

if(!$code) {

$this->code = mysql_errno();

}

$this->backtrace = debug_backtrace();

}

}

If you now change the library to use this exception type:

class DB_Mysql {

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!is_resource($ret)) {

throw new MysqlException;

}

return new MysqlStatement($ret);

}

}

and repeat the test:

<?php

require_once “DB.inc”;
try {

$dbh = new DB_Mysql_Test;

// ... execute a number of queries on our database connection

$rows = $dbh->execute(“SELECT * FROM”)->fetchall_assoc();
}

catch (Exception $e) {

print_r($e);

}

?>

you get this:

mysqlexception Object

(

[backtrace] => Array

(

[0] => Array

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/DB.inc

[line] => 45

[function] => _ _construct

[class] => mysqlexception

91Exceptions

[type] => ->

[args] => Array

(

)

)

[1] => Array

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/test.php

[line] => 5

[function] => execute

[class] => mysql_test

[type] => ->

[args] => Array

(

[0] => SELECT * FROM

)

)

)

[message] => You have an error in your SQL syntax near ‘’ at line 1

[code] => 1064

)

Compared with the previous exception, this one contains a cornucopia of information:
n Where the error occurred
n How the application got to that point
n The MySQL details for the error

You can now convert the entire library to use this new exception:

class MysqlException extends Exception {

public $backtrace;

public function _ _construct($message=false, $code=false) {

if(!$message) {

$this->message = mysql_error();

}

if(!$code) {

$this->code = mysql_errno();

}

$this->backtrace = debug_backtrace();

}

}

class DB_Mysql {

protected $user;

protected $pass;

protected $dbhost;

92 Chapter 3 Error Handling

protected $dbname;

protected $dbh;

public function _ _construct($user, $pass, $dbhost, $dbname) {

$this->user = $user;

$this->pass = $pass;

$this->dbhost = $dbhost;

$this->dbname = $dbname;

}

protected function connect() {

$this->dbh = mysql_pconnect($this->dbhost, $this->user, $this->pass);

if(!is_resource($this->dbh)) {

throw new MysqlException;

}

if(!mysql_select_db($this->dbname, $this->dbh)) {

throw new MysqlException;

}

}

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!$ret) {

throw new MysqlException;

}

else if(!is_resource($ret)) {

return TRUE;

} else {

return new DB_MysqlStatement($ret);

}

}

public function prepare($query) {

if(!$this->dbh) {

$this->connect();

}

return new DB_MysqlStatement($this->dbh, $query);

}

}

class DB_MysqlStatement {

protected $result;

protected $binds;

public $query;

protected $dbh;

93Exceptions

public function _ _construct($dbh, $query) {

$this->query = $query;

$this->dbh = $dbh;

if(!is_resource($dbh)) {

throw new MysqlException(“Not a valid database connection”);
}

}

public function bind_param($ph, $pv) {

$this->binds[$ph] = $pv;

}

public function execute() {

$binds = func_get_args();

foreach($binds as $index => $name) {

$this->binds[$index + 1] = $name;

}

$cnt = count($binds);

$query = $this->query;

foreach ($this->binds as $ph => $pv) {

$query = str_replace(“:$ph”, “‘“.mysql_escape_string($pv).”’”, $query);
}

$this->result = mysql_query($query, $this->dbh);

if(!$this->result) {

throw new MysqlException;

}

}

public function fetch_row() {

if(!$this->result) {

throw new MysqlException(“Query not executed”);
}

return mysql_fetch_row($this->result);

}

public function fetch_assoc() {

return mysql_fetch_assoc($this->result);

}

public function fetchall_assoc() {

$retval = array();

while($row = $this->fetch_assoc()) {

$retval[] = $row;

}

return $retval;

}

}

? >

94 Chapter 3 Error Handling

Cascading Exceptions
Sometimes you might want to handle an error but still pass it along to further error han-
dlers.You can do this by throwing a new exception in the catch block:

<?php

try {

throw new Exception;

}

catch (Exception $e) {

print “Exception caught, and rethrown\n”;
throw new Exception;

}

?>

The catch block catches the exception, prints its message, and then throws a new
exception. In the preceding example, there is no catch block to handle this new excep-
tion, so it goes uncaught. Observe what happens as you run the code:

> php re-throw.php

Exception caught, and rethrown

Fatal error: Uncaught exception ‘exception’! in Unknown on line 0

In fact, creating a new exception is not necessary. If you want, you can rethrow the cur-
rent Exception object, with identical results:

<?php

try {

throw new Exception;

}

catch (Exception $e) {

print “Exception caught, and rethrown\n”;
throw $e;

}

?>

Being able to rethrow an exception is important because you might not be certain that
you want to handle an exception when you catch it. For example, say you want to track
referrals on your Web site.To do this, you have a table:

CREATE TABLE track_referrers (

url varchar2(128) not null primary key,

counter int

);

The first time a URL is referred from, you need to execute this:

INSERT INTO track_referrers VALUES(‘http://some.url/’, 1)

95Exceptions

On subsequent requests, you need to execute this:

UPDATE track_referrers SET counter=counter+1 where url = ‘http://some.url/’

You could first select from the table to determine whether the URL’s row exists and
choose the appropriate query based on that.This logic contains a race condition though:
If two referrals from the same URL are processed by two different processes simultane-
ously, it is possible for one of the inserts to fail.

A cleaner solution is to blindly perform the insert and call update if the insert failed
and produced a unique key violation.You can then catch all MysqlException errors
and perform the update where indicated:

<?php

include “DB.inc”;

function track_referrer($url) {

$insertq = “INSERT INTO referrers (url, count) VALUES(:1, :2)”;
$updateq = “UPDATE referrers SET count=count+1 WHERE url = :1”;
$dbh = new DB_Mysql_Test;

try {

$sth = $dbh->prepare($insertq);

$sth->execute($url, 1);

}

catch (MysqlException $e) {

if($e->getCode == 1062) {

$dbh->prepare($updateq)->execute($url);

}

else {

throw $e;

}

}

}

?>

Alternatively, you can use a purely typed exception solution where execute itself
throws different exceptions based on the errors it incurs:

class Mysql_Dup_Val_On_Index extends MysqlException {}

//...

class DB_Mysql {

// ...

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!$ret) {

if(mysql_errno() == 1062) {

96 Chapter 3 Error Handling

throw new Mysql_Dup_Val_On_Index;

else {

throw new MysqlException;

}

}

else if(!is_resource($ret)) {

return TRUE;

} else {

return new MysqlStatement($ret);

}

}

}

Then you can perform your checking, as follows:

function track_referrer($url) {

$insertq = “INSERT INTO referrers (url, count) VALUES(‘$url’, 1)”;
$updateq = “UPDATE referrers SET count=count+1 WHERE url = ‘$url’”;
$dbh = new DB_Mysql_Test;

try {

$sth = $dbh->execute($insertq);

}

catch (Mysql_Dup_Val_On_Index $e) {

$dbh->execute($updateq);

}

}

Both methods are valid; it’s largely a matter of taste and style. If you go the path of typed
exceptions, you can gain some flexibility by using a factory pattern to generate your
errors, as in this example:

class MysqlException {

// ...

static function createError($message=false, $code=false) {

if(!$code) {

$code = mysql_errno();

}

if(!$message) {

$message = mysql_error();

}

switch($code) {

case 1062:

return new Mysql_Dup_Val_On_Index($message, $code);

break;

default:

return new MysqlException($message, $code);

break;

97Exceptions

}

}

}

There is the additional benefit of increased readability. Instead of a cryptic constant being
thrown, you get a suggestive class name.The value of readability aids should not be
underestimated.
Now instead of throwing specific errors in your code, you just call this:

throw MysqlException::createError();

Handling Constructor Failure
Handling constructor failure in an object is a difficult business.A class constructor in
PHP must return an instance of that class, so the options are limited:

n You can use an initialized attribute in the object to mark it as correctly initialized.
n You can perform no initialization in the constructor.
n You can throw an exception in the constructor.

The first option is very inelegant, and we won’t even consider it seriously.The second
option is a pretty common way of handling constructors that might fail. In fact, in
PHP4, it is the preferable way of handling this.

To implement that, you would do something like this:

class ResourceClass {

protected $resource;

public function _ _construct() {

// set username, password, etc

}

public function init() {

if(($this->resource = resource_connect()) == false) {

return false;

}

return true;

}

}

When the user creates a new ResourceClass object, there are no actions taken, which
can mean the code fails.To actually initialize any sort of potentially faulty code, you call
the init() method.This can fail without any issues.

The third option is usually the best available, and it is reinforced by the fact that it is
the standard method of handling constructor failure in more traditional object-oriented
languages such as C++. In C++ the cleanup done in a catch block around a construc-
tor call is a little more important than in PHP because memory management might
need to be performed. Fortunately, in PHP memory management is handled for you, as
in this example:

98 Chapter 3 Error Handling

class Stillborn {

public function _ _construct() {

throw new Exception;

}

public function _ _destruct() {

print “destructing\n”;
}

}

try {

$sb = new Stillborn;

}

catch(Stillborn $e) {}

Running this generates no output at all:

>php stillborn.php

>

The Stillborn class demonstrates that the object’s destructors are not called if an
exception is thrown inside the constructor.This is because the object does not really
exist until the constructor is returned from.

Installing a Top-Level Exception Handler
An interesting feature in PHP is the ability to install a default exception handler that will
be called if an exception reaches the top scope and still has not been caught.This han-
dler is different from a normal catch block in that it is a single function that will han-
dle any uncaught exception, regardless of type (including exceptions that do not inherit
from Exception).

The default exception handler is particularly useful in Web applications, where you
want to prevent a user from being returned an error or a partial page in the event of an
uncaught exception. If you use PHP’s output buffering to delay sending content until
the page is fully generated, you gracefully back out of any error and return the user to
an appropriate page.

To set a default exception handler, you define a function that takes a single parameter:

function default_exception_handler($exception) {}

You set this function like so:

$old_handler = set_exception_handler(‘default_exception_handler’);

The previously defined default exception handler (if one exists) is returned.
User-defined exception handlers are held in a stack, so you can restore the old han-

dler either by pushing another copy of the old handler onto the stack, like this:

set_exception_handler($old_handler);

or by popping the stack with this:

restore_exception_handler();

99Exceptions

An example of the flexibility this gives you has to do with setting up error redirects for
errors incurred for generation during a page. Instead of wrapping every questionable
statement in an individual try block, you can set up a default handler that handles the
redirection. Because an error can occur after partial output has been generated, you need
to make sure to set output buffering on in the script, either by calling this at the top of
each script:

ob_start();

or by setting the php.ini directive:

output_buffering = On

The advantage of the former is that it allows you to more easily toggle the behavior on
and off in individual scripts, and it allows for more portable code (in that the behavior is
dictated by the content of the script and does not require any nondefault .ini settings).
The advantage of the latter is that it allows for output buffering to be enabled in every
script via a single setting, and it does not require adding output buffering code to every
script. In general, if I am writing code that I know will be executed only in my local
environment, I prefer to go with .ini settings that make my life easier. If I am author-
ing a software product that people will be running on their own servers, I try to go with
a maximally portable solution. Usually it is pretty clear at the beginning of a project
which direction the project is destined to take.

The following is an example of a default exception handler that will automatically
generate an error page on any uncaught exception:

<?php

function redirect_on_error($e) {

ob_end_clean();

include(“error.html”);
}

set_exception_handler(“redirect_on_error”);
ob_start();

// ... arbitrary page code goes here

?>

This handler relies on output buffering being on so that when an uncaught exception is
bubbled to the top calling scope, the handler can discard all content that has been gener-
ated up to this point and return an HTML error page instead.

You can further enhance this handler by adding the ability to handle certain error
conditions differently. For example, if you raise an AuthException exception, you can
redirect the person to the login page instead of displaying the error page:

<?php

function redirect_on_error($e) {

ob_end_clean();

if(is_a($e, “AuthException”)) {
header(“Location: /login.php”);

100 Chapter 3 Error Handling

}

else {

include(“error.html”);
}

}

set_exception_handler(“redirect_on_error”);
ob_start();

// ... arbitrary page code goes here

? >

Data Validation
A major source of bugs in Web programming is a lack of validation for client-provided
data. Data validation involves verification that the data you receive from a client is in fact
in the form you planned on receiving. Unvalidated data causes two major problems in
code:

n Trash data
n Maliciously altered data

Trash data is information that simply does not match the specification of what it should
be. Consider a user registration form where users can enter their geographic informa-
tion. If a user can enter his or her state free form, then you have exposed yourself to get-
ting states like

n New Yrok (typo)
n Lalalala (intentionally obscured)

A common tactic used to address this is to use drop-down option boxes to provide users
a choice of state.This only solves half the problem, though:You’ve prevented people
from accidentally entering an incorrect state, but it offers no protection from someone
maliciously altering their POST data to pass in a non-existent option.

To protect against this, you should always validate user data in the script as well.You
can do this by manually validating user input before doing anything with it:

<?php

$STATES = array(‘al’ => ‘Alabama’,
/* ... */,

‘wy’ => ‘Wyoming’);
function is_valid_state($state) {

global $STATES;

return array_key_exists($STATES, $state);

}

?>

101Exceptions

I often like to add a validation method to classes to help encapsulate my efforts and
ensure that I don’t miss validating any attributes. Here’s an example of this:

<?php

class User {

public id;

public name;

public city;

public state;

public zipcode;

public function _ _construct($attr = false) {

if($attr) {

$this->name = $attr[‘name’];
$this->email = $attr[‘email’];
$this->city = $attr[‘city’];
$this->state = $attr[‘state’];
$this->zipcode = $attr[‘zipcode’];

}

}

public function validate() {

if(strlen($this->name) > 100) {

throw new DataException;

}

if(strlen($this->city) > 100) {

throw new DataException;

}

if(!is_valid_state($this->state)) {

throw new DataException;

}

if(!is_valid_zipcode($this->zipcode)) {

throw new DataException;

}

}

}

?>

The validate() method fully validates all the attributes of the User object, including
the following:

n Compliance with the lengths of database fields
n Handling foreign key data constraints (for example, the user’s U.S. state being valid)
n Handling data form constraints (for example, the zip code being valid)

To use the validate() method, you could simply instantiate a new User object with
untrusted user data:

102 Chapter 3 Error Handling

$user = new User($_POST);

and then call validate on it

try {

$user->validate();

}

catch (DataException $e) {

/* Do whatever we should do if the users data is invalid */

}

Again, the benefit of using an exception here instead of simply having validate()
return true or false is that you might not want to have a try block here at all; you
might prefer to allow the exception to percolate up a few callers before you decide to
handle it.

Malicious data goes well beyond passing in nonexistent state names, of course.The
most famous category of bad data validation attacks are referred to as cross-site scripting
attacks. Cross-site scripting attacks involve putting malicious HTML (usually client-side
scripting tags such as JavaScript tags) in user-submitted forms.

The following case is a simple example. If you allow users of a site to list a link to
their home page on the site and display it as follows:

<a href=”<?= $url ?>”>Click on my home page

where url is arbitrary data that a user can submit, they could submit something like
this:

$url =’http://example.foo/” onClick=bad_javascript_func foo=”’;

When the page is rendered, this results in the following being displayed to the user:

Click on my home page

This will cause the user to execute bad_javascript_func when he or she clicks the
link.What’s more, because it is being served from your Web page, the JavaScript has full
access to the user’s cookies for your domain.This is, of course, really bad because it
allows malicious users to manipulate, steal, or otherwise exploit other users’ data.

Needless to say, proper data validation for any user data that is to be rendered on a
Web page is essential to your site’s security.The tags that you should filter are of course
regulated by your business rules. I prefer to take a pretty draconian approach to this fil-
tering, declining any text that even appears to be JavaScript. Here’s an example:

<?php

$UNSAFE_HTML[] = “!javascript\s*:!is”;
$UNSAFE_HTML[] = “!vbscri?pt\s*:!is”;
$UNSAFE_HTML[] = “!<\s*embed.*swf!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onabort\s*=!is”;

103Exceptions

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onblur\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onchange\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onfocus\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onmouseout\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onmouseover\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onload\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onreset\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onselect\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onsubmit\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onunload\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onerror\s*=!is”;
$UNSAFE_HTML[] = “!<[^>]*[^a-z]onclick\s*=!is”;

function unsafe_html($html) {

global $UNSAFE_HTML;

$html = html_entities($html, ENT_COMPAT, ISO-8859-1_

foreach ($UNSAFE_HTML as $match) {

if(preg_match($match, $html, $matches)) {

return $match;

}

}

return false;

}

?>

If you plan on allowing text to be directly integrated into tags (as in the preceding
example), you might want to go so far as to ban any text that looks at all like client-side
scripting tags, as in this example:

$UNSAFE_HTML[] = “!onabort\s*=!is”;
$UNSAFE_HTML[] = “!onblur\s*=!is”;
$UNSAFE_HTML[] = “!onchange\s*=!is”;
$UNSAFE_HTML[] = “!onfocus\s*=!is”;
$UNSAFE_HTML[] = “!onmouseout\s*=!is”;
$UNSAFE_HTML[] = “!onmouseover\s*=!is”;
$UNSAFE_HTML[] = “!onload\s*=!is”;
$UNSAFE_HTML[] = “!onreset\s*=!is”;
$UNSAFE_HTML[] = “!onselect\s*=!is”;
$UNSAFE_HTML[] = “!onsubmit\s*=!is”;
$UNSAFE_HTML[] = “!onunload\s*=!is”;
$UNSAFE_HTML[] = “!onerror\s*=!is”;
$UNSAFE_HTML[] = “!onclick\s*=!is”;

It is often tempting to turn on magic_quotes_gpc in you php.ini file.
magic_quotes automatically adds quotes to any incoming data. I do not care for
magic_quotes. For one, it can be a crutch that makes you feel safe, although it is

104 Chapter 3 Error Handling

simple to craft examples such as the preceding ones that are exploitable even with
magic_quotes on.

With data validation (especially with data used for display purposes), there is often the
option of performing filtering and conversion inbound (when the data is submitted) or
outbound (when the data is displayed). In general, filtering data when it comes in is
more efficient and safer. Inbound filtering needs to be performed only once, and you
minimize the risk of forgetting to do it somewhere if the data is displayed in multiple
places.The following are two reasons you might want to perform outbound filtering:

n You need highly customizable filters (for example, multilingual profanity filters).
n Your content filters change rapidly.

In the latter case, it is probably best to filter known malicious content on the way in and
add a second filtering step on the way out.

Further Data Validation
Web page display is not the only place that unvalidated data can be exploited. Any and all data that is

received from a user should be checked and cleaned before usage. In database queries, for instance, proper

quoting of all data for insert should be performed. There are convenience functions to help perform these

conversion operations.

A high-profile example of this are the so-called SQL injection attacks. A SQL injection attack works some-

thing like this: Suppose you have a query like this:

$query = “SELECT * FROM users where userid = $userid”;

If $userid is passed in, unvalidated, from the end user, a malicious user could pass in this:

$userid = “10; DELETE FROM users;”;

Because MySQL (like many other RDBMS systems) supports multiple queries inline, if this value is passed in

unchecked, you will have lost your user’s table. This is just one of a number of variations on this sort of

attack. The moral of the story is that you should always validate any data in queries.

When to Use Exceptions
There are a number of views regarding when and how exceptions should be used. Some
programmers feel that exceptions should represent fatal or should-be-potentially-fatal
errors only. Other programmers use exceptions as basic components of logical flow con-
trol.The Python programming language is a good representative of this latter style: In
Python exceptions are commonly used for basic flow control.

This is largely a matter of style, and I am inherently distrustful of any language that
tries to mandate a specific style. In deciding where and when to use exceptions in your
own code, you might reflect on this list of caveats:

105Further Reading

n Exceptions are a flow-control syntax, just like if{}, else{}, while{}, and
foreach{}.

n Using exceptions for nonlocal flow control (for example, effectively long-jumping
out of a block of code into another scope) results in non-intuitive code.

n Exceptions are bit slower than traditional flow-control syntaxes.
n Exceptions expose the possibility of leaking memory.

Further Reading
An authoritative resource on cross-site scripting and malicious HTML tags is CERT
advisory CA-2000-02, available at www.cert.org/advisories/CA-2000-02.html.

Because exceptions are rather new creatures in PHP, the best references regarding
their use and best practices are probably Java and Python books.The syntax in PHP is
very similar to that in Java and Python (although subtlely different—especially from
Python), but the basic ideas are the same.

www.cert.org/advisories/CA-2000-02.html

This page intentionally left blank

This page intentionally left blank

Symbols
__autoload() function, 70-71
{} braces

control flow constructs, 15-16
function names, 24

__call() callback, 68-70
__destruct() class, 42
== (equal operator), 485
! parameter modifier, zend_parse_

parameter() method, 515
/ parameter modifier, zend_parse_

parameter() method, 515
| parameter modifier, zend_parse_

parameter() method, 515
() parentheses, clarifying code, 28-29
$_SERVER[‘USER_AGENT’] setting, 331
$_SERVER[REMOTE_IP] setting, 331
_ (underscore)

class names, 25
function names, 24
word breaks, 24

Numbers
404 errors, 276
500 error codes, 77

A
ab (ApacheBench) contrived load

generator, 422-424
absolute pathnames, 158
abstract classes, 53-54
abstract stream data type, 571

abstraction layers, computational reuse
between requests, 293

access
databases

tuning, 317-322
wrapper classes, 197

objects, Adapter patterns, 44-48
properties, overloading, 60
streams-compatible protocols, 568

access handlers, class objects, 490
access libraries, client-side sessions,

353-354
accessors

functions, 22
INI setting, 534
zvals, 522-523

accounts, locking, 329
accumulator arrays, 287
activation, CGI SAPI, 584
Active Record pattern, 307-310
ad hoc, 245, 307
Adapter pattern, 44-48
addresses (email), unique identifiers, 327
addTestSuite() method, 161
add_assoc_zval() method, 517
Advanced PHP Debugger (APD) profiler

caching tables, 446-447
counters, 432
culling, 442-446
inefficiencies, 440-442
installing, 431-433
large applications, 435-440
trace files, 431-434

advisory file locks, 247-250
Ahmdahl’s Law, 471

Index

612 algorithms

algorithms
encryption, 332
sorting algorithms, 286
speed, 285-286

allocated objects
classes, 490
destroying, 560

Amazon free SOAP interface Web site, 415
Amazon.com Web services API, 410-412
analyze method, 176
analyzers, lexical (lexers), 476
Apache

404 errors, 276
mod, mod_rewrite, 273-277
cache integration, 273-277
modules, 327
packaging, 204-205
Web site, 237

ApacheBench (ab) contrived load
generator, 422-424

APC
compiler cache, 220
Zend Engine, 606

APD (Advanced PHP Debugger) profiler
caching tables, 446-447
counters, 432
culling, 442-446
inefficiencies, 440-442
installing, 431-433
large applications, 435-440
trace files, 431-434
Zend Engine, 605-606

apd_execute() method, 605
apd_execute_internal() method, 605
apd_get_active_function_name() method,

606
APIs (application programming inter-

faces), 29-31
Amazon.com Web services, 410-412
Blogger Web site, 415
designs

bottom-up, 207
coupling, 212-213

data sanitization, 215-216
data validation, 216
defensive coding, 213-214
method logic, 208-209
namespaces, 210-212
security, 214-215
simple methods, 210
top-down, 208

hook structures, session handlers, 564
MetaWeblog

implementing, 396-400
Web site, 415

MovableType Web site, 415
phpDocumentor project, 31-35
PHP extension, 493, 497-498
streams, 579

C streams-compatible protocols,
accessing, 568

custom stream implementation, 570
I/O operations, 570
memory-mapped files, 571-578
storing, 570

Zend extension, 493, 498-500
application benchmarking, 450

bottlenecks, passively identifying,
420-422

load generators
contrived, 422-424
Daiquiri, 426-427
httperf, 424-426
realistic, 422

application layers, 492-496
application management

change control, CVS (Concurrent
Versioning System), 184-188

binary files, 187-188
branches, 186-187, 194-195
development/production environments,

195-199
diffs, 189-191
file versions, 189-191
log messages, 186
modifying files, 188-189

613AuthException exception

repositories, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199
updating files, 191-193

packaging, 199
Apache, 204-205
binaries, 203-204
pack(), 200-201
PHP, 205-206
pushing code, 201-203

application programming interfaces.
See APIs

application servers, database scaling,
390-391

applications
APD (Advanced PHP Debugger) profiler,

435-440
PHP lifecycle

PHP core, 493, 496
PHP extension API, 493, 497-498
SAPI (Server Abstraction API layer),

492-496
Zend extension API, 493, 498-500

Web, default exception handlers, 98
architecture, Web servers, 228
arguments

command-line, parsing, 128-130
input filters, 596
mmap_open() method, 577
types, functions, 483
write() method, 571
ZEND_FETCH_RESOURCE() macro,

528
arrays

accumulator, 287
associative

algorithm speed, 285
macros, 464

computational reuse, 296
creating, 516
data extraction, 519-520
indexed, 518-519

op (operations), Zend Engine, 476-482
persistent associative, creating, 61
types, adding, 516-517
zvals, adding, 517

associative arrays
algorithm speed, 285
macros, 464

attacks
cross-site scripting, 330
dictionary, 327-329
security, remote command injection, 214
social engineering, 330

attributes. See properties
authentication

dictionary attacks, 327-329
exceptions, 336
handlers, 327
implementing, 334-339
maintaining state

encrypted cookies, 332
expiration logic, 332-333
log outs, 333
$_SERVER[‘USER_AGENT’] setting,

331
$_SERVER[REMOTE_IP] setting,

331
unencrypted cookies, 332
user identity information, 333
versioning information, 333

passwords, storing, 339
schemes, 324

cookies, 326-327
HTTP Basic Authentication, 325
query string munging, 325-326

single signon, 339-340
implementing, 341-346
Microsoft Passport, 339

user registration
password protection, 327-330
unique identifiers, 327

Web unit testing, 179-182
AuthException exception, 336

How can we make this index more useful? Email us at indexes@samspublishing.com

614 AuthorRequest object

AuthorRequest object, 412
automatic query dispatching, 387-389
avoiding confusing code

() parentheses, 28-29
echo, 27-28
open tags, 27

B
backups, bandwidth, 385
bandwidth, 384-385
Basic Authentication (HTTP), 325
Benchmark libraries, installing, 452
benchmarking

applications, 450
bottlenecks, passively identifying,

420-422
load generators, 422-427

inline, writing, 462
interpolation versus concatenation,

470-471
macro expansions, 464-470
overview, 450-451
strings, matching characters, 463-464
synthetic, 449-450
Whetstone, 450

benchmarking harness
custom timer information, adding,

458-461
features, 451
inline benchmarks, writing, 462
iterations, data randomization, 455-456
overhead, removing, 456-458
PEAR suite (Benchmark_Iterate),

451-454
testing harnesses, creating, 454-455

Benchmark_Iterate (PEAR benchmarking
suite), 451-454

binaries, packaging, 203-204
binary data, strings, 296
binary files, CVS (Concurrent Versioning

System), 187-188
bind SQL, 47

binding nodes, WSDL, 407
BitKeeper versioning system, 185
blocking network connections, 225
blocks

catch, 84, 94
try, 84

Blogger API Web site, 415
blogid() method, MetaWeblog API, 397
bottlenecks

ADP (Advanced PHP Debugger), culling,
442-446

database optimization, 300
network latency, 223-225
passively identifying, 420-422

bottom-up culling, 443
bottom-up designs, 207
braces {}

control flow constructs, 15-16
function names, 24

branches, CVS (Concurrent Versioning
System), 186-187, 194-195

break loops, 18-19
BSD methodology, 257
BSD style, braces {}, 15
bubblesort sorting algorithm, 286
buffers, cache integration, 265-266. See

also output buffering
bug reports, TDD (test-driven develop-

ment), 177-179
build system macros, 507
built-in classes, 88
built-in functions, 452-453
buses (messaging), Spread toolkit, 380-384

C
C strings, 296
C++-style comments, 29
C-style comments, 29
Cache-Control HTTP header, 232
cache-friendly applications, external per-

formance tuning, 231-235
Cache_File module, 379

615catch block

caching, 375-376
centralized, 378-380
coherency, 240
compiler caches, 219-221, 236
computational reuse

arrays, 296
between requests, 292-295
Fibonacci Sequences, 283-289
inside requests, 289-292
PCREs (Perl Compatible Regular

Expressions), 295
concurrency, 240
cookie-based

coherency, 263-264
concurrency, 263-264
personalized navigation bar, 258-263
scalability, 263
size maintenance, 263
user identities, 258-263
user profile information, 258-263

DBM-based, 251-252
concurrency, 253
expiration, 254-255
garbage collection, 257
invalidation, 253-254
keys, 257
loopkups, 255-256
maintenance, 257
storage, 255-256
updates, 253-254

decentralized, Spread toolkit, 380-384
features, 239-241
file locks, 247-259

coherency, file swaps, 250-251
concurrency, 245-251
flat-file caches, 244
size maintenance, 244-245

files, poisoning, 383
handlers, Smarty, 120
hierarchical, 240
HTTP caching, 229
in-memory, 244-251

integrated caching, 230
integration

file swaps, 264-265
home pages, 266-273
mod_rewrite, 273-277
output buffering, 265-266
partial pages, 277-280
query cache, 280-281

invalidation, 240
locality, 241
output buffering, 242-244
overview, 239
PEAR classes, 241-242
poisoning, 240
pre-fetching, 240
proxies, 229-230, 236-237
recognizable data components, 241
removal policies, 245
session data, 377
shared memory,

BSD methodology, 257
maintenance, 258
System V methodology, 257-258

size maintenance, 239
Smarty, 109, 117-118
stale, 240

caching logic, factory classes, 292
caching tables, APD (Advanced PHP

Debugger), 446-447
calculations, algorithm speed, 285-286
callback methods, registering, 396
callbacks

__call, 68-70
statement handler, Zend Engine, 607
Zend Engine extension, 606-609

calling functions, 479-480
calling methods, speed, 210
camel caps, word breaks, 24
canonical pathnames, 159
capacity, clusters, 368
cascading exceptions, 94-97
catch block, 84, 94

How can we make this index more useful? Email us at indexes@samspublishing.com

616 catching exceptions

catching exceptions, 84-85
CBC (Cypher Block Chaining) mode, 337
cdb libraries, 252
centralized cache, 378-380
CFB (Cypher Feedback) mode, 337
CGI SAPI

activation/deactivation, 584
cookies, 587
data writing callback, 584
deactivation code, 584
environment variables lookup interface,

585
flush helper method, 584
header handlers, 586
logging, 588
main() routine, 588, 591
method pointers, 583
POST data, reading, 587
SAPI name, 583
sapi_module_struct structure, 582-584
sending headers, 586
server variables, 588
shell environment variables, 588
shutdown, 584
stat() override, 585
stream buffers, flushing, 585
userspace error callback, 586

change control, CVS (Concurrent
Versioning System), 184

binary files, 187-188
branches, 186-187, 194-195
development/production environments,

195-199
diffs, 189-191
file versions, 189-191
log messages, 186
modifying files, 188-189
repositories, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199
updating files, 191-193

characters (matching), strings, 463-464

check_credentials function, 329
child processes, 130

creating, 131
reaping, 132-134
resources, sharing, 131
signals

SIGALRM, 134, 137-138
SIGCHILD, 134-135, 137
SIGHUP, 134, 138
SIGINT, 134
SIGKILL, 134
SIGUSR1, 134
SIGUSR2, 134

variables, sharing, 132
chroot() method, 140
CISC (Complex Instruction Set

Computer), 476
classes

abstract, 53-54
built-in, 88
constructors, adding, 557-558
creating, 550-551
custom objects, 559-562
DB_Result, 58-60
__destruct(), 42
documenting, 32
Exception, 83, 558
exceptions, throwing, 558-559
factory, 292
factory methods, 562
implementing, 549-550
inheritance, 554
interfaces, defining/implementing,

562-564
methods, adding, 555-557
naming, 25
Net_Telnet, 69
PEAR, caching, 241-242
PEAR XML-RPC, 395
private properties, 554
private variables, 559
properties, adding, 551-553

617coding styles

ServiceCheckRunner, 144-146
Spread_Logger, 547
TestCase, 156-157
Word, 169-177
wrapper, database access, 197
Zend Engine, 487

components, 488
global data structures, 490-492
object handlers, 489-490
object model, 488-489
objects, 490

cleaning user-submitted data, 351
CLI (command-line interface), scripts

arguments, 128-130
executing, 125
I/O, handling, 125-128

CLI SAPI (Server Abstraction API layer),
494

client-side caching, cookie-based
coherency, 263-264
concurrency, 263-264
personalized navigation bar, 258-263
scalability, 263
size maintenance, 263
user identities, 258-263
user profile information, 258-263

client-side sessions, 349-350
access libraries, 353-354
benefits, 352-353
implementing via cookies, 351-353
limitations, 353
session data encryptions, 351-352
versus server-side sessions, 366

clients
Spread, 382
XML-RPC, 395

clone() method, 560
close() method, streams, 570
clusters

cache, 375-377
centralized, 378-380
decentralized, Spread toolkit, 380-384

capacity, 368

content distribution, 373-374
database scaling, 386

application servers, 390-391
partitioning, 384, 389-390
RDBMS systems, 390
replication, 385-389

design, 370-373
overview, 367-370
redundancy, 367
scaling, 368-369, 374
specialized, 374-375

code
authentication implementation, 334-339
confusing, avoiding, 27-29
coupling, 212-213
defensive coding, 213-216
fast, include files, 212
intermediate, 220, 476-479
method logic, 208-209
modular, include files, 212
namespaces, 210, 212
production, pushing, 201-203
proxy, generating, 412-413
simple methods, 210
testing, 153-154

code logic errors, 73
code optimizers, 223
coding styles

choosing, 10
confusing code, avoiding

() parentheses, 28-29
echo, 27-28
open tags, 27

documentation
API (application programming

interface), 29-35
classes, 32
functions, 32
inline comments, 29-30

format/layout
control flow constructs, 14-19
indentation, 10-12
line length, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

618 coding styles

SQL, 14
whitespace, 13

naming symbols, 19-20
class names, 25
consistency, 25
constants, 21-22
function names, 24
long-lived variables, 22
method names, 25
multiword variable names, 24
temporary variables, 23
truly global variables, 21-22
variable names, matching, 26-27

coherency
cookie-based caching, 263-264
DBM-based caching, 253
in-memory caching

file locks, 247-250
file swaps, 250-251

command-line arguments, parsing,
128-130

command-line interface. See CLI
comments

inline, 29-30
magic, 12

commodity hardware, 371
common Log Format Apache logs, 426
compiled templates, 111
compiler caches, 219-221, 236
compiler_globals struct, 490-492
Complex Instruction Set Computer

(CISC), 476
components (data), recognizing for cache,

241
compression, external performance tuning,

235-237
computational reuse

arrays, 296
between requests, 292-295
Fibonacci Sequences, 283-289
inside requests, 289-292
PCREs (Perl Compatible Regular

Expressions), 295

concatenation, 470-471
concurrency

caching, 240
cookie-based caching, 263-264
DBM-based caching, 253
home pages, caching, 272
in-memory caching, 245-246

file locks, 247-250
file swaps, 250-251

Concurrent Versioning System (CVS), 184
binary files, 187-188
branches, 186-187, 194-195
development/production environment,

195-199
diffs, 189-191
file versions, differentiating, 189-191
files

modifying, 188-189
updating, 191-193

log messages, 186
pushing production code, 203
repositories, creating, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199

conditionals, 14-16
conditions, adding unit testing, 164-165
config.m4 files, 506
configuration files, monitoring engine

script, 148-149
confusing code, avoiding

() parentheses, 28-29
echo, 27-28
open tags, 27

connect() method, Spread client wrapper,
539-541

connections
networks

blocking, 225
FIN packets, 229

nonpersistent, 539
persistent, 539
Spread client wrapper, 539-541

619CVS (Concurrent Versioning System)

consecutive_failures parameter,
ServiceCheck object, 143

Console_Getopt package (PEAR), 128-129
constant-folding, optimizers, 222
constants, 21-22, 530-531
constructors, 38-39

adding to classes, 557-558
failing, exceptions, 97-98

constructs, control flow
braces {}, 15-16
conditionals, 14
loops, 14

break, 18-19
continue, 18-19
controlling flow, 18-19
deeply nested, 19
for, 16-18
foreach, 16-18
while, 16-18

content compression, external perform-
ance tuning, 235-237

content distribution, clusters, 373-374
continue loops, 18-19
contrived load generators, 422-424
control flow constructs

braces {}, 15-16
conditionals, 14
loops, 14

break, 18-19
continue, 18-19
controlling flow, 18-19
deeply nested, 19
for, 16-18
foreach, 16-18
while, 16-18

conversion, 104
cookie-based caching

coherency, 263-264
concurrency, 263-264
personalized navigation bar, 258-263
scalability, 263
size maintenance, 263

user identities, 258-263
user profile information, 258-263

cookies, 326-327
APD (Advanced PHP Debugger) profiler,

inefficiencies, 440-442
CGI SAPI, 587
client-side sessions, implementing,

351-353
encrypted, 332
JavaScript, 330
session IDs, tracking, 356-357
unencrypted, 332

count() function, 296
counters, 432
counts, arrays, 296
coupling, 212-213
create_object() method, 560
create_table() function, 116
CREDITS file, 507
cross-site scripting, 102, 330
culling, APD (Advanced PHP Debugger),

442-446
curl extension, 179
current_status parameter, ServiceCheck

object, 143
custom error handlers, 79-80
custom objects, creating, 559-562
custom timer information, adding, 458-461
CVS (Concurrent Versioning System), 184

binary files, 187-188
branches, 186-187, 194-195
development/production environment,

195-199
diffs, 189-191
file versions, differentiating, 189-191
files

modifying, 188-189
updating, 191-193

log messages, 186
pushing production code, 203
repositories, creating, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199

How can we make this index more useful? Email us at indexes@samspublishing.com

620 Cypher Block Chaining (CBC) mode

Cypher Block Chaining (CBC) mode, 337
Cypher Feedback (CFB) mode, 337

D
daemons

exclusivity, 141
privileges, 140-141
working directories, 140
writing, 138-139

Daiquiri load generator, 426-427
data

binary, strings, 296
computational reuse

arrays, 296
between requests, 292-295
Fibonacci Sequences, 283-289
inside requests, 289-292
PCREs (Perl Compatible Regular

Expressions), 295
displaying, Smarty, 112
maliciously altered, cross-site scripting

attacks, 102
trash data, 100-102

data components, recognizing for cache,
241

data extraction, arrays, 519-520
data randomization, iterations, 455-456
data sanitization, 215-216
data structures, global, classes, 490-492
data types, union, 484
data validation, 103, 216

maliciously altered, 102
SQL injection attacks, 104
trash data, 100-102

database access patterns, 306
Active Record pattern, 307-310
ad hoc queries, 307
Integrated Mapper pattern, 315-317
Mapper pattern, 310-315

database management system (DBMS),
299

database objects, creating via factory
methods, 55

databases
accessing, wrapper classes, 197
defined, 299
introspection, EXPLAIN SQL syntax,

303-304
multiple, development environments,

197-198
profiles, 300-302, 305-306
queries, bandwidth, 384
RDBMSs (relational database manage-

ment systems), 299
database access patterns, 306-317
indexes, 300-302
queries, 300-303

scaling
application servers, 390-391
partitioning, 384, 389-390
RDBMS systems, 390
replication, 385-389

terminology, 299
tuning

lazy initialization, 319-322
limiting result sets, 317-319

Dave Winer XML-RPC Web site, 414
DBG profiler, 431
DBM, libraries or licenses, 252
DBM-based caching, 251-252

concurrency, 253
expiration, 254-255
garbage collection, 257
invalidation, 253-254
keys, 257
lookups, 255-256
maintenance, 257
storage, 255-256
updates, 253-254

DBMS (database management system),
299

DB_Result class, 58-60
deactivation, CGI SAPI, 584

621distributing content,

dead code elimination, optimizers, 222
debugging, ADP (Advanced PHP

Debugger)
caching tables, 446-447
counters, 432
culling, 442-446
inefficiencies, 440-442
installing, 431-433
large applications, 435-440
trace files, 431-434

decentralized cache, Spread toolkit,
380-384

declaring methods, 509
deeply nested loops, avoiding, 19
default exception handlers, installing,

98-100
defensive coding, 213

data sanitization, 215-216
data validation, 216
security, 214-215
standard conventions, 214

defining
constants, module initialization, 530-531
interfaces, 562-564
wrappers (streams API), 576

delegation, OOP (object-oriented
programming), 50-52

description parameter, ServiceCheck
object, 143

design patterns
Adapter pattern, 44-48
Factory pattern, 54-55
interfaces, 52-54
polymorphism, 50-52
Singleton pattern, 56-57
Template pattern, 49
type hinting, 52-54

designing clusters, 370
cohabitation, 371-373
commodity hardware, 371

designs
bottom-up, 207
defensive coding, 213

data sanitization, 215-216
data validation, 216
security, 214-215
standard conventions, 214

refactoring
coupling, 212-213
method logic, 208-209
namespaces, 210-212
simple methods, 210

top-down, 208
destroying

allocated objects, 560
session handlers, 567

destructing objects, 42-43
destructors, creating, 560
development environments

maintaining, CVS (Concurrent Versioning
System), 195-199

multiple databases, 197-198
dictionary attacks, 327-329
diffs, 189-191
directives

ErrorDocument, 276
max-age, 232
must-revalidate, 232
no-cache, 232
private, 232
proxy-revalidate, 232
public, 232
s-maxage, 233

directories, 140, 246
disconnecting Spread client wrapper,

541-542
displaying data, Smarty, 112
displaying errors (error handling), 76-77
distributing content, clusters, 373-374

How can we make this index more useful? Email us at indexes@samspublishing.com

622 documentation

documentation
API (application programming interface),

29-35
classes, 32
functions, 32
inline comments, 29-30

dynamic extensions, creating, 508
dynamic instance properties, 551
dynamically typed languages, 482-483

E
echo, 27-28
efree() method, 512
email addresses, unique identifiers, 327
emalloc() method, 511-512
embed SAPI (Server Abstraction API

layer), 494, 591-593
embedding HTML, 27
encapsulation

OOP (object-oriented programming),
39-41

PPP (public, protected, private), 41
encrypted cookies, 332
encryption

algorithms, 332
session data, client-side sessions, 351-352

enterprise, 183
environment variables

looking up, 585
printing, 113
shell, CGI SAPI, 588

equal operator (==), 485
erealloc() method, 512
error handling

code logic errors, 73
custom error handlers, setting, 79-80
displaying errors, 76-77
exceptions, 82

cascading, 94-97
catching, 84-85
constructor failure, 97-98
creating, 83

data validation, 100-104
default exception handlers, installing,

98-100
Exception class, 83
hierarchies, 86-88
Python programming, 104
rethrowing, 94
throwing, 83-85
typed example, 88-93
when to use, 104-105

external, 80-83
external errors, 73
E_ERROR errors, 74
E_NOTICE errors, 74-75
E_USER_NOTICE errors, 75
E_WARNING errors, 74
ignoring errors, 78-79
logging errors, 77-78
severity levels, 73

error messages, informative (unit testing),
163-164

ErrorDocument directive, 276
errors

404, 276
500 error code, 77
handling, extensions, 529
runtime, detecting, 52

error_reporting, 75
estrndup() method, 512
eval() function, 468
event-based architecture, Web servers, 228
example.php script, 507
Exception class, 83, 558
exceptions, 82

authentication, 336
AuthException, 336
cascading, 94-97
catching, 84-85
constructor failure, 97-98
creating, 83
default exception handlers, installing,

98-100

623extensions

Exception class, 83
hierarchies, 86-88
Python programming, 104
rethrowing, 94
throwing, 83-85, 558-559
typed example, 88-93
validation

maliciously altered data, 102
SQL injection attacks, 104
trash data, 100-102

warnings as (Zend Engine), 599-601
when to use, 104-105

exclusivity, daemons, 141
executor_globals struct, 490-492
expansions, macros (benchmarking),

464-470
EXPERIMENTAL file, 507
expiration, DBM-based caching, 254-255
expiration logic, 332-333
Expires HTTP header, 231
EXPLAIN SQL syntax, 303-304
explode method, 176
extensions

config.m4 file, 506
curl, 179
dynamic, creating, 508
errors, 529
files, mcrypt, 332
hex-encoding strings example, 511-512
hooks, 497
master C source file example, 505
memory management, 511-513
methods, Fibonacci Sequence example,

508-510
module hooks, 529

module shutdown, 535
module startup/shutdown, 530-535
phpinfo() registration, 536-537
request shutdown, 536
request startup, 535
request startup/shutdown, 535

mysqli, 387-388

PHP extension API, 493, 497-498
registering, 497
resources

creating, 524
finding, 526-528
handling, 524
nonpersistent, 524
persistent, 524
POSIX file handles as, 524
registering, 525-526

socket, 390
Spread client wrapper example

connecting, 539-541
disconnecting, 541-542
groups, joining, 542-543
method registration, 546
module initialization, 538
module registration, 546
module shutdown, 539
receiving messages, 543-545
sending messages, 545-546
Spread library, 537
Spread_Logger class, 547

Spread client wrapper Web site, 548
static, creating, 507
strings, parsing

format characters, 514
parameter modifiers, 514-515
return macros, 515

stubs, creating, 504, 507
Zend Engine callbacks, 606-609
Zend extension API, 493, 498-500
zvals

accessors, 522-523
arrays. See arrays
assignments, 516
creating, 516
hashtables, 519-520
macros, 516
separation, 522
type conversions, 521-522
variables, copying, 523

How can we make this index more useful? Email us at indexes@samspublishing.com

624 external errors

external errors, 73, 80-83
external performance tunings

cache-friendly applications, HTTP
headers, 231-235

content compression, 235-237
language-level tunings

compiler caches, 219-221, 236
HTTP accelerators, 223-225
operating systems, 228-229
optimizers, 222-223
proxy caches, 229-230, 236-237
reverse proxies, 225-228

Extreme Programming, unit testing, 154
E_ERROR errors, 74
E_NOTICE errors, 74-75
E_USER_NOTICE errors, 75
E_WARNING errors, 74

F
factory classes, 292
factory methods, 562

database objects, creating, 55
singletons, creating, 56-57

Factory pattern, 54-55
failover solutions, clusters, 373-374
failure_time parameter, ServiceCheck

object, 143
fast code, include files, 212
fastcgi SAPI (Server Abstraction API

layer), 494
Fibonacci Sequences, 283-289
fibonacci() method, 509
FIFO (first in, first out), 245
file extensions, mcrypt, 332
file handles, 125-127
file systems, 245, 385
files

Amazon WSDL, 410
binary, CVS (Concurrent Versioning

System), 187-188
cache, poisoning, 383
config.m4, 506

CREDITS, 507
EXPERIMENTAL, 507
include, modular versus fast code, 212
individual, pushing, 199-200
locking, 247-250
master C source, 505
modifying, CVS (Concurrent Versioning

System), 188-189
network shares, centralized cache, 378
PHP, moving, 201-202
php_example.h, 507
sharing, networks, centralized cache, 378
swapping, 250-251, 264-265
trace, APD (Advanced PHP Debugger)

profiler, 431-434
updating, CVS (Concurrent Versioning

System), 191-193
versions, CVS (Concurrent Versioning

System), 189-191
files session handler, 361-366
filtering, 104

output, Smarty, 119
postfilters, Smarty, 119
prefilters, Smarty, 119
SAPI input, 593

input_filter, 594-598
post_reader, 598
treat_data, 598

FIN packets, 229
first in, first out (FIFO), 245
flags, is_ref, 484
flat-file caches, 244
Flesh score calculator, 169
flock() function, 248
flow

control (Smarty), 111-114
loops, controlling, 18-19

flush() method, streams, 570
focused tuning, 471
for loops, 16-18
foreach loops, 16-18
format characters, strings, 514

625handlers

formats
coding styles

control flow constructs, 10-19
indentation, 10-12

magic comments, 12
tabs, 11-14

formatting
coding styles, indentation, 10-12
tabs, 12

frequency parameter, ServiceCheck object,
143

full descriptive names, clusters, 373
function calls, 479-480
function pointers, Zend Engine, 498-500
function-based indexes, 301
functions

accessor, 22
APD (Advanced PHP Debugger) profiler,

inefficiencies, 441
argument types, 483
__autoload, 70-71
built-in, 452-453
check_credentials, 329
documenting, 32
flock(), 248
invariant, loops, 440
iterations, 455-456
login(), 69
mail(), 80
namespacing, clusters, 372-373
naming, 20, 24
PCREs (Perl Compatible Regular

Expressions), 295
recursive, 283-289
rename(), 251
set_error_handler, 79
shmop, 258
trigger_error(), 74
userspace, 452-453
Zend Engine, 486-487

G
garbage collection

DBM-based caching, 257
server-side sessions, 358-359, 364-366
session handlers, 568
Smarty, 118

gdbm libraries, 252
generateProxyCode() method, 413
generate_plugins() function, 437
get() method, 455
getrusage() function, resource values, 458
getSOAPServiceDescription() method, 408
getSOAPServiceName() method, 408
getSOAPServiceNamesapce() method, 408
getThis() method, 555
getTypeName() method, 411
getTypeNamespace() method, 411
getWSDLURI() method, 408
global data structures, classes, 490-492
global keyword, 21
global variables, 20

accessor functions, 22
module initialization, 531-532
truly, 21-22

GNU style, braces {}, 15
Google free SOAP interface Web site, 415
graphical interfaces, unit testing, 167-168
groups, joining, 542-543
gzip output handler, 235

H
“Hacking the PHP Source” Web site, 548
handlers

access, class objects, 490
authentication, 327
cache, Smarty, 120
files, 363-365

methods 361-362, 366
native, implementing, 366

objects (classes), 489-490
PHP_MINIT_FUNCTION(), 525

How can we make this index more useful? Email us at indexes@samspublishing.com

626 handlers

session
API hook structures, 564
closing, 565
destroying, 567
garbage collection, 568
methods, 360-365
opening, 564
reading data, 566
writing data, 566

signals
child processes. See signals, child

processes
monitoring engine script, 146

handling
I/O (input/ouput), 125-128
resources, 524

handling errors, 74-75
custom error handlers, setting, 79-80
displaying errors, 76-77
exceptions, 82

cascading, 94-97
catching, 84-85
constructor failure, 97-98
creating, 83
data validation, 100-104
default exception handlers, installing,

98-100
Exception class, 83
hierarchies, 86-88
Python programming, 104
rethrowing, 94
throwing, 83-85
typed example, 88-93
when to use, 104-105

extensions, 529
external, 80-83
ignoring errors, 78-79
logging errors, 77-78
severity levels, 73

hard tabs, indentation, 11-12
hardware, commodity, 371

harness
benchmarking

custom timer information, adding,
458-461

features, 451
inline benchmarks, writing, 462
iterations, 455-456

data randomization, 455
overhead, removing, 456-458
PEAR suite (Benchmark_Iterate),

451-454
testing harnesses, creating, 454-455

hashtables, zvals, 519-520
HASH_OF() macro, 519
HEAD branches, CVS (Concurrent

Versioning System), 187
headers, HTTP

cache-friendly applications, 231-235
output buffering, 243-244

heavyweight sessions. See client-side
sessions

Hello World! Smarty template, 110-111
hexdecode() method, 512
hexencode() method, 511
hierarchical caching, 240
hierarchies, exceptions, 86-88
home pages, caching, 266

concurrency, 272
templatization, 267-273

hooks, extensions, 497
horizontal scalability, 374
HTML (Hypertext Markup Language),

embedding, 27
HTTP (Hypertext Transfer Protocol)

accelerators, 223-225
caching, 229
headers

cache-friendly applications, 231-235
output buffering, 243-244

HTTP Basic Authentication, 325
httperf load generator, 424-426

627installations

Hypertext Markup Language (HTML),
embedding, 27

Hypertext Transfer Protocol. See HTTP

I
I/O (Input/Output)

handling, 125-128
operations, 570

identification, passively identifying bottle-
necks, 420-422

identifiers, unique, 327
identities (users), cookie-based caching,

258-263
IDs, session, 356-357, 360-361
ignoring errors (error handling), 78-79
implementing

classes, 549-550
custom streams, 570
interfaces, 562-564, 571
MetaWeblog API, 396

blogid() method, 397
callback, 399
entries, posting, 398
item_struct() method, 397
publish() method, 397
RSS, 397
Unix timestamp, 400

single signon, 341-346
in-memory caching

coherency, 245-246
file locks, 247-250
file swaps, 250-251

concurrency, 245-246
file locks, 247-250
file swaps, 250-251

flat-file caches, 244
size maintenance, 244-245

inbound conversion, 104
inbound filtering, 104
include files, modular versus fast code, 212
include function, Smarty, 114
indentation, 10-12

Index Organized Table (IOT), 301
indexed arrays, 518-519
indexes

function-based, 301
RDBMSs (relational database manage-

ment systems), 300-302
readability indexes, 169
unique, 300

informative error messages, unit testing,
163-164

inheritance
classes, 554
exceptions, 86-88
OOP (object-oriented programming),

39-40
INI entries

accessors, 534
declaring, 532
parsing, module initialization, 532-535
registering, 534
storing, 533

init() method, 97
initialization

lazy initialization, 319-322
modules, Spread client wrapper, 538

inline benchmarks, writing, 462
inline comments, 29-30
inline unit testing, 157-159
input filters, SAPI, 593

input_filter, 594-598
post_reader, 598
treat_data, 598

Input/Output (I/O)
handling, 125-128
operations, 570

input_filter input filter, 594-598
installations

APD (Advanced PHP Debugger) profiler,
431-433

Benchmark libraries, 452
default exception handlers, 98-100
PEAR XML-RPC libraries, 382

How can we make this index more useful? Email us at indexes@samspublishing.com

628 installations

Smarty, 109-110
Spread wrapper, 382

instantiation, OOP (object-oriented
programming), 38-39

integrated caching, 230
Integrated Mapper pattern, 315-317
integrating cache

file swaps, 264-265
home pages, 266

concurrency, 272
templatization, 267-273

mode_rewrite, 273-277
output buffering, 265-266
partial pages, 277-280
query cache, 280-281

interfaces
defining, 562-564
design patterns, 52-54
graphical, unit testing, 167-168
implementing, 562-564, 571
registering (streams API), 575
runtime error detection, 52
SchemaTypeInfo, 411
ServiceLogger, 143
write, 571

intermediate code, 220, 476-479
International Organization for

Standardization (ISO), 302
interpolation versus concatenation (bench-

marking), 470-471
interpreters, running, 496
invalidation

caching, 240
DBM-based caching, 253-254

invariant functions, loops, 440
ionAccelerator Web site, 236
ionCube Accelerator compiler cache, 220
IOT (Index Organized Table), 301
ISO (International Organization for

Standardization), 302
is_cached() method, 117
is_ref flag, 484

item_struct() method, MetaWeblog API,
397

iterations, 455-456

J-L
JavaScript, cookies, 330
Jim Winstead “Hacking the PHP Source”

Web site, 548

K&R brace styling, 16, 24
keys

DBM-based caching, 257
primary, 300

keywords
global, 21
parent, 42
self, 42
static, 41

language-level tunings
compiler caches, 219-221, 236
HTTP accelerators, 223-225
operating systems, 228-229
optimizers, 222-223
proxy caches, 229-230, 236-237
reverse proxies, 225-228

languages, programming, 482-483
Last-Modified HTTP header, 231
latency, networks, 223-225
layers

abstraction, computational reuse between
layers, 293

applications, 492-496
layout

coding styles
control flow constructs, 14-19
indentation, 10-12

magic comments, 12
tabs, 11-14

lazy initialization, 319-322
least recently used (LRU) cache removal

policy, 245

629mailto function

lengths, arrays or strings, 296
lexers (lexical analyzers), 476
libraries

access, client-side sessions, 353-354
Benchmark, installing, 452
DBM, 252

licenses, DBM, 252
lifecycles, PHP and Zend Engine

PHP core, 493, 496
PHP extension API, 493, 497-498
SAPI (Server Abstraction API layer),

492-496
Zend extension API, 493, 498-500

LIMIT syntax, 319
line breaks, 13-14
line length, code, 13
listeners, adding unit testing, 166-167
load balancing, 368

clusters, content distribution, 373-374
session stickiness, 354-355

load generators
contrived, 422-424
Daiquiri, 426-427
httperf, 424-426
realistic, 422

locking accounts, 329
locking files, 247-250
log messages, CVS (Concurrent Versioning

System), 186
log outs, authentication, 333
log-based generator, 425
logging

CGI SAPIs, 588
errors (error handling), 77-78

logic
caching, factory classes, 292
templates, 114

login() function, 69
logs

slow queries, 305
Web, profiling, 435

long options, 129

long tags, 27
long-lived variables, 21-22
lookup tables, 319-320
lookups, DBM-based caching, 255-256
loop() method, ServiceCheckRunner class,

146
loops, 14

break, 18-19
continue, 18-19
deeply nested, avoiding, 19
flow, controlling, 18-19
for, 16-18
foreach, 16-18
invariant functions, 440
while, 16-18

LRU (last recently used) cache removal
policy, 245

M
macro expansions (benchmarking),

464-470
macro substitution routines, 464-468
macros

associative arrays, 464
build system, 507
defining constants, 530
HASH_OF(), 519
PS_MOD(), 564
return, 515
SEPARATE_ZVAL(), 522
SEPARATE_ZVAL_IF_NOT_REF(), 522
ZEND_BEGIN_MODULE_GLOBALS,

531
ZEND_END_MODULE_GLOBALS, 531
ZEND_FETCH_RESOURCE(), 528
zval type conversion, 522
zvals, 516
Z_TYPE_P(), 521

magic comments, 12
magic_quotes, 103
mail() function, 80
mailto function, Smarty, 115

How can we make this index more useful? Email us at indexes@samspublishing.com

630 main() routine (CGI)

main() routine (CGI), 588, 591
maintaining state (authentication)

encrypted cookies, 332
expiration logic, 332-333
log outs, 333
$_SERVER[‘USER_AGENT’] setting,

331
$_SERVER[REMOTE_IP] setting, 331
unencrypted cookies, 332
user identity information, 333
versioning information, 333

maliciously altered data, cross-site script-
ing attacks, 102

managing applications
change control, CVS (Concurrent

Versioning System), 184-188
binary files, 187-188
branches, 186-187, 194-195
development/production environments,

195-199
diffs, 189-191
file versions, 189-191
log messages, 186
modifying files, 188-189
repositories, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199
updating files, 191-193

packaging, 199
Apache, 204-205
binaries, 203-204
pack(), 200-201
PHP, 205-206
pushing code, 201-203

managing packaging, 199
Apache, 204-205
binaries, 203-204
pack(), 200-201
PHP, 205-206
pushing code, 201-203

mandatory file locks, 247
Mapper pattern, 310-315

master C source files, extensions, 505
master/master replication, 385-386
master/slave replication, 386-389
matching characters, strings (benchmark-

ing), 463-464
max() function, 452
max-age directives, 232
mcrypt file extension, 332
mcrypt wrappers, 341
mean, iterations, 455
memory, shared memory caching, 257-258
memory-management methods, 511-513
memory-mapped files streams API

example
abstract stream data type, 571
data, flushing, 572
fsync() interpretation, 572
interface implementation, 571
interface registration, 575
mmap_open() method, defining, 577-578
number of bytes written, returning, 572
seek functionality, 573-574
streams, 574
wrappers, 576

merging branches, CVS (Concurrent
Versioning System), 195

message nodes, WSDL, 407
messages

receiving, Spread client wrapper, 543-545
sending

Spread client wrapper, 545-546
XML-RPC, 395

messaging buses, Spread toolkit, 380-384
MetaWeblog API

implementing, 396-400
blogid() method, 397
callback, 399
entries, posting, 398
item_struct() method, 397
publish() method, 397
RSS, 397
Unix timestamp, 400

Web site, 415

631methods

metaWeblog_newPost() method, 398
method pointers, Zend Engine, 598
methodologies

BSD, 257
System V, 257-258

methods
adding to classes, 555-557
addTestSuite(), 161
add_assoc_zval(), 517
analyze, 176
apd_execute(), 605
apd_execute_internal(), 605
apd_get_active_function_name(), 606
blogid(), MetaWeblog API, 397
callback, registering, 396
calling, speed, 210
chroot(), 140
clone(), 560
close(), streams, 570
connect(), Spread client wrapper, 539-541
create_object, 560
create_table(), 116
declaring, 509
efree(), 512
emalloc(), 511-512
erealloc(), 512
estrndup(), 512
explode, 176
factory, 562

database objects, creating, 55
singletons, creating, 56-57

Fibonacci Sequence example, 508-510
fibonacci(), 509
flush(), streams, 570
generateProxyCode(), 413
getSOAPServiceDescription(), 408
getSOAPServiceName(), 408
getSOAPServiceNamespace(), 408
getThis(), 555
getTypeName(), 411
getTypeNamesapce(), 411
getWSDLURI(), 408

hexdecode(), 512
hexencode(), 511
include, Smarty, 114
init(), 97
is_cached(), 117
item_struct(), MetaWeblog API, 397
loop(), ServiceCheckRunner class, 146
mailto, Smarty, 115
memory-management, 511-513
metaWeblog_newPost(), 398
mmap_flush(), 572
mmap_open(), 575-578
mmap_read(), 572
mmap_seek(), 573-574
mmap_write(), 572
mysql_escape_string(), 216
naming, 25
open(), streams, 570
pcntl_fork(), 130
pcntl_wait(), 132
pcntl_waitpid(), 132
pfopen(), resources, 526-527
php, Smarty, 115
phpinfo(), 536-537, 583
php_info_print_table_row(), 537
PHP_MINFO_FUNCTION(), 536
php_module_shutdown(), 584
php_module_startup(), 583
PHP_RINIT_FUNCTION(), 535
PHP_RSHUTDOWN_FUNCTION(), 536
php_sapi_name(), 583
posix_kill(), 137
posix_setuid(), 140
posiz_setgid(), 140
post_run(), 143
PS_CLOSE_FUNC(), 565
PS_DESTROY_FUNC(), 567
PS_GC_FUNC(), 568
PS_OPEN_FUNC(), 564
PS_READ_FUNC(), 566
PS_WRITE_FUNC(), 566
publish(), MetaWeblog API, 397

How can we make this index more useful? Email us at indexes@samspublishing.com

632 methods

read(), streams, 570
refactoring, 41
registering, 115, 546
register_block(), 118
register_function(), 115
register_modifer, 117
register_outputfilter(), 120
register_postfilter(), 119
register_prefilter(), 119
sapi_cgibin_flush(), 585
sapi_cgibin_getenv(), 586
seek(), streams, 570
send_headers(), 586
serendipity_fetchEntry(), 397
serendipity_updertEntry(), 397
session handlers, 360

files, 361-366
mm, 361, 366
MySession, 366
user, 361-362

session_destroy(), 358
session_start(), 357-358
session_write_close(), 358
setUp(), 165
showConversion(), 254
sig_alarm(), 137
simple, 210
Smarty, 114-117
special, OOP (object-oriented program-

ming), 39, 42-44
spread_connect(), Spread client wrapper,

541
spread_disconnect(), Spread client

wrapper, 541-542
spread_join(), Spread client wrapper, 542
spread_multicast(), Spread client wrapper,

545-546
spread_receive(), Spread client wrapper,

543-545
SP_disconnect(), 542
sp_join(), Spread client wrapper, 543
SP_multicast(), 545

SP_multigroup_multicast() method, 545
SP_receive(), 543
stat(), overriding, 585
static

function namespacing, 372
OOP (object-oriented programming),

41-42
system.listMethods(), 401
system.methodHelp(), 401
system.methodSignature(), 401
system_load(), 396
tearDown(), 165
trace_function_entry(), 606
trace_function_exit(), 606
urlencode(), 117
validate(), 101, 336
variables, extracting, 510
write(), 570-571
XML_RPC_decode(), 395
zend_declare_property(), 556
zend_hash_get_current_key(), 520
zend_hash_internal_pointer_reset(), 520
zend_object_store_get_object(), 561
zend_parse_parameters()

format strings, 514
parameter modifiers, 514-515
variable extraction, 510

zend_read_property(), 555
zend_register_list_destructors_ex(), 524
zend_update_property(), 555
zval_copy_ctor(), 523

Microsoft Passport, single signon, 339
microtime() timers, 459
mm session handler, 361, 366
mmap_flush() method, 572
mmap_open() method, 575-578
mmap_read() method, 572
mmap_seek() method, 573-574
mmap_write() method, 572
Model-View-Controller (MVC), 107
models, object, 488-489
modifiers, variable, 116-117

633network file shares

modular code, include files, 212
module hooks, 529

module shutdown, 535
module startup/shutdown

constants, defining, 530-531
globals, 531-532
INI entries, parsing, 532-535

phpinfo() registration, 536-537
request startup/shutdown, 535-536

modules
Apache, 327
Cache_File, 379
initializing, Spread client wrapper, 538
registering, Spread client wrapper, 546
shutdown

module hooks, 535
Spread client wrapper, 539

startup/shutdown
constants, defining, 530-531
globals, 531-532
INI entries, parsing, 532-535

mod_accel proxy server, 225
mod_backhand proxy server, 225
mod_php5 SAPI (Server Abstraction API

layer), 494
mod_proxy proxy server, 225-227
mod_rewrite, cache integration, 273-277
monitoring engines, writing, 150

abstract class implementation, 141-143
architecture, 146
configuration file, 148-149
options, 149
ServiceCheck object, 143
ServiceCheckRunner class, 144-146
ServiceLogger interface, 143
ServiceLogger process, 147-148
signals, 146

monolithic packages, 204
MovableType API Web site, 415
multiple databases, development environ-

ments, 197-198
multiple tests (unit testing), 156-157,

161-162

multitasking support. See child processes
multiword variable names, 24
must-revalidate directives, 232
MVC (Model-View-Controller), 107
MySession session handler, 366
mysqli extension, 387-388
mysql_escape_string() method, 216
my_max() function, 452

N
Nagios, 151
name-munging, function namespacing, 372
namespaces, 210, 212

functions, clusters, 372-373
SOAP, 405
system resources, 373

naming
classes, 25
functions, 20, 24
methods, 25
schema, variable names, matching to,

26-27
variables, 20, 24-27

naming symbols, 19-20
class names, 25
consistency, 25
constants, 21-22
function names, 24
long-lived variables, 22
method names, 25
multiword variable names, 24
temporary variables, 23
truly global variables, 21-22
variable names, matching, 26-27

native session handlers, implementing, 366
navigation bars

cache integration, 277
cookie-based caching, 258-263

ndbm libraries, 252
nesting deeply nested loops, avoiding, 19
network connections, FIN packets, 229
network file shares, centralized cache, 378

How can we make this index more useful? Email us at indexes@samspublishing.com

634 network latency

network latency, 223-225
network partitions, decentralized cache,

381
networked file systems, bandwidth, 385
networks, blocking connections, 225
Net_Telnet class, 69
next_attempt parameter, ServiceCheck

object, 143
NFS (Network File System)

network file shares, centralized cache,
378-380

pushing production code, 203
no-cache directives, 232
nodes, WSDL (Web Services Description

Language), 407
nonpersistent connections, 539
nonpersistent resources, 524

O
object handlers (classes), 489-490
object models, 488-489
object-oriented programming (OOP)

constructors, 38-39
delegation, 50-52
design patterns

Adapter pattern, 44-48
Factory pattern, 54-55
interfaces, 52-54
polymorphism, 50-52
Singleton pattern, 56-57
Template pattern, 49
type hinting, 52-54

encapsulation, 39-41
inheritance, 39-40
instantiation, 38-39
overloading, 58-62

__autoload() function, 70-71
__call() callback, 68-70
SPL (Standard PHP Library), 63-68

overview, 37-40
polymorphism, 40
special methods, 39, 42-44

static methods, 41-42
static properties, 41

objects. See also exceptions
access handlers (classes), 490
accessing, Adapter patterns, 44-48
allocated, destroying, 560
allocating, classes, 490
AuthorRequest, 412
copying, 43
creating, classes, 490
custom

clone method, 560
create_object() method, 560
creating, 559-562
destructors, 560
object store extraction, 561

database, creating via factory methods, 55
destructing, 42-43
ServiceCheck, 143
SOAP_Client, 407
Template, 120
XML_RPC_Client, 395
XML_RPC_Message, 395

ob_end_clean(), 243
ob_end_flush(), 243
ob_get_contents(), 243
OFB (Output Feedback) mode, 337
OOP (object-oriented programming)

constructors, 38-39
delegation, 50-52
design patterns

Adapter pattern, 44-48
Factory pattern, 54-55
interfaces, 52-54
polymorphism, 50-52
Singleton pattern, 56-57
Template pattern, 49
type hinting, 52-54

encapsulation, 39-41
inheritance, 39-40
instantiation, 38-39
overloading, 58-61

635patterns

__autoload() function, 70-71
__call() callback, 68-70
SPL (Standard PHP Library), 63-68

overview, 37-40
polymorphism, 40
special methods, 39, 42-44
static methods, 41-42
static properties, 41

op (operations) arrays, Zend Engine,
476-482

opcode dumper, 601, 604-605
opcodes, Zend Engine, 476-482
open tags, 27
open() method, streams, 570
operating systems (OSs), external per-

formance tuning, 228-229
operations arrays (op arrays), 476-482
operator precedence, () parentheses, 28
operators, equal (==), 485
optimizers, 222-223
op_dumper tool, 477
OSs (operating systems), external per-

formance tuning, 228-229
out-of-line unit testing, writing, 157-160
outbound conversion, 104
outbound filtering, 104
output buffering, 99, 242

cache integration, 265-266
HTTP headers, 243-244

Output Feedback (OFB) mode, 337
output filters, Smarty, 119
overhead, benchmark harnesses, 456-458
overloading, 58-61

__call() callback, 68-70
property accesses, 60
SPL (Standard PHP Library), 63-68

P
pack(), 200-201
packages

Console_Getopt (PEAR), 128-129
monolithic, 204

packaging management, 199
Apache, 204-205
binaries, 203-204
pack(), 200-201
PHP, 205-206
pushing code, 201-203

pages
home, caching, 266-273
concurrency, 272
templatization, 267-273
Web, partial pages, 277-280

parameters
cookie-based session support, 357
mmap_seek() method, 573
modifiers, strings, 514-515
query string session support, 357
ServiceCheck object, 143
WNOHANG, pcntl_wait()/pcntl_waitpid()

methods, 132
WUNTRACED, pcntl_wait()/pcntl_

waitpid() methods, 132
parent keyword, 42
parentheses (), clarifying code, 28-29
parsing

command-line arguments, 128-130
INI entries, module initialization, 532-535
script execution, compiler caches, 221
strings, 514-515

partitions
database scaling, 384, 389-390
network, decentralized cache, 381

Passport (Microsoft), single signon, 339
password generators, 328
passwords

protecting, 327-330
storing, 339

pathnames, 158-159
patterns

Adapter, 44-48
database access patterns, 306

Active Record pattern, 307-310
ad hoc queries, 307

How can we make this index more useful? Email us at indexes@samspublishing.com

636 patterns

Integrated Mapper pattern, 315-317
Mapper pattern, 310-315

design
Adapter pattern, 44-48
Factory pattern, 54-55
interfaces, 52-54
polymorphism, 50-52
Singleton pattern, 56-57
Template pattern, 49
type hinting, 52-54

Factory, 54-55
Singleton, 56-57
Template, 49

pcntl_fork() method, 130
pcntl_wait() method, 132
pcntl_waitpid() method, 132
PCREs (Perl Compatible Regular

Expressions), 295
pcre_compile() function, 295
pcre_exe() function, 295
PEAR (PHP Extension and Application

Repository), 20, 69
classes, caching, 241-242
Console_Getopt package, 128-129
installer, APD (Advanced PHP Debugger)

profiler, 431
package format, 203
Web site, 122
XML-RPC classes, 395

PEAR benchmarking suite
(Benchmark_Iterate), 451-454

PEAR Extension Code Library (PECL),
220

PEAR XML-RPC libraries, installing, 382
PECL (PEAR Extension Code Library),

220
peephole optimizations, 223
performance tunings, external

cache-friendly applications, 231-235
content compression, 235-237
language-level tunings

compiler caches, 219-221, 236
HTTP accelerators, 223-225

operating systems, 228-229
optimizers, 222-223
proxy caches, 229-230, 236-237
reverse proxies, 225-228

Perl Compatible Regular Expressions
(PCREs), 295

persistent associative arrays, creating, 61
persistent connections, 539
persistent hash, creating, 61
persistent resources, 524
personalized navigation bar

cache integration, 277
cookie-based caching, 258-263

pfopen() method, resources, finding,
526-527

PHP Extension and Application
Repository. See PEAR

php function, Smarty, 115
php|architect, 151
PHP-GTK, 151
phpDocumentor project, 31-35
phpinfo() method, 536-537, 583
php_example.h file, 507
php_info_print_table_row() method, 537
PHP_MINFO_FUNCTION() method, 536
PHP_MINIT_FUNCTION() handler, 525
php_module_shutdown() method, 584
php_module_startup() method, 583
PHP_RINIT_FUNCTION() method, 535
PHP_RSHUTDOWN_FUNCTION()

method, 536
php_sapi_name() method, 583
pointers

functions, Zend Engine, 498-500
method, Zend Engine, 598
zval, 555

poisoning caches, 240, 383
polymorphism, 40, 50-52
portType nodes, WSDL, 407
POSIX file handles, as resources, 524
posix_kill() method, 137
posix_setgid() method, 140

637public

posix_setuid() method, 140
postfilters, Smarty, 119
post_reader input filter, 598
post_run() method, 143
PPP (public, protected, private), 41
Pragmatic Programmer: From Journeyman

to Master, 124
Pragma: no-cache HTTP header, 231
pre-fetching cache, 240
pre-fork architecture, Web servers, 228
prefilters, Smarty, 119
preg_match() function, 295
preg_replace() function, 295
previous_status parameter, ServiceCheck

object, 143
primary keys, 300
printing environment variables, 113
private directives, 232
private properties, classes, 554
private variables, classes, 559
privileges, daemons, 140-141
procedural programming, 37-38
processes

child, 130
creating, 131
reaping, 132-134
resources, sharing, 131
signals. See signals, child processes
variables, sharing, 132

daemons
exclusivity, 141
privileges, 140-141
working directories, 140
writing, 138-139

ServiceLogger, 147-148
production code, pushing, 201-203
production environments, CVS

(Concurrent Versioning System), 195-199
profiling, 419

APD (Advanced PHP Debugger)
caching tables, 446-447
counters, 432

culling, 442-446
inefficiencies, 440-442
installing, 431-433
large applications, 435-440
trace files, 431-434

DBG profiler, 431
queries, databases, 305-306
requirements, 430
user information, cookie-based caching,

258-263
userspace profilers, 430
Web logs, 435
Xdebug profiler, 431

programming. See also OOP (object-
oriented programming)

Extreme Programming, unit testing, 154
languages, 482-483
procedural, 37-38
Python, exceptions, 104

properties
access, overloading, 60
classes, 551-553
dynamic instance, 551
private, classes, 554
static, OOP (object-oriented program-

ming), 41
protocols, SOAP (Simple Object

Application Project), 280-281
proxies

caches, 229-230, 236-237
code, generating, SOAP, 412-413
reverse, 225-228

proxy-revalidate directives, 232
PS_CLOSE_FUNC() method, 565
PS_DESTROY_FUNC() method, 567
PS_GC_FUNC() method, 568
PS_MOD() macro, 564
PS_OPEN_FUNC() method, 564
PS_READ_FUNC() method, 566
PS_WRITE_FUNC() method, 566
public directives, 232
public, protected, private (PPP), 41

How can we make this index more useful? Email us at indexes@samspublishing.com

638 publish() method

publish() method, MetaWeblog API, 397
pushing individual files, 199-200
pushing production code, 201-203
Python, exceptions, 104

Q-R
queries

ad hoc, 307
automatic query dispatching, 387-389
databases, 300-302

bandwidth, 384
introspection, EXPLAIN SQL syntax,

303-304
profiles, 305-306

slow query logs, 305
troubleshooting, 305

query cache, implementing, 280-281
query string munging, 325-326, 356-357

random data, iterations, 455-456
RCS (Revision Control System), 184
RDBMSs (relational database manage-

ment systems), 299
database access patterns, 306

Active Record pattern, 307-310
ad hoc queries, 307
Integrated Mapper pattern, 315-317
Mapper pattern, 310-315

database scaling, 390
indexes, 300-302
network file shares, centralized cache,

380
queries, 300-302

introspection, EXPLAIN SQL syntax,
303-304

profiles, 305-306
tables, 300-302

read() method, streams, 570
readability indexes, 169
Real Time counter (wall-clock time), 432
realistic data generator, 425-426
realistic load generators, 422

Really Simple Syndication (RSS)
MetaWeblog API, 397
Web site, 415

reaping child processes, 132-134
receiving messages, Spread client wrapper,

543-545
recursive diffs, 191
recursive functions

computational reuse, 283-289
tree, 286

Reduced Instruction Set Computer
(RISC), 476

redundancy, clusters, 367
refactoring, 153-154, 312

code
coupling, 212-213
method logic, 208-209
namespaces, 210-212
simple methods, 210

methods, 41
refcount (reference counter), 484
reference counting, variables, 42
registering

callback methods, 396
INI entries, 534
interfaces (streams API), 575
methods, 115, 546
modules, Spread client wrapper, 546
phpinfo() method, 536-537
resources, 525-526
SOAP services, 409
streams (streams API), 574
users (authentication), 327-330
variable modifiers, 117
wrappers (streams API), 576
Zend Engine extension callbacks, 608

register_block() method, 118
register_function() method, 115
register_modifier() method, 117
register_outputfilter() method, 120
register_postfilter() method, 119
register_prefilter() method, 119

639RPCs (remote procedure calls)

relational database management systems
(RDBMSs), 299

database access patterns, 306
Active Record pattern, 307-310
ad hoc queries, 307
Integrated Mapper pattern, 315-317
Mapper pattern, 310-315

indexes, 300-302
queries, 300-302

introspection, EXPLAIN SQL syntax,
303-304

profiles, 305-306
tables, 300-302

relative pathnames, 158
remote command injection, 214
remote procedure calls (RPCs). See RPCs
removal policies, cache, 245
rename() function, 251
replication, database scaling

master/master, 385-386
master/slave, 386-389

repositories, CVS (Concurrent Versioning
System), 185-186

Request for Comment (RFC), 236
requests

shutdown, 536
startup, 535
startup/shutdown, 535
XML-RPC, 396

resources
balancing, session stickiness, 355
creating, 524
finding, 526-528
handling, 524
nonpersistent, 524
persistent, 524
POSIX file handles as, 524
registering, 525-526
sharing, child processes, 131

result buffers, allocating, 511
result sets, databases, 317-319
rethrowing exceptions, 94

return macros, 515
RETURN_BOOL() macro, 515
RETURN_DOUBLE() macro, 515
RETURN_EMPTY_STRING() macro, 515
RETURN_FALSE() macro, 515
RETURN_LONG() macro, 515
RETURN_NULL() macro, 515
RETURN_STRING() macro, 515
RETURN_STRINGL() macro, 515
RETURN_TRUE() macro, 515
reverse proxies, 225-228
Revision Control System (RCS), 184
RFC (Request for Comment), 236
RISC (Reduced Instruction Set

Computer), 476
routines, macro substitution routines,

464-468
rows RDBMSs (relational database man-

agement systems), 300
RPCs (remote procedure calls), 393

__call() callback, 68
SOAP

Amazon author search example,
410-412

envelopes, 403-404
namespaces, 405
proxy code, 412-413
registering services, 409
Schema, 404
user-defined types, 410-412
writing services, 408-410
WSDL, 405-408
XML-RPC, compared, 413-414

speed, 394
XML-RPC, 394

auto-discovery, 401-403
callback methods registration, 396
clients, 395
Dave Winer Web site, 414
messages, sending, 395
MetaWeblog API implementation,

396-400

How can we make this index more useful? Email us at indexes@samspublishing.com

640 RPCs (remote procedure calls)

requests, 396
SOAP, compared, 413-414
Web site, 414

RSS (Really Simple Syndication), 397
MetaWeblog API, 397
Web site, 415

rsync, pushing production code, 203
rules, scoping rules, 21
run() method, 455
runtime errors, detecting, 52

S
s-maxage directives, 233
sandboxing, 492
sanitizing data, 215-216
SAPIs, 581

CGI (command line interface)
activation/deactivation, 584
cookies, 587
data writing callback, 584
deactivation code, 584
environment variables lookup inter-

face, 585
flush helper method, 584
header handlers, 586
logging, 588
main() routine, 588, 591
method pointers, 583
POST data, reading, 587
SAPI name, 583
sapi_module_struct structure, 582-584
sending headers, 586
server variables, 588
shell environment variables, 588
shutdown, 584
stat() override, 585
stream buffers, flushing, 585
userspace error callback, 586

embed, 591-593
input filters, 593

input_filter, 594-598
post_reader, 598
treat_data, 598

sapi_cgibin_flush() method, 585
sapi_cgibin_getenv() method, 586
sapi_module_struct structure, 582-584
scaling, 368-369

client-side sessions (scalability), 353
cookie-based caching (scalability), 263
databases

application servers, 390-391
partitioning, 384, 389-390
RDBMS systems, 390
replication, 385-389

horizontally, 374
schema, 26-27, 404
SchemaTypeInfo interface, 411
scope, 21
scripts

CLI (command line interface)
arguments, 128-130
executing, 125
I/O, handling, 125-128

example.php, 507
monitoring engine, 150

abstract class implementation, 141-143
architecture, 146
configuration file, 148-149
options, 149
ServiceCheck object, 143
ServiceCheckRunner class, 144-146
ServiceLogger, 143, 147-148
signals, 146

SCSS (Source Code Control System), 184
security

attacks, remote command injection, 214
authentication

dictionary attacks, 327-329
exception, 336
handlers, 327
implementing, 334-339
maintaining state, 331-333
passwords, storing, 339
schemes, 324-327
single signon, 339-346
user registration, 327-330

641session_start() method

defensive coding, 214-215
Smarty, 119
user-submitted data, cleaning, 351

seek() method, streams, 570
SELECT statement, 318
self keyword, 42
semaphores, 257
sending messages

Spread client wrapper, 545-546
XML-RPC, 395

send_headers() method, 586
SEPARATE_ZVAL() macro, 522
SEPARATE_ZVAL_IF_NOT_REF()

macro, 522
separation, zvals, 522
Serendipity software, 435
Serendipity Web logging system, 397-398
Serendipity Web logging system Web site,

415
serendipity_drawcalendar() function, 439
serendipity_fetchEntry() method, 397
serendipity_updertEntry() method, 397
serialization, 295
serialize() function, 292-293
server variables, CGI SAPI, 588
server-side sessions, 349, 354-355

ending, 358
garbage collection, 358-359, 364-366
overview, 357-359
session handler methods

files, 361-366
mm, 361, 366
MySession, 366
user, 361-362

session IDs, 356-357, 360-361
versus client-side, 366

servers
application, database scaling, 390-391
reverse proxies, 225-228
Web, architecture, 228

service nodes, WSDL, 407
ServiceCheck object, 143

ServiceCheckRunner class, 144-146
ServiceLogger, 143, 147-148
services

SOAP (Simple Object Access Protocol),
408-410

Web, Web site, 415
session data, caching, 377
session handlers

API hook structures, 564
closing, 565
destroying, 567
garbage collection, 568
methods, 360

files, 361-366
mm, 361, 366
MySession, 366
user, 361-362

native, implementing, 366
opening, 564
reading data, 566
writing data, 566

session IDs, 356-357, 360-361
session simulator, 425
session stickiness, 354-355
sessions

client-side, 349-350
access libraries, 353-354
benefits, 352-353
implementing via cookies, 351-353
limitations, 353
session data encryption, 351-352
versus server-side, 366

server-side, 349, 354-355
ending, 358
garbage collection, 358-359, 364-366
overview, 357-359
session handler methods, 360-366
session IDs, 360-361
tracking session IDs, 356-357
versus client-side, 366

session_destroy() method, 358
session_start() method, 357-358

How can we make this index more useful? Email us at indexes@samspublishing.com

642 session_write_close() method

session_write_close() method, 358
setMaker() method, 454, 459-460
setUp() method, 165
set_error_handler() function, 79
Shane Caraveo Web services talks Web

site, 414
shared memory caching, 257-258
sharing, child processes, 131-132
shell environment variables, CGI SAPI,

588
Shell/Perl-style comments, 29
shmop functions, 258
short options, 129
short tags, 27
showConversion() method, 254
shutting down

clusters, content distribution, 373
modules

constants, defining, 530-531
globals, 531-532
INI entries, parsing, 532-535
module hooks, 535
Spread client wrapper, 539

requests, 535-536
SIGALRM signal, 134, 137-138
SIGCHILD signal, 134-137
SIGHUP signal, 134, 138
SIGINT signal, 134
SIGKILL signal, 134
signals

child processes
SIGALRM, 134, 137-138
SIGCHILD, 134-137
SIGHUP, 134, 138
SIGINT, 134
SIGKILL, 134
SIGUSR1, 134
SIGUSR2, 134

monitoring engine script, 146
SIGUSR1 signal, 134
SIGUSR2 signal, 134
sig_alarm() method, 137

simple methods, 210
Simple Object Access Protocol. See SOAP
Simple Object Application Project

(SOAP), 280-281
single signons, 340

implementing, 341-346
Microsoft Passport, 339

Singleton pattern, 56-57
singletons, creating via factory methods,

56-57
sites. See Web sites
size, cookie-based caching, 263
slaves, master/slave replication, 386-389
Sleepycat libraries, 252
slow query logs, 305
SmartTemplate Web site, 122
Smarty, 108

block handling, 118
cache handlers, 120
caching, 109, 117-118
compiled templates, 111
custom tags, 120
data, displaying, 112
environment variables, printing, 113
flow control, 111-114
garbage collection, 118
Hello World! template, 110-111
installing, 109-110
logic, 114
manual Web site, 117
methods, 114-117
output filters, 119
postfilters, 119
prefilters, 119
security, 119
tables, creating, 111
variable modifiers, 116
Web site, 109, 121

smarty ($ before) variable, 113
SOAP (Simple Object Access Protocol)

Amazon author search example, 410-412
Amazon free interface Web site, 415

643staging environments

envelopes, 403-404
Google free interface Web site, 415
namespaces, 405
proxy code, 412-413
Schema, 404
services, 408-410
user-defined types, 410-412
Web sites, 414
WSDL, 405-408
XML-RPC, compared, 413-414

SOAP (Simple Object Application
Project), 280-281

SOAP_Client object, 407
social engineering, 330
sockets extension, 390
soft tabs, indentation, 11-12
software

change control, CVS (Concurrent
Versioning System), 184

binary files, 187-188
branches, 186-187, 194-195
development/production environments,

195-199
diffs, 189-191
file versions, 189-191
log messages, 186
modifying files, 188-189
repositories, 185-186
single tree limitations, 195
symbolic tags, 193-194, 199
updating files, 191-193

enterprise, 183
Serendipity, 435

sorting algorithms, 286
Source Code Control System (SCSS), 184
special methods, OOP (object-oriented

programming), 39, 42-44
specialized clusters, 374-375
speed, algorithms, 285-286
SPL (Standard PHP Library), 63-68
Spread client wrapper example, 537

connecting, 539-541
disconnecting, 541-542

groups, joining, 542-543
method registration, 546
modules

initialization, 538
registration, 546
shutdown, 539

receiving messages, 543-545
sending messages, 545-546
Spread library, 537
Spread_Logger class, 547

Spread client wrapper extension Web site,
548

Spread clients, 382
Spread toolkit, decentralized cache,

380-384
Spread wrapper, installing, 382
spread_connect() method, Spread client

wrapper, 541
spread_disconnect() method, Spread client

wrapper, 541-542
spread_join() method, Spread client

wrapper, 542
Spread_Logger class, 547
spread_multicast() method, Spread client

wrapper, 545-546
spread_receive() method, Spread client

wrapper, 543-545
SP_disconnect() method, 542
sp_join() method, Spread client wrapper,

543
SP_multicast() method, 545
SP_multigroup_multicast() method, 545
SP_receive() method, 543
SQL (Structured Query Language)

bind SQL, 47
coding styles, 14
EXPLAIN syntax, 303-304
injection attacks, 104

Squid proxy server, 225
Squid Web site, 236
SRM project, 391
staging environments, CVS (Concurrent

Versioning System), 197

How can we make this index more useful? Email us at indexes@samspublishing.com

644 stale cache

stale cache, 240
Standard PHP Library (SPL), 63-68
starting

modules
constants, defining, 530-531
globals, 531-532
INI entries, parsing, 532-535

requests, 535
stat() method, overriding, 585
state

cookies, 326
maintaining (authentication)

encrypted cookies, 332
expiration logic, 332-333
log outs, 333
$_SERVER[‘USER_AGENT’] setting,

331
$_SERVER[REMOTE_IP] setting,

331
unencrypted cookies, 332
user identity information, 333
versioning information, 333

statement handler callback, Zend Engine,
607

static extensions, creating, 507
static keyword, 41
static methods

function namespacing, 372
OOP (object-oriented programming),

41-42
static properties, OOP (object-oriented

programming), 41
statically typed languages, 482-483
status_time parameter, ServiceCheck

object, 143
stderr file handle, 126-127
stdin file handle, 125-126
stdout file handle, 125
storage

DBM-based caching, 255-256
INI entries, 533
passwords, 339
streams, 570

stream buffers, flushing, 585
streams API, 579

C streams-compatible protocols, access-
ing, 568

custom stream implementation, 570
I/O operations, 570
memory-mapped files

abstract stream data type, 571
data flushing, 572
fsync() interpretation, 572
interface implementation, 571
interface registration, 575
mmap_open() method, defining,

577-578
number of bytes written, returning,

572
opening streams, 574
registering streams, 574
seek functionality, 573-574
wrappers, 576

opening streams, 574
registering streams, 574
storing, 570

streams-compatible protocols, accessing,
568

strings
binary data, 296
C, 296
hex-encoding, 511-512
matching characters (benchmarking),

463-464
parsing

format characters, 514
parameter modifiers, 514-515
return macros, 515

query string munging, 325-326, 356-357
strlen() function, 296
strncmp function, 463-464
strongly typed languages, 482-483
structs, 490-492
str_replace function, 468-469
stubs, extensions, 504, 507

645templates

studly caps, word breaks, 24
styles. See coding styles
substr function, 463-464
Subversion versioning system, 185
super-linear algorithms, speed, 286
swapping files, 250-251, 264-265
symbol tables, 19
symbolic tags, CVS (Concurrent

Versioning System), 193-194, 199
symbols, naming, 19-20

class names, 25
consistency, 25
constants, 21-22
function names, 24
long-lived variables, 22
method names, 25
multiword variable names, 24
temporary variables, 23
truly global variables, 21-22
variable names, matching, 26-27

symmetric ciphers, 337
syntax. See code
synthetic benchmarks, 449-450
system resource namespacing, 373
System Time counter, 432
System V interprocess communication

(IPC), 257-258
system.listMethods() method, 401
system.methodHelp() method, 401
system.methodSignature() method, 401
system_load() method, 396

T
tables

caching, APD (Advanced PHP Debugger),
446-447

creating, Smarty, 111
defined, 299
IOT (Index Organized Table), 301
lookup, 319-320
primary keys, 300

RDBMSs (relational database manage-
ment systems), 300-302

symbol, 19
tabs, indentation, 11-12
tags

long, 27
open, 27
phpDocumentor, 31
Smarty, 120
symbolic, CVS (Concurrent Versioning

System), 193-194, 199
tar, pushing production code, 202
TDD (test-driven development)

benefits, 168
bug reports, 177-179
Flesch score calculator, 169
Word class, 169-177

tearDown() method, 165
Template object, 120
Template pattern, 49
templates

home pages, caching, 267-273
Smarty, 108

block handling, 118
cache handlers, 120
caching, 109, 117-118
compiled templates, 111
custom tags, 120
data, displaying, 112
environment variables, printing, 113
flow control, 111-114
garbage collection, 118
Hello World! template, 110-111
installing, 109-110
logic, 114
manual Web site, 117
methods, 114-117
output filters, 119
postfilters, 119
prefilters, 119
security, 119
tables, creating, 111

How can we make this index more useful? Email us at indexes@samspublishing.com

646 templates

variable modifiers, 116
Web site, 109, 121

writing, 120-121
TemplateTamer Web site, 122
temporary variables, 21-23
test cases, unit testing, 155
test-driven development (TDD)

benefits, 168
bug reports, 177-179
Flesch score calculator, 169
Word class, 169-177

TestCase class, 156-157
testing

code, 153-154
benefits, 168
bug reports, 177-179
Flesch score calculator, 169
unit testing, 153-154, 162-163, 168
Word class, 169-182
writing

conditions, adding, 164-165
Extreme Programming, 154
graphical interfaces, 167-168
informative error messages, 163-164
inline, 157-159
listeners, adding, 166-167
multiple tests, 156-157, 161-162
out-of-line, writing, 157-160
overview, 154-155
setUp() method, 165
tearDown() method, 165
test cases, 155
writing, 155-156

testing harnesses, benchmarks, 454-455
tests/001.phpt unit test, 507
throwing exceptions, 83-85
threaded process architectures, Web

servers, 228
time-based diffs, 191
timeElapsed() method, 455
timeout parameter, ServiceCheck object,

143

timers, custom information, 458-461
tools, op_dumper, 477
top-down culling, 443
top-down designs, 208
trace files, APD (Advanced PHP

Debugger) profiler, 431-434
trace_function_entry() method, 606
trace_function_exit() method, 606
tracking session IDs

cookies, 356-357
query string munging, 356-357

trash data, 100-102
treat_data input filter, 598
tree recursive function, 286
trigger_error() function, 74
troubleshooting. See also design patterns

bottlenecks, database organization, 300
deeply nested loops, 19
queries, 305

truly global variables, 21-22
try block, 84
tunings. See also performance tunings

databases
lazy initialization, 319-322
limiting result sets, 317-319

focused, 471
two-phase commit, 386
type hinting, design patterns, 52-54
typed exceptions, example, 88-93
types

adding to arrays, 516-517
zvals, converting, 521-522

typing strategies
argument types, functions, 483
data types, union, 484
dynamically typed, 482-483
functions, Zend Engine, 487
statically typed, 482-483
strongly typed, 482-483
variables, Zend Engine, 482-485
weakly typed, 483
zval, 484

647variables

U
underscore (_)

class names, 25
function names, 24
word breaks, 24

unencrypted cookies, 332
unified diffs, 189
union data type, 484
unique identifiers, 327
unique indexes, 300
unit testing, 153

automated, writing, 155
conditions, adding, 164-165
Extreme Programming, 154
graphical interfaces, 167-168
informative error messages, 163-164
inline, 157-159
listeners, adding, 166-167
multiple tests, 156-157, 161-162
out-of-line, writing, 157-160
overview, 154-155
setUp() method, 165
TDD (test-driven development)

benefits, 168
bug reports, 177-179
Flesch score calculator, 169
Word class, 169-177

tearDown() method, 165
test cases, 155
tests/001.phpt, 507
Web, 179-182
writing, 155-156

Unix multitasking support. See child
processes

Unix timestamp, MetaWeblog API, 400
updates

DBM-based caching, 253-254
files, CVS (Concurrent Versioning

System), 191-193
urlencode() function, 117
user authentication, Web unit testing,

179-182

user registration (authentication), 327-330
user session handlers, 361-362
User Time counter, 432
user-defined functions (Zend Engine), 486
user-defined types (SOAP), 410-412
userspace functions, 452-453
userspace profilers, 430

V
validate() method, 101, 336
validation, data validation, 100-104, 216
variable modifiers, 116-117
variables

copying, 523
environment

looking up, 585
printing, 113
shell, 588

global, 20
accessor functions, 22
module initialization, 531-532
truly, 21-22

interpolation, versus concatenation
(benchmarking), 470-471

long-lived, 21-22
methods, extracting, 510
multiword names, 24
names, matching to schema names, 26-27
naming, 20
private, classes, 559
reference counting, 42
scope, 21
server, CGI SAPI, 588
sharing, child processes, 132
$smarty, 113
temporary, 21-23
Zend Engine

typing strategies, 482-485
zval, 483-485

zvals, 516
arrays. See arrays
assignments, 516

How can we make this index more useful? Email us at indexes@samspublishing.com

648 variables

creating, 516
hashtables, 519-520
macros, 516

vendor branches, CVS (Concurrent
Versioning System), 186

version tags, 333
VM (Virtual Machine). See Zend Engine

W
warnings, as exceptions (Zend Engine),

599-601
weakly typed languages, 483
Web

applications, default exception handlers,
98

logs, profiling, 435
pages, partial, cache integration, 277-280
servers, architecture, 228
services, Web site, 415
traffic, bandwidth, 385
unit testing, 179-182

Web Services Description Language
(WSDL), 405-410

Web sites
Amazon free SOAP interface, 415
Amazon.com, 410
Apache, 237
Blogger API, 415
Dave Winer XML-RPC, 414
Google free SOAP interface, 415
“Hacking the PHP Source”, 548
home pages, caching, 266-273
ionAccelerator, 236
MetaWeblog API, 415
Movable Type API, 415
Nagios, 151
PEAR (PHP Extension and Application

Repository), 69, 122
php|architect, 151
PHP-GTK, 151
RSS, 397, 415
Schema, 404

Serendipity Web logging system, 415
Shane Caraveo Web services talks, 414
SmartTemplate, 122
Smarty, 109, 121
Smarty manual, 117
SOAP, 414
Spread client wrapper extension, 548
Squid, 236
TemplateTamer, 122
Web services, 415
Wez Furlong streams API talk, 579
XML-RPC, 414
Zend Accelerator, 236

Wez Furlong streams API talk Web site,
579

Whetstone benchmark, 450
while loops, 16-18
whitespace, 13-14
WNOHANG parameter, pcntl_wait()/

pcntil_waitpid() methods, 132
word breaks, 24
Word class, 169-177
working directories, daemons, 140
wrapper classes, database access, 197
wrappers

mcrypt, 341
Spread, installing, 382
streams API, 576

write interface, 571
write() method, 570-571
writing

automated unit testing, 155
daemons, 138-141
inline unit testing, 157-159
methods, Fibonacci Sequence example,

508-510
monitoring engines, 150

abstract class implementation, 141-143
architecture, 146
configuration file, 148-149
options, 149
ServiceCheck object, 143

649zend_execute() method pointer

ServiceCheckRunner class, 144-146
ServiceLogger, 143, 147-148
signals, 146

out-of-line unit testing, 157-160
session handlers

API hook structures, 564
closing, 565
destroying, 567
garbage collection, 568
opening, 564
reading data, 566
writing data, 566

SOAP services, 408-410
templates, 120-121
unit testing, 155-156

WSDL (Web Services Description
Language), 405-410

WUNTRACED parameter,
pcntl_wait()/pcntil_waitpid() methods,
132

X
Xdebug profiler, 431
XML-RPC, 394

auto-discovery, 401-403
callback methods registration, 396
clients, 395
Dave Winer Web site, 414
messages, sending, 395
MetaWeblog API implementation, 396

blogid() method, 397
callback, 399
entries, posting, 398
item_struct() method, 397
publish() method, 397
RSS, 397
Unix timestamp, 400

requests, 396
SOAP, compared, 413-414
Web site, 414

XML-RPC libraries, PEAR, 382

XML_RPC_Client object, 395
XML_RPC_decode() method, 395
XML_RPC_Message object, 395

Y-Z
Zend Accelerator compiler cache, 220
Zend Accelerator Web site, 236
Zend Engine

APC, 606
APD, 605-606
classes, 487

components, 488
global data structures, 490-492
objects, 488-490

executing scripts, 220
extension callbacks, 606-609
functions, 486-487, 498-500
intermediate code, 476-479
method pointers, 598
op (operations) arrays, 476-482
opcodes, 476-482, 601, 604-605
PHP lifecycle

PHP core, 493, 496
PHP extension API, 493, 497-498
SAPI (Server Abstraction API layer),

492-496
Zend extension API, 493, 498-500

script execution, 476-477
variables, 484-485
warnings as exceptions, 599-601
zend_compile function, 477
zend_execute function, 477

ZEND_BEGIN_MODULE_GLOBALS
macro, 531

zend_compile function, 477
zend_compile_file() method pointer, 598
zend_declare_property() method, 556
ZEND_END_MODULE_GLOBALS

macro, 531
zend_error_cb() method pointer, 599
zend_execute function, 477
zend_execute() method pointer, 599

How can we make this index more useful? Email us at indexes@samspublishing.com

650 ZEND_FETCH_RESOURCE() macro

ZEND_FETCH_RESOURCE() macro,
528

zend_fopen() method pointer, 599
zend_hash_get_current_key() method, 520
zend_hash_internal_pointer_reset()

method, 520
zend_object_store_get_object() method,

561
zend_parse_parameters() method

format strings, 514
parameter modifiers, 514-515
variable extraction, 510

zend_read_property() method, 555
zend_register_list_destructors_ex()

method, 524
zend_update_property() method, 555
Zeus Web server, 228
zval pointer, 555
zvals

accessors, 522-523
adding to arrays, 517
arrays

creating, 516
data extraction, 519-520
indexed, 518-519
types, adding, 516-517
zvals, adding, 517

assignments, 516
creating, 516
hashtables, 519-520
macros, 516
separation, 522
type conversions, 521-522
variables, 483-485, 523

zval_copy_ctor() method, 523
Z_ARRVAL macro, 522
Z_BVAL macro, 522
Z_LVAL macro, 522
Z_RESVAL macro, 522
Z_STRLEN macro, 522
Z_STRVAL macro, 522
Z_TYPE_P() macro, 521

	Table of Contents
	Introduction
	3 Error Handling
	Handling Errors
	Handling External Errors
	Exceptions
	When to Use Exceptions
	Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

