Shell Programming

j"ﬂaﬂf
Sriranga Veeraraghavan

\\“J

§
Sriranga Veeraraghavan \\\

~
h
_—
===

@; =
Jeach Yourself

ahell
Frogramming

in 24 Hours

SECOND EDITION
SAMS
00 East 96th St., Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Shell
Programming in 24 Hours,
Second Edition

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32358-3
Library of Congress Catalog Card Number: 2001096631
Printed in the United States of America

First Printing: April 2002

06 05 13 12 11 10 9 8 7

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affect-
ing the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international @pearsoned.com

AcquisiTions EDITOR

Katie Purdum

DEVELOPMENT EDITOR

Steve Rowe

TECHNICAL EDITOR

Michael Watson

MANAGING EDITOR

Charlotte Clapp

ProJECT EDITOR

Natalie Harris

Cory EDITORS

Kezia Endsley
Rhonda Tinch-Mize

INDEXER

Kelly Castell

PROOFREADERS

Linda Seifert
Karen Whitehouse

INTERIOR DESIGN

Gary Adair

CoveR DESIGN

Aren Howell

PAGE LAYouT

Stacey Richwine-DeRome

Contents at a Glance

Introduction 1

PART | Introduction to UNIX and Shell Tools 7
Hour 1 Shell Basics

2 Script Basics 21

3 Working with Files 37

4 Working with Directories 53

5 Input and Output 71

6 Manipulating File Attributes 89

7 Processes 105

PArT Il Shell Programming 119

Hour 8 Variables 121

9 Substitution 135

10 Quoting 147

11 Flow Control 159

12 Loops 181

13 Parameters 197

14 Functions 213

15 Text Filters 231

16 Filtering Text with Regular Expressions 249

17 Filtering Text with awk 267

18 Other Tools 293

PArT lll Advanced Topics 31

Hour 19 Signals 313

20 Debugging 325

21 Problem Solving with Functions 341

22 Problem Solving with Shell Scripts 359

23 Scripting for Portability 389

24 Shell Programming FAQs 403

PART IV Appendixes 417

Appendix A Command Quick Reference 419
B Glossary 433
C Answers to Questions 441
D Shell Function Library 461

Index 465

Contents

Introduction 1
PART | Introduction to UNIX and Shell Tools 7
Hour 1 Shell Basics 9
What Is @ Command?coccoererireriiiiieieteeectereere ettt 10
Simple COMMANAS......coeririririiiieieieieteetet ettt 11
Complex COMMANASco.eeerieirieieieieieretestenesre ettt e saesaens 11
Compound COMMANAScccuerieriertieriieiierieeie et seesee et ete e eresaeeseeesaeeeeas 12

What Is the Shell?.....

The Shell PrompPt........ccocoeiiiiiiiiiiiiiiicicicieeseseceee e
Different Types of Shells.......c.cocoireireriiinieinieineeeneenceeeee e 14
SUMIMATY <.ttt et ettt sbe e s bt e sbe e bt et e et e eaeesanennee 18
QUEBSLIONS. ...ttt ettt ettt et ettt et st et s b s b s b bt e bt e bt e bt ea e et et et ennenean 19
TRIIMNIS .ttt st b e e e s ne 19
Hour 2 Script Basics 21
The UNIX SYSIEIM ..ooouiiiiiiiiiiiieeitesteeeeee ettt ettt 22
LOZEINE TN .ttt 23
Shell Modes and INitiaAliZAtioNcceeeuieeieeiieeieiieneesie et eee et esre e eaeeaeeeees 24
Initialization ProCEAUIESc.ccveeviieiieieeiesieeieecte et ste et eae e aesae e e naeens 24
Initialization File CONENLSccccieeviecierieniierieesieeteeteseeesiee e eseeaesaeseeenaeens 26
Interactive and Non-Interactive ShellScccocvveririeniiniiniienienenienenenenene 28
Getting HEIP .ot 31
SUMIMATY ..ottt ettt b et sbe sttt et et eae e nens 35
QUESTIONS ...t eetieeeiieeeiieeete e et e et e estteestbeeebeeeaeeesaeeeaseeesseeasseeessseenssaessseeessesensseensns 35
TETTIIS .ttt 35
Hour 3 Working with Files 37
LASHING FAIES ..eoueintiiiietieieeieeteet ettt 38
Hidden FAIEs.......cooviiiniiiiceeceetccteesese et 39
OPLION GIOUPINEZ ..cvvenviiireieiieiieiieiteteteteteresteste st sttt sie st ettt ese et eesaenaens 40
FALE CONENLS ..ottt ettt ettt st e st e st b et esaneeas 41
0T | OO OO PO PSS SRTSRRPSRRTRRPON: 41
WG tenttentteute et et estt et et e at e eatesh e bt e bt ea b e e et e e ht e bt e bt et e a bt e n b e et e e beenhe et e entesateshaenbeenbean 43
Manipulating Files ..o 46

CoPYING FIles (CP) c.veuerveueeriierinieiirieirteie ettt

Renaming Files (mv)

Removing Files (rm)

Vi

Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Hour 4

Hour 5

Hour 6

Questions..... .
TEIINIS ..ttt e et e e et e e e b e e e e e tr e e e e e taeeeeeatareeeenanes 51

Working with Directories 53

The Directory TIEEcoccvereriririiriieiicteteteteetctcre ettt 54
FIENAMES.....cviiiiiiiiniiictetcteteeeeee ettt

Pathnames
SWiItChing DIFECIOTIESc..eouivuiiiiriiiiiiiiiiiicicictereesesee s
HOME DITECLOTIES. .. .eveveiieiieiieiieiieieie ettt sttt et ettt sae e
Changing DIr€CLOTIES.......c.coveuirueuirieieiiieienteeeteeee ettt
Listing Files and Dir€CtOries.c..ceereeieierierieieniiniesiesiesieeieereeie ettt
LiSting DITECIOTICS . ..euvevievietieiieiieiieitetet ettt sttt
LiStNG FAIES ..ttt
Manipulating DITECIOTIESc.eeverueruirieieieieienienterte sttt nenes
Creating DITECIOTIES. ...c.eeveeueeueenieteietetetenteeteete et sttt ettt se e sae e
Copying Files and Directories
Moving Files and Directories

Removing DIr€Ctoriesceceeieirieieienieiiienienienenene ettt
SUMIMIATY <.ttt sttt ettt e st e bt et e e st e eaaesaeesaeebeenbeeneesanenas
QUESTIONS ...ttt ettt et e et e et e et eesibeeebeeesbeeessaeeesseeesbaeenseeensseessaensseeesseeenseeensns 68
TOIINIS .ttt ettt ettt et st et sh e be et et et eae 69
Input and Output 71
OULPUL .ttt ettt ettt et s e s bbbt b et be et se et ennennen 71

Output to the Terminalc.cccceceevieiiiriiniininiinereneeeeeee e 72

OUtput REAITECHION ..eouviiiiiiiiiiiieiieiieieeieee ettt st 77
TIPUL ottt sttt st st as 79

Input REAIT@CHONcoveuieiiiiiiiciictcic et 79

Reading User INPULcccoveirieiiiniiiieinceeeenceeeecee et 81

PAPELINES. ...ttt sttt 81
File Descriptors........cocevverererereneneneeeeeene82

Associating Files with a File Descriptor.......c..coccvcevererereneenienieieienesenees 82

General Input/Output Redir€Ctioncccceeeererienenenenenineeieeeeceeieneenene 83
SUMIMATY ..ottt ettt ettt ee e eaeeens 87
QUESTIONS. ...ttt ettt ettt e et e et e et e e etbeeebeeeteeestseeeaseessseeesseeessaeesseessseeesseeenseeensnas 87
TEIIIIS .. e 87
Manipulating File Attributes 89
FLE TYPES .ttt 89

Determining a File’s TYPEcoueeeeieieieieieieieriesienenes et 90

RegUIAT FIIES ..c.veviiiiiiiiirieciceee et 90

LANKS <o 91

DeviIce FIIEScooiiiiiiiiiiccc s 94

NAMEd PIPLS ..oveiiiiiiiiiiiteteteteeeeceet ettt 95

Contents vii
Owners, Groups, and PErmiSSIONScccceerierieriieriienienieeieeieeeeseesieenieesee s enee 95
Viewing Permissionscc.cccceeeevevennnnee
Changing File and Directory Permissions............coccceeverinieenccinenncnecnnenes 98
Changing Owners and GIOUPSccoecerueirierieenieuinieenrerereneeeseeeeseeenennes 101
SUMIMATY <.ttt sttt ettt et st sbe e bt e bt et eatesanesmeenaeens 103
[0 18 TT 8 T) s TP 103
TEITIIS ...ttt ettt b s bbbttt ettt ettt nbe b 104
Hour 7 Processes 105
StArting @ PrOCESScoveiiuirieiirieiiicieiente ettt 105
Foreground ProCessescccoouiiiviiiiiniiniiniininiiinicicicicecieeccce 106
Background ProCeSSEscoouerueriirierieniiniieiisieeieeiteiteitete ettt 106
Listing and Terminating ProCESSESsc.evereririrereririieieieteeeeseeeere e 111
J OB ittt ettt e et e e e e e e te e e taeeetteeebeeeteeeeateeeaaeeaaraeans 112
PS COMMANAooiiiiiiiiiicieecee ettt ettt ae et eanes 112
Killing a Process (kill COmMMANA)........ccceeerreereereninieeeierenienrenienienienieneenee 114
Parent and Child Processes
SUDSHELLS ..ottt
Process Permissions.ceeeieieieieniiniiniiniiniinieieteeeeeter et
Overlaying the Current Process (exec Command)ccccecevvuevvereeneenenns 116
SUIMIMATY <.ttt ettt ettt sat e bt e s bt e bt e steeatesinesaaeneeens 117
QUESTIONS ...t eieieeiieeeiiee et e ettt ettt eeteeebeeebeeetbeesaseesebeeessaeensaeenssaansseesnseeensseensseenns 117
TRIIMNS. ..ttt ettt ettt ettt st st e bt ettt et saaes 117
PART Il Shell Programming 119
Hour 8 Variables 121
Working with Variables...........ccecveviiriiniininininnneteteeeeeececeseeseese e 121
Scalar Variables
Array Variables
Read-Only Variables ..o 128
Unsetting Variablesc.coeereinieineiiiieincenceeseeese e 129
Environment and Shell Variables ..o 129
Exporting Environment Variablescocovevereriniiiiiiienienienieneneneneseens 130
Shell Variablescceeieiiieiiieieniererierenenesee ettt 131
Summary
Questions
TRIMIS ..ottt et e
Hour 9 Substitution 135
Filename Substitution (GIODDING)ccceverieririniriniiiieeeieeee e 136
The * Meta-CRATaCETcccueteieieienienienientenieeieee ettt 136
The ? Meta-CRATaCterc.cccuevieierienienieneneneneeeee ettt 138

Matching Sets Of Charactersccoceeererererenenenieieeeteeeneeneenee e 139

viii

Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Hour 10

Hour 11

Hour 12

Variable SubStitUtion...........ccccocviiiiiiiiiiii
Default Value Substitution....
Default Value ASSIZNMENLcceeruerierierierienienienieeteeeteteteee e
NUIL ValUE EITOT.....cvitiiiiieiieiieieeeeeese ettt
Substitute WHEen Stc.coieiiiiriiieieeeesteet ettt
Command and Arithmetic SUDSHIULIONcceevevieriererininieicteeeeeeeerese e 143
Command SubSHITULIONc.ooeoiiiiiiiiiicieeeecceeee e 143
Arithmetic SUDSHIULIONc..cuoiiiiiiiiiiiiirceeec e 144
SUIMMATY <.ttt ettt ettt et sbesb ettt eeenae st saesbenneas 146
QUESTIONS. ...ttt eeiiee et et et eeette e et e e ebeeeteeesaseesaseeessaeessaeessseeasseessseeesseeesseens 146
Quoting 147
Quoting with BacksIashes...........cccecueiirieniinininininneneeeeteteeee e 148
Meta-Characters and Escape SeqUEnCesceceeeeeeeeieienienienienenenenennens 149
USINg SiNgIe QUOLES ...uveevevierieiieiieiieiieieietertestest sttt ettt 149
USINg Double QUOLESeeveeueruiiiieiieiieieiententestenientesie ettt sae s 150
Quoting Rules and SitUALIONScccecvevierienininieneneneneeteeeteteeeceenee e 151
Quoting Ignores Word Boundariescc.coceeeeeieinieienienencnenenenienenne 152
Combining Quoting in COMMANASeevverrierierierienieenieeie et seereenieenee 152
Embedding Spaces in a Single Argumentcocueveeereeneenieniienieneeneeneenne 152
Quoting Newlines to Continue on the Next Lineccccccoecenecnccncneenee 153
Quoting to Access Filenames Containing Special Charactersc......... 154
Quoting Regular Expression Wildcardscc.eceeeieieienienienenenenenenenene 155
Quoting the Backslash to Enable echo Escape Sequencesccocevereniene 155
Quoting Wildcards for cpio and find...
SUIMIMATY ...ttt ettt ettt b e bbbt bttt e et et e saesbesbesbenee
QUESTIONS. ...ttt ettt e et et et e e et e e et e eteeeeteeeeaseesateeesseeeseeeesseeesseeenseeeseseseaens
TEIMIS ..o
Flow Control

The if Statement

An if Statement Example

USINE TEST weuteuietetiniietietiet ettt ettt ettt ettt ettt et e e et benbenneas
The case SAtBMENL..........cc.ciriiuiiiiiiicicere et

A case Statement EXamplec.ccoeveiirininininininieietccceeneseneee 175

USING PAtteIns ...cvevveriiiiiiiiiiiiieicicieetetctcetcer ettt 177
Summary
Questions
TRITNIS ..ttt s 179
Loops 181
The WNile LOOP .ccioiriririririieeetetetctete ettt s 181

Nesting While LOOPS ..cocoieiiiiiiniiiiiiienieiintieteeteeeeeetetet e 183
Validating User Input with Whileccccovmiminininiininieieieicicienenenenienne 184

Contents ix
Input Redirection and Whilecccccooeevieiiniieniienienceieeeee et 185
The until Loop
The for and select LOOPSccceiiiiiiiiiiiniiniiniciencceccccccceceee 188
The FOr LOOP ..ottt 188
The select LOOP ...ocuiviiiiiiiciiiiiiiiiiciccc 190
LoOP CONLIOL.......iiiiiiiiiiiiciiricetee ettt e 192
Infinite Loops and the break Commandccceeveeieieieienienenenenenenene 192
The continue COMMANAcceeiriiiinienienienenenereeeee ettt 194
SUMIMATY ..ottt ettt et b e bt bt st ettt s e b e st e saesbesaenaenee 195
QUESLIONS. ..ttt ettt ettt et et besb ettt ee et e e enaesbesaesneeneas 195
Hour 13 Parameters 197
Special Variablescc.eeeeiiiiiiieieiiieeseeseee ettt 198
USING B0 198
Options and ATZUMENLSccceeeeieierierienienienienienentenieeieetestetestesteseeseeseessesnennens 200
Dealing With ATZUMENLScccoueriiriiriiniinrieriniieieeeeteteteter et ne 201
USING DASENAME ...erveeeiiriieiieiieietctetetest ettt eb ettt ettt e s e s esaesaesaesaesaenne 201
Common Argument Handling Problemscc.cccceceevieieiiiiiincnincninicnicnenne 203
Option Parsing in Shell SCrIPLS........cooieveriiiriienieteeeeeeee e 205
USING GOTOPTS wevevreiieierieetenieritesteenteeteete st esieesteesbeeteesbesstesatesseesseenseenseenne 206
SUMIMATY ..ttt sttt ettt ettt e bt e s bt e bt e beeabesasesaeenaeens 210
QUESLIONS. ...ttt ettt ettt ettt e et et e st e sbe st e st e sbeebeestestententenbensesenbensesseneas 210
RIS ..ttt b et st st e bt ettt et eaaes 211
Hour 14 Functions 213
USING FUNCHONS ...eiiiiiiiiiieeiieriieicecet ettt st sttt et 213
Executing FUNCHONScoouiiiiiiiiiieiieiceiee ettt 214
Aliases Versus FUNCtionsc.ccccoveviiiiiniinininininicicicicicicicicsieseneniene 217

Hour 15

Data Sharing ..c..coceveririirieieieeceeeee ettt 223
Moving Around the File SyStemcccocivirinininininieiciccnenenenenenene 223
SUIMIMATY <.ttt ettt ettt sttt et ettt a e sae s s b eneen
QUESTIONSeeeivieeiieeeiiee et e et ettt eetteesteeebeeebaeesaseesabeeessaeesaeeasseassseeensesessseensseenns
Terms...........
Text Filters 231
The head and tail COMMANAS.......ceceveriereerieeieeieeiere e eee et ee e 231
The head COMMANG.......cccierieriieieeieriereee e ee et see et ee e sneeseeens 232

The tail Command.........c.cccovieiiieiiieiiie et e re e e e 233

X

Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Hour 16

Hour 17

USINZ QPP cuveenteeieeieeiteritesttentteteete et e estesutesitesbe e bt et e eaaesetesatesaeenbeenseensesnsesanessees
Looking for Words.........
Reading From STDINcccciiiiiiiiiieincneteeeccneenreeeeee et
Line NUMDETSocviivieiieiieiieiieieieietee ettt ettt ettt bbb
Listing Filenames ONlYcccoceveriieneninenenineneeteteteeeseesie e
CoUNtING WOTAS ...ouviiiiieiieiieiietetee ettt sttt ettt ettt sbe st nae s
The tr COMMANAoc.evtieiiriiiiieieieteeees ettt ettt
The sort Command............ccoeeiiiiiiiniiiieeee e
The unig CommMANd............coouiieiiieiiiecieeeee et
SOrting NUMDELS ..c..evveriiriiiiiiieieieteeteteeteste ettt sre e see e
Using Character Classes with tr....
SUIMMATY <ottt ettt et s sb ettt et et saesaesnenean
QUESTIONS.eeeitieeiieeeitee et e et e et e eetteesbeeebeeeteeesaseessseeessaeesseessseensseesssesessaeesseenns
TEIMIS. c..viiiiii s 247
Filtering Text with Regular Expressions 249
The Basics of awk and sed
INVOCAtION SYNAX ..eoviruiriiiiieiiiieietentertentere sttt ettt sbe e
Basic OPETationc..coeeieieiiiiiiiiiiietittettetce ettt sae e
Regular EXPreSSIONScccuevvieriirieniieriiiieeie ettt st
USINEZ SO woeutieniieieeieeite sttt sttt ettt et st e st e st et e et e eatesetesatesaee bt entesnsesnsesanesaees
Printing LINES ...cc.covuiiiiiiiiieiieiteieceeete ettt 258
Deleting LiNeSccoeverieirieinieieiniciieeerieeteneee st 259
Performing SUDSHIULIONSc.coveieierierierienesenieeeeeet ettt 260
Using Multiple sed Commands............ccoeeveereineinenieneenenneeeeseeeneenes 262
Using sed in a Pipeline
SUIMIMATY ...ttt ettt b e bbbt bttt e s et et e saesbesbenaenee
QUESTIONS. ...ttt ettt e et e et et eeette e e te e eteeeeteeeeaseesabeeesseeetaseesseeasseeenseeesesenseeeans
TEIMIS.c.cviiiiiiicc
Filtering Text with awk 267
WRAL IS BWK? .ttt ettt 267
Basic SYNIAX ..ooveriiiiiiieiieeeeeeee ettt 268
Field EQItING c.eoveveeiiieeiciiriccerncteceneetet sttt ee 269
Taking Pattern-Specific ACHIONSccccoeverererereninieieteieeeneseseeseseeeaean 270
CompPariSON OPETALOTSccveeuteeiteretertenrenresreereereeseereettesteetessessessessessessessenee 271
Using STDIN a8 INPUL...c..coeeiiiiiiiiiiiititintiereetceeeeereterer e 274
USING awk FEAUIEScc.oovieiiriiiiiiiieiciceecncrncreeeetettctee e 275
VariabIEs ..c..ooveviiriiriiiiiieietetctet ettt 276
FLOW CONLIOL ..cooviiiiiiiiiiiiciieicictctcectcee et 283
SUMIMATY ..ottt ettt ettt et st satesat e bt e sbe e bt essesanesanes 288
QUESTIONS. ...ttt ettt ettt ettt et be et et e e e sabesatesbe e bt enteeabesabesanesanes 289

Contents Xi

Hour 18 Other Tools

The Built-In Commandsc.cceevureeiiiiiiieeiie et eree e
The eval Command....

The : CommMANdcceeieuiriiiiieieeeeresee ettt
The type COmMMAN.......cccovviiieeiiieieeieee et eeare e e eeereeeeeeens
The sleep COMMANAoooeivviiiiiiiiieieeieee et eeree et eeeeteeeeeeeareeeeeerneeeeeans
The find Commandcccoceeviriiiiiiiiiiiiieneere e
find: Starting DIECIOTYccveviiiiiiiiiiiiiiiiiciieicceeccer e 299
Find: -name OPONccoceriiirieiiieiriieeree ettt 300
FANd: -tYPe OPLON ..oriiriiiiiiiiieieieeeeet ettt ettt 300
find: -mtime, -atime, -CtiMe ..ooovviiiiiiiiieiiieee e 301
find: -size Option
find: Combining Options
find: Negating OPLIONSccccoerieriiruiriinrinrinieeteerieeeteeteteet et esre e steseesaeneenee
Find: -Print ACHOMN ...cciiiiiiieiieceee ettt et et eeaeeeanee e
FANA: ~EXEC ACHOM.cueriiriiiuieiieietcteteteet ettt ettt ettt ettt en et saesaeseesaenae et
XBIGS wovevvenrererestrseetesttesesesestesesese st s s st et st esa ettt eb et n bbbt be e ee
The expr COMMEANGoveiieiiieiieeiiee et eere e eeete e eeetreeeeeareeeeeeaaeeeeeenes
expr and Regular Expressions
The be ComMMANAcccoivieiiiiiiieiciceee e
SUIMIMATY ..ottt s sbe b b sae e
QUESTIONS. ...cuvieevieiieieeteeite et e eteeeteesteebeebeeesesseeeseesseesseesseessasasesssasseesseenseessenssesseas
RIS ...ttt st b ettt st st be ettt eaees
PArT Il Advanced Topics 311
Hour 19 Signals 313
How Are Signals Represented?ccocceevvevieniinieneenieeieeeestesceneee e 314
Getting a List Of SigNalSc.cocveviiriiriiiieieeieeeeeeeeeee et 314
Default ACHIONS ..c..eevieieiieiieiieieieeee ettt ettt st s sbe e 315
Delivering Signalscccocoieerieinieineiiiieenee e
Dealing with Signals........
The trap Command
Cleaning Up Temporary Filesc.cccceieririninininieieieieieiereneneeniesieneeee 317
I2N0TING STZNALS.c..cveriiriiriiiiiiieiceeee ettt 319
Setting Up @ TIMET .e.evveiviiiiiiiiiieeeeceee ettt 320
SUIMMATY <.ttt ettt ettt b ettt eenaesae s b b eneas 324
QUESTIONSeeeevieeiieeeitee et e et e ettt e eiteesteeebeeetaeesaseesabeeasseeesaeessseeessaesssesesaeesseeans 324
TETTIIS ..ttt ettt 324
Hour 20 Debugging 325
Enabling Debug@ingccceeeeieieieiiiiienienienieniesienie ettt 326

Using the set cOMMANAc.coueviiriininininininieeeeeeeteteteresresee e 327

Xii

Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

Hour 21

Hour 22

Hour 23

Using Syntax ChecKingcoccvereinieineiniieeeentceeeeeeeeeeeee e
Why Syntax Checking Is Important
USING Verbose MOMEc.ccuirieriiniiniiniieiieiieieeiteitetete ettt

SHEll TIACIIZ .evveverieeieeiieiietetetetetet ettt ettt ettt ettt et s st sbe e bbb et
Finding Syntax Bugs Using Shell Tracingcccccceeeeevenencncnicnencnenenne 333
Finding Logical Bugs Using Shell Tracing..........cccccceceeereneneniencnenenenene 335
Using Debug@ing HOOKSc.coeruirininininininieieicicicteenesese e 337

SUIMIMATY <.ttt ettt st et enbe et entesatesaeesaeeseenseenneeneens 339

QUESTIONS. ... s 339

Problem Solving with Functions 341

Library BasiCScc.eeueeieieieieieieiesienieseniesiesiese ettt ettt 341
What IS @ LIDIary?.......cocoueririninininieeeeeeeeteeetereresresre s 342
USING @ LIDIATY ..eooviiiiiiiiieeeteteccccccre e

Creating a Library............

Naming the Library

Naming the FUNCHONScccoiviiiiiiiiiiiiiiiiciciciciccencscncee e 344
Displaying Error and Warning MesSagesccceceeveereinereeeneennercnennnes 344
ASKING QUESLIONS.....cueiuienienieietetiteeteetee ettt et et et steste b siesbesbeereeneene 345
Checking DisSK SPacCe......cc.coueriririirinieiieiieieteeteee ettt 351
Obtaining a Process ID by its Process Nameccccoccecevenenenenenencnneeeene 354
Getting a User’s Numeric UsSer IDc.ccecveieiiiiinininininencncnccceeeeeene 355

Summary

Questions

TEITS ..ot

Problem Solving with Shell Scripts 359

STATTUP SCTIPLS ...euveviriieiieiieitetetete ettt ettt ettt et ettt e seesbesbesbesbeebeebeene
SYSTEIM STATTUPeenteitentetetertertert ettt ettt ettt b bbb b b
Developing an Init Script ...

Maintaining an Address BOOKcc.coccoerererininieiciciceee e
ShOWING PEOPIEouviiiiiiiiiiierierenr e
AddIng @ PETSONcoiiiiiiiiiiiiiiiiieeeetceteeeeetetete et
Deleting @ PErsSOM.......cc.viiiiiiiiiieieeieeteseeee ettt s

SUIMIMATY ..ottt ettt st e bt et st e et e st e s st e sbe e beebeeaneennenn

QUESTIONS. . ..teeeteeeiiieeiie et eete e et e et e et e e sabeeesbeeesseeesseensbeeasseesnseeensseensseesssaesnseaans 385

TRIINIS .ttt ettt et ettt eat e bt e bttt et et satesbaesae e be e b eanes 387

Scripting for Portability

Using uname to Determine the UNIX Version.......c..cccocceevenucceneninenecnecnnes

Determining the UNIX Version Using a Function

Contents xiii
Techniques for Increasing Portabilityc.ccoccvvererieenieienicnicnenencncncneeeneee 396
Conditional EXECULIONeeviriirieriieiieieeie ettt 396
ADSITACTION. ...ttt ettt ettt n e aesae b saesresresne 397
SUMIMATY ..ttt sttt et ettt e bt e s bt e bt et e ebesanesaeenaeens 400
Question
TOITIIS ...ttt ettt ettt et e et e et e e s bt esabeeesbaeesbeessbeaenseeenbeeesbeesbaenas
Hour 24 Shell Programming FAQs 403
Shell and Command QUESHIONS.........c..eeeiieeiiieeiiiieieeeeiee et ereeesieeeereeeeneeeaeeenees 404
Variable and Argument QUESHIONScceevuerieriirieniierieeieeee et seeenie e 409
File and Directory Questions
SUIMIMATY ..ottt sae b b saesae e
PART IV Appendixes 417
AprPENDIX A Command Quick Reference 419

APPENDIX B

APPENDIX C

APPENDIX D

Reserved Words and Built-in

Shell CommANdSc..ocevieuiririiieieieieeeeeeeee ettt s 420
Conditional EXPreSSIONScouevierirriieiienienieniieniterteeie ettt 423
FILE TESES ..cuveniiiiiiiiiiiicitctctctec ettt 423
SHANG TESS ettt ettt ettt ettt 424
Integer COMPATISONSc..c.erveuirieirieieiiieierieieietee ettt ve e

Compound EXPreSSions........coueruerieriererenininiieieeieeiieteteteteste e see e e seeseenee
Arithmetic Expressions (ksh, bash, and zsh Only)
Integer EXpression OPEratorsccceeeeeeeeeeeeieieteieietensensesiesiesieseeneenne
Parameters and Variablescccooioiiiiiiiiiiniiecceeeee e
User-Defined Variablesccooioiiiiiiiiiiiiciececceeeseeeeeeeee
Special Variablescocceoveieiiriiniiniiniiieeeeee ettt
Shell Variables ..o
INPUI/OULPUL «.ceiniiiiiitieieete ettt
Input and Output Redirection
Here Documentcccocoviiiiiniiiinnns
Pattern Matching and Regular Expressions
Filename Expansion and Pattern Matching............cccecvevierienenenenenenenenncns
Limited Regular Expression Wildcards.........c.cceceeeeieienienienenieneneneneneenens
Extended Regular Expression Wildcardsc..ceceeveeveenienienienenenenenenennens

Glossary 433
Answers to Questions 441
Shell Function Library 461

Index 465

About the Author

SRIRANGA VEERARAGHAVAN is a material scientist by training and a software engineer by
trade. He has several years of software development experience in C, Java, Perl, and
Bourne Shell and has contributed to several books, including Solaris 8: Complete
Reference, UNIX Unleashed and Special Edition Using UNIX. Sriranga graduated from
the University of California at Berkeley in 1997 and is presently pursuing further studies.
He is currently employed in the Server Appliance group at Sun Microsystems, Inc.
Before joining Sun, Sriranga was employed at Cisco Systems, Inc. Among other inter-
ests, Sriranga enjoys mountain biking, classical music, and playing Marathon with his
brother Srivathsa. Sriranga can be reached via e-mail at ranga@soda.berkeley.edu.

Dedication

For my grandmother, who taught me to love the English language.

For my mother, who taught me to love programming languages.

Acknowledgments

Writing a book on shell programming is a daunting task, due to the myriad UNIX ver-
sions and shell versions that are available. Thanks to the hard work of my development
editor Steve Rowe, my technical editor Michael Watson, and my copy editor Kezia
Endsley, I was able to make sure the book covered the material completely and correctly.
Their suggestions and comments have helped enormously.

In addition to the technical side of the book, the task of coordinating and managing the
publishing process is a difficult one. The assistance of my acquisitions editor, Kathryn
Purdum, in handling all of the editorial issues and patiently working with me to keep this
book on schedule was invaluable.

Working on a book takes a lot of time and makes it difficult to concentrate on work and
family activities. Thanks to the support of my manager, Larry Coryell, my parents, my
brother Srivathsa, and my uncle and aunt Srinvasa and Suma, I was able to balance work,
family, and authoring.

Thanks to everyone else on the excellent team at Sams who worked on this book.
Without their support, this book would not exist.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: opensource@samspublishing.com
Mail: Mark Taber

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Introduction

In recent years, the UNIX operating system has seen a huge boost in its popularity, espe-
cially with the emergence of Linux. For programmers and users of UNIX, this comes as no
surprise: UNIX was designed to provide an environment that’s powerful yet easy to use.

One of the main strengths of UNIX is that it comes with a large collection of standard
programs. These programs perform a wide variety of tasks from listing your files to read-
ing e-mail. Unlike other operating systems, one of the key features of UNIX is that these
programs can be combined to perform complicated tasks and solve your problems.

One of the most powerful standard programs available in UNIX is the shell. The shell is
a program that provides a consistent and easy-to-use environment for executing programs
in UNIX. If you have ever used a UNIX system, you have interacted with the shell.

The main responsibility of the shell is to read the commands you type and then ask the
UNIX kernel to perform these commands. In addition to this, the shell provides several
sophisticated programming constructs that enable you to make decisions, repeatedly exe-
cute commands, create functions, and store values in variables.

This book concentrates on the standard UNIX shell called the Bourne shell. When
Dennis Ritche and Ken Thompson were developing much of UNIX in the early 1970s,
they used a very simple shell. The first real shell, written by Stephen Bourne, appeared
in the mid 1970s. The original Bourne shell has changed slightly over the years; some
features were added and others were removed, but its syntax and its resulting power have
remained the same.

The most attractive feature of the shell is that it enables you to create scripts. Scripts are
files that contain a list of commands you want to run. Because every script is contained
in a file and every file has a name, scripts enable you to combine existing programs to
create completely new programs that solve your problems. This book teaches you how to
create, execute, modify, and debug shell scripts quickly and easily. After you get used to
writing scripts, you will find yourself solving more and more problems with them.

How This Book Is Organized

This book assumes that you have some familiarity with UNIX and know how to log in,
create, and edit files, as well as how to work with files and directories to a limited extent.
If you haven’t used UNIX in a while or you aren’t familiar with one of these topics,
don’t worry; the first part of this book reviews this material thoroughly.

| 2 Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

This book is divided into three parts:

Part I is an introduction to UNIX, the shell, and some common tools.
Part II covers programming using the shell.

Part III covers advanced topics in shell programming.

Part I consists of Chapters 1 through 7. The following material is covered in the individ-
ual chapters:

Chapter 1, “Shell Basics,” discusses several important concepts related to the shell
and describes the different versions of the shell.

Chapter 2, “Script Basics,” describes the process of creating and running a shell
script. It also covers the login process and the different modes in which the shell
executes.

Chapters 3, “Working with Files,” and 4, “Working with Directories,” provide an
overview of the commands used when working with files and directories. These
chapters show you how to list the contents of a directory, view the contents of a
file, and manipulate files and directories.

Chapter 5, “Input and Output” covers the echo, printf, and read commands along
with the < and > input redirection operators. This chapter also covers using file
descriptors.

Chapter 6, “Manipulating File Attributes,” introduces the concept of file attributes.
It covers the different types of files along with how to modify a file’s permissions.

Chapter 7, “Processes,” shows you how to start and stop a process. It also explains
the term process ID and how you can view them.

By this point, you should have a good foundation in the UNIX basics. This will enable
you to start writing shell scripts that solve real problems using the concepts covered in
Part II. Part II is the heart of this book, consisting of Chapters 8 through 18. It teaches
you about all the tools available when programming in the shell. The following material
is covered in these chapters:

Chapter 8, “Variables,” explains the use of variables in shell programming, shows
you how to create and delete variables, and explains the concept of environment
variables.

Chapters 9, “Substitution,” and 10, “Quoting,” cover the topics of substitution and
quoting. Chapter 9 shows you the four main types of substitution: filename, vari-
able, command, and arithmetic substitution. Chapter 10 shows you the behavior of
the different types of quoting and its affect on substitution.

Introduction

3

Chapters 11, “Flow Control,” and 12, “Loops,” provide complete coverage of flow
control and looping. The flow control constructs if and case are covered along
with the loop constructs for and while.

Chapter 13, “Parameters,” shows you how to write scripts that use command-line
arguments. The special variables and the getopts command are covered in detail.

Chapter 14, “Functions,” discusses shell functions. Functions provide a mapping
between a name and a set of commands. Learning to use functions in a shell script
is a powerful technique that helps you solve complicated problems.

Chapters 15, “Text Filters,” 16, “Filtering Text with Regular Expressions,” and 17,
“Filtering Text with awk,” cover text filtering. These chapters show you how to use
a variety of UNIX commands including grep, tr, sed, and awk.

Chapter 18, “Other Tools,” provides an introduction to some tools that are used in
shell programming. Some of the commands that are discussed include type, find,
bc, and expr.

At this point, you will know enough about the shell and the external tools available in
UNIX that you can solve most problems. The last part of the book, Part III, is designed
to help you solve the most difficult problems encountered in shell programming. Part III
spans Chapters 19 through 24 and covers the following material:

Chapter 19, “Signals,” explains the concept of signals and shows you how to
deliver a signal and how to deal with a signal using the trap command.

Chapter 20, “Debugging,” discusses the shell’s built-in debugging tools. It shows
you how to use syntax checking and shell tracing to track down bugs and fix them.

Chapters 21, “Problem Solving with Functions,” and 22, “Problem Solving with
Shell Scripts,” cover problem solving. Chapter 21 covers problems that can be
solved using functions. Chapter 22 introduces some real-world problems and
shows you how to solve them using a shell script.

Chapter 23, “Scripting for Portability,” covers the topic of portability. In this chap-
ter, you will rewrite several scripts from previous chapters to be portable to differ-
ent versions of UNIX.

Chapter 24, “Shell Programming FAQs,” is a question-and-answer chapter. Several
common programming questions are presented along with detailed answers and
examples.

Each chapter in this book includes complete syntax descriptions for the various com-
mands along with several examples to illustrate the use of commands. The examples are
designed to show you how to apply the commands to solve real problems. At the end of

Sams Teach Yourself Shell Programming in 24 Hours, Second Edition

each chapter are a few questions that you can use to check your progress. Some of the
questions are short answers, whereas others require you to write scripts.

After Chapter 24, four appendixes are available for your reference:
* Appendix A, “Command Quick Reference,” provides a complete command
reference.
* Appendix B, “Glossary,” contains the terms used in this book.

* Appendix C, “Answers to Questions,” contains the answers to all the questions in
the book.

* Appendix D, “Shell Function Library,” contains a listing of the shell function
library discussed in Chapter 21, “Problem Solving with Functions.”

About the Examples

As you work through the chapters, try typing in the examples to get a better feeling for
how the computer responds and how each command works. After you get an example
working, try experimenting with the example by changing commands. Don’t be afraid to
experiment. Experiments (both successes and failures) teach you important things about
UNIX and the shell.

Many of the examples and the answers to the questions are available for downloading
from the following URL:

http://www.csua.berkeley.edu/~ranga/downloads/tysp2.tar.Z
After you have downloaded this file, change to the directory where the file was saved
and execute the following commands:

$ uncompress tysp2.tar.z
$ tar -xvf tysp2.tar

This creates a directory named tysp2 that contains the examples from this book.

There is no warranty of any kind on the examples in this book. Much effort has been
placed into making the examples as portable as possible. To this end the examples have
been tested on the following versions of UNIX:

* Sun Solaris versions 2.5.1 to 8

* Hewlett-Packard HP-UX versions 10.10 to 11.0

* OpenBSD versions 2.6 to 2.9

* Apple MacOS X 10.0 to 10.1.2

¢ Red Hat Linux versions 4.2, 5.1, 5.2, 6.0, and 6.2

* FreeBSD versions 2.2.6 and 4.0 to 4.3

http://www.csua.berkeley.edu/~ranga/downloads/tysp2.tar.Z

Introduction 5 |

It is possible that some of the examples might not work on other versions of UNIX. If
you encounter a problem or have a suggestion about improvements to the examples or
the content of the book, please feel free to contact me at the following e-mail address:

ranga@soda.berkeley.edu

I appreciate any suggestions and feedback you have regarding this book.

Conventions Used in This Book

Features in this book include the following:

S Notes give you comments and asides about the topic at hand, as well as full
/=T / explanations of certain concepts.
SN ==))

Tips provide great shortcuts and hints on how to program in shell more
effectively.

'S

Cautions warn you against making your life miserable and avoiding the pit-
falls in programming.

7 =
o}

New terms appear in italic. Each of the new terms covered in a chapter is listed at
the end of that chapter in the “Terms” section.

At the end of each chapter, you’ll find the handy Summary and Quiz sections (with
answers found in Appendix C).

In addition, you’ll find various typographic conventions throughout this book:
* Commands, variables, directories, and files appear in text in a special monospaced
font.
* Commands and such that you type appear in boldface type.

* Placeholders in syntax descriptions appear in a monospaced italic typeface.
This indicates that you will replace the placeholder with the actual filename,
parameter, or other element that it represents.

This page intentionally left blank

HOUR 3

Working with Files

In UNIX there are two basic types of files: ordinary and special. An ordi-
nary file contains data, text, or program instructions. Almost all of the files
on a UNIX system are ordinary files. This chapter covers operations on ordi-
nary files.

Special files are mainly used to provide access to hardware such as hard dri-
ves, CD-ROM drives, modems, and Ethernet adapters. Some special files are
similar to aliases or shortcuts and enable you to access a single file using
different names. Special files are covered in Chapter 6, “Manipulating File
Attributes.”

Both ordinary and special files are stored in directories. Directories are simi-
lar to folders in the Mac OS or Windows, and they are covered in detail in
Chapter 4, “Working with Directories.”

In this chapter, we will examine ordinary files, concentrating on the follow-
ing topics:

* Listing files

* File contents

* Manipulating files

|38 Hour 3

Listing Files
We’ll start by using the 1s (short for list) command to list the contents of the current
directory:

$ 1s

The output will be similar to the following:

Desktop Icon Music Sites
Documents Library Pictures Temporary Items
Downloads Movies Public

We can tell that several items are in the current directory, but this output does not tell us
whether these items are files or directories. To find out which of the items are files and
which are directories, we can specify the -F option to 1s. An option is an argument that
starts with the hyphen or dash character, *-’.

The following example illustrates the use of the -F option of 1s:
$ 1s -F

Now the output for the directory is slightly different:

Desktop/ Icon Music/ Sites/
Documents/ Library/ Pictures/ Temporary Items/
Downloads/ Movies/ Public/

As you can see, some of the items now have a / at the end, incicating each of these items
is a directory. The other items, such as icon, have no character appended to them. This
indicates that they are ordinary files.

When the -F option is specified to 1s, it appends a character indicating the file type of
each of the items it lists. The exact character depends on your version of 1s. For ordinary
files, no character is appended. For special files, a character such as !, @, or # is
appended to the filename. For more information on the -F options, check the UNIX man-
ual page for the 1s command. You can do this as follows:

$ man 1ls

Options Are Case Sensitive

The options that can be specified to a command, such as 1s, are case sensitive. When
specifying an option, you need to make sure that you have specified the correct case for
the option. For example, the output from the -F option to 1s is different from the out-
put produced when the -f option is specified.

Working with Files 39 |

So far, you have seen 1s list more than one file on a line. Although this is fine for
humans reading the output, it is hard to manipulate in a shell script. Shell scripts are
geared toward dealing with lines of text, not the individual words on a line. Although
external tools, such as the awk language covered in Chapter 17, “Filtering Text with awk,
can be used to deal with multiple words on a line, it is much easier to manipulate the
output when each file is listed on a separate line. You can modify the output of 1s to this
format by using the -1 option. For example,

29

$ 1s -1

produces the following listing:

Desktop
Documents
Downloads
Icon
Library
Movies
Music
Pictures
Public
Sites
Temporary Items

Hidden Files

In the examples you have seen thus far, the output has listed only the visible files and
directories. You can also use 1s to list invisible or hidden files and directories. An invisi-
ble or hidden file is one whose first character is a dot or period (.). Many programs,
including the shell, use such files to store configuration information. Some common
examples of invisible files include

e .profile, the Bourne shell (sh) initialization script

e .kshrc, the Korn Shell (ksh) initialization script

e .cshrc, the C Shell (csh) initialization script

* .rhosts, the remote shell configuration file
All files that do not start with the . character are considered visible.
To list invisible files, specify the -a option to 1s:
$1s -a

The directory listing now resembles this:

.FBCLockFolder Icon Public
. .ssh Library Sites
.CFUserTextEncoding Desktop Movies Temporary Items

| 40 Hour 3
.DS_Store Documents Music
.FBCIndex Downloads Pictures

As you can see, this directory contains several invisible files.

Notice that in this output, the file type information is missing. To get the file type infor-
mation, specify the -F and the -a options as follows:

$ 1s -a -F

The output changes to the following:

N .ssh/ Movies/

L/ Desktop/ Music/
.CFUserTextEncoding Documents/ Pictures/
.DS_Store Downloads/ Public/
.FBCIndex Icon? Sites/
.FBCLockFolder/ Library/ Temporary Items/

With the file type information, you see that there are two invisible directories (. and . .).
These directories are special entries present in all directories. The first one, ., represents
the current directory, whereas the second one, . ., represents the parent directory. These
concepts are discussed in greater detail in Chapter 4.

Option Grouping
In the previous example, you specified the options to 1s separately. You could have

grouped the options together, as follows:

$ 1s -aF
$ 1s -Fa

Both of these commands are equivalent to the following command:
$1s -a -F

The order of the options does not matter to 1s. As an example of option grouping, con-
sider the following equivalent commands:

ls -1 -a -F
1s -1aF
1s -aiF
1s -Fai

All permutations of the options -1, -a, and -F produce the same output:

./

.y
.CFUserTextEncoding
.DS_Store

Working with Files 41|

.FBCIndex
.FBCLockFolder/
.ssh/

Desktop/
Documents/
Downloads/
Icon?

Library/
Movies/

Music/
Pictures/
Public/

Sites/
Temporary Items/

File Contents

In the last section we looked at listing files and directories with the 1s command. In this
section we will look at the cat and wc commands. The cat command lets you view the
contents of a file. The wec command gives you information about the number of words
and lines in a file.

cat

To view the contents of a file, we can use the cat (short for concatenate) command as
follows:

cat [opts] filel ... fileN

Here opts are one or more of the options understood by cat, and file1...fileN are the
names of the files whose contents should be printed. The options, opts, are optional and
can be omitted. Two commonly used options are discussed later in this section.

The following example illustrates the use of cat:
$ cat fruits

This command prints the contents of a file called fruits:

Fruit Price/1bs Quantity
Banana $0.89 100
Peach $0.79 65

Kiwi $1.50 22
Pineapple $1.29 35

Apple $0.99 78

|42 Hour 3

If more than one file is specified, the output includes the contents of both files concate-
nated together. For example, the following command outputs the contents of the files
fruits and users:

$ cat fruits users

Fruit Price/1bs Quantity
Banana $0.89 100
Peach $0.79 65

Kiwi $1.50 22
Pineapple $1.29 35
Apple $0.99 78

ranga

vathsa

amma

Numbering Lines

The -n option of cat will number each line of output. It can be used as follows:
$ cat -n fruits

This produces the output

1 Fruit Price/lbs Quantity
2 Banana $0.89 100

3 Peach $0.79 65

4 Kiwi $1.50 22

5 Pineapple $1.29 35

6 Apple $0.99 78

7

From this output, you can see that the last line in this file is blank. We can ask cat to
skip numbering blank lines using the -b option as follows:

$ cat -b fruits

Now the output resembles the following:

1 Fruit Price/1bs Quantity
2 Banana $0.89 100

3 Peach $0.79 65

4 Kiwi $1.50 22

5 Pineapple $1.29 35

6 Apple $0.99 78

The blank line is still presented in the output, but it is not numbered. If the blank line
occurs in the middle of a file, it is printed but not numbered:

$ cat -b hosts
1 127.0.0.1 localhost loopback

2 128.32.43.52 soda.berkeley.edu soda

Working with Files 43 |

If multiple files are specified, the contents of the files are concatenated in the output, but
line numbering is restarted at 1 for each file. As an illustration, the following command,

$ cat -b fruits users

produces the output

1 Fruit Price/1lbs Quantity
2 Banana $0.89 100

3 Peach $0.79 65

4 Kiwi $1.50 22

5 Pineapple $1.29 35

6 Apple $0.99 78

1 ranga

2 vathsa

3 amma

wcC

Now let’s look at getting some information about the contents of a file. Using the wc
command (short for word count), we can get a count of the total number of lines, words,
and characters contained in a file. The basic syntax of this command is:

wc [opts] files

Here opts are one or more of the options given in Table 3.1, and files are the files you
want examined. The options, opts, are optional and can be omitted.

TaBLe 3.1 wc Options

Option Description

-1 Count of the number of lines.

W Count of the number of words.

-m Count of the number of characters. This option is available on Mac OS X,
OpenBSD, Solaris, and HP-UX. This option is not available on FreeBSD and Linux
systems.

-c Count of the number of characters. This option is the Linux and FreeBSD equiva-

lents of the -m option.

When no options are specified, the default behavior of wc is to print out a summary
of the number of lines, words, and characters contained in a file. For example,
the command

$ wec fruits

|44

Hour 3

produces the following output:
8 18 219 fruits

The first number, in this case 8, is the number of lines in the file. The second number, in
this case 18, is the number of words in the file. The third number, in this case 219, is the
number of characters in the file. At the end of the line, the filename is listed. When mul-
tiple files are specified, the filename helps to identify the information associated with a
particular file.

If more than one file is specified, wc gives the counts for each file along with a total. For
example, the command

$ wec fruits users

produces output similar to the following:

8 18 219 fruits
3 3 18 users
11 21 237 total

The output on your system might be slightly different.

Counting Lines

To count the number of lines, the -1 (as in lines) option can be used. For example, the
command

$ we -1 fruits
produces the output
8 fruits

The first number, in this case 8, is the number of lines in the file. The name of the file is
listed at the end of the line.

When multiple files are specified, the number of lines in each file is listed along with the
total number of lines in all of the specified files. As an example, the command

$ we -1 fruits users

produces the output

8 fruits
3 users
11 total

Working with Files 45|

Counting Words

To count the number of words in a file, the -w (as in words) option can be used. For
example, the command

$ we -w fruits
produces the output
18 hosts

The first number, in this case 18, is the number of words in the file. The name of the file
is listed at the end of the line.

When multiple files are specified, the number of words in each file is listed along with
the total number of words in all of the specified files. As an example, the command

$ we -w fruits users

produces the output

18 fruits
3 users
21 total

Counting Characters

To count the number of characters, we need to use either the -m or the -c option. The -m
option is available on Mac OS X, OpenBSD, Solaris, and HP-UX. On FreeBSD and
Linux systems, the -c option should be used instead.

For example, on Solaris the command
$ we -m fruits
produces the output
219 fruits
The same output is produced on Linux and FreeBSD systems using the command
$ we -c fruits

The first number, in this case 219, is the number of characters in the file. The name of
the file is listed at the end of the line.

When multiple files are specified, the number of characters in each file is listed along
with the total number of characters in all the specified files. As an example, the com-
mand

$ wc -m fruits users

|46

Hour 3

produces the output

219 hosts
18 users
237 total

Combining Options

The options to wc can be grouped together and specified in any order. For example, to
obtain a count of the number of lines and words in the file fruits, we can use any of the
following commands:

$ we -w -1 fruits

$ we -1 -w fruits

$ we -wl fruits
$ we -1lw fruits

The output from each of these commands is identical:
8 18 fruits

The output lists the number of words in the files, followed by the number of lines in the
file. The filename is specified at the end of the line. When multiple files are specified, the
information for each file is listed along with the appropriate total values.

Manipulating Files

In the preceding sections, you looked at listing files and viewing their content. In this
section, you will look at copying, renaming, and removing files using the cp, mv, and rm
commands.

Copying Files (cp)
The cp command (short for copy) is used to make a copy of a file. The basic syntax of
the command is

cp src dest

Here src is the name of the file to be copied (the source) and dest is the name of the
copy (the destination). For example, the following command creates a copy of the file
fruits in a file named fruits.sav:

$ cp fruits fruits.sav

If dest is the name of a directory, a copy with the same name as src is created in dest.
For example, the command

$ cp fruits Documents/

creates a copy of the file fruits in the directory Documents.

Working with Files

47|

It is also possible to specify multiple source files to cp, provided that the destination,
dest, is a directory. The syntax for copying multiple files is

$ cp src? ... srcN dest

Here src1 ... srcN are the source files and dest is the destination directory. As an
example, the following command

$ cp fruits users Documents/
creates a copy the files fruits and users in the directory Documents.

Interactive Mode

The default behavior of cp is to automatically overwrite the destination file if it exists.
This behavior can lead to problems. The -i option (short for interactive) can be used to
prevent such problems. In interactive mode, cp prompts for confirmation before overwrit-
ing any files.

Assuming that the file fruits.sav exists, the following command
$ cp -i fruits fruits.sav

results in a prompt similar to the following:

overwrite fruits.sav? (y/n)

If y (yes) is chosen, the file fruits.sav is overwritten; otherwise the file is untouched.
The actual prompt varies among the different versions of UNIX.

Common Errors
When an error is encountered, cp generates a message. Some common error conditions
follow:

» The source, src, is a directory.

¢ The source, src, does not exist.

* The destination, dest, is not a directory when multiple sources, src? ... srcN,
are specified.

* A non-existent destination, dest, is specified along with multiple sources, src1
SsrcN.

¢ One of the sources in src1 ... srcN is not a file.
The first error type is illustrated by the following command:
$ cp Downloads/ fruits

Because src (Downloads in this case) is a directory, an error message similar to the fol-
lowing is generated:

|48

Hour 3

cp: Downloads: is a directory

In this example, dest was the file fruits; the same error would have been generated if
dest was a directory.
The second error type is illustrated by the following command:

$ cp fritus fruits.sav
cp: cannot access fritus: No such file or directory

Here the filename fruits has been misspelled fritus, resulting in an error. In this
example dest was the file fruits.sav; the same error would have been generated if
dest was a directory.

The third error type is illustrated by the following command:

$ cp fruits users fruits.sav
usage: c¢p [-R [-H | -L | -P]]1 [-f | -i] [-p] src target
cp [-R [-H | -L | -P1] [-f | -i] [-p] src1 ... srcN directory

Because dest, in this case fruits.sav, is not a directory, a usage statement that high-
lights the proper syntax for a cp command is presented. The output might be different on
your system because some versions of cp do not display the usage information.

If the file fruits.sav does not exist, the error message is
cp: fruits.sav: No such file or directory
This illustrates the fourth error type.

The fifth error type is illustrated by the following command:

$ cp fruits Downloads/ users Documents/
cp: Downloads is a directory (not copied).

Although cp reports an error for the directory Downloads, the other files are correctly
copied to the directory Documents.

Renaming Files (mv)

The mv command (short for move) can be used to change the name of a file. The basic
syntax is

mv src dest

Here src is the original name of the file and dest is the new name of the file. For exam-
ple, the command

$ mv fruits fruits.sav

Working with Files 49 |

changes the name of the file fruits to fruits.sav. There is no output from mv if the
name change is successful.

If src does not exist, an error will be generated. For example,

$ mv cp fritus fruits.sav
mv: fritus: cannot access: No such file or directory

Similar to cp, mv does not report an error if dest already exists. The old file is automati-
cally overwritten. This problem can be avoided by specifying the -i option (short for
interactive). In interactive mode, mv prompts for confirmation before overwriting any
files.

Assuming that the file fruits.sav already exists, the command

$ mv -i fruits fruits.sav

results in a confirmation prompt similar to the following:

overwrite fruits.sav?

If y (yes) is chosen, the file fruits.sav is overwritten; otherwise the file is untouched.

The actual prompt varies among the different versions of UNIX.

Removing Files (rm)

The rm command (short for remove) can be used to remove or delete files. Its syntax is

rm filel ... fileN
Here file1 ... fileNis a list of one or more files to remove. For example, the com-
mand

$ rm fruits users
removes the files fruits and users.

Because there is no way to recover files that have been removed using rm, you should
make sure that you specify only those files you really want removed. One way to ensure
this is by specifying the -i option (short for interactive). In interactive mode, rm prompts
before removing every file. For example, the command

$ rm -i fruits users

produces confirmation prompts similar to the following:

fruits: ? (n/y) y
users: ? (n/y) n

In this case, you answered y (yes) to removing fruits and n (no) to removing users.
Thus, the file fruits was removed, but the file users was untouched.

|50

Hour 3

Common Errors

The two most common errors when using rm are

* One of the specified files does not exist.

* One of the specified files is a directory.

The first error type is illustrated by the following command:

$ rm users fritus hosts
rm: fritus non-existent

Because the file fruits is misspelled as fritus, it cannot be removed. The other two
files are removed correctly.
The second error type is illustrated by the following command:

$ rm fruits users Documents/
rm: Documents directory

The rm command is unable to remove directories and presents an error message stating
this fact. It removes the two other files correctly.

Summary

In this chapter, the following topics were discussed:
* Listing files using 1s
* Viewing the content of a file using cat
* Counting the words, lines, and characters in a file using wc
* Copying files using cp
* Renaming files using mv
* Removing files using rm
Knowing how to perform each of these basic tasks is essential to becoming a good shell

programmer. In the chapters ahead, you will use these basics to create scripts for solving
real-world problems.

Working with Files 51 |

Questions

1. What are invisible files? How can they be listed with 1s?

2. Is there any difference in the output of the following commands?
a. $ 1s -al
b. $ 1s -1 -a
c. $ 1s -1a

3. Which options should be specified to wc to count just the number of lines and char-

acters in a file?

4. Given that hwi, hw2, ch1, and ch2 are files and book and homework are directories,
which of the following commands generates an error message?

a. $ cp hwi ch2 homework

b. $ cp hwi homework hw2 book
c. $ rm hwi homework cht

d. $ rm hw2 ch2

Terms

Directories Directories are used to hold ordinary and special files. Directories are simi-
lar to folders in Mac OS or Windows.

Invisible Files An invisible file is one whose first character is a dot or period (.). Many
programs (including the shell) use such files to store configuration information. Invisible
files are also referred to as hidden files.

Option An option is an argument that starts with the hyphen or dash character, *-’.

Ordinary File An ordinary file is a file that contains data, text, or program instruc-
tions. Almost all the files on a UNIX system are ordinary files.

Special Files Special files are mainly used to provide access to hardware such as hard
drives, CD-ROM drives, modems, and Ethernet adapters. Some special files are similar
to aliases or shortcuts and enable you to access a single file using different names.

This page intentionally left blank

INDEX

Symbols

& (ampersand), back-
ground processes, 106
& & and compound opera-
tor, 273
-atime option, find com-
mand, 301
* (backquote), command
substitution, 143
\ (backslash)
echo command escape
sequences, 155-156
newline character, 154
quoting, 148-149
tr command, 239
#!/bin/sh, 404
{ } (braces), while state-
ment, 286
-c option, uniq command,
242

$ character, 10
; character, 12
: character, 24
shell command, 294-296
if statement, 295
while statement,
295-296
/ character, 53
character, comments, 30
- character, getopts com-
mand, 206
+ character, shell tracing,
333
: (colon), 420
;3 command, case state-
ment, 175
. command, including
functions and variable
definitions in other files,
409
-ctime option, find com-
mand, 301

$ (dollar sign)
field operator, 269
newline character, 153

quoting with double
quotes, 151

" (double quote), quoting,
150

-exec action, find com-
mand, 303-304

-f option, tail command,
234

-i option, grep command,
236

-k option, sort command,
243

-1 option, grep command,
238

[>] (less than sign), quot-
ing, 150

AM (carriage return)

removing from files,
415-416

|466 -m option, uname command

-m option, uname com-
mand, 393
$ (meta-character), 252
* (meta-character), 252
. (meta-character), 252
\ (meta-character), 252
A (meta-character), 252
-mtime option, find com-
mand, 301
-n option, 328
find command, 300
grep command, 237
sort command, 242-243
$n variable, 198
A (negation operator), 254
! operator, 171
until loop, 187
>> operator, here docu-
ments, 80
!= operator, test command,
169
Il operator, 171, 408
& & operator, 171, 408
Il (or) compound operator,
273
% (percent sign), job
number prefixes, 109
. (period), 39, 420
-print action, find com-
mand, 303
-r option
sort command, 242-243
uname command, 393
-s option, tr command, 240
[<] (redirection sign), eval
command, 294
; (semicolon), 148
awk command, 269

! sign, find command, 303
' (single quote), filtering,
244
-size option, find com-
mand, 302
-type option, find com-
mand, 300
$USAGE variable, 202
-v option, 331
grep command, 236-237
$! variable, 198
$# variable, 198, 203
$$ variable, 198
$* variable, 198
compared to $@, 204
$0 variable, 198-199, 404
usage statements,
199-200
$? variable, 198
$@ variable, 198
compared to $*, 204
variable values, 124
* wildcard
basename command, 202
globbing, 136
* wildcard, globbing, 139
? wildcard, globbing, 138
common errors, 138-139
-x option, 332

A

a- option, 39
absolute pathnames, 56
find command, 299
abstraction, portability,
397-400
accounts, 14

actions (find command)
-exec, 303-304
-print, 303
adaptability, init script,
372-373
addperson script, 378-379
address books, 373-374
adding people, 377-380
deleting people, 380-385
interactive mode, 377
listing people in,
375-377
noninteractive mode, 377
ALARM signals, handler
function, 321
alias command, 217
aliases, 217, 420
C shells, 16
displaying pathnames
for, 296
functions, comparing,
217-218
unaliases, 218
ampersand (&), back-
ground processes, 106
anchoring, regular expres-
sions, 254-256
and-and operator (& &),
273
appending output to files,
78
arguments, 200
basename command, 201
emulating, 202
cd command, 59
considering one at a
time, 409
example, 201
forwarding to another
command, 410

Bourne Again shell (bash) 467 |

functions, executing,
215-216
mkdir command, 63
passing to commands
with xargs command,
304
shell tracing, 335
troubleshooting, 203-205
arithmetic
bc command, 307
expr command, 306
arithmetic expressions,
425
arithmetic substitution,
144
common errors, 145-146
operators, 144-145
precedence, 145
array variables, 121-127,
427
arrays
accessing values,
127-128
indices, 126
notation, 126
support arrays, 427
assigning variables, awk,
276
assignment operators,
numeric expressions,
278-279
associating files with file
descriptors, 82-83
AT&T System V UNIX.
See System V UNIX
awk
invocation syntax, 250
operations, 250-251
versus sed, 250

awk command, 268-269
comparison operators,
271-272
compound expres-
sions, 273
next command,
273-274
field editing, 269-270
flow control, 283
do statement, 286
for statement,
286-288
if statement, 284-285
while statement, 285
formatting address book
with, 375
FS, 282
numeric variables, 277
pattern-specific actions,
270-271
STDIN as input, 274-275
variables, 276
numeric expressions,
276-283

background processes,
106-107

fg command, 110

input, requiring, 107-108

moving foreground
processes to, 108-110

preventing termination,
110

waiting for, 111

backquote (*), command
substitution, 143
backslash (\), 148-149
echo command escape
sequences, 155-156
newline character, 154
backslash character (\), tr
command, 239
basename command,
201-202, 412
bash (Bourne Again shell),
17, 25
exporting variables, 130
initialization, 25
online resources, 34
Bash shell
integer expressions, 425
support arrays, 427
wildcards, 430
bc command, 307-308
beeps, sounding a series
with sleep command, 297
BEGIN pattern, numeric
expressions, 279-280
Berkeley Software
Distribution (BSD), 390
bg, 420
bg command, 109
bit bucket, 405
block special files, 94
Bourne Again shell (bash),
17
arrays, 125
initialization, 25
online resources, 34
wildcards, 430

| 468 Bourne-type shells

Bourne-type shells, 14-15
braces { }, while state-
ment, 286
break command, 192-193,
420
nested loops, 194
BSD (Berkeley Software
Distribution), 390
BSD UNIX
abstraction, getPID func-
tion, 399-400
versus System V, 391
BSD Web site, 390
built-in shell commands,
293
built-in variables, 281-283

C

C shell
(:) character, 296
starting from Korn Shell,
116
-c option (wc command),
43
c-based shells tcsh, 16
C-type shells, 14-16
carriage returns, removing
from files, 415-416
case statement, 175-176,
420
common errors, 176-177
patterns, 177
case-sensitivity, options, 38
cat command, 41
-n option, 42

cd command, 420
arguments, 59
changing directories,
58-59
errors, 59
navigating directory
trees, 57
CDPATH variable, 428
changing directories, 58-59
character special files, 94
characters
counting in file contents,
45
matching, regular expres-
sions, 252-253
sets of, regular expres-
sions, 253-254
child directories, 54
child processes, 114-115
permissions, 116
subshells, 115-116
chmod command, 98
common errors, 101
octal method, 100-101
symbolic expression,
98-100
chown command, 101-102
groups, 102-103
restrictions, 102
closing file descriptors, 86
command interpreter, 13
command line, options,
200
command substitution,
143-144
commands, 22
(:) character, 294-296
if statement, 295
while statement,
295-296

() colon symbol, 420
(.) period, 420
accessing by shell,
#!/bin/sh, 404
alias, 217
aliases, 420
arguments
forwarding to another
command, 410
passing with xargs
command, 304
awk, 268-269
comparison operators,
271-274
field editing, 269-270
flow control, 283-288
pattern-specific
actions, 270-271
STDIN as input,
274-275
variables, 276-283
basename, 201, 412
emulating, 202
bc, 307-308
bg, 109, 420
break, 192-193, 420
nested loops, 194
case statement, 420
cd, 420
chmod, 98
common errors, 101
octal method,
100-101
symbolic expression,
98-100
chown, 101-102
groups, 102-103
restrictions, 102

commands 469 |

complex, 11
compound, 12
compound expressions,
424
continue statement, 420
copying files, 46
errors, 47
interactive mode (cp
command), 47
default behavior, 11
determining if shell can
find, 407-408
dirname, 412
do statement, 420
done statement, 420
echo, 420
conditional execution,
397
modifying with single
quote, 149
output, 72
esac statement, 420
eval, 294, 420
exec, 116-117, 421
executing in separate
shells, 408
exit, 223
exit n, 421
export, 130, 421
expr, 306-307
false, 421
fg, 110, 421
fi statement, 421
file, 90
file descriptors, 82
file tests, 423
find, 298-299, 413
-atime option, 301
-ctime option, 301
-exec action, 303-304

-mtime option, 301
-n option, 300
-print action, 303
-size option, 302
-type option, 300
combining options,
302
negating options, 303
starting directory,
299-300
for statement, 421
function statement, 421
getopts, 421
globbing, 136
grep, 234
line numbers, 237
listing filenames, 238
searching for words,
235-236
head, 232-233
hostname, 394
if statement, 160-161,
421
common errors,
161-163
integer statement, 421
integers tests, 424
jobs, 112, 421
kill, 114, 421
-1 option, 314
signals, 315
let, 421
Is
character special files,
94
d- option, 90
file types, 90
1- option, 90

man, 31, 33
mv, renaming files, 414
nohup, 110
option case-sensitivity,
38
options, 200
grouping, 40
output. See output
overview, 10
passwd, SUID bit, 97
pausing with sleep com-
mand, 297
print, with awk, 269
printf, output, 75-77
prompt, 10
ps, 112-113, 366-368
pwd, 421
quoting
combining, 152
echo escape
sequences, 155-156
embedding spaces,
152-153
filenames with special
characters, 154-155
newline character,
153-154
wildcards, 155
word boundaries, 152
read, 81, 421
readonly, 128, 422
redirecting to /dev/null,
405-406
removing directories, 66
removing files, 49
errors, 50
renaming files, 48
return, 223, 422
rsh, 396

| 470 commands

sed, multiple, 262-264
select, 422
separators, 12
set, 327-328, 422
shift, 208, 422
simple, 9, 11
sleep, 297
sort, 241
sorting numbers,
242-243
STDERR, 406-407
string tests, 424
stty, 108
addperson script, 380
tail, 233-234
follow option, 234
test, 163, 422
compound expres-
sions, 171-174
empty strings,
166-167
file tests, 164-165
numerical compar-
isons, 170-171
string comparisons,
166-169
string equality,
167-168
string inequality, 169
tr, 239
character classes,
244-245
removing carriage
returns, 416
removing spaces,
240-241
trap, 317, 422
cleaning up temporary
files, 318-319

type, 296-297, 422
typeset, 220, 422
ulimit, 422
umask, 422
unalias, 218, 422
uname, 392-393
determining versions
with a function,
394-395
hardware type,
393-394
uniq, 241-242
unset, 129, 218, 422
until, 422
using operators condi-
tionally to execute, 408
viewing file contents,
41-43
combining options, 46
counting characters,
45
counting lines, 44
counting words, 45
wait, 111, 422
whence, 422
while, 422
while loops, 182
xargs, 304-305
comments, 30
common errors, chmod
command, 101
comparing aliases and
functions, 217-218
comparisons operators
(awk command), 271-272
compound expressions,
273
next command, 273-274

complex commands, 11
compound commands, 12
compound expressions
comparison operators,
273
test command, 171-174
test commands, 424
conditional execution
operators, 171
conditional executions,
portability, 396-397
conditional expressions,
423
conditional statements. See
flow control
continue command, 194
continue statement, 420
copying
directories, 63
directories (multiple), 64
files, cp command, 46-47
counter variables (for
statement), 287
counting
characters in viewed file
information, 45
lines in viewed file infor-
mation, 44
words in viewed file
information, 45
cp command, 46
-r option, 63-64
errors, 47
interactive mode, 47
cpio command, quoting
wildcards, 156-157
csh, stack, 224

echo command 471 |

D

date command, 10
debug mode, variable sub-
stitution, 143
debugging
debugging mode, 327
invocation activated,
326-327
enabling, 326
execution tracing mode,
332
set command, 327-328
shell tracing, 332-333
debugging hooks,
337-339
logical bugs, 335-337
syntax bugs, 333-335
syntax, 328-331
verbose mode,
331-332
debugging hooks, shell
tracing, 337-339
default actions (signals),
315
defining variables, 122
deleting
directories, 66
files (rm command),
49-50
lines, sed, 259-260
persons from address
book, 381
delimiters, deleting from
input file, 239
delivering signals, 315
delperson script, 381-383
dev directory, device files,
94

device drivers, block spe-
cial files, 94
device files, 94
directories
), 53
BSD and System V
equivalents, 390-391
changing, 58-59
cleaning up files, 414
copying, 63
copying multiple, 64
creating, 62
common errors, 63
parents, 62
determining full path-
name, 412
disk space, 352
find command, -type
option, 300
greping every file in, 413
home, 24
info on (Is 1d- com-
mand), 90
listing, 60
listing files in, 38
moving, 64
moving (multiple), 65
permissions, 96-97
changing, 98-101
removing, 66
run-levels, 362-363
trees, 53-54
filenames, 54
navigating, 57
pathnames, 55-57
directory stack
adding directories to,
225-226
listing, 224-225
manipulating (popd func-
tion), 226

dirname command, 412
dirs function, 224-225
disk space
file ownership, 102
find command, 304
function libraries,
351-354
removing temporary
files, 414
divide and conquer, 222
division operation (expr
command), 306
do statement, 182, 420
awk command, flow con-
trol, 286
documents, here docu-
ments, 80
dollar sign ($)
field operator, 269
newline character, 153
quoting with double
quotes, 151
variables, accessing val-
ues, 124
done statement, 420
double quotes, 150

E

e- option (ps command),
114
echo command, 420
conditional execution,
397
modifying with double
quotes, 150
modifying with single
quote, 149

| 472 echo command

output, 72
formatting, 73-75
punctuation marks, 73
passing arguments to, 305
echo_prompt function, 397
editors, stream (sed), 249,
257
elif statement, with else
statements, 160
else if statements, 284
else statement, with elif
statement, 160
embedding in output
formatting, 73-75
printf command,
76-77
punctuation marks, 73
END pattern, numeric
expressions, 279-280
environment variables, 129
exporting, 130
error messages
background processes,
107
output, 72
redirecting, 84-85
error messages (function
libraries), 344-345
errors. See also trou-
bleshooting
cd command, 59
cp command, 47
functions, 216-217
if statement, 161-163
In command, symlinks,
94
Is command, 61
mkdir command, 63
mv command, 65
rm command, 50, 67

rmdir command, 66
variable substitution, 142
esac statement, 420
escape characters, format-
ting output with, 74-75
echo command, 73
escape sequence, 149
echo command, 155-156
etc/shadow file, 97
eval command, 294, 420
exclamation (!) (find com-
mand), 303
exec command, 116-117,
421
exec system call, 404
execution tracing mode,
332
exit command, 223, 421
export, 421
export command, 130
exporting
environment variables,
130
variables in ksh, bash,
and zsh, 130
expr command, 306-307
expressions
arithmetic, 425
compound, 171
conditional, 423
regular expressions,
249-252
anchoring, 254-256
examples, 252-257
matching characters,
252-253
meta-characters,
251-252, 256-257
sets of characters,
253-254
symbolic, 98

F

-F option, 38
false command, 421
fg command, 110, 421
fi statement, 421
field editing (awk com-
mand), 269-270
fields, 269
file command, 90
file descriptors, 82
associating files with,
82-83
closing, 86
redirecting, 85-86
STDERR, 82
STDIN, 82
STDOUT, 82
file handles. See file
descriptors, 82
file types, determining, 90
filename substitution. See
globbing
FILENAME variable, 281
filenames, 54
rules for expansion, 430
setting to lowercase, 415
special characters, 155
files
appending output to, 78
associating with descrip-
tors, 82-83
block special, 94
changing owners,
101-102
restrictions, 102
character special, 94
copying (cp command),
46-47

find command 473 |

determining full path-
name, 412-413
device, 94
file command, 90
filtering
grep command,
234-238
head command,
232-233
tail command,
233-234
finding with find com-
mand, 299
greping every file in a
directory, 413
hidden, 39
links, 91-92
listing, 61
visible, 39
listing in directories, 38
listing lines, 235
locating, 413
manipulating with for
loop, 189-190
most recently accessed,
listing, 232
nohup.out, 111
ownership, 95
passwords stored, 97
permissions
changing, 98-101
viewing, 96
printing input lines with
awk, 268
read permissions, 96
regular, 90
removing (rm com-
mand), 49-50
removing carriage
returns, 415-416

removing temporary files
with matching names,
414
renaming, 414-415
mv command, 48
SGID permission, 97-98
shell initialization, 25
shell scripts, 29
special, 37
STDERR, 82
STDIN, 82
STDOUT, 82
SUID permission, 97-98
symbolic links, 92-93
symlinks, common
errors, 94
temporary, cleaning up,
318-319
test command, 164-165
compound expres-
sions, 171-174
empty strings,
166-167
numerical compar-
isons, 170-171
string comparisons,
166-169
string equality,
167-168
string inequality, 169
test commands, 423
viewing contents, 41
combining options, 46
counting characters,
45
counting lines, 44
counting words, 45
getting information
about, 43
numbering lines, 42

filtering text, 249
awk command, 268-269
comparison operators,
271-274
field editing, 269-270
flow control, 284-288
pattern-specific
actions, 270-271
STDIN as input,
274-275
variables, 276-283
filtering text files
grep command, 234
line numbers, 237
listing filenames, 238
searching for words,
235-236
head command, 232-233
tail command, 233-234
follow option, 234
find command, 298-299,
413
-atime option, 301
-ctime option, 301
-exec action, 303-304
-mtime option, 301
-n option, 300
-print action, 303
-size option, 302
-type option, 300
combining options, 302
negating options, 303
quoting wildcards,
156-157
starting directory,
299-300

|474 finding files

finding files, 413
flow control, 159
awk command, 283-285
flow control, 285-288
case statement, 175-176
common errors,
176-177
patterns, 177
if statement, 160-161
common errors,
161-163
test, 163
compound expres-
sions, 171-174
empty strings, 166-167
file tests, 164-165
numerical compar-
isons, 170-171
string comparisons,
166-169
string equality,
167-168
string inequality, 169
flow of the script, 159
for loops, 188
manipulating sets of
files, 189-190
for statement, 421
awk command, flow con-
trol, 286-288
foreground processes, 106
fg command, 110
moving to background,
108-110
forked child processes, 115
format specifications
(printf command), 76-77
formatting output
echo command, 73-75
printf command, 76-77

FreeBSD, 390
FS property (awk com-
mand), 282
function chaining, 216
recursion, 221-223
function libraries, 344
checking disk space,
351-354
error messages, 344-345
retrieving process ID
name, 354-355
retrieving user numeric
user ID, 355-356
user input, 345-351
function statement, 421
functions, 213-214
aliases, comparing,
217-218
data sharing, 223
debugging, set command,
328
debugging hooks, 337
determining UNIX ver-
sion, 395
dirs, 224-225
echo_prompt, 397
getopts, 380
getOSName, 395
getPID, 399-400
getSpaceFree, abstrac-
tion, 397-398
getUID, 356
including variables defin-
itions in other files, 409
init script, 368-372
invoking, 214-215, 217
arguments, 215-216
errors, 216-217
function chaining, 216

main code, 342
naming, 344
popd, 226

wrapper, 227-228
popd_helper, 226-227
pushd, 225-226
SetTimer, 322
undefined, 218

G

gawk command, 268
general input/output redi-
rection, 83-84
getopts command, 198,
205-210, 421
getopts function, 380
getOSName function, 395
getPID function, abstrac-
tion, 399-400
getSpaceFree function,
abstraction, 397-398
getUID function, 356
global scope, 218-220
global variables, 218-220
globally regular expression
print. See grep
globbing, 136
* wildcard, 136
? wildcard, 138
common errors,
138-139
matching sets of charac-
ters, 139-141
matching suffixes and
prefixes, 137-138
* wildcard, 139

interactive mode, address book

475 |

GNU (gawk command),
268
grep command, 234
-1 option, 238
-n option, 237
-v option, 236-237
address book, extracting
names, 375
greping a string in every
file, 413
line numbers, 237
listing filenames, 238
regular expressions,
quoting, 155
searching for words, 235
case independent,
235-236
STDIN, 236
grouping options, 40
groups, changing owners,
102-103

H

hard links, 91-92
hardware, determining,
393-394

head command, 232-233
help features, 31

UNIX system manuals,

33

help. See online help
here documents, 80, 429
hidden files, 39
hierarchies, directories, 53
home directories, 24, 57
HOME variable, 132, 428

hostname command, 394
HP-UX
/bin, /sbin directories,
391
abstraction, getSpaceFree
function, 397-398
remote system command,
396
wc command, counting
file characters, 45

i- option (cp command), 47
I/O (Input/Output), 428
1/0 redirection, 429
IEEE, awk standard, 268
if statement, 160-161, 295,
421
awk command, flow con-
trol, 284-285
common errors, 161-163
script portability, 396
syntax checking, 329
IFS variable, 131, 428
ignoring signals, 319-320
index numbers, 125
arrays variables, access-
ing, 127
infinite loops
(:) character, 295
break command, 192-193
nested loops, 194
continue command, 194

init scripts, 361-366
adaptability, 372-373
functions, 368-372
platform variations, 363
initialization, System V
UNIX, 363

initialization scripts,
accessing current shell
name, 404

initializing shells, 24
Bourne Again (bash), 25
file contents, 26

setting MANPATH
variable, 27
setting PATH vari-
able, 27
Korn (ksh), 25
Z (zsh), 26

inner loops, 183

input, 79
background processes,

107-108
pipelines, 81-82
printing lines with awk,
268
reading, 81
redirecting, 79
general redirection,
83-84
here documents, 80
while loops, 185-187
xargs command, 304

Input/Output. See I/0

integer arithmetic, 306

integer statement, 421

integers, test commands,

424
interactive mode, address
book, 377

| 476 interactive shells

interactive shells, 28
determining, 405
starting, 28

interpreter, 404

interrupt signals, 313

invisible files, 39

invocation activated

debugging modes,
326-327

invocation syntax
awk, 250
sed, 250

invoking functions,

214-215, 217
arguments, 215-216
errors, 216-217
function chaining, 216

job ID, 107
jobs (kill command), 114
jobs command, 112, 421

K

kernel, 22
accessing features with
system calls, 404
kill command, 114, 421
-1 option, 314
signals, 315

Korn, ksh shells, 16-17, 25

Korn shell
integer expressions, 425
starting C Shell from,

116

support arrays, 427
wildcards, 430

ksh (Korn shell), 16, 25
exporting variables, 130
initialization, 25

L

-1 option (wc command),
43
let command, 421
libraries, 342-344
checking disk space,
351-354
naming, 343-344
retrieving process ID
name, 354-355
retrieving user numeric
user ID, 355-356
user input, 345-351
line numbers (grep com-
mand), 237
lines (sed)
deleting, 259-260
printing, 258-259
links, 91
files, hard links, 91-92
Linux
compared to BSD and
System V, 391
gawk command, 268
wc command, counting
file characters, 45

listing
directories, 60
files, 61
visible files, 39
listing signals, 314
listings
addperson script, 378-379
delperson script, 381-383
function libraries, 461-464
showperson script,
375-376
sshd init script, 371-372
local scope, 218-220
local variables, 129, 218,
220
logging in, 23
logic, checking with shell
tracing, 335-337
logins, logging, 297
looping
controlling
break command,
192-194
continue command,
194
for, 188
manipulating sets of
files, 189-190
infinite loops, 192-193
continue command,
194
nested loops, 194
select, 190-192
changing prompt, 192
until, 187
while, 181-182
nesting, 183-184
until loop, 187-188
validating user input,
184-185

numeric expressions

477 |

loops (while), input redi-
rection, 185-187
lowercase, setting file-
names to, 415
Is command
character special files, 94
d- option, 90
errors, 61
file types, determining,
90
1- option, 90
listing directories, 60
listing files, 61
listing visible files, 39
options
case-sensitivity, 38
grouping, 40

M

m- option (wc command),
43
mail command, quoting
with embedding spaces,
153
mail spools, listing oldest,
233
main loops, 183
man command, 31, 33
man pages, 31-32
manipulating directories,
62
copying, 63
multiple, 64
creating, 62
moving, 64
moving multiple, 65
removing, 66

MANPATH variable, 27
manuals (UNIX system),
33
matching
characters, regular
expressions, 252-253
meta-characters, 256-257
memory
commands, 22
kernel, 22
utilities, 22
messages
displaying on STDERR,
406
printing to STDOUT, 85
meta-characters, 135. See
also wildcards
double quotes, 150
quoting with backslash,
148-149
regular expressions
escaping, 256
matching, 256-257
single quotes, 149-150
meta-characters (regular
expressions), 251-252
mkdir command, 62
-p option, 62
common errors, 63
modulus function, 306
moving directories, 64
multiple sed commands,
262-264
myv command, 48
errors, 65
moving directories, 64
renaming files, 414

N

-n option (cat command),
42
name value pairs, 122
named pipes, 95
naming
files (mv command), 48
libraries, 343-344
variables, 122-123
negation operator ("), 254
nesting, 183
loops, breaking infinite
loops, 194
while loops, 183-184
NetBSD, 390
newline character, 153
newlines, converting to
spaces, 239
newsgroups, shell pro-
gramming resources, 34
next command, compari-
son operators, 273-274
nohup command, 110
nohup.out file, 111
noninteractive shells,
starting, 28
noninteractive mode,
address book, 377
noninteractive shells,
determining, 405
notation, strings sets, 251
numbers, sorting, 242
different columns, 243
numeric expressions, 276
awk command
assignment operators,
278-279
built-in variables,
281-283

| 478 numeric expressions

shell variables, 283
special patterns,
BEGIN, END,
279-280
numeric tests, 335

(0

octal method (chmod com-
mand), 100-101
online help
man command, 31, 33
MANPATH variable, 27
OpenBSD, 390
operations
awk, 250-251
sed, 250-251
operators
M, 171
(!=), test command, 169
(&&), 171, 408
(>>), here documents, 80
an, 171, 408
arithmetic substitution,
144-145
comparison, 272
Korn/Bash integer
expressions, 425
negation (), 254
OPTARG variable, 428
OPTIND variable, 428
option parsing, 205-206
getopts command,
206-210

options, 200
combining
find command, 302
when viewing file
contents, 46
compared to arguments,
200
debugging options, 326
grouping, 40
negating, find command,
303
ps command, 114
uname command, 392
wc command, 43
or-or operator (ll), 273
outer loops, 183
output, 71
redirecting, 77
appending to files, 78
general redirection,
83-84
pipelines, 81-82
to files and screens,
78
redirecting to /dev/null,
405-406
STDERR, 72
redirecting, 84-85
STDOUT, 72
printing messages to,
85
redirecting, 84-85
to terminal, 72
echo command, 72-75
printf command,
75-77
owners, changing owners
files, 101-102
groups, 102-103
ownership, files, 95

P-Q

p- option (mkdir com-
mand), 62
errors, 63
parent directories, 54
parent processes, 114-115
permissions, 116
subshells, 115-116
passwd command, SUID
bit, 97
passwd file, login, 23
password files, process
permissions, 116
passwords
file stored in, 97
logging in, 23
PATH variable, 132, 428
setting, 27
pathnames, 54
absolute, 56
determining directory
full pathnames, 412
determining file full
pathnames, 412-413
displaying for a com-
mand, 296
displaying for files, 298
find command, 299
relative, 56-57
types, 55
pattern matching, 430
awk command, 270
if statement, 284
patterns (.*), 307. See also
regular expressions
percent sign (%), job
number prefixes, 109

prompts 479 |

permissions
changing with chmod
command, 98
common errors, 101
octal method,
100-101
symbolic expression,
98-100
directory, 96-97
file ownership, 95
files, viewing, 96
octal expression values,
100
processes, 116
read, 96
SGID file permission,
97-98
SUID file permission,
97-98
world read, 99
world write, 100
write, 97
pid (process ID), 106
pipelines, 81-82
sed in, 263-264
pipes, named, 95
piping, most recently
accessed files, 233
plus (+) character, shell
tracing, 333
popd function, 226
wrapper, 227-228
popd_helper function,
226-227
portability
abstraction, 397-400
conditional execution,
396-397
determining versions with
a function, 394-395

hardware type, 393-394
improving, 396
uname command,
392-393
UNIX versions, 390
POSIX, awk, 268
pound sign (#), comments,
30
precedence, arithmetic
substitution, 145
prefixes, matching in glob-
bing, 136-137
print command, with awk,
269-270
printf command, 270
output, 75
formatting, 76-77
printing
lines, sed, 258-259
messages, to STDOUT,
85
processes
background, 106-107
fg command, 110
moving foreground
processes to,
108-110
preventing termina-
tion, 110
waiting for, 111
child, 114-115
permissions, 116
subshells, 115-116
exec command, 116-117
foreground, 106
function libraries
ID names, retrieving,
354-355
user numeric user ID,
retrieving, 355-356

job numbers, assigning,
110
jobs command, 112
kill command, 114
limit, 106
parent, 114-115
permissions, 116
subshells, 115-116
ps command, 112-113
starting, 105
suspending, 108
profile file, shell initializa-
tion, 27
profiles, shell specific
startup with $0 variable,
404
programmer activated
modes, 327
programs
executing with SGID bit,
97
shells, 13, 23
Bourne Again, 17
Bourne-type, 15
C-type, 16
Korn, 16-17
prompt, 14
types of, 14
Z, 18
signals, 316
utilities, 22
prompts, 10
background processes,
107
changing with select
loop, 192
echo command, 397
shell, 14

| 480 ps command

ps command, 112-113,
366-368

PS1 variable, 428

PS2 variable, 428

public directory, disk
space, 352

punctuation marks,
embedding in output, 73

pushd function, 225-226

pwd command, 421

PWD variable, 131, 428

quoting

combining quoting, 152

echo escape sequences,
155-156

embedding spaces,
152-153

filenames with special
characters, 154-155

newline character,
153-154

wildcards, 155

cpio and find com-
mands, 156-157

with backslash, 148-149

with double quotes, 150

with less than sign, 150

with single quotes,
149-150

word boundaries, 152

quoting values, 123

R

-r option (cp command),
63-64
rmdir command, 67

RANDOM variable, 131,
428
read command, 81, 421
read permissions, 96
read-only variables, 128
reading input, 81
readonly command, 128,
422
recursion, 221-223
redirecting
file descriptors, 85-86
input, 79
general redirection,
83-84
here documents, 80
while loops, 185-187
output, 77
appending to files, 78
general redirection,
83-84
pipelines, 81-82
STDOUT, 84-85
to files and screens, 78
redirection signs (eval
command), 294
regex. See regular expres-
sions
regular expression wild-
cards, 431
regular expressions,
249-252
(.*), 307
anchoring, 254-256
examples, 252-257
matching characters,
252-253
meta-characters, 251-252
escaping, 256
matching, 256-257
quoting, 155
sets of characters,
253-254

regular files, 90
relative pathnames, 56-57
find command, 300
remainders, 306
remote commands, condi-
tional execution, 396
removing
directories, 66
files (rm command),
49-50
renaming files, 414-415
mv command, 48
REPLY variable, 131, 428
RESPONSE variable, 295,
349-351
return codes, 223
return command, 223, 422
rm command, 49
errors, 50, 67
rmdir command
-r option, 67
error, 66
removing directories, 66
syntax, 66
root accounts, 14
root directories, 53
rsh command, 396
run-level S, 362
run-levels, 361
directories, 362-363

S

scalar variables, 121
scale (bc command), 308
scope, 218-219
global scope, 218-220
local scope, 218-220

shells 481 |

scripts
$0 shell variable, 199
comments, 30
globbing, 136
init, 361-363
adaptability, 372-373
functions, 368-372
platform variations,
363
init, 364-366
operation failures, 204
option parsing, 205-206
getopts command,
206-210

variable substitution, 142

while loop, 181-182
nesting, 183-184
until loop, 187-188
validating user input,
184-185
searching files with wild-
cards, 140
SECONDS variable, 131,
428
sed
in pipelines, 263-264
invocation syntax, 250
operations, 250-251
versus awk, 250
sed (stream editor), 249,
257
actions, 257
deleting lines, 259-260
printing lines, 258-259
substitutions, 260-262
syntax, 257
troubleshooting, 261
sed command
multiple, 262-264
using shell variables in,
410-411

select command, 422
select loops, 190-192

changing prompt, 192

semicolon (;), 148

awk command, 269
if then statement, 161

separators (command), 12
set command, 327-328, 422

-X option, 332

Set Group ID. See SGID
Set User ID. See SUID
SetTimer function, 322
SGID file permission,

97-98

shadow file, 97
shell scripts, 29

comments, 30
debugging, 326-331
set command,
327-328
verbose mode,
331-332
making executable, 29
portability
abstraction, 397-400
conditional execution,
396-397
determining versions
with a function,
394-395
hardware type,
393-394
improving, 396
signals, 314
temporary files, cleaning
up, 317
UNIX versions, 392

shell tracing, 332-333

debugging, single func-
tions, 328

debugging hooks,
337-339

disabling, 328

logical bugs, 335-337

set command, 327

syntax bugs, 333-335

shell variables, 129, 131,

198, 428

shells, 13, 23

accessing name, 404
arrays, 125
awk command variables,
283
Bourn Again, 17
Bourne-type, 15
built-in variables, 427
C-type, 16
default, 24
executing commands in
separate shells, 408
find commands, 407-408
initialization, 24
Bourne Again shell
(bash), 25
Korn shell (ksh), 25
Z shell (zsh), 26
initializing
file contents, 26
setting MANPATH
variable, 27
setting PATH vari-
able, 27
interactive mode, 28
Korn, 16-17
login, 23
making scripts exe-
cutable, 29

|482 shells

non-interactive mode,
starting, 28
prompt, 14
subshells, 115
types of, 14
uninitialized, 24
using operators condi-
tionally to execute, 408
using variables in sed
command, 410-411
variables, listed, 428
Z (zsh), 18
shift command, 208, 422
SHLVL variable, 131, 428
showperson script,
375-376
SIGALARM signals, 320
example timer script, 323
setting timer, 322
unsetting timer, 322
SIGHUP signals, 315
SIGINT signals, 316
SIGKILL signals, 316
signals, 313-314
ALARM, handler func-
tion, 321
cleaning up temporary
files, 318-319
dealing with, 316
default actions, 315
delivering, 315
ignoring, 319
during critical opera-
tions, 320
kill command, 315
list of, 314
listing, 314
multiple handlers, 318
setting actions, 317

SIGALARM, 320
example timer script,
323
setting timer, 322
unsetting timer, 322
SIGHUP, 315
SIGINT, 316
SIGKILL, 316
SIGQUIT, 316
SIGTERM, 315
SIGQUIT signals, 316
SIGTERM signals, 315
simple commands, 9, 11
single quotes ('), 149-150
filtering, 244
sleep command, 297
Solaris
uname command, 393
wc command, counting
characters, 45
sort command, 241
-k option, 243
-n option, 243
-r option, 243
sorting numbers, 242
different columns,
243
spaces
converting tabs/newlines
to, 239
removing with tr com-
mand, 240-241
special characters
backslash (\), 148
filenames, accessing by
quoting, 154-155

special files, 37
special variables, 198
$0, 198-199
usage statements,
199-200
stacks, 224
csh, 224
directory
adding directories to,
225-226
listing, 224-225
manipulating (popd
function), 226
standard error. See
STDERR
standard input. See
STDIN
standard output. See STD-
ouT
startup
system, 360
system scripts, 360
startup scripts, 360
statements
case, 175-176
common errors,
176-177
patterns, 177
if, 160-161, 295
common errors,
161-163
while, 295-296
STDERR (standard
error), 72, 82
command execution,
406-407
displaying messages on,
406
redirecting, 84-85

tr command 483 |

STDIN (standard input),
82
grep command, 236
input for awk command,
274-275
xargs command), 304
STDOUT (standard out-
put), 72, 82
printing messages to, 85
redirecting, 84-85
stream editors (sed), 249,
257
actions, 257
deleting lines, 259-260
printing lines, 258-259
substitutions, 260-262
syntax, 257
troubleshooting, 261
string comparisons (test
command), 166
strings
sets of, notation, 251
test commands, 424
stty command, 108
addperson script, 380
subdirectories, 54
subshells, 115-116
while loop, 186-187
substitution variables, 426
substitutions (sed),
260-262
suffixes, matching in glob-
bing, 137
SUID, octal expression
values, 101
SUID file permission,
97-98
SunOS (uname command),
393

support arrays, 427
suspending processes, 108
symbolic expressions
(chmod command),
98-100
symbolic links. See sym-
link files
symlinks, 92-93
common errors, 94
syntax
checking with shell trac-
ing, 333-335
debugging, 328-331
verbose mode,
331-332
invocation, 250
rmdir command, 66
system startup, 360
system startup scripts, 360
System V (SysV), 390-391
System V UNIX, 361
initialization, 363
SysV (System V), 390-391

T

tabs, converting to spaces,
239
tail command, 233-234
-f option, 234
follow option, 234
tar files
arguments, 201
listing contents with $0
variable, 199

tesh shell, 16
temporary files, cleaning
up, 317, 414
trap command, 318-319
terminal, output to, 72
echo command, 72-75
printf command, 75-77
test command, 163, 422
compound expressions,
171-174
empty strings, 166-167
file test options, 164
file tests, 164-165
numerical comparisons,
170-171
string comparisons,
166-169
string equality, 167-168
string inequality, 169
text, filtering, 249
awk command, 268-288
text files, filtering
grep command, 234-238
head command, 232-233
tail command, 233-234
then statement, trou-
bleshooting, 161
timers
ALARM signals, handler
function, 321
SIGALARM signals, 320
example timer script,
323
setting timer, 322
unsetting timer, 322
tr command, 239
-s option, 240
character classes,
244-245

| 484 tr command

removing carriage
returns, 416
removing spaces,
240-241
versions of, 240
tracing, 332-333
debugging hooks,
337-339
disabling, 328
logical bugs, 335-337
set command, 327
syntax bugs, 333-335
transliterating words, tr
command, 239
trap command, 317, 422
cleaning up temporary
files, 318-319
trees (directory), 54
filenames, 54
navigating
changing directories,
58-59
home directories, 57
pathnames, 55
absolute, 56
relative, 56-57
troubleshooting
address book, 377
arguments, 203-205
background processes,
107
sed, 261
type command, 296-297,
422
typeset command, 220, 422

U

UID variable, 131, 428
ulimit command, 422
umask command, 422
unalias command, 218,
422
unaliases, 218
uname command, 392-393
-m option, 393
-r option, 393
determining versions
with a function,
394-395
hardware type, 393-394
SunOS, 393
undefined functions, 218
uniq command, 241-242
UNIX
commands, 10
complex, 11
compound, 12
default behavior, 11
separators, 12
simple, 11
directories, 53
cd command, 57
changing, 58-59
copying, 63
copying multiple, 64
creating, 62
creating parents, 62
filenames, 54
listing, 60
manipulating, 62
moving, 64
moving multiple, 65
pathnames, 55-57
removing, 66
trees, 54

kernel, 22
man pages, 31
sections, 32
online resources, 34
shells, 13
Bourne Again, 17
Bourne-type shells,
15
C-type shells, 16
default, 24
Korn shells, 16-17
prompt, 14
types of, 14
Z (zsh), 18
system manuals, 33
unset command, 129, 218,
422
unsetting variables, 129
until command, 422
until loop, 187-188
usage statements, $0 vari-
able, 199-200
user IDs, retrieving, 355
user input
function libraries,
345-351
validating with while
loop, 184
user-defined variables, 426
usernames, 23
users. See also input
logging in, 23
logging logins with sleep
command, 297
process ID, 113
profiles, shell specific
startup with $0 vari-
able, 404
shells, interactive mode,
28

Web sites 485 |

utilities, 22

uuencode, 206

uuencode command,
option parsing, 208

Vv

validating user input,
while loops, 184-185
validity (variables), 122
values
accessing (array vari-
ables), 127
quoting, 123
variables, 123
variable substitution, 135,
141
default values
assigning, 142
substituting, 141
option parsing, 208
variable errors, 142
variables
$!, 198
$#, 198
$$, 198
$*, 198
$0, 198-199, 404
usage statements,

199-200
$?, 198
$@, 198
$n, 198
$USAGE, 202
arguments, troubleshoot-
ing, 203-205

array, 121, 125-127, 427

arrays, 124
accessing values,
127-128
awk command, 276
numeric expressions,
276-283
built-in shell, 427
checking for values, 411
considering arguments
one at a time, 409
defining, 122
environment, 129
exporting, 130
exporting, 130
FILENAME, 281
global, 218-220
including functions and
definitions in other
files, 409
local, 129, 218
naming, 122-123
read-only, 128
RESPONSE, 295,
349-351
scalar, 121
sed command, using
shell variable values in,
410-411
shell, 129, 131, 428
special, 198
substitution, 426
unsetting, 129
user-defined, 426
validating user input, 185
validity, 122
values, 123
accessing, 123
YESNO, 345-349

verbose mode, 331-332
versions
awk command, 268
determining, 390
determining versions
with a function,
394-395
tr command, 240
uname command,
392-393
hardware type,
393-394
viewing
file contents, 41
combining options, 46
counting characters,
45
counting lines, 44
counting words, 45
getting information
about, 43
numbering lines, 42
file permissions, 96
visible files, listing, 39

W-Y

w- option (wc command),
43
wait command, 111, 422
wc command, 43
Web sites
BSD, 390
online help resources, 31
UNIX resources, 34

| 486 whence command

whence command, 422
while command, 422
while loop, 181-182
nesting, 183-184
until loop, 187-188
validating user input,
184-185
while loops, input redirec-
tion, 185-187
while statement, 295-296
awk command, flow con-
trol, 285
who command, 10
default behavior, 11
wildcards, 430. See also
meta-characters
expr command, 307
find command, 300
globbing, 136
* wildcard, 136, 139
? wildcard, 138-139
matching sets of char-
acters, 139-141
quoting, 155
with cpio and find,
156-157
regular expression, 431
words
count occurrences,
241-242
counting, 238
counting in file contents,
45
transliterating, 239

world read permission, 99

world write permission,
100

wrapper scripts, forward-
ing arguments onto other
commands, 410

write permission, 97

xargs command, 304-305

YESNO variable, 345-349

y4

Z shell (zsh), 18
initialization, 26
online resources, 34
zero completion code, 294
zsh (Z shell), 18, 26
exporting variables, 130
initialization, 26
online resources, 34

	Contents
	Introduction
	HOUR 3 Working with Files
	Listing Files
	File Contents
	Manipulating Files
	Summary
	Questions
	Terms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W-Y
	Z

