
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321992475
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321992475
https://plusone.google.com/share?url=http://www.informit.com/title/9780321992475
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321992475
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321992475/Free-Sample-Chapter

Praise for SQL Queries for Mere Mortals®, Third Edition

The good books show you how to do something. The great books enable you
to think clearly about how you can do it. This book is the latter. To really max-
imize the potential of your database, thinking about data as a set is required
and the authors’ accessible writing really brings out the practical applications
of SQL and the set-based thinking behind it.

— Ben Clothier, Lead Developer at IT Impact, Inc., co-author of Professional
Access 2013 Programming, and Microsoft Access MVP

Unless you are working at a very advanced level, this is the only SQL book you
will ever need. The authors have taken the mystery out of complex queries
and explained principles and techniques with such clarity that a “Mere Mor-
tal”will indeed be empowered to perform the superhuman. Do not walk past
this book!

— Graham Mandeno, Database Consultant

It’s beyond brilliant! I have been working with SQL for a really long time and
the techniques presented in this book exposed some of the bad habits I
picked up over the years in my learning process. I wish I had learned these
techniques a long time ago and saved myself all the headaches of learning
SQL the hard way. Who said you can’t teach old dogs new tricks?

— Leo (theDBguy), Utter Access Moderator and Microsoft Access MVP

I learned SQL primarily from the first and second editions of this book, and I
am pleased to see a third edition of this book so that others can continue to
benefit from its organized presentation of the language. Starting from how to
design your tables so that SQL can be effective (a common problem for data-
base beginners), and then continuing through the various aspects of SQL con-
struction and capabilities, the reader can become a moderate expert upon
completing the book and its samples. Learning how to convert a question in
English into a meaningful SQL statement will greatly facilitate your mastery of
the language. Numerous examples from real life will help you visualize how
to use SQL to answer the questions about the data in your database. Just one
of the “watch out for this trap” items will save you more than the cost of the
book when you avoid that problem when writing your queries. I highly rec-
ommend this book if you want to tap the full potential of your database.

— Kenneth D. Snell, Ph.D., Database Designer/Programmer

I don’t think they do this in public schools any more, and it is a shame, but do you
remember in the seventh and eighth grades when you learned to diagram a sentence?
Those of you who do may no longer remember how you did it, but all of you do write
better sentences because of it. John Viescas and Mike Hernandez must have remem-
bered because they take everyday English queries and literally translate them into SQL.
This is an important book for all database designers. It takes the complexity of mathe-
matical Set Theory and of First Order Predicate Logic,as outlined in E. F. Codd’s original
treatise on relational database design, and makes it easy for anyone to understand. If
you want an elementary through intermediate-level course on SQL, this is the one book
that is a requirement, no matter how many others you buy.

— Arvin Meyer, MCP, MVP

SQL Queries for Mere Mortals,Third Edition, provides a step-by-step, easy-to-read intro-
duction to writing SQL queries. It includes hundreds of examples with detailed expla-
nations. This book provides the tools you need to understand, modify, and create SQL
queries.

— Keith W. Hare, Convenor, ISO/IEC JTC1 SC32 WG3
— the International SQL Standards Committee

Even in this day of wizards and code generators, successful database developers still
require a sound knowledge of Structured Query Language (SQL, the standard language
for communicating with most database systems). In this book, John and Mike do a mar-
velous job of making what’s usually a dry and difficult subject come alive, presenting
the material with humor in a logical manner, with plenty of relevant examples. I would
say that this book should feature prominently in the collection on the bookshelf of all
serious developers, except that I’m sure it’ll get so much use that it won’t spend much
time on the shelf!

— Doug Steele, Microsoft Access Developer and author

I highly recommend SQL Queries for Mere Mortals to anyone working with data. John
makes it easy to learn one of the most critical aspects of working with data: creating
queries. Queries are the primary tool for selecting, sorting, and reporting data. They
can compensate for table structure, new reporting requirements, and incorporate new
data sources. SQL Queries for Mere Mortals uses clear, easy to understand discussions
and examples to take readers through the basics and into complex problems. From
novice to expert, you will find this book to be an invaluable reference as you can apply
the concepts to a myriad of scenarios, regardless of the program.

— Teresa Hennig, Microsoft MVP-Access, and lead author of several Access
books, including Professional Access 2013 Programming (Wrox)

SQL Queries
for

Mere Mortals®

Third Edition
A Hands-On Guide

to Data Manipulation in SQL

John L. Viescas

Michael J. Hernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco •

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014939438

Copyright © 2014 John L. Viescas and Michael J. Hernandez

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-99247-5
ISBN-10: 0-321-99247-4

Text printed in the United States on recycled paper at Edwards Brothers Malloy, Ann Arbor, Michigan.

Second Printing: September 2014

Associate Publisher: Dave Dusthimer
Acquisitions Editor: Joan Murray
Senior Development Editor: Chris Cleveland
Managing Editor: Sandra Schroeder

Senior Project Editor: Tonya Simpson
Copy Editor: Charlotte Kughen
Indexer: Lisa Stumpf
Proofreader: Anne Goebel

Technical Reviewer: Dale Wallentine
Editorial Assistant: Vanessa Evans
Cover Designer: Alan Clements
Compositor: Trina Wurst

Contents

Foreword xv

Preface xvi

About the Authors xviii

Introduction xx

Are You a Mere Mortal? xx
About This Book xxi
What This Book Is Not xxiii
How to Use This Book xxiii
Reading the Diagrams Used in This Book xxiv
Sample Databases Used in This Book xxviii
“Follow the Yellow Brick Road” xxx

Part I Relational Databases and SQL 1

CHAPTER 1 What Is Relational? 3
Types of Databases 3
A Brief History of the Relational Model 4

In the Beginning . . . 4
Relational Database Systems 5

Anatomy of a Relational Database 7
Tables 7
Fields 9
Records 9
Keys 9
Views 11
Relationships 12

What’s in It for You? 17
Where Do You Go from Here? 18

Summary 19

v

CHAPTER 2 Ensuring Your Database Structure Is Sound 21
Why Is This Chapter Here? 21
Why Worry about Sound Structures? 22
Fine-Tuning Fields 23

What’s in a Name? (Part One) 23
Smoothing Out the Rough Edges 25
Resolving Multipart Fields 27
Resolving Multivalued Fields 30

Fine-Tuning Tables 32
What’s in a Name? (Part Two) 33
Ensuring a Sound Structure 35
Resolving Unnecessary Duplicate Fields 36
Identification Is the Key 42

Establishing Solid Relationships 45
Establishing a Deletion Rule 48
Setting the Type of Participation 49
Setting the Degree of Participation 52

Is That All? 54
Summary 55

CHAPTER 3 A Concise History of SQL 57
The Origins of SQL 58
Early Vendor Implementations 59
“. . . And Then There Was a Standard” 60
Evolution of the ANSI/ISO Standard 62

Other SQL Standards 65

Commercial Implementations 68
What the Future Holds 69
Why Should You Learn SQL? 69
Which Version of SQL Does This Book Cover? 70
Summary 70

Part II SQL Basics 73

CHAPTER 4 Creating a Simple Query 75
Introducing SELECT 76
The SELECT Statement 77

vi Contents

A Quick Aside: Data versus Information 79
Translating Your Request into SQL 81

Expanding the Field of Vision 85
Using a Shortcut to Request All Columns 87

Eliminating Duplicate Rows 88
Sorting Information 91

First Things First: Collating Sequences 92
Let’s Now Come to Order 93

Saving Your Work 96
Sample Statements 97
Summary 106
Problems for You to Solve 107

CHAPTER 5 Getting More Than Simple Columns 109
What Is an Expression? 110
What Type of Data Are You Trying to Express? 111
Changing Data Types: The CAST Function 114
Specifying Explicit Values 116

Character String Literals 116
Numeric Literals 118
Datetime Literals 119

Types of Expressions 121
Concatenation 122
Mathematical Expressions 125
Date and Time Arithmetic 129

Using Expressions in a SELECT Clause 133
Working with a Concatenation Expression 134
Naming the Expression 135
Working with a Mathematical Expression 137
Working with a Date Expression 138
A Brief Digression: Value Expressions 139

That “Nothing” Value: Null 141
Introducing Null 142
The Problem with Nulls 143

Sample Statements 144
Summary 153
Problems for You to Solve 154

Contents vii

CHAPTER 6 Filtering Your Data 157
Refining What You See Using WHERE 157

The WHERE Clause 158
Using a WHERE Clause 160

Defining Search Conditions 162
Comparison 163
Range 170
Set Membership 173
Pattern Match 175
Null 179
Excluding Rows with NOT 181

Using Multiple Conditions 184
Introducing AND and OR 185
Excluding Rows: Take Two 191
Order of Precedence 193
Checking for Overlapping Ranges 197

Nulls Revisited: A Cautionary Note 199
Expressing Conditions in Different Ways 203
Sample Statements 204
Summary 212
Problems for You to Solve 213

Part III Working with Multiple Tables 217

CHAPTER 7 Thinking in Sets 219
What Is a Set, Anyway? 220
Operations on Sets 221
Intersection 222

Intersection in Set Theory 222
Intersection between Result Sets 224
Problems You Can Solve with an Intersection 227

Difference 228
Difference in Set Theory 228
Difference between Result Sets 230
Problems You Can Solve with Difference 233

Union 234
Union in Set Theory 234
Combining Result Sets Using a Union 236
Problems You Can Solve with Union 238

viii Contents

SQL Set Operations 239
Classic Set Operations versus SQL 239
Finding Common Values: INTERSECT 240
Finding Missing Values: EXCEPT (DIFFERENCE) 243
Combining Sets: UNION 245

Summary 248

CHAPTER 8 INNER JOINs 249
What Is a JOIN? 249
The INNER JOIN 250

What’s “Legal” to JOIN? 250
Column References 251
Syntax 252
Check Those Relationships! 267

Uses for INNER JOINs 268
Find Related Rows 268
Find Matching Values 269

Sample Statements 269
Two Tables 270
More Than Two Tables 276
Looking for Matching Values 283

Summary 294
Problems for You to Solve 295

CHAPTER 9 OUTER JOINs 299
What Is an OUTER JOIN? 299
The LEFT/RIGHT OUTER JOIN 301

Syntax 302

The FULL OUTER JOIN 320
Syntax 320
FULL OUTER JOIN on Non-Key Values 323
UNION JOIN 323

Uses for OUTER JOINs 324
Find Missing Values 324
Find Partially Matched Information 325

Sample Statements 325
Summary 341
Problems for You to Solve 341

Contents ix

CHAPTER 10 UNIONs 345
What Is a UNION? 345
Writing Requests with UNION 348

Using Simple SELECT Statements 348
Combining Complex SELECT Statements 351
Using UNION More Than Once 355
Sorting a UNION 357

Uses for UNION 358
Sample Statements 359
Summary 371
Problems for You to Solve 372

CHAPTER 11 Subqueries 375
What Is a Subquery? 376

Row Subqueries 376
Table Subqueries 377
Scalar Subqueries 378

Subqueries as Column Expressions 378
Syntax 378
An Introduction to Aggregate Functions: COUNT and MAX 381

Subqueries as Filters 384
Syntax 384
Special Predicate Keywords for Subqueries 386

Uses for Subqueries 397
Build Subqueries as Column Expressions 397
Use Subqueries as Filters 398

Sample Statements 399
Subqueries in Expressions 399
Subqueries in Filters 405

Summary 413
Problems for You to Solve 414

Part IV Summarizing and Grouping Data 417

CHAPTER 12 Simple Totals 419
Aggregate Functions 420

Counting Rows and Values with COUNT 422
Computing a Total with SUM 425

x Contents

Calculating a Mean Value with AVG 427
Finding the Largest Value with MAX 428
Finding the Smallest Value with MIN 430
Using More Than One Function 431

Using Aggregate Functions in Filters 432
Sample Statements 435
Summary 442
Problems for You to Solve 443

CHAPTER 13 Grouping Data 445
Why Group Data? 446
The GROUP BY Clause 448

Syntax 449
Mixing Columns and Expressions 454
Using GROUP BY in a Subquery in a WHERE Clause 456
Simulating a SELECT DISTINCT Statement 457

“Some Restrictions Apply” 458
Column Restrictions 459
Grouping on Expressions 461

Uses for GROUP BY 462
Sample Statements 463
Summary 474
Problems for You to Solve 475

CHAPTER 14 Filtering Grouped Data 477
A New Meaning of “Focus Groups” 478
Where You Filter Makes a Difference 482

Should You Filter in WHERE or in HAVING? 482
Avoiding the HAVING COUNT Trap 485

Uses for HAVING 490
Sample Statements 491
Summary 499
Problems for You to Solve 500

Contents xi

Part V Modifying Sets of Data 503

CHAPTER 15 Updating Sets of Data 505
What Is an UPDATE? 505
The UPDATE Statement 506

Using a Simple UPDATE Expression 507
A Brief Aside: Transactions 510
Updating Multiple Columns 511
Using a Subquery to Filter Rows 512
Using a Subquery UPDATE Expression 518

Uses for UPDATE 520
Sample Statements 521
Summary 538
Problems for You to Solve 538

CHAPTER 16 Inserting Sets of Data 541
What Is an INSERT? 541
The INSERT Statement 543

Inserting Values 543
Generating the Next Primary Key Value 547
Inserting Data by Using SELECT 548

Uses for INSERT 555
Sample Statements 556
Summary 568
Problems for You to Solve 568

CHAPTER 17 Deleting Sets of Data 571
What Is a DELETE? 571
The DELETE Statement 572

Deleting All Rows 573
Deleting Some Rows 575

Uses for DELETE 579
Sample Statements 580
Summary 588
Problems for You to Solve 589

xii Contents

Part VI Introduction to Solving Tough Problems 591

CHAPTER 18 “NOT” and “AND” Problems 593
A Short Review of Sets 593

Sets with Multiple AND Criteria 594
Sets with Multiple NOT Criteria 595
Sets Including Some Criteria but Excluding Others 596

Finding Out the “Not” Case 597
Using OUTER JOIN 598
Using NOT IN 601
Using NOT EXISTS 603
Using GROUP BY/HAVING 604

Finding Multiple Matches in the Same Table 607
Using INNER JOIN 608
Using IN 610
Using EXISTS 612
Using GROUP BY/HAVING 614

Sample Statements 618
Summary 636
Problems for You to Solve 637

CHAPTER 19 Condition Testing 641
Conditional Expressions (CASE) 641

Why Use CASE? 642
Syntax 642

Solving Problems with CASE 647
Solving Problems with Simple CASE 647
Solving Problems with Searched CASE 652
Using CASE in a WHERE Clause 655

Sample Statements 655
Summary 669
Problems for You to Solve 669

CHAPTER 20 Using Unlinked Data and “Driver” Tables 671
What Is Unlinked Data? 672

Deciding When to Use a CROSS JOIN 675

Solving Problems with Unlinked Data 676

Contents xiii

Solving Problems Using “Driver” Tables 679
Setting Up a Driver Table 679
Using a Driver Table 682

Sample Statements 686
Examples Using Unlinked Tables 687
Examples Using Driver Tables 697

Summary 705
Problems for You to Solve 705

In Closing 709

Appendices 711

A SQL Standard Diagrams 713

B Schema for the Sample Databases 723
Sales Orders Example Database 724
Sales Orders Modify Database 725
Entertainment Agency Example Database 726
Entertainment Agency Modify Database 727
School Scheduling Example Database 728
School Scheduling Modify Database 729
Bowling League Example Database 730
Bowling League Modify Database 731
Recipes Database 732

C Date and Time Types, Operations, and Functions 733
IBM DB2 733
Microsoft Office Access 736
Microsoft SQL Server 738
MySQL 740
Oracle 743

D Suggested Reading 745
Database Books 745
Books on SQL 745

Index 747

xiv Contents

Foreword

In the 25 years since the database language SQL was adopted as an interna-
tional standard, and the 30 years since SQL database products appeared on
the market, SQL has become the predominant language for storing, modify-
ing, retrieving, and deleting data. Today, a significant portion of the world’s
data—and the world’s economy—is tracked using SQL databases.

SQL is everywhere because it is a very powerful tool for manipulating data. It
is in high-performance transaction processing systems. It is behind Web inter-
faces. I’ve even found SQL in network monitoring tools and spam firewalls.

Today, SQL can be executed directly, embedded in programming languages,
and accessed through call interfaces. It is hidden inside GUI development
tools, code generators, and report writers. However visible or hidden, the
underlying queries are SQL. Therefore, to understand existing applications
and to create new ones, you need to understand SQL.

SQL Queries for Mere Mortals, Third Edition, provides a step-by-step, easy-to-
read introduction to writing SQL queries. It includes hundreds of examples
with detailed explanations. This book provides the tools you need to under-
stand, modify, and create SQL queries.

As a database consultant and a participant in both the U.S. and international
SQL standards committees, I spend a lot of time working with SQL. So, it is
with a certain amount of authority that I state,“The authors of this book not
only understand SQL, they also understand how to explain it.” Both qualities
make this book a valuable resource.

—Keith W.Hare, Senior Consultant,
JCC Consulting, Inc.Vice Chair, INCITS DM32.2

—the USA SQL Standards Committee; Convenor, ISO/IEC JTC1 SC32 WG3
—the International SQL Standards Committee

xv

Preface

“Language is by its very nature a communal thing; that is, it expresses
never the exact thing but a compromise—that which is common to

you, me, and everybody.”
—Thomas Ernest Hulme, Speculations

Learning how to retrieve information from or manipulate information in a
database is commonly a perplexing exercise. However, it can be a relatively
easy task as long as you understand the question you’re asking or the change
you’re trying to make to the database. After you understand the problem, you
can translate it into the language used by any database system, which in most
cases is Structured Query Language (SQL). You have to translate your request
into an SQL statement so that your database system knows what information
you want to retrieve or change. SQL provides the means for you and your
database system to communicate.

Throughout our many years as database consultants, we’ve found that the
number of people who merely need to retrieve information from a database
or perform simple data modifications in a database far outnumber those who
are charged with the task of creating programs and applications for a data-
base. Unfortunately, no books focus solely on this subject, particularly from a
“mere mortals” viewpoint. There are numerous good books on SQL, to be
sure, but most are targeted to database programming and development.

With this in mind, we decided it was time to write a book that would help
people learn how to query a database properly and effectively. We produced
the first edition of this book in 2000. We created a second edition in 2008 that
introduced basic ways to change data in your database using SQL. With this
new edition, we stepped lightly into the realm of tougher problems—the
sorts of problems that make the heads of even experienced users spin around
three times. The result of our efforts is in your hands. This book is unique

xvi

Preface xvii

among SQL books in that it focuses on SQL with little regard to any one spe-
cific database system implementation. This third edition includes hundreds of
new examples, and we included versions of the sample databases using
Microsoft Office Access, Microsoft SQL Server, and the popular open-source
MySQL database system. When you finish reading this book, you’ll have the
skills you need to retrieve or modify any information you require.

Acknowledgments

Writing a book such as this is always a cooperative effort. There are always
editors, colleagues, friends, and relatives willing to lend their support and
provide valuable advice when we need it the most. These people continually
provide us with encouragement, help us to remain focused, and motivate us
to see this project through to the end.

First and foremost, we want to thank our acquisitions editor, Joan Murray, for
helping us get signed up to produce this third edition. Thanks also to Devel-
opmental Editor Chris Cleveland for shepherding us along the way. And we
can’t forget Production Editor Tonya Simpson and the production staff—
they’re a great team! Finally, thanks to Associate Publisher David Dusthimer,
who put this team together and kept a watchful eye over the entire process.

Next, we’d like to acknowledge our technical editor, Dale Wallentine. We also
had help from some of our database friends—Jeff Boyce, Ben Clothier, Henry
Habermacher,Leo theDBGuy,and Doug Steele. Thanks once again to all of you
for your time and input and for helping us to make this a solid treatise on SQL
queries.

Finally, another very special thanks to Keith Hare for providing the Foreword.
As the Convenor of the International SQL Standards Committee, Keith is an
SQL expert par excellence. We have a lot of respect for Keith’s knowledge
and expertise on the subject,and we’re pleased to have his thoughts and com-
ments at the beginning of our book.

About the Authors

John L. Viescas is an independent database consultant with
more than 45 years of experience. He began his career as a sys-
tems analyst,designing large database applications for IBM main-
frame systems. He spent 6 years at Applied Data Research in
Dallas, Texas, where he directed a staff of more than 30 people
and was responsible for research, product development, and
customer support of database products for IBM mainframe com-

puters. While working at Applied Data Research, John completed a degree in
business finance at the University of Texas at Dallas, graduating cum laude.

John joined Tandem Computers, Inc., in 1988, where he was responsible for
the development and implementation of database marketing programs in
Tandem’s U.S. Western Sales region. He developed and delivered technical
seminars on Tandem’s relational database management system, NonStop SQL.
John wrote his first book, A Quick Reference Guide to SQL (Microsoft Press,
1989), as a research project to document the similarities in the syntax among
the ANSI-86 SQL standard, IBM’s DB2, Microsoft’s SQL Server, Oracle Corpora-
tion’s Oracle, and Tandem’s NonStop SQL. He wrote the first edition of Run-
ning Microsoft Access (Microsoft Press, 1992) while on sabbatical from
Tandem. He has since written four editions of Running, three editions of
Microsoft Office Access Inside Out (Microsoft Press, 2003, 2007, and 2010—
the successor to the Running series), and Building Microsoft Access Applica-
tions (Microsoft Press, 2005).

John formed his own company in 1993. He provides information systems
management consulting for a variety of small to large businesses around the
world, with a specialty in the Microsoft Access and SQL Server database man-
agement products. He maintains offices in Nashua,New Hampshire,and Paris,
France. He has been recognized as a “Most Valuable Professional” (MVP) since
1993 by Microsoft Product Support Services for his assistance with technical
questions on public support forums. He set a landmark 20 consecutive years
as an MVP in 2013.

You can visit John’s Web site at www.viescas.com or contact him by e-mail at
john@viescas.com.

xviii

http://www.viescas.com

About the Authors xix

Michael J. Hernandez has been an independent relational
database consultant specializing in relational database design.
He has more than 20 years of experience in the technology
industry, developing database applications for a wide variety of
clients. He’s been a contributing author to a wide variety of
magazine columns, white papers, books, and periodicals, and is
coauthor of the best-selling SQL Queries for Mere Mortals.

Mike has been a top-rated and noted technical trainer for the government, the
military, the private sector, and companies throughout the United States. He
has spoken at numerous national and international conferences, and has con-
sistently been a top-rated speaker and presenter.

Aside from his technical background,Mike has a diverse set of skills and inter-
ests that he also pursues, ranging from the artistic to the metaphysical. His
greatest interest is still the guitar, as he’s been a practicing guitarist for more
than 40 years and played professionally for 15 years. He’s also a working actor,
a great cook, loves to teach (writing,public speaking,music),has a gift for bad
puns, and even reads Tarot cards.

He says he’s never going to retire, per se, but rather just change whatever it is
he’s doing whenever he finally gets tired of it and move on to something else
that interests him.

Introduction

“I presume you’re mortal, and may err.”
—James Shirley, The Lady of Pleasure

If you’ve used a computer more than casually, you have probably used Struc-
tured Query Language or SQL—perhaps without even knowing it. SQL is the
standard language for communicating with most database systems. Any time
you import data into a spreadsheet or perform a merge into a word process-
ing program,you’re most likely using SQL in some form or another. Every time
you go online to an e-commerce site on the Web and place an order for a
book, a recording, a movie, or any of the dozens of other products you can
order, there’s a very high probability that the code behind the web page
you’re using is accessing its databases with SQL. If you need to get informa-
tion from a database system that uses SQL, you can enhance your understand-
ing of the language by reading this book.

Are You a Mere Mortal?

You might ask,“Who is a mere mortal? Me?”The answer is not simple. When
we started to write this book, we thought we were experts in the database
language called SQL. Along the way, we discovered we were mere mortals,
too, in several areas. We understood a few specific implementations of SQL
very well, but we unraveled many of the complex intricacies of the language
as we studied how it is used in many commercial products. So, if you fit any of
the following descriptions, you’re a mere mortal too!

• If you use computer applications that let you access information from a
database system, you’re probably a mere mortal. The first time you
don’t get the information you expected using the query tools built in to
your application, you’ll need to explore the underlying SQL statements
to find out why.

xx

• If you have recently discovered one of the many available desktop data-
base applications but are struggling with defining and querying the
data you need, you’re a mere mortal.

• If you’re a database programmer who needs to “think outside of the
box” to solve some complex problems, you’re a mere mortal.

• If you’re a database guru in one product but are now faced with inte-
grating the data from your existing system into another system that sup-
ports SQL, you’re a mere mortal.

In short,anyone who has to use a database system that supports SQL can use
this book. As a beginning database user who has just discovered that the data
you need can be fetched using SQL, you will find that this book teaches you
all the basics and more. For an expert user who is suddenly faced with solving
complex problems or integrating multiple systems that support SQL, this
book will provide insights into leveraging the complex abilities of the SQL
database language.

About This Book

Everything you read in this book is based on the current International Organi-
zation for Standardization (ISO) Standard for the SQL database language –
SQL/Foundation (document ISO/IEC 9075-2:2011), as currently implemented
in most of the popular commercial database systems. The ISO document was
also adopted by the American National Standards Institute (ANSI), so this is
truly an international standard. The SQL you’ll learn here is not specific to any
particular software product.

As you’ll learn in more detail in Chapter 3,“A Concise History of SQL,”the SQL
Standard defines both more and less than you’ll find implemented in most
commercial database products. Most database vendors have yet to implement
many of the more advanced features, but most do support the core of the
standard.

We researched a wide range of popular products to make sure that you can
use what we’re teaching in this book. Where we found parts of the core of the
language not supported by some major products,we warn you in the text and
show you alternate ways to state your database requests in standard SQL.
When we found significant parts of the SQL Standard supported by only a few
vendors, we introduced you to the syntax and then suggested alternatives.

Introduction xxi

We have organized this book into six major sections:

• Part I, “Relational Databases and SQL,” explains how modern database
systems are based on a rigorous mathematical model and provides a
brief history of the database query language that has evolved into what
we know as SQL. We also discuss some simple rules that you can use to
make sure your database design is sound.

• Part II, “SQL Basics,” introduces you to using the SELECT statement, cre-
ating expressions, and sorting information with an ORDER BY clause.
You’ll also learn how to filter data by using a WHERE clause.

• Part III, “Working with Multiple Tables,” shows you how to formulate
queries that draw data from more than one table. Here we show you
how to link tables in a query using the INNER JOIN, OUTER JOIN, and
UNION operators, and how to work with subqueries.

• Part IV, “Summarizing and Grouping Data,” discusses how to obtain sum-
mary information and group and filter summarized data. Here is where
you’ll learn about the GROUP BY and HAVING clauses.

• Part V, “Modifying Sets of Data,” explains how to write queries that mod-
ify a set of rows in your tables. In the chapters in this section, you’ll
learn how to use the UPDATE, INSERT, and DELETE statements.

• Part VI, “Introduction to Solving Tough Problems,” dips your toes into
more complex problems. In the chapters in this section, you’ll expand
your horizons to include solving complex “NOT” and “AND” problems
(multiple conditions on one table), performing logical evaluations with
CASE, and thinking “outside the box” using “unlinked” tables (Cartesian
Products).

At the end of the book in the appendices, you’ll find syntax diagrams for all the
SQL elements you’ve learned, layouts of the sample databases, a list of date and
time manipulation functions implemented in five of the major database sys-
tems, and book recommendations to further your study of SQL. You can down-
load the five sample databases for the three database systems (Microsoft
Access, Microsoft SQL Server, and MySQL) from www.informit.com/title/
9780321992475 and clicking the Downloads tab.

xxii Introduction

http://www.informit.com/title/9780321992475
http://www.informit.com/title/9780321992475

What This Book Is Not
Although this book is based on the 2011 SQL Standard that was current at the
time of this writing, it does not cover every aspect of the standard. In truth,
many features in the 2011 SQL Standard won’t be implemented for many
years—if at all—in the major database system implementations. The funda-
mental purpose of this book is to give you a solid grounding in writing
queries in SQL. Throughout the book, you’ll find us recommending that you
“consult your database documentation” for how a specific feature might or
might not work. That’s not to say we covered only the lowest common
denominator for any feature among the major database systems. We do try to
caution you when some systems implement a feature differently or not at all.

You’ll find it difficult to create other than simple queries using a single table if
your database design is flawed. We included a chapter on database design to
help you identify when you will have problems,but that one chapter includes
only the basic principles. A thorough discussion of database design principles
and how to implement a design in a specific database system is beyond the
scope of this book.

This book is also not about how to solve a problem in the most efficient way.
As you work through many of the later chapters, you’ll find we suggest more
than one way to solve a particular problem. In some cases where writing a
query in a particular way is likely to have performance problems on any sys-
tem, we try to warn you about it. But each database system has its own
strengths and weaknesses. After you learn the basics, you’ll be ready to move
on to digging into the particular database system you use to learn how to for-
mulate your query solutions so that they run in a more optimal manner.

How to Use This Book
We have designed the chapters in this book to be read in sequence. Each suc-
ceeding chapter builds on concepts taught in earlier chapters. However, you
can jump into the middle of the book without getting lost. For example, if you
are already familiar with the basic clauses in a SELECT statement and want to
learn more about JOINs, you can jump right in to Chapters 7,“Thinking in
Sets,”8,“INNER JOINs,” and 9,“OUTER JOINs.”

At the end of many of the chapters you’ll find an extensive set of “Sample
Statements,” their solutions, and sample result sets. We recommend that you
study several of the samples to gain a better understanding of the techniques

Introduction xxiii

involved and then try working out some of the later “Problems for You to
Solve”yourself without looking at the solutions we propose.

Note that where a particular query returns dozens of rows in the result set,
we show you only the first few rows to give you an idea of how the answer
should look. You might not see the exact same result on your system, how-
ever, because each database system that supports SQL has its own optimizer
that figures out the fastest way to solve the query. Also, the first few rows you
see returned by your database system might not exactly match the first few
we show you unless the query contains an ORDER BY clause that requires the
rows to be returned in a specific sequence.

We’ve also included a complete set of problems for you to solve on your own,
which you’ll find at the end of most chapters. This gives you the opportunity
to really practice what you’ve just learned in the chapter. Don’t worry—the
solutions are included in the sample databases that you can download from
the book’s website. We’ve also included hints on those problems that might
be a little tricky.

After you have worked your way through the entire book,you’ll find the com-
plete SQL diagrams in Appendix A,“SQL Standard Diagrams,” to be an invalu-
able reference for all the SQL techniques we showed you. You will also be
able to use the sample database layouts in Appendix B,“Schema for the Sam-
ple Databases,” to help you design your own databases.

Reading the Diagrams Used in This Book

The numerous diagrams throughout the book illustrate the proper syntax for
the statements, terms, and phrases you’ll use when you work with SQL. Each
diagram provides a clear picture of the overall construction of the SQL ele-
ment currently being discussed. You can also use any of these diagrams as
templates to create your own SQL statements or to help you acquire a clearer
understanding of a specific example.

All the diagrams are built from a set of core elements and can be divided into
two categories: statements and defined terms. A statement is always a major
SQL operation, such as the SELECT statement we discuss in this book, while a
defined term is always a component used to build part of a statement, such as
a value expression, a search condition, or a predicate. (Don’t worry—we’ll
explain all these terms later in the book.) The only difference between a syn-
tax diagram for a statement and a syntax diagram for a defined term is the

xxiv Introduction

manner in which the main syntax line begins and ends. We designed the dia-
grams with these differences so that you can clearly see whether you’re look-
ing at the diagram for an entire statement or a diagram for a term that you
might use within a statement. Figure 1 shows the beginning and end points for
both diagram categories. Aside from this difference, the diagrams are built
from the same elements. Figure 2 shows an example of each type of syntax dia-
gram and is followed by a brief explanation of each diagram element.

Introduction xxv

Figure 1 Syntax line end points for statements and defined terms

Defined Term Line

Statement Line

Figure 2 Sample statement and defined term diagrams

SELECT

SELECT Statement

,

DISTINCT

FROM

Value Expression
alias

AS

WHERE Search Condition

*

,
table_name

1 2

3

8

9

5

10

7

8

4

column_name
.

correlation_name

Column Reference
11 12

6

6

table_name

1. Statement start point—denotes the beginning of the main syntax line for a
statement. Any element that appears directly on the main syntax line is a
required element, and any element that appears below it is an optional element.

2. Main syntax line—determines the order of all required and optional elements
for the statement or defined term. Follow this line from left to right (or in the
direction of the arrows) to build the syntax for the statement or defined term.

3. Keyword(s)—indicates a major word in SQL grammar that is a required part
of the syntax for a statement or defined term. In a diagram, keywords are for-
matted in capital letters and bold font. (You don’t have to worry about typing a
keyword in capital letters when you actually write the statement in your data-
base program, but it does make the statement easier to read.)

4. Literal entry—specifies the name of a value you explicitly supply to the state-
ment. A literal entry is represented by a word or phrase that indicates the type
of value you need to supply. Literal entries in a diagram are formatted in all low-
ercase letters.

5. Defined term—denotes a word or phrase that represents some operation that
returns a final value to be used in this statement. We’ll explain and diagram
every defined term you need to know as you work through the book. Defined
terms are always formatted in italic letters.

6. Optional element—indicates any element or group of elements that appears
below the main syntax line. An optional element can be a statement, keyword,
defined term, or literal value and, for purposes of clarity, appears on its own
line. In some cases, you can specify a set of values for a given option, with each
value separated by a comma (see number 8). Also, several optional elements
have a set of sub-optional elements (see number 7). In general, you read the
syntax line for an optional element from left to right, in the same manner that
you read the main syntax line. Always follow the directional arrows and you’ll
be in good shape. Note that some options allow you to specify multiple values
or choices, so the arrow will flow from right to left. After you’ve entered all the
items you need, however, the flow will return to normal from left to right. For-
tunately, all optional elements work the same way. After we show you how to
use an optional element later in the book, you’ll know how to use any other
optional element you encounter in a syntax diagram.

7. Sub-optional element—denotes any element or group of elements that
appears below an optional element. Sub-optional elements allow you to fine-
tune your statements so that you can work with more complex problems.

8. Option list separator—indicates that you can specify more than one value
for this option and that each value must be separated with a comma.

9. Alternate option—denotes a keyword or defined term that can be used as an
alternative to one or more optional elements. The syntax line for an alternate
option bypasses the syntax lines of the optional elements it is meant to replace.

xxvi Introduction

10. Statement end point—denotes the end of the main syntax line for a statement.

11. Defined term start point—denotes the beginning of the main syntax line for
a defined term.

12. Defined term end point—denotes the end of the main syntax line for a
defined term.

Now that you’re familiar with these elements,you’ll be able to read all the syn-
tax diagrams in the book. And on those occasions when a diagram requires
further explanation, we provide you with the information you need to read
the diagram clearly and easily. To help you better understand how the dia-
grams work, here’s a sample SELECT statement that we built using Figure 2.

SELECT FirstName, LastName, City, DOB AS DateOfBirth
FROM Students
WHERE City = 'El Paso'

This SELECT statement retrieves four columns from the Students table, as
we’ve indicated in the SELECT and FROM clauses. As you follow the main syn-
tax line from left to right, you see that you have to indicate at least one value
expression. A value expression can be a column name, an expression created
using column names, or simply a constant (literal) value that you want to dis-
play. You can indicate as many columns as you need with the value expres-
sion’s option list separator (a comma). This is how we were able to use four
column names from the Student table. We were concerned that some people
viewing the information returned by this SELECT statement might not know
what DOB means, so we assigned an alias to the DOB column with the value
expression’s AS sub-option. Finally, we used the WHERE clause to make cer-
tain the SELECT statement shows only those students who live in El Paso. (If
this doesn’t quite make sense to you just now, there’s no cause for alarm.
You’ll learn all this in great detail throughout the remainder of the book.)

You’ll find a full set of syntax diagrams in Appendix A. They show the com-
plete and proper syntax for all the statements and defined terms we discuss in
the book. If you happen to refer to these diagrams as you work through each
chapter, you’ll notice a slight disparity between some of the diagrams in a
given chapter and the corresponding diagrams in the appendix. The diagrams
in the chapters are just simplified versions of the diagrams in the appendix.
These simplified versions allow us to explain complex statements and
defined terms more easily and give us the ability to focus on particular ele-
ments as needed. But don’t worry—all the diagrams in the appendix will
make perfect sense after you work through the material in the book.

Introduction xxvii

Sample Databases Used in This Book

On the book website at www.informit.com/title/9780321992475, you’ll find a
downloadable file on the Downloads tab containing five sample databases
that we use for the example queries throughout the book. We’ve also included
diagrams of the database structures in Appendix B.

1. Sales Orders.This is a typical order entry database for a store that sells bicycles and
accessories. (Every database book needs at least one order entry example, right?)

2. Entertainment Agency. We structured this database to manage entertainers,
agents, customers, and bookings. You would use a similar design to handle event
bookings or hotel reservations.

3. School Scheduling. You might use this database design to register students at a
high school or community college. This database tracks not only class registra-
tions but also which instructors are assigned to each class and what grades the
students received.

4. Bowling League. This database tracks bowling teams, team members, the
matches they played, and the results.

5. Recipes. You can use this database to save and manage all your favorite recipes.
We even added a few that you might want to try.

In the sample files, you can find all five sample databases in three different
formats:

• Because of the great popularity of the Microsoft Office Access desktop
database, we created one set of databases (.accdb file extension) using
Microsoft Access 2007 (Version 12.0). We chose Version 12 of this prod-
uct because it closely supports the current ISO/IEC SQL Standard, and
you can open database files in this format using Access 2007, 2010,
2013, and later. You can find these files in the MSAccess subfolder.

• The second format consists of database files (.mdf file extension) cre-
ated using Microsoft SQL Server 2012 Express Edition. You can find
these files in the MSSQLServer folder, and you can attach these files to a
Microsoft SQL Server 2012 or later server. We have also included SQL
command files (.sql file extension) that you can use to create the sam-
ples on a Microsoft SQL Server from scratch. You can find these files in
the SQLScripts subfolder. You can obtain a free copy of Microsoft SQL
Server 2012 Express Edition at www.microsoft.com/en-us/sqlserver/
editions/2012-editions/express.aspx.

• We created the third set of databases using the popular open-source

xxviii Introduction

MySQL version 5.6 Community Edition database system. You can use

http://www.informit.com/title/9780321992475
http://www.microsoft.com/en-us/sqlserver/editions/2012-editions/express.aspx
http://www.microsoft.com/en-us/sqlserver/editions/2012-editions/express.aspx

the scripts (.sql file extension) you will find in the SQLScripts subfolder
to create the database structure, load the data, and create the sample
views and stored procedures in your own MySQL data folder. You can
obtain a free copy of the community edition of the MySQL database sys-
tem at www.mysql.com/.

To install the sample files, see the file ReadMe.txt included in the files you can
download from www.informit.com/title/9780321992475.

❖ Note Although we were very careful to use the most common and
simplest syntax for the CREATE TABLE, CREATE INDEX, CREATE CON-
STRAINT, and INSERT commands in the sample SQL scripts, you (or your
database administrator) might need to modify these files slightly to work
with your database system. If you’re working with a database system on a
remote server, you might need to gain permission from your database admin-
istrator to build the samples from the SQL commands we supplied.

For the chapters in Parts II, III, IV, and VI that focus on the SELECT statement,
you’ll find all the example statements and solutions in the “example”version of
each sample database (for example, SalesOrdersExample, Entertainment-Agen-
cyExample). Because the examples in Part V modify the sample data, we cre-
ated “modify” versions of each of the sample databases (for example,
Sales-OrdersModify, EntertainmentAgencyModify). The sample databases for
Part V also include additional columns and tables not found in the SELECT
examples that enable us to demonstrate certain features of UPDATE, INSERT,
and DELETE queries.

❖ Caution Throughout the book, we use ISO-Standard SQL when we
explain concepts and show you sample statements. In many cases, we were
able to use this SQL directly to create the sample Views or Stored Procedures
that you’ll find in the sample databases. However, in many cases we had to
modify the sample SQL so that it would work correctly with the target data-
base system. For example, to create date expressions or calculations, we
chose to use the appropriate function supported by the target database sys-
tem. (For a list of all date and time functions supported by five of the major
database systems, see Appendix C,“Date and Time Types, Operations, and
Functions.”)

Introduction xxix

http://www.mysql.com/
http://www.informit.com/title/9780321992475

Also, although we used scripts that closely match the original samples in the
book, both Microsoft SQL Server and MySQL will modify the original SQL to
“optimize” it before saving the view or stored procedure. If you use Design
in SQL Server Management Studio or Alter in MySQL Workbench to edit the
view or procedure, what you see saved in the database might differ consid-
erably from the script we used to define the view or procedure. When in
doubt, always refer to the companion script file to see the SQL we used.

“Follow the Yellow Brick Road”

—Munchkin to Dorothy in The Wizard of Oz

Now that you’ve read through the Introduction, you’re ready to start learning
SQL, right? Well, maybe. At this point, you’re still in the house, it’s still being
tossed about by the tornado, and you haven’t left Kansas.

Before you make that jump to Chapter 4,“Creating a Sample Query,” take our
advice and read through the first three chapters. Chapter 1,“What Is Rela-
tional?,” will give you an idea of how the relational database was conceived
and how it has grown to be the most widely used type of database in the
industry today. We hope this will give you some amount of insight into the
database system you’re currently using. In Chapter 2,“Ensuring Your Database
Structure Is Sound,” you’ll learn how to fine-tune your data structures so that
your data is reliable and, above all, accurate.You’re going to have a tough time
working with some of the SQL statements if you have poorly designed data
structures, so we suggest you read this chapter carefully.

Chapter 3,“A Concise History of SQL,” is literally the beginning of the “yellow
brick road.” Here you’ll learn the origins of SQL and how it evolved into its
current form. You’ll also learn about some of the people and companies who
helped pioneer the language and why there are so many varieties of SQL.
Finally, you’ll learn how SQL came to be a national and international standard
and what the outlook for SQL will be in the years to come.

After you’ve read these chapters, consider yourself well on your way to Oz.
Just follow the road we’ve laid out through each of the remaining chapters.
When you’ve finished the book,you’ll find that you’ve found the wizard—and
he is you.

xxx Introduction

This page intentionally left blank

7
Thinking in Sets

“Small cheer and a great welcome makes a merry feast.”
—William Shakespeare

Comedy of Errors, Act 3, scene 1

Topics Covered in This Chapter

What Is a Set,Anyway?

Operations on Sets

Intersection

Difference

Union

SQL Set Operations

Summary

By now, you know how to create a set of information by asking for specific
columns or expressions on columns (SELECT), how to sort the rows (ORDER
BY), and how to restrict the rows returned (WHERE). Up to this point, we’ve
been focusing on basic exercises involving a single table. But what if you
want to know something about information contained in multiple tables?
What if you want to compare or contrast sets of information from the same or
different tables?

Creating a meal by peeling,slicing,and dicing a single pile of potatoes or a sin-
gle bunch of carrots is easy. From here on out, most of the problems we’re
going to show you how to solve will involve getting data from multiple tables.
We’re not only going to show you how to put together a good stew—we’re
going to teach you how to be a chef!

Before digging into this chapter, you need to know that it’s all about the con-
cepts you must understand in order to successfully link two or more sets of

219

information. We’re also going to give you a brief overview of some specific syn-
tax defined in the SQL Standard that directly supports the pure definition of
these concepts. Be forewarned,however, that many current commercial imple-
mentations of SQL do not yet support this “pure”syntax. In later chapters,we’ll
show you how to implement the concepts you’ll learn here using SQL syntax
that is commonly supported by most major database systems. What we’re after
here is not the letter of the law but rather the spirit of the law.

What Is a Set, Anyway?

If you were a teenager any time from the mid-1960s onward, you might have
studied set theory in a mathematics course. (Remember New Math?) If you
were introduced to set algebra, you probably wondered why any of it would
ever be useful.

Now you’re trying to learn about relational databases and this quirky language
called SQL to build applications, solve problems, or just get answers to your
questions. Were you paying attention in algebra class? If so, solving prob-
lems—particularly complex ones—in SQL will be much easier.

Actually, you’ve been working with sets from the beginning of this book. In
Chapter 1,“What Is Relational?,” you learned about the basic structure of a
relational database—tables containing records that are made up of one or
more fields. (Remember that in SQL,records are known as rows,and fields are
known as columns.) Each table in your database is a set of information about
one subject. In Chapter 2,“Ensuring Your Database Structure Is Sound,” you
learned how to verify that the structure of your database is sound. Each table
should contain the set of information related to one and only one subject or
action.

In Chapter 4,“Creating a Simple Query,” you learned how to build a basic
SELECT statement in SQL to retrieve a result set of information that contains
specific columns from a single table and how to sort those result sets. In
Chapter 5,“Getting More Than Simple Columns,” you learned how to glean a
new set of information from a table by writing expressions that operate on
one or more columns. In Chapter 6,“Filtering Your Data,” you learned how to
restrict further the set of information you retrieve from your tables by adding
a filter (WHERE clause) to your query.

As you can see, a set can be as little as the data from one column from one
row in one table. Actually, you can construct a request in SQL that returns no
rows—an empty set. Sometimes it’s useful to discover that something does

220 Chapter 7

not exist. A set can also be multiple columns (including columns you create
with expressions) from multiple rows fetched from multiple tables. Each row
in a result set is a member of the set. The values in the columns are specific
attributes of each member—data items that describe the member of the set.
In the next several chapters, we’ll show how to ask for information from mul-
tiple sets of data and link these sets together to get answers to more complex
questions. First, however, you need to understand more about sets and the
logical ways to combine them.

Operations on Sets

In Chapter 1, we discussed how Dr. E. F. Codd invented the relational model
on which most modern databases and SQL are based. Two branches of math-
ematics—set theory and first-order predicate logic—formed the foundation
of his new model.

To graduate beyond getting answers from only a single table, you need to
learn how to use result sets of information to solve more complex problems.
These complex problems usually require using one of the common set opera-
tions to link data from two or more tables. Sometimes, you’ll need to get two
different result sets from the same table and then combine them to get your
answer.

The three most common set operations are as follows:

• Intersection—You use this to find the common elements in two or
more different sets: “List all students and the classes for which they are
currently enrolled.”“Show me the recipes that contain both lamb
and rice.”“Show me the customers who ordered both bicycles and
helmets.”

• Difference—You use this to find items that are in one set but not
another: “Show me the recipes that contain lamb but do not contain
rice.”“Show me the customers who ordered a bicycle but not a helmet.”

• Union—You use this to combine two or more similar sets: “Show me
all the recipes that contain either lamb or rice.”“Show me the custom-
ers who ordered either a bicycle or a helmet.”“List the names and
addresses for both staff and students.”

Thinking in Sets 221

In the following three sections, we’ll explain these basic set operations—the
ones you should have learned in high school algebra. The “SQL Set Opera-
tions” section later in this chapter gives an overview of how these operations
are implemented in “pure”SQL.

Intersection

No, it’s not your local street corner. An intersection of two sets contains the
common elements of two sets. Let’s first take a look at an intersection from
the pure perspective of set theory and then see how you can use an intersec-
tion to solve business problems.

Intersection in Set Theory

An intersection is a very powerful mathematical tool often used by scientists
and engineers. As a scientist, you might be interested in finding common
points between two sets of chemical or physical sample data. For example, a
pharmaceutical research chemist might have two compounds that seem to
provide a certain beneficial effect. Finding the commonality (the intersec-
tion) between the two compounds might help discover what it is that makes
the two compounds effective. Or, an engineer might be interested in finding
the intersection between one alloy that is hard but brittle and another alloy
that is soft but resilient.

Let’s take a look at intersection in action by examining two sets of numbers.
In this example, each single number is a member of the set. The first set of
numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The intersection of these two sets of numbers is the numbers common to
both sets:

8, 55

The individual entries—the members—of each set don’t have to be just single
values. In fact,when solving problems with SQL,you’ll probably deal with sets
of rows.

222 Chapter 7

According to set theory,when a member of a set is something more than a sin-
gle number or value, each member (or object) of the set has multiple attri-
butes or bits of data that describe the properties of each member. For
example, your favorite stew recipe is a complex member of the set of all
recipes that contains many different ingredients. Each ingredient is an attri-
bute of your complex stew member.

To find the intersection between two sets of complex set members, you have
to find the members that match on all the attributes. Also, all the members in
each set you’re trying to compare must have the same number and type of
attributes. For example, suppose you have a complex set like the one below,
in which each row represents a member of the set (a stew recipe), and each
column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The intersection of these two sets is the one member whose attributes all
match in both sets:

Potatoes Beef Stock Beef Cabbage

Thinking in Sets 223

Intersection between Result Sets

If the previous examples look like rows in a table or a result set to you, you’re
on the right track! When you’re dealing with rows in a set of data that you
fetch with SQL, the attributes are the individual columns. For example, sup-
pose you have a set of rows returned by a query like the following one.
(These are recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are recipes
from Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The intersection of these two sets is the two members whose attributes all
match in both sets—that is, the two recipes that Mike and John have in
common.

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

224 Chapter 7

Sometimes it’s easier to see how intersection works using a set diagram. A set
diagram is an elegant yet simple way to diagram sets of information and
graphically represent how the sets intersect or overlap. You might also have
heard this sort of diagram called a Euler or Venn diagram. (By the way,
Leonard Euler was an eighteenth-century Swiss mathematician, and John
Venn used this particular type of logic diagram in 1880 in a paper he wrote
while a Fellow at Cambridge University. So you can see that “thinking in sets”
is not a particularly modern concept!)

Let’s assume you have a nice database containing all your favorite recipes.You
really like the way onions enhance the flavor of beef, so you’re interested in
finding all recipes that contain both beef and onions. Figure 7–1 shows the
set diagram that helps you visualize how to solve this problem.

Thinking in Sets 225

Figure 7–1 Finding out which recipes have both beef and onions

Recipes with Both
Beef and Onions

Recipes with
Beef

Recipes with
Onions

The upper circle represents the set of recipes that contain beef. The lower cir-
cle represents the set of recipes that contain onions. Where the two circles
overlap is where you’ll find the recipes that contain both—the intersection of
the two sets. As you can imagine,you first ask SQL to fetch all the recipes that
have beef. In the second query, you ask SQL to fetch all the recipes that have
onions. As you’ll see later, you can use a special SQL keyword—INTERSECT—
to link the two queries to get the final answer.

Yes,we know what you’re thinking. If your recipe table looks like the samples
above, you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and onions as
the vegetable ingredient.”

Translation Select the recipe name from the recipes table where meat
ingredient is beef and vegetable ingredient is onions

Clean Up Select the recipe name from the recipes table where meat
ingredient is = beef and vegetable ingredient is = onions

SQL SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'

AND VegetableIngredient = 'Onions'

Hold on now! If you remember the lessons you learned in Chapter 2, you
know that a single Recipes table probably won’t cut it. (Pun intended!) What
about recipes that have ingredients other than meat and vegetables? What
about the fact that some recipes have many ingredients and others have
only a few? A correctly designed recipes database will have a separate
Recipe_Ingredients table with one row per recipe per ingredient. Each ingre-
dient row will have only one ingredient, so no single row can be both beef
and onions at the same time. You’ll need to first find all the beef rows, then
find all the onions rows, and then intersect them on RecipeID. (If you’re con-
fused about why we’re criticizing the previous table design, be sure to go
back and read Chapter 2!)

How about a more complex problem? Let’s say you want to add carrots to the
mix. A set diagram to visualize the solution might look like Figure 7–2.

226 Chapter 7

Figure 7–2 Determining which recipes have beef, onions, and carrots

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef,
Onions, and Carrots

Got the hang of it? The bottom line is that when you’re faced with solving a
problem involving complex criteria,a set diagram can be an invaluable way to
see the solution expressed as the intersection of SQL result sets.

Problems You Can Solve with an Intersection

As you might guess, you can use an intersection to find the matches between
two or more sets of information. Here’s just a small sample of the problems you
can solve using an intersection technique with data from the sample databases:

“Show me customers and employees who have the same name.”

“Find all the customers who ordered a bicycle and also ordered a helmet.”

“List the entertainers who played engagements for customers Bonnicksen
and Rosales.”

“Show me the students who have an average score of 85 or better in Art
and who also have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at both Thunder-
bird Lanes and Bolero Lanes.”

“Show me the recipes that have beef and garlic.”

One of the limitations of using a pure intersection is that the values must match
in all the columns in each result set. This works well if you’re intersecting two or
more sets from the same table—for example, customers who ordered bicycles
and customers who ordered helmets. It also works well when you’re intersect-
ing sets from tables that have similar columns—for example, customer names
and employee names. In many cases, however, you’ll want to find solutions that
require a match on only a few column values from each set. For this type of prob-
lem, SQL provides an operation called a JOIN—an intersection on key values.
Here’s a sample of problems you can solve with a JOIN:

“Show me customers and employees who live in the same city.” (JOIN on
the city name.)

“List customers and the entertainers they booked.” (JOIN on the engage-
ment number.)

“Find the agents and entertainers who live in the same ZIP Code.” (JOIN
on the ZIP Code.)

“Show me the students and their teachers who have the same first name.”
(JOIN on the first name.)

Thinking in Sets 227

“Find the bowlers who are on the same team.” (JOIN on the team ID.)

“Display all the ingredients for recipes that contain carrots.” (JOIN on the
ingredient ID.)

Never fear. In the next chapter we’ll show you all about solving these prob-
lems (and more) by using JOINs. And because so few commercial implemen-
tations of SQL support INTERSECT, we’ll show how to use a JOIN to solve
many problems that might otherwise require an INTERSECT.

Difference

What’s the difference between 21 and 10? If you answered 11, you’re on the
right track! A difference operation (sometimes also called subtract, minus, or
except) takes one set of values and removes the set of values from a second
set. What remains is the set of values in the first set that are not in the second
set. (As you’ll see later, EXCEPT is the keyword used in the SQL Standard.)

Difference in Set Theory

Difference is another very powerful mathematical tool. As a scientist, you
might be interested in finding what’s different about two sets of chemical or
physical sample data. For example, a pharmaceutical research chemist might
have two compounds that seem to be very similar, but one provides a certain
beneficial effect and the other does not. Finding what’s different about the
two compounds might help uncover why one works and the other does not.
As an engineer,you might have two similar designs,but one works better than
the other. Finding the difference between the two designs could be crucial to
eliminating structural flaws in future buildings.

Let’s take a look at difference in action by examining two sets of numbers.
The first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The difference of the first set of numbers minus the second set of numbers is
the numbers that exist in the first set but not the second:

1, 5, 9, 32, 78

228 Chapter 7

Note that you can turn the previous difference operation around. Thus, the
difference of the second set minus the first set is

3, 7, 22, 71, 99

The members of each set don’t have to be single values. In fact, you’ll most
likely be dealing with sets of rows when trying to solve problems with SQL.

Earlier in this chapter we said that when a member of a set is something more
than a single number or value, each member of the set has multiple attributes
(bits of information that describe the properties of each member). For exam-
ple, your favorite stew recipe is a complex member of the set of all recipes
that contains many different ingredients. You can think of each ingredient as
an attribute of your complex stew member.

To find the difference between two sets of complex set members,you have to
find the members that match on all the attributes in the second set with mem-
bers in the first set. Don’t forget that all of the members in each set you’re try-
ing to compare must have the same number and type of attributes. Remove
from the first set all the matching members you find in the second set,and the
result is the difference. For example, suppose you have a complex set like the
one below. Each row represents a member of the set (a stew recipe),and each
column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like this:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

Thinking in Sets 229

230 Chapter 7

The difference of the first set minus the second set is the objects in the first
set that don’t exist in the second set:

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Pasta Water Pork Onions

Difference between Result Sets

When you’re dealing with rows in a set of data fetched with SQL, the attri-
butes are the individual columns. For example, suppose you have a set of
rows returned by a query like the following one. (These are recipes from
John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are recipes
from Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

Thinking in Sets 231

The difference between John’s recipes and Mike’s recipes (John’s minus
Mike’s) is all the recipes in John’s cookbook that do not appear in Mike’s
cookbook.

Recipe Starch Stock Meat Vegetable

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Pork Stew Pasta Water Pork Onions

You can also turn this problem around. Suppose you want to find the recipes
in Mike’s cookbook that are not in John’s cookbook. Here’s the answer:

Recipe Starch Stock Meat Vegetable

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Again, we can use a set diagram to help visualize how a difference operation
works. Let’s assume you have a nice database containing all your favorite recipes.
You really do not like the way onions taste with beef,so you’re interested in find-
ing all recipes that contain beef but not onions. Figure 7–3 shows you the set dia-
gram that helps you visualize how to solve this problem.

Figure 7–3 Finding out which recipes have beef but not onions

Recipes with Beef
but Not Onions

Recipes with
Beef

Recipes with
Onions

The upper full circle represents the set of recipes that contain beef. The
lower full circle represents the set of recipes that contain onions. As you
remember from the discussion about INTERSECT,where the two circles over-
lap is where you’ll find the recipes that contain both. The dark-shaded part of
the upper circle that’s not part of the overlapping area represents the set of
recipes that contain beef but do not contain onions. Likewise, the part of the
lower circle that’s not part of the overlapping area represents the set of
recipes that contain onions but do not contain beef.

You probably know that you first ask SQL to fetch all the recipes that have
beef. Next, you ask SQL to fetch all the recipes that have onions. (As you’ll see
later in this chapter, the special SQL keyword EXCEPT links the two queries
to get the final answer.)

Are you falling into the trap again? (You did read Chapter 2, didn’t you?) If
your recipe table looks like the samples earlier, you might think that you
could simply say the following:

“Show me the recipes that have beef as the meat ingredient and that do
not have onions as the vegetable ingredient.”

Translation Select the recipe name from the recipes table where meat
ingredient is beef and vegetable ingredient is not onions

Clean Up Select the recipe name from the recipes table where meat
ingredient is = beef and vegetable ingredient is not <> onions

SQL SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'

AND VegetableIngredient <> 'Onions'

Again, as you learned in Chapter 2, a single Recipes table isn’t such a hot idea.
(Pun intended!) What about recipes that have ingredients other than meat
and vegetables? What about the fact that some recipes have many ingredients
and others have only a few? A correctly designed Recipes database will have a
separate Recipe_Ingredients table with one row per recipe per ingredient.
Each ingredient row will have only one ingredient, so no one row can be both
beef and onions at the same time. You’ll need to first find all the beef rows,
then find all the onions rows, then difference them on RecipeID.

How about a more complex problem? Let’s say you hate carrots, too. A set dia-
gram to visualize the solution might look like Figure 7–4.

First you need to find the set of recipes that have beef, and then get the dif-
ference with either the set of recipes containing onions or the set containing

232 Chapter 7

Thinking in Sets 233

Figure 7–4 Finding out which recipes have beef but no onions or carrots

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef but
No Onions or Carrots

carrots. Take that result and get the difference again with the remaining set
(onions or carrots) to leave only the recipes that have beef but no carrots or
onions (the light-shaded area in the upper circle).

Problems You Can Solve with Difference

Unlike intersection (which looks for common members of two sets), differ-
ence looks for members that are in one set but not in another set. Here’s just
a small sample of the problems you can solve using a difference technique
with data from the sample databases:

“Show me customers whose names are not the same as any employee.”

“Find all the customers who ordered a bicycle but did not order a helmet.”

“List the entertainers who played engagements for customer Bonnicksen
but did not play any engagement for customer Rosales.”

“Show me the students who have an average score of 85 or better in Art
but do not have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes but not at Bolero Lanes.”

“Show me the recipes that have beef but not garlic.”

One of the limitations of using a pure difference is that the values must match
in all the columns in each result set. This works well if you’re finding the dif-
ference between two or more sets from the same table—for example, cus-
tomers who ordered bicycles and customers who ordered helmets. It also

works well when you’re finding the difference between sets from tables that
have similar columns—for example, customer names and employee names.

In many cases, however, you’ll want to find solutions that require a match on
only a few column values from each set. For this type of problem, SQL pro-
vides an OUTER JOIN operation, which is an intersection on key values that
includes the unmatched values from one or both of the two sets. Here’s a sam-
ple of problems you can solve with an OUTER JOIN:

“Show me customers who do not live in the same city as any employees.”
(OUTER JOIN on the city name.)

“List customers and the entertainers they did not book.” (OUTER JOIN on
the engagement number.)

“Find the agents who are not in the same ZIP Code as any entertainer.”
(OUTER JOIN on the ZIP Code.)

“Show me the students who do not have the same first name as any
teachers.” (OUTER JOIN on the first name.)

“Find the bowlers who have an average of 150 or higher who have never
bowled a game below 125.” (OUTER JOIN on the bowler ID from two dif-
ferent tables.)

“Display all the ingredients for recipes that do not have carrots.” (OUTER
JOIN on the recipe ID.)

Don’t worry! We’ll show you all about solving these problems (and more) using
OUTER JOINs in Chapter 9,“OUTER JOINs.” Also, because few commercial
implementations of SQL support EXCEPT (the keyword for difference), we’ll
show how to use an OUTER JOIN to solve many problems that might otherwise
require an EXCEPT. In Chapter 18,“‘NOT’ and ‘AND’ Problems,” we’ll show you
additional ways to solve EXCEPT problems.

Union

So far we’ve discussed finding the items that are common in two sets (inter-
section) and the items that are different (difference). The third type of set
operation involves adding two sets (union).

Union in Set Theory

Union lets you combine two sets of similar information into one set. As a scien-
tist, you might be interested in combining two sets of chemical or physical sam-
ple data. For example, a pharmaceutical research chemist might have two

234 Chapter 7

different sets of compounds that seem to provide a certain beneficial effect. The
chemist can union the two sets to obtain a single list of all effective compounds.

Let’s take a look at union in action by examining two sets of numbers. The
first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The union of these two sets of numbers is the numbers in both sets combined
into one new set:

1, 5, 8, 9, 32, 55, 78, 3, 7, 22, 71, 99

Note that the values common to both sets, 8 and 55, appear only once in the
answer. Also, the sequence of the numbers in the result set is not necessarily
in any specific order. When you ask a database system to perform a UNION,
the values returned won’t necessarily be in sequence unless you explicitly
include an ORDER BY clause. In SQL,you can also ask for a UNION ALL if you
want to see the duplicate members.

The members of each set don’t have to be just single values. In fact, you’ll
probably deal with sets of rows when working with SQL.

To find the union of two or more sets of complex members, all the members
in each set you’re trying to union must have the same number and type of
attributes. For example, suppose you have a complex set like the one below.
Each row represents a member of the set (a stew recipe), and each column
denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Thinking in Sets 235

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The union of these two sets is the set of objects from both sets. Duplicates are
eliminated.

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Beans Water Pork Onions

Combining Result Sets Using a Union

It’s a small leap from sets of complex objects to rows in SQL result sets. When
you’re dealing with rows in a set of data that you fetch with SQL,the attributes are
the individual columns. For example,suppose you have a set of rows returned by
a query like the following one. (These are recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

236 Chapter 7

A second query result set might look like this one. (These are recipes from
Mike’s cookbook).

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The union of these two sets is all the rows in both sets. Maybe John and Mike
decided to write a cookbook together, too!

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Let’s assume you have a nice database containing all your favorite recipes.You
really like recipes with either beef or onions, so you want a list of recipes that
contain either ingredient. Figure 7–5 (on page 238) shows you the set dia-
gram that helps you visualize how to solve this problem.

The upper circle represents the set of recipes that contain beef. The lower cir-
cle represents the set of recipes that contain onions. The union of the two cir-
cles gives you all the recipes that contain either ingredient, with duplicates
eliminated where the two sets overlap. As you probably know, you first ask
SQL to fetch all the recipes that have beef. In the second query, you ask SQL

Thinking in Sets 237

238 Chapter 7

Figure 7–5 Finding out which recipes have either beef or onions

Recipes with Beef
or OnionsRecipes with

Beef

Recipes with
Onions

to fetch all the recipes that have onions. As you’ll see later, the SQL keyword
UNION links the two queries to get the final answer.

By now you know that it’s not a good idea to design a recipes database with
a single table. Instead, a correctly designed recipes database will have a sepa-
rate Recipe_Ingredients table with one row per recipe per ingredient. Each
ingredient row will have only one ingredient, so no one row can be both beef
or onions at the same time. You’ll need to first find all the recipes that have a
beef row, then find all the recipes that have an onions row, and then union
them.

Problems You Can Solve with Union

A union lets you “mush together”rows from two similar sets—with the added
advantage of no duplicate rows. Here’s a sample of the problems you can
solve using a union technique with data from the sample databases:

“Show me all the customer and employee names and addresses.”

“List all the customers who ordered a bicycle combined with all the cus-
tomers who ordered a helmet.”

“List the entertainers who played engagements for customer Bonnicksen
combined with all the entertainers who played engagements for cus-
tomer Rosales.”

“Show me the students who have an average score of 85 or better in Art
together with the students who have an average score of 85 or better in
Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes combined with bowlers who had a raw score of 140 or better at
Bolero Lanes.”

“Show me the recipes that have beef together with the recipes that have
garlic.”

As with other “pure” set operations, one of the limitations is that the values
must match in all the columns in each result set. This works well if you’re
unioning two or more sets from the same table—for example,customers who
ordered bicycles and customers who ordered helmets. It also works well
when you’re performing a union on sets from tables that have like columns—
for example, customer names and addresses and employee names and
addresses. We’ll explore the uses of the SQL UNION operator in detail in
Chapter 10,“UNIONs.”

In many cases where you would otherwise union rows from the same table,
you’ll find that using DISTINCT (to eliminate the duplicate rows) with com-
plex criteria on joined tables will serve as well. We’ll show you all about solv-
ing problems this way using JOINs in Chapter 8,“INNER JOINs.”

SQL Set Operations

Now that you have a basic understanding of set operations, let’s look briefly at
how they’re implemented in SQL.

Classic Set Operations versus SQL

As noted earlier,not many commercial database systems yet support set inter-
section (INTERSECT) or set difference (EXCEPT) directly. The current SQL
Standard, however, clearly defines how these operations should be imple-
mented. We think that these set operations are important enough to at least
warrant an overview of the syntax.

As promised, we’ll show you alternative ways to solve an intersection or dif-
ference problem in later chapters using JOINs. Because most database sys-
tems do support UNION, Chapter 10 is devoted to its use. The remainder of
this chapter gives you an overview of all three operations.

Thinking in Sets 239

Finding Common Values: INTERSECT

Let’s say you’re trying to solve the following seemingly simple problem:

“Show me the orders that contain both a bike and a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

❖ Note Readers familiar with SQL might ask why we didn’t JOIN
Order_Details to Products and look for bike or helmet product names. The
simple answer is that we haven’t introduced the concept of a JOIN yet, so
we built this example on a single table using IN and a list of known bike
and helmet product numbers.

That seems to do the trick at first,but the answer includes orders that contain
either a bike or a helmet, and you really want to find ones that contain both a
bike and a helmet! If you visualize orders with bicycles and orders with hel-
mets as two distinct sets, it’s easier to understand the problem. Figure 7–6
shows one possible relationship between the two sets of orders using a set
diagram.

Actually, there’s no way to predict in advance what the relationship between
two sets of data might be. In Figure 7–6, some orders have a bicycle in the list
of products ordered, but no helmet. Some have a helmet, but no bicycle. The
overlapping area, or intersection, of the two sets is where you’ll find orders
that have both a bicycle and a helmet. Figure 7–7 shows another case where
all orders that contain a helmet also contain a bicycle, but some orders that
contain a bicycle do not contain a helmet.

240 Chapter 7

Thinking in Sets 241

Figure 7–6 One possible relationship between two sets of orders

Orders for Both
Bicycles and Helmets

Orders for
a Bicycle

Orders for
a Helmet

Seeing “both” in your request suggests you’re probably going to have to break
the solution into separate sets of data and then link the two sets in some way.
(Your request also needs to be broken into two parts.)

Figure 7–7 All orders for a helmet also contain an order for a bicycle.

Orders for
a Bicycle

Orders for
a Helmet

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—an inter-
section of the two sets. Figure 7–8 shows the SQL syntax diagram that handles
this problem. (Note that you can use INTERSECT more than once to combine
multiple SELECT statements.)

242 Chapter 7

Figure 7–8 Linking two SELECT statements with INTERSECT

SELECT Expression

SELECT Statement SELECT StatementINTERSECT

ALL

You can now take the two parts of your request and link them with an
INTERSECT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
INTERSECT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The sad news is that not many commercial implementations of SQL yet sup-
port the INTERSECT operator. But all is not lost! Remember that the primary
key of a table uniquely identifies each row. (You don’t have to match on all
the fields in a row—just the primary key—to find unique rows that inter-
sect.) We’ll show you an alternative method (JOIN) in Chapter 8 that can
solve this type of problem in another way. The good news is that virtually all
commercial implementations of SQL do support JOIN.

Finding Missing Values: EXCEPT (DIFFERENCE)

Okay, let’s go back to the bicycles and helmets problem again. Let’s say you’re
trying to solve this seemingly simple request as follows:

“Show me the orders that contain a bike but not a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

AND ProductNumber NOT IN (10, 25, 26)

Unfortunately, the answer shows you orders that contain only a bike! The
problem is that the first IN clause finds detail rows containing a bicycle, but
the second IN clause simply eliminates helmet rows. If you visualize orders
with bicycles and orders with helmets as two distinct sets, you’ll find this eas-
ier to understand. Figure 7–9 shows one possible relationship between the
two sets of orders.

Thinking in Sets 243

Figure 7–9 Orders for a bicycle that do not also contain a helmet

Orders for a Bicycle
but Not for a HelmetOrders for

a Bicycle

Orders for
a Helmet

Seeing “except”or “but not” in your request suggests you’re probably going to
have to break the solution into separate sets of data and then link the two
sets in some way. (Your request also needs to be broken into two parts.)

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product num-
bers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a difference
of the two sets. SQL uses the EXCEPT keyword to denote a difference operation.
Figure 7–10 shows you the SQL syntax diagram that handles this problem.

244 Chapter 7

You can now take the two parts of your request and link them with an
EXCEPT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Figure 7–10 Linking two SELECT statements with EXCEPT

SELECT Expression

SELECT Statement SELECT StatementEXCEPT
ALL

Remember from our earlier discussion about the difference operation that
the sequence of the sets matters. In this case, you’re asking for bikes “except”
helmets. If you want to find out the opposite case—orders for helmets that do
not include bikes—you can turn it around as follows:

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

The sad news is that not many commercial implementations of SQL yet sup-
port the EXCEPT operator. Hang on to your helmet! Remember that the pri-
mary key of a table uniquely identifies each row. (You don’t have to match on
all the fields in a row—just the primary key—to find unique rows that are dif-
ferent.) We’ll show you an alternative method (OUTER JOIN) in Chapter 9
that can solve this type of problem in another way. The good news is that
nearly all commercial implementations of SQL do support OUTER JOIN.

Combining Sets: UNION

One more problem about bicycles and helmets, then we’ll pedal on to the
next chapter. Let’s say you’re trying to solve this request, which looks simple
enough on the surface:

“Show me the orders that contain either a bike or a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

Actually, that works just fine! So why use a UNION to solve this problem? The
truth is, you probably would not. However, if we make the problem more
complicated, a UNION would be useful:

Thinking in Sets 245

“List the customers who ordered a bicycle together with the vendors who
provide bicycles.”

Unfortunately, answering this request involves creating a couple of queries
using JOIN operations, then using UNION to get the final result. Because we
haven’t shown you how to do a JOIN yet, we’ll save solving this problem for
Chapter 10. Gives you something to look forward to, doesn’t it?

Let’s get back to the “bicycles or helmets”problem and solve it with a UNION.
If you visualize orders with bicycles and orders with helmets as two distinct
sets, then you’ll find it easier to understand the problem. Figure 7–11 shows
you one possible relationship between the two sets of orders.

246 Chapter 7

Figure 7–11 Orders for bicycles or helmets

Orders for a Bicycle
or a Helmet

Orders for
a Bicycle

Orders for
a Helmet

Seeing “either,”“or,” or “together” in your request suggests that you’ll need to
break the solution into separate sets of data and then link the two sets with a
UNION. This particular request can be broken into two parts:

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a union
of the two sets. Figure 7–12 shows the SQL syntax diagram that handles this
problem.

Thinking in Sets 247

Figure 7–12 Linking two SELECT statements with UNION

SELECT Expression

SELECT Statement SELECT StatementUNION
ALL

You can now take the two parts of your request and link them with a UNION
operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
UNION
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The good news is that nearly all commercial implementations of SQL support
the UNION operator. As is perhaps obvious from the examples,a UNION might
be doing it the hard way when you want to get an “either-or”result from a single
table. UNION is most useful for compiling a list from several similarly structured
but different tables. We’ll explore UNION in much more detail in Chapter 10.

SUMMARY

We began this chapter by discussing the concept of a set. Next, we discussed
each of the major set operations implemented in SQL in detail—intersection,
difference, and union. We showed how to use set diagrams to visualize the
problem you’re trying to solve. Finally, we introduced you to the basic SQL
syntax and keywords (INTERSECT, EXCEPT, and UNION) for all three opera-
tions just to whet your appetite.

At this point you’re probably saying,“Wait a minute, why did you show me
three kinds of set operations—two of which I probably can’t use?”Remember
the title of the chapter: “Thinking in Sets.” If you’re going to be at all success-
ful solving complex problems, you’ll need to break your problem into result
sets of information that you then link back together.

So, if your problem involves “it must be this and it must be that,” you might
need to solve the “this”and then the “that”and then link them to get your final
solution. The SQL Standard defines a handy INTERSECT operation—but an
INNER JOIN might work just as well. Read on in Chapter 8.

Likewise, if your problem involves “it must be this but it must not be that,”
you might need to solve the “this” and then the “that” and then subtract the
“that” from the “this” to get your answer. We showed you the SQL Standard
EXCEPT operation, but an OUTER JOIN might also do the trick. Get the
details in Chapters 9 and 18.

Finally, we showed you how to add sets of information using a UNION. As
promised, we’ll really get into UNION in Chapter 10.

248 Chapter 7

This page intentionally left blank

Index

747

A
acronyms, naming fields, 24
Actian, 60
agents, 53
aggregate functions, 420-422

AVG, 427-428
COUNT, 422-425
filters, 432, 434
MAX, 428-430
MIN, 430-431
Null values, 451
sample statements, 435

bowling league database, 439-440
entertainment agency database, 437
recipes database, 441-442
sales orders database, 435-436
school scheduling database, 438

subqueries as columns, 381-383
SUM, 425-426
using multiple functions, 431-432

aliases, assigning to tables, 258-260
ALL, predicate keywords for subqueries,

392-395
American National Standards Institute

(ANSI), 61
analytical databases, 4
AND, 185, 190

sets, 594-595
ANSI (American National Standards Insti-

tute), 61
ANSI/ISO standard, 62-65
ANY, predicate keywords for subqueries,

392-395
approximate numeric types, 112
ASCII collating sequence, 163
assigning correlation names to tables, 258-260
attributes, 221
AVG, calculating mean values, 427-428

B
BETWEEN, 173
Between predicate, 160
binary data types, 112
Boolean data types, 113
bowling league database

aggregate functions, 439-440
CASE sample statements, 666-668
DELETE sample statements, 586-588
driver tables sample statements, 703-704
expressions sample statements, 151-152
GROUP BY clause, 470-472
HAVING clause sample statements,

497-498
OUTER JOINs, 335-337
search conditions, 210
SELECT statements, 103-104
set sample statements, 629-633
subqueries

expressions, 403
filters, 410-411

UNION statements, 368-370
unlinked data sample statements, 703-704
unlinked tables sample statements,

695-696
UPDATE sample statements, 533-537

C
calculated columns, 135
calculated fields, 27
calculating mean values with AVG, 427-428
Call-Level Interface (CLI), 65
Cartesian Product, 303, 673
cascade deletion rule, 48
CASE, 641

reasons for using, 642
sample statements, 655-656

bowling league database, 666-668

entertainment database, 659-662
sales order database, 656-659
school scheduling database, 662-665

Searched, 644
Simple, 644
solving problems, 647

Searched CASE, 652-654
Simple CASE, 647-651

syntax, 642-646
WHERE clause, 655

CAST function, changing data types, 114-116
Chamberlain, Dr., 58
changing data types, CAST function, 114-116
character data types, 111
character string literals, explicit values,

116-118
checklists

for fields, 25-27
for tables, 35-36

clauses
CORRESPONDING clauses, 349
FROM, unlinked tables, 672
GROUP BY, 448

column restrictions, 459-460
grouping on expressions, 461-462
mixing columns and expressions,

454, 456
samples. See sample statements,

GROUP BY
simulating SELECT DISTINCT state-

ments, 457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

Having. See HAVING clause
ORDER BY clause, SELECT query, 93-96
SELECT clauses, expressions, 133
SELECT statement, 77-79
USING, 256
WHERE clause, 158-159

CASE, 655
predicates, 159-160
using, 160-162
using GROUP BY in subqueries, 456-457

CLI (Call-Level Interface), 65
Codd, Dr. Edgar F., 4
collating sequences, 92-93

column expressions, subqueries, 378, 397
aggregate functions, 381, 383
syntax, 378-379, 381

column references, INNER JOIN, 251-252
column restrictions, GROUP BY clause,

459-460
columns

mixing with expressions, GROUP BY
clause, 454-456

updating multiples with UPDATE, 511-512
combining

result sets, unions, 236-238
sets, UNION, 245-247

commas, separating tables, 675
commercial implementation, 68
comparing string values, comparison predi-

cates, 163-166
comparison predicates, 160, 163

comparing string values, 163-166
equality and inequality, 166-167
less than and greater than, 168-170

Computer Associates International, Inc., 60
computing totals with SUM, 425-426
concatenation, 121-125
concatenation expressions, SELECT clauses,

134-135
conditional expressions. See CASE
conditions, expressing, 203-204
CORRESPONDING clause, 349
COUNT

counting rows and values, 422-425
HAVING clause, 485-490
subqueries, 381-383

counting rows and values with COUNT,
422-425

CROSS JOINs, 675

D
data

grouping. See grouping data
versus information, 79-81
inserting with SELECT, 548-555
unlinked data. See unlinked data

data types, 111-113
approximate numeric data types, 112
binary data types, 112
Boolean data types, 113

748 Index

changing, CAST function, 114-116
character data types, 111
datetime data types, 113
exact numeric data types, 112
interval data types, 113
national character data types, 111
restrictions, 116

databases
analytical databases, 4
organizational databases, 4
relational databases, 4-5

fields, 9
keys, 9-11
records, 9
relationships, 12-16
tables, 7-8
views, 11-12

types of, 3
analytical databases, 4
organizational databases, 4

date and time arithmetic, 121
date and time arithmetic expressions, 129

date expressions, 129-131
time expressions, 131-133

date expressions, 129-131
SELECT clause, 138-139

DATE functions, 653
date literals, 119-120
datetime data types, 113
datetime literals, explicit values, 119-121
DB2 (Database 2), 60
defined pattern strings, samples, 176
DELETE, 571-572

rows
deleting, 573-574
deleting the correct rows, 575-576

samples, 580-581
bowling league database, 586-588
entertainment agency database, 582-584
sales orders database, 581-582
school scheduling database, 584-585

uses for, 579-580
deleting rows

with DELETE, 573-574
ensuring you delete the correct rows,

575-576
with subqueries, 577-579
with WHERE clause, 575

deletion rules, relationships, 48-49
diagrams

set diagrams, 225
SQL standard diagrams. See Appendix A

difference, 221, 228-230
between result sets, 230-233
problems you can solve, 233-234
SQL set operations, 243-245

DISTINCT, 89
DISTINCT keyword, 364

INSERT, 544
subqueries, 390

DISTINCT option, 425
don’t put a square peg in a round hole

rule, 115
don’t put a ten-pound sack in a five-pound

box rule, 115
driver tables

sample statements, 697
bowling league database, 703-704
entertainment database, 698-700
sales order database, 697-698
school scheduling database, 700-703

setting up, 679-682
solving problems, 679
using, 682-686

duplicate fields, resolving, 36-37, 39-41
duplicate rows, eliminating, 88-90

E
eliminating duplicate rows, 88-90
embedding

JOINs with JOINs, OUTER JOINs, 310-320
JOINs within JOINs in tables, 262-267
SELECT statements

OUTER JOINs, 307-310
in tables, 260-262

entertainers, 53
entertainment database

aggregate functions, 437
CASE sample statements, 659-662
DELETE sample statements, 582-584
driver tables sample statements, 698-700
expressions, 147-148
GROUP BY clause, 466-467
HAVING clause, 493-494
INSERT, 561-563
OUTER JOINs, 329-331

Index 749

search conditions, 206-208
SELECT statements, 100-101
set sample statements, 622-624
subqueries

expressions, 400
filters, 410-411

UNIONs, 365
unlinked data sample statements, 698-700
unlinked tables sample statements, 689-691
UPDATE, 526-530

Entry SQL, 64
equality, comparison predicates, 166-167
ESCAPE option, 178
Euler diagram, 225
Euler, Leonard, 225
exact numeric data types, 112
EXCEPT, SQL set operations, 243-245
excluding rows, 191-193

with NOT, search conditions, 181-184
executing queries, 97
EXISTS

finding multiple matches in the same
table, 612-614

predicate keywords for subqueries,395-396
expanding field of vision, 85-87
explicit values, 116

character string literals, 116-118
datetime literals, 119-121
numeric literals, 118

expressing conditions, 203-204
expressions, 110

concatenation, 121-125
data types. See data types
date and time arithmetic, 121, 129

date expressions, 129-131
time expressions, 131-133

grouping, GROUP BY clause, 461-462
mathematical, 121, 125-129
mixing with columns, GROUP BY clause,

454-456
sample statements, 144-145

bowling league database, 151-152
emergency agency database, 147-148
sales orders database, 145-146
school scheduling database, 149-150

SELECT clause, 133
concatenation, 134-135

date expressions, 138-139
mathematical expressions, 137-138
naming expressions, 135-136

subqueries, sample statements
bowling league database, 403
entertainment agency database, 400
recipes database, 403
sales orders database, 399-400
school scheduling database, 401

UPDATE, 507-508
subqueries, 518-520
updating selected rows, 508

value expressions, 139-141

F
field of vision, expanding, 85-87
fields, 23

calculated fields, 27
checklists for, 25-27
multipart fields, resolving, 27-29
multivalued fields, resolving, 30-32
naming, 23-25
relational databases, 9

filtering. See also search conditions
focus groups, 478-480
HAVING clause, 480-484

samples. See sample statements,
HAVING clause

uses for, 490-491
HAVING COUNT, 485-490
multiple conditions, 184

AND, 185, 189-190
checking for overlapping ranges,

197-199
excluding rows, 191-193
OR, 185-190
order of preference, 193-197

rows, subqueries, 512-515
WHERE clause, 482-484

filters
aggregate functions, 432-434
subqueries, 384, 398

predicate keywords, 386-396
syntax, 384-386

750 Index

subqueries, samples
bowling league database, 410-411
entertainment agency database, 406-407
recipes database, 412-413
sales orders database, 405-406
school scheduling database, 408-409

finding
largest values with MAX, 428-430
matching values, INNER JOINs, 269
missing values

EXCEPT, 243-245
OUTER JOINs, 324

multiple matches in the same table, 607
EXISTS, 612-614
GROUP BY, 614-617
HAVING, 614-617
IN, 610-612
INNER JOINs, 608-610

partially matched information, OUTER
JOINs, 325

related rows, INNER JOINs, 268-269
smallest values with MIN, 430-431

FIPS (Federal Information Processing
Standard), 65

focus groups, filtering, 478-480
foreign keys, 10
FROM clause, 256

SELECT statement, 78
unlinked tables, 672

FROM keyword, 573
FULL OUTER JOINs, 320

non-key values, 323
syntax, 320-322

Full SQL, 64
functions, aggregate, 420-422

AVG, 427-428
COUNT, 422-425
filters, 432, 434
MAX, 428-430
MIN, 430-431
Null values, 451
samples. See sample statements, aggregate

functions
SUM, 425-426
using multiple functions, 431-432

G
generating primary key values with INSERT,

547-548
greater than, comparison predicates, 168-170
GROUP BY clause, 448

column restrictions, 459-460
finding multiple matches in the same

table, 614-617
grouping on expressions, 461-462
mixing columns and expressions, 454-456
NOT, 604-607
sample statements, 463

bowling league database, 470-472
entertainment agency database, 466-467
recipes database, 473-474
sales orders database, 464-465
school scheduling database, 468-469

SELECT statement, 79
simulating SELECT DISTINCT statements,

457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

grouping data, 446-448
GROUP BY clause, 448

column restrictions, 459-460
grouping on expressions, 461-462
mixing columns and expressions,

454-456
samples. See sample statements, GROUP

BY clause
simulating SELECT DISTINCT state-

ments, 457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

grouping expressions, GROUP BY clause,
461-462

H
HAVING clause, 480-482

filtering, 482-484
finding multiple matches in the same

table, 614-617
NOT, 604-605, 607
sample statements, 491

bowling league database, 497-498
entertainment agency database, 493-494

Index 751

recipes database, 498-499
sales orders database, 492-493
school scheduling database, 494-497

SELECT statement, 79
uses for, 490-491

HAVING COUNT, 485-490
history of relational databases, 4-5

I
IBM, origins of SQL, 58
IBM DB2, 733-735
IBM proprietary EBCDIC sequence, 164
IN

finding multiple matches in the same
table, 610-612

predicate keywords for subqueries,387-392
IN predicate, 160
inequality, comparison predicates, 166-167
information versus data, 79-81
INGRES (Interactive Graphics Retrieval Sys-

tem), 6, 60
INNER JOINs, 250

column references, 251-252
finding multiple matches in the same

table, 608-610
samples, 269-270

matching values, 283-294
multiple tables, 276-283
two tables, 270-275

syntax, 252
tables, 253-256
tables, assigning correlation names,

258-260
tables, embedding JOINs within JOINs,

262-267
tables, embedding SELECT statements,

260-262
tables, relationships, 267-268

uses for
finding matching values, 269
finding related rows, 268-269

INSERT, 541-543
generating primary key values, 547-548
sample statements, 556-557

entertainment agency database, 561-563
sales orders database, 557-560
school scheduling database, 564-567

uses for, 555-556
values, 543-547

inserting
data with SELECT, 548-555
values, 543-545, 547

Interactive Graphics Retrieval System
(INGRES), 6, 60

Intermediate SQL, 64
International Organization of Standardization

(ISO), 62
INTERSECT, SQL set operations, 240-242
intersection, 221
intersections, set operations, 222-223

between result sets, 224-227
problems you can solve, 227-228

interval data types, 113
date expressions, 130

ISNULL predicate, 160
ISO (International Organization for Standard-

ization), 62

J
JOIN eligible, 251
joining tables, INNER JOINs, 270-275

multiple tables, 276-283
JOINs, 227, 249-250

embedding with JOINs, OUTER JOINs,
310-320

embedding within JOINs, 262-267
INNER JOINs, 250
keywords, 256
NATURAL JOINs, 257
OUTER JOINs. See OUTER JOINs
UPDATE clause, 515-518
what can you join, 251

K
keys

foreign keys, 10
primary keys, 10
relational databases, 9-11
tables, 42-45

keywords
DISTINCT, 89, 364

subqueries, 390
FROM, 573
JOIN, 256

752 Index

predicate keywords for subqueries, 386
ALL, 392-395
ANY, 392-395
EXISTS, 395-396
IN, 387-392
SOME, 392-395

SELECT, 76

L
largest values, finding with MAX, 428-430
LEFT OUTER JOINs, 301, 309
less than, comparison predicates, 168-170
LIKE predicate, 160
linking columns, JOINs, 251
linking tables, 16
literal values, 116

M
many-to-many relationships, 14-16, 47
matches, finding in the same table, 607

EXISTS, 612-614
GROUP BY, 614-617
HAVING, 614-617
IN, 610-612
INNER JOINs, 608-610

matching values, INNER JOINs
finding with, 269
samples, 283-294

mathematical expressions, 121, 125-129
SELECT clause, 137-138

MAX
finding largest values, 428-430
finding smallest values, 430-431
subqueries, 381-383

mean values, calculating with AVG, 427-428
Microsoft Office Access, 736-737
Microsoft SQL Server, 738
missing values, finding

with EXCEPT, 243-245
with OUTER JOINS, 324

mixing columns and expressions, GROUP BY
clause, 454-456

multipart fields, resolving, 27-29
multiple conditions, 184

AND, 185, 189-190
checking for overlapping ranges, 197-199
excluding rows, 191-193

OR, 185-190
order of precedence, 193-194

less is more, 196-197
prioritizing conditions, 194-196

multivalued fields, resolving, 30-32
MySQL, 740-741

N
naming

expressions, SELECT clause, 135-136
fields, 23-25
tables, 33-35

national character data types, 111
NATURAL JOIN, 257
NIST (National Institute of Standards and

Technology), 65
non-key values, FULL OUTER JOINs, 323
NOT, 597

excluding rows with NOT, search condi-
tions, 181-184

GROUP BY, 604-607
HAVING, 604-607
NOT EXISTS, 603-604
NOT IN, 601-603
OUTER JOINs, 598-600
sets, 595-596

NOT EXISTS, 603-604
NOT IN, 601-603
Null, 141-143, 199-203

aggregate functions, 451
problems with, 143-144
search conditions, 179-181

numeric literals, explicit values, 118

O
ODBC, 65
one-to-many relationships, 14, 46
one-to-one relationships, 13, 46
operations, sets. See set operations
OR, 185-190

result sets, 202
Oracle, 743-744
ORDER, SELECT statement, 92
ORDER BY clause, SELECT query, 93-96
ORDER BY clause, SELECT statement, 92
order of precedence, 126

Index 753

order of preference, multiple conditions,
193-194
less is more, 196-197
prioritizing conditions, 194-196

organizational databases, 4
origins of SQL, 58-59

early implementations, 59-60
standardization, 60-62

OUTER JOINs, 234, 299-301
FULL OUTER JOINs. See FULL OUTER

JOINs
LEFT OUTER JOINs, 301
NOT, 598-600
RIGHT OUTER JOINs, 301
samples, 325

bowling league database, 335-337
entertainment agency database, 329-331
recipes database, 338-340
sales orders database, 326-328
school scheduling database, 331-334

syntax, 302
tables, 302-307
tables, embedding JOINs with JOINs,

310-320
tables, embedding SELECT statements,

307-310
UNION JOINs, 323
uses for, 324

finding missing values, 324
finding partially matched

information, 325
overlapping ranges, checking for, 197-199

P
parentheses

mathematical expressions, 127
prioritizing conditions, 195

partially matched information, finding with
OUTER JOINS, 325

participation, relationships, 49-54
pattern match condition, 175-179
PC-based RDBMS programs, 6
performing UNIONs, 347
predicate keywords for subqueries, 386

ALL, 392-395
ANY, 392-395
EXISTS, 395-396

IN, 387-392
SOME, 392-395

predicates
comparison predicates, 163

comparing string values, 163-166
equality and inequality, 166-167
less than and greater than, 168-170

range predicates, 170-173
WHERE clause, 159-160

primary key values, generating with INSERT,
547-548

primary keys, 10
tables, 42-44

prioritizing conditions, 194-196
problems

solving
with driver tables, 679
with unlinked data, 676-678

solving with CASE, 647
Searched CASE, 652-654
Simple CASE, 647-651

Q
quantified predicates, 392
QUEL (Query Language), 60
queries, executing, 97
quotes, single quotes, 117

R
range condition, 170-173
ranges, checking for overlapping ranges,

197-199
RDBMS (relational database management sys-

tem), 5-7
reasons for learning SQL, 69
recipes database

aggregate functions, 441-442
GROUP BY clause, 473-474
HAVING clause samples, 498-499
OUTER JOINs, 325
search conditions, 211-212
SELECT statements, 105-106
set sample statements, 633-635
subqueries

expressions, 403
filters, 412-413

UNIONs, 370-371

754 Index

records, relational databases, 9
referential integrity, 48

ANSI/ISO standard, 62
relational database management system

(RDBMS), 5-7
relational databases

fields, 9
history of, 4-5
keys, 9-11
RDBMS (relational database management

system), 5-7
records, 9
relationships, 12

many-to-many, 14-16
one-to-many, 14
one-to-one, 13

tables, 7-8
views, 11-12

Relational Software, Inc, 59
Relational Technology, Inc., 60
relationship integrity, 48
relationships, 45, 48

deletion rules, 48-49
many-to-many, 47
one-to-many, 46
one-to-one, 46
participation, 49-54
relational databases, 12

many-to-many, 14-16
one-to-many, 14
one-to-one, 13

tables, INNER JOIN, 267-268
requesting all columns using shortcuts, 87-88
requests

translating into SQL, 81-85
expanding field of vision, 85-87
using shortcuts to request all columns,

87-88
UNIONs, 348

complex SELECT statements, 351-354
SELECT statements, 348-349
sorting, 357-358
using UNION more than once, 355-356

resolving
duplicate fields, tables, 36-37, 39-41
multipart fields, 27-29
multivalued fields, 30-32

Index 755

restrict deletion rule, 48
restrictions

column restrictions, GROUP BY clause,
459-460

data types, 116
grouping on expressions, GROUP BY

clause, 461-462
result sets

combining with unions, 236-238
difference, 230-233
intersections between, 224-227
OR, 202

RIGHT OUTER JOINs, 301
row subqueries, 376-377
rows

counting with COUNT, 422-423
deleting

with DELETE, 573-574
with subqueries, 577-579
with WHERE clause, 575

duplicate rows, eliminating, 88-90
ensuring you delete the correct rows,

575-576
ensuring you’re updating the correct rows,

UPDATE, 509
excluding, 191-193
filtering with subqueries, 512-515
finding related rows, INNER JOINs,

268-269
updating with UPDATE, 508

S
SAA, 65
sales order database

aggregate functions, 435-436
CASE sample statements, 656, 658-659
DELETE sample statements, 581-582
driver tables sample statements, 697-698
GROUP BY clause, 464-465
HAVING clause samples, 492-493
INSERT samples, 557-560
OUTER JOINs, 326-328
search conditions, 205-206
SELECT statements, 98-99
set sample statements, 618, 620-622
subqueries

expressions, 399-400
filters, 405-406

UNIONs, 360-364
unlinked data sample statements, 697-698
unlinked tables sample statements,

687-688
UPDATE samples, 522-526

sample statements
aggregate functions, 435

bowling league database, 439-440
entertainment agency database, 437
recipes database, 441-442
sales orders database, 435-436
school scheduling database, 438

CASE, 655-656
bowling league database, 666-668
entertainment database, 659-662
sales order database, 656, 658-659
school scheduling database, 662-665

defined pattern strings, 176
DELETE, 580-581

bowling league database, 586-588
entertainment agency database, 582-584
sales orders database, 581-582
school scheduling database, 584-585

driver tables, 697
bowling league database, 703-704
entertainment database, 698-700
sales order database, 697-698
school scheduling database, 700-703

expressions, 144-145
bowling league database, 151-152
emergency agency database, 147-148
sales orders database, 145-146
school scheduling database, 149-150

GROUP BY clause, 463
bowling league database, 470-472
entertainment agency database, 466-467
recipes database, 473-474
sales orders database, 464-465
school scheduling database, 468-469

HAVING clause, 491
bowling league database, 497-498
entertainment agency database, 493-494
recipes database, 498-499
sales orders database, 492-493
school scheduling database, 494-497

INNER JOINs, 269-270
matching values, 283-294
multiple tables, 276-283
two tables, 270-275

756 Index

INSERT, 556-557
entertainment agency database, 561-563
sales orders database, 557-560
school scheduling database, 564-567

OUTER JOINs, 325
bowling league database, 335-337
entertainment agency database, 329-331
recipes database, 338-340
sales orders database, 326-328
school scheduling database, 331-334

search conditions, 204
bowling league database, 210
entertainment agency database, 206-208
recipes database, 211-212
sales orders database, 205-206
school scheduling database, 208-209

SELECT statements, 97
bowling league database, 103-104
entertainment agency database, 100-101
recipes database, 105-106
sales orders database, 98-99
school scheduling database, 102

sets, 618
bowling league database, 629-633
entertainment database, 622-624
recipes database, 633-635
sales orders database, 618-622
school scheduling database, 625-628

subqueries, expressions
bowling league database, 403
entertainment agency database, 400
recipes database, 403
sales orders database, 399-400
school scheduling database, 401

subqueries, filters
bowling league database, 410-411
entertainment agency database, 406-407
recipes database, 412-413
sales orders database, 405-406
school scheduling database, 408-409

UNIONs, 359
bowling league database, 368-370
entertainment agency database, 365
recipes database, 370-371
sales orders database, 360-364
school scheduling database, 366-367

unlinked data, 686
unlinked tables. See unlinked tables,

sample statements

unlinked tables
bowling league database, 695-696
entertainment database, 689-691
sales order database, 687-688
school scheduling database, 691-695

UPDATE, 521-522
bowling league database, 533-537
entertainment agency database, 526-530
sales orders database, 522-526
school scheduling database, 530-533

saving SELECT statements, 96-97
scalar subqueries, 376-378
school scheduling database

aggregate functions, 438
CASE sample statements, 662-665
DELETE sample statements, 584-585
driver tables, 700-703
expressions, 149-150
GROUP BY clause, 468-469
HAVING clause samples, 494-497
INSERT sample statements, 564-567
OUTER JOINs, 331-334
search conditions, 208-209
SELECT statements, 102
subqueries

expressions, 401
filters, 408-409

set sample statements, 625-628
UNIONs, 366-367
unlinked data sample statements, 700-703
unlinked tables sample statements, 691-695
UPDATE samples, 530-533

search conditions, 158, 254
comparison predicates, 163

comparing string values, 163-166
equality and inequality, 166-167
less than and greater than, 168-170

excluding rows with NOT, 181-184
Null condition, 179-181
pattern match condition, 175-179
range condition, 170-173
samples, 204

bowling league database, 210
entertainment agency database, 206-208
recipes database, 211-212
sales orders database, 205-206
school scheduling database, 208-209

set membership condition, 173-175

Index 757

Searched CASE, 644
solving problems, 652-654

SELECT clause, 76
expressions, 133

concatenation, 134-135
date expressions, 138-139
mathematical expressions, 137-138
naming, 135-136

inserting data, 548-555
SELECT statement, 78

SELECT DISTINCT statements, simulating
with GROUP BY clause, 457-458

SELECT expression, 76
SELECT operation, 76
SELECT query, 76

sorting, 91-92
ORDER BY clause, 93-96

SELECT statements, 76-77
clauses, 77-79
eliminating duplicate rows, 88-90
embedding OUTER JOINs, 307-310
embedding in tables, 260-262
ORDER, 92
ORDER BY clause, 92
sample statements, 97

bowling league database, 103-104
entertainment agency database, 100-101
recipes database, 105-106
sales orders database, 98-99
school scheduling database, 102

saving, 96-97
sorting, 91-92
WHERE clause. See WHERE clause
writing requests with UNIONs, 348-349

complex statements, 351-354
SEQUEL-XRM, 58
sequences, collating, 92-93
set diagrams, 225
set membership condition, 173-175
set operations, 221

difference, 228-230
between result sets, 230-233
problems you can solve, 233-234

intersections, 222-223
between result sets, 224-227
problems you can solve, 227-228

SQL
EXCEPT, 243-245
INTERSECT, 240-242
UNION, 245-247

versus SQL set operations, 239
unions, 234-235, 238

combining result sets, 236-238
problems you can solve, 238-239

sets, 220-221
combining with UNION, 245-247
including some criteria but excluding oth-

ers, 596-597
with multiple AND criteria, 594-595
with multiple NOT criteria, 595-596
NOT. See NOT
overview, 593-594
sample statements, 618

bowling league database, 629-633
entertainment database, 622-624
recipes database, 633-635
sales orders database, 618-622
school scheduling database, 625-628

shortcuts, requesting all columns, 87-88
Simple CASE, 644

solving problems, 647-651
single quotes, 117
smallest values, finding with MIN, 430-431
solving

problems
with driver tables, 679
with unlinked data, 676-678

problems with CASE, 647
Searched CASE, 652-654
Simple CASE, 647-651

SOME, predicate keywords for subqueries,
392-395

sorting
SELECT query, 91-92

ORDER BY clause, 93-96
SELECT statement, 91-92
UNIONs, 357-358

SQL, origins of, 58-59
early implementations, 59-60
standardization, 60-62

SQL set operations
versus classic set operations, 239
EXCEPT, 243-245

INTERSECT, 240-242
UNION, 245-247

SQL Standard, data types, 111
restrictions, 116

SQL standard diagrams. See Appendix A
SQL standards, structure of, 66-68
SQL/86, 61-63
SQL/89, 62-63
SQL/92, 63-64
SQL/DS, 60
SQUARE (Specifying Queries As Relational

Expressions), 59
standardization, 66

ANSI/ISO standard, 62-65
FIPS, 65
ODBC, 65
origins of SQL, 60-62
SAA, 65
X/OPEN, 65

START TRANSACTION, 510
statements

DELETE. See DELETE
INSERT. See INSERT
SELECT DISTINCT statements. See SELECT

DISTINCT statements
UPDATE. See UPDATE

Stonebraker, Michael, 60
string values, comparing, 163-166
structure of SQL standards, 66-68
structures, 22

fields, 23
checklists for, 25-27
naming, 23-25
resolving multipart fields, 27-29
resolving multivalued fields, 30-32

relationships, 45, 48
deletion rules, 48-49
participation, 49-54

tables, 32
checklists for, 35-36
keys, 42-45
naming, 33-35
resolving duplicate fields, 36-41

subqueries, 376
as column expressions, 378

aggregate functions, 381-383
syntax, 378-381

758 Index

deleting rows, 577-579
filtering rows, UPDATE, 512-515
as filters, 384

predicate keywords, 386-396
syntax, 384-386

row subqueries, 376-377
sample statements, 399

in expressions, bowling league database,
403

in expressions, entertainment agency
database, 400

in expressions, recipes database, 403
in expressions, sales orders database,

399-400
in expressions, school scheduling data-

base, 401
as filters, bowling league database,

410-411
as filters, entertainment agency data-

base, 406-407
as filters, recipes database, 412-413
as filters, sales orders database, 405-406
as filters, school scheduling database,

408-409
scalar subqueries, 376-378
table subqueries, 376-377
UPDATE expressions, 518-520
uses for, 397-398
WHERE clause, GROUP BY clause, 456-457

SUM, counting rows and values, 425-426
syntax

FULL OUTER JOINs, 320-322
INNER JOIN, tables, 252-256

assigning correlation names, 258-260
embedding JOINs within JOINs, 262-267
embedding SELECT statements, 260-262
relationships, 267-268

OUTER JOINs, tables, 302-307
embedding JOINs with JOINs, 310-320
embedding SELECT statements, 307-310

System R, 6, 60

T
table subqueries, 376-377
tables, 32

checklists for, 35-36
driver tables. See driver tables
duplicate fields, resolving, 36-41

Index 759

INNER JOIN, 253-256
assigning correlation names, 258-260
embedding JOINs within JOINs,

262-267
embedding SELECT statements, 260-262
relationships, 267-268

joining, samples, 270-275
matching values, 283-294
multiple tables, 276-283

keys, 42-45
linking tables, 16
naming, 33-35
OUTER JOINs, 302-307

embedding JOINs with JOINs, 310-320
embedding SELECT statements, 307-310

relational databases, 7-8
unlinked, 673-675

time expressions, 131-133
time literals, 119-120
timestamp literals, 119-120
totals, computing with SUM, 425-426
trailing blanks, 166
transactions, UPDATE, 510-511
translating requests into SQL, 81-85

expanding field of vision, 85-87
using shortcuts to request all columns,

87-88

U
UNION JOINs, 323
UNIONs, 221, 234-235, 238, 345-348

combining result sets, 236-238
performing, 347
problems you can solve, 238-239
sample statements, 359

bowling league database, 368-370
entertainment agency database, 365
recipes database, 370-371
sales orders database, 360, 362-364
school scheduling database, 366-367

SQL set operations, 245-247
uses for, 358-359
writing requests, 348

complex SELECT statements, 351-354
SELECT statements, 348-349
sorting, 357-358
using UNION more than once, 355-356

unlinked data, 672-674
CROSS JOINs, deciding when to use, 675
driver tables. See driver tables
sample statements, 686

unlinked tables. See unlinked tables,
sample statements

solving problems with, 676-678
driver tables, 679

unlinked tables, 673-675
sample statements

bowling league database, 695-696
entertainment database, 689-691
sales order database, 687-688
school scheduling database, 691-695

UPDATE, 505-507
ensure you’re updating the correct

rows, 509
expressions, 507-508

subqueries, 518-520
updating selected rows, 508

JOINs, 515-516, 518
samples, 521-522

bowling league database, 533-537
entertainment agency database, 526-530
sales orders database, 522, 524-526
school scheduling database, 530-533

subqueries, filtering rows, 512-515
transactions, 510-511
updating multiple columns, 511-512
uses for, 520-521

updating
multiple columns, 511-512
selected rows, UPDATE, 508

USING clause, 256

V
value expressions, 139-141
values

counting with COUNT, 424-425
explicit values. See explicit values
inserting, 543-547
non-key values, FULL OUTER JOINs, 323
Null, 141-143, 199-203

problems with, 143-144
Venn diagram, 225
Venn, John, 225
views, relational databases, 11-12

W
WHERE clause, 157-159, 256

CASE, 655
deleting rows, 575
filtering, 482-484
predicates, 159-160
SELECT statement, 79
using, 160-162
using GROUP BY in subqueries, 456-457

Wong, Eugene, 60
writing requests with UNIONs, 348

complex SELECT statements, 351, 353-354
SELECT statements, 348-349
sorting, 357-358
using UNION more than once, 355-356

X-Y-Z
X/OPEN, 65
X3H2, 61-62

760 Index

The #1 Easy, Commonsense Guide
to Database Design!

Michael J. Hernandez’s best-selling Database Design for Mere Mortals®, has earned
worldwide respect as the clearest, simplest way to learn relational database design. Now,
he has made this hands-on, software-independent tutorial even easier, while ensuring
that his design methodology is still relevant to the latest databases, applications, and
best practices. Step by step, Database Design for Mere Mortals, Third Edition, shows
you how to design databases that are soundly structured, reliable, and flexible, even
in modern web applications. Hernandez guides you through everything from database
planning to defining tables, fields, keys, table relationships, business rules, and views.
You’ll learn practical ways to improve data integrity, how to avoid common mistakes,
and when to break the rules.

ISBN-13: 978-0-321-88449-7

For more information and sample content,
visit informit.com. eBook and print formats available.

	Contents
	Foreword
	Preface
	About the Authors
	Introduction
	Are You a Mere Mortal?
	About This Book
	What This Book Is Not
	How to Use This Book
	Reading the Diagrams Used in This Book
	Sample Databases Used in This Book
	“Follow the Yellow Brick Road”

	CHAPTER 7 Thinking in Sets
	What Is a Set, Anyway?
	Operations on Sets
	Intersection
	Difference
	Union
	SQL Set Operations
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

