To my three angels…
Brittany, Nastasia, and Sofia
with all my love.
Acknowledgments

I would like to begin by giving special thanks to my good friend William Vaughan. William is, by far, the most talented artist I’ve ever met. We share a common kinship—a love and passion for teaching the arts we ourselves love. William was kind enough to recommend to Pearson that I write this book, make the introduction, and then even come on board to handle the technical editing. I am always delighted by how insightful he is and by the straightforward, pull-no-punches honesty that we have with one another. I will always look forward to an opportunity to work alongside Will. This book would not have been possible without him.

I would also like to thank Karyn Johnson, Nancy Peterson, and the rest of the wonderful team at Pearson who allowed me the opportunity to create this book for you. Special thanks to Corbin Collins for his amazing attention to detail and for putting up with me whenever I bucked convention. I have, no doubt, become a better writer as a result of his guidance and patience.

No show of thanks would be complete without thanking the many outstanding creative people I’ve worked with, taught with, bounced ideas off of, or learned a trick or two from over the years, and who have helped inspire and shape what this book is, including Ron Thornton, Glenn Campbell, Bill Holshevnikoff, Scott Billups, Andrew Kramer, John Knoll, Ron Brinkman, Mike Seymour, John Montgomery, Ryan Pribyl and Debby Furnival at FXPHD, Jeff and Ann Scheetz, Saham Ali, Dave West, Mike Young, Craig Nesbit, Jason Pichon, Dan Smith, Michael Keith, Ed Ruiz, Matt Jolly, Anthony Marigliano, Amy Putrynski, Emma Webb, Errol Hanse, Pavel Hristov, Les Foor, Andrey Kasatsky, Justin Wildhorn, Matthew Wuenschel, Dylen Valesquez, Anthony Solitario, Steve Porter, Beth Lockhard, the Digital Animation & Visual Effects School, Amir Rubin, Anna Vittone, Christian von Kleist and everyone at Paracosm, Enoc Burgos and the crew at Reallusion, every cast and crew member I’ve had the pleasure of working with over the years, all my students (whom I’ve always regarded as future colleagues who I just needed to quickly bring up to speed), and Kenny Pederson (for recording a year’s worth of my classes, which allowed me to look back, reference, and recall subtle nuances that were important to students over the years).
I would also like to thank my dad and Jinny for all of their love and support and no words could ever express my thanks to my three angels, my daughters, Brittany, Nastasia, and Sofia for being my inspiration, the lights of my life and for being so amazingly understanding of their dad being “not-really-there-even-when-he-was-there” sometimes during the writing of this book. I love you girls more than words can ever say!

And last but not at all least, I dedicate this book to my mom who has always been my biggest supporter and champion. I love you, Mom!
Contents

Foreword xv
Introduction xvii

Chapter One Film and Video Primer Boot Camp for VFX 3

Intro to the Motion Picture/VFX Pipeline 4
What Are Moviemaking and VFX? 4
Principles of Motion Pictures and VFX:
Film School Crash Course 7
The Origins of Visual Effects 22
Thomas Edison and Alfred Clark: Stop Motion 22
Georges Méliès 23
Oscar G. Rejlander 28
In the Beginning: In-Camera Effects 30
Single-Pass In-Camera Techniques 30
Matting for Multiple Exposure 41
Traditional Animation 42

VFX Cues 43
Camera 43
Lights 48
Depth and Atmospherics: Identifying Depth and Atmospheric Attributes 52
Media: Identifying Film/Video Stock (Grain/Noise) Attributes 53

Tech and the Digital Realm: The Binary World and Digital Formats 53
Data Transfer, Color Depth, and Compression Formats 55
Resolution and Aspect Ratio Comparisons 59
The Human Eye vs. Film and Video 62
Shooting Speeds 62
Format Comparisons and “What Is Film Look?” 62

VFX Concepts 64
Thinking in Layers 65
Complex and Multisource Operators
Contents

Chapter Two Introduction to VFX: Advanced Photoshop for 3D, VFX, and Digital Compositing 73

Photoshop Selection Methods 74
 Simple Selections 74
 Alpha Channels 77
 Advanced Selections 78
 Levels Adjustment 79
 Channel Ops 80
Application of Selection Methods: Grunge and Grime Maps 84
 Procedural Extraction of Grunge and Grime Maps 84
 The Five Magical Uses of Grunge and Grime Maps 87
Other Matched Texture/Layer/Element Sets 95
Cloning 98
 Basic Cloning Techniques, Tips, Tricks, and Strategies 101
2D Visual Effects 104
 Paint: Wire and Wig Removal 104
 Matte and Roto 105
Compositing 108
 Compositing Applications 109
 Layer-based Composers 110
 Nodal-based Composers 110
 Keyer Types and Concepts 111

Chapter Three Rotoscoping, Motion Tracking, and 2D Matchmoving 115

Introducing Roto 116
 Rotoscoping Mattes 116
 Roto Basics: Types of Rotosplines 117
 The Golden Rules of Roto 119
Isolated Roto for Keying 122
Roto Applications 122
2D Motion Tracking 123
Anatomy of a Motion Tracker 124
Types of 2D Motion Tracking 124
The Golden Rules of Motion Tracking 126
Comparing Good and Bad Tracking Targets 128
2D Motion Tracking Applications 132
Tracker Assisted Roto 134
2D Matchmoving 136
Stabilization 137
Destabilization 137
Advanced 2D Tracking Strategies 138
Hand 2D Matchmoving 139

Chapter Four 3D for VFX 143
How 3D CGI Is Created 143
3D Applications 150
Maya 150
3ds Max 151
LightWave 3D 151
Cinema 4D 152
Modo 152
Blender 153
3D Motion Tracking 153
3D Motion Tracking Application Technique 155
3D Motion Tracking Applications 159
3D Matchmoving 162
Advanced 3D Tracking Strategies 162

Chapter Five VFX Techniques I: Basic Integration VFX 171
CG/VFX Lighting and Integration 172
Method and Technique for VFX Element Lighting 173
2D Motion Tracking and CG Integration 176
Step 1: Analyze the Shot, Elements, and VFX to Be Created 177
<table>
<thead>
<tr>
<th>Chapter</th>
<th>VFX Techniques II: Advanced Integration and Card Trick VFX</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fine-Tuning Integration: Film Grain/Video Noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matching and Light Wraps</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Matching Film Grain and Video Noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creating Procedural Light Wraps</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>2D and 2.5D Crowd Replication</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>2D Face Replacement</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Card Tricks: Outside-the-Box Strategies</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>The Grid</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>House of Cards</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>For the Birds</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Seven</th>
<th>VFX Techniques III: 3D VFX</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D Tracking and Matchmoving CG</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>3D Tracking</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>3D Matchmoving CG</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Hand 3D Tracking: Matchimation</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>3D Object Tracking and Replacement</td>
<td>246</td>
</tr>
</tbody>
</table>
Chapter Eight VFX Techniques IV: 2.5D VFX 255
 2.5D Atmosphere FX 255
 2.5D Smoke: Cloud FX 260
 Faking Z-Depth and Ambient Occlusion 263
 Fake Ambient Occlusion (AO) 263
 Fake Z-Depth 267
 Displacement FX: Water, Heat, Cloak 272

Chapter Nine VFX Techniques V: 279
 Bread and Butter VFX
 Sky Replacements 279
 Reverse Sky Replacement Method 280
 Extraction Sky Replacement Method 283
 Day for Night and Summer for Winter 285
 Day for Night 285
 Summer for Winter 297
 Digital 3D HUD Creation 302
 Wire and Rig Removal 306
 Time Ramping 310
 Multi-pass Rendering and Compositing 313

Chapter Ten Advanced VFX Techniques I: 323
 Digital Matte Painting and Environment VFX
 2.5D Compositing 323
 Digital Matte Painting and Set Extensions:
 2D, 3D, and 2.5D 327
 Advanced 2.5D Camera Movement 339
 Complex 2.5D Digital Matte Paintings and
 Camera Projections 343
 Complex 2.5D Digital Matte Paintings 343
 Camera Projections 348
 Digital Environment Applications 354
 Vue 354
 Terragen 354
 World Machine 356
Virtual Sets 357
Virtual Studio 358

Chapter Eleven Advanced VFX Techniques II: Beauty and Restoration VFX 365

Film Colorization 366
Digital Beauty 370
 Digital Makeup and Tattoos 370
 Digital De-Aging 373
Advanced Lighting and Rendering 376
 Global Illumination, Radiosity, and Image-Based Lighting 376
 High Dynamic Range Images and Light Probes 379
 Baked sIBL and Spinning Light Rig Solutions 382
 Studio No Lighting Radiosity Lighting 385

Chapter Twelve Advanced VFX Techniques III: Particle Systems, Dynamics, and Simulation VFX 389

Introducing Particle Systems 390
 Null Objects 390
 The Components of a Particle System 390
 Particle System Rendering: Partigons and Non-Rendering Nulls 396
 Voxels and Voxel-Based Particle System Rendering 397
 Sprite-Based Particle System Rendering 400
 Linked 3D Geometry-Based Particle Systems 401
Introducing Dynamics 401
 Rigid Body Dynamics 401
 Bullet Dynamics 403
 Soft Body Dynamics 403
Specialized Fluid Simulation and Dynamics Applications and Plugins 404
 RealFlow 404
 TurbulenceFD 405
 Other Fluid Dynamics Applications 407
Chapter Thirteen Advanced VFX Techniques IV: Particle, Crowd, and Destruction VFX 409

2.5D vs. 3D Particle-Based Crowd Replications 410
 2.5D Crowd Replication 411
 3D Particle-Based Crowd Replication 414
3D Particle-Based Debris Systems 418
Digital Destruction 420
 Putting It All Together (or Blowing It All Apart) 422
 3D Model Substructures 423
 Hull Burn and Dematerializing VFX 426
 Muzzle Flashes and Fake Interactive Lighting 429
 Bullet Hits 431

Chapter Fourteen Stereoscopic 3D and 2D to 3D Conversion VFX 435

Guerrilla/Hacker-Style DIY 3D Glasses 436
History, Background, and Core Concepts 436
Creating Stereoscopic 3D 439
 Stereoscopic Cameras and Camera Rigs 439
 Creation of Stereoscopic 3D 439
 3D Animation 446
 Creating Color Anaglyph Stereoscopic 3D 447
 Creating Black and White Anaglyph 448
 Stereoscopic 3D 448
 Channel Shift and 2D Layer Extraction Offset 449
 2.5D Layer Offset 450
 Photoshop 3D Tools 452
 Pulfrich Effect 453
2D to 3D Stereoscopic Conversions 454
 Methods of 2D-to-3D Stereoscopic Conversions 454
 Technology and Implementation 454
Chapter Fifteen Advanced VFX Techniques VI: Cutting-Edge 3D VFX 461

Advanced 3D and Photoshop Magic 462
 Vanishing Point Photogrammetry 462
 3D Extractions 466
 3D Re-Lighting 467

Displacement Modeling 470
 Procedural Futuristic or Space Complex Design 470
 Creating Complex Terrains Using DEM and SRTM Data 474
 xQuick and Dirty Procedural City Extractions Using Displacements 478

New Technologies 482
 Ricoh Theta 482
 Reallusion iClone, 3DXchange, and Mocap Plugin 484
 123D Catch 487
 X-cam and Paracosm 488

A Final Note to You 491

Appendix The VFX Compositor’s Checklist and Other Resources 492

The VFX Compositor’s Checklist 492
Key Phrases to Live By as a VFX Artist 494
VFX Artist Quick Reference Lists 494
Starting Your VFX Career 501

Index 506
Foreword

Since ancient times, magic has been a common source of entertainment. Magic is the act of entertaining an audience using tricks to create illusions of the impossible using natural means. An artist who performs magic is often called a magician or an illusionist, which has led me to think of visual effects artists as digital illusionists.

Visual effects artists have taken illusions to previously unimaginable places over the years and have carried on the legacy of the many illusionists who went before them. One attribute that separates a traditional illusionist from his digital counterpart is secrecy. Whereas traditional magicians kept secrets to preserve the mystery of their tricks, the best visual effects artists I know are quick to break down their digital illusions and share them not only with other VFX artists, but the audiences as well.

My career has afforded me the opportunity to work with many of these talented VFX artists over the years, both in productions and in the classroom. To produce digital illusions, VFX artists’ primary skill is problem solving. Visual effects instructors must attain high levels of problem-solving ability, but they must also acquire the ability to pass their knowledge onto others. Finding a VFX instructor is easy. Finding a great instructor with the ability to inspire and create production-ready artists with the needed skills often feels like a magic trick of its own.

Jon Gress is among the rare breed of VFX artists who can move seamlessly between problem solving on a production and imparting his experience in the classroom. To truly appreciate Jon as a VFX artist, you have to see him in action during a production. I first met him ten years ago while he was directing the award-winning, live-action, visual effects-heavy student short film NASA Seals. I walked into the studio during the last few weeks of production and witnessed what looked to be chaos and a production that was out of control. It turns out, it was orchestrated chaos.

At the time, Jon was filming a few greenscreen pick-up shots of an actor floating off into space, directing artists working on several digital destruction shots, and fine-tuning the edit, among other things. It was fun watching how trivial he made the whole process look and how he effortlessly motivated the team of artists, even at the 11th hour of production, when most teams would be discouraged. It’s no real surprise that some of those artists went on to
work at studios like Digital Domain, WETA Digital, Zoic, Pixomondo, The Asylum, Cinesite, Prime Focus, and Walt Disney Animation Studios.

A couple years later, I recommended that the Digital Animation and Visual Effects School at Universal Studios hire Jon as the VFX instructor. The school was in the process of retooling its curriculum and needed someone with Jon’s experience to come in and help enhance the training the school was providing. Shortly after Jon came on board, the quality of the work being produced by the students increased exponentially. More importantly, the students had a newfound love of the art of visual effects.

Jon brings a contagious energy to anything he is involved with, and he is passionate about the craft of filmmaking. Couple that with his hands-on experience with and knowledge of VFX and his ability to problem-solve and you have the skillset needed to train the next generation of digital artists.

Over the years, Jon has helped to keep movie magic alive and thriving by training hundreds of artists who have gone on to work on everything from summer blockbuster feature films to award-winning television series, and more.

When I heard that Jon was going to be writing a book on visual effects, I was excited that his knowledge would finally be bottled and find its way into the hands of more artists.

Throughout the pages of this book, Jon introduces you to the magic of visual effects and imparts his knowledge so that you can create your own digital illusions. Your audience will walk away knowing that what they saw couldn’t have been real—but they will still believe.

—William Vaughan, Academic Director, Digital Animation and Visual Effects School
Introduction

Over the past 20 plus years, I’ve done just about every job imaginable in the worlds of movies, TV, radio, and music—from writing, producing, directing, and visual effects supervising to cinematography, recording, and even performing. I’m one of those fortunate people who has always just known what they wanted to do… make movies.

I made my first “film” at four years old (see Figure 1) by hijacking my father’s 8mm film camera and sneaking outside to surreptitiously film the gardener. It was by no means an epic, but even at that young age, I was already fascinated with movies. I had been bitten by the bug that early filmmakers called silver addiction (so named because of the filmmaking obsession that required expensive silver halide-based film stocks and processing the love and need to make movies. I knew, even from early childhood, that I wanted to be on the cutting edge of any new technology that could bring any vision imaginable onto the silver screen and into reality.
By the time I was writing, producing, and directing my own productions, I found that I needed to constantly, and quickly, be able to bring the people working with me up to speed using these advanced technologies in order for them to be able to effectively help me work on these quests (and they were truly quests). It wasn’t long, after repeating these little training sessions over and over, before I began formalizing this “film/VFX crash course” into a complete, concrete, teachable curriculum that I then refined, again and again, over the next decade or so. Eventually, I was formally teaching hundreds of visual effects (VFX) artists who, as a result of this material, are now successfully working at virtually every major visual effects company around the world. This curriculum had evolved into perhaps the fastest and most complete curriculum for becoming a competent and professional visual effects artist.

So that is what this book is: decades of production experience and more than ten years of refined teaching (training real-world visual effects artists—some with absolutely no experience at all), distilled into one book you can use to go after your dream of creating VFX and the movies you want to work on.

My Promise to You

I despise fluff, especially when it comes to training materials. Anyone who has read a training book, watched a video training tutorial, or sat through a seminar knows what I am talking about. That moment you heard the ninth regurgitation of a simple example or concept… after you’ve lost count of the never-ending ummms and uhhhs… the point after you’ve contemplated methods of escape from a presenter’s incessant slurping, nervous coughing, monotone blathering, or pointless passage… that moment you realize, “Why am I sitting here for this??! This could have been explained in one simple sentence! Hours ago!” Why is [the presenter] still endlessly drudging on about the same thing??!” Well, I agree with you. In fact, that is the entire premise and reason I am writing this book. I’m just like you. I can’t tell you how many times I’ve exclaimed, “Get on with it already!” while reading training materials or watching a training lecture or video.
My promise to you, as one who can empathize, is that I will present to you, in as streamlined and concise a manner as possible, everything I can to make you an excellent VFX artist with no fluff.

What to Expect from This Book

If I do present something that might seem like fluff, be assured, it isn’t. Any example or information I include related to film, video, art, history, and so on, or something that might seem to be extraneous, has been carefully selected and is included for a very precise and practical purpose. Usually, it is because the example is one of the earliest, and thus easiest to understand, and can form the basis for a very complex concept I cover later in the book.

I have taken a lot of artistic license with some of the scientific and technical information I will reveal and present to you in this book. Years of teaching these concepts and techniques have allowed me to refine them into very distilled forms that are easy to understand, relate to, and remember. I’ve even distilled some technical information into a “not so perfectly scientifically accurate” form, but one that makes sense to those of us with less-than-alien-sized heads who aspire to be excellent VFX artists, not engineers.

It is my opinion that what is crucial to being a good VFX artist is that you have a solid comprehension of the concepts and techniques of film and visual effects, and that you do not necessarily have to know every bit of science behind it or software button to be pushed. I would guess that you probably have no clue as to what the precise spark plug gap measurements are in your car or how to set them, yet you are able to drive perfectly fine. That is why I take a software-agnostic approach wherever possible, unless I am teaching a particular application or making comparisons between applications.

By the time you finish carefully reading this book, you will know most of what you need to know to accomplish virtually any visual effect you can think of. At the very least, you’ll know how to proceed to accomplish any effect. Understand, knowing is only half of the equation. Actual doing must take place as well. With practice and perseverance, I have no doubt you will become the visual effects artist you aspire to be.

Special Features of This Book

But that’s not all. This is not your ordinary book. Oh, not at all. Read on to find out about some of its hidden gems.
Downloading Files to Use as You Follow Along

I created numerous VFX and other image/movie files to use as examples in this book. I’ve made many of them available to you for download from the Peachpit website. This way, you can work alongside me, using many of the same files you see in the book’s figures.

All you have to do is go to www.peachpit.com/register and follow the instructions for registering this book. After that, a download link will appear, and you can follow that link to retrieve your files.

Aurasma Augmented Reality–Enabled Features

Download the Aurasma augmented-reality (AR) app for your iPhone or Android device, do a search for visual effects, and then “follow” the channel that has the picture of the cover of this book.

Open the Aurasma AR viewer, point it at the cover of this book (whether the physical book on your bookshelf or even an image of it that you may come across online), and watch the cover image come to life with a dazzling preview of what’s inside the book.

One of the amazing benefits of all of these great new technologies I work with is that I am able to continue to extend the features of this book far past the print version. From time to time, I will post augmented-reality updates to this book to add new tips, tricks, examples, and other amazing new content. I will list these on my website at: http://jongress.com/vfxbook/AR. To use these new updates, just open the book to the page and image listed in the AR Update, open the Aurasma app, and point your device’s camera at the image to see the amazing new AR features.

Stereoscopic 3D Features

Chapter 14 is an entire crash course in stereoscopic 3D creation. To best experience the examples, you will need a common pair of 3D red/cyan glasses. If you don’t have a pair of these handy, you can easily find them for around a dollar online by doing a simple web search for paper 3D glasses. These cheap paper ones work just fine, but if you plan on doing more extensive stereoscopic 3D work, I recommend that you invest in a pair of more durable plastic ones. If you have trouble finding them, head on over to my website at http://jongress.com/vfxbook/3dglasses and I’ll be happy to send you a pair for free (if you just cover the shipping).
But if you’re so excited to get started that you just can’t wait and you need a pair right now, Chapter 14 includes a make-your-own, guerrilla-style DIY method for creating a pair of 3D glasses in a pinch, using commonly found items; you can use these until your real pair arrives.

Extended and Bonus Features

Since I am constantly developing new concepts, techniques, and technologies, in addition to the AR and 3D content, from time to time I will also add new tips, tricks, techniques, and info about breaking technologies and more to the book. Check in now and then at the book’s website at www.peachpit.com/store/digital-visual-effects-and-compositing-9780321984388 and my website at http://jongress.com/vfxbook.

How to Use This Book

This book (and accompanying materials) has been refined over my many years of teaching hundreds of Hollywood visual effects artists (Figure 2), to be a complete VFX course and reference. It is designed to take you from your current level of knowledge (whether you are a total VFX novice or have some knowledge already), to a professional level of understanding all the principles, skills, and techniques, from foundations and basics to the cutting edge of working as a professional VFX artist, in the fastest time possible.

Each chapter builds upon the previous chapter, so your best bet is to read the chapters in order to gain the maximum benefit and then use the book as your go-to reference thereafter.

You may be tempted to skim through Chapter 1, which, in the lecture series I do, is affectionately called “Hell Week” by those I train, owing to the overwhelming and intense amount of technical information that I like to get out of the way as quickly as possible—typically in a week. Nevertheless, I highly recommend reading Chapter 1 in full. It’s not critical that you fully comprehend, memorize, or even retain all the information in Chapter 1, but you should try to assimilate as much as you can. By simply being exposed to the information, you will undoubtedly retain much of it by osmosis.
I present much of my material in what I like to refer to as “Miyagi-style” (referring to the character in the movie Karate Kid). Mr. Miyagi teaches his student very effective skills, without the student even realizing he’s being taught, through a series of simple, seemingly irrelevant lessons. So many important jewels of knowledge are hidden in the form of analogies, short, true-life production stories, and even simple or seemingly not-so-important skills. Remember my promise… everything in this book is relevant. Like Neo in The Matrix, you will catch yourself realizing, “Whoa! I know Kung Fu!” (In Chinese, the term kung fu (功夫) refers to any skill that is acquired through learning or practice.)

So without further ado… plug yourself in to the matrix… let’s roll!
3D for VFX

VFX have advanced tremendously since their humble stage beginnings as practical special effects in the late 1800s and early 1900s. With the rapid advancements in computer graphics technologies and techniques in the late 1990s and early 2000s, those models, miniatures, and puppets rapidly gave way to the world of 3D CGI (computer-generated imagery). In 3D, anything can be created—from props and digital prosthetics to entire sets and even full 3D worlds.

How 3D CGI Is Created

At the heart of 3D CGI is the concept of representing the 3D world on a 2D screen. To do this, computer software must somehow calculate and simulate points in space in the 3D world in order to draw (or render) points (also known as vertices) and surfaces (whether polygons, surfaces, normal vectors, also called normals, or faces). We VFX artists use a common mathematical 3-axis system to describe our virtual 3D world.

We call this the XYZ coordinate system. Typically X represents the horizontal axis, Y represents the vertical axis, and Z represents the in and out or depth axis. If you are unfamiliar with the XYZ coordinate system, an easy way to remember it is to hold your fingers like a child pretending to shoot a gun, but with your middle finger sticking out at a 90 degree angle (perpendicular) to your pointer finger, as seen in Figure 4.1. With your fingers in this configuration, as silly as it might look to those around you, your middle finger is the X axis, your thumb is the Y axis, and your pointer is the Z axis.

![Figure 4.1](image_url)
Fingers representing the XYZ coordinate system: middle finger (X), thumb (Y), and pointer (Z)
There are a few different methods of creating 3D models, or meshes, but they all work pretty much the same way.

Points (vertices) or curves (also known as splines) are created or placed in the virtual 3D environment (see Figure 4.2). These points or curves are then connected to create edges (Figure 4.3). Edges and splines are then closed to create polygonal faces (sometimes referred to as patches), as shown in Figure 4.4.

Primitive 3D shapes can also be created, modified, and combined to more quickly create complex objects, as shown in Figure 4.5.

For creating hard surface models such as buildings, furniture, computers, and so on, this method of building 3D models works very well. In cases where more curved or fluid shapes are required (called organic modeling), rough or blocky polygonal models’ faces, as shown in Figure 4.6, can be smoothed (or subdivided) to create even more complex shapes and models. This method of creating rough blocky polygonal models and then subdividing them into smooth organic shapes is referred to as subdivision surface modeling.
[Figure 4.3] Vertices and splines connected with edges

[Figure 4.4] Edges and splines closed to create polygonal faces
Figure 4.5] Primitives combined to create complex meshes

Figure 4.6] A simple untextured/unsurfaced 3D polygonal sphere
Once faces, or polygons, are created, they can be textured (or surfaced) to create the appearance of real or fictional objects. These textures (or maps) can be any combination of colors, images, or mathematical procedural operations, as discussed in Chapter 2 in the section “Other Matched Texture/Layer/Element Sets.” Textures can then be layered and combined to form complex materials (or shaders).

Texturing (or surfacing) is both an art and a science. The most important skill required for great texturing or surfacing is refining your observational skills. Let’s take a look at a couple examples.

In Figure 4.6 you can see a simple 3D sphere.

By carefully observing the details and attributes of the surfaces of other spherical-based objects, you can easily modify the textures and surface attributes of this simple sphere, changing it into many completely different objects.

First, for a simple one, let’s create the texture of a billiard ball. Billiard balls are colored and have a high-gloss finish. By setting the value in the color channel—in this case, to blue—and the diffuse channel to 90% (which will give the ball 90% of its reflected color from the blue base color in the color channel), the ball will take on a nice, bright, saturated blue finish (as seen in Figure 4.7).

Because a billiard ball is also very shiny from the highly polished finish, you want to turn the specular value up very high as well (in Figure 4.8, the specular channel is set to 100%).

Notice that the specular highlight, or hotspot (the white spot reflection of the light source), is very broad and spread out. The tight molecular structure of a billiard ball’s high-polish finish creates a very tight highlight spot. To simulate this, you can also increase the glossiness channel to 100%, as shown in Figure 4.9.

[Figure 4.7] 3D sphere with Blue selected in the color channel and the diffuse channel set to 90%

[Figure 4.8] Specular channel set to 100%

[Figure 4.9] Glossiness set to 100%

[Note] Although every 3D application has a slightly different approach to texturing/surfacing, the core concepts are identical and ubiquitous among all 3D applications.
That gloss finish means that it is partially reflective. So you can also add a slight amount of reflectivity to the reflection channel, which gives a nice re-creation of a billiard ball’s texture. Of course, for a production, as discussed in Chapter 2, you would want to add the number decal and many imperfections to the surfaces, such as dings and dents in the finish and even chalk marks and fingerprints to dull down the finish in some areas for added realism.

Next, let’s look at the mirrored gazing ball reference image in Figure 4.10.

From the very first glance you can see that the gazing ball really has no color of its own, but instead, because it is so highly reflective, it gets its color from the reflection of whatever is around it—in this case an outside park scene. By turning the diffuse map to black (or zero), you turn off any base color the sphere would have. You can also set the color map to black since there isn’t any. It too is shiny and glossy, so those aspects should be set high, similar to the way they were set for the billiard ball. Finally, you will want to set the reflection channel to 100% (or close to it) since a mirrored ball is definitely reflective. But something’s wrong! So far your sphere is just a shiny, glossy black. Actually, the only thing that’s wrong is that there’s nothing for your mirrored ball to reflect. When you load the image of the exterior park scene (Figure 4.11) where the reference image was taken into the environment or reflection channel, the 3D mirrored ball instantly springs to life, as you can see in Figure 4.12.

Now the ball has become a very accurate re-creation of the original. As with the first example, for a production quality model you would want to add all of the similar “reality imperfections.”
Finally, for a completely different spin, let’s create a pumpkin. We’ll push in the top and bottom of the sphere and reset all of the map parameters; then, using the same technique and dirty warehouse floor texture we used in Chapter 2, we’ll create a dirty, desaturated orange texture (Figure 4.13).

Next, since a pumpkin reflects a lot of its own orange color, set the diffuse channel high, to about 80% (to taste of course), the specular channel to about 20% (to give a wide highlight), and the glossiness to between 30 and 40% to emulate the shiny waxy-like surface of a pumpkin. This will give you something that looks like Figure 4.14.

It’s always important to think about a texture or material thoroughly, the same way you thoroughly need to think through every VFX you create, as described in Chapter 1. If a pumpkin were to have the dirty discolorations that the dirty warehouse floor texture has, it most definitely wouldn’t be as shiny on those spots as on the waxy orange surface of the pumpkin skin itself. To simulate this, you can load a matching copy of one of the dirt/grunge textures used to create the orange skin texture into the specular channel to “knock down” the amount of specularity in those spots, as shown in Figure 4.15. This is called specularity breakup.

You can now see that those dirty spots are less shiny than the cleaner skin areas. But this still looks more like a partially deflated dirty orange beach ball than a pumpkin. The magic happens in another channel. This channel isn’t actually a “texture” channel per se in the material/surface sense, but instead, it is a texture channel used by the modeling engine to displace, or push, points/vertices around based on the values of a map (yes, the same kind of map we’ve been using for textures. This one we just need to think through to use for 3D displacement instead of 2D displacement). As with a bump map, a displacement map pushes the vertices in the 3D geometry down, or in, wherever the map is darker and up, or out, wherever it’s lighter.

[Figure 4.13] A dirty desaturated orange texture

[Figure 4.14] The diffuse, specular, and glossiness settings are set.

[Figure 4.15] Specularity breakup added to the specularity (spec) channel

[note] There is no exact science to texturing/surfacing. All of the surface settings described here are starting points and recommendations. Material and texture will always be dependent on the particular model, scene, and requirement and will need to be fine-tuned to taste.
a pumpkin has organic linear stripe-like vertical indentations, a map with wavy dark vertical lines that gradually fade to white and then gradually back into another wavy black line will push the geometry of the sphere in or out at those vertices on the geometry, respectively, based on how dark or light the map is at any given point. Once this map (Figure 4.16) is loaded into the displacement channel, the deflated sphere magically transforms into a natural looking pumpkin! (Figure 4.17)

3D Applications

There are many 3D applications, and each has its own strengths, style, workflow, and conventions—but the principles for modeling, texturing, lighting, animating, and rendering are all the same. This section introduces the most widely used 3D applications in the industry.

Maya

Originally spawned from Alias | Wavefront’s Power Animator, Autodesk’s Maya (www.autodesk.com), shown in Figure 4.18, is one of the most popular, high-end 3D applications in the VFX industry. Maya has a steep learning curve, but has powerful animating and simulation tools and is almost infinitely extensible with its plugin and customization capabilities.
3ds Max

Autodesk’s 3ds Max (www.autodesk.com) (Figure 4.19) is also part of the Autodesk family of products. 3ds Max has very strong roots in both architectural and gaming 3D but is widely used in many facets of VFX.

LightWave 3D

NewTek’s LightWave 3D (http://newtek.com) (Figure 4.20) spawned from NewTek’s Video Toaster in the early 1990s and, because of its speed, flexibility, and superb renderer, it quickly gained a foothold in television and film VFX, especially in many popular sci-fi series such as Star Trek and Babylon 5.
Cinema 4D

German-based Maxon also released Cinema 4D (www.maxon.net) in the early 1990s (see Figure 4.21). Cinema 4D, though not too popular in those formative years, has quickly grown into a powerhouse 3D application fully capable of stunning 3D and VFX work.

Modo

In the early 2000s, some senior management and developers from NewTek, wanting to take 3D software in a different direction, formed Luxology. Their 3D application, Modo (www.thefoundry.co.uk), shown in Figure 4.22, quickly became a leader and favorite in the industry for its innovative workflow and features.

[Figure 4.21]
Maxon’s Cinema 4D Lite user interface

[Figure 4.22]
Luxology’s Modo user interface
Blender

Originally created by Dutch animation studio NeoGeo and Not a Number (NaN) Technologies as an in-house 3D application in 2002, Blender (www.blender.org) (Figure 4.23) was released as a free and open source 3D computer graphics software product under the GNU General Public License. Blender has been used in many areas of VFX production and continues to develop amazing innovative features—and all for free!

3D Motion Tracking

In Chapter 3, in the discussion of 2D motion tracking, you saw how to track one, two, and even four points on an image to record and utilize the positional/translational, rotational, and apparent scaling data. I say apparent because what we are actually tracking is the points moving closer together, as shown in Figure 4.24, simulating scale, which will sometimes suffice for creating simulated Z-depth movement.

Many times this will be sufficient enough data to allow you to lock your element to the plate so you can create a seamless integration. But what happens if the camera is orbiting around or within a scene, or is moving through a scene at an angle, allowing you to see around objects in the scene as you pass them? New VFX artists frequently want to know the dividing line between
when a 2D track is enough to make a shot work and when a 3D track is required. Well, this is it. Any time the camera *orbits* around or within a scene or translates/passes objects within a scene in Z-depth close enough to reveal the 3D nature of a subject or object (or reveal a portion, or portions, of those objects that weren’t seen originally)—as the examples in Figures 4.25–4.28 illustrate—a 3D track and solution is required.

Unlike 2D tracking, which derives its data from the X and Y motion of pixels on a flat screen, 3D tracking utilizes much more complex triangulation calculations to determine objects’ actual position and motion in 3D space. If you want to be able to integrate a 3D object into a scene where the camera is moving in three dimensions, you need to be able to re-create this camera's motion in 3D and have your virtual camera repeating this same motion in order for your element to integrate seamlessly.

To be really good at 3D tracking (and to avoid the needless frustration many artists encounter), it’s important to understand how 3D tracking works.

The origins of 3D tracking technologies lie in the science of photogrammetry, the scientific method of calculating positions and distances of points referenced
in one or more images. By comparing and triangulating the position of points referenced in multiple images (as seen in Figure 4.29), or consecutive frames of a motion image, the position of those points, as well as that of the camera, can be calculated using trigonometry and geometric projections.

3D Motion Tracking Application Technique

A 3D tracker does its mathematical magic in a series of well-defined steps:

1. A mass (usually automated) 2D track, or *auto track*, of the scene is performed, tracking many (sometimes hundreds or thousands) high-contrast *candidate* (or potential) points in the scene. This first track is almost identical to a 2D track except that it is done on a mass scale on the entire image, as shown in Figure 4.30. During this process, complex software algorithms sift through all of the tracked 2D points to weed out and exclude from tracking and calculations.
delete any of those that fall below a user set confidence threshold (meaning how confident the software is that the point being tracked is the same on each frame or range of frames).

2. Next, a complex 3D camera solve is done. A solve is an exhaustive series of calculations wherein the motion of every point tracked is compared and triangulated on a frame-by-frame basis (usually both forward and backward) to determine its position as well as the camera’s position and any movement within each frame, as shown in Figure 4.31. The more information known about the camera used and its motion and environment, the more accurate the solve will be.
3. Once the 3D tracking application completes its solve, it will display the resulting 3D camera, motion track, and point cloud (cluster of points representing solved candidate points). The camera’s position and track, at this point, are relative to the point cloud and not necessarily aligned with the real world X, Y, and Z axes (as shown in Figure 4.32), so the next step is to align, or orient, the scene. Most 3D tracking applications have scene orientation tools that allow you to designate a point in the scene as the X, Y, Z, 0, 0, 0 origin. Additional scene orientation can be refined by using tools that allow you to designate certain points as being on a common plane, or that allow you to manually translate, rotate, and scale the entire scene into position by eye, or by aligning to reference grids, as shown in Figure 4.33.
4. At this point, most 3D tracking applications will allow you to place test objects into the scene to determine how well they follow the track (or stick), as shown in Figure 4.34.

5. If there are any errors or errant motions in the track, you can apply mathematical filters to smooth the tracks motion. Averaging, or Butterworth, filters are common filters to accomplish this. Isolated errors or motions may also be edited or removed manually by editing, adjusting, or deleting track motion keyframes, as shown in Figure 4.35.

6. Once the 3D camera track proves to be solid, the data can then be exported in a variety of file and scene formats to other 3D and/or compositing applications for use.
3D Motion Tracking Applications

There are many 3D motion tracking applications, some which come as integrated solutions in other applications, as well as the standalone application variety. Although their workflows and methodologies vary somewhat, they all contain the steps outlined in the preceding section (whether obviously or under-the-hood in the case of completely automated versions). This section introduces some of the most popular 3D tracking applications.

PFTrack

Originating from the University of Manchester’s Project Icarus, PFTrack (www.thepixelfarm.co.uk) (see Figure 4.36) and its sibling applications have grown into some of the most powerful and widely used 3D tracking applications in the VFX industry.

Boujou

Vicon’s Boujou (www.boujou.com) was one of the first almost fully automated 3D tracking applications and still offers a great set of powerful 3D tracking tools, as shown in Figure 4.37.

Nuke and After Effects

3D tracking has become a commonly integrated feature in compositing applications, which continue to grow and blur the lines between VFX job descriptions. Recently, compositing applications such as The Foundry’s Nuke (www.thefoundry.co.uk) (Figure 4.38) and Adobe’s After Effects (www.adobe.com) (Figure 4.39) have also integrated 3D tracking capabilities.
[Figure 4.37]
Boujou user interface

[Figure 4.38]
The Foundry’s Nuke 3D tracking interface

[Figure 4.39]
Adobe After Effects’ 3D tracking interface
Mocha

Even Imagineer Systems’ planar tracker Mocha Pro (www.imagineersystems.com) (as seen in Figure 4.40) has been given a turbo boost with its ability to extrapolate 3D camera tracking motion from multiple 2D planar tracks, resulting in some very impressive output where some standard 3D trackers fail.

SynthEyes

One of the first affordable, low-cost, 3D tracking applications, SynthEyes (www.ssontech.com), shown in Figure 4.41, has also grown in capability and features to become a powerful and widely used 3D tracking solution.

[Figure 4.40]
Imagineer Systems’ Mocha Pro user interface

[Figure 4.41]
SynthEyes user interface
Concepts of Visual Effects and Compositing

Voodoo
The University of Hannover’s Laboratory for Information Technology developed this free non-commercial 3D camera tracking software. Voodoo (www.viscoda.com) (Figure 4.42) is an excellent tool for beginners to use to experiment with 3D camera tracking at no cost.

3D Matchmoving
Once a solid 3D tracking solution is exported from a 3D tracking application, creating a 3D matchmove involves little more than setting up a scene and importing the solution into your 3D or compositing application of choice, as shown in Figure 4.43 and Figure 4.44. (See Chapter 3 for much more on matchmoving.)

Advanced 3D Tracking Strategies
There are many times when it is extremely helpful to know some advanced 3D tracking strategies as well.

Hand 3D Tracking and Matchimation
Unfortunately, as is usually the case in VFX, 3D tracking is often not quite as simple as autotrack, autosolve, autoorient, and export. Tracks contain too much noise or too many errors or they just downright fail altogether. In these cases, as with 2D tracking and matchmoving, you need a fallback strategy.
Very similar to the hand-tracked 2D track in Chapter 3, when all else fails, you can hand track, or *matchimate*, a 3D track as well. *Matchimation* is derived from the combination of *matchmove* and *animation* and refers to the process of manual frame-by-frame or keyframe matching a track.

To hand track a 3D scene, you first want to create 3D reference stand-in objects for any scene elements with known sizes and/or positions. You are basically trying to replicate key elements of the scene in your 3D application. Elements nearest to the 3D CG object you intend to place into the scene are the most important to place, if possible. In Figure 4.45 you can see a dolly shot sequence filmed on a bluescreen set, which will become an air traffic control radar monitoring station in this example.
Load the footage into the background of your 3D application, making sure the footage size and aspect ratio is set correctly in both the background and the scenes camera. Set your 3D models to wireframe view mode so that you can easily see through them to the footage behind as well as the wireframe edges outlining your elements.

Since I know that we cut the tabletop portions of the “radar stations” to 30 inches wide and left them at their full 8 foot, plywood length, there is a base measurement to start with to build a reference object in your 3D application. In Figure 4.46 you can see two of these, laid end to end, to represent the two workstation countertops. Let’s eyeball the height of these countertops and place them at about 27 inches (the height of my workstation desk, which seems about right). Next, using the camera VFX cues you can ascertain (discussed in Chapter 1), set your camera to a fairly wide focal length and place the camera’s starting position at about 30 inches off the ground and approximately 10–12 feet away from the subject, as shown in Figure 4.46.

Align the wireframe with the counter at whatever point in the shot you choose. Remember, it’s perfectly acceptable to work from beginning to end, end to beginning, middle forward and back, and so on. Keep in mind the information you can deduce from the scene—such as that the camera appears to be on a dolly so will likely translate in a straight line, even if it pans about on its Y axis. Move the camera in a straight line on its local axis until the end (or furthest point) of the shot and pan the camera until the counters and the wireframes align, as shown in Figure 4.47. Set your camera’s first keyframe here.

Load the footage into the background of your 3D application, making sure the footage size and aspect ratio is set correctly in both the background and the scenes camera. Set your 3D models to wireframe view mode so that you can easily see through them to the footage behind as well as the wireframe edges outlining your elements.

Since I know that we cut the tabletop portions of the “radar stations” to 30 inches wide and left them at their full 8 foot, plywood length, there is a base measurement to start with to build a reference object in your 3D application. In Figure 4.46 you can see two of these, laid end to end, to represent the two workstation countertops. Let’s eyeball the height of these countertops and place them at about 27 inches (the height of my workstation desk, which seems about right). Next, using the camera VFX cues you can ascertain (discussed in Chapter 1), set your camera to a fairly wide focal length and place the camera’s starting position at about 30 inches off the ground and approximately 10–12 feet away from the subject, as shown in Figure 4.46.

Align the wireframe with the counter at whatever point in the shot you choose. Remember, it’s perfectly acceptable to work from beginning to end, end to beginning, middle forward and back, and so on. Keep in mind the information you can deduce from the scene—such as that the camera appears to be on a dolly so will likely translate in a straight line, even if it pans about on its Y axis. Move the camera in a straight line on its local axis until the end (or furthest point) of the shot and pan the camera until the counters and the wireframes align, as shown in Figure 4.47. Set your camera’s first keyframe here.
From here, it’s the same procedure you followed for the hand 2D track, only in 3D. You will move your camera along the guesstimated path to the point where the 3D scene element you’re tracking diverges the farthest from the wireframe before either beginning to return or changing directions. This will be your next keyframe position, and you will realign your camera until the stand-in and on-screen element are aligned, then set your next keyframe, and so on (Figure 4.48).

Then simply repeat this process until the wireframe and scene elements are locked throughout the duration of the shot.

Once this is completed, any object added to the scene—once composited and properly integrated, color corrected (covered in Chapter 5), and rendered—should composite and integrate nicely, follow the motion of the scene, and appear to actually exist within the scene, as shown in Figure 4.49.

[Figure 4.48] Camera aligned with scene element to next keyframe position

[Figure 4.49] Integrated 3D air traffic radar workstation set piece
3D Object Tracking

If we defined 2D stabilization as simply 2D motion tracking data of a piece of footage, inverted and applied back to that footage, you can think of the inversion of 3D camera motion track data as object tracking. Where the output of a 3D camera track is a static scene and a moving camera, the output of an object track is a static camera and a moving object or scene. This technique is particularly useful in cases such as adding 3D prosthetics or props to moving characters, covered in detail in Chapter 7.

Motion Control and Motion Capture

Finally, no discussion of matching camera movements would be complete without discussing motion control and motion capture.

Motion control is the utilization of computer-controlled robotics (Figure 4.50) to very precisely create, record, and repeatedly play back camera movements over and over again. This allows for the combination of complex slow motion, or replication shots, such as adding clones of the same character to the same scene all within a continuous moving camera shot. On the pro side of this technique, motion control shots are very precise, align perfectly, and allow amazing seamless integrations. On the con side, motion control robots are expensive, huge, slow, and unwieldy and take a lot of time to set up, rehearse, and tear down.

[Figure 4.50]
3D illustration of a motion control camera rig
Similarly, motion capture, though not actually camera tracking either, is the capture of object motion data (as you would get with an object track) via various forms of data capture ranging from optical to wireless sensor arrays, as shown in Figure 4.51.

Motion capture is mainly used for the recording of lifelike organic character motions and interactions, and although used extensively in VFX for 3D CGI character and digital doubles, it is more in the realm of 3D character animation than VFX and compositing.

Now that you understand the basics of VFX, 2D, and 3D, let’s jump right in and begin integrating some CG VFX in Chapter 5.
This page intentionally left blank
Index

Numbers
1 + 1 = 3 (Eisenstein’s Law), 9–10, 499
1 point tracks
 comparing good and bad targets, 128, 130–131
 Golden Rules, 127
 types motion trackers, 124–125
2 point tracks
 comparing good and bad targets, 129–130
 error amplification in, 132
 Golden Rules, 127
 live action background plate and, 179
 matchmoving and, 136–137
 types motion trackers, 125
2D
 2D composite use in 3D, 323
 3D objects moving in front of 2D planes, 326
 color space keyers, 111
 converting to 3D, 439
 crowd replication, 206–210
 displacement depth maps, 456
 face replacement, 210–214
 layer offset for 3D-like effects, 449–450
 matchmoving. see Matchmoving, 2D
 matte and roto, 105–108
 motion tracking. see Motion tracking, 2D
 texture displacement, 91–92
 visual effects, 104
 wire and rig removal, 104–105
2.5D
 atmosphere or aerial FX, 255–260
 camera movement, 339–342
 compositing, 323–327
 creating shadows and reflections, 192–195
 crowd replication, 206–210
 displacement FX, 272–277
 faking ambient occlusion, 263–267
 faking shadows and reflections, 191
 faking Z-depth, 267–271
 layer offset for 3D-like effects, 450–451
 overview of, 191, 255
 particle-based crowd replication, 411–414
 smoke and cloud FX, 260–263
2.5D matte painting
 adding elements to scene, 333–336
 complexity in, 343–348
 overview of, 333
 showing 2.5D elements in 3D space, 336–338
3D
 2D composite in 3D space, 323
 2.5D elements in 3D space, 336
 animation, 446–447
 applications for, 150–153
 camera solve, 156
 camera tracing, 228
 color space keyers, 112
 colored mesh data, 360, 363
 cove method for creating 3D set, 412–413
 cutting edge techniques. see Cutting edge 3D
 displacement depth maps, 456–459
 extractions, 466
 glasses, 435–437
 how 3D CGI is created, 143–150
 HUDs and, 304–305
 integrating 3D elements into 2D motion-tracked plate, 176
 matchmoving. see Matchmoving, 3D
 meshes, 488
 model substructures in digital destruction, 423–425
 motion tracking, see Motion tracking, 3D
 particle-based crowd replications, 414–418
 particle-based debris systems, 418–420
 photogrammetry, 228
 photography of 3D textures, 496
 Photoshop tools, 452–453
 re-lighting, 467–469
 for VFX, 143
3D Camera tool, Photoshop, 452–453
3D objects
 adding/rendering, 246
 color correction, 251–252
Index 507

Aerial photo, adding object over aerial background, 256–257

After Effects
2D motion tracking, 133
3D motion tracking, 159–160
layer-based compositor, 110
Puppet tool, 339–341
roto tools in, 122

Al (artificial intelligence), 394–395

Alphatek 3D, 439

Alpha channels
applying lighting using alpha as texture, 92
checking matte foreground and background, 492
clipping elements in camera projections, 351–352
creating procedural light wraps, 203
holdout mattes, 68–69
matching truss alpha map, 217
premultiplied, 236
as selection method, 77–78

Alphanumeric HUDs, 302
Ambient lighting, setting intensity to 0%, 173
Ambient occlusion (AO), faking in 2.5D, 263–267

Anaglyph 3D glasses, 435, 445
Anaglyph stereoscopic 3D
black and white, 448
color, 447–448
example, 459

Analog formats, 59

Anamorphic aspect ratios and pixels, 61

Animation. see also Keyframes
3D, 446–447
camera projections and, 352–353
issues with HDRI IBL solutions, 382
matching, see Matchimation
rotscope in cell animation, 116
showing 2.5D elements in 3D space, 336–337
traditional, 42

Animation Camera, 351–352

AO (ambient occlusion), faking in 2.5D, 263–267

Aperture, depth of field and field of view, 45–48

Applications
2D motion tracking, 132–134
3D, 150–153
3D motion tracking, 159–162
compositing, 109
digital environment, 354–356
fluid dynamics simulation, 404–407
Applications (continued)
 roto, 122–123
 selection, 84
 virtual studio, 360
Artifacts
 fine-tuning, 180
 of speed (motion blur), 64
Artificial intelligence (AI), 394–395
Aspect ratios
 formats and, 59
 pixels, 61
 quick reference, 495
 screens, 61
Atmosphere FX
 2.5D, 255–260
 sky replacement and, 284
 snow atmosphere, 301
Atmospheric attributes
 fine-tuning, 180
 identifying, 52–53
 picking color for, 183–184
Auto track, how 3D motion tracking works, 155
Autodesk
 3D applications, 150–151
 123D Catch, 487–488
Averaging filters, for smoothing motion tracks, 158
B
Back light (rim) light
 placing, 175
 in three point lighting, 15
 VFX lighting and integration, 172
Background plates
 2.5D matte painting, 333
 adding to composite, 346
 creating separation with foreground, 330–331
 in digital matte painting, 327–330
 making sure plates/elements are properly related, 493
 moving foreground element of live action background, 179–180
 in special effects shots, 65–66
 tracking live action plate, 179
Background shots (BG)
 adding computer generated imagery to, 7
 compositing two images, 81–83
 forced perspective and, 38–39
 live composite (glass painting) and, 36
 types of shots, 12
Basic integration VFX. see Integration techniques, basic
Beauty and restoration
 digital beauty, 370
 digital de-aging, 373–375
 digital makeup and tattoos, 370–373
 film coloration, 366–370
 global illumination, radiosity, and image-based lighting, 376–379
 high dynamic range images and light probes, 379–382
 overview of, 365
 smart-image-based lighting and light rig solutions, 382–384
 studio lighting, 385–388
Best’s Law, 500
Bezier curves
 choosing which type of curve to use, 119
 rotosplines and, 117–118
Billboards, 214, 400. see also Cards (3D planes)
Binary digits (bits)
 8-bit images, 379
 CRT control and, 54
 data compression and, 56–57
Binary format, 56–57
Birth rate (generation rate), of emitters, 391–392
Bit per channel (bpc), image color and, 379
Bits (binary digits)
 8-bit images, 379
 CRT control and, 54
 data compression and, 56–57
Black and white, anaglyph stereoscopic 3D, 448
Black and White tool, 448
Blacks. see also Shadows
 checking densities, 492
 checking element integration, 260
 correcting in atmospheric effect, 258
 creating gradients, 216
 creating procedural light wraps and, 203–204
 curves adjustment input, 288
 curves adjustment output, 289
 levels adjustment, 80, 86
 matching shadow density, 181
Blender application
 for fluid dynamics simulation, 407
 open source 3D application, 153
Blend/transfer modes
applying light wraps to images, 205
applying to window areas of day-for-night scene, 296–297
bullet hits and, 432
complex and multisource operators, 69–70
dirtying down surfaces, 91
digital matte painting, 345
film coloration and, 369
HUDs and, 305
muzzle flashes and, 429
Blocking, in movie scenes, 17–18
Blue color. see Red, green, and blue (RGB)
Blue sky, color temperature of, 50
Bluescreen
integrating into 2D motion-tracked plate, 176?keying, 81–83, 330
lighting, 177–178
pulling key extraction, 340
Bluescreen (BS) keyer, 81–83, 330
Blur effects
adding occlusion to crowd replication, 266
adding to cloaking effect, 276–277
adding to digital matte painting, 329
adding to grain/noise layer, 200
adding to heat distortion effect, 274
of bungee jumper, 308
compositor checklist, 493
creating procedural light wraps, 204–205
creating wave effect, 272
depth of field (DOF) and, 257
for digital de-aging, 374–375
levels adjustment, 87
particle-based crowd replication and, 414
softening mattes, 108
softening selection edges, 78
Boujou application, from Vicon, 159–160
Bounce lights. see also Fill light
3D light matching technique, 256
lighting greenscreen or bluescreen elements, 178
multi-pass rendering and compositing, 314
placing, 174
radiosity and, 379
Bounding boxes, layers and, 337
Box emitter, 391
Bpc (bit per channel), image color and, 379
Bread and butter FX
day-for-night scenes. see Day-for-night scenes
digital HUD (heads up display), 302–305
extraction sky replacement, 283–285
multi-pass rendering and compositing, 313–319
overview of, 279
reverse sky replacement, 280–282
sky replacements, 279–280
summer for winter, 297–302
time ramping, 310–313
wire and rig removal, 306–309
Brook's Law, 499
Brushes
creating billowing smoke effect, 262
creating custom, 300–301
Magic Wand Selection, 75
BS (bluescreen) keyer, 81–83, 330
B-spline curves
choosing which type of curve to use, 119
rososplines, 118
Bullet dynamics, 403
Bullet hits, in digital destruction, 431–433
Bullet time
2.5D camera movement, 339
temporal motion effects, 33–34
Bump
creating lighting truss grid and, 218
working with grayscale images, 96
Bump maps
of moon, 472–473
working with grayscale images, 96
Burn maps, in hull burn effect, 426
Butterworth filters, for smoothing motion tracks, 158
C
Camera projections
animating, 352–353
clipping elements using alpha channels, 351–352
gallery of, 349–350
overview of, 348–349
positioning and locking the camera, 350–351
textures and, 349
Camera solve
in 3D motion tracking, 156
in 3D object tracking, 247–248
in computer generated 3D motion tracking, 231–232
refining, 248
Cameras
2.5D camera movement, 339–342
3D camera tracking, 228
attributes of, 43–45
in-camera effects. see In-camera effects
creating emotions, 17
data, 496
movement, 13–14
placing, 241–242
quick reference, 495
reference images in motion tracking, 231
shooting speeds, 39–41, 62
shutters. see Shutters
staging and blocking movie scenes and, 18
stereoscopic, 439
virtual, 358–359
working with, 64
Candidates, in 3D motion tracking, 155
CAP-XYZ color space, 60
Cards (3D planes)
in aerial photo, 258–260
applying to bird example, 222–226
grid technique, 214–219
house of cards, 220–221
overview of, 209
for smoke and cloud effect, 260–261
Cards, 2D, 400
Career
demo reel, 501–502
goal setting, 504
landing a job, 503
rules for success, 505
starting, 501
Cathode ray tube (CRT), 54, 62–63
CC. see Color correction (CC)
Cell animation, rotoscope in, 116
Center of gravity (COG), particle-based debris systems and, 418
CGI. see Computer generated imagery (CGI)
Channel ops, 80–83
Channel shift, for 3D-like effects, 449–450
Channel Shuffle, 267
Cheating, value of using shortcuts, 494
Chroma
color terminology, 497
keys. see Keyers/keying
Cinema 4D application, from Maxon, 152
Clark, Alfred, 22–23
Clean plate, 71
Clipping elements
clipped colors, 60
using alpha channels, 351–352
Clipping maps, in hull burn effect, 426
Cloaking effect, 276–277
Cloning
order used in, 103–104
overview of, 98–100
randomness used in, 101–102
techniques, tips, tricks, strategies, 101
Close-up shots (CU)
of bungee jumper, 308
types of shots, 10–11
Cloth simulations, 403–404
Cloud computing, 123D Catch using, 487–488
Clouds
2.5D, 260–263
adding elements to scene, 336
flopping cloud plate, 281
COG (center of gravity), particle-based debris systems and, 418
Color
2D color space keyers, 111
3D color space keyers, 112
anaglyph stereoscopic 3D, 447–448
checking with color pickers, 178, 366
day-for-night scenes, 286–287
depth, 58–60
film coloration, 366–370
key extraction in sky replacement, 283
matching, 493
RGB model. see Red, green, and blue (RGB)
separation overlays. see Keyers/keying
terminology, 496–497
Color blend mode, 369
Color Burn blend mode, 369
Color correction (CC)
in 3D object tracking, 251–252
for atmospheric effect, 260
bullet hits and, 433
creating procedural light wraps and, 203
in digital matte painting, 329–333, 344
displacement extraction and, 482
fine-tuning, 180
sky replacement and, 283–284
for smoke and cloud effect, 262
Color maps, working with grayscale images, 95
Color Range tool, Photoshop, 79, 298
Color temperature
 color terminology, 497
 compositor checklist, 493
 of light sources, 49–50
 lighting and integration and, 172
Common effects. see Bread and butter FX
Complementaries, color terminology, 497
Component video, 60
Compositing
 2D visual effects, 104
 2.5D compositing, 323–327
 in 3D matchmoving example, 236–237
 adding object over background shot, 256–257
 applications, 109, 122
 checklist, 492
 cloning, 98–101
 grunge and grime maps in, 87–95
 keyers in, 111–114
 layer-based, 110
 map use in, 95–98
 matte and roto in, 105–108
 nodal-based, 110–111
 order used in cloning, 103–104
 overview of, 73, 108
 principles of composition, 20
 randomness used in cloning, 101–102
 Rejlander in history of, 28
 selection methods. see Selection methods
 slap comps, 283
 wire and rig removal, 104–105
Compositing, multi-pass
 determining needed passes, 313–314
 examples, 315–319
 overview of, 313
Compression
 color depth sampling and, 58–59
 data compression and, 56–57
Computer generated imagery (CGI)
 adding to real background, 7
 first use in films, 42
 how 3D CGI is created, 143–150
Computers, language of zeros and ones in, 53–54
Concepts, VFX
 complex and multisource operators (blend/transfer), 69–70
 extractions, 71
 layered-approach, 65–69
 overview of, 64
Cones, of eye, 286
Confidence levels, in 3D motion tracking, 156, 229
Contact shadow, 51
Continuity, of movie events, 19
Contrast
 adjusting, 273
 curves adjustment, 293
 sky replacement and, 283
Controls
 effect controls, 273
 layers and, 337
Convergence
 3D animation and, 447
 adjusting, 448
 stereoscopic 3D vision and, 438, 443–444
Core mattes
 compositor checklist, 492
 creating, 107
Core shadow, 51–52
Cove method, for creating 3D set, 412–413
Coverage (detailed) shots, 11
Crane
 in camera movement, 13
 example shot, 238–239
Crepuscular rays (godrays), 281–282
Cropping photos, rule of thumb, 11
Crowd replication
 2D and 2.5D shots, 206–210
 adding occlusion to, 264–267
 depth maps and, 270
 particle-based, 410
 particle-based 2.5D, 411–414
 particle-based 3D, 414–418
CRT (cathode ray tube), 54, 62–63
CU (close-up shots)
 of bungee jumper, 308
 types of shots, 10–11
Cubes, global illumination, 377
Cues, VFX
 camera, 43–45, 495
 depth and atmospheric, 52–53
 lens, focal length, depth of field, 45–48
 lighting, 48–50, 494
 media, 53
 overview of, 43
 shadows, 50–52
Curves adjustment. see also Splines
applied to day-for-night scene, 290, 294–295
displacement and, 457
how it works, 287–288
inputs, 288–289
outputs, 289
summer for winter scene, 299
Cutting edge 3D
123D Catch, 487–488
complex terrains using DEM and SRTM data,
474–478
displacement modeling, 470
extractions, 466
new technologies, 482
overview of, 461
Photoshop magic and, 462
procedural extraction using displacement,
478–482
procedural futuristic or space complex design,
470–474
Reallusion software, 483–487
re-lighting, 467–469
Ricoh Theta, 482–483
vanishing point photogrammetry, 462–465
X-cam and Paracosm, 488–491
Cyc (cyclorama), 240–243

D
D4/D16, aspect ratios and pixels, 61
Darken mode, blend/transfer modes, 70
Data compression, 56–57
Data transfer, 55–56
Day-for-night scenes
complexity in, 291
creating mattes for elements in, 292
curves adjustment for color tones, 294–295
curves adjustment for scene elements,
287–290
gradient of darkness, 294
lighting adjustments, 296–297
overview of, 285–287
Daylight bulbs, color temperature of, 50
De-aging, digital, 373–375
Debevec, Paul, 379
Debris systems, particle-based 3D, 418–420
DEM, see Digital elevation model (DEM) data
Demo reel, 501–502

Depth. see also Z-depth
color depth, 60
identifying attributes of, 52–53
multi-pass rendering and compositing, 316
visual cues for, 20–22
Depth maps
2D displacement, 456–459
3D displacement, 360–362, 456–459
faking Z-depth and, 267–271
procedural and complex, 456
roto, 456
stereoscopic conversion and, 454–455
Depth of field (DOF)
blur effect, 257
camera lens and, 45–48
creating procedural light wraps and, 203
faking Z-depth technique for adding blur,
267–268
focal length and, 43
Destabilization, in 2D matchmoving, 137–138
Destruction, digital. see Digital destruction
Detailed (coverage) shots, 11
Dial HUDs, 303
Difference keys, 71
Difference mode
blend/transfer modes, 70
matchmoving and, 140–141
Diffuse channel
lighting truss grid example, 218
multi-pass rendering and compositing,
314, 316
pumpkin example, 149
Diffuse maps, working with grayscale images, 95, 98
Digital
beauty, 370
complex terrains using, 474–478
de-aging, 373–375
doubles for characters, 484
effects in films, 42
environments, 354–356
extractions, 71
makeup and tattoos, 370–373
matte painting. see Matte painting, digital
Digital destruction
3D model substructures, 423–425
blowing it all up, 422–423
bullet hits, 431–433
hull burn effect, 426–429
muzzle flashes and fake interactive lighting, 429–431
overview of, 419–422
Digital elevation model (DEM) data
creating, 476–477
examples, 478
resolution, 474–475
sources, 475
Digital formats
classifications of, 59
data compression and, 56–57
data transfer and, 55–56
sampling and, 58–59
Digital HUD (heads-up display)
creating a moving 3D HUD, 304–305
overview of, 302
types of, 302–304
Digital video (DV), 58–59
Displacement
of 2D textures, 91–92
of 3D objects, 360–363
depth maps and, 456–459
film coloration and, 367
modeling, 470
procedural extraction using, 478–482
pumpkin example, 150
working with grayscale images, 97
Displacement, in 2.5D
adding elements to scene, 334–335
cloaking effect, 276–277
heat effect, 274–276
water effect, 272–274
Displacement maps, 97
Distort tool
creating billowing smoke effect, 261–262
film coloration and, 367
Divide mode, blend/transfer modes, 70
Dolly shots
camera movement and, 13
forced perspective and, 24
Double exposure (superimpositions), 34–35
Drift
Golden Rules for motion tracking, 126
identifying possible problems in motion tracking, 233
Dry-for-wet setup, Méliès use of, 27–28
Dumb particles, 394
Dustbusting, cloning and, 98–99
DV (digital video), 58–59
DVCPRO HD, aspect ratios and pixels, 61
Dynamics
benefits of, 389
bullet dynamics, 403
fluid dynamics simulation, 404
overview of, 401
rigid body dynamics, 401–403
soft body dynamics, 403–404
E
ECU (extreme close-up) shots, 10–11
Edge mattes
compositor checklist, 492
creating, 107–108
Edges, adjusting in vanishing point photogrammetry, 463–465
Edison, Thomas, 22–23
Edit Plane tool, 463
Eisenstein, Sergei, 9–10, 499
Eisenstein’s Law, 9–10, 499
Element plate, in special effects shots, 65
Elevations. see Digital elevation model (DEM) data
Elliptical Marquee selection, 74, 76
Elliptical roto mask, 264–265
Emitters
3D particle-based crowd replication and, 415–416
3D particle-based debris systems and, 418
generating particles, 390–392
Emotion
camera motion creating, 17
shot emotion, 16–17
Energy weapon/effect
components of, 185–188
tips and tricks for, 189–190
Environments, advanced
2.5D camera movement, 339–342
2.5D compositing, 323–327
2.5D digital matte painting, 343–348
camera projections, 348–354
digital environment applications, 354
digital matte painting and set extensions, 327–338
overview of, 323
Terragen application, 354–355
Environments, advanced (continued)
 virtual sets, 357–358
 virtual studio, 358–364
 Vue application, 354–355
 World Machine application, 356
 e-on software’s Vue, 354–355
 Eraser tool, 343–344
 Error amplification, in 2 point tracks, 132
 Establishing shots, 11
 EWS (extreme wide shot), 10–11
 Explosions
 blowing it all up, 422–423
 particle parameters, 394–395
 particle-based debris systems and, 418–420
 rigid body dynamics and, 401–402
 Exposure
 blending scenes and, 494
 matting for multiple exposure, 41–42
 Rejlander’s use in compositing, 29
 superimpositions (double exposure), 34–35
 Extraction
 3D, 466
 adding occlusion to crowd replication, 264–265
 clipping elements in camera projections, 351–352
 creating solid white silhouette of, 269
 in day-for-night scenes, 286–287
 for digital matte painting, 344
 mattes in, 105
 procedural extraction of grunge and grime maps, 84–87
 procedural extraction using displacement, 478–482
 removing elements, 71
 replacing objects with other objects, 250–251
 sky replacement, 283–285
 Extreme close-up (ECU) shots, 10–11
 Extreme wide shot (EWS), 10–11
 Eyeon Software’s Fusion, see Fusion
 Eyes
 human vs. film and video, 62
 physiology of, 286

F
 Face replacement, 2D, 210–214
 Fade control, creating custom brushes, 300–301
 Farvour’s Law, 500
 Feather Selection tool, 77–78
 FG, see Foreground shots (FG)
 Field of view (FOV), camera lens and, 46–47
 Fill light
 light matching techniques, 256
 lighting greenscreen or bluescreen elements, 178
 placing, 174
 in three point lighting, 15
 VFX lighting and integration, 172
 Film
 analog formats, 59
 attributes of, 53
 coloration, 366–370
 vs. human eye, 62
 matching grain of, 197–201
 Film look, formats and, 62–63
 Film plane attribute, 43
 Film speed attribute, 44
 Filters
 blur effects and, 78
 for in-camera effect, 30–31
 displacement and, 91–92
 heat distortion effect and, 274
 mattes, 108
 for smoothing motion tracks, 158, 248
 FinePix REAL 3D W3 cameras, 439
 Fire effect, adding to objects, 251–252
 Flags, for blocking lighting, 173
 Flickering animation, issues with HDRI IBL solutions, 382
 Flopping the line, 19
 Flopping the plate, 281
 Flowline application, 407
 Fluid dynamics simulation
 other applications, 407
 overview of, 404
 RealFlow application for, 404–405
 TurbulenceFD application for, 405–406
 Flying cameras, 14
 Focal length, camera lens and, 45–48
 Focal plane, camera attributes, 43
 Follow and continue technique, in cloning, 104
 Force effectors, particles, 396
Forced perspective
Méliès use of, 24
in photography of miniatures, 38–39
Foreground
creating separation between background and foreground, 330–331
turning off lights in, 174
Foreground plates
in digital matte painting, 327–330
making sure plates/elements are properly related, 493
in special effects shots, 66
Foreground shots (FG)
compositing two images, 81–82
moving foreground element of live action background, 179–180
types of shots, 12
Formats
analog and digital, 59
data compression and, 56–57
data transfer and, 55–56
DEM and SRTM data, 474
film look and, 62–63
human eye vs. film and video, 62
overview of, 53–55
resolution and aspect ratios, 59–61
sampling and, 58–59
Foundry's Nuke. see Nuke
FOV (field of view), camera lens and, 46–47
Fps. see Frames per second (fps)
Fracturing, rigid body dynamics and, 401–402
Frame rate
film and, 64
media attributes and, 53
Frames
film cameras and, 62
in time ramping, 310–311
Frames per second (fps)
camera attributes and, 44
high speed, 32
normal speed, 31
shooting speeds, 62
Free move, camera motion, 229
Freeform drawing, with Lasso Selection tool, 75
Fuji FinePix REAL 3D W3 cameras, 439
Fusion
2D motion tracking, 133
from Eyeon Software, 414
roto tools in, 122
G
Gamma level
checking densities, 492
checking for element integration, 260
curves adjustment, 288
depth maps and, 271
levels adjustment, 80
matching midtones, 182
Garbage mattes
adding occlusion to crowd replication, 264–265
compositor checklist, 492
creating, 106–107
crowd replication and, 207–208
procedural light wraps and, 202–203
Gauge HUDs, 303
Gaussian Blur
adding noise to grain/noise layer, 200
levels adjustment, 87
softening selection edges, 78
Generation rate (birth rate), of emitters, 391–392
Geometry
of camera projections, 349–351
creating 3D, 326
multi-pass rendering and compositing, 316
volume voxels in creating imaginary, 399
Ghost effects, 34–35
Glasgow's Laws, 500
Glass matte painting (live composite), 36–37
Global illumination (GI)
of 3D model, 381–382
defined, 380
example, 382
overview of, 376–379
Glossiness, of 3D sphere, 147–148
Glossiness maps, 96
Glow effects, adding to objects, 251–252
Glow maps, 95
Goal setting, 503
Godrays (crepuscular rays), 281–282
Golden Spirals, composition guidelines, 20
Go-motion technique, computer-controlled movement, 40
Google Project Tango, 491
Grabel's Law, 500
Grade adjustment, using with displacement, 457
Gradient tool, Photoshop, 215–216
Gradients
 adding to matte painting, 347
 of atmospheric dust, 413
 of color grade, 346
 of darkness, 294
 in day-for-night scenes, 290, 294
 film coloration and, 367
 snow atmosphere, 301
Grain
 compositor checklist, 493
 correcting in matte painting, 333
 digital de-aging and, 375
 film look and, 64
 film/video attributes, 53
 fine-tuning, 180
 matching, 197–201
 moving, 201
 sky replacement and, 284
 wave effect in water, 272
Gravity parameter, particles, 394–395
Grayscale images
 displacement and, 272
 textures and, 95–97
Green color. see Red, green, and blue (RGB)
Greenlighting, getting approval in moviemaking, 5
Greenscreen
 crowd replication and, 207
 example, 250
 integrating into 2D motion-tracked plate, 176
 lighting and, 177–178
Grime maps
 magical uses of, 87–95
 procedural extraction of, 84–87
Grunge maps
 magical uses of, 87–95
 procedural extraction of, 84–87
Gutterson’s Laws, 500

H
Hair light, in three point lighting, 15
Hand off, staging and blocking movie scenes and, 18
Hand tracking. see Matchimation
Hard body dynamics, 401–403
Harmonious Triangles, composition guidelines, 20
HD. see High definition (HD)
HDRI. see High dynamic range images (HDRI)
HDV (high definition video), 61
Heads-up display (HUD). see Digital HUD
 (heads-up display)
 Heat effect, 274–276
 Hiding errors/problems, 494
 High definition (HD)
 color depth sampling and compression, 58–59
 digital video, 59
 film look and, 62
 High definition video (HDV), 61
 High dynamic range images (HDRI)
 defined, 381
 overview of, 379–380
 solutions to issues with, 382–383
 High speed (slow motion), temporal motion effects, 31–32
Highlights. see also Whites
 correcting in atmospheric effect, 258
 levels adjustment, 80
 matching, 181–182
 placing, 175
 in three point lighting, 15
 VFX lighting and integration, 172
Holdout mattes, 68–69
Hotspots. see Specularity (hotspot/shininess)
Hue
 color terminology, 496
 day-for-night scenes, 286–287
 sky replacement and, 283–284
Hue Correct tool, 455
Hue/Saturation adjustment
 creating black and white anaglyph stereoscopic 3D, 448
 for day-for-night scene, 292–294
 desaturating a map, 85
 desaturating colors, 336
 summer for winter scene, 299
Hull burn effect
 3D model substructures, 424–425
 digital destruction, 426–429
Human vision. see Eyes
Hypertextures, 399
Hypervoxels, in LightWave, 398

I
IBK (Image Based Keyer), in Nuke, 113
IBL. see Image-based lighting (IBL)
iClone software, from Reallusion, 483–487
Interactive lighting
 composer checklist, 493
 faking, 429–431
Interlacing, 62–63
Intermediates, color terminology, 497
Invisible effect, sky replacements as, 279
Isolated roto matte, 122

J
Jawset Visual Computing's TurbulenceFD application, 405–406
Jib
 example shot, 238–239
 types of camera movement, 13
Jitter
 in camera solve, 248
 identifying possible problems in motion tracking, 233
Jobs. see also Career
categories in VFX, 501
landing, 503
Jolly, Matt, 431–432

K
Kelvin, Lord William, 49–50
Kelvin scale, 50
Key light
 2D color space, 111
 adding occlusion to crowd replication, 264–265
 creating looks and emotions with, 16
 lighting and integration and, 172
 lighting greenscreen or bluescreen elements, 177–178
 in multi-pass rendering and compositing, 314
 placing, 174
 in three point lighting, 14–15

Intensity, color terminology, 496
Interaction controls, particles, 394
Keyframes. see also Animation
 applying to bird example, 223
 blocking camera movement into, 18
 displacement map, 273
 heat distortion effect, 274
 muzzle flashes and, 430
 for smoke and cloud effect, 261–262
 in time ramping, 313
Kicker, in three point lighting, 15
Kinect, from Microsoft, 491
Kinetoscope parlors, 22

L
Landscape generation software, 356
Lansam’s Law, 500
Lasso Selection, Photoshop, 74–76
Latitude, film look and, 64
Layers
 layer-based compositors, 109–110
 natural parallax motion, 338
 thinking in, 65–69
 without bounding boxes or controls, 337
Lens
 focal length and depth of field, 45–48
 quick reference, 495
Lens flares
 added to bird example, 225
 adding to hull burn effect, 427–428
 benefits of, 494
 preventing, 175
Letter shapes, staging and blocking movie scenes
 and, 17–18
Levels adjustment
 crushing levels to get high-contrast, trackable
 features, 239
 DEMs and, 476
 depth maps and, 271
 face replacement and, 212
 Hue/Saturation, 85
 overview of, 79–80
 procedural extraction using displacement, 480
 shadow densities, 260
 softening mattes, 108
LG Thrill smartphone, 439
Life Time (frame), particles, 392
Light Based on Image Tool Conversion Helper
 (Light B.I.T.C.H.), 383
Light boxes, for studio lighting, 385
Light probes
 example, 382
 HDRI and, 380–381
 overview of, 379–380
Light rig solutions, 382–384
Light spill contamination, 173
Light wrap
 creating procedural, 202–206
 defined, 197
 mattes, 201
 sky replacement and, 284
Lighten mode, blend/transfer modes, 70
Lighting
 3D light matching technique, 249–250, 256
 3D re-lighting, 467–469
 attributes, 48–50
 basic integration techniques, 172–176
 compositor checklist, 493
 creating procedural light wraps, 202–206
 in day-for-night scenes, 296–297
 faking interactive, 429–431
 film-like effects, 64
 filters and, 30–31
 global illumination, 376–379
 greenscreen or bluescreen elements and,
 177–178
 image-based. see Image-based lighting (IBL)
 for looks and emotions, 16
 multi-pass rendering and compositing, 314, 316
 quick reference, 494
 reference, 381
 smart-image-based lighting, 382–384
 spotlight effect, 92
 studio lighting, 385–388
 three point lighting, 14–15
 of virtual set, 357–358
LightWave, from New Tek
 3D application, 151
 3D virtual studio, 360
 hypervoxels in, 398
 particle systems and, 390
Line of action, 19
Linked 3D geometry-based particle systems, 401
Linus’s Law, 500
Liquid effects, 398
Live composite (glass matte painting), 36–37
Lock
 checking and locking 3D objects, 235–236
 positioning and locking the camera, 350–351
 still, locked off, on sticks camera movement, 13
Lossless compression, 57
Lossy compression, 57
Low lights, creating looks and emotions, 16
Low speed, temporal motion effects, 32
Luma mattes, creating procedural light wraps, 205
Luminance
 isolated roto for keying, 122
 mattes, 205
 sky replacement and, 283
 working with grayscale images, 95
Luminosity
 color terminology, 497
 multi-pass rendering and compositing, 316
Luminosity maps, working with grayscale images, 95
Luxology’s Modo 3D application, 152

M
Magic Wand Selection
 Color Range selection compared with, 79
 Photoshop selection methods, 75
 selecting black areas with, 217
Magnetic Lasso tool, 75
Makeup, digital, 370–372
Map (picture-based) HUDs, 304
Maps
 3D, 147
 burn maps and clipping maps in hull burn effect, 426
 compositing and, 95–98
 depth maps, see Depth maps
 displacement map, 272–273
 grunge and grime maps, 84–87
 occlusion maps, 263
Markers, placing tracking markers, 243–245
Marketing yourself, 503
Marquee Selection, Photoshop, 74–76
Mask tools, 229–230
Masks, sky replacement and, 280–282
Master shots, 11
Matchimation, 2D
 overview of, 139–141
 wire and rig removal, 307
Matchimation, 3D
 adding/rendering 3D objects, 246
 checking orthogonal and perspective views, 242
 constructing three-walled cyc and rough model of objects, 240
 crushing levels to get high-contrast, trackable features, 239
 example from Balloon film, 237–238
 hand tracking and, 162–165
 overview of, 237
 placing camera, 241–242
 placing tracking markers, 243–245
Matchmoving, 2D
 destabilization, 137–138
 overview of, 136–137
 stabilization, 137
Matchmoving, 3D
 checking and locking 3D objects, 235–236
 compositing and, 236–237
 loading 3D objects into scene, 234
 magic of, 228
 motion control and motion capture, 166–167
 moving foreground element of live action background, 179
 object tracking, 166
 overview of, 162, 233
Matte painting
 day-for-night scenes, 290–291, 294
 examples, 37
 history of, 35
 live composite (glass painting), 36
 Méliès use of, 27
 tips, 497–498
Matte painting, digital
 2.5D scene, 333
 adding blinds and fake shadows, 331–332
 adding elements to 2.5 scene, 333–336
 adding window reflection elements, 331
 background and foreground plates, 327–330
 complex 2.5D digital matte painting, 343–348
 creating separation between background and foreground, 330–331
 grain and color correction pass, 333
 showing 2.5D elements in 3D space, 336–338
Mattes
 compositing and, 105–108
 core mattes, 107
Mastics (continued)
creating for day-for-night scene, 292
creating for sky replacement, 280–282
in day-for-night scenes, 294–296
edge mattes, 107–108
detailing, 108
garbage mattes, 106–107
holdout mattes, 68–69
keying, 122
light wrap mattes, 201
loading, 83
for multiple exposure, 41–42
overview of, 105
rotoscoping, 116–117
self-matting, 106
in summer for winter scene, 298–299
Maxon's Cinema 4D application, 152
Maya application
from Autodesk, 150
plugins, 360
MD (midground shots), 12
Media attributes, identifying, 53
Medium shots (MS), 10–11
Méliès, Georges
dry-for-wet setup, 27–28
effect examples, 25–26
forced perspective, 24, 38–39
in history of visual effects, 23
live composite (glass painting), 36
matte painting, 27
multiple pass exposures, 35
substitution effect, 24, 422
Merge to HDRI Pro, Photoshop, 381
Meshes
3D, 488
3D-colored mesh data, 360, 363
creating, 340
creating 3D models, 143, 145
film coloration and, 367
rigid body dynamics and, 402–403
Microsoft's Kinect, 491
Midground shots (MD), 12
Midtones, see Gamma level
Miniatures
camera speed and, 39–41
forced perspective, 38–39
photography of, 38
Mirror technique, Rejlander's use in compositing, 28
Mocap plugin, from Reallusion, 486–487
Mocha Pro, from Imagineer System
2D motion tracking, 134
3D motion tracking, 161
digital makeup and tattoos, 370–372
film coloration and, 369
Remove tool, 371
roto application, 122–123
Modeling
creating 3D models, 143, 332
displacement modeling, 470
in three point lighting, 14
Modo, from Luxology, 152
Moore's Law, 499
Motion blur
adding to crowd replication, 413–414
adding to heat distortion effect, 274–275
adding to hull burn effect, 427–428
applying to bird example, 223
artifacts of speed, 64
compositor checklist, 493
defined, 45
media attributes and, 53
particle-based debris systems and, 421
Motion capture, 3D matchmoving, 166–167
Motion control
3D matchmoving, 166–167
camera movement and, 14
particles, 392
Motion effect, adding to digital matte painting, 347
Motion pictures
in history of VFX, 498–499
shooting speeds, 62
Motion pictures, making
the idea, 4–5
pitch-viz, pre-viz, and post-viz, 5–7
pre-production, production, post-production, 5–7
writing the concept, 5
Motion pictures, principles of
180-degree rule, 19
camera movement, 13–14
composition, 20
continuity, 19
Eisenstein's Law, 9–10
manipulating time and space, 20
overview of, 7–8
parallax, 20–21
parallel action, 20
perspective of vision, 8–9
perspective, 21–22
screen direction, 19
shot emotion, 14–17
shots, 10–12
staging, letter shapes, and blocking, 17–18
VFX pipeline and, 4–7
Motion tracking, 2D
1 point tracks, 124–125
2 point tracks, 125
4 point cornerpin track, 126
advanced strategies, 138–139
anatomy of motion tracker, 124
applications for, 132–134
basic integration techniques, 176–184
comparing good and bad targets, 128–131
comparing with 3D, 154
Golden Rules, 126–127
overview of, 123
rotation and scale error amplification, 132
tracker assisted roto, 134–135
types of, 124
using 2D automated mass track for 3D
tracking, 229–230
when to use, 227
Motion tracking, 3D
applications for, 159–162
camera solve, 231–232
confidence levels, 229
magic of, 228
overview of, 153–155
placing test objects, 232–233
techniques, 155–158
using 2D automated mass track for 3D
tracking, 229–230
when to use, 227
Movement, camerawork and, 64
Movies. see Motion pictures
MS (medium shots), 10–11
Multiple pass
combination or solid result, 35
photography, 40
rendering and compositing, 313–319
transparent or ghost effects, 34–35
Multiply blend mode
bullet hits and, 432
film coloration and, 369
overview of, 70
Murphy’s (Sod’s) Law, 500
Muzzle flashes, in digital destruction, 429–431

N
Newtek’s LightWave. see LightWave
Next Limit Technologies’ RealFlow application, 404–405
Nodal-based system
compositors, 109–111
creating particle-based shadows, 414
Node-flow, 110
Noise
adding to heat distortion effect, 274
in camera solve, 248
digital de-aging and, 375
filling solid with monochromatic, 272
film/video attributes, 53
Golden Rules for motion tracking and, 126
issues with HDRI IBL solutions, 382
issues with motion tracking, 233
moving, 201
Non-rendering helper object/layer. see Nulls (non-rendering helper object/layer)
Non-rendering nulls, particle systems, 396–397
Normal maps, working with grayscale images, 96
Normal speed, temporal motion effects, 31
NTSC, aspect ratios and pixels, 61
Nuke, from Foundry
2D motion tracking, 133
3D motion tracking, 159–160
digital de-aging, 374
Image Based Keyer (IBK), 113
nodal-based compositor, 110
roto tools in, 122
stereoscopic conversion and, 455
Nulls (non-rendering helper object/layer)
3D HUDs and, 304
moving foreground element of live action background, 180
overview of, 396–397
in particle systems, 390
placing 3D objects, 234–236
placing tracking markers, 244–245

O
Object tracking, 3D
adding effects (shadows, fire, smoke, glow), 251–252
camera solve, 247–248
color solve, 251–252
d-color correction, 251–252
e-example, 246–247
Object tracking, 3D (continued)
final product, 253
importing 3D objects into scene, 248–249
lighting 3D objects to match footage and rendering, 249–250
matchmoving and, 166
overview of, 246
replacing objects with other objects, 250–251

Objects
adding object over aerial background, 256–257
adding/rendering for matchimation example, 246
checking and locking 3D objects, 235–236
constructing rough model in matchimation example, 240
displacement of 3D objects, 360–363
importing 3D objects into scene, 248–249
lighting 3D objects to match footage and rendering, 249–250
loading 3D objects into scene, 234
matching, 197–201
moving 3D objects in front of 2D planes, 326
null objects, 390
placing test objects for 3D motion tracking, 232–233
quick reference for 3D, 495
replacing objects with other objects, 250–251
test objects in, 158

Occipital Structure Sensor, 491

Occlusion
depth cues, 52
faking ambient occlusion, 263–267
of light, 263

Occlusion maps, 263
One shot, two shots., 10

Opacity
adding occlusion to crowd replication, 266
alpha channels and, 78
blending scenes and, 494
face replacement and, 212
lowering for realistic film coloration, 369
sky replacement and, 280

Opacity maps, 96
Opacity slider, 91

Operators, complex and multisource (blend/transfer), 69–70
Optical flow, in time ramping, 312
Optical printing extractions, 71
Order, used in cloning, 103–104
Organic modeling, 144
Orthogonal views
camera solve and, 231
checking in matchimation example, 242
OTH (over-the-hip shots), 12
OTS (over-the-shoulder shots), 11–12
Over cranking, camera speed, 31–32
Over process, holdout mattes, 68
Overlap. see Occlusion
Overlay mode, blend/transfer modes, 70
Over-the-hip shots (OTH), 12
Over-the-shoulder shots (OTS), 11–12

P
Paint
2D paint for wire and wig removal, 104–105
stripping, 89
PAL, aspect ratios and pixels, 61
Pan, types of camera movement, 13
Paracosm, 488–491
Parallax
natural parallax motion, 338
showing 2.5D elements in 3D space, 336
stereoscopic 3D vision and, 438, 442
visual cue for depth, 20–21
Parallel action, manipulating time in movies, 20
Parallel viewing, stereoscopic 3D vision and, 440–444
Parents, using in placing 3D objects, 235
Particle Resistance, 392
Particle Size, 392
Particle systems
components of, 390
emitters, 390–392
linked 3D geometry-based, 401
null objects, 390
particles, 392–396
partigons and non-rendering nulls, 396–397
sprite-based rendering, 400
uses of, 409
voxels in rendering, 397–399

Particle Weight, 392
Particle-based crowd replications
2.5D, 411–414
3D, 414–418
overview of, 410
Particle-based debris systems
 3D, 418–420
 hull burn effect and, 427–428
Partigons, 396–397
Paul, Robert W., 42
Penumbras, faking shadows and reflections, 191
Persistence of vision, principles of motion pictures, 8–9
Perspective
 aerial, 258, 285
 checking perspective views, 242
 compositor checklist, 493
 forced perspective, 24, 38–39
 visual cue for depth, 21–22
PFTrack, from Pixel Farm
 3D motion tracking application, 159
 Mask tools, 229
Phone negotiation, 503
Photogrammetry
 3D, 228
 3D motion tracking based on, 154–155
 123D Catch using, 487–488
 vanishing point photogrammetry, 462–465
Photomerge function, Photoshop, 307
Photoshop
 3D tools, 452–453
 Color Range selection, 79
 creating black and white anaglyph stereoscopic 3D, 448
 creating burn maps, 426
 creating color anaglyph stereoscopic 3D, 447–448
 creating custom brushes, 300–301
 creating lighting grid, 215–216
 creating mid-gray solid, 199
 curves adjustment tool, 287–288
 Lasso Selection, 74–75
 Magic Wand Selection, 75
 magical uses of, 462
 Marquee Selection, 74–75
 Merge to HDRI Pro, 381
overview of, 74
 Photomerge function, 307
 Vanishing Point tool, 462
 versatility of, 73
Pickwhip tool, 180
Picture-based (map) HUDs, 304
Pipeline
 multi-pass rendering and compositing and, 313
 VFX, 4
Pitch-viz
 in moviemaking, 5
 Reallusion iClone software and, 484
Pixel Farm’s PFTrack. see PFTrack
Pixel flow, in time ramping, 312
Pixels
 2D motion tracking and, 123
 Magic Wand Selection, 75
Planar tracking, 134
Planetside Software’s Terragen, 354–355
Plates, thinking in layers and, 65–66. see also by types of plates
Point cloud
 in 3D motion tracking, 157
 dense mapped, 490
 placing test objects for 3D motion tracking, 232–233
 virtual studios, 360, 363
Point lights
 3D re-lighting, 467–469
 lighting greenscreen or bluescreen elements, 178
Point of view (POV)
 forced perspective and, 24
 of particle position, 420–421
 realism and, 326
 re-lighting and, 467
Points, in 3D CGI, 143–145
Polygonal Lasso tool, 75–76
Porter, Edwin S., 41
Post-production, in moviemaking, 7
Post-viz
 in moviemaking, 6–7
 Reallusion iClone software and, 484
POV, see Point of view (POV)
Pre-production
 Méliès’ use of pre-production art, 23
 in moviemaking, 5–6
Pre-scored clothing, bullet hits and, 432
Pre-viz
 3D space shot, 326
 in moviemaking, 5–6
 Reallusion iClone software and, 484
 virtual studios and, 358
Primaries, color terminology, 497
Primatte color space keyer, 112
Problem-solving, 409
Production, in moviemaking, 6
Progressive, film cameras shooting in, 62
Reference images
 in 3D motion tracking, 231
 film coloration and, 366–367
Reference points, for camera projections, 351
Reflections
 2.5D, 191
 adding to 2.5 scene, 335
 adding window elements, 331
 card method of creating, 192–193
 compositor checklist, 493
 projection method of creating, 194–195
 studio lighting and, 385–386
 working with grayscale images, 95
Reflective gradient, creating with Photoshop, 216
Refraction maps, 96
Rejlander, Oscar G., 28–30
Remove tool, Mocha Pro, 371–372
Rendering
 issues with HDRI IBL solutions, 382
 virtual sets, 357–358
Rendering, multi-pass
 determining needed passes, 313–314
 examples, 315–319
 overview of, 313
Rendering particle systems
 partigons and non-rendering nulls, 396–397
 sprite-based rendering, 400
 voxels, 397–399
Re-photography effects, 42
Replacement. see also Extraction
 2D face replacement, 210–214
 3D, 246–253
 extraction sky replacement, 283–285
 reverse sky replacement, 280–282
 sky replacement generally, 279–280
Replication
 of birds into flock, 224
 in creating lighting truss grid, 218
Replication shots, motion control and motion capture, 166–167
Resolution
 comparing formats, 62
 DEMs, 474–475
 formats and, 59–61
 full-resolution color, 58
Restoration. see Beauty and restoration
Reverse
 day-for-night FX, 286–287
 sky replacement, 280–282
 temporal motion effects, 33
RGB. see Red, green, and blue (RGB)
Ricoh Theta, 482–483
Rigid body dynamics, 401–403
Rigs
 light rig solutions, 382–384
 removing wires and rigs, 104–105, 306
 stereoscopic, 439
 virtual, 358–359
Rim (back light) light
 placing, 175
 in three point lighting, 15
 VFX lighting and integration, 172
RLE (run length encoding), 57
Rods, of eye, 286
Roget, Peter Mark, 8
Rotation distortion, creating billowing smoke effect, 261–262
Rotation parameter, particles, 394
Roto
 advanced spline features, 119
 applications for, 122–123
 applying mask to isolate heat distortion effect, 274–276
 applying mask to isolate water effect, 273–274
 Bézier curves, 117–118
 B-spline curves, 118
 bungee jumper example, 308–309
 choosing which type of curve to use, 119
 clipping elements in camera projections, 351–352
 compositing and, 105–108
 compositor checklist, 493
 creating mattes, 116–117
 creating roto-based VFX, 185
 in day-for-night scenes, 290–291
 depth maps and, 456
 elliptical roto mask, 264–265
 extraction using, 283, 344–345
 Golden Rules for, 119–121
 keying with isolated roto, 122
 Mask tools and, 229–230, 250
 overview of, 116
 removing wires and rigs, 105
 rotospline types, 117
 in summer for winter scene, 299
 tracker assisted, 134–135, 370
Roto energy weapon/effect
 components of, 185–188
 tips and tricks for, 189–190
Rotosplines
 advanced spline features, 119
 Bézier curves, 117–118
 B-spline curves, 118
 bungee jumper example, 308
 choosing which type of curve to use, 119
 for digital de-aging, 374
 for isolating background for film coloration, 366–369
 for selecting windows, 292
 types of, 117
Rubber sheet method, 3D displacement, 456–459
Rule of Thirds, composition guidelines, 20
Run length encoding (RLE), 57

S
Sampling, 58–59
Sampling noise, issues with HDRI IBL solutions, 382
Saturation. see also Hue/Saturation adjustment
 color terminology, 496
 day-for-night scenes, 286
 desaturate a map, 85, 94
 extraction sky replacement and, 283
Scale
 adding object over aerial background, 256–257
 adding to digital matte painting, 347
 camera projections and, 350
 displacement maps and, 273
 in photography of miniatures, 39
Scanline VFX’s Flowline application, 407
Scatter setting, creating custom brushes, 300–301
Scene reference, 496
Screen depth, stereoscopic 3D vision and, 442
Screen direction, continuous and congruent movement, 19
Screen mode, blend/transfer modes, 70
Screen sizes, quick reference, 495
Script, continuity of, 19
Scripts, nodal-based compositors, 110
Scrolling HUDs, 303
SD (standard definition), 59
Secondaries, color terminology, 497
Sections, composition guidelines, 20
Selection methods
- advanced, 78–79
- alpha channels, 77–78
- applications of, 84
- channel ops, 80–83
- for elements of summer for winter scene, 298
- Lasso Selection, 74–75
- levels adjustment tool, 79–80
- Magic Wand Selection, 75
- Marquee Selection, 74–75
- in Photoshop, 74
- procedural extraction of grunge and grime maps, 84–87
- VFX and, 76–77

Self Interaction controls, particles, 394

Self-matting, 106

Set Channels tool, 269

Sets
- creating 3D, 324–325, 412–413
- extensions, 327–338
- virtual, 357–358

Shade
- color terminology, 496
- multi-pass rendering and compositing, 316

Shaders, 3D textures and, 147

Shadows. see also Blacks
- adding effects to objects, 251–252
- adding occlusion to crowd replication, 264–267
- card method of creating, 192–193
- components of, 51–52
- compositor checklist, 493
- correcting in atmospheric effect, 258
- direction, intensity, and quality of light and, 50–51
- faking, 191, 331–332, 430
- fill lights and, 174
- levels adjustment, 80
- lifting densities, 260
- matching densities, 181
- multi-pass rendering and compositing, 316
- particle-based, 414
- projection method of creating, 194–195
- VFX lighting and integration, 172

Shake, roto tools in, 122

Shape Dynamics panel, creating custom brushes, 300–301

Shininess. see Specularity (hotspot/shininess)

Shooting schedule, establishing in pre-production, 6

Shooting speeds, 62

Shots
- background plate, 65
- framing, 498
- lighting, 14–15
- types of, 10–12

Shutters
- camera attributes and, 43–44
- changing angle of, 413–414

Shuttle Radar Topography Mission (SRTM), 474

sIBL (Smart-image-based lighting), 382–384

Side lights, creating looks and emotions with, 16

Silhouette roto application, 122–123

Simulation
- applications for, 404–405
- benefits of, 389
- bullet dynamics, 403
- fluid dynamics simulation, 404–407
- particle systems. see Particle systems
- rigid body dynamics, 401–403
- soft body dynamics, 403–404

Single-pass effects, 30. see also In-camera effects

Size
- camerawork and, 64
- media resolutions and, 59–60
- Particle Size, 392
- screen size reference, 495

Sky replacements
- extraction sky replacement, 283–285
- overview of, 279–280
- reverse sky replacement, 280–282

Slap comp, of extraction sky replacement, 283

Smart particles, RealFlow application, 394, 404–405

Smart-image-based lighting (sIBL), 382–384

Smith, G.A., 42

Smoke
- 2.5D, 260–263
- adding effects to objects, 251–252

Smooth filters, 248

Soft body dynamics, 403–404

Soft light mode, blend/transfer modes, 70

Space, designing futuristic complex, 470–474

Space, manipulating in movies, 20

Spatter brush, creating burned out or demolished look with, 343–344

Specularity (hotspot/shininess)
- of 3D sphere, 147
- breakup, 95–96, 98, 149
Still, locked off, on sticks
2D motion tracking and, 123
types of camera movement, 13
Stop action (stop motion)
history of visual effects in film, 23
Méliès use of, 24
temporal motion effects, 32
traditional animation and, 42
Storyboards, 23
Stripping paint and surfaces, magical uses of grunge and grime maps, 89
Studio lighting, 385–388
Studios, virtual, 358–364
Stunt doubles, 210
Subdivision surface modeling, 144
Substitution effect, 24, 422
Subtract mode, blend/transfer modes, 70
Success, rules for, 505
Summer for winter
adding key visual cues, 299–302
adjusting hue/saturation, 299
curves adjustment for snow simulation, 299
extracting elements for, 297–298
lighting adjustments, 296–297
overview of, 297
Sun/sunlight
3D light matching technique, 256
godrays, 281–282
simulation of, 224
Superimpositions (double exposure), 34–35
Surface voxels, 398
Surfaces
in 3D CGI, 143
in 3D modeling, 147
stripping, 89
Sweet spot, for camera projections, 349
SynthEyes, 161
T
Target HUDs, 303
Tattoos, digital, 372–373
Technologies, new
123D Catch, 487–488
overview of, 482
Reallusion software, 483–487
Ricoh Theta, 482–483
X-cam and Paracosm, 488–491

multi-pass rendering and compositing, 314, 316
working with grayscale images, 97
Specularity maps, 95, 98
Spheres
3D modeling, 147–148
global illumination, 377
Spin parameter, particles, 394
Spinning light rig, 384
Spline warp tool, 367
Splines. see also Rotosplines
in 3D CGI, 144–145
in face replacement, 214
Spotlights, 92, 178
Sprites
defined, 400
sprite-based particles, 414
sprite-based rendering, 400
Squibs, bullet hits and, 432
SRTM (Shuttle Radar Topography Mission), 474
stabilization
2D motion tracking, 137, 166
camera inversion creating, 246
face replacement and, 211
Staging, movie scenes, 17–18
Standard definition (SD), 59
Steadicam, camera movement and, 13
Stereo window, 442
Stereograph, 436, 438
Stereoscopic 3D
3D animation and, 446–447
creating, 439–445
creating 3D glasses, 436–437
creating black and white anaglyph
stereoscopic 3D, 448
creating color anaglyph stereoscopic 3D,
447–448
history, background, and core concept,
436–439
layer offset for 3D-like effects, 449–451
overview of, 435
Photoshop 3D tools, 452–453
Pulfrich effect for creating, 453–454
stereoscopic cameras and camera rigs, 439
Stereoscopic conversion, 2D to 3D
deep maps and, 456–459
faking Z-depth technique for, 267–268
overview of, 454
technology and implementation, 454–455

Temporal motion effects
- bullet time, 32–34
- high speed (slow motion), 31–32
- low speed, 32
- normal speed, 31
- overview of, 31
- reverse, 32
- stop frame, 32
- time lapse, 32

Terragen, from Planetside Software, 354–355
Terrains, complex terrains using DEM and SRTM data, 474–478
Test objects, in 3D motion tracking, 158

Textures
- 3D, 147
 - camera projections and, 349
 - dirtying down, 90–91
 - displacement of 2D, 91–92
 - hypertextures, 399
 - lighting applied using alpha as texture, 92
 - photography of 3D, 496
 - procedural futuristic or space complex design, 471–473
 - of virtual set, 357

Three point lighting, 14
Threshold functions, creating burn maps and, 426
Thrill smartphone, from LG, 439
Tilt, types of camera movement, 13
Time, manipulating in movies, 20. see also Temporal motion effects
Time lapse, temporal motion effects, 33
Time ramping
 - adding keyframes, 312–313
 - optical flow (pixel flow) and, 311–312
 - overview of, 310
 - tween frames in, 310–311
Tint, color terminology, 496
Toeing in, stereoscopic 3D vision and, 440–444
Tolerance, Magic Wand Selection, 75, 217
Top lights, creating looks and emotions with, 16
Tracker assisted roto, 134–135, 370
Tracking. see Motion tracking
Transfer modes. see Blend/transfer modes
Transition shots, 12
Transitive relations, 243
Translucency maps, 96

Transparency
- alpha channels and, 78
- multiple pass exposures, 34–35
- working with grayscale images, 96–98

Transparency maps, 96, 98
Triangles, composition guidelines, 20
Triggers, in particle generation, 392
Truck, types of camera movement, 13
Tungsten lights, color temperature of, 50
Turbulence parameter, particles, 393
TurbulenceFD application, from Jawset Visual Computing, 405–406
Tween frames, in time ramping, 310–311

U

UDK (Unreal Development Kit), 358
Ultimatte keyer, 113
Umbra, faking shadows and reflections, 191
Undercranked, camera speed, 32
Underwater (UW)
 - dry-for-wet setup, 27–28
 - shots, 14

Unreal Development Kit (UDK), 358

V

Vanishing Point Clone tool, 100
Vanishing point photogrammetry, 462–465
Vanishing Point tool, Photoshop, 462
Velocity parameter, particles, 393–395
Vertices, in 3D CGI, 143–145
VFX
 - career and job categories, 501
 - important movies in history of, 498–499
 - laws, 499–500
 - Méliès role in origins of, 23–28
 - origins of, 22
 - Rejlander role in origins of, 28–30
 - truism, 501

Vibration parameter, particles, 393
Vicon motion tracking application, 159

Video
 - analog and digital formats, 59
 - vs. human eye, 62
 - matching video noise, 198–201
 - shooting speeds, 62
Video stock, attributes of, 53
Video Toaster, from New Tek, 151
Virtual cameras, 358–359
Virtual sets, 357–358
Virtual studios
 3D-colored mesh data, 360, 363
 applications for, 360
 displacement of 3D objects, 360–363
 equipment in, 359
 overview of, 358
 point cloud data, 360, 363
Volume voxels, 398–399
Voodoo motion tracking application, 162
Voxels
 rendering particle systems, 397–399
 sprite voxels, 400
 TurbulenceFD application, 405–406
Vue, from e-on software, 354–355

W
Water effect
 adding elements to 2.5 scene, 335
 displacement effect, 272–274
Wheatstone, Sir Charles, 436
Whites. see also Highlights
 checking densities, 492
 checking for element integration, 260
 correcting in atmospheric effect, 258
 creating gradients, 215
 creating procedural light wraps and, 203–204
 creating solid white silhouette of extraction, 269
 curves adjustment input, 289
 curves adjustment output, 289
 levels adjustment, 80, 86–87
 matching highlights, 181–182
Wide shots (WS), 10–11
Wire
 removing wires and rigs, 104–105, 306
 window method, 306–309
Wireframe view
 3D camera view, 244
 alignment of objects in, 249
 box preview, 224
 changing views, 477–478
 composed in 3D application, 326
 of depth map, 267
 of explosion of building model, 401–403
for matching foreground plate, 328
rendering models in, 304–305
selecting easy-to-see-through views, 241
setting 3D model to, 164–165
shaded view, 327–328
of virtual set, 357
World Machine, 356
Wrapped, completion of shooting, 7
Writing, creating concept for movie, 5
WS (wide shots), 10–11

X
X-cam, 488–491
X-Spline, in digital makeup, 371
XYZ coordinate system
 in 3D CGI, 143
 camera solve and, 232
 motion tracking and, 154
 particle-based debris systems and, 418

Y
Y Pb Pr color space
 color depth and, 60
 sampling and compression and, 58
Yatchum, Jeff, 429

Z
Z-depth
 3D motion tracking and, 153–154
 for atmospheric effect, 257
 cloning and, 101
 faking, 267–271
 sky replacement and, 284
 for smoke and cloud effect, 262–263
 working with grayscale images, 97
Zoom, types of camera movement, 13
Z-space
 adding object over aerial background, 257
 crowd replication and, 410–411
 motion tracking and, 127, 131
 moving atmospheric effect into, 271
 offset in, 221
 particles emitters spinning into, 400
 pushing objects into, 209
 pushing planes into, 218–220, 257
 pushing smoke effect into, 262
 scaling objects and, 153