
 i

Preface

The CERT ® C Coding Standard, Second Edition, provides rules for coding in the
C programming language. The goal of these rules is to develop safe, reliable,
and secure systems, for example, by eliminating undefined behaviors that can
lead to unexpected program behaviors and exploitable vulnerabilities. Con-
formance to the coding rules defined in this standard are necessary (but not
sufficient) to ensure the safety, reliability, and security of software systems
developed in the C programming language. It is also necessary, for example,
to have a safe and secure design. Safety-critical systems typically have stricter
requirements than are imposed by this coding standard, for example, requir-
ing that all memory be statically allocated. However, the application of this
coding standard will result in high-quality systems that are reliable, robust,
and resistant to attack.

Each rule consists of a title, a description, and noncompliant code exam-
ples and compliant solutions. The title is a concise, but sometimes imprecise,
description of the rule. The description specifies the normative requirements
of the rule. The noncompliant code examples are examples of code that would
constitute a violation of the rule. The accompanying compliant solutions
demonstrate equivalent code that does not violate the rule or any other rules
in this coding standard.

A well-documented and enforceable coding standard is an essential ele-
ment of coding in the C programming language. Coding standards encourage
programmers to follow a uniform set of rules determined by the requirements
of the project and organization rather than by the programmer’s familiarity.

ii Preface

Once established, these standards can be used as a metric to evaluate source
code (using manual or automated processes).

CERT’s coding standards are being widely adopted by industry. Cisco
 Systems, Inc., announced its adoption of the CERT C Secure Coding Standard
as a baseline programming standard in its product development in October
2011 at Cisco’s annual SecCon conference. Recently, Oracle has integrated all
of CERT’s secure coding standards into its existing Secure Coding Standards.
Note that this adoption is the most recent step of a long collaboration: CERT
and Oracle previously worked together in authoring The CERT ® Oracle Secure
Coding Standard for Java (Addison-Wesley, 2011).

■  Scope

The CERT ® C Coding Standard, Second Edition, was developed specifically for
versions of the C programming language defined by

■  ISO/IEC 9899:2011, Programming Languages—C, Third
Edition [ISO/IEC 9899:2011]

■  ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

The CERT ® C Coding Standard, Second Edition, updates and replaces The CERT ®
C Secure Coding Standard (Addison-Wesley, 2008). The scope of the first edi-
tion of this book is C99 (the second edition of the C Standard) [ISO/IEC
9899:1999]. Although the rules in this book were developed for C11, they can
also be applied to earlier versions of the C programming language, includ-
ing C99. Variations between versions of the C Standard that would affect the
proper application of these rules are noted where applicable.

Most rules have a noncompliant code example that is a C11- conforming
program to ensure that the problem identified by the rule is within the
scope of the standard. However, the best solutions to coding problems are
often platform specific. In many cases, this standard provides appropriate
compliant solutions for both POSIX and Windows operating systems. Lan-
guage and library extensions that have been published as ISO/IEC technical
reports or technical specifications are frequently given precedence, such as
those described by ISO/IEC TR 24731-2, Extensions to the C Library—Part II:
Dynamic Allocation Functions [ISO/IEC TR 24731-2:2010]. In many cases,
compliant solutions are also provided for specific platforms such as Linux or
OpenBSD. Occasionally, interesting or illustrative implementation-specific
behaviors are described.

Preface iii

Rationale
A coding standard for the C programming language can create the highest
value for the longest period of time by focusing on the C Standard (C11) and
the relevant post-C11 technical reports.

The C Standard documents existing practice where possible. That is, most
features must be tested in an implementation before being included in the
standard. The CERT ® C Coding Standard, Second Edition, has a different pur-
pose: to establish a set of best practices, which sometimes requires introducing
new practices that may not be widely known or used when existing practices
are inadequate. To put it a different way, The CERT ® C Coding Standard, Second
Edition, attempts to drive change rather than just document it.

For example, the optional but normative Annex K, “Bounds-Checking
Interfaces,” introduced in C11, is gaining support but at present is imple-
mented by only a few vendors. It introduces functions such as memcpy_s(),
which serve the purpose of security by adding the destination buffer size to
the API. A forward-looking document could not reasonably ignore these func-
tions simply because they are not yet widely implemented. The base C Stan-
dard is more widely implemented than Annex K, but even if it were not, it
is the direction in which the industry is moving. Developers of new C code,
especially, need guidance that is usable on and makes the best use of the com-
pilers and tools that are now being developed.

Some vendors have extensions to C, and some also have implemented
only part of the C Standard before stopping development. Consequently, it
is not possible to back up and discuss only C99, C95, or C90. The vendor
support equation is too complicated to draw a line and say that a certain
compiler supports exactly a certain standard. Whatever demarcation point is
selected, different vendors are on opposite sides of it for different parts of the
language. Supporting all possibilities would require testing the cross-product
of each compiler with each language feature. Consequently, we have selected
a demarcation point that is the most recent in time so that the rules defined
by the standard will be applicable for as long as possible. As a result of the
variations in support, source-code portability is enhanced when the program-
mer uses only the features specified by C99. This is one of many trade-offs
between security and portability inherent to C language programming.

The value of forward-looking information increases with time before
it starts to decrease. The value of backward-looking information starts to
decrease immediately.

For all of these reasons, the priority of this standard is to support new
code development using C11 and the post-C11 technical reports that have not
been incorporated into the C Standard. A close-second priority is supporting
remediation of old code using C99 and the technical reports.

iv Preface

This coding standard does make contributions to support older compil-
ers when these contributions can be significant and doing so does not com-
promise other priorities. The intent is not to capture all deviations from the
C Standard but to capture only a few important ones.

Issues Not Addressed
A number of issues are not addressed by this coding standard.

Coding Style. Coding style issues are subjective, and it has proven impossi-
ble to develop a consensus on appropriate style guidelines. Consequently, The
CERT ® C Coding Standard, Second Edition, does not require the enforcement
of any particular coding style but only suggests that development organiza-
tions define or adopt style guidelines and apply these guidelines consistently.
The easiest way to apply a coding style consistently is to use a code-format-
ting tool. Many interactive development environments (IDEs) provide such
capabilities.

Controversial Rules. In general, the CERT coding standards try to avoid the
inclusion of controversial rules that lack a broad consensus.

■  Who Should Read This Book

The CERT ® C Coding Standard, Second Edition, is primarily intended for devel-
opers of C language programs but may also be used by software acquirers to
define the requirements for bespoke software. This book is of particular inter-
est to developers who are interested in building high-quality systems that are
reliable, robust, and resistant to attack.

While not intended for C++ programmers, this book may also be of some
value because the vast majority of issues identified for C language programs
are also issues in C++ programs, although in many cases the solutions are
different.

■  History

The idea of a CERT secure coding standard arose at the Spring 2006 meeting
of the C Standards Committee (more formally, ISO/IEC JTC1/SC22/WG14) in
Berlin, Germany [Seacord 2013a]. The C Standard is an authoritative docu-
ment, but its audience is primarily compiler implementers, and, as noted by

Preface v

many, its language is obscure and often impenetrable. A secure coding stan-
dard would be targeted primarily toward C language programmers and would
provide actionable guidance on how to code securely in the language.

The CERT C Secure Coding Standard was developed on the CERT Secure
Coding wiki (http://www.securecoding.cert.org) following a community-
based development process. Experts from the community, including members
of the WG14 C Standards Committee, were invited to contribute and were
provided with edit privileges on the wiki. Members of the community can
register for a free account on the wiki and comment on the coding standards
and the individual rules. Reviewers who provide high-quality comments are
frequently extended edit privileges so that they can directly contribute to the
development and evolution of the coding standard. Today, the CERT Secure
Coding wiki has 1,576 registered contributors.

This wiki-based community development process has many advantages.
Most important, it engages a broad group of experts to form a consensus
opinion on the content of the rules. The main disadvantage of developing a
secure coding standard on a wiki is that the content is constantly evolving.
This instability may be acceptable if you want the latest information and are
willing to entertain the possibility that a recent change has not yet been fully
vetted. However, many software development organizations require a static set
of rules and recommendations that they can adopt as requirements for their
software development process. Toward this end, a stable snapshot of the CERT
C Secure Coding Standard was produced after two and a half years of commu-
nity development and published as The CERT ® C Secure Coding Standard. With
the production of the manuscript for the book in June 2008, version 1.0 (the
book) and the wiki versions of the secure coding standard began to diverge.

The CERT C secure coding guidelines were first reviewed by WG14 at
the London meeting in April 2007 and again at the Kona, Hawaii, meeting in
August 2007.

The topic of whether INCITS PL22.11 should submit the CERT C Secure
Coding Standard to WG14 as a candidate for publication as a type 2 or type 3
technical report was discussed at the J11/U.S. TAG Meeting, April 15, 2008, as
reported in the minutes. J11 is now Task Group PL22.11, Programming Lan-
guage C, and this technical committee is the U.S. Technical Advisory Group to
ISO/IEC JTC 1 SC22/WG14. A straw poll was taken on the question, “Who has
time to work on this project?” for which the vote was 4 (has time) to 12 (has
no time). Some of the feedback we received afterwards was that although the
CERT C Secure Coding Standard was a strong set of guidelines that had been
developed with input from many of the technical experts at WG14 and had
been reviewed by WG14 on several occasions, WG14 was not normally in the
business of “blessing” guidance to developers. However, WG14 was certainly
in the business of defining normative requirements for tools such as compilers.

vi Preface

Armed with this knowledge, we proposed that WG14 establish a study
group to consider the problem of producing analyzable secure coding guide-
lines for the C language. The study group first met on October 27, 2009. CERT
contributed an automatically enforceable subset of the C secure coding rules
to ISO/IEC for use in the standardization process.

Participants in the study group included analyzer vendors such as Coverity,
Fortify, GammaTech, Gimpel, Klocwork, and LDRA; security experts; language
experts; and consumers. A new work item to develop and publish ISO/IEC TS
17961, C Secure Coding Rules, was approved for WG14 in March 2012, and the
study group concluded. Roberto Bagnara, the Italian National Body representative
to WG 14, later joined the WG14 editorial committee. ISO/IEC TS 17961:2013(E),
Information Technology—Programming Languages, Their Environments and System
Software Interfaces—C Secure Coding Rules [ISO/IEC TS 17961:2013] was offi-
cially published in November 2013 and is available for purchase at the ISO store
(http://www.iso.org/iso/catalogue_detail.htm?csnumber=61134).

■  ISO/IEC TS 17961 C Secure Coding Rules

The purpose of ISO/IEC TS 17961 is to establish a baseline set of requirements
for analyzers, including static analysis tools and C language compilers, to be
applied by vendors that wish to diagnose insecure code beyond the require-
ments of the language standard. All rules are meant to be enforceable by static
analysis. The criterion for selecting these rules is that analyzers that imple-
ment these rules must be able to effectively discover secure coding errors
without generating excessive false positives.

To date, the application of static analysis to security has been performed in
an ad hoc manner by different vendors, resulting in nonuniform coverage of sig-
nificant security issues. ISO/IEC TS 17961 enumerates secure coding rules and
requires analysis engines to diagnose violations of these rules as a matter of con-
formance to the specification. These rules may be extended in an implementation-
dependent manner, which provides a minimum coverage guarantee to customers
of any and all conforming static analysis implementations.

ISO/IEC TS 17961 specifies rules for secure coding in the C program-
ming language and includes code examples for each rule. Noncompliant code
examples demonstrate language constructs that have weaknesses with poten-
tially exploitable security implications; such examples are expected to elicit
a diagnostic from a conforming analyzer for the affected language construct.
Compliant examples are expected not to elicit a diagnostic. ISO/IEC TS 17961
does not specify the mechanism by which these rules are enforced or any par-
ticular coding style to be enforced.

Preface vii

Table P–1 shows how ISO/IEC TS 17961 relates to other standards and
guidelines. Of the publications listed, ISO/IEC TS 17961 is the only one for
which the immediate audience is analyzers and not developers.

A conforming analyzer must be capable of producing a diagnostic for
each distinct rule in the technical specification upon detecting a viola-
tion of that rule in isolation. If the same program text violates multiple
rules simultaneously, a conforming analyzer may aggregate diagnostics
but must produce at least one diagnostic. The diagnostic message might be
of the form

Accessing freed memory in function abc, file xyz.c, line nnn.

ISO/IEC TS 17961 does not require an analyzer to produce a diagnostic
message for any violation of any syntax rule or constraint specified by the C
Standard. Conformance is defined only with respect to source code that is
visible to the analyzer. Binary-only libraries, and calls to them, are outside the
scope of these rules.

An interesting aspect of the technical specification is the portability
assumptions, known within the group as the “San Francisco rule” because
the assumptions evolved at a meeting hosted by Coverity at its headquarters.
The San Francisco rule states that a conforming analyzer must be able to diag-
nose violations of guidelines for at least one C implementation but does not
need to diagnose a rule violation if the result is documented for the target
implementation and does not cause a security flaw. Variations in quality of
implementation permit an analyzer to produce diagnostics concerning por-
tability issues. For example, the following program fragment can produce a
diagnostic, such as the mismatch between %d and long int:

long i; printf ("i = %d", i);

Table P–1. ISO/IEC TS 17961 Compared with Other Standards

Coding Standard C Standard
Security
Standard

Safety
Standard

International
Standard

Whole
Language

CWE None/all Yes No No N/A

MISRA C2 C89 No Yes No No

MISRA C3 C99 No Yes No No

CERT C99 C99 Yes No No Yes

CERT C11 C11 Yes Yes No Yes

ISO/IEC TS 17961 C11 Yes No Yes Yes

viii Preface

This mismatch might not be a problem for all target implementations, but
it is a portability problem because not all implementations have the same
 representation for int and long.

In addition to other goals already stated, The CERT ® C Coding Standard,
Second Edition, has been updated for consistency with ISO/IEC TS 17961.
Although the documents serve different audiences, consistency between the
documents should improve the ability of developers to use ISO/IEC TS 17961–
conforming analyzers to find violations of rules from this coding standard.

The Secure Coding Validation Suite (https://github.com/SEI-CERT/scvs)
is a set of tests developed by CERT to validate the rules defined in ISO/IEC TS
17961. These tests are based on the examples in this technical specification
and are distributed with a BSD-style license.

■  Tool Selection and Validation

Although rule checking can be performed manually, with increasing program
size and complexity, it rapidly becomes infeasible. For this reason, the use of
static analysis tools is recommended.

When choosing a compiler (which should be understood to include the
linker), a C-compliant compiler should be used whenever possible. A con-
forming implementation will produce at least one diagnostic message if a
preprocessing translation unit or translation unit contains a violation of any
syntax rule or constraint, even if the behavior is also explicitly specified as
undefined or implementation-defined. It is also likely that any analyzers you
may use assume a C-compliant compiler.

When choosing a source code analysis tool, it is clearly desirable that the
tool be able to enforce as many of the recommendations on the wiki as pos-
sible. Not all recommendations are enforceable; some are strictly meant to be
informative.

Although CERT recommends the use of an ISO/IEC TS 17961–conforming
analyzer, the Software Engineering Institute, as a federally funded research
and development center (FFRDC), is not in a position to endorse any particu-
lar vendor or tool. Vendors are encouraged to develop conforming analyzers,
and users of this coding standard are free to evaluate and select whichever
analyzers best suit their purposes.

Completeness and Soundness
It should be recognized that, in general, determining conformance to cod-
ing rules is computationally undecidable. The precision of static analysis has
practical limitations. For example, the halting theorem of computer science

Preface ix

states that programs exist in which exact control flow cannot be determined
statically. Consequently, any property dependent on control flow—such as
halting—may be indeterminate for some programs. A consequence of undecid-
ability is that it may be impossible for any tool to determine statically whether
a given rule is satisfied in specific circumstances. The widespread presence of
such code may also lead to unexpected results from an analysis tool.

However checking is performed, the analysis may generate

■  False negatives: Failure to report a real flaw in the code is usually
regarded as the most serious analysis error, as it may leave the user
with a false sense of security. Most tools err on the side of caution and
consequently generate false positives. However, in some cases, it may
be deemed better to report some high-risk flaws and miss others than
to overwhelm the user with false positives.

■  False positives: The tool reports a flaw when one does not exist. False
positives may occur because the code is too complex for the tool to
perform a complete analysis. The use of features such as function
pointers and libraries may make false positives more likely.

To the greatest extent feasible, an analyzer should be both complete and
sound with respect to enforceable rules. An analyzer is considered sound with
respect to a specific rule if it cannot give a false-negative result, meaning it
finds all violations of a rule within the entire program. An analyzer is con-
sidered complete if it cannot issue false-positive results, or false alarms. The
possibilities for a given rule are outlined in Figure P–1.

Figure P–1. False-negative and false-positive possibilities

x Preface

Compilers and source code analysis tools are trusted processes, meaning
that a degree of reliance is placed on the output of the tools. Accordingly,
developers must ensure that this trust is not misplaced. Ideally, trust should
be achieved by the tool supplier running appropriate validation tests such as
the Secure Coding Validation Suite.

False Positives
Although many rules list common exceptions, it is difficult if not impossible
to develop a complete list of exceptions for each guideline. Consequently, it is
important that source code comply with the intent of each rule and that tools,
to the greatest extent possible, minimize false positives that do not violate the
intent of the rule. The degree to which tools minimize false-positive diagnos-
tics is a quality-of-implementation issue.

■  Taint Analysis

Taint and Tainted Sources
Certain operations and functions have a domain that is a subset of the type
domain of their operands or parameters. When the actual values are outside
of the defined domain, the result might be undefined or at least unexpected.
If the value of an operand or argument may be outside the domain of an oper-
ation or function that consumes that value, and the value is derived from
any external input to the program (such as a command-line argument, data
returned from a system call, or data in shared memory), that value is tainted,
and its origin is known as a tainted source. A tainted value is not necessarily
known to be out of the domain; rather, it is not known to be in the domain.
Only values, and not the operands or arguments, can be tainted; in some
cases, the same operand or argument can hold tainted or untainted values
along different paths. In this regard, taint is an attribute of a value that is
assigned to any value originating from a tainted source.

Restricted Sinks
Operands and arguments whose domain is a subset of the domain described
by their types are called restricted sinks. Any integer operand used in a pointer
arithmetic operation is a restricted sink for that operand. Certain parameters
of certain library functions are restricted sinks because these functions per-
form address arithmetic with these parameters, or control the allocation of

Preface xi

a resource, or pass these parameters on to another restricted sink. All string
input parameters to library functions are restricted sinks because it is possible
to pass in a character sequence that is not null terminated. The exceptions are
input parameters to strncpy() and strncpy_s(), which explicitly allow the
source character sequence not to be null terminated.

Propagation
Taint is propagated through operations from operands to results unless the
operation itself imposes constraints on the value of its result that subsume the
constraints imposed by restricted sinks. In addition to operations that prop-
agate the same sort of taint, there are operations that propagate taint of one
sort of an operand to taint of a different sort for their results, the most nota-
ble example of which is strlen() propagating the taint of its argument with
respect to string length to the taint of its return value with respect to range.

Although the exit condition of a loop is not normally considered to be a
restricted sink, a loop whose exit condition depends on a tainted value propa-
gates taint to any numeric or pointer variables that are increased or decreased
by amounts proportional to the number of iterations of the loop.

Sanitization
To remove the taint from a value, the value must be sanitized to ensure that it
is in the defined domain of any restricted sink into which it flows. Sanitization
is performed by replacement or termination. In replacement, out-of-domain
values are replaced by in-domain values, and processing continues using an
in-domain value in place of the original. In termination, the program logic ter-
minates the path of execution when an out-of-domain value is detected, often
simply by branching around whatever code would have used the value.

In general, sanitization cannot be recognized exactly using static analy-
sis. Analyzers that perform taint analysis usually provide some extralinguistic
mechanism to identify sanitizing functions that sanitize an argument (passed
by address) in place, return a sanitized version of an argument, or return a
status code indicating whether the argument is in the required domain.
Because such extralinguistic mechanisms are outside the scope of this coding
standard, we use a set of rudimentary definitions of sanitization that is likely
to recognize real sanitization but might cause nonsanitizing or ineffectively
sanitizing code to be misconstrued as sanitizing. The following definition
of sanitization presupposes that the analysis is in some way maintaining a
set of constraints on each value encountered as the simulated execution pro-
gresses: a given path through the code sanitizes a value with respect to a given

xii Preface

restricted sink if it restricts the range of that value to a subset of the defined
domain of the restricted sink type. For example, sanitization of signed inte-
gers with respect to an array index operation must restrict the range of that
integer value to numbers between zero and the size of the array minus one.

This description is suitable for numeric values, but sanitization of strings
with respect to content is more difficult to recognize in a general way.

■  Rules versus Recommendations

This book contains 98 coding rules. The CERT Coding Standards wiki also
has 178 recommendations at the time of writing. Rules are meant to provide
normative requirements for code, whereas recommendations are meant to
provide guidance that, when followed, should improve the safety, reliability,
and security of software systems. However, a violation of a recommendation
does not necessarily indicate the presence of a defect in the code.

Rules and recommendations are collectively referred to as guidelines.
Rules must meet the following criteria:

1. Violation of the guideline is likely to result in a defect that may
adversely affect the safety, reliability, or security of a system, for
 example, by introducing a security flaw that may result in an exploit-
able vulnerability.

2. The guideline does not rely on source code annotations or assump-
tions of programmer intent.

3. Conformance to the guideline can be determined through automated
analysis (either static or dynamic), formal methods, or manual inspec-
tion techniques.

Recommendations are suggestions for improving code quality. Guidelines are
defined to be recommendations when all of the following conditions are met:

1. Application of a guideline is likely to improve the safety, reliability, or
security of software systems.

2. One or more of the requirements necessary for a guideline to be con-
sidered a rule cannot be met.

Figure P–2 shows how the 98 rules and 178 recommendations are
organized.

Preface xiii

Preprocessor (PRE)

Expressions (EXP)

Integers (INT)

Floating point (FLP)

Arrays (ARR)

Characters and strings (STR)

Memory management
(MEM)

Input/output (FlO)

Recommendations
Rules

POS/WIN recommendations
POS/WIN rules

Environment (ENV)

Signals (SIG)

Error handling (ERR)

Application programming
interfaces (API)

Concurrency (CON)

Miscellaneous (MSC)

POSIX (POS)

Microsoft Windows (WIN)

0 5 10 15 20 25

Declarations and
initialization (DCL)

Figure P–2. CERT C coding guidelines

The wiki also contains two platform-specific annexes at the time of
 writing, one for POSIX and one for Windows, which have been omitted from
this book because they are not part of the core standard.

xiv Preface

The set of recommendations that a particular development effort adopts
depends on the requirements of the final software product. Projects with
stricter requirements may decide to dedicate more resources to ensuring the
safety, reliability, and security of a system and consequently are likely to adopt
a broader set of recommendations.

■  Usage

The rules in this standard may be extended with organization-specific rules.
However, the rules in the standard must be obeyed to claim conformance with
the standard.

Training may be developed to educate software professionals regarding
the appropriate application of coding standards. After passing an examina-
tion, these trained programmers may also be certified as coding professionals.
For example, the Software Developer Certification (SDC) is a credentialing
program developed at Carnegie Mellon University. The SDC uses authentic
examination to

1. Identify job candidates with specific programming skills

2. Demonstrate the presence of a well-trained software workforce

3. Provide guidance to educational and training institutions

Once a coding standard has been established, tools and processes can be
developed or modified to determine conformance with the standard.

■  Conformance Testing

To ensure that the source code conforms to this coding standard, it is nec-
essary to have measures in place that check for rule violations. The most
effective means of achieving this goal is to use one or more ISO/IEC TS 17961–
conforming analyzers. Where a rule cannot be checked by a tool, a manual
review is required.

The Source Code Analysis Laboratory (SCALe) provides a means for eval-
uating the conformance of software systems against this and other coding
standards. CERT coding standards provide a normative set of rules against
which software systems can be evaluated. Conforming software systems
should demonstrate improvements in the safety, reliability, and security over
nonconforming systems.

Preface xv

The SCALe team at the CERT Division of Carnegie Mellon University’s
Software Engineering Institute analyzes a developer’s source code and pro-
vides a detailed report of findings to guide the code’s repair. After the developer
has addressed these findings and the SCALe team determines that the product
 version conforms to the standard, the CERT Program issues the developer a
certificate and lists the system in a registry of conforming systems. This report
details the SCALe process and provides an analysis of selected software systems.

Conformance
Conformance to The CERT ® C Coding Standard requires that the code not contain
any violations of the rules specified in this book. If an exceptional condition is
claimed, the exception must correspond to a predefined exceptional condition,
and the application of this exception must be documented in the source code.

Conformance with the recommendations on the wiki is not necessary to
claim conformance with The CERT ® C Coding Standard. Conformance to the
recommendations will, in many cases, make it easier to conform to the rules;
eliminating many potential sources of defects.

Deviation Procedure
Strict adherence to all rules is unlikely and, consequently, deviations associated
with specific rule violations are necessary. Deviations can be used in cases where a
true-positive finding is uncontested as a rule violation but the code is nonetheless
determined to be correct. An uncontested true-positive finding may be the result
of a design or architecture feature of the software or may occur for a valid reason
that was unanticipated by the coding standard. In this respect, the deviation pro-
cedure allows for the possibility that coding rules are overly strict [Seacord 2012].

Deviations are not granted for reasons of performance or usability. A soft-
ware system that successfully passes conformance testing must not contain
defects or exploitable vulnerabilities. Deviation requests are evaluated by the
lead assessor, and if the developer can provide sufficient evidence that deviation
will not result in a vulnerability, the deviation request is accepted. Deviations are
used infrequently because it is almost always easier to fix a coding error than it
is to provide an argument that the coding error does not result in a vulnerability.

■  System Qualities

The goal of this coding standard is to produce safe, reliable, and secure
systems. Additional requirements might exist for safety-critical systems,
such as the absence of dynamic memory allocation. Other software quality

xvi Preface

attributes of interest include portability, usability, availability, maintainabil-
ity, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example,
readability is an attribute of maintainability; both are important for limiting the
introduction of defects during maintenance that can result in security flaws or
reliability issues. In addition, readability aids code inspection by safety officers.
Reliability and availability require proper resources management, which also
contributes to the safety and security of the system. System attributes such as per-
formance and security are often in conflict, requiring trade-offs to be considered.

■  How This Book Is Organized

This book is organized into 14 chapters containing rules in specific topic
areas, three appendices, a bibliography, and an index. The first appendix is a
glossary of terms used through this book. Terms that are listed in the glossary
are printed in bold font the first time they appear and then in normal font in
subsequent appearances. The second appendix lists the undefined behaviors
from the C Standard, Annex J, J.2 [ISO/IEC 9899:2011], numbered and clas-
sified for easy reference. These numbered undefined behaviors are referenced
frequently from the rules. The third appendix contains unspecified behav-
iors from the C Standard, Annex J, J.1 [ISO/IEC 9899:2011]. These unspecified
behaviors are occasionally referenced from the rules as well. The bibliography
is a compendium of the small bibliography sections from each rule as well as
other references cited throughout the book.

Most rules have a consistent structure. Each rule in this standard has a
unique identifier, which is included in the title. The title and the introductory
paragraphs define the rule and are typically followed by one or more pairs of
noncompliant code examples and compliant solutions. Each rule also includes a
risk assessment, related guidelines, and a bibliography (where applicable). Rules
may also include a table of related vulnerabilities. Recommendations on the
CERT Coding Standards wiki are organized in a similar fashion.

Identifiers
Each rule and recommendation is given a unique identifier, which consists of
three parts:

■  A three-letter mnemonic representing the section of the standard

■  A two-digit numeric value in the range of 00 to 99

■  The letter C indicating that this is a C language guideline

Preface xvii

The three-letter mnemonic is used to group similar coding practices and
to indicate to which category a coding practice belongs.

The numeric value is used to give each coding practice a unique identifier.
Numeric values in the range of 00 to 29 are reserved for recommendations,
and values in the range of 30 to 99 are reserved for rules. Rules and recom-
mendations are frequently referenced from the rules in this book by their
identifier and title. Rules can be found in the book’s table of contents, whereas
recommendations can be found only on the wiki.

Noncompliant Code Examples and Compliant Solutions
Noncompliant code examples illustrate code that violates the guideline under
discussion. It is important to note that these are only examples, and eliminat-
ing all occurrences of the example does not necessarily mean that the code
being analyzed is now compliant with the guideline.

Noncompliant code examples are typically followed by compliant solu-
tions, which show how the noncompliant code example can be recoded in a
secure, compliant manner. Except where noted, noncompliant code examples
should contain violations only of the rule under discussion. Compliant solu-
tions should comply with all secure coding rules but may on occasion fail to
comply with a recommendation.

Exceptions
Any rule or recommendation may specify a small set of exceptions detailing
the circumstances under which the guideline is not necessary to ensure the
safety, reliability, or security of software. Exceptions are informative only and
are not required to be followed.

Risk Assessment
Each guideline in The CERT ® C Coding Standard, Second Edition, contains a
risk assessment section that attempts to provide software developers with an
indication of the potential consequences of not addressing violations of a par-
ticular rule in their code (along with some indication of expected remediation
costs). This information may be used to prioritize the repair of rule violations
by a development team. The metric is designed primarily for remediation proj-
ects. It is generally assumed that new code will be developed to be compliant
with the entire coding standard and applicable recommendations.

Each rule and recommendation has an assigned priority. Priorities are
assigned using a metric based on Failure Mode, Effects, and Criticality Analy-
sis (FMECA) [IEC 60812]. Three values are assigned for each rule on a scale of
1 to 3 for severity, likelihood, and remediation cost.

xviii Preface

■  Severity—How serious are the consequences of the rule being
ignored?

Value Meaning Examples of Vulnerability

1 Low Denial-of-service attack, abnormal
termination

2 Medium Data integrity violation, uninten-
tional information disclosure

3 High Run arbitrary code

■  Likelihood—How likely is it that a flaw introduced by ignoring the
rule can lead to an exploitable vulnerability?

Value Meaning

1 Unlikely

2 Probable

3 Likely

■  Remediation Cost—How expensive is it to comply with the rule?

Value Meaning Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

The three values are then multiplied together for each rule. This prod-
uct provides a measure that can be used in prioritizing the application of the
rules. The products range from 1 to 27, although only the following 10 distinct
values are possible: 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Rules and recommenda-
tions with a priority in the range of 1 to 4 are Level 3 rules, 6 to 9 are Level 2,
and 12 to 27 are Level 1. The following are possible interpretations of the pri-
orities and levels:

Level Priorities Possible Interpretation

L1 12, 18, 27 High severity, likely, inexpensive to repair

L2 6, 8, 9 Medium severity, probable, medium cost
to repair

L3 1, 2, 3, 4 Low severity, unlikely, expensive to repair

Preface xix

Specific projects may begin remediation by implementing all rules
at a particular level before proceeding to lower priority rules, as shown in
Figure P–3.

Automated Detection
On the wiki, both rules and recommendations frequently have sections that
describe automated detection. These sections provide additional information
on analyzers that can automatically diagnose violations of coding guidelines.
Most automated analyses for the C programming language are neither sound
nor complete, so the inclusion of a tool in this section typically means that the
tool can diagnose some violations of this particular rule. Although the Secure
Coding Validation Suite can be used to test the ability of analyzers to diag-
nose violations of rules from ISO/IEC TS 17961, no currently available confor-
mance test suite can assess the ability of analyzers to diagnose violations of
the rules in this book. Consequently, the information in automated detection
sections on the wiki may be

■  Provided by the vendors

■  Determined by CERT by informally evaluating the analyzer

■  Determined by CERT by reviewing the vendor documentation

High severity,
likely, inexpensive

to repair flaws

L3 P1–P4

L2 P6–P9

L1 P12–P27

Low severity,
unlikely,

expensive to
repair flaws

Medium severity,
probable,

medium cost to
repair flaws

Figure P–3. Levels of compliance

xx Preface

Where possible, we try to reference the exact version of the tool for which
the results were obtained. Because these tools evolve continuously, this infor-
mation can rapidly become dated and obsolete. Consequently, this informa-
tion has been omitted from this book and is maintained only on the wiki.

Related Vulnerabilities
The related vulnerabilities sections on the wiki contain a link to search for
related vulnerabilities on the CERT Web site. Whenever possible, CERT Vul-
nerability Notes are tagged with a keyword corresponding to the unique ID of
the coding guideline. This search provides you with an up-to-date list of real-
world vulnerabilities that have been determined to be at least partially caused
by a violation of this specific guideline. These vulnerabilities are labeled as such
only when the vulnerability analysis team at the CERT/CC is able to evaluate
the source code and precisely determine the cause of the vulnerability. Because
many vulnerability notes refer to vulnerabilities in closed-source software sys-
tems, it is not always possible to provide this additional analysis. Consequently,
the related vulnerabilities field tends to be somewhat sparsely populated.

To find the latest list of related vulnerabilities, enter the following URL:

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+
KEYWORDS+contains+XXXNN-X

where XXXNN-X is the ID of the rule or recommendation for which you are
searching.

Specific vulnerability (VU) identifiers and common vulnerabilities and
exposures (CVE) identifiers are referenced throughout this book. You can
create a unique URL to get more information on specific vulnerabilities by
appending the relevant ID to the end of a fixed string. For example, to find
more information about

■  VU#551436, “Mozilla Firefox SVG viewer vulnerable to integer over-
flow,” you can append 551436 to https://www.kb.cert.org/vulnotes/id/
and enter the resulting URL in your browser: https://www.kb.cert.org/
vulnotes/id/551436

■  CVE-2006-1174, you can append CVE-2006-1174 to http://cve.mitre
.org/cgi-bin/cvename.cgi?name= and enter the resulting URL in
your browser: http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2006-1174

Related vulnerability sections are included only for specific rules in this
book, when the information is both relevant and interesting.

Preface xxi

Related Guidelines
This section contains links to guidelines in related standards, technical
specifications, and guideline collections such as Information Technology—
Programming Languages, Their Environments and System Software Interfaces—C
Secure Coding Rules [ISO/IEC TS 17961:2013]; Information Technology—
Programming Languages—Guidance to Avoiding Vulnerabilities in Program-
ming Languages through Language Selection and Use [ISO/IEC TR 24772:2013];
MISRA C 2012: Guidelines for the Use of the C Language in Critical Systems
[MISRA C:2012]; and CWE IDs in MITRE’s Common Weakness Enumeration
(CWE) [MITRE 2013].

You can create a unique URL to get more information on CWEs by
appending the relevant ID to the end of a fixed string. For example, to find
more information about CWE-192, “Integer Coercion Error,” you can append
192.html to http://cwe.mitre.org/data/definitions/ and enter the resulting URL
in your browser: http://cwe.mitre.org/data/definitions/192.html.

The other referenced technical specifications, technical reports, and
guidelines are commercially available.

Bibliography
Most rules have a small bibliography section that lists documents and sections
in these documents that provide information relevant to the rule.

■  Automatically Generated Code

If a code-generating tool is to be used, it is necessary to select an appropriate
tool and undertake validation. Adherence to the requirements of this docu-
ment may provide one criterion for assessing a tool.

Coding guidance varies depending on how code is generated and main-
tained. Categories of code include the following:

■  Tool-generated, tool-maintained code that is specified and maintained
in a higher-level format from which language-specific source code is
generated. The source code is generated from this higher-level descrip-
tion and then provided as input to the language compiler. The gener-
ated source code is never viewed or modified by the programmer.

■  Tool-generated, hand-maintained code that is specified and main-
tained in a higher-level format from which language-specific source
code is generated. It is expected or anticipated, however, that at some

xxii Preface

point in the development cycle, the tool will cease to be used and the
generated source code will be visually inspected and/or manually
modified and maintained.

■  Hand-coded code is manually written by a programmer using a text
editor or interactive development environment; the programmer
maintains source code directly in the source-code format provided to
the compiler.

Source code that is written and maintained by hand must have the follow-
ing properties:

■  Readability

■  Program comprehension

These requirements are not applicable for source code that is never
directly handled by a programmer, although requirements for correct behav-
ior still apply. Reading and comprehension requirements apply to code that is
tool generated and hand maintained but do not apply to code that is tool gen-
erated and tool maintained. Tool-generated, tool-maintained code can impose
consistent constraints that ensure the safety of some constructs that are risky
in hand-generated code.

■  Government Regulations

Developing software to secure coding rules is a good idea and is increasingly
a requirement. The National Defense Authorization Act for Fiscal Year 2013,
Section 933, “Improvements in Assurance of Computer Software Procured
by the Department of Defense,” requires evidence that government software
development and maintenance organizations and contractors are conform-
ing, in computer software coding, to approved secure coding standards of
the Department of Defense (DoD) during software development, upgrade,
and maintenance activities, including through the use of inspection and
appraisals.

DoD acquisition programs are specifying The Application Security and
Development Security Technical Implementation Guide (STIG), Version 2,
Release 1 [DISA 2008] in requests for proposal (RFPs). Section 2.1.5, “Coding
Standards,” requires that “the Program Manager will ensure the development
team follows a set of coding standards.”

Preface xxiii

The proper application of this standard would enable a system to comply
with the following requirements from the Application Security and Develop-
ment STIG [DISA 2008]:

■  (APP2060.1: CAT II) The Program Manager will ensure the develop-
ment team follows a set of coding standards.

■  (APP2060.2: CAT II) The Program Manager will ensure the develop-
ment team creates a list of unsafe functions to avoid and document
this list in the coding standards.

■  (APP3550: CAT I) The Designer will ensure the application is not
vulnerable to integer arithmetic issues.

■  (APP3560: CAT I) The Designer will ensure the application does not
contain format string vulnerabilities.

■  (APP3570: CAT I) The Designer will ensure the application does not
allow Command Injection.

■  (APP3590.1: CAT I) The Designer will ensure the application does not
have buffer overflows.

■  (APP3590.2: CAT I) The Designer will ensure the application does not
use functions known to be vulnerable to buffer overflows.

■  (APP3590.3: CAT II) The Designer will ensure the application does
not use signed values for memory allocation where permitted by the
programming language.

■  (APP3600: CAT II) The Designer will ensure the application has no
canonical representation vulnerabilities.

■  (APP3630.1: CAT II) The Designer will ensure the application is not
vulnerable to race conditions.

■  (APP3630.2: CAT III) The Designer will ensure the application does
not use global variables when local variables could be used.

Training programmers and software testers will satisfy the following
requirements:

■  (APP2120.3: CAT II) The Program Manager will ensure developers are
provided with training on secure design and coding practices on at
least an annual basis.

■  (APP2120.4: CAT II) The Program Manager will ensure testers are
provided annual training.

xxiv Preface

■  (APP2060.3: CAT II) The Designer will follow the established coding
standards established for the project.

■  (APP2060.4: CAT II) The Designer will not use unsafe functions
 documented in the project coding standards.

■  (APP5010: CAT III) The Test Manager will ensure at least one tester
is designated to test for security flaws in addition to functional
testing.

 1

3
Expressions (EXP)

■  EXP30-C. Do not depend on the order of evaluation for
side effects

Evaluation of an expression may produce side effects. At specific points
during execution, known as sequence points, all side effects of previous eval-
uations are complete, and no side effects of subsequent evaluations have yet
taken place. Do not depend on the order of evaluation for side effects unless
there is an intervening sequence point.

The C Standard, 6.5, paragraph 2 [ISO/IEC 9899:2011], states:

If a side effect on a scalar object is unsequenced relative to either a
 different side effect on the same scalar object or a value computation using
the value of the same scalar object, the behavior is undefined. If there are
 multiple allowable orderings of the subexpressions of an expression, the
 behavior is undefined if such an unsequenced side effect occurs in any of
the orderings.

This requirement must be met for each allowable ordering of the subex-
pressions of a full expression; otherwise, the behavior is undefined (see unde-
fined behavior 35 in Appendix B.)

Chapter

2 Chapter 3 ■ Expressions (EXP)

The following sequence points are defined in the C Standard, Annex C
[ISO/IEC 9899:2011]:

 ■ Between the evaluations of the function designator and actual arguments in a
function call and the actual call

 ■ Between the evaluations of the first and second operands of the following
operators:

 – Logical AND: &&

 – Logical OR: ||

 – Comma: ,

 ■ Between the evaluations of the first operand of the conditional ?: operator and
whichever of the second and third operands is evaluated

 ■ The end of a full declarator

 ■ Between the evaluation of a full expression and the next full expression to be
evaluated; the following are full expressions:

 – An initializer that is not part of a compound literal

 – The expression in an expression statement

 – The controlling expression of a selection statement (if or switch)

 – The controlling expression of a while or do statement

 – Each of the (optional) expressions of a for statement

 – The (optional) expression in a return statement

 ■ Immediately before a library function returns

 ■ After the actions associated with each formatted input/output function conver-
sion specifier

 ■ Immediately before and immediately after each call to a comparison function,
and also between any call to a comparison function and any movement of the
objects passed as arguments to that call

This rule means that statements such as

i = i + 1;
a[i] = i;

have defined behavior, and statements such as the following do not:

/* i is modified twice between sequence points */
i = ++i + 1;

/* i is read other than to determine the value to be stored */
a[i++] = i;

EXP30-C. Do not depend on the order of evaluation for side effects 3

Note that not all instances of a comma in C code denote a usage of the
comma operator. For example, the comma between arguments in a function
call is not a sequence point. However, according to the C Standard, 6.5.2.2,
paragraph 10 [ISO/IEC 9899:2011]:

Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the
body of the called function is indeterminately sequenced with respect to the
execution of the called function.

This rule means that the order of evaluation for function call arguments is
unspecified and can happen in any order.

Noncompliant Code Example
Programs cannot safely rely on the order of evaluation of operands between
sequence points. In this noncompliant code example, i is evaluated twice without
an intervening sequence point, and so the behavior of the expression is undefined:

#include <stdio.h>

void func(int i, int *b) {
 int a = i + b[++i];
 printf("%d, %d", a, i);
}

Compliant Solution
These examples are independent of the order of evaluation of the operands
and can be interpreted in only one way:

#include <stdio.h>

void func(int i, int *b) {
 int a;
 ++i;
 a = i + b[i];
 printf("%d, %d", a, i);
}

Alternatively:

#include <stdio.h>

void func(int i, int *b) {

4 Chapter 3 ■ Expressions (EXP)

 int a = i + b[i + 1];
 ++i;
 printf("%d, %d", a, i);
}

Noncompliant Code Example
The call to func() in this noncompliant code example has undefined behavior
because there is no sequence point between the argument expressions:

extern void func(int i, int j);

void f(int i) {
 func(i++, i);
}

The first (left) argument expression reads the value of i (to determine the
value to be stored) and then modifies i. The second (right) argument expres-
sion reads the value of i between the same pair of sequence points as the first
argument, but not to determine the value to be stored in i. This additional
attempt to read the value of i has undefined behavior.

Compliant Solution
This compliant solution is appropriate when the programmer intends for both
arguments to func() to be equivalent:

extern void func(int i, int j);

void f(int i) {
 i++;
 func(i, i);
}

This compliant solution is appropriate when the programmer intends for
the second argument to be 1 greater than the first:

extern void func(int i, int j);

void f(int i) {
 int j = i++;
 func(j, i);
}

EXP30-C. Do not depend on the order of evaluation for side effects 5

Noncompliant Code Example
The order of evaluation for function arguments is unspecified. This non-
compliant code example exhibits unspecified behavior but not undefined
behavior:

extern void c(int i, int j);
int glob;

int a(void) {
 return glob + 10;
}

int b(void) {
 glob = 42;
 return glob;
}

void func(void) {
 c(a(), b());
}

It is unspecified what order a() and b() are called in; the only guarantee
is that both a() and b() will be called before c() is called. If a() or b() rely on
shared state when calculating their return value, as they do in this example, the
resulting arguments passed to c() may differ between compilers or architectures.

Compliant Solution
In this compliant solution, the order of evaluation for a() and b() is fixed, and
so no unspecified behavior occurs:

extern void c(int i, int j);
int glob;

int a(void) {
 return glob + 10;
}

int b(void) {
 glob = 42;
 return glob;
}

void func(void) {
 int a_val, b_val;

6 Chapter 3 ■ Expressions (EXP)

 a_val = a();
 b_val = b();

 c(a_val, b_val);
}

Risk Assessment
Attempting to modify an object multiple times between sequence points may
cause that object to take on an unexpected value, which can lead to unex-
pected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP30-C Medium Probable Medium P8 L2

Related Guidelines

ISO/IEC TR 24772:2013 Operator Precedence/Order of Evaluation [JCW]
Side-effects and Order of Evaluation [SAM]

MISRA C:2012 Rule 12.1 (advisory)

Bibliography

[ISO/IEC 9899:2011] 6.5, “Expressions”
6.5.2.2, “Function Calls”
Annex C, “Sequence Points”

[Saks 2007]

[Summit 2005] Questions 3.1, 3.2, 3.3, 3.3b, 3.7, 3.8, 3.9, 3.10a, 3.10b,
and 3.11

■  EXP35-C. Do not modify objects with temporary lifetime

The C11 Standard [ISO/IEC 9899:2011] introduced a new term: temporary
lifetime. Modifying an object with temporary lifetime is undefined behavior.
According to subclause 6.2.4, paragraph 8:

A non-lvalue expression with structure or union type, where the structure or
union contains a member with array type (including, recursively, members of all

EXP35-C. Do not modify objects with temporary lifetime 7

contained structures and unions) refers to an object with automatic storage dura-
tion and temporary lifetime. Its lifetime begins when the expression is evaluated
and its initial value is the value of the expression. Its lifetime ends when the
evaluation of the containing full expression or full declarator ends. Any attempt
to modify an object with temporary lifetime results in undefined behavior.

This definition differs from the C99 Standard (which defines modifying
the result of a function call or accessing it after the next sequence point as
undefined behavior) because a temporary object’s lifetime ends when the eval-
uation containing the full expression or full declarator ends, so the result of
a function call can be accessed. This extension to the lifetime of a temporary
also removes a quiet change to C90 and improves compatibility with C++.

C functions may not return arrays; however, functions can return a
pointer to an array or a struct or union that contains arrays. Consequently,
if a function call returns by value a struct or union containing an array, do
not modify those arrays within the expression containing the function call.
Do not access an array returned by a function after the next sequence point or
after the evaluation of the containing full expression or full declarator ends.

Noncompliant Code Example (C99)
This noncompliant code example conforms to the C11 Standard; however, it
fails to conform to C99. If compiled with a C99-conforming implementation,
this code has undefined behavior because the sequence point preceding the
call to printf() comes between the evaluation of its arguments and the access
by printf() of the string in the returned object.

#include <stdio.h>

struct X { char a[8]; };

struct X salutation(void) {
 struct X result = { "Hello" };
 return result;
}

struct X addressee(void) {
 struct X result = { "world" };
 return result;
}

int main(void) {
 printf("%s, %s!\n", salutation().a, addressee().a);
 return 0;
}

8 Chapter 3 ■ Expressions (EXP)

Compliant Solution
This compliant solution stores the structures returned by the call to addressee()
before calling the printf() function. Consequently, this program conforms to
C99 and C11.

#include <stdio.h>

struct X { char a[8]; };

struct X salutation(void) {
 struct X result = { "Hello" };
 return result;
}

struct X addressee(void) {
 struct X result = { "world" };
 return result;
}

int main(void) {
 struct X my_salutation = salutation();
 struct X my_addressee = addressee();

 printf("%s, %s!\n", my_salutation.a, my_addressee.a);
 return 0;
}

Noncompliant Code Example
This noncompliant code example attempts to retrieve an array and increment
the array’s first element. The array is part of a struct that is returned by a
function call. Consequently, the array has temporary lifetime, and modifying
the array is undefined behavior.

#include <stdio.h>

struct X { int a[6]; };

struct X addressee(void) {
 struct X result = { { 1, 2, 3, 4, 5, 6 } };
 return result;
}

int main(void) {
 printf("%x", ++(addressee().a[0]));
 return 0;
}

EXP35-C. Do not modify objects with temporary lifetime 9

Compliant Solution
This compliant solution stores the structure returned by the call to
addressee() as my_x before calling the printf() function. When the array is
modified, its lifetime is no longer temporary but matches the lifetime of the
block in main().

#include <stdio.h>

struct X { int a[6]; };

struct X addressee(void) {
 struct X result = { { 1, 2, 3, 4, 5, 6 } };
 return result;
}

int main(void) {
 struct X my_x = addressee();
 printf("%x", ++(my_x.a[0]));
 return 0;
}

Risk Assessment
Attempting to modify an array or access it after its lifetime expires may result
in erroneous program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP35-C Low Probable Medium P4 L3

Related Guidelines

ISO/IEC TR 24772:2013 Dangling References to Stack Frames [DCM]
Side- effects and Order of Evaluation [SAM]

Bibliography

[ISO/IEC 9899:2011] 6.2.4, “Storage Durations of Objects”

 11

7
Characters and Strings (STR)

■  STR31-C. Guarantee that storage for strings has sufficient
space for character data and the null terminator

Copying data to a buffer that is not large enough to hold that data results in a
buffer overflow. Buffer overflows occur frequently when manipulating strings
[Seacord 2013b]. To prevent such errors, either limit copies through trunca-
tion or, preferably, ensure that the destination is of sufficient size to hold the
character data to be copied and the null-termination character (see “STR03-C.
Do not inadvertently truncate a string”).

When strings live on the heap, this rule is a specific instance of
“MEM35-C. Allocate sufficient memory for an object.” Because strings are
represented as arrays of characters, this rule is related to both “ARR30-C. Do
not form or use out-of-bounds pointers or array subscripts” and “ARR38-C.
Guarantee that library functions do not form invalid pointers.”

Noncompliant Code Example (Off-by-One Error)
This noncompliant code example demonstrates an off-by-one error [Dowd
2006]. The loop copies data from src to dest. However, because the loop does
not account for the null-termination character, it may be incorrectly written
1 byte past the end of dest.

#include <stddef.h>

enum { ARRAY_SIZE = 32 };

Chapter

12 Chapter 7 ■ Characters and Strings (STR)

void func(void) {
 char dest[ARRAY_SIZE];
 char src[ARRAY_SIZE];
 size_t i;

 for (i = 0; src[i] && (i < sizeof(dest)); ++i) {
 dest[i] = src[i];
 }
 dest[i] = '\0';
}

Compliant Solution (Off-by-One Error)
In this compliant solution, the loop termination condition is modified to
account for the null-termination character that is appended to dest:

#include <stddef.h>

enum { ARRAY_SIZE = 32 };

void func(void) {
 char dest[ARRAY_SIZE];
 char src[ARRAY_SIZE];
 size_t i;

 for (i = 0; src[i] && (i < sizeof(dest) - 1); ++i) {
 dest[i] = src[i];
 }
 dest[i] = '\0';
}

Noncompliant Code Example (gets())
The gets() function, which was deprecated in the C99 Technical Corrigendum
3 and removed from C11, is inherently unsafe and should never be used
because it provides no way to control how much data is read into a buffer
from stdin. This noncompliant code example assumes that gets() will not
read more than BUFFER_SIZE - 1 characters from stdin. This is an invalid
assumption, and the resulting operation can result in a buffer overflow.

The gets() function reads characters from stdin into a destination array
until end-of-file is encountered or a new-line character is read. Any new-line
character is discarded, and a null character is written immediately after the
last character read into the array.

#include <stdio.h>

#define BUFFER_SIZE 1024

void func(void) {
 char buf[BUFFER_SIZE];
 if (gets(buf) == NULL) {
 /* Handle error */
 }
}

See also “MSC24-C. Do not use deprecated or obsolescent functions.”

Compliant Solution (fgets())
The fgets() function reads, at most, one less than the specified number of char-
acters from a stream into an array. This solution is compliant because the number
of characters copied from stdin to buf cannot exceed the allocated memory:

#include <stdio.h>
#include <string.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];
 int ch;

 if (fgets(buf, sizeof(buf), stdin)) {
 /* fgets() succeeded; scan for new-line character */
 char *p = strchr(buf, '\n');
 if (p) {
 *p = '\0';
 } else {
 /* New-line not found; flush stdin to end of line */
 while ((ch = getchar()) != '\n' && ch != EOF)
 ;
 if (ch == EOF && !feof(stdin) && !ferror(stdin)) {
 /* Character resembles EOF; handle error */
 }
 }
 } else {
 /* fgets() failed; handle error */
 }
}

STR31-C. Guarantee that storage for strings has sufficient space 13

14 Chapter 7 ■ Characters and Strings (STR)

The fgets() function is not a strict replacement for the gets() function
because fgets() retains the new-line character (if read) and may also return
a partial line. It is possible to use fgets() to safely process input lines too
long to store in the destination array, but this is not recommended for perfor-
mance reasons. Consider using one of the following compliant solutions when
replacing gets().

Compliant Solution (gets_s())
The gets_s() function reads, at most, one less than the number of characters
specified from the stream pointed to by stdin into an array.

The C Standard, Annex K [ISO/IEC 9899:2011], states:

No additional characters are read after a new-line character (which is dis-
carded) or after end-of-file. The discarded new-line character does not count
towards number of characters read. A null character is written immediately
after the last character read into the array.

If end-of-file is encountered and no characters have been read into the
destination array, or if a read error occurs during the operation, then the first
character in the destination array is set to the null character and the other
elements of the array take unspecified values:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];

 if (gets_s(buf, sizeof(buf)) == NULL) {
 /* Handle error */
 }
}

Compliant Solution (getline(), POSIX)
The getline() function is similar to the fgets() function but can dynami-
cally allocate memory for the input buffer. If passed a null pointer, getline()
dynamically allocates a buffer of sufficient size to hold the input. If passed
a pointer to dynamically allocated storage that is too small to hold the con-
tents of the string, the getline() function resizes the buffer, using realloc(),
rather than truncating the input. If successful, the getline() function returns

the number of characters read, which can be used to determine if the input
has any null characters before the new-line. The getline() function works
only with dynamically allocated buffers. Allocated memory must be explicitly
deallocated by the caller to avoid memory leaks (see “MEM31-C. Free dynam-
ically allocated memory when no longer needed”).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void func(void) {
 int ch;
 size_t buffer_size = 32;
 char *buffer = malloc(buffer_size);

 if (!buffer) {
 /* Handle error */
 return;
 }

 if ((ssize_t size = getline(&buffer, &buffer_size, stdin))
 == -1) {
 /* Handle error */
 } else {
 char *p = strchr(buffer, '\n');
 if (p) {
 *p = '\0';
 } else {
 /* New-line not found; flush stdin to end of line */
 while ((ch = getchar()) != '\n' && ch != EOF)
 ;
 if (ch == EOF && !feof(stdin) && !ferror(stdin)) {
 /* Character resembles EOF; handle error */
 }
 }
 }
 free (buffer);
}

Note that the getline() function uses an in-band error indicator, in
 violation of “ERR02-C. Avoid in-band error indicators.”

Noncompliant Code Example (getchar())
Reading one character at a time provides more flexibility in controlling
 behavior, though with additional performance overhead. This noncompliant

STR31-C. Guarantee that storage for strings has sufficient space 15

16 Chapter 7 ■ Characters and Strings (STR)

code example uses the getchar() function to read one character at a time
from stdin instead of reading the entire line at once. The stdin stream is read
until end-of-file is encountered or a new-line character is read. Any new-line
 character is discarded, and a null character is written immediately after the
last character read into the array. Similar to the noncompliant code example
that invokes gets(), there are no guarantees that this code will not result in a
buffer overflow.

#include <stdio.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];
 char *p;
 int ch;
 p = buf;
 while ((ch = getchar()) != '\n' && ch != EOF) {
 *p++ = (char)ch;
 }
 *p++ = 0;
 if (ch == EOF) {
 /* Handle EOF or error */
 }
}

After the loop ends, if ch == EOF, the loop has read through to the end of
the stream without encountering a new-line character, or a read error occurred
before the loop encountered a new-line character. To conform to “FIO34-C.
Distinguish between characters read from a file and EOF or WEOF,” the error-
handling code must verify that an end-of-file or error has occurred by calling
feof() and ferror().

Compliant Solution (getchar())
In this compliant solution, characters are no longer copied to buf once
index == BUFFERSIZE - 1, leaving room to null-terminate the string. The
loop continues to read characters until the end of the line, the end of the file,
or an error is encountered. When chars_read > index, the input string has
been truncated.

#include <stdio.h>

enum { BUFFERSIZE = 32 };

STR31-C. Guarantee that storage for strings has sufficient space 17

void func(void) {
 char buf[BUFFERSIZE];
 int ch;
 size_t index = 0;
 size_t chars_read = 0;

 while ((ch = getchar()) != '\n' && ch != EOF) {
 if (index < sizeof(buf) - 1) {
 buf[index++] = (char)ch;
 }
 chars_read++;
 }
 buf[index] = '\0'; /* Terminate string */
 if (ch == EOF) {
 /* Handle EOF or error */
 }
 if (chars_read > index) {
 /* Handle truncation */
 }
}

Noncompliant Code Example (fscanf())
In this noncompliant example, the call to fscanf() can result in a write
 outside the character array buf:

#include <stdio.h>

enum { BUF_LENGTH = 1024 };

void get_data(void) {
 char buf[BUF_LENGTH];
 if (1 != fscanf(stdin, "%s", buf)) {
 /* Handle error */
 }

 /* Rest of function */
}

Compliant Solution (fscanf())
In this compliant solution, the call to fscanf() is constrained not to overflow buf:

#include <stdio.h>

enum { BUF_LENGTH = 1024 };

18 Chapter 7 ■ Characters and Strings (STR)

void get_data(void) {
 char buf[BUF_LENGTH];
 if (1 != fscanf(stdin, "%1023s", buf)) {
 /* Handle error */
 }

 /* Rest of function */
}

Noncompliant Code Example (argv)
In a hosted environment, arguments read from the command line are stored
in process memory. The function main(), called at program startup, is typically
declared as follows when the program accepts command-line arguments:

int main(int argc, char *argv[]) { /* ... */ }

Command-line arguments are passed to main() as pointers to strings in
the array members argv[0] through argv[argc - 1]. If the value of argc is
greater than 0, the string pointed to by argv[0] is, by convention, the program
name. If the value of argc is greater than 1, the strings referenced by argv[1]
through argv[argc - 1] are the program arguments.

Vulnerabilities can occur when inadequate space is allocated to copy a com-
mand-line argument or other program input. In this noncompliant code example,
an attacker can manipulate the contents of argv[0] to cause a buffer overflow:

#include <string.h>

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char prog_name[128];
 strcpy(prog_name, name);

 return 0;
}

Compliant Solution (argv)
The strlen() function can be used to determine the length of the strings ref-
erenced by argv[0] through argv[argc - 1] so that adequate memory can be
dynamically allocated.

#include <stdlib.h>
#include <string.h>

STR31-C. Guarantee that storage for strings has sufficient space 19

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char *prog_name = (char *)malloc(strlen(name) + 1);
 if (prog_name != NULL) {
 strcpy(prog_name, name);
 } else {
 /* Handle error */
 }
 free(prog_name);
 return 0;
}

Remember to add a byte to the destination string size to accommodate the
null-termination character.

Compliant Solution (argv)
The strcpy_s() function provides additional safeguards, including accepting
the size of the destination buffer as an additional argument (see “STR07-C.
Use the bounds-checking interfaces for remediation of existing string manip-
ulation code”).

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char *prog_name;
 size_t prog_size;

 prog_size = strlen(name) + 1;
 prog_name = (char *)malloc(prog_size);

 if (prog_name != NULL) {
 if (strcpy_s(prog_name, prog_size, name)) {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }
 /* ... */
 free(prog_name);
 return 0;
}

20 Chapter 7 ■ Characters and Strings (STR)

The strcpy_s() function can be used to copy data to or from dynamically
allocated memory or a statically allocated array. If insufficient space is
 available, strcpy_s() returns an error.

Compliant Solution (argv)
If an argument will not be modified or concatenated, there is no reason to
make a copy of the string. Not copying a string is the best way to prevent a
buffer overflow and is also the most efficient solution. Care must be taken to
avoid assuming that argv[0] is non-null.

int main(int argc, char *argv[]) {
 /* Be prepared for argv[0] to be null */
 const char * const prog_name = (argc && argv[0]) ? argv[0] : "";
 /* ... */
 return 0;
}

Noncompliant Code Example (getenv())
According to the C Standard, 7.22.4.6, paragraph 2 [ISO/IEC 9899:2011]:

The getenv function searches an environment list, provided by the host
environment, for a string that matches the string pointed to by name. The set
of environment names and the method for altering the environment list are
implementation-defined.

Environment variables can be arbitrarily large, and copying them into fixed-
length arrays without first determining the size and allocating adequate
 storage can result in a buffer overflow.

#include <stdlib.h>
#include <string.h>

void func(void) {
 char buff[256];
 char *editor = getenv("EDITOR");
 if (editor == NULL) {
 /* EDITOR environment variable not set */
 } else {
 strcpy(buff, editor);
 }
}

STR31-C. Guarantee that storage for strings has sufficient space 21

Compliant Solution (getenv())
Environmental variables are loaded into process memory when the program
is loaded. As a result, the length of these strings can be determined by calling
the strlen() function, and the resulting length can be used to allocate ade-
quate dynamic memory:

#include <stdlib.h>
#include <string.h>

void func(void) {
 char *buff;
 char *editor = getenv("EDITOR");
 if (editor == NULL) {
 /* EDITOR environment variable not set */
 } else {
 size_t len = strlen(editor) + 1;
 buff = (char *)malloc(len);
 if (buff == NULL) {
 /* Handle error */
 }
 memcpy(buff, editor, len);
 free(buff);
 }
}

Noncompliant Code Example (sprintf())
In this noncompliant code example, name refers to an external string; it could
have originated from user input, from the file system, or from the network.
The program constructs a file name from the string in preparation for opening
the file.

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 sprintf(filename, "%s.txt", name);
}

Because the sprintf() function makes no guarantees regarding the
length of the generated string, a sufficiently long string in name could generate
a buffer overflow.

22 Chapter 7 ■ Characters and Strings (STR)

Compliant Solution (sprintf())
The buffer overflow in the preceding noncompliant example can be prevented
by adding a precision to the %s conversion specification. If the precision is
specified, no more than that many bytes are written. The precision 123 in this
compliant solution ensures that filename can contain the first 123 characters
of name, the .txt extension, and the null terminator.

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 sprintf(filename, "%.123s.txt", name);
}

Compliant Solution (snprintf())
A more general solution is to use the snprintf() function:

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 snprintf(filename, sizeof(filename), "%s.txt", name);
}

Risk Assessment
Copying string data to a buffer that is too small to hold that data results in a
buffer overflow. Attackers can exploit this condition to execute arbitrary code
with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

STR31-C High Likely Medium P18 L1

Related Vulnerabilities
CVE-2009-1252 results from a violation of this rule. The Network Time Pro-
tocol daemon (NTPd), before versions 4.2.4p7 and 4.2.5p74, contained calls
to sprintf that allow an attacker to execute arbitrary code by overflowing a
character array [xorl 2009].

CVE-2009-0587 results from a violation of this rule. Before version 2.24.5,
Evolution Data Server performed unchecked arithmetic operations on the
length of a user-input string and used the value to allocate space for a new

STR34-C. Cast characters to unsigned char before converting to larger integer sizes 23

buffer. An attacker could thereby execute arbitrary code by inputting a long
string, resulting in incorrect allocation and buffer overflow [xorl 2009].

Related Guidelines

ISO/IEC TR 24772:2013 String Termination [CJM]
Buffer Boundary Violation (Buffer Overflow) [HCB]
Unchecked Array Copying [XYW]

ISO/IEC TS 17961:2013 Using a tainted value to write to an object using a
formatted input or output function [taintformatio]
Tainted strings are passed to a string copying func-
tion [taintstrcpy]

MITRE CWE CWE-119, Improper Restriction of Operations within
the Bounds of a Memory Buffer
CWE-120, Buffer Copy without Checking Size of
Input (“Classic Buffer Overflow”)
CWE-193, Off-by-one Error

Bibliography

[Dowd 2006] Chapter 7, “Program Building Blocks” (“Loop Con-
structs,” pp. 327–336)

[Drepper 2006] Section 2.1.1, “Respecting Memory Bounds”

[ISO/IEC 9899:2011] K.3.5.4.1, “The gets_s Function”

[Lai 2006]

[NIST 2006] SAMATE Reference Dataset Test Case ID 000-000-088

[Seacord 2013b] Chapter 2, “Strings”

[xorl 2009] FreeBSD-SA-09:11: NTPd Remote Stack Based Buffer
Overflows

■  STR34-C. Cast characters to unsigned char before converting
to larger integer sizes

Signed character data must be converted to unsigned char before being
assigned or converted to a larger signed type. This rule applies to both signed
char and (plain) char characters on implementations where char is defined to
have the same range, representation, and behavior as signed char. However,
this rule is applicable only in cases where the character data may contain

24 Chapter 7 ■ Characters and Strings (STR)

 values that can be interpreted as negative numbers. For example, if the char
type is represented by a two’s complement 8-bit value, any character value
greater than +127 is interpreted as a negative value.

This rule is a generalization of “STR37-C. Arguments to character
 handling functions must be representable as an unsigned char.”

Noncompliant Code Example
This noncompliant code example is taken from a vulnerability in bash versions
1.14.6 and earlier that led to the release of CERT Advisory CA-1996-22. This
vulnerability resulted from the sign extension of character data referenced by
the c_str pointer in the yy_string_get() function in the parse.y module of
the bash source code.

static int yy_string_get(void) {
 register char *c_str;
 register int c;

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 c = *c_str++;
 bash_input.location.string = c_str;
 }
 return (c);
}

The c_str variable is used to traverse the character string containing the
command line to be parsed. As characters are retrieved from this pointer, they
are stored in a variable of type int. For implementations in which the char type
is defined to have the same range, representation, and behavior as signed char,
this value is sign-extended when assigned to the int variable. For character
code 255 decimal (−1 in two’s complement form), this sign extension results in
the value −1 being assigned to the integer, which is indistinguishable from EOF.

Noncompliant Code Example
This problem can be repaired by explicitly declaring the c_str variable as
unsigned char:

static int yy_string_get(void) {
 register unsigned char *c_str;
 register int c;

STR34-C. Cast characters to unsigned char before converting to larger integer sizes 25

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 c = *c_str++;
 bash_input.location.string = c_str;
 }
 return (c);
}

This example, however, violates “STR04-C. Use plain char for characters
in the basic character set.”

Compliant Solution
In this compliant solution, the result of the expression *c_str++ is cast to
unsigned char before assignment to the int variable c:

static int yy_string_get(void) {
 register char *c_str;
 register int c;

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 /* Cast to unsigned type */
 c = (unsigned char)*c_str++;

 bash_input.location.string = c_str;
 }
 return (c);
}

Noncompliant Code Example
In this noncompliant code example, the cast of *s to unsigned int can result
in a value in excess of UCHAR_MAX because of integer promotions, a violation
of “ARR30-C. Do not form or use out-of-bounds pointers or array subscripts”:

#include <limits.h>
#include <stddef.h>

static const char table[UCHAR_MAX] = { 'a' /* ... */ };

26 Chapter 7 ■ Characters and Strings (STR)

ptrdiff_t first_not_in_table(const char *c_str) {
 for (const char *s = c_str; *s; ++s) {
 if (table[(unsigned int)*s] != *s) {
 return s - c_str;
 }
 }
 return -1;
}

Compliant Solution
This compliant solution casts the value of type char to unsigned char before
the implicit promotion to a larger type:

#include <limits.h>
#include <stddef.h>

static const char table[UCHAR_MAX] = { 'a' /* ... */ };

ptrdiff_t first_not_in_table(const char *c_str) {
 for (const char *s = c_str; *s; ++s) {
 if (table[(unsigned char)*s] != *s) {
 return s - c_str;
 }
 }
 return -1;
}

Risk Assessment
Conversion of character data resulting in a value in excess of UCHAR_MAX is an
often-missed error that can result in a disturbingly broad range of potentially
severe vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

STR34-C Medium Probable Medium P8 L2

Related Vulnerabilities
CVE-2009-0887 results from a violation of this rule. In Linux PAM (up to version
1.0.3), the libpam implementation of strtok() casts a (potentially signed) char-
acter to an integer for use as an index to an array. An attacker can exploit this
vulnerability by inputting a string with non-ASCII characters, causing the cast to
result in a negative index and accessing memory outside of the array [xorl 2009].

STR34-C. Cast characters to unsigned char before converting to larger integer sizes 27

Related Guidelines

ISO/IEC TS
17961:2013

Conversion of signed characters to wider integer types before a
check for EOF [signconv]

MISRA-C Rule 10.1 through Rule 10.4 (required)

MITRE CWE CWE-704, Incorrect Type Conversion or Cast

Bibliography

[xorl 2009] CVE-2009-0887: Linux-PAM Signedness Issue

 29

13
Concurrency (CON)

■  CON34-C. Declare objects shared between threads with
 appropriate storage durations

Accessing the automatic or thread-local variables of one thread from another
thread is implementation-defined [ISO/IEC 9899:2011] and can cause invalid
memory accesses because the execution of threads can be interwoven within
the constraints of the synchronization model. As a result, the referenced
stack frame or thread-local variable may no longer be valid when another
thread tries to access it. Shared static variables can be protected by thread
 synchronization mechanisms. However, automatic (local) variables cannot
be shared in the same manner because the referenced stack frame’s thread
would need to stop executing, or some other mechanism must be employed to
ensure that the referenced stack frame is still valid. Do not access automatic
or thread- local objects from a thread other than the one with which the
object is associated. See “DCL30-C. Declare objects with appropriate storage
 durations” for information on how to declare objects with appropriate storage
durations when data is not being shared between threads.

Noncompliant Code Example (Automatic Storage Duration)
This noncompliant code example passes the address of a variable to a child
thread, which prints it out. The variable has automatic storage duration.
Depending on the execution order, the child thread might reference the

Chapter

30 Chapter 13 ■ Concurrency (CON)

variable after the variable’s lifetime in the parent thread. This would cause the
child thread to access an invalid memory location.

#include <threads.h>
#include <stdio.h>

int child_thread(void *val) {
 int *res = (int *)val;
 printf("Result: %d\n", *res);
 return 0;
}

void create_thread(thrd_t *tid) {
 int val = 1;
 if (thrd_success != thrd_create(tid, child_thread, &val)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 create_thread(&tid);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

Noncompliant Code Example (Automatic Storage Duration)
One solution is to ensure that all objects with automatic storage duration
shared between threads are declared such that their lifetime extends past the
lifetime of the threads. This can be accomplished using a thread synchroni-
zation mechanism, such as thrd_join(). For example, in this compliant solu-
tion, val is declared in main(), where thrd_join() is called. Because the parent
thread waits until the child thread completes before continuing its execution,
the shared objects have a lifetime at least as great as the thread. However, this
example relies on implementation-defined behavior and is nonportable.

#include <threads.h>
#include <stdio.h>

int child_thread(void *val) {
 int *result = (int *)val;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

CON34-C. Declare objects shared between threads with appropriate storage durations 31

void create_thread(thrd_t *tid, int *val) {
 if (thrd_success != thrd_create(tid, child_thread, val)) {
 /* Handle error */
 }
}

int main(void) {
 int val = 1;
 thrd_t tid;
 create_thread(&tid, &val);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

Compliant Solution (Static Storage Duration)
This compliant solution stores the value in an object having static storage
duration. The lifetime of this object is the entire execution of the program;
consequently, it can be safely accessed by any thread.

#include <threads.h>
#include <stdio.h>

int child_thread(void *v) {
 int *result = (int *)v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

void create_thread(thrd_t *tid) {
 static int val = 1;
 if (thrd_success != thrd_create(tid, child_thread, &val)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 create_thread(&tid);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

32 Chapter 13 ■ Concurrency (CON)

Compliant Solution (Allocated Storage Duration)
This compliant solution stores the value passed to the child thread in a
dynamically allocated object. Because this object will persist until explicitly
freed, the child thread can safely access its value.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

int child_thread(void *val) {
 int *result = (int *)val;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

void create_thread(thrd_t *tid, int *value) {
 *value = 1;
 if (thrd_success != thrd_create(tid, child_thread,
 value)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int *value = (int *)malloc(sizeof(int));
 if (!value) {
 /* Handle error */
 }
 create_thread(&tid, value);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 free(value);
 return 0;
}

Noncompliant Code Example (Thread-Specific Storage)
In this noncompliant code example, the value is stored in thread-specific storage
of the parent thread. However, because thread-specific data is available only to the
thread that stores it, the child_thread() function will set result to a null value.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

CON34-C. Declare objects shared between threads with appropriate storage durations 33

static tss_t key;

int child_thread(void *v) {
 int *result = tss_get(*(tss_t *)v);
 printf("Result: %d\n", *result);
 return 0;
}

int create_thread(void *thrd) {
 int *val = (int *)malloc(sizeof(int));
 if (val == NULL) {
 /* Handle error */
 }
 *val = 1;
 if (thrd_success != tss_set(key, val) {
 /* Handle error */
 }
 if (thrd_success != thrd_create((thrd_t *)thrd,
 child_thread, &key)) {
 /* Handle error */
 }
 return 0;
}

int main(void) {
 thrd_t parent_tid, child_tid;

 if (thrd_success != tss_create(&key, free)) {
 /* Handle error */
 }
 if (thrd_success != thrd_create(&parent_tid, create_thread,
 &child_tid)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(parent_tid, NULL)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(child_tid, NULL)) {
 /* Handle error */
 }
 if (thrd_success != tss_delete(key)) {
 /* Handle error */
 }
 return 0;
}

34 Chapter 13 ■ Concurrency (CON)

Compliant Solution (Thread-Specific Storage)
This compliant solution illustrates how thread-specific storage can be
 combined with a call to a thread synchronization mechanism, such as thrd_
join(). Because the parent thread waits until the child thread completes
before continuing its execution, the child thread is guaranteed to access a
valid live object.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

static tss_t key;

int child_thread(void *v) {
 int *result = v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

int create_thread(void *thrd) {
 int *val = (int *)malloc(sizeof(int));
 if (val == NULL) {
 /* Handle error */
 }
 val = 1;
 if (thrd_success != tss_set(key, val)) {
 /* Handle error */
 }
 /* ... */
 void *v = tss_get(key);
 if (thrd_success != thrd_create((thrd_t *)thrd,
 child_thread, v)) {
 /* Handle error */
 }
 return 0;
}

int main(void) {
 thrd_t parent_tid, child_tid;

 if (thrd_success != tss_create(&key, free)) {
 /* Handle error */
 }
 if (thrd_success != thrd_create(&parent_tid, create_thread,
 &child_tid)) {
 /* Handle error */
 }

CON34-C. Declare objects shared between threads with appropriate storage durations 35

 if (thrd_success != thrd_join(parent_tid, NULL)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(child_tid, NULL)) {
 /* Handle error */
 }
 if (thrd_success != tss_delete(key)) {
 /* Handle error */
 }
 return 0;
}

This compliant solution uses pointer-to-integer and integer-to-pointer conver-
sions, which have implementation-defined behavior (see “INT36-C. Convert-
ing a pointer to integer or integer to pointer”).

Compliant Solution (Thread-Local Storage, Windows,
Visual Studio)
Similar to the preceding compliant solution, this compliant solution uses thread-lo-
cal storage combined with thread synchronization to ensure the child thread is
accessing a valid live object. It uses the Visual Studio–specific __declspec(thread)
language extension to provide the thread- local storage and the WaitForSingleOb-
ject() API to provide the synchronization.

#include <Windows.h>
#include <stdio.h>

DWORD WINAPI child_thread(LPVOID v) {
 int *result = (int *)v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return NULL;
}

int create_thread(HANDLE *tid) {
 /* Declare val as a thread-local value */
 __declspec(thread) int val = 1;
 *tid = create_thread(NULL, 0, child_thread, &val, 0, NULL);
 return *tid == NULL;
}

int main(void) {
 HANDLE tid;

 if (create_thread(&tid)) {
 /* Handle error */
 }

36 Chapter 13 ■ Concurrency (CON)

 if (WAIT_OBJECT_0 != WaitForSingleObject(tid, INFINITE)) {
 /* Handle error */
 }
 CloseHandle(tid);

 return 0;
}

Noncompliant Code Example (OpenMP, parallel)
It is important to note that local data can be used securely with threads
when using other thread interfaces, so the programmer need not always
copy data into nonlocal memory when sharing data with threads. For exam-
ple, the shared keyword in “The OpenMP® API Specification for Parallel
 Programming” [OpenMP] can be used in combination with OpenMP’s thread-
ing interface to share local memory without having to worry about whether
local automatic variables remain valid.

In this noncompliant code example, a variable j is declared outside a
 parallel #pragma and not listed as a private variable. In OpenMP, variables
outside a parallel #pragma are shared unless designated as private.

#include <omp.h>
#include <stdio.h>

int main(void) {
 int j = 0;
 #pragma omp parallel
 {
 int t = omp_get_thread_num();
 printf("Running thread - %d\n", t);
 for (int i = 0; i < 5050; i++) {
 j++; /* j not private; could be a race condition */
 }
 printf("Just ran thread - %d\n", t);
 printf("loop count %d\n", j);
 }
 return 0;
}

Compliant Solution (OpenMP, parallel, private)
In this compliant solution, the variable j is declared outside of the parallel
#pragma but is explicitly labeled as private:

#include <omp.h>
#include <stdio.h>

CON40-C. Do not refer to an atomic variable twice in an expression 37

int main(void) {
 int j = 0;
 #pragma omp parallel private(j)
 {
 int t = omp_get_thread_num();
 printf("Running thread - %d\n", t);
 for (int i = 0; i < 5050; i++) {
 j++;
 }
 printf("Just ran thread - %d\n", t);
 printf("loop count %d\n", j);
 }
 return 0;
}

Risk Assessment
Threads that reference the stack of other threads can potentially overwrite
important information on the stack, such as function pointers and return
addresses. The compiler may not generate warnings if the programmer allows
one thread to access another thread’s local variables, so a programmer may
not catch a potential error at compile time. The remediation cost for this error
is high because analysis tools have difficulty diagnosing problems with con-
currency and race conditions.

Recommendation Severity Likelihood Remediation Cost Priority Level

CON34-C Medium Probable High P4 L3

Bibliography

[ISO/IEC 9899:2011] 6.2.4, “Storage Durations of Objects”

[OpenMP] The OpenMP® API Specification for Parallel Programming

■  CON40-C. Do not refer to an atomic variable twice in an
expression

A consistent locking policy guarantees that multiple threads cannot simulta-
neously access or modify shared data. Atomic variables eliminate the need for
locks by guaranteeing thread safety when certain operations are performed
on them. The thread-safe operations on atomic variables are specified in the
C Standard, subclauses 7.17.7 and 7.17.8 [ISO/IEC 9899:2011]. While atomic

38 Chapter 13 ■ Concurrency (CON)

operations can be combined, combined operations do not provide the thread
safety provided by individual atomic operations.

Every time an atomic variable appears on the left-hand side of an assign-
ment operator, including a compound assignment operator such as *=, an atomic
write is performed on the variable. The use of the increment (++) or decrement
(−−) operators on an atomic variable constitutes an atomic read-and-write oper-
ation and is consequently thread-safe. Any reference of an atomic variable any-
where else in an expression indicates a distinct atomic read on the variable.

If the same atomic variable appears twice in an expression, then two
atomic reads, or an atomic read and an atomic write, are required. Such a
pair of atomic operations is not thread-safe, as another thread can modify the
atomic variable between the two operations. Consequently, an atomic variable
must not be referenced twice in the same expression.

Noncompliant Code Example (atomic_bool)
This noncompliant code example declares a shared atomic_bool flag variable
and provides a toggle_flag() method that negates the current value of flag:

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag;

void init_flag(void) {
 atomic_init(&flag, false);
}

void toggle_flag(void) {
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void) {
 return atomic_load(&flag);
}

Execution of this code may result in a data race because the value of flag
is read, negated, and written back. This occurs even though the read and write
are both atomic.

Consider, for example, two threads that call toggle_flag(). The expected
effect of toggling flag twice is that it is restored to its original value. However,
the scenario in Table 13–3 leaves flag in the incorrect state.

CON40-C. Do not refer to an atomic variable twice in an expression 39

As a result, the effect of the call by t2 is not reflected in flag; the program
behaves as if toggle_flag() were called only once, not twice.

Compliant Solution (atomic_compare_exchange_weak())
This compliant solution uses a compare-and-exchange to guarantee that the
correct value is stored in flag. All updates are visible to other threads. The
call to atomic_compare_exchange_weak() is in a loop in conformance with
“CON41-C. Wrap functions that can fail spuriously in a loop.”

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag;

void init_flag(void) {
 atomic_init(&flag, false);
}

void toggle_flag(void) {
 bool old_flag = atomic_load(&flag);
 bool new_flag;
 do {
 new_flag = !old_flag;
 } while (!atomic_compare_exchange_weak(&flag, &old_flag, new_flag));
}

bool get_flag(void) {
 return atomic_load(&flag);
}

Table 13–3. Toggle_Flag() without Compare-and-Exchange

Time flag Thread Action

1 true t1 Reads the current value of flag, true, into a cache

2 true t2 Reads the current value of flag, (still) true, into a different
cache

3 true t1 Toggles the temporary variable in the cache to false

4 true t2 Toggles the temporary variable in the different cache to
false

5 false t1 Writes the cache variable’s value to flag

6 false t2 Writes the different cache variable’s value to flag

40 Chapter 13 ■ Concurrency (CON)

An alternative solution is to use the atomic_flag data type for managing
Boolean values atomically. However, atomic_flag does not support a toggle
operation.

Compliant Solution (Compound Assignment)
This compliant solution uses the ^= assignment operation to toggle flag. This
operation is guaranteed to be atomic, according to the C Standard, 6.5.16.2,
paragraph 3. This operation performs a bitwise-exclusive-or between its argu-
ments, but for Boolean arguments, this is equivalent to negation.

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag;

void toggle_flag(void) {
 flag ^= 1;
}

bool get_flag(void) {
 return flag;
}

Another alternative solution is to use a mutex to protect the atomic
 operation, but this solution loses the performance benefits of atomic variables.

Noncompliant Code Example
This noncompliant code example takes an atomic global variable n and com-
putes n + (n-1) + (n-2) + ... + 1, using the formula n * (n + 1) / 2:

#include <stdatomic.h>

atomic_int n;

void compute_sum(void) {
 return n * (n + 1) / 2;
}

The value of n may change between the two atomic reads of n in the
expression, yielding an incorrect result.

CON40-C. Do not refer to an atomic variable twice in an expression 41

Compliant Solution
This compliant solution passes the atomic variable as a function parameter,
forcing the variable to be copied, and guaranteeing a correct result:

#include <stdatomic.h>

void compute_sum(atomic_int n) {
 return n * (n + 1) / 2;
}

Risk Assessment
When operations on atomic variables are assumed to be atomic, but are not
atomic, surprising data races can occur, leading to corrupted data and invalid
control flow.

Rule Severity Likelihood Remediation Cost Priority Level

CON40-C Medium Probable Medium P8 L2

Related Guidelines

MITRE CWE CWE-366, Race Condition within a Thread
CWE-413, Improper Resource Locking
CWE-567, Unsynchronized Access to Shared Data in a
 Multithreaded Context
CWE-667, Improper locking

Bibliography

[ISO/IEC 14882:2011] 6.5.16.2, “Compound Assignment”
7.17, “Atomics”

	Seacord_Preface
	Seacord_Ch03
	Seacord_Ch07
	Seacord_Ch13

