Real World Print Production with Adobe Creative Cloud

Sharpen your print production skills with this definitive resource created specifically for design professionals who need to create files using Adobe Creative Cloud or Adobe Creative Suite 6, including InDesign®, Photoshop®, Illustrator®, and Acrobat®. Print expert Claudia McCue shares her hands-on techniques to set up files, manage fonts, use color spaces, edit photos and graphics, and package your files for offset or digital output without missing a deadline.

This book is brimming with insightful advice, illustrations, and shortcuts that will have you quickly and professionally producing your work in no time.

In Real World Print Production you’ll learn how to:

- Manage graphics and images in InDesign and create alternate layouts for multiple output sizes.
- Choose the right color space for your job, converting images and graphics from RGB to CMYK.
- Optimize your PDF workflow and edit PDF files.
- Wrangle your fonts and understand Adobe Typekit® for desktop.
- Understand how ink and paper work together and avoid last-minute surprises caused by issues like overprinting, trapping, and color registration.

Claudia McCue is a prepress pro with more than 20 years of hands-on experience. She is the owner of Practicalia, an independent training provider specializing in Adobe products, retouching and color correction, and resolving general issues related to prepress and printing. She is a popular speaker on these topics at industry conferences. Visit her Web site: www.practicalia.net.

Usa $54.99 Can $57.99

Isbn-10: 0-321-97032-2

9780321970329_PrintProdCC_RW_CVR.indd 1
11/11/13 12:28 PM
Table of Contents

Introduction ... vi

Chapter One: Life Cycle of a Print Job ... 1
 - The Olden Days .. 2
 - Designer ... 3
 - Typesetter .. 3
 - Photographer ... 3
 - Trade Shop ... 3
 - Printer ... 3
 - Job Submission .. 6
 - Scenic Tour of a Typical Printing Plant .. 6
 - Glossary of Printing Terms .. 21

Chapter Two: Ink on Paper ... 39
 - Fundamentals of Black-and-White Printing .. 39
 - Fundamentals of Color Printing .. 42
 - Press Issues. ... 51
 - Digital Printing ... 59
 - Your Monitor Is Not Made of Paper ... 63

Chapter Three: Trimming, Binding, and Finishing ... 69
 - One Size Does Not Fit All .. 69
 - Folding: High-Speed Origami ... 74
 - Imposition ... 76
 - Binding Methods .. 85
 - Moving Beyond Two Dimensions .. 90

Chapter Four: Preparing Raster Images .. 99
 - Ancient Times: B.P. (Before Pixels) ... 100
 - All About Pixels ... 100
 - Imaging Software ... 102
 - Resolution and Image Fidelity .. 103
 - Scanning Artwork .. 106
 - Cropping and Transforming Images ... 106
 - Appropriate Image Formats for Print ... 109
 - Inappropriate Image Formats for Print ... 119

Chapter Five: Vector Graphics .. 121
 - Vector File Formats ... 122
 - Handling Text ... 125
 - Incorporating Images into Vector Files ... 127
 - Avoiding Unnecessary Complexity ... 128
Table of Contents

Chapter Six: Fonts

- Font Flavors .. 131
- Fonts Installed by Creative Cloud 138
- Activating Fonts in the Operating System 139
- Font-Management Programs 140
- Typekit Desktop Fonts .. 141
- Font Licensing Issues .. 143

Chapter Seven: Cross-Platform Issues

- Crossing the Great Divide .. 148
- Naming Files .. 148
- Fonts ... 152
- Sending Files from Mac to Windows 153
- Sending Files from Windows to Mac 154
- Graphics Formats .. 155
- Compressing Files .. 155

Chapter Eight: Job Submission

- Preparations During the Design Process 158
- Talking with the Printer ... 158
- Planning for Print .. 160
- Sending Job Files .. 166
- Preparing for Proofing Cycles 170
- Attending a Press Check ... 174

Chapter Nine: Creative Cloud

- Understanding Creative Cloud 177
- Version Determination ... 180
- Creating Work for Users of Older Versions 180

Chapter Ten: Photoshop Production Tips

- Off to a Good Start .. 183
- Know the Fate of the Image 184
- Image Resolution .. 185
- Color Space ... 186
- Working in Layers ... 188
- Transparency .. 195
- Silhouettes and Masking .. 197
- Silhouetting Soft-Edged Subjects 201
- Beyond CMYK .. 205
- Adding Spot Color to a CMYK Image 207
- Creating a Spot Varnish Plate 208
- Vector Content .. 209
- Saving for Other Applications 211
<table>
<thead>
<tr>
<th>Chapter Eleven: Illustrator Production Tips</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Profile and Color Mode</td>
<td>213</td>
</tr>
<tr>
<td>Artboards</td>
<td>215</td>
</tr>
<tr>
<td>Using Symbols</td>
<td>219</td>
</tr>
<tr>
<td>Simplifying Complex Artwork</td>
<td>222</td>
</tr>
<tr>
<td>Live Effects</td>
<td>224</td>
</tr>
<tr>
<td>Using the Appearance Panel</td>
<td>227</td>
</tr>
<tr>
<td>Creating 3D Artwork</td>
<td>231</td>
</tr>
<tr>
<td>Transparency</td>
<td>233</td>
</tr>
<tr>
<td>Flattening Transparency</td>
<td>235</td>
</tr>
<tr>
<td>Linked and Embedded Images</td>
<td>237</td>
</tr>
<tr>
<td>Blended Objects</td>
<td>239</td>
</tr>
<tr>
<td>Spot Colors</td>
<td>240</td>
</tr>
<tr>
<td>Type and Fonts</td>
<td>245</td>
</tr>
<tr>
<td>Why Versions Matter</td>
<td>251</td>
</tr>
<tr>
<td>Saving for Other Applications</td>
<td>255</td>
</tr>
<tr>
<td>Creating PDF Files</td>
<td>259</td>
</tr>
<tr>
<td>Opening PDF Files in Illustrator</td>
<td>260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Twelve: InDesign Production Tips</th>
<th>261</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics</td>
<td>261</td>
</tr>
<tr>
<td>Using Native Files</td>
<td>273</td>
</tr>
<tr>
<td>Swatches</td>
<td>280</td>
</tr>
<tr>
<td>Alternate Layouts</td>
<td>285</td>
</tr>
<tr>
<td>Miscellaneous Document Tips</td>
<td>289</td>
</tr>
<tr>
<td>Transparency</td>
<td>296</td>
</tr>
<tr>
<td>Finding and Fixing Problems</td>
<td>307</td>
</tr>
<tr>
<td>PDF Creation Methods</td>
<td>314</td>
</tr>
<tr>
<td>PDF Creation Settings</td>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Thirteen: Acrobat Production Tips</th>
<th>317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrobat Product Line</td>
<td>318</td>
</tr>
<tr>
<td>Where Do PDFs Come From?</td>
<td>319</td>
</tr>
<tr>
<td>Creating PDF Files</td>
<td>319</td>
</tr>
<tr>
<td>Editing PDF Files</td>
<td>327</td>
</tr>
<tr>
<td>Comment and Review</td>
<td>330</td>
</tr>
<tr>
<td>Print Production Tools</td>
<td>339</td>
</tr>
<tr>
<td>Using External PDF Editors</td>
<td>354</td>
</tr>
</tbody>
</table>

Index | 355 |

Bonus chapters mentioned in this eBook are available after the index

Chapter Fourteen: Print Production Resources | A-1
Introduction

Much has changed in the realm of printing since the original edition of this book. Film has been almost totally abandoned in favor of direct-to-plate imaging, and the quality of digital printing processes rivals that of traditional offset. Updating the book has been a bit like time travel, as I deleted sections devoted to processes that have fallen by the wayside and expanded portions that described new-at-the-time techniques that are now commonplace.

I’m not a designer—I’m a printing geek. I spent half my life in prepress, troubleshooting, fixing jobs, and meeting impossible deadlines. I still love printing. I love the heavy rhythm of presses, the smell of the chemicals, the beehive bustle of a pressroom. I love to see paper roll in one end of the press and printed sheets fly out the other end. I hope I can pass some of this printing love on to you.

Who Should Read This Book

If you are a designer or a production artist who would like a better understanding of the pitfalls you encounter when using Adobe Creative Cloud software, you'll find lots of pointers in this book to help you avoid problems. Almost all software provides options that are tempting to choose but are dangerous under some circumstances. It’s good to know which buttons not to push—and why.

Photoshop, Illustrator, and InDesign form a powerful ecosystem. Consequently, choices you make in Photoshop can limit your options when you place an image in InDesign. Options you choose in InDesign can affect the quality of the PDF you create. And so on. You need an aerial view of the programs’ capabilities so you can anticipate the outcome. It would help if you were psychic, too, but that’s another book entirely.

I believe that the more designers understand about the physical requirements of the printing process, the more easily they can avoid problems. This book can explain why your printer sometimes asks you to modify your designs for print. Better yet, you can beat them to it, and they will compliment you on how well-prepared your jobs always are.

If you are an in-house designer or marketing department member, you may have been thrown into the deep end, suddenly given the responsibility of preparing work for print. This book may help you understand the mysterious new world of print.
If you are a prepress production operator, you’ll find many reminders of subtle problems that can lurk in graphics or page layouts. If you’re new to printing, you’ll find beneficial insights into what’s happening on the other side of the pressroom door. And if you’re looking for a gentle way to educate clients who keep submitting nightmare jobs, well, a book always makes a nice gift, doesn’t it?

For purchasing this book, you are also entitled to bonus Chapter 14, “Print Production Resources.” To download, register your book at peachpit.com/register. Create an account if you don’t have one (it’s free!). Then add this isbn: 0321970322. Look for the content on the “My Registered Products” page and click “Access Bonus Content.” If you purchased an ebook, bonus Chapter 14 is already included at the end.

What This Book Is Not

If you’re in the market for a hot-tips-and-tricks book, this isn’t it. It’s not a guide for stunning special effects (unless you consider it a special effect to get your job to print as expected). And, although this book demonstrates how to do some useful things in the Adobe Creative Cloud programs, it isn’t strictly a how-to book either. In fact, there’s quite a bit of how-not-to.

Are there any prerequisites for using this book? Only two, really. First, you should have basic proficiency with your computer and operating system, as well as the basics of InDesign, Illustrator, and Photoshop. The other requirement is arguably more important: You should have a healthy curiosity about the printing process and a desire to build problem-free files.

About the Author

I was a chemistry major. Really. But I had a knack for illustration, and I took some college art classes for extra credit. One of my instructors (Michael Parkes, who has since become a well-known fine artist in Europe) suggested that I change my career path from chemistry to commercial art. I thought, “Well, I’ll try it for a while,” and took a job at a printing plant that summer. A funny thing happened: I fell in love with printing and never went back to the lab. (Thanks, Michael.) Printing turned out to be the perfect environment for someone who held the dual titles of Class Clown and Science Student of the Year.
As a prepress production person, I always enjoyed troubleshooting, discovering new techniques, and sharing those discoveries with coworkers. I started in conventional paste-up and then moved into film stripping. (It’s not what you think. See the glossary in Chapter 1, “Life Cycle of a Print Job.”) And I was extremely fortunate (or cursed) to be one of the very early operators of color electronic prepress systems in the United States, so I’ve been pushing pixels around for a long time. Then, because it could perform the same magic as a Scitex or Crosfield system (minus the million-dollar price tag), Adobe Photoshop lured me to desktop computers.

I always believed in educating customers so they wouldn’t be intimidated by the mysteries of printing. Not surprisingly, that led to my second career as a trainer, consultant, writer, and presenter at industry conferences.

Acknowledgments

I’m passing on to you some of the Basic Printing Truths imparted to me by a number of fine old printing curmudgeons. Count yourself truly lucky if you’re befriended by a craftsman like Rick Duncan, who came up through the ranks, learned how to do everything the old-fashioned way, and was always patient with a kid asking too many questions.

I’m part of an informal fraternity of graphic arts aficionados. While we each have our specialties, our common bond is the love of learning and sharing new tricks. David Blatner, Scott Citron, Sandee “Vector Babe” Cohen, Anne-Marie Concepción, Bob Levine, and Mike Rankin are my InDesign brethren (and sistren), going back to the days when we were considered page-layout rebels. Mordy Golding’s passion for Illustrator is contagious, and he shares my devotion to enlightening designers in the mysteries of print.

It’s priceless to have friends on the inside at Adobe Systems: Dov Isaacs and Lonn Lorenz have been generous with their dry humor and no-nonsense advice on PostScript and PDF for years. And Noha Edell has long provided inspirational support and encouragement. PDF Sage Leonard Rosenthol has frequently enlightened me on arcane Acrobat mysteries.

I’m pleased to have the opportunity to update this book for Creative Cloud; it’s sort of like reincarnation. It’s truly gratifying that the first two editions have been used as textbooks in some schools. Thanks to Kelly Kordes Anton for policing my commas and technical editor Chad Chelius for ensuring that I wasn’t spreading any myths. Thanks to Suki Gear, Craig Woods, and Maureen Forys for their proofreading, composition, and production work, and James Minkin for crafting the index.

Now go out there and make me proud!
This page intentionally left blank
Preparing Raster Images

Whether you acquire an image from a scanner, a digital camera, a royalty-free CD with 1,000,000 images, or a stock photography vendor, it’s made out of pixels. *Pixel* is shorthand for *picture element*, the smallest unit of information in a digitized image. Even though pictures on your monitor look like smooth transitions of color, zoom in sufficiently and you’ll see all the little square pixels that actually make up the image (Figure 4.1). While pixels make it possible to do much of what we do in the graphic arts, they’re also the cause of some important limitations.

Figure 4.1 Images are made of pixels. Think of them as tiny mosaic tiles.
Ancient Times: B.P. (Before Pixels)

In the olden days of graphic arts, enormous cameras were used to photograph artwork such as drawings, reflective photographic prints, transparencies, and painted illustrations. Highly skilled specialists commandeered these monstrosities, some of which occupied entire rooms (the cameras, not the specialists). The use of colored filters, masking, and exposure methods to produce color separations (a separate piece of film for each printing ink) was rather arcane and required years of apprenticeship and study to perfect. And since every step required the use of specialized film, there were a lot of trips to a darkroom to develop the results in chemical baths. It all seemed very high-tech at the time (well, compared to cave paintings), but the process was quite time-consuming.

All About Pixels

Film has given way to pixels, and we have gone from dog-eared color photographic prints and moldy 35mm slides to storing our family photos on piles of CDs, and now into the nebulous world of cloud storage. What was once the province of the darkroom became a daylight venture, and the tools of the craftsmen became available to anyone brave enough to wade in.

Scanners

While early scanners still required highly skilled graphic arts professionals to operate them, they greatly sped up the process of capturing artwork for color separations. Early analog models used photomultiplier tubes and a daunting array of knobs and buttons to perform the same job that had been done by the huge cameras. The first scanners were petite only by comparison to their gigantic camera ancestors: Many could easily dwarf a Volkswagen. It was necessary to mount artwork on a heavy, clear plastic drum and then painstakingly ensure that there was no dust or a trapped air bubble to mar the scan. Scanner operators came from the ranks of color-separation cameramen, and their years of finely honed instincts for camera separations translated well to the newer methods. Thus began the move to digital capture and storage of image information, resulting in our devotion to the pixel and the advent of digital retouching.
In the mid-1990s, improvements in the capabilities and simplicity of flatbed scanners, coupled with the widespread usage of Adobe Photoshop, led to a major change in the way color separations were performed. It was no longer necessary to mount artwork on cylindrical drums, and the numerous knobs were replaced with onscreen buttons and dialog boxes. The digital imaging revolution was underway. Suddenly, people who weren’t sure what color separation meant were making color separations.

As flatbed scanners have become more automated and less expensive, it’s relatively easy even for novices to make a decent scan. But the more you know about what constitutes a good image, the better the chance you can create a great image from the pixels generated by your scanner.

Digital Cameras

Today’s scanners capture transparencies, negative film, paintings, and illustrations and express them as pixels. High-end digital cameras now rival—or exceed—the ability of film-based cameras to capture photographic detail. The image captured by the camera is a digital original, so there’s no need to scan a print. Of course, the better the camera and the photographer, the better the image. The rapid evolution of digital image capture is such that today’s cellphones take pictures with more inherent information than the earliest digital cameras.

While conventional camera film—such as 35mm transparencies—must be scanned to be used on your computer, digital camera images can be downloaded directly to the computer and used immediately. Digital photography also cuts out the middleman. Unlike film images, digital images don’t have any grain, although an image photographed in low lighting conditions may tax the resolving capabilities of a digital camera’s sensor, resulting in unwanted digital noise.

Consumer point-and-shoot cameras deliver captured images as JPEG, a compressed format. There are degrees of compression, from gentle to aggressive, and you may never notice any visible artifacts betraying the compression. But higher level “prosumer” cameras and professional digital cameras can deliver images in the Camera Raw format, which is subjected to minimal processing by the camera. While you cannot place a Raw file directly into Illustrator or InDesign, Raw images can be opened directly in Photoshop and saved in another format, such as Photoshop PSD.

TIP While you can’t place a Camera Raw file directly into Illustrator or InDesign, there is a workaround. In the Camera Raw module within Photoshop, hold down Shift as you click Open (the Open Image button changes to an Open Object button): this will open the image as a Smart Object in Photoshop. Save the image as a PSD, and you can then place it in Illustrator or InDesign while retaining the secret Camera Raw editing ability. Back in Photoshop, just double-click the Smart Object to edit in Camera Raw.
Raw files can be color corrected in the Photoshop Camera Raw environment without losing additional information. For example, an image shot under daylight conditions but with the camera's white balance set to fluorescent lighting can be corrected with one click in the Camera Raw environment without the loss of information that would be incurred by using a Levels or Curves correction in Photoshop.

If you are a point-and-shoot photographer who just wants to capture moments from a quick vacation, you may consider Raw files to be overkill. But for professional photographers, Camera Raw is a powerful and flexible format, often enabling the recovery or enhancement of details and tones that would be lost in a JPEG file.

Imaging Software

Once you have captured pixels, it's likely that you'll feel compelled to modify them. The industry standard imaging application is Adobe Photoshop, and for good reason. Photoshop provides controls for color correction that enable a knowledgeable user to achieve results equal to those of a knob-twisting scanner operator. Its tools surpass the capabilities of the original, million-dollar dedicated systems. If you're just beginning to learn Photoshop, you won't lack for educational resources. You could probably build an addition to your house from the books devoted to exploring Photoshop. You can add Chapter 10, “Photoshop Production Tips,” to the pile.

Photoshop is arguably the most versatile and widely accepted application for image manipulation, but there are other applications that perform useful imaging functions as well.

Adobe Photoshop Elements® (Mac/PC) might be regarded as “Photoshop Lite,” but it still packs a hefty arsenal of retouching and color-correction tools. The product is geared toward enthusiasts and lacks support for CMYK images.

Adobe Lightroom™ (Mac/PC) is engineered for use by photographers and provides sophisticated tools for organizing and color correcting images.

Apple iPhoto® (Mac only) is geared toward hobbyists, with organizational tools and limited color-correction capabilities. However, it offers no support for CMYK images.
Aperture (Mac only) is targeted to photographers and includes support for Camera Raw files. It provides organizational tools as well as color-correction controls but provides no support for CMYK images.

These are not the only solutions that exist for manipulating images. There are painting programs, such as Painter™ and Paint Shop Pro® (both from Corel®), which let you easily make images resemble watercolors or oil paintings. Imaging tools for consumer and hobbyist photographers increase on a daily basis. However, most of these programs don’t offer support for CMYK images, so they’re not the best tools if you’re preparing images for print.

Let’s face it—if you’re designing for print, you can’t live without Photoshop. When the name of a product becomes a verb—“Please Photoshop that out”—it’s a sure sign that the product has become the industry standard.

Resolution and Image Fidelity

The resolution of an image is generally measured in pixels per inch (ppi) unless you speak metric, in which case it’s expressed in pixels per millimeter. Determining the proper resolution for Web images is simple: 72 ppi at final size. But there are strongly held (and hotly debated) beliefs regarding the appropriate image resolution for printing. Some hold that 150 percent of the final screen ruling value is sufficient, and some believe twice the final ruling is preferable, largely because it’s easier to calculate the resolution. For example, an image that will be printed at 150 line screen should have a resolution of 300 ppi. In the past, when typical hard drives held 80 MB, networks were glacially slow, and RIPs choked on 15 MB PostScript files, it was important to trim off every little bit of fat, so we agonized over resolution. But now, with hard drives measured in hundreds of gigabytes, and RIPs with much more robust digestive tracts, we can afford the luxury of a few extra pixels. That said, there’s rarely an advantage to exceeding 300 ppi, except in some cases for higher line screens such as 175 lpi printing. So put away the calculator. For most circumstances, 300 ppi at final size is adequate and provides a bit of elbow room if you have to slightly reduce or enlarge an image.

But you do have some leeway, depending on the nature of the image and how it will be used. For example, a gauzy, soft-focus shot of a sunset that will be used as a ghosted background accent in a magazine can be used at 200 ppi with no problem. A highly detailed close-up image of an important
piece of antique jewelry in a 175 lpi art book should be at 300–350 ppi. At the other end of the spectrum, an image for use in an 85 lpi newspaper can be 130–170 ppi, because much of the information in a 300 ppi image would be lost when printed in the coarse newspaper screen ruling. Consider the determination of appropriate resolution to be an equation based on image content and the final printing line screen rather than an absolute number.

Scaling Up

When enlarging or reducing an image, don’t be afraid to *slightly* reduce or enlarge an image. But be aware that when an image is scanned or captured by a digital camera, it contains a fixed number of pixels. When you enlarge an image, you’re attempting to generate missing information in a process called interpolation; the result is never as good as a proper-sized original scan. And the more drastic the transformation, the less satisfying the outcome (Figure 4.2).

Figure 4.2 You can’t truly make something from nothing. Notice the loss of detail in the scaled-up version (D) versus the original (A).
Because of the limitations imposed by resolution, it’s helpful if you can anticipate how the image will be used and control photography or scanning accordingly. For typical image content, you can probably scale up to 120–125 percent. If the image is background content without much detail, such as a soft-focus landscape, you have more leeway and can probably get away with scaling up to 150–200 percent. Conversely, if you need to maintain very small details, you may be limited to a maximum of 120 percent.

Photoshop CC introduced a new method that does a better job of scaling up images and upsampling them to higher resolutions—Preserve Details. While the results won’t be equal to a higher resolution original image, it’s a definite improvement over earlier methods (Figure 4.3).

Scaling Down

Scaling down an image also involves interpolation. While the loss of data may not be quite so obvious when you reduce the size of an image, there can be some softening of detail. For best results, choose the Automatic option in the Image Size dialog box in Photoshop CC; it applies some sharpening to camouflage the reduction in detail. While it’s acceptable to scale images in InDesign, if you find it necessary to scale an image below 75 percent of its original size in your page layout, consider scaling it down in Photoshop CC instead, because InDesign can’t sharpen image content.
Scanning Artwork

If you are incorporating flat artwork such as pen-and-ink drawings or paintings in your design, you have several choices for digitizing the artwork. If you have a good flatbed scanner, you may be able to capture the artwork without any special handling. To provide some flexibility in later usages of the scanned image, consider performing two scans at 100 percent: one at 300 ppi, and one at 600 ppi if your scanner supports it. Then, you have two robust images that can be resized for a wider range of uses.

If your flatbed scanner isn’t up to the task, ask if your print service provider performs scanning. Many printers have high-end scanners capable of capturing and enlarging artwork. If you have transparencies or negative film that must be scanned, the printer’s professional scanners can capture detail and perform enlargements with higher-quality results than are possible with consumer-level scanners.

Some materials, such as textured paper, dimensional paint (such as heavy acrylic or oil paint), metal, or transparent substrates, don’t scan well. The scanner’s illumination bounces off metallic components and often appears black in the scanned image. Because of the even, frontal lighting of the scanner, texture is subdued or lost. And you can’t very well pin a statue under the lid of your scanner. If you have to capture a challenging art piece, the best solution might be to hire a photographer who specializes in capturing fine art pieces and has experience lighting and photographing such projects.

Cropping and Transforming Images

It would be great if you could anticipate the exact size, crop, and angle at which you’ll want to use an image in your page layout. But it may be difficult to see that far down the line at the moment you’re pressing the button on your camera, or slipping a print under the lid of your flatbed scanner. Oh, and watch out for that little gust of wind that comes along just as you’re putting the scanner lid down...
Cropping

Should you crop your images? Maybe. If you’re certain about future image use, feel free to crop. Leave a reasonable rind around the image area you intend to use to provide some elbow room when you place the image in the final page, so you have room to reposition the image, or to provide bleed for the page. However, if you think there’s even a remote chance that you’ll want to use more of the image in the near future—maybe you’re not sure if you might want to show a row of four buildings instead of just the one in the middle—then it’s worth keeping the whole shebang. While you may be reluctant to store an entire image just to keep the part with the 2-inch golf ball that you’re sure you will silhouette, give yourself a safety net and at least keep an uncropped backup copy of the image. Hard drive space is plentiful and you can always crop it later. It’s hard to recover that extra person you lopped off last week who turns out to be the CEO of the company.

Rotating Images

Almost any transformation, whether resizing or rotating, causes interpolation of pixel information. The only safe rotations are 90-degree increments—anything else will result in softening of detail (see Figure 4.4). Think of those rows and columns of pixels, much like the grid of a needlepoint pattern. Imagine what a challenge it would be to redraw that pattern at a 42-degree angle. It should give you a little sympathy for the math Photoshop has to do.

Figure 4.4 Repeated rotations of an image can result in cumulative erosion of detail (original image on the left, rotated image on the right). The exaggerated sharpening in the image on the right is a result of Photoshop’s attempt to compensate for softening of detail.
All these cautions about transformations such as scaling and rotating are not intended to strike terror in your heart. Don't be afraid to enlarge, reduce, or rotate if you need to. Just be prepared for the slight but unavoidable loss of detail and the degradation of the image's appearance. Try to resize in even increments, and beware of oddball rotations such as 1.25 degrees in the interest of maintaining as much information as possible.

Successive transformations—scaling and then rotating, for example—are particularly destructive. Let your conscience be your guide. How important is the detail in the image? If it's a key product shot, it's worth rescanning (if possible). If it's a less important image, such as a ghosted background or a decorative bit, you needn't feel quite so guilty about the transformation.

Where to Transform: Image Editor vs. Page-Layout Application

If you are going to transform images, does it matter where the transformation takes place? If you use Photoshop to scale an image, is the result superior to the outcome of scaling within your page-layout application?

The answer is an unqualified, “It depends.”

If you perform your scaling and rotation in Photoshop or another image-editing application, and then place the resulting image in a page layout at 100 percent with no rotation, you do have a pretty good idea of how the image will look when it's printed.

If, however, you induce the scaling or rotation in a page layout, you’ve only requested those transformations—you haven’t actually performed the transformations. They don’t really take place until the job is processed by a RIP. This puts you at the mercy of that RIP’s implementation of scaling and rotation algorithms. If you generate and submit PDFs, the rotations or distortions within that PDF are still pending, and they are implemented only when the PDF is processed by a RIP. In other words, the original image information is contained in the PDF, unchanged, but earmarked for its ultimate transformation in the RIP.

Be comforted by the fact that late-model RIPS can chew a lot more information in a shorter time than they used to. Rotating a few images here and there won’t prevent the processing of your job. However, despite the improvements in RIP technology, it is still possible (although rare) to build a job that can’t be processed by a RIP. (Please don’t take that remark as a personal challenge.)
Keep in mind, too, that if you’ve rotated an image in Photoshop and then subsequently applied additional scaling or rotation in a page layout, you’ve transformed it twice. It’s not the end of the world, but you may see some slight softening of detail in the finished piece.

Appropriate Image Formats for Print

How you should save your raster images is governed largely by how you intend to use them. Often, you will be placing images into InDesign or Illustrator, so you’re limited to the formats supported by those applications. The application may be willing to let you place a wide variety of file formats, but that doesn’t necessarily serve as an endorsement of file format wonderfulness. In the olden days, the most commonly used image formats were TIFF and EPS. However, native Photoshop files (PSD) and Photoshop PDF files are much more flexible, and both formats are supported by InDesign and Illustrator. So, there’s not much reason to use other formats unless you’re handing off your images to users of other applications, such as Microsoft PowerPoint or Word.

TIFF

If you need to blindly send an image out into the world, TIFF (tagged image file format) is one of the most widely supported image file formats. It’s happy being imported into Illustrator, InDesign, Microsoft Word, and even some text editors—almost any application that accepts images. The TIFF image format supports multiple layers as well as RGB and CMYK color spaces, and even allows an image to contain spot-color channels (although some applications, such as Word, do not support such nontraditional contents in a TIFF).

Photoshop EPS

Some equate the acronym EPS (Encapsulated PostScript) with vector artwork, but the encapsulated part of the format’s name gives a hint about the flexibility of the format. It’s a container for artwork, and it can transport vector art, raster images, or a combination of raster and vector content. EPS is, as the name implies, PostScript in a bag (see the sidebar, “EPS: Raster or Vector?”). The historic reasons for saving an image as a Photoshop EPS were to preserve
the special function of a PostScript-based vector clipping path used to silhouette an image or to preserve an image set up to image as a duotone. If you’re using InDesign and Illustrator, that’s no longer necessary.

EPS: Raster or Vector?

It may be a bit confusing that there are raster-based EPSs (saved from an image-editing program such as Photoshop) and vector-based EPSs (saved from a vector drawing program such as Adobe Illustrator or Adobe [formerly Macromedia] FreeHand). The uninitiated sometimes think that saving an image as an EPS magically vectorizes it. Not so. Think of the EPS format as a type of container. The pixels within an EPS are no different from those in their TIFF brethren. They’re just contained and presented in a different way.

As applications and RIPs have progressed, you’re no longer required to save such images as Photoshop EPS. Pixel for pixel, a Photoshop native PSD is a smaller file than an equivalent EPS and offers support for clipping paths as well as duotone definitions.

This doesn’t mean you need to hunt down your legacy Photoshop EPS files and resave them as PSD (unless you’re terribly bored). Just know that unless you need to accommodate someone else’s requirements, there’s no advantage to saving as Photoshop EPS now.

Photoshop Native (PSD)

In ancient times, the native PSD (Photoshop document) format was used solely for working files in Photoshop. Copies of those working files were flattened and saved in TIFF or EPS formats for placement in a page-layout program. While PageMaker allowed placement of native Photoshop files (yes, really—although it did not honor transparency), QuarkXPress required TIFF or EPS instead. Old habits die hard, and TIFF and EPS have long been the standard of the industry. Not that there’s anything truly wrong with that.

However, Illustrator and InDesign can take advantage of the layers and transparency in Photoshop native files, eliminating the need to go back through two generations of an image to make corrections to an original file. Today,
there’s no need to maintain two separate images: the working image and the finished file are now the same file.

Photoshop PDF

A Photoshop PDF (Portable Document Format) contains the same pixels as a garden-variety PSD, but those pixels are encased in a PDF wrapper—it’s like the chocolate-covered cherry of file formats. A Photoshop PDF comes in handy on special occasions, because it can contain vector and type elements without rasterizing the vector content, and it allows nondestructive round-trip editing in Photoshop.

A Photoshop EPS can contain vectors and text, but the vector content will be converted to pixels if the file is reopened in Photoshop, losing the crisp vector edge—so you lose the ability to edit text or vector content. A native Photoshop PSD can contain vector components, but page-layout programs rasterize the content. However, Photoshop PDFs preserve vector content when placed in other applications (see Table 4.1 for a feature comparison of common image formats).

Table 4.1 Image format features

<table>
<thead>
<tr>
<th>Supported Feature</th>
<th>TIFF</th>
<th>EPS</th>
<th>PSD</th>
<th>JPEG</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB color space</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CMYK color space</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grayscale</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ICC profiles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clipping paths</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Layers</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Alpha channels</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Spot color channels</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Duotones</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Bitmap (bi-level content)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Vector data</td>
<td>—</td>
<td>2</td>
<td>3</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Transparency</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

1 If saved as DCS 2.0 (a variant of the EPS format)
2 EPSs cannot be reopened in Photoshop with vector content intact
3 Page-layout applications rasterize vector content in PSDs
Moving to Native PSD and PDF

Is there any compelling reason to continue using old-fashioned TIFFs and EPSs? It may seem adventurous to use such new-fangled files, but workflow is changing. The demarcation between photo-compositing and page layout is blurring, and designers demand more power and flexibility from software. RIPs are more robust than ever, networks are faster, and hard drives are huge. It’s still important to know the imaging challenges posed by using native files (such as transparency), and it’s wise to communicate with your printer before you embark on the all-native path. You’re still at the mercy of the equipment and processes used by the printer, and if they’re lagging a bit behind the latest software and hardware developments, you may be limited by their capabilities.

Bitmap Images

Also called “line art images,” bitmap images contain only black and white pixels, with no intermediate shades of gray. If you need to scan a signature to add to an editorial page or scan a pen and ink sketch, a bitmap scan can provide a sharp, clean image. Because of the compact nature of bitmap scans, they can be very high resolution (usually 600–1200 ppi) but still produce small file sizes (Figure 4.5).

Special Case: Screen Captures

If you’re creating software documentation for print, or you want to show an image of a Web page in your project, you may need to include screen captures of software interface components such as menus or panels in your page layouts. Screen captures are easy to make using a system utility or dedicated screen-capture software, but they require some special handling to print clearly. When they’re part of software documentation or instructional materials, it’s important that the details are as sharply rendered as possible.
You should understand this about screen captures: Whether you take them by using your system's built-in screen-capture functionality or a third-party screen-capture application, you are merely intercepting information that eventually becomes pixels on your monitor. Regardless of your current monitor resolution, there is a one-to-one relationship between the fixed number of pixels that an application (and your system) uses to render panels and menus and the number of pixels you see on your screen, even if you use a zoom utility. Of course, the size of the overall image you see is a function of your current monitor resolution, but the pixel dimensions of panels, menus, and tools will be identical, regardless of resolution. (Figure 4.6)

An application panel that measures 244 pixels by 117 pixels appears larger when your screen resolution is set to 800 by 600, and it's almost unreadably small when your monitor is set to 1920 by 1200. However, the panel is made of exactly the same number of pixels in both instances. So it doesn’t matter what resolution your monitor is using, or how large the panels may appear onscreen, or whether you use a utility to zoom in. The captured image of a panel or menu will be the same in terms of pixel dimensions, regardless of the monitor resolution setting, and the resulting image will be 72 ppi.

TIP Do an experiment: In the software of your choice, open a panel and position it in the middle of the screen. Take screen shots at two different resolutions. Make a loose selection of the panel in one image, copy it, and place it into the other image. You'll see that they’re identical in pixel count. The overall images will be different sizes because of the different monitor resolutions, but the number of pixels used by interface components such as panels, menus, and tools will be identical.

![Figure 4.6](image)

The resolution setting of your monitor has no effect on the number of pixels used by panels and menus. Although this panel was captured at three different monitor resolutions, the three captures are identical, each consisting of exactly the same number of pixels.
Since it’s been drilled into you that 300 ppi is the Holy Grail of image resolution, it’s tempting to try to improve screen captures by increasing the resolution. Unfortunately, this usually makes them look worse by softening small details during interpolation.

If you plan to use a screen capture at 100 percent enlargement, just leave it at 72 ppi (go ahead and freak out). Yes, the print service provider’s prepress department will raise a flag, but the examples below show why screen captures are not improved by increasing their resolution.

As you can see in Figure 4.7, the original 72 ppi screen capture seems a bit coarse, but it’s readable. Increasing the resolution to 300 ppi in Photoshop may sound like a good idea, but the interpolation will soften detail in the image.

![Figure 4.7](image.png)

Figure 4.7 Image A is the original 72 ppi screen shot. Image B is the result of increasing the resolution to 300 ppi, using the default Bicubic method: Note blurry text and softened edges. Image C is the result of increasing the resolution to 288 ppi, using Nearest Neighbor.
If you do feel compelled to increase the resolution of a screen capture, choose Image > Image Size in Photoshop, and then set the resolution to an even multiple of the original resolution; for example, resample a 72 ppi screen shot to 288 ppi. In that same dialog box, set the Resample Image option to Nearest Neighbor. This avoids interpolation by simply repeating pixels rather than attempting to create pixels. It’s not an appropriate approach when scaling images of a photographic nature, but it’s a helpful solution for screen captures, because of their special nature.

Converting Screen Captures to CMYK

Because screen captures are generated as RGB images, they must usually be converted to CMYK for print. When performing that conversion, a special approach is recommended to maintain the best rendering of black type. The default conversion of RGB to CMYK in Photoshop will render black as a four-color mix (Figure 4.8), with the possibility that slight misregistration on press will turn tiny details to mush.

![Figure 4.8](Image for mats for Print) A conventional conversion from RGB to CMYK produces four-color equivalents of the gray and black parts of a screen capture. Press misregistration will turn text and other black or gray elements to an out-of-focus rainbow. Festive, but hard to read.

To simplify printing of screen captures, use a color-separation recipe that ensures that all neutral black or gray areas of the image will print only in black ink during the RGB-to-CMYK conversion. Neutral areas in an RGB image are those areas in which the RGB values are equal; for example, R128–G128–B128 would constitute a midtone gray.
To create this custom screen-capture conversion recipe in Photoshop, choose Edit > Color Settings to access the color-separation controls. Under Working Spaces, choose Custom for the CMYK setting (Figure 4.9).

Figure 4.9 In the Color Settings dialog box, select Custom CMYK from the CMYK menu.

In the Custom CMYK dialog box, select Maximum Black Generation (Figure 4.10). The curve you see may seem odd, but it merely indicates that all equivalent RGB values are being replaced with black. The appearance of color elements won’t be compromised.

Figure 4.10 In the Custom CMYK dialog box, select the Maximum Black Generation setting. This consolidates all gray-equivalent values to the black channel, minimizing issues with registration.
Color elements will be composed of four colors in the final CMYK image. But black and gray elements will be rendered only in black (Figure 4.11). While this may look odd, it results in cleaner printing of the screen capture, because there aren’t four colors piling up in most of the image.

Figure 4.11 All the color components appear on the cyan, magenta, and yellow plates. Black and gray areas appear only on the black plate. This special treatment ensures that screen shots print cleanly.

RGB vs. CMYK

Since the dawn of desktop publishing, it’s been unquestioned that Thou Shalt Convert to CMYK. Those who submitted RGB files were considered uninformed, even uncivilized.

The rules are changing, though, because of the increased use of digital printing. Although these devices may use inks or toners named cyan, magenta, yellow, and black, those inks and toners have a different pigment makeup than the namesake inks used on offset presses, and they have a wider color gamut than offset inks. Inkjet devices such as large-format printers utilize additional inks such as light cyan, pink, light yellow, orange, and green, further extending the range of colors that they can print.

This seems like a good time to open a can of multicolored worms. After you’ve been told by printers for years that you should convert your images to CMYK before submitting, I’m now going to tell you that you might not have to do so. That’s because many digital devices happily digest RGB and can provide more vibrant output by rendering RGB content.
When you convert to CMYK, ranges of colors outside the CMYK gamut are remapped to fall within the CMYK printable gamut, and some of your most vibrant colors are lost forever.

If you happen to have some very colorful RGB images (tropical birds would do the trick), try this little experiment:

1. Open the RGB image in Photoshop, and maybe make it even more vibrant by using Hue/Saturation or Vibrance. Get carried away; this is for science, after all, not for art.

2. Choose Edit > Color Settings. At the top of the dialog box, choose North America Prepress 2 from the menu and click OK.

3. Choose View > Proof Colors. The difference in appearance may not be huge, but try toggling Proof Colors on and off quickly by using the keyboard shortcut (PC: Ctrl-Y; Mac: Cmd-Y) and watch for differences in bright blues and greens. Neon greens provide a particularly noticeable difference.

4. Choose View > Gamut Warning. The gray areas are areas whose current RGB color will be remapped (and probably become duller) when converted to CMYK, because of the smaller color gamut of CMYK.

This gives you an idea of the color range that you'll lose when you convert to CMYK—and much of that color range can be imaged on many digital devices. Of course, ask the print service provider before you submit your work to ensure that you're sending what they want. Just don't be surprised if they say “RGB is OK.”

RGB as a Working Format

Because the RGB gamut is larger than that of CMYK, it's often preferable to perform color corrections and compositing with RGB files, converting to CMYK (if necessary) as late in the process as possible. If you are participating in a fully color-managed workflow, you will keep your images as RGB with ICC profiles. The International Color Consortium (ICC) was formed by a group of graphic arts industry vendors, with the goal of promoting the use and standardization of color management tools. ICC profiles are methods of describing the characteristics of devices such as scanners, presses, and printers for optimal results. Conversion will not take place until the job is imaged. Much of today's software offers sophisticated support of color
management. For example, when exporting a PDF or printing, InDesign will perform the same conversion of RGB to CMYK that Photoshop would (assuming you’ve synchronized your color settings across all your Creative Cloud applications).

What if the Printer Demands CMYK Images?

Some print service providers and their customers have fully adopted color-managed workflows as part of their regular operation. But many print service providers (especially in North America) expect CMYK when you submit your job, believing that it’s what Nature intended, especially when the job will be printed on an offset press (as opposed to a digital printer). Consult with your printer to see what they prefer. If you’re using digital photography or scanning your own artwork, they should be able to provide you with their preferred settings, so you can make appropriate conversions to CMYK.

Inappropriate Image Formats for Print

Some image formats are intended primarily for onscreen and Web use. **Portable Network Graphics** (PNG) images can contain RGB and indexed color as well as transparency. While PNG can be high resolution, it has no support for the CMYK color space.

The Windows format **BMP** (an abbreviation for bitmap) supports color depths from one-bit (black and white, with no shades of gray) to 32-bit (millions of colors) but lacks support for CMYK. BMP is not appropriate in projects intended for print.

Graphics Interchange Format (GIF) is appropriate only for Web use because of its inherently low resolution and an indexed color palette limited to a maximum of 256 colors. Don’t use GIF for print.

JPEG (Joint Photographic Experts Group), named after the committee that created it, has an unsavory reputation in graphic arts. Just whisper “jay-peg” and watch prepress operators cringe. It is a lossy compression scheme, meaning that it discards information to make a smaller digital file. But some of the fear of JPEGs is out of proportion to the amount of damage that takes place
when a JPEG is created. Assuming an image has adequate resolution, a very slight amount of initial JPEG compression doesn’t noticeably impair image quality, but aggressive compression introduces ugly rectangular artifacts, especially in detailed areas (Figure 4.12).

Figure 4.12 There’s good JPEG, and there’s bad JPEG:

A. Original PSD
B. JPEG saved with Maximum Quality setting
C. JPEG saved with lowest quality setting

Each time you open an image, make a change, then resave the image as a JPEG, you recompress it. Prepress paranoids will shriek that you’re ruining your image, and there’s a little bit of truth to that. While it’s true that repeatedly resaving an image with low-quality compression settings would eventually visibly erode detail, the mere fact that an image has been saved as a JPEG does not render it unusable, especially if you use a minimal level of compression. Despite the reputation, JPEGs aren’t inherently evil. They can be decent graphic citizens, even capable of containing high-resolution CMYK image data.

That said, when you acquire a JPEG image from your digital camera or a stock photo service, it’s still advisable to immediately resave the image as a TIFF or PSD file to prevent further compression. However, JPEGs intended for Web use are low-resolution RGB files, inappropriate for print. If your client provides a low-resolution or aggressively compressed JPEG, there’s not much you can do to improve it. Even with the refined Intelligent Upsampling in Photoshop CC, you can only go so far. They’ll find that hard to believe, though, because they know there’s a tool in Photoshop called the Magic Wand. Good luck explaining it to them.
Index

1C (one-color) jobs, 21
2/1 (two-over-one) jobs, 21
2C (two-color) jobs, 21
3D effects in Illustrator, 231–233
4/1 (four-over-one) jobs, 21
4C (four-color) jobs, 21

A
AAs (artist alterations), 15, 21
Acrobat, 317–354
 collaborating with, 334–336
 collecting comments in, 336–337
 comment and markup features, 331–334
 Compare Documents function, 173
 Distiller feature, 315, 318, 323
 editing PDF files in, 327–330, 354
 enabling Reader features from, 334
 font embedding in, 327
 forensic tools, 340–346
 handling image content in, 324–326
 Overprint Preview option, 304
 PDF compatibility with, 323
 preflighting files in, 343–346
 previewing output in, 341–342
 Print Production tools, 339–354
 product line for, 318–319
 Professional version, 10, 318
 repair tools, 346–354
 Simulate Overprint option, 306
 summarizing comments in, 337–338
 unclumping text in, 255
activating fonts, 132, 139, 140–141
Add Printer Marks tool, Acrobat, 348–349
adjustment layers, 191–192, 238
Adjustments panel, Photoshop, 191
Adobe Acrobat. See Acrobat
Adobe Bridge, 188, 281
Adobe FreeHand, 123
Adobe Illustrator. See Illustrator
Adobe InDesign. See InDesign
Adobe Lightroom, 102
Adobe PDF Print Engine, 13
Adobe Photoshop. See Photoshop
Adobe Photoshop Elements, 102
Adobe PostScript. See PostScript
Adobe Reader, 318, 333–334
AI files, 255–256, 278
Aldus PageMaker, 4
alpha channels, 204, 211
alternate layouts, 285–289
Aperture program, 103
Appearance panel, Illustrator, 227–231
Apple desktop computers, 4
 See also Macintosh computers
Apple iPhoto, 102
Apple LaserWriter, 4
application files
 submitting to printers, 167–170
 version and platform issues with, 169–170
aqueous coatings, 21, 56, 58
area type, 246
Arrow tool, Acrobat, 333
Artboard Options dialog box, 216
Artboard tool, 216, 217
artboards (Illustrator), 215–219
 bleed settings, 219
 creating, 216–217
 deleting, 217, 218
 hiding, 217
 modifying, 218
 page layout and, 219
 saving files with multiple, 256–258
 trim size and, 70, 73
artist alterations (AAs), 15, 21
artwork
 InDesign files as, 278–279
 PDF files as, 279–280
 scanning, 11, 106
Automatic (JPEG) compression, 326
Automatic Recovery, InDesign, 290

B
backsaving
 Illustrator files, 179, 181, 254
 InDesign files, 179, 182, 291
 Photoshop files, 179, 182
baseline, 21
Bézier shapes, 128
bindery, 21
binding, 19, 85–90
case, 86
coil, 23, 89
comb, 24, 88–89
custom, 90
perfect, 19, 32, 86–87
post, 90
saddle stitched, 19, 35, 85–86
wire, 38, 89
bitmap images, 112
black
duotone, 205
rich, 55–56, 173
black-and-white printing, 39–42
blanket, 21
bleed
checking on proofs, 172
die cutting and, 94–95
Illustrator settings for, 219, 258
importance of providing, 72–73, 161
imposition related to, 77, 78
InDesign settings for, 292–293
printer marks indicating, 348–349
vector artwork and, 164
Blend tool, Illustrator, 239
blended objects, 239
blending modes, 110, 195, 196, 234
blind embossing, 26, 96
bluelines, 14, 15, 22, 173–174
BMP file format, 119
Bridge, Adobe, 188, 281
bump plates, 22, 207

CDs
distributing PDF files on, 320
submitting jobs on, 170
CEPS (color electronic prepress system), 3, 22
channel masks, 203–204
channels, Photoshop, 203–204
characters, 135
chase, 22
choking, 53
CID (Character ID) font encoding, 315
Clean Up dialog box, Illustrator, 222
clipping masks, 194–195
clipping paths, 198–199, 200
closed path type, 248
Cloud tool, Acrobat, 333
CMYK color
adding spot color to, 207–208
color printing and, 42–48
explanation of acronym for, 48
Illustrator options for, 214, 240–241
limitations of, 47–48, 118
RGB conversions to, 119, 187–188
screen captures converted to, 115–117
specifying screen values for, 46
spot color conversions to, 50–51, 240–241
coated paper, 50
coatings, 17, 58–59, 159
coil binding, 23, 89
cold foil, 97
collaborating over PDF files, 334–336
e-mail-based reviews, 334
shared reviews, 335–336
color
checking, 171
CMYK, 42–48
naming, 163
spot, 48–51
stroke, 228–229
viewing, 66–67
color break, 23
color cast, 23
color corrections
layers for making, 190–192
performing in RGB color space, 185
color electronic prepress system (CEPS), 3, 22
Color Formula Guides, 48
Color Key proofs, 2
color management, 23, 63–64
coated paper, 50
cast shadow effect, 274
C1s paper, 22
C2s paper, 22
calibrating monitors, 65
Callout tool, Acrobat, 332
Camera Raw, 101–102
cameramen, 22
camera-ready art, 22
case binding, 22, 86
cast shadow effect, 274
C
CI's paper, 22
C2's paper, 22
calibrating monitors, 65
Callout tool, Acrobat, 332
Camera Raw, 101–102
cameramen, 22
camera-ready art, 22
case binding, 22, 86
cast shadow effect, 274
color modes, 214–215
Color panel, InDesign, 280
color printing, 42–51
 CMYK inks for, 42–48
 spot colors for, 48–51
color proofs, 14
color separations, 23, 100
color settings files, 187–188
color space, 162, 186–187
color temperature, 14, 23–24
colorimeters, 65
colorizing images, 285
comb binding, 24, 88–89
commenting tools, 331–333
comments
 adding to PDFs, 334
 collecting and summarizing, 336–338
 deleting from PDFs, 333
Committee for Graphics Arts Technologies Standards (CGATS), 322
Compare Documents function, 173
compatibility, PDF file, 323
Component Information dialog box, 309–310
compressed files, 155, 167, 169–170
compression settings, 325–326
comps, 24
computer-to-plate (CTP), 10, 16, 25
Content Grabber, 273
continuous tone, 24
contract proofs, 14–15, 17, 24, 68
conversions
 Illustrator text, 252
 Postscript to PDF, 315
 RGB to CMYK color, 119, 187–188
 screen capture to CMYK, 115–117
 spot color to CMYK, 50–51, 240–241
 text to outline, 126–127, 145
Convert Colors tool, Acrobat, 348
converter, 25
corrections, 15, 173
Creative Cloud, 177–182
 Adobe Bridge for, 281
 backsaving files from, 179, 181–182
 fonts installed by, 138–139
 hosting information for, 179
 persistent myths about, 178–179
 Typekit desktop fonts, 141–142
 version determination, 180
creep, 25
Cromalin proofs, 2, 25
cropping images, 107
crossover art, 173, 174
cross-platform issues, 147–155
 file compression, 155
 file naming, 148–151
 fonts, 152–153
 graphics formats, 155
 Mac-to-Windows, 153–154
 progress made in, 147–148
 Windows-to-Mac, 154
CTP (computer-to-plate), 10, 16, 25
curing process, 25
Curve Precision setting, 222–223
custom binding, 90
customer alterations, 15
customer service representative (CSR), 8, 159
custom-mixed inks, 25, 57, 159
cutting die, 25, 93–95

D
DCS files, 207
debossing, 26, 96
deleting
 artboards, 217, 218
 channels, 211
 comments, 333
 layers, 191, 211
 paths, 211
desktop printers, 65
desktop publishing, 4–5
dfonts, 136
die, 25, 91
die cutting, 19, 25, 93–95
die lines, 91, 92, 94
digital cameras, 26, 101–102
Digital Distribution of Advertising for Publications (DDAP), 322
digital photography, 11
digital press, 26
digital printing, 17, 59–63
 advantages of, 59–60
 limitations of, 60–63
dingbats, 133
Direct Selection tool
 Illustrator, 248
 InDesign, 272, 273
disclosure triangle, 268
Distiller, Acrobat, 315, 318, 323
document profiles, 213–214, 227
Document Raster Effects settings, 225–226
dot etchers, 26
dot gain, 26, 41
double spaces, 165
downsampling, 325
dpi (dots per inch), 42
drag-and-drop into InDesign, 263–265
drop shadows
 InDesign handling of, 274–275, 276, 278, 301, 306–307
 Photoshop creation of, 196
Droplet, Preflight, 346
drying agents, 56
duotones, 26, 205–206, 285
DVDs
 distributing PDF files on, 320
 submitting jobs on, 170

E
edge detection, 201–202
Edit Original button, InDesign, 270
Edit Text & Images tool (Acrobat), 328–330
 editing graphics using, 329–330
 editing text using, 328–329
editing
 graphics in Acrobat, 329–330
 graphics in InDesign, 270
 PDF files in Acrobat, 327–330, 354
 text in Acrobat, 328–329
 text in Illustrator, 253–254
effects
 Illustrator, 221, 224–226
 Photoshop, 224
emailing PDF files, 320, 334
embedded fonts, 125–126, 144–145, 167, 249–250, 327
embedding
 graphics in InDesign, 265–266
 images in Illustrator, 127, 237–238
embossing, 26, 95–96
embossing die, 25, 95, 96
EMF file format, 124–125
Encapsulated PostScript. See EPS
Enfocus PitStop, 10, 317, 339
environment controls, 64–65
EPS (Encapsulated PostScript), 109–110
 drop shadows and, 278
 raster vs. vector, 110
 saving in Illustrator, 256, 258
 vector graphics and, 122–123
Eraser tool, Acrobat, 333
estimators, 9, 27
EULAs (End User License Agreements), 143–144
exporting
 comments from PDF files, 336–337
 InDesign files to PDF, 314
 PDF files from applications, 323–324
 preflight profiles, 313

F
fake duotones, 27, 285
feathering effects, 301
file extensions, 148, 151
File Handing & Clipboard preferences, Illustrator, 264–265
File Transfer Protocol (FTP), 169
files
 backsaving, 179, 181–182, 254, 291
 compressing, 167, 169–170
 flattening, 195
 naming, 148–151, 163, 212
 reducing size of, 291
fills, 229–230
film strippers, 27
finishing processes, 18–20, 27
 binding, 85–90
 building files for, 69–74, 90–93
 custom, 160
 die cutting, 93–95
 embossing, 95–96
 foil stamping, 97
 folding, 74–76
 imposition, 76–85
 print specifications for, 74
 trimming, 69–74
Fix Hairlines tool, Acrobat, 352
flatbed scanners, 101, 106
flatness settings, 199–200
flats, 15, 27
Flattener Preview option, InDesign, 308–309
flattening
layers, 195
transparency, 235-237, 296-307
flexography, 16, 27
FlightCheck software, 10, 165, 166, 168
fluorescent inks, 57
FM screening, 45-46
foil stamping, 27-28, 56-57, 97
folding, 18
configuring jobs for, 74-76
templates for, 76
folding dummy, 28, 82
folio, 28
Font Book utility, 135, 139
Font Explorer X Pro, 140
FontAgent Pro, 132, 140
FontDoctor, 141
FontLab, 143
fonts, 131-146
activating, 132, 139, 140-141
conflicts between, 141
converting to outline, 126-127, 145
cross-platform issues, 152-153
embedding, 125-126, 144-145, 167, 249-250, 327
identifiers for, 137
Illustrator handling of, 249-250
installed by Creative Cloud, 138-139
licensing issues for, 143-146
Macintosh OS X system, 136
management programs for, 140-141
multilingual, 134
Multiple Master, 137
OpenType, 133-135
PostScript, 131-132
screen, 131-132
sending to service providers, 145-146
substituting, 138
TrueType, 132-133
Typekit desktop, 141-142
vector artwork and, 163
Windows system, 137
See also text
Fonts control panel, 135
forensic tools, Acrobat, 340-346
FPO images, 28
frames, scaling, 272
Free Transform tool, InDesign, 272
Freehand program, 123
FTP (File Transfer Protocol), 169
fulfillment, 20

G
ganged content, 18, 28, 78
GIF file format, 119
glazed embossing, 96
global swatches, 242-245
glossary of printing terms, 21-38

glue flap, 93

gluing, 20
glyphs, 133, 134, 135
GRACoL color settings files, 187-188
grain of paper, 28
graphic arts tasks
desktop publishing’s redistribution of, 4-5
historical division of, 2-3

graphics
Acrobat editing of, 329-330
dragging and dropping, 263-265
embedding/unembedding, 265-266
extracting from PDF files, 330
finding missing, 269
InDesign editing of, 270
placing in InDesign, 261-263
replacing existing, 270
scaling, 273
updating modified, 269
See also images; vector graphics

graphics formats. See image formats

gravure printing, 16, 28
gripper edge, 28

H

hairline fix, 352
halftone dots, 40, 43
halftones, 28
black-and-white, 40-42
color, 43-46
hiding artboards, 217
High Quality Print option, 316
Highlight Text tool, Acrobat, 332
hinting, 126, 163, 250
hot type, 28-29
images
 bitmap, 112
 colorizing, 285
 cropping, 107
 down sampling, 325
 editing, 270
 embedding, 237–238
 finding missing, 269
 linking, 237
 retouching, 162
 rotating, 107–108, 162
 scaling, 104–105, 162, 273
 unembedding, 238
 See also graphics; raster images
imagesetters, 29, 63
imaging software, 102–103
importing
 comments from PDF files, 337
 Illustrator symbols, 221
 preflight profiles, 313
imposition, 14, 29, 76–85
 multipage, 80–85
 nested, 78–79
 simple, 77–78
InDesign, 261–316
 alternate layouts in, 285–289
 Automatic Recovery, 290
 backsaving from, 122, 179, 181, 254
 bleed options in, 219, 258
 blended objects in, 239
 capabilities of, 129–130
 CMYK conversions in, 240–241
 color modes in, 214–215
 document profiles, 213–214, 227
 drag-and-drop into InDesign from, 264–265
 editing PDF files in, 354
 embedding fonts in, 249–250
 EPS files in, 123, 256, 258
 linked and embedded images in, 237–238
 live effects in, 221, 224–226
 native AI format, 122
 opening PDF files in, 260
 OpenType font support, 135
 Overprint Preview option, 232–233, 234, 235, 241
 Package function, 167–168, 258
 PDF file creation, 259–260
 PSD files used in, 110
 saving files from, 255–258, 259–260
 Scoop plug-in, 125, 258
 Separations Preview panel, 242
 simplifying complex artwork in, 222–223
 spot color options, 240–245
 symbols used in, 219–221
 templates, 227
 text conversion in, 252
 transparency effects in, 233–237
 trim size in, 70, 73
 type features in, 245–251
 version issues, 251–255, 257–258
image formats
 appropriate for print, 109–112, 122–124
 cross-platform compatibility of, 155
 features comparison chart, 111
 inappropriate for print, 119–120, 124–125
 image proofs, 170–171
 image work, 12
INDEX

Overprint Preview option, 308
Package function, 167–168, 314
page size setup, 70
paths used in, 200–201
PDF creation in, 314–316
PDF files as artwork in, 279–280
Photoshop files in, 263–264
placing graphics in, 261–263
Preflight feature, 165
Preview mode, 307–308
PSD files used in, 110, 273–277
reducing file size in, 291
scaling graphics in, 273
Separations Preview panel, 282–283
Smart Guides, 294–296
Smart Text Reflow, 296
Snippets, 265
Swatches panel, 280–281
tips for using, 289–296
transforming frames in, 272
transparency effects in, 296–307
Units & Increments setting, 75
updating graphics in, 269–270
InDesign Markup (IDML) format, 182, 291
Ink Aliasing, 283
Ink Manager
 Acrobat, 347–348
 InDesign, 283–284
inks
custom-mixed, 57, 159
fluorescent, 57
large color areas for, 54
metallic, 56–57
problem, 56
process color, 42, 47, 50–51
rich black, 55–56
spot color, 48–50
interpolation, 104, 105
iPhoto program, 102
PDF files for, 166–167
planning process, 160–166
preflighting your job, 165
preparing designs for, 158
press check following, 158
proofing cycles following, 170–174
providing printouts in, 165
raster image check, 161–163
sending job files, 166–170
talking with printers about, 158–160
vector artwork check, 163–164
job ticket, 8–9, 29
JPEG compression, 326
JPEG file format, 101, 109, 119–120

K
Kelvin temperature scale, 24
kiss plates, 207
knock out, 29, 304

L
Lab color, 186
laminate, 29
layer masks, 189–190
layers, 188–195
 adjustment, 191–192
 clipping masks and, 194–195
 color corrections with, 190–192
 deleting, 191, 211
 flattening, 195
 InDesign handling of, 275–277
 job submission with, 168
 layer masks and, 189–190
 merging, 195
 Smart Objects and, 192–194
LCD monitors, 65
leading, 28, 29
letterpress printing, 16–17, 29–30
libraries, InDesign, 293
licensing issues for fonts, 143–146
lighting considerations, 64, 66–67
lighting indicator patches, 67
Lightroom program, 102
line shots, 30
Line tool, Acrobat, 333
linen tester, 30
linked stories, 288–289
linking images, 237
Links panel, InDesign, 266–270
Liquid Layout tools, InDesign, 286–287
lithography, 30
live effects, 221, 224–226
loaded-graphics cursor, 262
loupe, 30
lowercase, 30
lpi (lines per inch), 35–36, 40, 42

M
Macintosh computers
cross-platform issues, 147–155
file associations fix, 271
filenaming conventions, 148–151
font activation, 135, 139
OS X system fonts, 136
Save As PDF option, 315
Magic Wand tool, Photoshop, 197, 198
makeready, 17, 30
markup tools, 331–333
masks
channel, 203–204
clipping, 194–195
layer, 189–190
Matchprint proofs, 2, 30
mechanical, 2, 30
mechanical color, 31
merging layers, 195
metallic inks, 56–57
metamerism, 66
Microsoft Powerpoint, 125
Mini Bridge, 263
missing graphics, 269
mockups, 24
modified graphics, 269
moiré pattern, 31, 41, 43–44, 171, 173
monitor considerations, 63–68
calibration, 65
color management, 63–64
environment controls, 64–65
viewing environment, 66–67
white point setting, 68
multilingual fonts, 134
multipage imposition, 80–85
Multiple Master fonts, 137

N
naming files, 148–151, 163, 212
native file formats
Illustrator, 122
Photoshop, 110–111
nested impositions, 78–79
New Document Profiles folder, 227

O
Object Inspector, Acrobat, 342–343
Object Layer Options dialog box, InDesign, 275–277
objects
blended, 239
silhouetted, 197–204
Smart Objects, 192–194
offset printing, 16, 17, 31
on-press imaging, 16
opacity, 110, 195
open path type, 246–247
OpenType fonts, 133–135, 152, 153
OPI (Open Prepress Interface), 31
optimizing PDFs, 353–354
OttLite lamps, 67
Outline view, Illustrator, 221
outlining text, 126–127, 145, 250
Output Preview tool, Acrobat, 340, 341–342
Oval tool, Acrobat, 333
overprint, 31, 172, 303–304
Overprint Preview option
Acrobat, 304
Illustrator, 232–233, 234, 235, 241
InDesign, 308

P
Package function
Illustrator, 127, 167–168, 238, 251, 258
InDesign, 167–168, 314
Typekit desktop fonts and, 251
page creep, 84
page proofs, 2, 31
page size, 70
page-layout files
checking for job submission, 164–166
packaging elements of, 167–168
page-layout programs, 4
pagination, 32, 174
PANTONE Color Bridge, 49, 51
PANTONE Color Formula Guides, 48, 49, 51
PANTONE lighting indicators, 67
PANTONE PLUS libraries, 49, 240
paper
digital presses and, 62
press check and behavior of, 175
special orders for, 159
path designation, 149
paths
clipping, 198–199, 200
creating, 197–199
deleting, 211
flatness settings, 199–200
simplifying, 128–129
type on open/closed, 246–248
PDF Enhancer, 353
PDF files, 32
adding comments to, 334
artwork from, 279–280
collaboration using, 334–336
collecting comments on, 336–337
comment and markup features for, 331–334
compression settings, 325–326
creation of, 319–327
ey early conception of, 317
editing, 327–330, 354
emailing, 320, 334
embedding fonts in, 144–145, 327
exporting from applications, 323–324
external editors for, 354
extracting graphics from, 330
forensic tools, 340–346
Illustrator files saved as, 215, 259–260, 354
image content and, 324–326
InDesign files saved as, 314–316
opening in Illustrator, 260
origin of, 319
Photoshop PDF, 111, 210–211
Postscript conversion to, 315
preflight process, 10, 166
proofs sent as, 173
repair tools, 346–354
resolution settings, 323–324, 325
RIP conversion of, 12–13
security of, 123
settings for, 315–316, 321, 322–323
submitting to printers, 166–167, 320
summarizing comments on, 337–338
transformations made in, 108
types of, 320
vector art saved as, 123–124
PDF Optimizer, Acrobat, 353–354
PDF Print Engine, 13
PDF Reference, 319
PDF Shrink, 353
PDF/X-1a format, 259, 316, 322, 323
PDF/X-3 format, 316, 323
PDF/X-4 format, 299, 316, 323
Pen tool, Photoshop, 197, 198
Pencil tool, Acrobat, 333
perfect binding, 19, 32, 86–87
personalization, 17, 32
Photoshop, 4, 102, 183–212
adjustment layers, 191–192
backsaving from, 179, 182
channel masks, 203–204
color space issues, 186–187
drag-and-drop into InDesign from, 263–264
duotone creation, 205–206
effects in Illustrator, 224
EPS file format, 109–110
image use considerations, 184–185
layers used in, 188–195
native PSD format, 110–111, 112
OpenType font support, 135
PDF file format, 111, 210–211
PSD files in InDesign, 273–277
Refine Edge feature, 201–202
resampling options, 186
resolution issues, 185
RGB to CMYK conversions, 115, 187–188
saving files in, 210–212
screen capture conversions, 115–117
silhouetting objects in, 197–204
spot colors added in, 207–208
spot varnish plate creation, 208–209
transparency effects in, 195–196
vector elements in, 209–211
Photoshop Elements, 102
picas, 32, 75
pixels, 99, 225
PlaceMultipagePDF script, 280
planners, 9, 32
plates
 bump, 22, 207
 computer-to-plate method, 10, 16, 25
 created by printers, 15–16
 spot varnish, 208–209
platesetters, 32, 62–63
platform issues, 169
PNG file format, 119, 125
pocket folder, 90–93
point type, 245
points, 32
post binding, 90
PostScript, 32–33
 conversion to PDF, 315
 desktop publishing and, 4
 encapsulated, 109–110, 122–123
 RIP processing of, 12–13
 See also EPS
PostScript Printer Definition (PPD) files, 315
PostScript (Type 1) fonts, 131–132, 152
potential pixels, 225
Powerpoint program, 125
PPD files, 315
ppi (pixels per inch), 42
preflight, 10, 33
 Acrobat tool for, 343–346
 creating custom profiles for, 311–313
 importing/sharing profiles for, 313
 InDesign feature for, 310–313
 prior to job submission, 165, 166
Preflight Droplet, 346
Preflight panel, InDesign, 311
Preflight tool, Acrobat, 340, 343–346
prepress, 10–15, 33
Preserve Details option, Photoshop, 105
Preserve Spot Colors option, Illustrator, 232
press check, 17, 33, 174–176
press issues, 51–59
 coatings, 58–59
 ink coverage, 54–57
 registration, 51–52
 trapping, 52–54
press proof, 33
Press Quality option, 316
pressroom, 16–17
Preview mode, InDesign, 307–308
previewing documents
 in Acrobat, 341–342
 in InDesign, 307–309
Print Production tools (Acrobat), 339–354
 Add Printer Marks tool, 348–349
 Convert Colors tool, 348
 Fix Hairlines tool, 352
 forensic tools, 340–346
 Ink Manager, 347–348
 Object Inspector, 342–343
 Output Preview tool, 340, 341–342
 PDF Optimizer, 353–354
 Preflight tool, 340, 343–346
 repair tools, 346–354
 Set Page Boxes dialog box, 350–352
 Transparency Flattening options, 353
 Trap Presets feature, 354
print service providers
 application file submission to, 167–170
 discussing print jobs with, 158–160
 fonts sent with jobs to, 145–146
 PDF file submission to, 166–167, 320
 press check with, 174–176
 proofing cycles with, 170–174
 sending job files to, 166–170
Print to Adobe PDF option, 315
printer alterations, 15, 33
printer marks, 348–349
printer profiles, 65
printer's spreads, 33–34, 80, 81, 166
printing, 16–17
 black-and-white, 39–42
 coatings used in, 58–59
 color, 42–51
 digital, 17, 59–63
 glossary of terms for, 21–38
 image formats for, 109–112, 122–124
 ink coverage and, 54–57
 press check during, 174–176
 registration issues, 51–52
 slang terms in, 70
 trapping issues, 52–54
Printing Industries of America, 67
printing plants
 job flow diagram for, 7
 overview of departments in, 6–20
printouts of job, 165
problem inks, 56
process colors, 34, 42
production, 10–11
profiles
 document, 213–214, 227
monitor, 65
preflight, 343–346
printer, 65
Project Camelot, 317
Proof Colors feature, 166
proofing process, 14–15, 170–174
correction check, 173
image proof check, 170–171
imposed blueline check, 173–174
page proof check, 172–173
signing off on proofs, 174
proofs, 34
contract, 14–15, 17, 24, 68
image, 170–171
page, 31, 172–173
press, 33
scatter, 35
PSD files, 110–111, 211, 238, 273–277

Q
quadtones, 205
QuarkXPress, 110, 135

R
random proofs, 14, 170
raster image processors (RIPs), 12–13, 34
halftone dots and, 41
PDF Print Engine in, 13
rasterization process by, 300–301
transformations performed by, 108
raster images, 99–120
cropping, 107
digital cameras and, 101–102
file formats for printing, 109–112
imaging software and, 102–103
inappropriate formats for printing, 119–120
placing into vector graphics, 127
pre-job submission check of, 161–163
programs for transforming, 108–109
raster effects and, 225–226
resolution of, 103–104, 162
retouching work on, 162
RGB vs. CMYK, 117–119
rotating, 107–108, 162
scaling, 104–105, 162
scanners and, 100–101, 106
screen captures as, 112–117
Smart Objects as, 192, 193
vector graphics vs., 121
Raw images, 101–102
Reader, Adobe, 318, 333–334
reader’s spreads, 80, 81, 166
Ready, Set, Go! program, 4
Real World Color Management (Fraser, Murphy, and Bunting), 64
Rectangle Frame tool, InDesign, 261
Rectangle tool
Acrobat, 333
InDesign, 261
Refine Edge feature, Photoshop, 201–202
Reflex Blue ink, 56
registered embossing, 96
registration, 34
digital printing and, 61
printing inks and, 51–52
Relink button
Illustrator, 237
InDesign, 269, 270
remapping spot colors, 283–284
repair tools, Acrobat, 346–354
resampling images, 105, 186
resizing. See sizing/resizing
resolution, 34
determining for images, 103–104, 162
digital presses and, 63
PDF settings for, 323–324, 325
Photoshop considerations, 185
scaled images and, 105
screen captures and, 113–115
retouching images, 162, 171
RGB color
color correction with, 185
converting to CMYK, 119, 187–188
digital output of, 11, 118–119
screen captures converted from, 115–117
working with, 118–119
RHEM lighting indicators, 67
rich black, 55–56, 173
RIPs. See raster image processors
ROOM (RIP once, output many), 34
rosette pattern, 44
rotation
checking layout files for, 165
of raster images, 107–108, 162, 184–185
INDEX

S
saddle stitching, 18, 19, 35, 85–86
salesperson, 6, 8, 158–159
Save As command, 291
Save As PDF option, 315
saving
back to older versions, 179, 181–182
files with multiple artboards, 256–258
Illustrator files, 255–258, 259–260
Photoshop files, 210–212
symbols in Illustrator, 221
vector art as PDFs, 123–124
scaling
checking layout files for, 165
frames and graphics, 272–273
raster images, 104–105, 162
resampling and, 184
vector graphics, 121
scanners, 35, 100–101, 106
scanning artwork, 11, 106
scatter proofs, 35, 170
schedulers, 9, 35
Scoop plug-in, 125, 258
scoring, 35, 93
screen angle, 35, 44
screen captures, 112–117
converting to CMYK, 115–117
resolution of, 113–115
screen fonts, 131–132
screen printing, 17, 35
screen ruling, 35–36, 40–41, 63
screen values, 46
Selection tool, InDesign, 272, 273
sending job files, 166–170
application files, 167–170
PDF files, 166–167
See also job submission
Separations Preview panel
Illustrator, 242
InDesign, 282–283
service bureau licenses, 144
Set Page Boxes dialog box, Acrobat, 350–352
shadow effects, 274–275, 276, 278
See also drop shadows
Shared Review wizard, Acrobat, 335
sharing
PDF files, 335–336
preflight profiles, 313
sheetfed presses, 36
shingling, 84–85
shipping, 20
short print runs, 59
signatures, 36, 80
signing off on proofs, 174
silhouettes, 36, 197–204
channel masks for, 203–204
checking on proofs, 171
detection for, 201–202
path creation for, 197–200
soft-edged subjects and, 201–204
simple imposition, 77–78
Simplify dialog box, Illustrator, 222–223
Simulate Overprint option, 305, 306
size considerations
for file size, 291
for print planning, 160–161
for trim size, 70–72
sizing/resizing
artboards, 218
raster images, 104–105
Smallest File Size option, 315–316
Smart Guides (InDesign), 294–296
setting preferences for, 295–296
Smart Spacing indicators, 295
Smart Objects, 101, 192–194
Smart Text Reflow, 296
Snippets, InDesign, 265
soft proofs, 14
special effects, 172
specialty inks, 56–57
spiral binding, 23, 89
spot colors, 36, 48–51
3D artwork and, 231–233
acronyms used for, 50
adding to CMYK images, 207–208
advantages of using, 49
checking on proofs, 173
choosing for duotones, 206
converting to CMYK, 50–51, 240–241
digital presses and, 61–62
guides for choosing, 48, 49
Illustrator options for, 231–232, 240–245
InDesign options for, 280–284
remapping with Ink Manager, 283–284
transparency and, 233, 303–304
spot varnishes, 58, 59, 208–209
INDEX

spreading, 53
Stamps tool, Acrobat, 332
stat camera, 36
Sticky Notes, 331–332
stitching, 18
stochastic screening, 36, 45–46
stories, linked, 288–289
strokes, 228–231
subsetting fonts, 327
substituting fonts, 138
Suitcase Fusion, 132, 140
summarizing comments on PDFs, 337–338
SVG filters, Illustrator, 224
Swatch Options dialog box, Illustrator, 243
swatches
 global, 242–245
 Illustrator, 242–245
 InDesign, 280–283
Swatches panel
 Illustrator, 245
 InDesign, 280–281
Symbol tools, Illustrator, 220
symbols, Illustrator, 219–221
system fonts
 Macintosh OS X, 136
 Windows OS, 137

T
TAC (total area coverage), 36
templates
 folding project, 76
 Illustrator, 227
text
 checking on proofs, 172
 converting to outlines, 126–127, 145
 editing in Acrobat, 328–329
 Illustrator features for, 245–251
 rasterization of, 300–301
 transparency flattening and, 298
 unclumping in Acrobat Pro, 255
 vector graphics and, 125–127, 163–164
 version issues related to, 252–255
 See also fonts
Text Box tool, Acrobat, 332
Text Edit tools, Acrobat, 332
TIFF files, 109, 211, 238
toner-based printing. See digital printing
touch plates, 207

TouchUp tool, Acrobat, 330
Toyo Color Finder, 48
trade shops, 37
transforming frames, 272
transparencies, 37
Transparency Blend Space, 298–299
transparency effects
 Illustrator, 233–237
 InDesign, 296–307
 Photoshop, 195–196
Transparency Flattener Presets, 300, 301–303
transparency flattening
 Acrobat and, 353
 drop shadows and, 306–307
 Illustrator and, 235–237
 InDesign and, 296–307
 layer stacking order and, 298
 spot colors and, 303–304
Trap Presets feature, Acrobat, 354
trapping, 13, 37, 52–54, 172, 354
trimming, 18, 69–74
 bleed provided for, 72–73
 margin added for, 73
 printer marks for, 348–349
 trim size and, 70–72
tritones, 205
TrueType fonts, 132–133, 152
TRUMATCH Colorfinder, 51
two-color jobs, 39–40
type features (Illustrator), 245–251
 embedded fonts, 249–250
 open/closed paths, 246–248
 outlined type, 250
 point and area type, 245–246
 Typekit desktop fonts and, 251
 version issues and, 252–255
 See also fonts: text
Type on a Path Tool, 246
Type tool, Illustrator, 245
Typekit desktop fonts, 141–142, 180, 251
typesetters, 37

U
uncoated paper, 50
unembedding images, 238
Unicode, 133
UPC (universal product code), 37
Update Link button, 269
updating graphics, 269–270
uppercase, 37
UV coatings, 37, 58

V
variable data printing (VDP), 13, 38, 60, 160
varnishes, 17, 38, 58–59, 159, 208–209
vector graphics, 121–130
 color naming for, 163
 file formats for printing, 122–124
 inappropriate formats for printing, 124–125
 incorporating images into, 127
 Photoshop images and, 209–211
 pre-job submission check of, 163–164
 programs for creating, 129
 raster images vs., 121
 rasterization of, 125, 300–301
 simplifying, 128–129
 Smart Objects as, 192, 193–194
 text handling in, 125–127, 163–164
version issues, 180–181
 Illustrator files and, 251–255, 257–258
 job submission and, 168–169
viewing booth, 38, 66

W
Warnock, John, 317
web presses, 38
Web-based PDF files, 320
white point setting, 68
Windows computers
 cross-platform issues, 147–155
 filenaming conventions, 148–151
 font activation, 140
 system fonts, 137
wire binding, 38, 89
WMF file format, 124
work paths, 200

Y
Yucky Discolored Box Syndrome (YDBS), 304–306

Z
ZIP compression, 155, 326