
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321968975
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321968975
https://plusone.google.com/share?url=http://www.informit.com/title/9780321968975
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321968975
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321968975/Free-Sample-Chapter

The Design and Implementation of the

FreeBSD ®

Operating System
Second Edition

This page intentionally left blank

The Design and Implementation of the

FreeBSD ®

Operating System
Second Edition

Marshall Kirk McKusick

George V. Neville-Neil

Robert N.M. Watson

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

UNIX is a registered trademark of X/Open in the United States and other countries.
FreeBSD and the FreeBSD logo used on the cover of this book are registered and unregis-
tered trademarks of the FreeBSD Foundation and are used by Pearson Education with the
permission of the FreeBSD Foundation. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those designa-
tions appear in this book, and Pearson was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pear-
soned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

McKusick, Marshall Kirk.
The design and implementation of the FreeBSD operating system / Marshall

Kirk McKusick, George V. Neville-Neil, Robert N. M. Watson.
pages cm

Includes bibliographical references and index.
ISBN-13: 978-0-321-96897-5 (hardcover : alk. paper)
ISBN-10: 0-321-96897-2 (hardcover : alk. paper)

1. FreeBSD. 2. Free computer software. 3. Operating systems (Computers)
I. Neville-Neil, George V. II. Watson, Robert N. M. III. Title.
QA76.774.F74M35 2014
005.4’32—dc23 2014020072

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permis-
sions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-321-96897-5
ISBN-10: 0-321-96897-2
Te xt printed on recycled and acid-free paper at Courier in Westford, Massachusetts.
Second Printing, November 2014

Dedication

This book is dedicated to the BSD community.
Without the contributions of that community’s members,

there would be nothing about which to write.

This page intentionally left blank

Contents

Preface xxi

About the Authors xxix

Part I Over view 1

Chapter 1 History and Goals 3

1.1 History of the UNIX System 3
Origins 3
Research UNIX 4
AT&T UNIX System III and System V 5
Berkeley Software Distributions 6
UNIX in the World 7

1.2 BSD and Other Systems 7
The Influence of the User Community 8

1.3 The Transition of BSD to Open Source 9
Networking Release 2 10
The Lawsuit 11
4.4BSD 13
4.4BSD-Lite Release 2 13

1.4 The FreeBSD Development Model 14
References 17

Chapter 2 Design Overview of FreeBSD 21

2.1 FreeBSD Facilities and the Kernel 21
The Kernel 22

2.2 Kernel Organization 23

vii

viii Contents

2.3 Kernel Services 26
2.4 Process Management 26

Signals 28
Process Groups and Sessions 29

2.5 Security 29
Process Credentials 31
Privilege Model 31
Discretionary Access Control 32
Capability Model 32
Jail Lightweight Virtualization 32
Mandatory Access Control 34
Event Auditing 35
Cryptography and Random-Number Generators 35

2.6 Memory Management 36
BSD Memory-Management Design Decisions 36
Memory Management Inside the Kernel 38

2.7 I/O System Overview 39
Descriptors and I/O 39
Descriptor Management 41
Devices 42
Socket IPC 42
Scatter-Gather I/O 43
Multiple Filesystem Support 43

2.8 Devices 44
2.9 The Fast Filesystem 45

Filestores 48
2.10 The Zettabyte Filesystem 49
2.11 The Network Filesystem 50
2.12 Interprocess Communication 50
2.13 Network-Layer Protocols 51
2.14 Transport-Layer Protocols 52
2.15 System Startup and Shutdown 52

Exercises 54
References 54

Chapter 3 Kernel Services 57

3.1 Kernel Organization 57
System Processes 57
System Entry 58
Run-Time Organization 59
Entry to the Kernel 60
Return from the Kernel 61

3.2 System Calls 62
Result Handling 62
Returning from a System Call 63

3.3 Traps and Interrupts 64
I/O Device Interrupts 64

Software Interrupts 65
3.4 Clock Interrupts 65

Statistics and Process Scheduling 66
Timeouts 67

3.5 Memory-Management Services 69
3.6 Timing Services 73

Real Time 73
External Representation 73
Adjustment of the Time 74
Interval Time 74

3.7 Resource Services 75
Process Priorities 75
Resource Utilization 75
Resource Limits 76
Filesystem Quotas 77

3.8 Kernel Tracing Facilities 77
System-Call Tracing 77
DTrace 78
Kernel Tracing 82
Exercises 84
References 85

Part II Processes 87

Chapter 4 Process Management 89

4.1 Introduction to Process Management 89
Multiprogramming 90
Scheduling 91

4.2 Process State 92
The Process Structure 94
The Thread Structure 98

4.3 Context Switching 99
Thread State 100
Low-Level Context Switching 100
Voluntary Context Switching 101
Synchronization 106
Mutex Synchronization 107
Mutex Interface 109
Lock Synchronization 110
Deadlock Prevention 112

4.4 Thread Scheduling 114
The Low-Level Scheduler 114
Thread Run Queues and Context Switching 115
Timeshare Thread Scheduling 117
Multiprocessor Scheduling 122
Adaptive Idle 125

Contents ix

x Contents

Traditional Timeshare Thread Scheduling 125
4.5 Process Creation 126
4.6 Process Termination 128
4.7 Signals 129

Posting of a Signal 132
Delivering a Signal 135

4.8 Process Groups and Sessions 136
Process Groups 137
Sessions 138
Job Control 139

4.9 Process Debugging 142
Exercises 144
References 146

Chapter 5 Security 147

5.1 Operating-System Security 148
5.2 Security Model 149

Process Model 149
Discretionary and Mandatory Access Control 150
Trusted Computing Base (TCB) 151
Other Kernel-Security Features 151

5.3 Process Credentials 151
The Credential Structure 152
Credential Memory Model 153
Access-Control Checks 153

5.4 Users and Groups 154
Setuid and Setgid Binaries 155

5.5 Privilege Model 157
Implicit Privilege 157
Explicit Privilege 157

5.6 Interprocess Access Control 159
Visibility 160
Signals 160
Scheduling Control 160
Waiting on Process Termination 161
Debugging 161

5.7 Discretionary Access Control 161
The Virtual-Filesystem Interface and DAC 162
Object Owners and Groups 163
UNIX Permissions 164
Access Control Lists (ACLs) 165
POSIX.1e Access Control Lists 168
NFSv4 Access Control Lists 171

5.8 Capsicum Capability Model 174
Capsicum Application Structure 175
Capability Systems 176
Capabilities 177

Capability Mode 179
5.9 Jails 180
5.10 Mandatory Access-Control Framework 184

Mandatory Policies 186
Guiding Design Principles 187
Architecture of the MAC Framework 188
Framework Startup 189
Policy Registration 190
Framework Entry-Point Design Considerations 191
Policy Entry-Point Considerations 192
Kernel Service Entry-Point Invocation 193
Policy Composition 194
Object Labelling 195
Label Life Cycle and Memory Management 196
Label Synchronization 199
Policy-Agnostic Label Management from Userspace 199

5.11 Security Event Auditing 200
Audit Events and Records 201
BSM Audit Records and Audit Trails 202
Kernel-Audit Implementation 203

5.12 Cryptographic Services 206
Cryptographic Framework 206
Random-Number Generator 208

5.13 GELI Full-Disk Encryption 212
Confidentiality and Integrity Protection 212
Ke y Management 213
Starting GELI 214
Cryptographic Block Protection 215
I/O Model 216
Limitations 216
Exercises 217
References 217

Chapter 6 Memory Management 221

6.1 Terminology 221
Processes and Memory 222
Paging 223
Replacement Algorithms 224
Working-Set Model 225
Swapping 225
Advantages of Virtual Memory 225
Hardware Requirements for Virtual Memory 226

6.2 Overview of the FreeBSD Virtual-Memory System 227
User Address-Space Management 228

6.3 Kernel Memory Management 230
Kernel Maps and Submaps 231
Kernel Address-Space Allocation 233
The Slab Allocator 236

Contents xi

xii Contents

The Keg Allocator 238
The Zone Allocator 239
Kernel Malloc 241
Kernel Zone Allocator 243

6.4 Per-Process Resources 244
FreeBSD Process Virtual-Address Space 245
Page-Fault Dispatch 245
Mapping to Vm_objects 247
Vm_objects 249
Vm_objects to Pages 249

6.5 Shared Memory 250
Mmap Model 251
Shared Mapping 253
Private Mapping 254
Collapsing of Shadow Chains 257
Private Snapshots 258

6.6 Creation of a New Process 258
Reserving Kernel Resources 259
Duplication of the User Address Space 260
Creation of a New Process Without Copying 261

6.7 Execution of a File 262
6.8 Process Manipulation of Its Address Space 263

Change of Process Size 263
File Mapping 264
Change of Protection 266

6.9 Termination of a Process 266
6.10 The Pager Interface 267

Vnode Pager 269
Device Pager 270
Physical-Memory Pager 272
Swap Pager 272

6.11 Paging 276
Hardware-Cache Design 280
Hardware Memory Management 282
Superpages 284

6.12 Page Replacement 289
Paging Parameters 291
The Pageout Daemon 292
Swapping 295
The Swap-In Process 296

6.13 Portability 298
The Role of the pmap Module 299
Initialization and Startup 301
Mapping Allocation and Deallocation 304
Change of Access and Wiring Attributes for Mappings 306
Maintenance of Physical Page-Usage Information 307
Initialization of Physical Pages 308
Management of Internal Data Structures 308

Exercises 308
References 310

Part III I/O System 313

Chapter 7 I/O System Overview 315

7.1 Descriptor Management and Services 316
Open File Entries 318
Management of Descriptors 319
Asynchronous I/O 321
File-Descriptor Locking 322
Multiplexing I/O on Descriptors 324
Implementation of Select 327
Kqueues and Ke vents 329
Movement of Data Inside the Kernel 332

7.2 Local Interprocess Communication 333
Semaphores 335
Message Queues 337
Shared Memory 338

7.3 The Virtual-Filesystem Interface 339
Contents of a Vnode 339
Vnode Operations 342
Pathname Translation 342
Exported Filesystem Services 343

7.4 Filesystem-Independent Services 344
The Name Cache 346
Buffer Management 347
Implementation of Buffer Management 350

7.5 Stackable Filesystems 352
Simple Filesystem Layers 354
The Union Filesystem 355
Other Filesystems 357
Exercises 358
References 359

Chapter 8 Devices 361

8.1 Device Overview 361
The PC I/O Architecture 362
The Structure of the FreeBSD Mass Storage I/O Subsystem 364
Device Naming and Access 366

8.2 I/O Mapping from User to Device 367
Device Drivers 368
I/O Queueing 369
Interrupt Handling 370

Contents xiii

xiv Contents

8.3 Character Devices 370
Raw Devices and Physical I/O 372
Character-Oriented Devices 373
Entry Points for Character Device Drivers 373

8.4 Disk Devices 374
Entry Points for Disk Device Drivers 374
Sorting of Disk I/O Requests 375
Disk Labels 376

8.5 Network Devices 378
Entry Points for Network Drivers 378
Configuration and Control 379
Packet Reception 380
Packet Transmission 381

8.6 Terminal Handling 382
Terminal-Processing Modes 383
User Interface 385
Process Groups, Sessions, and Terminal Control 387
Terminal Operations 388
Terminal Output (Upper Half) 388
Terminal Output (Lower Half) 389
Terminal Input 390
Closing of Terminal Devices 391

8.7 The GEOM Layer 391
Terminology and Topology Rules 392
Changing Topology 393
Operation 396
Topological Flexibility 397

8.8 The CAM Layer 399
The Path of a SCSI I/O Request Through the CAM Subsystem 400
AT A Disks 402

8.9 Device Configuration 402
Device Identification 405
Autoconfiguration Data Structures 407
Resource Management 412

8.10 Device Virtualization 414
Interaction with the Hypervisor 414
Virtio 415
Xen 419
Device Pass-Through 427
Exercises 428
References 429

Chapter 9 The Fast Filesystem 431

9.1 Hierarchical Filesystem Management 431
9.2 Structure of an Inode 433

Changes to the Inode Format 435
Extended Attributes 436
New Filesystem Capabilities 438

File Flags 439
Dynamic Inodes 441
Inode Management 442

9.3 Naming 443
Directories 444
Finding of Names in Directories 446
Pathname Translation 447
Links 449

9.4 Quotas 451
9.5 File Locking 454
9.6 Soft Updates 459

Update Dependencies in the Filesystem 460
Dependency Structures 464
Bitmap Dependency Tracking 466
Inode Dependency Tracking 467
Direct-Block Dependency Tracking 469
Indirect-Block Dependency Tracking 470
Dependency Tracking for New Indirect Blocks 471
New Directory-Entry Dependency Tracking 472
New Directory Dependency Tracking 474
Directory-Entry Removal-Dependency Tracking 475
File Truncation 476
File and Directory Inode Reclamation 476
Directory-Entry Renaming Dependency Tracking 476
Fsync Requirements for Soft Updates 477
File-Removal Requirements for Soft Updates 478
Soft-Updates Requirements for fsck 480

9.7 Filesystem Snapshots 480
Creating a Filesystem Snapshot 481
Maintaining a Filesystem Snapshot 483
Large Filesystem Snapshots 484
Background fsck 486
User-Visible Snapshots 487
Live Dumps 487

9.8 Journaled Soft Updates 487
Background and Introduction 487
Compatibility with Other Implementations 488
Journal Format 488
Modifications That Require Journaling 489
Additional Requirements of Journaling 490
The Recovery Process 492
Performance 493
Future Work 494
Tracking File-Removal Dependencies 495

9.9 The Local Filestore 496
Overview of the Filestore 497
User I/O to a File 499

9.10 The Berkeley Fast Filesystem 501
Organization of the Berkeley Fast Filesystem 502

Contents xv

xvi Contents

Boot Blocks 503
Optimization of Storage Utilization 504
Reading and Writing to a File 505
Layout Policies 507
Allocation Mechanisms 510
Block Clustering 514
Extent-Based Allocation 516
Exercises 517
References 519

Chapter 10 The Zettabyte Filesystem 523

10.1 Introduction 523
10.2 ZFS Organization 527

ZFS Dnode 528
ZFS Block Pointers 529
ZFS objset Structure 531

10.3 ZFS Structure 532
The MOS Layer 533
The Object-Set Layer 534

10.4 ZFS Operation 535
Writing New Data to Disk 536
Logging 538
RAIDZ 540
Snapshots 542
ZFS Block Allocation 542
Freeing Blocks 543
Deduplication 545
Remote Replication 546

10.5 ZFS Design Tradeoffs 547
Exercises 549
References 549

Chapter 11 The Network Filesystem 551

11.1 Overview 551
11.2 Structure and Operation 553

The FreeBSD NFS Implementation 558
Client–Server Interactions 562
Security Issues 564
Techniques for Improving Performance 565

11.3 NFS Evolution 567
Namespace 572
Attributes 572
Access Control Lists 574
Caching, Delegation, and Callbacks 574
Locking 581
Security 583
Crash Recovery 584

Exercises 586
References 587

Part IV Inter process Communication 591

Chapter 12 Interprocess Communication 593

12.1 Interprocess-Communication Model 593
Use of Sockets 596

12.2 Implementation Structure and Overview 599
12.3 Memory Management 601

Mbufs 601
Storage-Management Algorithms 605
Mbuf Utility Routines 606

12.4 IPC Data Structures 606
Socket Addresses 611
Locks 612

12.5 Connection Setup 612
12.6 Data Transfer 615

Transmitting Data 616
Receiving Data 617

12.7 Socket Shutdown 620
12.8 Network-Communication Protocol Internal Structure 621

Data Flow 623
Communication Protocols 624

12.9 Socket-to-Protocol Interface 626
Protocol User-Request Routines 627
Protocol Control-Output Routine 630

12.10 Protocol-to-Protocol Interface 631
pr_output 632
pr_input 632
pr_ctlinput 633

12.11 Protocol-to-Network Interface 634
Network Interfaces and Link-Layer Protocols 634
Packet Transmission 641
Packet Reception 642

12.12 Buffering and Flow Control 643
Protocol Buffering Policies 643
Queue Limiting 643

12.13 Network Virtualization 644
Exercises 646
References 648

Chapter 13 Network-Layer Protocols 649

13.1 Internet Protocol Version 4 650
IPv4 Addresses 652
Broadcast Addresses 653

Contents xvii

xviii Contents

Internet Multicast 654
Link-Layer Address Resolution 655

13.2 Internet Control Message Protocols (ICMP) 657
13.3 Internet Protocol Version 6 659

IPv6 Addresses 660
IPv6 Packet Formats 662
Changes to the Socket API 664
Autoconfiguration 666

13.4 Internet Protocols Code Structure 670
Output 671
Input 673
Forwarding 674

13.5 Routing 675
Kernel Routing Tables 677
Routing Lookup 680
Routing Redirects 683
Routing-Table Interface 683
User-Level Routing Policies 684
User-Level Routing Interface: Routing Socket 685

13.6 Raw Sockets 686
Control Blocks 686
Input Processing 687
Output Processing 687

13.7 Security 688
IPSec Overview 689
Security Protocols 690
Ke y Management 693
IPSec Implementation 698

13.8 Packet-Processing Frameworks 700
Berkeley Packet Filter 700
IP Firewalls 701
IPFW and Dummynet 702
Packet Filter (PF) 706
Netgraph 707
Netmap 712
Exercises 715
References 717

Chapter 14 Transport-Layer Protocols 721

14.1 Internet Ports and Associations 721
Protocol Control Blocks 722

14.2 User Datagram Protocol (UDP) 723
Initialization 723
Output 724
Input 724
Control Operations 725

14.3 Transmission Control Protocol (TCP) 725
TCP Connection States 727

Sequence Variables 730
14.4 TCP Algorithms 732

Timers 733
Estimation of Round-Trip Time 735
Connection Establishment 736
SYN Cache 739
SYN Cookies 739
Connection Shutdown 740

14.5 TCP Input Processing 741
14.6 TCP Output Processing 745

Sending Data 746
Av oidance of the Silly-Window Syndrome 746
Av oidance of Small Packets 747
Delayed Acknowledgments and Window Updates 748
Selective Acknowledgment 749
Retransmit State 751
Slow Start 752
Buffer and Window Sizing 754
Av oidance of Congestion with Slow Start 755
Fast Retransmission 756
Modular Congestion Control 758
The Veg as Algorithm 759
The Cubic Algorithm 760

14.7 Stream Control Transmission Protocol (SCTP) 761
Chunks 762
Association Setup 762
Data Transfer 764
Association Shutdown 766
Multihoming and Heartbeats 767
Exercises 768
References 770

Part V System Operation 773

Chapter 15 System Startup and Shutdown 775

15.1 Firmware and BIOSes 776
15.2 Boot Loaders 777

Master Boot Record and Globally Unique Identifier Partition Table 778
The Second-Stage Boot Loader: gptboot 779
The Final-Stage Boot Loader: /boot/loader 779
Boot Loading on Embedded Platforms 781

15.3 Kernel Boot 782
Assembly-Language Startup 783
Platform-Specific C-Language Startup 784
Modular Kernel Design 785
Module Initialization 785

Contents xix

xx Contents

Basic Kernel Services 787
Kernel-Thread Initialization 792
Device-Module Initialization 794
Loadable Kernel Modules 796

15.4 User-Level Initialization 798
/sbin/init 798
System Startup Scripts 798
/usr/libexec/getty 799
/usr/bin/login 799

15.5 System Operation 800
Kernel Configuration 800
System Shutdown and Autoreboot 801
System Debugging 802
Passage of Information To and From the Kernel 803
Exercises 805
References 806

Glossary 807

Index 847

Preface

This book follows the earlier authoritative and full-length descriptions of the
design and implementation of the 4.3BSD and 4.4BSD versions of the UNIX sys-
tem developed at the University of California at Berkeley. Since the final
Berkeley release in 1994, several groups have continued development of BSD.
This book details FreeBSD, the system with the largest set of developers and the
most widely distributed releases. Although the FreeBSD distribution includes
nearly 1000 utility programs in its base system and nearly 25,000 optional utilities
in its ports collection, this book concentrates almost exclusively on the kernel.

UNIX-like Systems

UNIX-like systems include the traditional vendor systems such as Solaris and
HP-UX; the Linux-based distributions such as Red Hat, Debian, Suse, and
Slackware; and the BSD-based distributions such as FreeBSD, NetBSD, OpenBSD,
and Darwin. They run on computers ranging from smart phones to the largest
supercomputers. They are the operating system of choice for most multiprocessor,
graphics, and vector-processing systems, and are widely used for the original pur-
pose of timesharing. The most common platform for providing network services
(from FTP to WWW) on the Internet, they are collectively the most portable oper-
ating system ever dev eloped. This portability is due partly to their implementation
language, C [Kernighan & Ritchie, 1989] (which is itself a widely ported lan-
guage), and partly to the elegant design of the system.

Since its inception in 1969 [Ritchie & Thompson, 1978], the UNIX system
has developed in several divergent and rejoining streams. The original developers
continued to advance the state of the art with their Ninth and Tenth Edition UNIX
inside AT&T Bell Laboratories, and then their Plan 9 successor to UNIX. Mean-
while, AT&T licensed UNIX System V as a product before merging it with Sun
Microsystem’s BSD-based SunOS to produce Solaris. Ninth Edition UNIX, Sys-
tem V, and Solaris were all strongly influenced by the Berkeley Software

xxi

xxii Preface

Distributions produced by the Computer Systems Research Group (CSRG) of the
University of California at Berkeley. The Linux operating system, although devel-
oped independently of the other UNIX variants, implements the UNIX interface.
Thus, applications developed to run on other UNIX-based platforms can be easily
ported to run on Linux.

Berkeley Software Distributions

The distributions from Berkeley were the first UNIX-based systems to introduce
many important features including the following:

• Demand-paged virtual-memory support

• Automatic configuration of the hardware and I/O system

• A fast and recoverable filesystem

• The socket-based interprocess-communication (IPC) primitives

• The reference implementation of TCP/IP

The Berkeley releases found their way into the UNIX systems of many vendors
and were used internally by the development groups of many other vendors. The
implementation of the TCP/IP networking protocol suite in 4.2BSD and 4.3BSD,
and the availability of those systems, played a key role in making the TCP/IP net-
working protocol suite a world standard. Even the non-UNIX vendors such as
Microsoft have adopted the Berkeley socket design in their Winsock IPC interface.

The BSD releases have also been a strong influence on the POSIX (IEEE Std
1003.1) operating-system interface standard, and on related standards. Several
features—such as reliable signals, job control, multiple access groups per process,
and the routines for directory operations—have been adapted from BSD for
POSIX.

Early BSD releases contained licensed UNIX code, thus requiring recipients to
have an AT&T source license to be able to obtain and use BSD. In 1988, Berkeley
separated its distribution into AT&T-licensed and freely redistributable code. The
freely redistributable code was licensed separately and could be obtained, used,
and redistributed by anyone. The final freely redistributable 4.4BSD-Lite2 release
from Berkeley in 1994 contained nearly the entire kernel and all the important
libraries and utilities.

Tw o groups, NetBSD and FreeBSD, sprang up in 1993 to begin supporting and
distributing systems built from the freely redistributable releases being done by
Berkeley. The NetBSD group emphasized portability and the minimalist approach,
porting the systems to nearly 60 platforms and they were determined to keep the
system lean to aid embedded applications. The FreeBSD group emphasized maxi-
mal support for the PC architecture and pushed to ease installation for, and market
their system to, as wide an audience as possible.

In 1995, the OpenBSD group split from the NetBSD group to develop a distri-
bution that emphasized security. In 2003, the Dragonfly group split from the
FreeBSD group to develop a distribution that used a significantly lighter-weight
mechanism to support multiprocessing. Over the years, there has been a healthy

competition among the BSD distributions, with many ideas and much code flowing
between them.

Material Covered in this Book

This book is about the internal structure of the FreeBSD 11 kernel and about the
concepts, data structures, and algorithms used in implementing FreeBSD’s system
facilities. The book covers FreeBSD from the system-call level down—from the
interface to the kernel to the hardware itself. The kernel includes system facilities,
such as process management, security, virtual memory, the I/O system, filesys-
tems, the socket IPC mechanism, and network protocol implementations. Material
above the system-call level—such as libraries, shells, commands, programming
languages, and other user interfaces—is excluded, except for some material
related to the terminal interface and to system startup. Following the organization
first established by Organick’s book about Multics [Organick, 1975], this book is
an in-depth study of a contemporary operating system.

Where particular hardware is relevant, the book refers to the Intel 32-bit
architecture and the similar AMD 64-bit architecture. Because FreeBSD has
emphasized development on these architectures, they are the architectures with the
most complete support and so provide a convenient point of reference.

Use by Computer Professionals

FreeBSD is widely used to support the core infrastructure of many companies
worldwide. Because it can be built with a small footprint, it is also seeing
increased use in embedded applications. The licensing terms of FreeBSD do not
require the distribution of changes and enhancements to the system. The licensing
terms of Linux require that all changes and enhancements to the kernel be made
available in source form at minimal cost. Thus, companies that need to control the
distribution of their intellectual property build their products using FreeBSD.

This book is of direct use to the professionals who work with FreeBSD sys-
tems. Individuals involved in technical and sales support can learn the capabilities
and limitations of the system; applications developers can learn how to interface
with the system effectively and efficiently; system administrators without direct
experience with the FreeBSD kernel can learn how to maintain, tune, and config-
ure the system; and systems programmers can learn how to extend, enhance, and
interface with the system.

Readers who will benefit from this book include operating-system implemen-
tors, system programmers, UNIX application developers, administrators, and curi-
ous users. The book can be read as a companion to the source code of the system,
falling as it does between the manual pages and the code in its level of detail. But
this book is neither exclusively a UNIX programming manual nor a user tutorial.
Familiarity with the use of some version of the UNIX system (see, for example,
Stevens [1992]) and with the C programming language (see, for example,
Kernighan & Ritchie [1989]) would be extremely useful. The FreeBSD Handbook
gives a comprehensive introduction to the setting up, operation, and programming
of FreeBSD [FreeBSD Mall, 2004; FreeBSD.org, 2014]. FreeBSD packaging,

Preface xxiii

xxiv Preface

designed to be easy to install and use for both desktop and laptop users, is
available in the PC-BSD distribution [Lavigne, 2010; PC-BSD.org, 2014].

Use in Courses on Operating Systems

This book is suitable for use as a reference text to provide background for a pri-
mary textbook in a first-level course on operating systems. It is not intended for
use as an introductory operating-system textbook; the reader should have already
encountered terminology such as ‘‘memory management,’’ ‘‘process scheduling,’’
and ‘‘I/O systems’’ [Silberschatz et al., 2012]. Familiarity with the concepts of
network protocols [Comer, 2000; Stallings, 2000; Tanenbaum, 2010] will be use-
ful for understanding some of the later chapters.

This book can be used in combination with a copy of the FreeBSD system for
more advanced operating-systems courses. Students’ assignments can include
changes to, or replacements of, key system components such as the scheduler, the
paging daemon, the filesystems, thread signalling, various networking layers, and
I/O management. The ability to load, replace, and unload modules from a running
kernel allows students to experiment without the need to compile and reboot the
system. By working with a real operating system, students can directly measure
and experience the effects of their changes. Because of the intense peer review and
insistence on well-defined coding standards throughout its 35-year lifetime, the
FreeBSD kernel is considerably cleaner, more modular, and thus easier to under-
stand and modify than most software projects of its size and age. Sample course
material is available at www.teachbsd.com (see description following the index).

Exercises are provided at the end of each chapter. The exercises are graded
into three categories indicated by zero, one, or two asterisks. The answers to
exercises that carry no asterisks can be found in the text. Exercises with a single
asterisk require a step of reasoning, critical thinking, or intuition beyond a con-
cept presented in the text. Exercises with two asterisks present major design
projects or open research questions.

Organization

This text discusses both philosophical and design issues, as well as details of the
system’s actual implementation. Often, the discussion starts at the system-call
level and descends into the kernel. Tables and figures are used to clarify data
structures and control flow. Pseudocode similar to the C language displays algo-
rithms. A bold font identifies program names and filesystem pathnames. A bold
and italic font introduces glossary terms. An italic font identifies the names of
system calls, variables, routines, and structure names. Routine names (other than
system calls) are further identified by the name followed by parentheses (e.g., mal-
loc() is the name of a routine, whereas argv is the name of a variable).

The book is divided into five parts, organized as follows:

• Part I, Overview Three introductory chapters provide the context for the
complete operating system and for the rest of the book. Chapter 1, History and
Goals, sketches the historical development of the system, emphasizing the

http://www.teachbsd.com

system’s research orientation. Chapter 2, Design Overview of FreeBSD,
describes the services offered by the system and outlines the internal organization
of the kernel. It also discusses the design decisions that were made as the system
was dev eloped. Sections 2.3 through 2.15 in Chapter 2 giv e an overview of their
corresponding chapters. Chapter 3, Kernel Services, explains how system calls
are performed and describes in detail several of the basic services of the kernel.

• Part II, Processes The first chapter in this part—Chapter 4, Process Man-
agement—lays the foundation for later chapters by describing the structure of a
process, the algorithms used for scheduling the execution of the threads that
make up a process, and the synchronization mechanisms used by the system to
ensure consistent access to kernel-resident data structures. Chapter 5, Security,
explains the security framework used throughout the kernel. It also details the
security facilities that are available to control process access to the resources on
the system and to each other. In Chapter 6, Memory Management, the virtual-
memory-management system is discussed in detail.

• Part III, I/O System First, Chapter 7, I/O System Overview, explains the sys-
tem interface to I/O and describes the structure of the facilities that support this
interface. Following this introduction are four chapters that give the details of the
main parts of the I/O system. Chapter 8, Devices, gives a description of the I/O
architecture of the Intel and AMD systems, and describes how the I/O subsystem
is managed and how the kernel initially maps out and later manages the arrival and
departure of connected devices. Chapter 9, The Fast Filesystem, details the data
structures and algorithms that implement the original local filesystem as seen by
application programs, as well as how local filesystems are interfaced with the de-
vice interface described in Chapter 8. Chapter 10, The Zettabyte Filesystem,
describes the filesystem most recently added to FreeBSD from the OpenSolaris
operating system. Chapter 11, The Network Filesystem, explains the latest ver-
sion 4.2 network filesystem from both the server and client perspectives.

• Part IV, Interprocess Communication Chapter 12, Interprocess Communi-
cation, describes the mechanism for providing communication between related
or unrelated processes. Chapters 13 and 14, Network-Layer Protocols and
Transport-Layer Protocols, are closely related because the facilities explained in
the former are used by the protocols, such as the UDP, TCP, and SCTP, explained
in the latter.

• Part V, System Operation Chapter 15, System Startup and Shutdown,
explains system initialization at the process level from kernel initialization to
user login.

The book is intended to be read in the order that the chapters are presented,
but the parts other than Part I are independent of one another and can be read sep-
arately. Chapter 15 should be read after all the others, but knowledgeable readers
may find it useful independently.

At the end of the book are a glossary with brief definitions of major terms and
an index. Each chapter contains a Reference section with citations of related
material.

Preface xxv

xxvi Preface

Getting BSD

All the BSD distributions are available either for downloading from the net or on
removable media such as CD-ROM or DVD. Information on obtaining source and
binaries for FreeBSD can be obtained from http://www.FreeBSD.org. The NetBSD
distribution is compiled and ready to run on most workstation architectures. For
more information, contact the NetBSD Project at http://www.NetBSD.org/.
The OpenBSD distribution is compiled and ready to run on a wide variety of
workstation architectures and has been extensively vetted for security and relia-
bility. For more information, visit the OpenBSD project’s Web site at
http://www.OpenBSD.org/.

You diehards that read to the end of the preface are rewarded by nding out
that you can get a 32-hour introductory video course based on this book, a 40-hour
advanced video course based on the FreeBSD 5 source code, a 2.5-hour video lec-
ture on the history of BSD, and a 4-CD set containing all the releases and the
source-control history of BSD from Berkeley. These items are described in the
advertisements that follow the index.

Acknowledgments

We extend special thanks to Matt Ahrens (Delphix) who provided invaluable
insight on the workings of the ZFS lesystem including countless e-mails answer -
ing our questions about how it works and why speci c design decisions were made.

We also thank the following people who provided extensive review of areas of
the kernel in which they hav e deep knowledge: John Baldwin (The FreeBSD
Project) on locking, scheduling, and virtual memory; Alan Cox (Rice University)
on virtual memory; Jeffrey Roberson (EMC) on the ULE scheduler; and Randall
Stewart (Adara Networks) on the SCTP implementation.

We thank the following people, all of whom read and commented on early
drafts of various chapters of the book: Eric Allman (University of California,
Berkeley); Jonathan Anderson (Memorial University of Newfoundland); David
Chisnall (University of Cambridge); Paul Dagnelie (Delphix); Brooks Davis (SRI
International); Pawe Jakub Dawidek (Wheel Systems); Peter Grehan (The FreeBSD
Project); Scott Long (Net ix); Jak e Luck; Rick Macklem (The FreeBSD Project);
Ilias Marinos (University of Cambridge); Roger Pau Monné (Citrex); Mark Robert
Vaughan Murray; Edward Tomasz Napiera a (The FreeBSD Project); Peter G.
Neumann (SRI International); Rui Paulo; Luigi Rizzo (Universitá di Pisa, Italy);
Margo Seltzer (Harvard University); Keith Sklower (University of California,
Berkeley); Lawrence Stewart (Swinburne University of Technology); Michael
Tuexen (Muenster University of Applied Sciences); Bryan Venteicher (NetApp);
Erez Zadok (Stony Brook University); and Bjoern A. Zeeb (The FreeBSD Project).

We are grateful to our now-retired editor of 25 years, Peter Gordon, who had
faith in our ability to get the book written despite several years of delays on our
part. We are equally grateful to our new editor, Debra Williams, who saw this
project to completion and who accelerated the production when we nally had a
completed manuscript. We thank all the professional people at Addison-Wesley
and Pearson Education who helped us bring the book to completion: managing

http://www.FreeBSD.org
http://www.NetBSD.org/
http://www.OpenBSD.org/

editor John Fuller; production editor Mary Kesel Wilson; cover designer Chuti
Prasertsith; copy editor Deborah Thompson; and proofreader Melissa Panagos.
Finally we acknowledge the contributions of Jaap Akkerhuis, who designed the
troff macros for the BSD books.

This book was produced using James Clark’s implementations of pic, tbl,
eqn, and groff. The index was generated by awk scripts derived from indexing
programs written by Jon Bentley and Brian Kernighan [Bentley & Kernighan,
1986]. Most of the art was created with xfig. Figure placement and widow elimi-
nation were handled by the groff macros, but orphan elimination and production
of even page bottoms had to be done by hand.

We encourage readers to send us suggested improvements or comments about
typographical or other errors found in the book; please send electronic mail to
FreeBSDbook-bugs@McKusick.COM.

References
Bentley & Kernighan, 1986.

J. Bentley & B. Kernighan, ‘‘Tools for Printing Indexes,’’ Computing
Science Technical Report 128, AT&T Bell Laboratories, Murray Hill, NJ,
October 1986.

Comer, 2000.
D. Comer, Internetworking with TCP/IP Volume 1, 4th ed., Prentice-Hall,
Upper Saddle River, NJ, 2000.

FreeBSD Mall, 2004.
FreeBSD Mall, The FreeBSD Handbook, available from
http://www.freebsdmall.com, March 2004.

FreeBSD.org, 2014.
FreeBSD.org, The Online FreeBSD Handbook, available from
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook, March
2014.

Kernighan & Ritchie, 1989.
B. W. Kernighan & D. M. Ritchie, The C Programming Language, 2nd ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

Lavigne, 2010.
D. Lavigne, The Definitive Guide to PC-BSD, Apress / Springer-Verlag,
March 2010.

Organick, 1975.
E. I. Organick, The Multics System: An Examination of Its Structure, MIT
Press, Cambridge, MA, 1975.

PC-BSD.org, 2014.
PC-BSD.org, The PC-BSD Users Handbook, available from
http://wiki.pcbsd.org, June 2014.

Ritchie & Thompson, 1978.
D. M. Ritchie & K. Thompson, ‘‘The UNIX Time-Sharing System,’’ Bell
System Technical Journal, vol. 57, no. 6, Part 2, pp. 78–90, July–August

References xxvii

http://www.freebsdmall.com
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook
http://wiki.pcbsd.org

xxviii Preface

1978. The original version [Comm. ACM vol. 7, no. 7, pp. 365−375 (July
1974)] described the 6th edition; this citation describes the 7th edition.

Silberschatz et al., 2012.
A. Silberschatz, P. Galvin, & G. Gagne, Operating System Concepts, 9th
ed., John Wiley and Sons, Hoboken, NJ, 2012.

Stallings, 2000.
R. Stallings, Data and Computer Communications, 6th ed., Prentice Hall,
Hoboken, NJ, 2000.

Stevens, 1992.
W. Stevens, Advanced Programming in the UNIX Environment, Addison-
Wesley, Reading, MA, 1992.

Tanenbaum, 2010.
A. S. Tanenbaum, Computer Networks, 5th ed., Prentice-Hall, Englewood
Cliffs, NJ, 2010.

About the Authors

left to right
Marshall Kirk McKusick, Robert N.M. Watson, and George V. Neville-Neil

Marshall Kirk McKusick writes books and articles, consults, and teaches classes
on UNIX- and BSD-related subjects. While at the University of California at
Berkeley, he implemented the 4.2BSD fast filesystem and was the Research
Computer Scientist at the Berkeley Computer Systems Research Group (CSRG),
overseeing the development and release of 4.3BSD and 4.4BSD. His particular
areas of interest are the virtual-memory system and the filesystem. He earned his
undergraduate degree in electrical engineering from Cornell University and did his
graduate work at the University of California at Berkeley, where he received
master’s degrees in computer science and business administration, and a doctoral
degree in computer science. He has twice been president of the board of the
Usenix Association, is currently a member of the FreeBSD Foundation Board of
Directors, a member of the editorial board of ACM’s Queue magazine, a senior
member of the IEEE, and a member of the Usenix Association, ACM, and AAAS.
In his spare time, he enjoys swimming, scuba diving, and wine collecting. The
wine is stored in a specially constructed wine cellar (accessible from the Web at
http://www.McKusick.com/cgi-bin/readhouse) in the basement of the house that
he shares with Eric Allman, his partner of 35-and-some-odd years and husband
since 2013.

xxix

http://www.McKusick.com/cgi-bin/readhouse

xxx About the Authors

George V. Neville-Neil hacks, writes, teaches, and consults in the areas of
Security, Networking, and Operating Systems. Other areas of interest include
embedded and real-time systems, network time protocols, and code spelunking.
In 2007, he helped start the AsiaBSDCon series of conferences in Tokyo, Japan,
and has served on the program committee every year since then. He is a member
of the FreeBSD Foundation Board of Directors, and was a member of the FreeBSD
Core Team for 4 years. Contributing broadly to open source, he is the lead
developer on the Precision Time Protocol project (http://ptpd.sf.net) and the
developer of the Packet Construction Set (http://pcs.sf.net). Since 2004, he has
written a monthly column, ‘‘Kode Vicious,’’ that appears both in ACM’s Queue
and Communications of the ACM. He serves on the editorial board of ACM’s
Queue magazine, is vice-chair of ACM’s Practitioner Board, and is a member of
the Usenix Association, ACM, IEEE, and AAAS. He earned his bachelor’s degree
in computer science at Northeastern University in Boston, Massachusetts. He is
an avid bicyclist, hiker, and traveler who has lived in Amsterdam, The
Netherlands, and Tokyo, Japan. He is currently based in Brooklyn, New York,
where he lives with his husband, Kaz Senju.

Robert N.M. Watson is a University Lecturer in Systems, Security, and
Architecture in the Security Research Group at the University of Cambridge
Computer Laboratory. He supervises doctoral students and postdoctoral
researchers in cross-layer research projects spanning computer architecture,
compilers, program analysis, program transformation, operating systems,
networking, and security. Dr. Watson is a member of the FreeBSD Foundation
Board of Directors, was a member of the FreeBSD Core Team for 10 years, and
has been a FreeBSD committer for 15 years. His open-source contributions
include work on FreeBSD networking, security, and multiprocessing. Having
grown up in Washington, D. C., he earned his undergraduate degree in Logic and
Computation, with a double major in Computer Science, at Carnegie Mellon
University in Pittsburgh, Pennsylvania, and then worked at a series of industrial
research labs investigating computer security. He earned his doctoral degree at the
University of Cambridge, where his graduate research was in extensible operating-
system access control. Dr. Watson and his wife Dr. Leigh Denault have liv ed in
Cambridge, England, for 10 years.

http://ptpd.sf.net
http://pcs.sf.net

This page intentionally left blank

C H A P T E R 4

Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process has an address space containing a
mapping of its program’s object code and global variables. It also has a set of ker-
nel resources that it can name and on which it can operate using system calls.
These resources include its credentials, signal state, and its descriptor array that
gives it access to files, pipes, sockets, and devices. Each process has at least one
and possibly many threads that execute its code. Every thread represents a virtual
processor with a full context worth of register state and its own stack mapped into
the address space. Every thread running in the process has a corresponding kernel
thread, with its own kernel stack that represents the user thread when it is execut-
ing in the kernel as a result of a system call, page fault, or signal delivery.

A process must have system resources, such as memory and the underlying
CPU. The kernel supports the illusion of concurrent execution of multiple pro-
cesses by scheduling system resources among the set of processes that are ready to
execute. On a multiprocessor, multiple threads of the same or different processes
may execute concurrently. This chapter describes the composition of a process,
the method that the system uses to switch between the process’s threads, and the
scheduling policy that it uses to promote sharing of the CPU. It also introduces
process creation and termination, and details the signal and process-debugging
facilities.

Tw o months after the developers began the first implementation of the UNIX
operating system, there were two processes: one for each of the terminals of the
PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the
fork operation, and something like the wait system call. A process executed a new
program by reading in a new program on top of itself. The first PDP-11 system
(First Edition UNIX) saw the introduction of exec. All these systems allowed only
one process in memory at a time. When a PDP-11 with memory management (a

89

90 Chapter 4 Process Management

KS-11) was obtained, the system was changed to permit several processes to
remain in memory simultaneously, to reduce swapping. But this change did not
apply to multiprogramming because disk I/O was synchronous. This state of
affairs persisted into 1972 and the first PDP-11/45 system. True multiprogram-
ming was finally introduced when the system was rewritten in C. Disk I/O for one
process could then proceed while another process ran. The basic structure of
process management in UNIX has not changed since that time [Ritchie, 1988].

The threads of a process operate in either user mode or kernel mode. In user
mode, a thread executes application code with the machine in a nonprivileged pro-
tection mode. When a thread requests services from the operating system with a
system call, it switches into the machine’s privileged protection mode via a pro-
tected mechanism and then operates in kernel mode.

The resources used by a thread are split into two parts. The resources needed
for execution in user mode are defined by the CPU architecture and typically
include the CPU’s general-purpose registers, the program counter, the processor-
status register, and the stack-related registers, as well as the contents of the mem-
ory segments that constitute FreeBSD’s notion of a program (the text, data, shared
library, and stack segments).

Kernel-mode resources include those required by the underlying hardware
such as registers, program counter, and the stack pointer. These resources also
include the state required for the FreeBSD kernel to provide system services for a
thread. This kernel state includes parameters to the current system call, the cur-
rent process’s user identity, scheduling information, and so on. As described in
Section 3.1, the kernel state for each process is divided into several separate data
structures, with two primary structures: the process structure and the thread
structure.

The process structure contains information that must always remain resident
in main memory, along with references to other structures that remain resident,
whereas the thread structure tracks information that needs to be resident only
when the process is executing such as its kernel run-time stack. Process and
thread structures are allocated dynamically as part of process creation and are
freed when the process is destroyed as it exits.

Multiprogramming

FreeBSD supports transparent multiprogramming: the illusion of concurrent execu-
tion of multiple processes or programs. It does so by context switching—that is,
by switching between the execution context of the threads within the same or dif-
ferent processes. A mechanism is also provided for scheduling the execution of
threads—that is, for deciding which one to execute next. Facilities are provided for
ensuring consistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation
is influenced by the underlying hardware facilities. Some architectures provide
machine instructions that save and restore the hardware-execution context of a
thread or an entire process including its virtual-address space. On others, the soft-
ware must collect the hardware state from various registers and save it, then load

those registers with the new hardware state. All architectures must save and
restore the software state used by the kernel.

Context switching is done frequently, so increasing the speed of a context
switch noticeably decreases time spent in the kernel and provides more time for
execution of user applications. Since most of the work of a context switch is
expended in saving and restoring the operating context of a thread or process,
reducing the amount of the information required for that context is an effective
way to produce faster context switches.

Scheduling

Fair scheduling of threads and processes is an involved task that is dependent on
the types of executable programs and on the goals of the scheduling policy. Pro-
grams are characterized according to the amount of computation and the amount
of I/O that they do. Scheduling policies typically attempt to balance resource uti-
lization against the time that it takes for a program to complete. In FreeBSD’s
default scheduler, which we shall refer to as the timeshare scheduler, a process’s
priority is periodically recalculated based on various parameters, such as the
amount of CPU time it has used, the amount of memory resources it holds or
requires for execution, etc. Some tasks require more precise control over process
execution called real-time scheduling. Real-time scheduling must ensure that
threads finish computing their results by a specified deadline or in a particular
order. The FreeBSD kernel implements real-time scheduling using a separate
queue from the queue used for regular timeshared processes. A process with a
real-time priority is not subject to priority degradation and will only be preempted
by another thread of equal or higher real-time priority. The FreeBSD kernel also
implements a queue of threads running at idle priority. A thread with an idle pri-
ority will run only when no other thread in either the real-time or timeshare-sched-
uled queues is runnable and then only if its idle priority is equal to or greater than
all other runnable idle-priority threads.

The FreeBSD timeshare scheduler uses a priority-based scheduling policy that
is biased to favor interactive programs, such as text editors, over long-running
batch-type jobs. Interactive programs tend to exhibit short bursts of computation
followed by periods of inactivity or I/O. The scheduling policy initially assigns a
high execution priority to each thread and allows that thread to execute for a fixed
time slice. Threads that execute for the duration of their slice have their priority
lowered, whereas threads that give up the CPU (usually because they do I/O) are
allowed to remain at their priority. Threads that are inactive hav e their priority
raised. Jobs that use large amounts of CPU time sink rapidly to a low priority,
whereas interactive jobs that are mostly inactive remain at a high priority so that,
when they are ready to run, they will preempt the long-running lower-priority
jobs. An interactive job, such as a text editor searching for a string, may become
compute-bound briefly and thus get a lower priority, but it will return to a high pri-
ority when it is inactive again while the user thinks about the result.

Some tasks, such as the compilation of a large application, may be done in
many small steps in which each component is compiled in a separate process. No

Section 4.1 Introduction to Process Management 91

92 Chapter 4 Process Management

individual step runs long enough to have its priority degraded, so the compilation
as a whole impacts the interactive programs. To detect and avoid this problem, the
scheduling priority of a child process is propagated back to its parent. When a
new child process is started, it begins running with its parent’s current priority. As
the program that coordinates the compilation (typically make) starts many compi-
lation steps, its priority is dropped because of the CPU-intensive behavior of its
children. Later compilation steps started by make begin running and stay at a
lower priority, which allows higher-priority interactive programs to run in prefer-
ence to them as desired.

The system also needs a scheduling policy to deal with problems that arise
from not having enough main memory to hold the execution contexts of all pro-
cesses that want to execute. The major goal of this scheduling policy is to mini-
mize thrashing—a phenomenon that occurs when memory is in such short supply
that more time is spent in the system handling page faults and scheduling pro-
cesses than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by
observing the amount of free memory. When the system has little free memory
and a high rate of new memory requests, it considers itself to be thrashing. The
system reduces thrashing by marking the least recently run process as not being
allowed to run, allowing the pageout daemon to push all the pages associated with
the process to backing store. On most architectures, the kernel also can push to
backing store the kernel stacks of all the threads of the marked process. The effect
of these actions is to cause the process and all its threads to be swapped out (see
Section 6.12). The memory freed by blocking the process can then be distributed
to the remaining processes, which usually can then proceed. If the thrashing con-
tinues, additional processes are selected to be blocked from running until enough
memory becomes available for the remaining processes to run effectively. Eventu-
ally, enough processes complete and free their memory that blocked processes can
resume execution. However, even if there is not enough memory, the blocked pro-
cesses are allowed to resume execution after about 20 seconds. Usually, the
thrashing condition will return, requiring that some other process be selected for
being blocked (or that an administrative action be taken to reduce the load).

4.2 Process State

Every process in the system is assigned a unique identifier termed the process
identifier (PID). PIDs are the common mechanism used by applications and by the
kernel to reference processes. PIDs are used by applications when the latter send a
signal to a process and when receiving the exit status from a deceased process.
Tw o PIDs are of special importance to each process: the PID of the process itself
and the PID of the process’s parent process.

The layout of process state is shown in Figure 4.1. The goal is to support
multiple threads that share an address space and other resources. A thread is the
unit of execution of a process; it requires an address space and other resources, but
it can share many of those resources with other threads. Threads sharing an

scheduling info

thread

scheduling info

thread

credential

syscall vector

thread list

thread kernel stack

VM space

file descriptors

resource limits

statistics

thread information
machine-dependent

thread kernel stack

thread control block

process group

process

entry

file entries

region list

session

signal actions

thread information
machine-dependent

thread control block

Figure 4.1 Process state.

address space and other resources are scheduled independently and in FreeBSD
can all execute system calls simultaneously. The process state in FreeBSD is
designed to support threads that can select the set of resources to be shared, known
as variable-weight processes [Aral et al., 1989].

Each of the components of process state is placed into separate substructures
for each type of state information. The process structure references all the sub-
structures directly or indirectly. The thread structure contains just the information
needed to run in the kernel: information about scheduling, a stack to use when
running in the kernel, a thread state block (TSB), and other machine-dependent
state. The TSB is defined by the machine architecture; it includes the general-pur-
pose registers, stack pointers, program counter, processor-status word, and mem-
ory-management registers.

The first threading models that were deployed in systems such as FreeBSD 5
and Solaris used an N:M threading model in which many user level threads (N)
were supported by a smaller number of threads (M) that could run in the kernel
[Simpleton, 2008]. The N:M threading model was light-weight but incurred extra
overhead when a user-level thread needed to enter the kernel. The model assumed
that application developers would write server applications in which potentially
thousands of clients would each use a thread, most of which would be idle waiting
for an I/O request.

Section 4.2 Process State 93

94 Chapter 4 Process Management

While many of the early applications using threads, such as file servers,
worked well with the N:M threading model, later applications tended to use pools
of dozens to hundreds of worker threads, most of which would regularly enter the
kernel. The application writers took this approach because they wanted to run on
a wide range of platforms and key platforms like Windows and Linux could not
support tens of thousands of threads. For better efficiency with these applications,
the N:M threading model evolved over time to a 1:1 threading model in which
ev ery user thread is backed by a kernel thread.

Like most other operating systems, FreeBSD has settled on using the POSIX
threading API often referred to as Pthreads. The Pthreads model includes a rich
set of primitives including the creation, scheduling, coordination, signalling, ren-
dezvous, and destruction of threads within a process. In addition, it provides
shared and exclusive locks, semaphores, and condition variables that can be used
to reliably interlock access to data structures being simultaneously accessed by
multiple threads.

In their lightest-weight form, FreeBSD threads share all the process resources
including the PID. When additional parallel computation is needed, a new thread
is created using the pthread_create() library call. The pthread library must keep
track of the user-level stacks being used by each of the threads, since the entire
address space is shared including the area normally used for the stack. Since the
threads all share a single process structure, they hav e only a single PID and thus
show up as a single entry in the ps listing. There is an option to ps that requests it
to list a separate entry for each thread within a process.

Many applications do not wish to share all of a process’s resources. The rfork
system call creates a new process entry that shares a selected set of resources from
its parent. Typically, the signal actions, statistics, and the stack and data parts of
the address space are not shared. Unlike the lightweight thread created by
pthread_create(), the rfork system call associates a PID with each thread that
shows up in a ps listing and that can be manipulated in the same way as any other
process in the system. Processes created by fork, vfork, or rfork initially have just
a single thread structure associated with them. A variant of the rfork system call
is used to emulate the Linux clone() functionality.

The Process Structure

In addition to the references to the substructures, the process entry shown in
Figure 4.1 contains the following categories of information:

• Process identification: the PID and the parent PID

• Signal state: signals pending delivery and summary of signal actions

• Tracing: process tracing information

• Timers: real-time timer and CPU-utilization counters

The process substructures shown in Figure 4.1 have the following categories of
information:

• Process-group identification: the process group and the session to which the
process belongs

• User credentials: the real, effective, and saved user and group identifiers; creden-
tials are described more fully in Chapter 5

• Memory management: the structure that describes the allocation of virtual
address space used by the process; the virtual-address space and its related struc-
tures are described more fully in Chapter 6

• File descriptors: an array of pointers to file entries indexed by the process’s open
file descriptors; also, the open file flags and current directory

• System call vector: the mapping of system call numbers to actions; in addition to
current and deprecated native FreeBSD executable formats, the kernel can run
binaries compiled for several other UNIX variants such as Linux and System V
Release 4 by providing alternative system call vectors when such environments
are requested

• Resource accounting: the rlimit structures that describe the utilization of the
many resources provided by the system (see Section 3.7)

• Statistics: statistics collected while the process is running that are reported when
it exits and are written to the accounting file; also includes process timers and
profiling information if the latter is being collected

• Signal actions: the action to take when a signal is posted to a process

• Thread structure: the contents of the thread structure (described at the end of this
section)

The state element of the process structure holds the current value of the process
state. The possible state values are shown in Table 4.1. When a process is first

Table 4.1 Process states.

State Description

NEW undergoing process creation

NORMAL thread(s) will be RUNNABLE, SLEEPING, or STOPPED

ZOMBIE undergoing process termination

Section 4.2 Process State 95

96 Chapter 4 Process Management

created with a fork system call, it is initially marked as NEW. The state is changed
to NORMAL when enough resources are allocated to the process for the latter to
begin execution. From that point onward, a process’s state will be NORMAL until
the process terminates. Its thread(s) will fluctuate among RUNNABLE—that is,
preparing to be or actually executing; SLEEPING—that is, waiting for an event;
and STOPPED—that is, stopped by a signal or the parent process. A deceased
process is marked as ZOMBIE until it has freed its resources and communicated its
termination status to its parent process.

The system organizes process structures into two lists. Process entries are on
the zombproc list if the process is in the ZOMBIE state; otherwise, they are on the
allproc list. The two queues share the same linkage pointers in the process struc-
ture, since the lists are mutually exclusive. Segregating the dead processes from
the live ones reduces the time spent both by the wait system call, which must scan
the zombies for potential candidates to return, and by the scheduler and other
functions that must scan all the potentially runnable processes.

Most threads, except the currently executing thread (or threads if the system is
running on a multiprocessor), are also in one of three queues: a run queue, a sleep
queue, or a turnstile queue. Threads that are in a runnable state are placed on a
run queue, whereas threads that are blocked while awaiting an event are located on
either a turnstile queue or a sleep queue. Stopped threads awaiting an event are
located on a turnstile queue, a sleep queue, or they are on no queue. The run
queues are organized according to thread-scheduling priority and are described in
Section 4.4. The sleep and turnstile queues are organized in a data structure that is
hashed by an event identifier. This organization optimizes finding the sleeping
threads that need to be awakened when a wakeup occurs for an event. The sleep
and turnstile queues are described in Section 4.3.

The p_pptr pointer and related lists (p_children and p_sibling) are used in
locating related processes, as shown in Figure 4.2. When a process spawns a child
process, the child process is added to its parent’s p_children list. The child process
also keeps a backward link to its parent in its p_pptr pointer. If a process has more
than one child process active at a time, the children are linked together through
their p_sibling list entries. In Figure 4.2, process B is a direct descendant of
process A, whereas processes C, D, and E are descendants of process B and are

Figure 4.2 Process-group hierarchy.

p_sibling

p_children

p_children p_pptr

p_sibling

p_pptr

process A

process B

process C process D process E
p_pptr p_pptr

Table 4.2 Thread-scheduling classes.

Range Class Thread type

0 – 47 ITHD bottom-half kernel (interrupt)

48 – 79 REALTIME real-time user

80 – 119 KERN top-half kernel

120 – 223 TIMESHARE time-sharing user

224 – 255 IDLE idle user

siblings of one another. Process B typically would be a shell that started a pipeline
(see Sections 2.4 and 4.8) including processes C, D, and E. Process A probably
would be the system-initialization process init (see Sections 3.1 and 15.4).

CPU time is made available to threads according to their scheduling class and
scheduling priority. As shown in Table 4.2, the FreeBSD kernel has two kernel
and three user scheduling classes. The kernel will always run the thread in the
highest-priority class. Any kernel-interrupt threads will run in preference to any-
thing else followed by any runnable real-time threads. Any top-half-kernel
threads are run in preference to runnable threads in the share and idle classes.
Runnable timeshare threads are run in preference to runnable threads in the idle
class. The priorities of threads in the real-time and idle classes are set by the
applications using the rtprio system call and are never adjusted by the kernel. The
bottom-half interrupt priorities are set when the devices are configured and never
change. The top-half priorities are set based on predefined priorities for each ker-
nel subsystem and never change.

The priorities of threads running in the timeshare class are adjusted by the
kernel based on resource usage and recent CPU utilization. A thread has two
scheduling priorities: one for scheduling user-mode execution and one for sched-
uling kernel-mode execution. The td_user_pri field associated with the thread
structure contains the user-mode scheduling priority, whereas the td_priority field
holds the current scheduling priority. The current priority may be different from
the user-mode priority when the thread is executing in the top half of the kernel.
Priorities range between 0 and 255, with a lower value interpreted as a higher pri-
ority (see Table 4.2). User-mode priorities range from 120 to 255; priorities less
than 120 are used only by real-time threads or when a thread is asleep—that is,
aw aiting an event in the kernel—and immediately after such a thread is awakened.
Threads asleep in the kernel are given a higher priority because they typically hold
shared kernel resources when they awaken. The system wants to run them as
quickly as possible once they get a resource so that they can use the resource and
return it before another thread requests it and gets blocked waiting for it.

When a thread goes to sleep in the kernel, it must specify whether it should be
aw akened and marked runnable if a signal is posted to it. In FreeBSD, a kernel
thread will be awakened by a signal only if it sets the PCATCH flag when it sleeps.

Section 4.2 Process State 97

98 Chapter 4 Process Management

The msleep() interface also handles sleeps limited to a maximum time duration
and the processing of restartable system calls. The msleep() interface includes a
reference to a string describing the event that the thread awaits; this string is exter-
nally visible—for example, in ps. The decision of whether to use an interruptible
sleep depends on how long the thread may be blocked. Because it is complex to
handle signals in the midst of doing some other operation, many sleep requests are
not interruptible; that is, a thread will not be scheduled to run until the event for
which it is waiting occurs. For example, a thread waiting for disk I/O will sleep
with signals blocked.

For quickly occurring events, delaying to handle a signal until after they com-
plete is imperceptible. However, requests that may cause a thread to sleep for a
long period, such as waiting for terminal or network input, must be prepared to
have its sleep interrupted so that the posting of signals is not delayed indefinitely.
Threads that sleep interruptibly may abort their system call because of a signal
arriving before the event for which they are waiting has occurred. To avoid hold-
ing a kernel resource permanently, these threads must check why they hav e been
aw akened. If they were awakened because of a signal, they must release any
resources that they hold. They must then return the error passed back to them by
sleep(), which will be EINTR if the system call is to be aborted after the signal or
ERESTART if it is to be restarted. Occasionally, an event that is supposed to occur
quickly, such as a disk I/O, will get held up because of a hardware failure.
Because the thread is sleeping in the kernel with signals blocked, it will be imper-
vious to any attempts to send it a signal, even a signal that should cause it to exit
unconditionally. The only solution to this problem is to change sleep()s on hard-
ware events that may hang to be interruptible.

In the remainder of this book, we shall always use sleep() when referring to
the routine that puts a thread to sleep, even when one of the mtx_sleep(),
sx_sleep(), rw_sleep(), or t_sleep() interfaces is the one that is being used.

The Thread Structure

The thread structure shown in Figure 4.1 contains the following categories of
information:

• Scheduling: the thread priority, user-mode scheduling priority, recent CPU uti-
lization, and amount of time spent sleeping; the run state of a thread (runnable,
sleeping); additional status flags; if the thread is sleeping, the wait channel, the
identity of the event for which the thread is waiting (see Section 4.3), and a
pointer to a string describing the event

• TSB: the user- and kernel-mode execution states

• Kernel stack: the per-thread execution stack for the kernel

• Machine state: the machine-dependent thread information

Historically, the kernel stack was mapped to a fixed location in the virtual address
space. The reason for using a fixed mapping is that when a parent forks, its run-

time stack is copied for its child. If the kernel stack is mapped to a fixed address,
the child’s kernel stack is mapped to the same addresses as its parent kernel stack.
Thus, all its internal references, such as frame pointers and stack-variable refer-
ences, work as expected.

On modern architectures with virtual address caches, mapping the kernel
stack to a fixed address is slow and inconvenient. FreeBSD removes this con-
straint by eliminating all but the top call frame from the child’s stack after copying
it from its parent so that it returns directly to user mode, thus avoiding stack copy-
ing and relocation problems.

Every thread that might potentially run must have its stack resident in mem-
ory because one task of its stack is to handle page faults. If it were not resident, it
would page fault when the thread tried to run, and there would be no kernel stack
available to service the page fault. Since a system may have many thousands of
threads, the kernel stacks must be kept small to avoid wasting too much physical
memory. In FreeBSD on the Intel architecture, the kernel stack is limited to two
pages of memory. Implementors must be careful when writing code that executes
in the kernel to avoid using large local variables and deeply nested subroutine calls
to avoid overflowing the run-time stack. As a safety precaution, some architec-
tures leave an inv alid page between the area for the run-time stack and the data
structures that follow it. Thus, overflowing the kernel stack will cause a kernel-
access fault instead of disastrously overwriting other data structures. It would be
possible to simply kill the process that caused the fault and continue running.
However, the cleanup would be difficult because the thread may be holding locks
or be in the middle of modifying some data structure that would be left in an
inconsistent or invalid state. So the FreeBSD kernel panics on a kernel-access
fault because such a fault shows a fundamental design error in the kernel. By pan-
icking and creating a crash dump, the error can usually be pinpointed and cor-
rected.

4.3 Context Switching

The kernel switches among threads in an effort to share the CPU effectively; this
activity is called context switching. When a thread executes for the duration of
its time slice or when it blocks because it requires a resource that is currently
unavailable, the kernel finds another thread to run and context switches to it.
The system can also interrupt the currently executing thread to run a thread trig-
gered by an asynchronous event, such as a device interrupt. Although both sce-
narios involve switching the execution context of the CPU, switching between
threads occurs synchronously with respect to the currently executing thread,
whereas servicing interrupts occurs asynchronously with respect to the current
thread. In addition, interprocess context switches are classified as voluntary or
involuntary. A voluntary context switch occurs when a thread blocks because it
requires a resource that is unavailable. An involuntary context switch takes
place when a thread executes for the duration of its time slice or when the
system identifies a higher-priority thread to run.

Section 4.3 Context Switching 99

100 Chapter 4 Process Management

Each type of context switching is done through a different interface. Volun-
tary context switching is initiated with a call to the sleep() routine, whereas an
involuntary context switch is forced by direct invocation of the low-level context-
switching mechanism embodied in the mi_switch() and setrunnable() routines.
Asynchronous event handling is triggered by the underlying hardware and is effec-
tively transparent to the system.

Thread State

Context switching between threads requires that both the kernel- and user-mode
context be changed. To simplify this change, the system ensures that all of a
thread’s user-mode state is located in the thread structure while most kernel state
is kept elsewhere. The following conventions apply to this localization:

• Kernel-mode hardware-execution state: Context switching can take place in only
kernel mode. The kernel’s hardware-execution state is defined by the contents of
the TSB that is located in the thread structure.

• User-mode hardware-execution state: When execution is in kernel mode, the
user-mode state of a thread (such as copies of the program counter, stack pointer,
and general registers) always resides on the kernel’s execution stack that is
located in the thread structure. The kernel ensures this location of user-mode
state by requiring that the system-call and trap handlers save the contents of the
user-mode execution context each time that the kernel is entered (see
Section 3.1).

• The process structure: The process structure always remains resident in memory.

• Memory resources: Memory resources of a process are effectively described by
the contents of the memory-management registers located in the TSB and by the
values present in the process and thread structures. As long as the process
remains in memory, these values will remain valid and context switches can be
done without the associated page tables being saved and restored. However,
these values need to be recalculated when the process returns to main memory
after being swapped to secondary storage.

Low-Level Context Switching

The localization of a process’s context in that process’s thread structure permits
the kernel to perform context switching simply by changing the notion of the cur-
rent thread structure and (if necessary) process structure, and restoring the context
described by the TSB within the thread structure (including the mapping of the vir-
tual address space). Whenever a context switch is required, a call to the
mi_switch() routine causes the highest-priority thread to run. The mi_switch()
routine first selects the appropriate thread from the scheduling queues, and then
resumes the selected thread by loading its context from its TSB.

Voluntary Context Switching

A voluntary context switch occurs whenever a thread must await the availability of
a resource or the arrival of an event. Voluntary context switches happen fre-
quently in normal system operation. In FreeBSD, voluntary context switches are
initiated through a request to obtain a lock that is already held by another thread or
by a call to the sleep() routine. When a thread no longer needs the CPU, it is sus-
pended, awaiting the resource described by a wait channel, and is given a schedul-
ing priority that should be assigned to the thread when that thread is awakened.
This priority does not affect the user-level scheduling priority.

When blocking on a lock, the wait channel is usually the address of the lock.
When blocking for a resource or an event, the wait channel is typically the address
of some data structure that identifies the resource or event for which the thread is
waiting. For example, the address of a disk buffer is used while the thread is wait-
ing for the buffer to be filled. When the buffer is filled, threads sleeping on that
wait channel will be awakened. In addition to the resource addresses that are used
as wait channels, there are some addresses that are used for special purposes:

• When a parent process does a wait system call to collect the termination status of
its children, it must wait for one of those children to exit. Since it cannot know
which of its children will exit first, and since it can sleep on only a single wait
channel, there is a quandary about how to wait for the next of multiple events.
The solution is to have the parent sleep on its own process structure. When a
child exits, it awakens its parent’s process-structure address rather than its own.
Thus, the parent doing the wait will awaken independently of which child
process is the first to exit. Once running, it must scan its list of children to deter-
mine which one exited.

• When a thread does a sigsuspend system call, it does not want to run until it
receives a signal. Thus, it needs to do an interruptible sleep on a wait channel
that will never be awakened. By convention, the address of the signal-actions
structure is given as the wait channel.

A thread may block for a short, medium, or long period of time depending on
the reason that it needs to wait. A short wait occurs when a thread needs to wait
for access to a lock that protects a data structure. A medium wait occurs while a
thread waits for an event that is expected to occur quickly such as waiting for data
to be read from a disk. A long wait occurs when a thread is waiting for an event
that will happen at an indeterminate time in the future such as input from a user.

Short-term waits arise only from a lock request. Short-term locks include
mutexes, read-writer locks, and read-mostly locks. Details on these locks are
given later in this section. A requirement of short-term locks is that they may not
be held while blocking for an event as is done for medium- and long-term locks.
The only reason that a thread holding a short-term lock is not running is that it has
been preempted by a higher-priority thread. It is always possible to get a short-

Section 4.3 Context Switching 101

102 Chapter 4 Process Management

term lock released by running the thread that holds it and any threads that block
the thread that holds it.

A short-term lock is managed by a turnstile data structure. The turnstile
tracks the current owner of the lock and the list of threads waiting for access to the
lock. Figure 4.3 shows how turnstiles are used to track blocked threads. Across
the top of the figure is a set of hash headers that allow a quick lookup to find a
lock with waiting threads. If a turnstile is found, it provides a pointer to the thread

Figure 4.3 Turnstile structures for blocked threads.

owned

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Lock 6

Lock 4

owned

owned

Lock 15

• • •
hash header
Turnstile

Lock 18

owned

owned

owned

waiting

extra

owner

lock

waiting

extra

owner

lock

waiting

extra

owner

lock

waiting

extra

owner

lock

waiting

extra

owner

lock

that currently owns the lock and lists of the threads that are waiting for exclusive
and shared access. The most important use of the turnstile is to quickly find the
threads that need to be awakened when a lock is released. In Figure 4.3, Lock 18
is owned by thread 1 and has threads 2 and 3 waiting for exclusive access to it.
The turnstile in this example also shows that thread 1 holds contested Lock 15.

A turnstile is needed each time a thread blocks on a contested lock. Because
blocking is common, it would be prohibitively slow to allocate and free a turnstile
ev ery time one is needed. So each thread allocates a turnstile when it is created.
As a thread may only be blocked on one lock at any point in time, it will never
need more than one turnstile. Turnstiles are allocated by threads rather than being
incorporated into each lock structure because there are far more locks in the kernel
than there are threads. Allocating one turnstile per thread rather than one per lock
results in lower memory utilization in the kernel.

When a thread is about to block on a short-term lock, it provides its turnstile
to be used to track the lock. If it is the first thread to block on the lock, its
turnstile is used. If it is not the first thread to block, then an earlier thread’s
turnstile will be in use to do the tracking. The additional turnstiles that are pro-
vided are kept on a free list whose head is the turnstile being used to track the
lock. When a thread is awakened and is being made runnable, it is given a
turnstile from the free list (which may not be the same one that it originally pro-
vided). When the last thread is awakened, the free list will be empty and the
turnstile no longer needed, so it can be taken by the awakening thread.

In Figure 4.3, the turnstile tracking Lock 18 was provided by thread 2 as it
was the first to block. The spare turnstile that it references was provided by thread
3. If thread 2 is the first to be awakened, it will get the spare turnstile provided by
thread 3 and when thread 3 is awakened later, it will be the last to be awakened so
will get the no-longer-needed turnstile originally provided by thread 2.

A priority inversion occurs when a thread trying to acquire a short-term lock
finds that the thread holding the lock has a lower priority than its own priority.
The owner and list of blocked threads tracked by the turnstile allows priority
propagation of the higher priority from the thread that is about to be blocked to
the thread that holds the lock. With the higher priority, the thread holding the lock
will run, and if, in turn, it is blocked by a thread with lower priority, it will propa-
gate its new higher priority to that thread. When finished with its access to the
protected data structure, the thread with the temporarily raised priority will release
the lock. As part of releasing the lock, the propagated priority will be dropped,
which usually results in the thread from which the priority was propagated getting
to run and now being able to acquire the lock.

Processes blocking on medium-term and long-term locks use sleepqueue data
structures rather than turnstiles to track the blocked threads. The sleepqueue data
structure is similar to the turnstile except that it does not need to track the owner
of the lock. The owner need not be tracked because sleepqueues do not need to
provide priority propagation. Threads blocked on medium- and long-term locks
cannot proceed until the event for which they are waiting has occurred. Raising
their priority will not allow them to run any sooner.

Section 4.3 Context Switching 103

104 Chapter 4 Process Management

Sleepqueues hav e many similarities to turnstiles including a hash table to
allow quick lookup of contested locks and lists of the threads blocked because
they are awaiting shared and exclusive locks. When created, each thread allocates
a sleepqueue structure. It provides its sleepqueue structure when it is about to be
put to sleep and is returned a sleepqueue structure when it is awakened.

Unlike short-term locks, the medium- and long-term locks can request a time
limit so that if the event for which they are waiting has not occurred within the
specified period of time, they will be awakened with an error return that indicates
that the time limit expired rather than the event occurring. Finally, long-term
locks can request that they be interruptible, meaning that they will be awakened if
a signal is sent to them before the event for which they are waiting has occurred.

Suspending a thread takes the following steps in its operation:

1. Prevents events that might cause thread-state transitions. Historically a global
scheduling lock was used, but it was a bottleneck. Now each thread uses a
lock tied to its current state to protect its per-thread state. For example, when
a thread is on a run queue, the lock for that run queue is used; when the thread
is blocked on a turnstile, the turnstile’s lock is used; when a thread is blocked
on a sleep queue, the lock for the wait channels hash chain is used.

2. Records the wait channel in the thread structure and hashes the wait-channel
value to check for an existing turnstile or sleepqueue for the wait-channel. If
one exists, links the thread to it and saves the turnstile or sleepqueue structure
provided by the thread. Otherwise places the turnstile or sleepqueue onto the
hash chain and links the thread into it.

3. For threads being placed on a turnstile, if the current thread’s priority is higher
than the priority of the thread currently holding the lock, propagates the cur-
rent thread’s priority to the thread currently holding the lock. For threads
being placed on a sleepqueue, sets the thread’s priority to the priority that the
thread will have when the thread is awakened and sets its SLEEPING flag.

4. For threads being placed on a turnstile, sort the thread into the list of waiting
threads such that the highest priority thread appears first in the list. For
threads being placed on a sleepqueue, place the thread at the end of the list of
threads waiting for that wait-channel.

5. Calls mi_switch() to request that a new thread be scheduled; the associated
mutex is released as part of switching to the other thread.

A sleeping thread is not selected to execute until it is removed from a turnstile
or sleepqueue and is marked runnable. This operation is done either implicitly as
part of a lock being released, or explicitly by a call to the wakeup() routine to sig-
nal that an event has occurred or that a resource is available. When wakeup() is
invoked, it is given a wait channel that it uses to find the corresponding sleepqueue
(using a hashed lookup). It awakens all threads sleeping on that wait channel. All
threads waiting for the resource are awakened to ensure that none are

inadvertently left sleeping. If only one thread were awakened, it might not request
the resource on which it was sleeping. If it does not use and release the resource,
any other threads waiting for that resource will be left sleeping forever. A thread
that needs an empty disk buffer in which to write data is an example of a thread
that may not request the resource on which it was sleeping. Such a thread can use
any available buffer. If none is available, it will try to create one by requesting
that a dirty buffer be written to disk and then waiting for the I/O to complete.
When the I/O finishes, the thread will awaken and will check for an empty buffer.
If several are available, it may not use the one that it cleaned, leaving any other
threads to sleep forever as they wait for the cleaned buffer.

In instances where a thread will always use a resource when it becomes avail-
able, wakeup_one() can be used instead of wakeup(). The wakeup_one() routine
wakes up only the first thread that it finds waiting for a resource as it will have
been asleep the longest. The assumption is that when the awakened thread is done
with the resource, it will issue another wakeup_one() to notify the next waiting
thread that the resource is available. The succession of wakeup_one() calls will
continue until all threads waiting for the resource have been awakened and had a
chance to use it. Because the threads are ordered from longest to shortest waiting,
that is the order in which they will be awakened and gain access to the resource.

When releasing a turnstile lock, all waiting threads are released. Because the
threads are ordered from highest to lowest priority, that is the order in which they
will be awakened. Usually they will then be scheduled in the order in which they
were released. When threads end up being run concurrently, the adaptive spinning
(described later in this section) usually ensures that they will not block. And
because they are released from highest to lowest priority, the highest priority
thread will usually be the first to acquire the lock. There will be no need for, and
hence no overhead from, priority propagation. Rather, the lock will be handed
down from the highest priority threads through the intermediate priorities to the
lowest priority.

To avoid having excessive numbers of threads awakened, kernel programmers
try to use locks and wait channels with fine-enough granularity that unrelated uses
will not collide on the same resource. For example, they put locks on each buffer
in the buffer cache rather than putting a single lock on the buffer cache as a whole.

Resuming a thread takes the following steps in its operation:

1. Removes the thread from its turnstile or sleepqueue. If it is the last thread to
be awakened, the turnstile or sleepqueue is returned to it. If it is not the last
thread to be awakened, a turnstile or sleepqueue from the free list is returned
to it.

2. Recomputes the user-mode scheduling priority if the thread has been sleeping
longer than one second.

3. If the thread had been blocked on a turnstile, it is placed on the run queue. If
the thread had been blocked on a sleepqueue, it is placed on the run queue if it
is in a SLEEPING state and if its process is not swapped out of main memory.

Section 4.3 Context Switching 105

106 Chapter 4 Process Management

If the process has been swapped out, the swapin process will be awakened to
load it back into memory (see Section 6.12); if the thread is in a STOPPED
state, it is not put on a run queue until it is explicitly restarted by a user-level
process, either by a ptrace system call (see Section 4.9) or by a continue signal
(see Section 4.7).

If any threads are placed on the run queue and one of them has a scheduling prior-
ity higher than that of the currently executing thread, it will also request that the
CPU be rescheduled as soon as possible.

Synchronization

The FreeBSD kernel supports both symmetric multiprocessing (SMP) and nonuni-
form memory access (NUMA) architectures. An SMP architecture is one in which
all the CPUs are connected to a common main memory while a NUMA architecture
is one in which the CPUs are connected to a non-uniform memory. With a NUMA
architecture, some memory is local to a CPU and is quickly accessible while other
memory is slower to access because it is local to another CPU or shared between
CPUs. Throughout this book, references to multiprocessors and multiprocessing
refer to both SMP and NUMA architectures.

A multiprocessing kernel requires extensive and fine-grained synchronization.
The simplist form of synchronization is a critical section. While a thread is run-
ning in a critical section, it can neither be migrated to another CPU nor preempted
by another thread. A critical section protects per-CPU data structures such as a run
queue or CPU-specific memory-allocation data structures. A critical section con-
trols only a single CPU, so it cannot protect systemwide data structures; one of the
locking mechanisms described below must be used. While critical sections are
useful for only a limited set of data structures, they are beneficial in those cases

Table 4.3 Locking hierarchy.

Level Type Sleep Description

Highest witness yes partially ordered sleep locks

lock manager yes drainable shared/exclusive access

condition variables yes ev ent-based thread blocking

shared-exclusive lock yes shared and exclusive access

read-mostly lock no optimized for read access

reader-writer lock no shared and exclusive access

sleep mutex no spin for a while, then sleep

spin mutex no spin lock

Lowest hardware no memory-interlocked compare-and-swap

because they hav e signi cantly lower overhead than locks. A critical section
begins by calling critical_enter() and continues until calling the function
critical_exit().

Table 4.3 shows the hierarchy of locking that is necessary to support multi-
processing. The column labelled Sleep in Table 4.3 shows whether a lock of that
type may be held when a thread blocks for a medium- or long-term sleep.

Although it is possible to build locks using single-memory operations
[Dekker, 2013], to be practical, the hardware must provide a memory interlocked
compare-and-swap instruction. The compare-and-swap instruction must allow
two operations to be done on a main-memory location—the reading and compar-
ing to a speci ed compare-v alue of the existing value followed by the writing of a
new value if the read value matches the compare-value—without any other pro-
cessor being able to read or write that memory location between the two memory
operations. All the locking primitives in the FreeBSD system are built using the
compare-and-swap instruction.

Mutex Synchronization

Mutexes are the primary method of short-term thread synchronization. The major
design considerations for mutexes are as follows:

• Acquiring and releasing uncontested mutexes should be as fast as possible.

• Mutexes must have the information and storage space to support priority propa-
gation. In FreeBSD, mutexes use turnstiles to manage priority propagation.

• A thread must be able to acquire a mutex recursively if the mutex is initialized to
support recursion.

Mutexes are built from the hardware compare-and-swap instruction. A mem-
ory location is reserved for the lock. When the lock is free, the value of
MTX_UNOWNED is stored in the memory location; when the lock is held, a pointer
to the thread owning the lock is stored in the memory location. The compare-and-
swap instruction tries to acquire the lock. The value in the lock is compared with
MTX_UNOWNED; if it matches, it is replaced with the pointer to the thread. The
instruction returns the old value; if the old value was MTX_UNOWNED, then the
lock was successfully acquired and the thread may proceed. Otherwise, some
other thread held the lock so the thread must loop doing the compare-and-swap
until the thread holding the lock (and running on a different processor) stores
MTX_UNOWNED into the lock to show that it is done with it.

There are currently two avors of mutexes: those that block and those that do
not. By default, threads will block when they request a mutex that is already held.
Most kernel code uses the default lock type that allows the thread to be suspended
from the CPU if it cannot get the lock.

Mutexes that do not sleep are called spin mutexes. A spin mutex will not
relinquish the CPU when it cannot immediately get the requested lock, but it will

Section 4.3 Context Switching 107

108 Chapter 4 Process Management

loop, waiting for the mutex to be released by another CPU. Spinning can result in
deadlock if a thread interrupted the thread that held a mutex and then tried to
acquire the mutex. To protect an interrupt thread from blocking against itself dur-
ing the period that it is held, a spin mutex runs inside a critical section with inter-
rupts disabled on that CPU. Thus, an interrupt thread can run only on another CPU
during the period that the spin mutex is held.

Spin mutexes are specialized locks that are intended to be held for short peri-
ods of time. A thread may hold multiple spin mutexes, but it is required to release
the mutexes in the opposite order from which they were acquired. A thread may
not go to sleep while holding a spin mutex.

On most architectures, both acquiring and releasing an uncontested spin
mutex are more expensive than the same operation on a nonspin mutex. Spin
mutexes are more expensive than blocking locks because spin mutexes hav e to
disable or defer interrupts while they are held to prevent races with interrupt han-
dling code. As a result, holding spin mutexes can increase interrupt latency. To
minimize interrupt latency and reduce locking overhead, FreeBSD uses spin
mutexes only in code that does low-level scheduling and context switching.

The time to acquire a lock can vary. Consider the time to wait for a lock
needed to search for an item on a list. The thread holding the search lock may
have to acquire another lock before it can remove an item it has found from the
list. If the needed lock is already held, it will block to wait for it. A different
thread that tries to acquire the search lock uses adaptive spinning. Adaptive spin-
ning is implemented by having the thread that wants the lock extract the thread
pointer of the owning thread from the lock structure. It then checks to see if the
thread is currently executing. If so, it spins until either the lock is released or the
thread stops executing. The effect is to spin so long as the current lock holder is
executing on another CPU. The reasons for taking this approach are many:

• Locks are usually held for brief periods of time, so if the owner is running, then
it will probably release the lock before the current thread completes the process
of blocking on the lock.

• If a lock holder is not running, then the current thread has to wait at least one
context switch time before it can acquire the lock.

• If the owner is on a run queue, then the current thread should block immediately
so it can lend its priority to the lock owner.

• It is cheaper to release an uncontested lock with a single atomic operation than a
contested lock. A contested lock has to find the turnstile, lock the turnstile chain
and turnstile, and then awaken all the waiters. So adaptive spinning reduces
overhead on both the lock owner and the thread trying to acquire the lock.

The lower cost for releasing an uncontested lock explains the algorithm used
to awaken waiters on a mutex. Historically, the mutex code would only awaken a
single waiter when a contested lock was released, which left the lock in a con-
tested state if there were more than one waiter. Howev er, leaving a contested lock

ensured that the new lock holder would have to perform a more expensive unlock
operation. Indeed, all but the last waiter would have an expensive unlock opera-
tion. In the current FreeBSD system, all the waiters are awakened when the lock is
released. Usually they end up being scheduled sequentially, which results in them
all getting to do cheaper unlock operations. If they do all end up running concur-
rently, they will then use adaptive spinning and will finish the chain of lock
requests sooner since the context switches to awaken the threads are performed in
parallel rather than sequentially. This change in behavior was motivated by docu-
mentation of these effects noted in Solaris Internals [McDougall & Mauro, 2006].

It is wasteful of CPU cycles to use spin mutexes for resources that will be held
for long periods of time (more than a few microseconds). For example, a spin
mutex would be inappropriate for a disk buffer that would need to be locked
throughout the time that a disk I/O was being done. Here, a sleep lock should be
used. When a thread trying to acquire a medium- or long-term lock finds that the
lock is held, it is put to sleep so that other threads can run until the lock becomes
available.

Spin mutexes are never appropriate on a uniprocessor since the only way that
a resource held by another thread will ever be released will be when that thread
gets to run. Spin mutexes are always converted to sleep locks when running on a
uniprocessor. As with the multi-processor, interrupts are disabled while the spin
mutexes are held. Since there is no other processor on which the interrupts can
run, interrupt latency becomes much more apparent on a uniprocessor.

Mutex Interface

The mtx_init() function must be used to initialize a mutex before it can be used.
The mtx_init() function specifies a type that the witness code uses to classify a
mutex when doing checks of lock ordering. It is not permissible to pass the same
mutex to mtx_init() multiple times without intervening calls to mtx_destroy().

The mtx_lock() function acquires a mutual exclusion lock for the currently
running kernel thread. If another kernel thread is holding the mutex, the caller
will sleep until the mutex is available. The mtx_lock_spin() function is similar to
the mtx_lock() function except that it will spin until the mutex becomes available.
A critical section is entered when the spin mutex is obtained and is exited when
the spin mutex is released. Interrupts are blocked on the CPU on which the thread
holding the spin mutex is running. No other threads, including interrupt threads,
can run on the CPU during the period that the spin mutex is held.

It is possible for the same thread to acquire a mutex recursively with no ill
effects if the MTX_RECURSE bit was passed to mtx_init() during the initialization
of the mutex. The witness module verifies that a thread does not recurse on a non-
recursive lock. A recursive lock is useful if a resource may be locked at two or
more levels in the kernel. By allowing a recursive lock, a lower layer need not
check if the resource has already been locked by a higher layer; it can simply lock
and release the resource as needed.

The mtx_trylock() function tries to acquire a mutual exclusion lock for the
currently running kernel thread. If the mutex cannot be immediately acquired,

Section 4.3 Context Switching 109

110 Chapter 4 Process Management

mtx_trylock() will return 0; otherwise the mutex will be acquired and a nonzero
value will be returned. The mtx_trylock() function cannot be used with spin
mutexes.

The mtx_unlock() function releases a mutual exclusion lock; if a higher-priority
thread is waiting for the mutex, the releasing thread will be put to sleep to allow the
higher-priority thread to acquire the mutex and run. A mutex that allows recursive
locking maintains a reference count showing the number of times that it has been
locked. Each successful lock request must have a corresponding unlock request.
The mutex is not released until the final unlock has been done, causing the reference
count to drop to zero.

The mtx_unlock_spin() function releases a spin-type mutual exclusion lock;
the critical section entered before acquiring the mutex is exited.

The mtx_destroy() function destroys a mutex so the data associated with it may
be freed or otherwise overwritten. Any mutex that is destroyed must previously
have been initialized with mtx_init(). It is permissible to have a single reference to
a mutex when it is destroyed. It is not permissible to hold the mutex recursively or
have another thread blocked on the mutex when it is destroyed. If these rules are
violated, the kernel will panic.

Normally, a mutex is allocated within the structure that it will protect. For
long-lived structures or structures that are allocated from a zone (structures in a
zone are created once and used many times before they are destroyed), the time
overhead of initializing and destroying it is insignificant. For a short-lived struc-
ture that is not allocated out of a zone, the cost of initializing and destroying an
embedded mutex may exceed the time during which the structure is used. In addi-
tion, mutexes are large and may double or triple the size of a small short-lived
structure (a mutex is often the size of a cache line, which is typically 128 bytes).
To avoid this overhead, the kernel provides a pool of mutexes that may be bor-
rowed for use with a short-lived structure. The short-lived structure does not need
to reserve space for a mutex, just space for a pointer to a pool mutex. When the
structure is allocated, it requests a pool mutex to which it sets its pointer. When it
is done, the pool mutex is returned to the kernel and the structure freed. An exam-
ple of a use of a pool mutex comes from the poll system call implementation that
needs a structure to track a poll request from the time the system call is entered
until the requested data arrives on the descriptor.

Lock Synchronization

Interprocess synchronization to a resource typically is implemented by associating
it with a lock structure. The kernel has several lock managers that manipulate a
lock. The operations provided by all the lock managers are:

• Request shared: Get one of many possible shared locks. If a thread holding an
exclusive lock requests a shared lock, some lock managers will downgrade the
exclusive lock to a shared lock while others simply return an error.

• Request exclusive: When all shared locks have cleared, grant an exclusive lock.
To ensure that the exclusive lock will be granted quickly, some lock managers

stop granting shared locks when an exclusive lock is requested. Others grant
new shared locks only for recursive lock requests. Only one exclusive lock may
exist at a time, except that a thread holding an exclusive lock may get additional
exclusive locks if the canrecurse flag was set when the lock was initialized.
Some lock managers allow the canrecurse flag to be specified in the lock
request.

• Request release: Release one instance of a lock.

In addition to these basic requests, some of the lock managers provide the fol-
lowing additional functions:

• Request upgrade: The thread must hold a shared lock that it wants to have
upgraded to an exclusive lock. Other threads may get exclusive access to the
resource between the time that the upgrade is requested and the time that it is
granted. Some lock managers allow only a limited version of upgrade where it is
granted if immediately available, but do not provide a mechanism to wait for an
upgrade.

• Request exclusive upgrade: The thread must hold a shared lock that it wants to
have upgraded to an exclusive lock. If the request succeeds, no other threads
will have received exclusive access to the resource between the time that the
upgrade is requested and the time that it is granted. However, if another thread
has already requested an upgrade, the request will fail.

• Request downgrade: The thread must hold an exclusive lock that it wants to have
downgraded to a shared lock. If the thread holds multiple (recursive) exclusive
locks, some lock managers will downgrade them all to shared locks; other lock
managers will fail the request.

• Request drain: Wait for all activity on the lock to end, and then mark it decom-
missioned. This feature is used before freeing a lock that is part of a piece of
memory that is about to be released.

Locks must be initialized before their first use by calling their initialization
function. Parameters to the initialization function may include the following:

• A top-half kernel priority at which the thread should run if it was blocked before
it acquired the lock

• Flags such as canrecurse that allow the thread currently holding an exclusive
lock to get another exclusive lock rather than panicking with a ‘‘locking against
myself ’’ failure

• A string that describes the resource that the lock protects, referred to as the wait
channel message

• An optional maximum time to wait for the lock to become available

Not all types of locks support all these options. When a lock is no longer needed,
it must be released.

Section 4.3 Context Switching 111

112 Chapter 4 Process Management

As shown in Table 4.3, the lowest-level type of lock is the reader-writer lock.
The reader-writer lock operates much like a mutex except that a reader-writer lock
supports both shared and exclusive access. Like a mutex, it is managed by a
turnstile so it cannot be held during a medium- or long-term sleep and provides
priority propagation for exclusive (but not shared) locks. Reader-writer locks may
be recursed.

Next up in Table 4.3 is the read-mostly lock. The read-mostly lock has the
same capabilities and restrictions as reader-writer locks while they also add prior-
ity propagation for shared locks by tracking shared owners using a caller-supplied
tracker data structure. Read-mostly locks are used to protect data that are read far
more often than they are written. They work by trying the read without acquiring
a lock assuming that the read will succeed and only fall back to using locks when
the assumption fails. Reads usually happen more quickly but at a higher cost if
the underlying resource is modified. The routing table is a good example of a
read-mostly data structure. Routes are rarely updated, but are read frequently.

The remaining types of locks all permit medium- and long-term sleeping.
None of these locks support priority propagation. The shared-exclusive locks are
the fastest of these locks with the fewest features. In addition to the basic shared
and exclusive access, they provide recursion for both shared and exclusive locks,
the ability to be interrupted by a signal, and limited upgrade and downgrade capa-
bilities.

The lock-manager locks are the most full featured but also the slowest of the
locking schemes. In addition to the features of the shared-exclusive locks, they
provide full upgrade and downgrade capabilities, the ability to be awakened after a
specified interval, the ability to drain all users in preparation for being deallocated,
and the ability to pass ownership of locks between threads and to the kernel.

Condition variables are used with mutexes to wait for conditions to occur.
Threads wait on condition variables by calling cv_wait(), cv_wait_sig() (wait
unless interrupted by a signal), cv_timedwait() (wait for a maximum time), or
cv_timedwait_sig() (wait unless interrupted by a signal or for a maximum time).
Threads unblock waiters by calling cv_signal() to unblock one waiter, or
cv_broadcast() to unblock all waiters. The cv_waitq_remove() function removes
a waiting thread from a condition-variable wait queue if it is on one.

A thread must hold a mutex before calling cv_wait(), cv_wait_sig(),
cv_timedwait(), or cv_timedwait_sig(). When a thread waits on a condition, the
mutex is atomically released before the thread is blocked, and then atomically
reacquired before the function call returns. All waiters must use the same mutex
with a condition variable. A thread must hold the mutex while calling cv_signal()
or cv_broadcast().

Deadlock Prev ention

The highest-level locking primitive prevents threads from deadlocking when lock-
ing multiple resources. Suppose that two threads, A and B, require exclusive
access to two resources, R1 and R2, to do some operation as shown in Figure 4.4.
If thread A acquires R1 and thread B acquires R2, then a deadlock occurs when

2

R R R R
1’ 1’’ 2’ 2’’

Class 1 Class 2

Thread
BA

Thread

R
1

R

Figure 4.4 Partial ordering of resources.

thread A tries to acquire R2 and thread B tries to acquire R1. To avoid deadlock,
FreeBSD maintains a partial ordering on all the locks. The two partial-ordering
rules are as follows:

1. A thread may acquire only one lock in each class.

2. A thread may acquire only a lock in a higher-numbered class than the highest-
numbered class for which it already holds a lock.

Figure 4.4 shows two classes. Class 1 with resources R1, R1´, and R1´´. Class 2
with resources R2, R2´, and R2´´. In Figure 4.4, Thread A holds R1 and can
request R2 as R1 and R2 are in different classes and R2 is in a higher-numbered
class than R1. Howev er, Thread B must release R2 before requesting R1, since
R2 is in a higher class than R1. Thus, Thread A will be able to acquire R2 when
it is released by Thread B. After Thread A completes and releases R1 and R2,
Thread B will be able to acquire both of those locks and run to completion with-
out deadlock.

Historically, the class members and ordering were poorly documented and
unenforced. Violations were discovered when threads would deadlock and a care-
ful analysis was done to figure out what ordering had been violated. With an
increasing number of developers and a growing kernel, the ad hoc method of
maintaining the partial ordering of locks became untenable. A witness module
was added to the kernel to derive and enforce the partial ordering of the locks.
The witness module keeps track of the locks acquired and released by each thread.
It also keeps track of the order in which locks are acquired relative to each other.
Each time a lock is acquired, the witness module uses these two lists to verify that
a lock is not being acquired in the wrong order. If a lock order violation is
detected, then a message is output to the console detailing the locks involved and
the locations in the code in which they were acquired. The witness module also
verifies that no locks that prohibit sleeping are held when requesting a sleep lock
or voluntarily going to sleep.

Section 4.3 Context Switching 113

114 Chapter 4 Process Management

The witness module can be configured to either panic or drop into the kernel
debugger when an order violation occurs or some other witness check fails. When
running the debugger, the witness module can output the list of locks held by the
current thread to the console along with the filename and line number at which
each lock was last acquired. It can also dump the current order list to the console.
The code first displays the lock order tree for all the sleep locks. Then it displays
the lock order tree for all the spin mutexes. Finally, it displays a list of locks that
have not yet been acquired.

4.4 Thread Scheduling

The FreeBSD scheduler has a well-defined set of kernel-application programming
interfaces (kernel APIs) that allow it to support different schedulers. Since
FreeBSD 5.0, the kernel has had two schedulers available:

• The ULE scheduler first introduced in FreeBSD 5.0 and found in the file
/sys/kern/sched_ule.c [Roberson, 2003]. The name is not an acronym. If the
underscore in its filename is removed, the rationale for its name becomes appar-
ent. This scheduler is used by default and is described later in this section.

• The traditional 4.4BSD scheduler found in the file /sys/kern/sched_4bsd.c. This
scheduler is still maintained but no longer used by default.

Because a busy system makes millions of scheduling decisions per second,
the speed with which scheduling decisions are made is critical to the performance
of the system as a whole. Other UNIX systems have added a dynamic scheduler
switch that must be traversed for every scheduling decision. To avoid this over-
head, FreeBSD requires that the scheduler be selected at the time the kernel is
built. Thus, all calls into the scheduling code are resolved at compile time rather
than going through the overhead of an indirect function call for every scheduling
decision.

The Low-Level Scheduler

Scheduling is divided into two parts: a simple low-level scheduler that runs fre-
quently and a more complex high-level scheduler that runs at most a few times per
second. The low-level scheduler runs every time a thread blocks and a new thread
must be selected to run. For efficiency when running thousands of times per sec-
ond, it must make its decision quickly with a minimal amount of information. To
simplify its task, the kernel maintains a set of run queues for each CPU in the sys-
tem that are organized from high to low priority. When a task blocks on a CPU,
the low-level scheduler’s sole responsibility is to select the thread from the high-
est-priority non-empty run queue for that CPU. The high-level scheduler is
responsible for setting the thread priorities and deciding on which CPU’s run
queue they should be placed. Each CPU has its own set of run queues to avoid

contention for access when two CPUs both need to select a new thread to run at the
same time. Contention between run queues occurs only when the high-level
scheduler decides to move a thread from the run queue of one CPU to the run
queue of another CPU. The kernel tries to avoid moving threads between CPUs as
the loss of its CPU-local caches slows it down.

All threads that are runnable are assigned a scheduling priority and a CPU by
the high-level scheduler that determines in which run queue they are placed. In
selecting a new thread to run, the low-level scheduler scans the run queues of the
CPU needing a new thread from highest to lowest priority and chooses the first
thread on the first nonempty queue. If multiple threads reside on a queue, the sys-
tem runs them round robin; that is, it runs them in the order that they are found on
the queue, with equal amounts of time allowed. If a thread blocks, it is not put
back onto any run queue. Instead, it is placed on a turnstile or a sleepqueue. If a
thread uses up the time quantum (or time slice) allowed it, it is placed at the end
of the queue from which it came, and the thread at the front of the queue is
selected to run.

The shorter the time quantum, the better the interactive response. However,
longer time quanta provide higher system throughput because the system will
incur less overhead from doing context switches and processor caches will be
flushed less often. The time quantum used by FreeBSD is adjusted by the high-
level scheduler as described later in this subsection.

Thread Run Queues and Context Switching

The kernel has a single set of run queues to manage all the thread scheduling
classes shown in Table 4.2. The scheduling-priority calculations described in the
previous section are used to order the set of timesharing threads into the priority
ranges between 120 and 223. The real-time threads and the idle threads priorities
are set by the applications themselves but are constrained by the kernel to be
within the ranges 48 to 79 and 224 to 255, respectively. The number of queues
used to hold the collection of all runnable threads in the system affects the cost of
managing the queues. If only a single (ordered) queue is maintained, then select-
ing the next runnable thread becomes simple but other operations become expen-
sive. Using 256 different queues can significantly increase the cost of identifying
the next thread to run. The system uses 64 run queues, selecting a run queue for a
thread by dividing the thread’s priority by 4. To sav e time, the threads on each
queue are not further sorted by their priorities.

The run queues contain all the runnable threads in main memory except the
currently running thread. Figure 4.5 shows how each queue is organized as a dou-
bly linked list of thread structures. The head of each run queue is kept in an array.
Associated with this array is a bit vector, rq_status, that is used in identifying the
nonempty run queues. Tw o routines, runq_add() and runq_remove(), are used to
place a thread at the tail of a run queue, and to take a thread off the head of a run
queue. The heart of the scheduling algorithm is the runq_choose() routine. The
runq_choose() routine is responsible for selecting a new thread to run; it operates
as follows:

Section 4.4 Thread Scheduling 115

116 Chapter 4 Process Management

td_runq.tqe_prev

td_runq.tqe_next

thread thread

threadthread thread

thread

priority
high

low
priority

•
•
•

run queues

Figure 4.5 Queueing structure for runnable threads.

1. Ensures that our caller acquired the lock associated with the run queue.

2. Locates a nonempty run queue by finding the location of the first nonzero bit
in the rq_status bit vector. If rq_status is zero, there are no threads to run, so
selects an idle loop thread.

3. Given a nonempty run queue, removes the first thread on the queue.

4. If this run queue is now empty as a result of removing the thread, clears the
appropriate bit in rq_status.

5. Returns the selected thread.

The context-switch code is broken into two parts. The machine-independent code
resides in mi_switch(); the machine-dependent part resides in cpu_switch(). On
most architectures, cpu_switch() is coded in assembly language for efficiency.

Given the mi_switch() routine and the thread-priority calculations, the only
missing piece in the scheduling facility is how the system forces an involuntary
context switch. Remember that voluntary context switches occur when a thread
calls the sleep() routine. Sleep() can be invoked only by a runnable thread, so
sleep() needs only to place the thread on a sleep queue and to invoke mi_switch()
to schedule the next thread to run. Often, an interrupt thread will not want to
sleep() itself but will be delivering data that will cause the kernel to want to run a
different thread than the one that was running before the interrupt. Thus, the ker-
nel needs a mechanism to request that an involuntary context switch be done at the
conclusion of the interrupt.

This mechanism is handled by setting the currently running thread’s
TDF_NEEDRESCHED flag and then posting an asynchronous system trap (AST).
An AST is a trap that is delivered to a thread the next time that thread is prepar-
ing to return from an interrupt, a trap, or a system call. Some architectures

support ASTs directly in hardware; other systems emulate ASTs by checking an
AST flag at the end of every system call, trap, and interrupt. When the hardware
AST trap occurs or the AST flag is set, the mi_switch() routine is called instead
of the current thread resuming execution. Rescheduling requests are made by
the sched_lend_user_prio(), sched_clock(), sched_setpreempt(), and
sched_affinity() routines.

With the advent of multiprocessor support, FreeBSD can preempt threads
executing in kernel mode. However, such preemption is generally not done for
threads running in the timesharing class, so the worst-case real-time response to
ev ents when running with the timeshare scheduler is defined by the longest path
through the top half of the kernel. Since the system guarantees no upper bounds
on the duration of a system call, when running with just the timeshare scheduler
FreeBSD is decidedly not a hard real-time system.

Real-time and interrupt threads do preempt lower-priority threads. The long-
est path that preemption is disabled for real-time and interrupt threads is defined
by the longest time a spinlock is held or a critical section is entered. Thus, when
using real-time threads, microsecond real-time deadlines can be met. The kernel
can be configured to preempt timeshare threads executing in the kernel with other
higher-priority timeshare threads. This option is not used by default as the
increase in context switches adds overhead and does not help make timeshare
threads response time more predictable.

Timeshare Thread Scheduling

The goal of a multiprocessing system is to apply the power of multiple CPUs to a
problem, or set of problems, to achieve a result in less time than it would run on a
single-processor system. If a system has the same number of runnable threads as
it does CPUs, then achieving this goal is easy. Each runnable thread gets a CPU to
itself and runs to completion. Typically, there are many runnable threads compet-
ing for a few processors. One job of the scheduler is to ensure that the CPUs are
always busy and are not wasting their cycles. When a thread completes its work,
or is blocked waiting for resources, it is removed from the processor on which it
was running. While a thread is running on a processor, it brings its working set—
the instructions it is executing and the data on which it is operating—into the
CPU’s memory cache. Migrating a thread has a cost. When a thread is moved
from one CPU to another, its CPU-cache working set is lost and must be removed
from the CPU on which it was running and then loaded into the new CPU to which
it has been migrated. The performance of a multiprocessing system with a naive
scheduler that does not take this cost into account can fall beneath that of a single-
processor system. The term processor affinity describes a scheduler that only
migrates threads when necessary to give an idle processor something to do.

A multiprocessing system may be built with multiple processor chips. Each
processor chip may have multiple CPU cores, each of which can execute a thread.
The CPU cores on a single processor chip share many of the processor’s resources,
such as memory caches and access to main memory, so they are more tightly syn-
chronized than the CPUs on other processor chips.

Section 4.4 Thread Scheduling 117

118 Chapter 4 Process Management

Handling processor chips with multiple CPUs is a derivative form of load bal-
ancing among CPUs on different chips. It is handled by maintaining a hierarchy of
CPUs. The CPUs on the same chip are the cheapest between which to migrate
threads. Next down in the hierarchy are processor chips on the same motherboard.
Below them are chips connected by the same backplane. The scheduler supports
an arbitrary depth hierarchy as dictated by the hardware. When the scheduler is
deciding to which processor to migrate a thread, it will try to pick a new processor
higher in the hierarchy because that is the lowest-cost migration path.

From a thread’s perspective, it does not know that there are other threads run-
ning on the same processor because the processor is handling them independently.
The one piece of code in the system that needs to be aware of the multiple CPUs is
the scheduling algorithm. In particular, the scheduler treats each CPU on a chip as
one on which it is cheaper to migrate threads than it would be to migrate the
thread to a CPU on another chip. The mechanism for getting tighter affinity
between CPUs on the same processor chip versus CPUs on other processor chips is
described later in this section.

The traditional FreeBSD scheduler maintains a global list of runnable threads
that it traverses once per second to recalculate their priorities. The use of a single
list for all runnable threads means that the performance of the scheduler is depen-
dent on the number of tasks in the system, and as the number of tasks grow, more
CPU time must be spent in the scheduler maintaining the list.

The ULE scheduler was developed during FreeBSD 5.0 with major work con-
tinuing into FreeBSD 9.0, spanning 10 years of development. The scheduler was
developed to address shortcomings of the traditional BSD scheduler on multipro-
cessor systems. A new scheduler was undertaken for several reasons:

• To address the need for processor affinity in multiprocessor systems

• To supply equitable distribution of load between CPUs on multiprocessor
systems

• To provide better support for processors with multiple CPU cores on a single chip

• To improve the performance of the scheduling algorithm so that it is no longer
dependent on the number of threads in the system

• To provide interactivity and timesharing performance similar to the traditional
BSD scheduler.

The traditional BSD scheduler had good interactivity on large timeshare sys-
tems and single-user desktop and laptop systems. However, it had a single global
run queue and consequently a single global scheduler lock. Having a single global
run queue was slowed both by contention for the global lock and by difficulties
implementing CPU affinity.

The priority computation relied on a single global timer that iterated over
ev ery runnable thread in the system and evaluated its priority while holding sev-
eral highly contended locks. This approach became slower as the number of

runnable threads increased. While the priority calculations were being done,
processes could not fork or exit and CPUs could not context switch.

The ULE scheduler can logically be thought of as two largely orthogonal sets
of algorithms; those that manage the affinity and distribution of threads among
CPUs and those that are responsible for the order and duration of a thread’s run-
time. These two sets of algorithms work in concert to provide a balance of low
latency, high throughput, and good resource utilization. The remainder of the
scheduler is event driven and uses these algorithms to implement various decisions
according to changes in system state.

The goal of equalling the exceptional interactive behavior and throughput of
the traditional BSD scheduler in a multiprocessor-friendly and constant-time
implementation was the most challenging and time consuming part of ULE’s
development. The interactivity, CPU utilization estimation, priority, and time slice
algorithms together implement the timeshare scheduling policy.

The behavior of threads is evaluated by ULE on an event-driven basis to dif-
ferentiate interactive and batch threads. Interactive threads are those that are
thought to be waiting for and responding to user input. They require low latency
to achieve a good user experience. Batch threads are those that tend to consume
as much CPU as they are given and may be background jobs. A good example of
the former is a text editor, and for the latter, a compiler. The scheduler must use
imperfect heuristics to provide a gradient of behaviors based on a best guess of the
category to which a given thread fits. This categorization may change frequently
during the lifetime of a thread and must be responsive on timescales relevant to
people using the system.

The algorithm that evaluates interactivity is called the interactivity score. The
interactivity score is the ratio of voluntary sleep time to run time normalized to a
number between 0 and 100. This score does not include time waiting on the run
queue while the thread is not yet the highest priority thread in the queue. By
requiring explicit voluntary sleeps, we can differentiate threads that are not run-
ning because of inferior priority versus those that are periodically waiting for user
input. This requirement also makes it more challenging for a thread to be marked
interactive as system load increases, which is desirable because it prevents the sys-
tem from becoming swamped with interactive threads while keeping things like
shells and simple text editors available to administrators. When plotted, the inter-
activity scores derived from a matrix of possible sleep and run times becomes a
three-dimensional sigmoid function. Using this approach means that interactive
tasks tend to stay interactive and batch tasks tend to stay batched.

A particular challenge is complex X Window applications such as Web
browsers and office productivity packages. These applications may consume sig-
nificant resources for brief periods of time, however the user expects them to
remain interactive. To resolve this issue, a several-second history of the sleep and
run behavior is kept and gradually decayed. Thus, the scheduler keeps a moving
av erage that can tolerate bursts of behavior but will quickly penalize timeshare
threads that abuse their elevated status. A longer history allows longer bursts but
learns more slowly.

Section 4.4 Thread Scheduling 119

120 Chapter 4 Process Management

The interactivity score is compared to the interactivity threshold, which is the
cutoff point for considering a thread interactive. The interactivity threshold is
modified by the process nice value. Positive nice values make it more challenging
for a thread to be considered interactive, while negative values make it easier.
Thus, the nice value gives the user some control over the primary mechanism of
reducing thread-scheduling latency.

A thread is considered to be interactive if the ratio of its voluntary sleep time
versus its run time is below a certain threshold. The interactivity threshold is
defined in the ULE code and is not configurable. ULE uses two equations to com-
pute the interactivity score of a thread. For threads whose sleep time exceeds their
run time, Eq 4.1 is used:

interactivity score =
scaling factor

sleep / run
(Eq. 4.1)

When a thread’s run time exceeds its sleep time, Eq. 4.2 is used instead:

interactivity score =
scaling factor

run / sleep
+ scaling factor (Eq. 4.2)

The scaling factor is the maximum interactivity score divided by two. Threads
that score below the interactivity threshold are considered to be interactive; all
others are noninteractive. The sched_interact_update() routine is called at several
points in a threads existence—for example, when the thread is awakened by a
wakeup() call—to update the thread’s run time and sleep time. The sleep- and
run-time values are only allowed to grow to a certain limit. When the sum of the
run time and sleep time pass the limit, they are reduced to bring them back into
range. An interactive thread whose sleep history was not remembered at all would
not remain interactive, resulting in a poor user experience. Remembering an inter-
active thread’s sleep time for too long would allow the thread to get more than its
fair share of the CPU. The amount of history that is kept and the interactivity
threshold are the two values that most strongly influence a user’s interactive expe-
rience on the system.

Priorities are assigned according to the thread’s interactivity status. Interac-
tive threads have a priority that is derived from the interactivity score and are
placed in a priority band above batch threads. They are scheduled like real-time
round-robin threads. Batch threads have their priorities determined by the esti-
mated CPU utilization modified according to their process nice value. In both
cases, the available priority range is equally divided among possible interactive
scores or percent-cpu calculations, both of which are values between 0 and 100.
Since there are fewer than 100 priorities available for each class, some values
share priorities. Both computations roughly assign priorities according to a his-
tory of CPU utilization but with different longevities and scaling factors.

The CPU utilization estimator accumulates run time as a thread runs and
decays it as a thread sleeps. The utilization estimator provides the percent-cpu
values displayed in top and ps. ULE delays the decay until a thread wakes to
avoid periodically scanning every thread in the system. Since this delay leaves

values unchanged for the duration of sleeps, the values must also be decayed
before any user process inspects them. This approach preserves the constant-time
and event-driven nature of the scheduler.

The CPU utilization is recorded in the thread as the number of ticks, typically
1 millisecond, during which a thread has been running, along with window of time
defined as a first and last tick. The scheduler attempts to keep roughly 10 seconds
of history. To accomplish decay, it waits until there are 11 seconds of history and
then subtracts one-tenth of the tick value while moving the first tick forward 1 sec-
ond. This inexpensive, estimated moving-average algorithm has the property of
allowing arbitrary update intervals. If the utilization information is inspected after
more than the update interval has passed, the tick value is zeroed. Otherwise, the
number of seconds that have passed divided by the update interval is subtracted.

The scheduler implements round-robin through the assignment of time slices.
A time slice is a fixed interval of allowed run time before the scheduler will select
another thread of equal priority to run. The time slice prevents starvation among
equal priority threads. The time slice times the number of runnable threads in a
given priority defines the maximum latency a thread of that priority will experi-
ence before it can run. To bound this latency, ULE dynamically adjusts the size of
slices it dispenses based on system load. The time slice has a minimum value to
prevent thrashing and balance throughput with latency. An interrupt handler calls
the scheduler to evaluate the time slice during every statclock tick. Using the stat-
clock to evaluate the time slice is a stochastic approach to slice accounting that is
efficient but only grossly accurate.

The scheduler must also work to prevent starvation of low-priority batch jobs
by higher-priority batch jobs. The traditional BSD scheduler avoided starvation by
periodically iterating over all threads waiting on the run queue to elevate the low-
priority threads and decrease the priority of higher-priority threads that had been
monopolizing the CPU. This algorithm violates the desire to run in constant time
independent of the number of system threads. As a result, the run queue for
batch-policy timeshare threads is kept in a similar fashion to the system callwheel,
also known as a calendar queue. A calendar queue is one in which the queue’s
head and tail rotate according to a clock or period. An element can be inserted
into a calendar queue many positions away from the head and gradually migrate
toward the head. Because this run queue is special purpose, it is kept separately
from the real-time and idle queues while interactive threads are kept along with
the real-time threads until they are no longer considered interactive.

The ULE scheduler creates a set of three arrays of queues for each CPU in the
system. Having per-CPU queues makes it possible to implement processor affinity
in a multiprocessor system.

One array of queues is the idle queue, where all idle threads are stored. The
array is arranged from highest to lowest priority. The second array of queues is
designated the realtime queue. Like the idle queue, it is arranged from highest to
lowest priority.

The third array of queues is designated the timeshare queue. Rather than
being arranged in priority order, the timeshare queues are managed as a calendar

Section 4.4 Thread Scheduling 121

122 Chapter 4 Process Management

queue. A pointer references the current entry. The pointer is advanced once per
system tick, although it may not advance on a tick until the currently selected
queue is empty. Since each thread is given a maximum time slice and no threads
may be added to the current position, the queue will drain in a bounded amount of
time. This requirement to empty the queue before advancing to the next queue
means that the wait time a thread experiences is not only a function of its priority
but also the system load.

Insertion into the timeshare queue is defined by the relative difference
between a thread’s priority and the best possible timeshare priority. High-priority
threads will be placed soon after the current position. Low-priority threads will
be placed far from the current position. This algorithm ensures that even the low-
est-priority timeshare thread will eventually make it to the selected queue and
execute in spite of higher-priority timeshare threads being available in other
queues. The difference in priorities of two threads will determine their ratio of
run-time. The higher-priority thread may be inserted ahead of the lower-priority
thread multiple times before the queue position catches up. This run-time ratio is
what grants timeshare CPU hogs with different nice values, different proportional
shares of the CPU.

These algorithms taken together determine the priorities and run times of
timesharing threads. They implement a dynamic tradeoff between latency and
throughput based on system load, thread behavior, and a range of effects based on
user-scheduling decisions made with nice. Many of the parameters governing the
limits of these algorithms can be explored in real time with the sysctl kern.sched
tree. The rest are compile-time constants that are documented at the top of the
scheduler source file (/sys/kern/sched_ule.c).

Threads are picked to run, in priority order, from the realtime queue until it is
empty, at which point threads from the currently selected timeshare queue will be
run. Threads in the idle queues are run only when the other two arrays of queues
are empty. Real-time and interrupt threads are always inserted into the realtime
queues so that they will have the least possible scheduling latency. Interactive
threads are also inserted into the realtime queue to keep the interactive response of
the system acceptable.

Noninteractive threads are put into the timeshare queues and are scheduled to
run when the queues are switched. Switching the queues guarantees that a thread
gets to run at least once every pass around the array of the timeshare queues
regardless of priority, thus ensuring fair sharing of the processor.

Multiprocessor Scheduling

A principal goal behind the development of ULE was improving performance on
multiprocessor systems. Good multiprocessing performance involves balancing
affinity with utilization and the preservation of the illusion of global scheduling in
a system with local scheduling queues. These decisions are implemented using a
CPU topology supplied by machine-dependent code that describes the relation-
ships between CPUs in the system. The state is evaluated whenever a thread
becomes runnable, a CPU idles, or a periodic task runs to rebalance the load.

These events form the entirety of the multiprocessor-aware scheduling decisions.
The topology system was devised to identify which CPUs were symmetric

multi-threading peers and then made generic to support other relationships. Some
examples are CPUs within a package, CPUs sharing a layer of cache, CPUs that are
local to a particular memory, or CPUs that share execution units such as in sym-
metric multi-threading. This topology is implemented as a tree of arbitrary depth
where each level describes some shared resource with a cost value and a bitmask
of CPUs sharing that resource. The root of the tree holds CPUs in a system with
branches to each socket, then shared cache, shared functional unit, etc. Since the
system is generic, it should be extensible to describe any future processor arrange-
ment. There is no restriction on the depth of the tree or requirement that all levels
are implemented.

Parsing this topology is a single recursive function called cpu_search(). It is
a path-aware, goal-based, tree-traversal function that may be started from arbitrary
subtrees. It may be asked to find the least- or most-loaded CPU that meets a given
criteria, such as a priority or load threshold. When considering load, it will con-
sider the load of the entire path, thus giving the potential for balancing sockets,
caches, chips, etc. This function is used as the basis for all multiprocessing-
related scheduling decisions. Typically, recursive functions are avoided in kernel
programming because there is potential for stack exhaustion. However, the depth
is fixed by the depth of the processor topology that typically does not exceed
three.

When a thread becomes runnable as a result of a wakeup, unlock, thread cre-
ation, or other event, the sched_pickcpu() function is called to decide where it will
run. ULE determines the best CPU based on the following criteria:

• Threads with hard affinity to a single CPU or short-term binding pick the only
allowed CPU.

• Interrupt threads that are being scheduled by their hardware interrupt handlers
are scheduled on the current CPU if their priority is high enough to run imme-
diately.

• Thread affinity is evaluated by walking backwards up the tree starting from the
last CPU on which it was scheduled until a package or CPU is found with valid
affinity that can run the thread immediately.

• The whole system is searched for the least-loaded CPU that is running a lower-
priority thread than the one to be scheduled.

• The whole system is searched for the least-loaded CPU.

• The results of these searches are compared to the current CPU to see if that
would give a preferable decision to improve locality among the sleeping and
waking threads as they may share some state.

This approach orders from most preferential to least preferential. The affinity
is valid if the sleep time of the thread was shorter than the product of a time

Section 4.4 Thread Scheduling 123

124 Chapter 4 Process Management

constant and a largest-cache-shared level in the topology. This computation
coarsely models the time required to push state out of the cache. Each thread has
a bitmap of allowed CPUs that is manipulated by cpuset and is passed to
cpu_search() for every decision. The locality between sleeper and waker can
improve producer/consumer type threading situations when they hav e shared
cache state but it can also cause underutilization when each thread would run
faster given its own CPU. These examples exemplify the types of decisions that
must be made with imperfect information.

The next major multiprocessing algorithm runs when a CPU idles. The CPU
sets a bit in a bitmask shared by all processors that says that it is idle. The idle
CPU calls tdq_idled() to search other CPUs for work that can be migrated, or
stolen in ULE terms, to keep the CPU busy. To avoid thrashing and excessive
migration, the kernel sets a load threshold that must be exceeded on another CPU
before some load will be taken. If any CPU exceeds this threshold, the idle CPU
will search its run queues for work to migrate. The highest-priority work that can
be scheduled on the idle CPU is then taken. This migration may be detrimental to
affinity but improves many latency-sensitive workloads.

Work may also be pushed to an idle CPU. Whenever an active CPU is about to
add work to its own run queue, it first checks to see if it has excess work and if
another CPU in the system is idle. If an idle CPU is found, then the thread is
migrated to the idle CPU using an interprocessor interrupt (IPI). Making a migra-
tion decision by inspecting a shared bitmask is much faster than scanning the run
queues of all the other processors. Seeking out idle processors when adding a new
task works well because it spreads the load when it is presented to the system.

The last major multiprocessing algorithm is the long-term load balancer. This
form of migration, called push migration, is done by the system on a periodic
basis and more aggressively offloads work to other processors in the system.
Since the two scheduling events that distribute load only run when a thread is
added and when a CPU idles, it is possible to have a long-term imbalance where
more threads are running on one CPU than another. Push migration ensures fair-
ness among the runnable threads. For example, with three runnable threads on a
two-processor system, it would be unfair for one thread to get a processor to itself
while the other two had to share the second processor. To fulfill the goal of emu-
lating a fair global run queue, ULE must periodically shuffle threads to keep the
system balanced. By pushing a thread from the processor with two threads to the
processor with one thread, no single thread would get to run alone indefinitely.
An ideal implementation would give each thread an average of 66 percent of the
CPU available from a single CPU.

The long-term load balancer balances the worst path pair in the hierarchy to
avoid socket-, cache-, and chip-level imbalances. It runs from an interrupt handler
in a randomized interval of roughly 1 second. The interval is randomized to pre-
vent harmonic relationships between periodic threads and the periodic load bal-
ancer. In much the same way a stochastic sampling profiler works, the balancer
picks the most- and least-loaded path from the current tree position and then recur-
sively balances those paths by migrating threads.

The scheduler must decide whether it is necessary to send an IPI when
adding a thread to a remote CPU, just as it must decide whether adding a thread to
the current CPU should preempt the current thread. The decision is made based
on the current priority of the thread running on the target CPU and the priority of
the thread being scheduled. Preempting whenever the pushed thread has a higher
priority than the currently running thread results in excessive interrupts and pre-
emptions. Thus, a thread must exceed the timesharing priority before an IPI is
generated. This requirement trades some latency in batch jobs for improved per-
formance.

A notable omission to the load balancing events is thread preemption. Pre-
empted threads are simply added back to the run queue of the current CPU. An
additional load-balancing decision can be made here. However, the runtime of the
preempting thread is not known and the preempted thread may maintain affinity.
The scheduler optimistically chooses to wait and assume affinity is more valuable
than latency.

Each CPU in the system has its own set of run queues, statistics, and a lock to
protect these fields in a thread-queue structure. During migration or a remote
wakeup, a lock may be acquired by a CPU other than the one owning the queue.
In practice, contention on these locks is rare unless the workload exhibits grossly
overactive context switching and thread migration, typically suggesting a higher-
level problem. Whenever a pair of these locks is required, such as for load balanc-
ing, a special function locks the pair with a defined lock order. The lock order is
the lock with the lowest pointer value first. These per-CPU locks and queues
resulted in nearly linear scaling with well-behaved workloads in cases where per-
formance previously did not improve with the addition of new CPUs and occasion-
ally have decreased as new CPUs introduced more contention. The design has
scaled well from single CPUs to 512-thread network processors.

Adaptive Idle

Many workloads feature frequent interrupts that do little work but need low
latency. These workloads are common in low-throughput, high-packet-rate net-
working. For these workloads, the cost of waking the CPU from a low-power
state, possibly with an IPI from another CPU, is excessive. To improve perfor-
mance, ULE includes a feature that optimistically spins, waiting for load when the
CPU has been context switching at a rate exceeding a set frequency. When this
frequency lowers or we exceed the adaptive spin count, the CPU is put into a
deeper sleep.

Traditional Timeshare Thread Scheduling

The traditional FreeBSD timeshare-scheduling algorithm is based on multilevel
feedback queues. The system adjusts the priority of a thread dynamically to
reflect resource requirements (e.g., being blocked awaiting an event) and the
amount of resources consumed by the thread (e.g., CPU time). Threads are moved
between run queues based on changes in their scheduling priority (hence the word

Section 4.4 Thread Scheduling 125

126 Chapter 4 Process Management

‘‘feedback’’ in the name multilevel feedback queue). When a thread other than
the currently running thread attains a higher priority (by having that priority either
assigned or given when it is awakened), the system switches to that thread imme-
diately if the current thread is in user mode. Otherwise, the system switches to the
higher-priority thread as soon as the current thread exits the kernel. The system
tailors this short-term-scheduling algorithm to favor interactive jobs by raising
the scheduling priority of threads that are blocked waiting for I/O for 1 or more
seconds and by lowering the priority of threads that accumulate significant
amounts of CPU time.

The time quantum is always 0.1 second. This value was empirically found to
be the longest quantum that could be used without loss of the desired response for
interactive jobs such as editors. Perhaps surprisingly, the time quantum remained
unchanged over the 30-year lifetime of this scheduler. Although the time quantum
was originally selected on centralized timesharing systems with many users, it has
remained correct for decentralized laptops. While laptop users expect a response
time faster than that anticipated by the original timesharing users, the shorter run
queues on the single-user laptop made a shorter quantum unnecessary.

4.5 Process Creation

In FreeBSD, new processes are created with the fork family of system calls. The
fork system call creates a complete copy of the parent process. The rfork system
call creates a new process entry that shares a selected set of resources from its par-
ent rather than making copies of everything. The vfork system call differs from
fork in how the virtual-memory resources are treated; vfork also ensures that the
parent will not run until the child does either an exec or exit system call. The
vfork system call is described in Section 6.6.

The process created by a fork is termed a child process of the original parent
process. From a user’s point of view, the child process is an exact duplicate of the
parent process except for two values: the child PID and the parent PID. A call to
fork returns the child PID to the parent and zero to the child process. Thus, a pro-
gram can identify whether it is the parent or child process after a fork by checking
this return value.

A fork involves three main steps:

1. Allocating and initializing a new process structure for the child process

2. Duplicating the context of the parent (including the thread structure and virtual-
memory resources) for the child process

3. Scheduling the child process to run

The second step is intimately related to the operation of the memory-management
facilities described in Chapter 6. Consequently, only those actions related to
process management will be described here.

The kernel begins by allocating memory for the new process and thread
entries (see Figure 4.1). These thread and process entries are initialized in three
steps: One part is copied from the parent’s corresponding structure, another part is
zeroed, and the rest is explicitly initialized. The zeroed fields include recent CPU
utilization, wait channel, swap and sleep time, timers, tracing, and pending-signal
information. The copied portions include all the privileges and limitations inher-
ited from the parent, including the following:

• The process group and session

• The signal state (ignored, caught, and blocked signal masks)

• The p_nice scheduling parameter

• A reference to the parent’s credential

• A reference to the parent’s set of open files

• A reference to the parent’s limits

The child’s explicitly set information includes:

• The process’s signal-actions structure

• Zeroing the process’s statistics structure

• Entry onto the list of all processes

• Entry onto the child list of the parent and the back pointer to the parent

• Entry onto the parent’s process-group list

• Entry onto the hash structure that allows the process to be looked up by its PID

• A new PID for the process

The new PID must be unique among all processes. Early versions of BSD verified
the uniqueness of a PID by performing a linear search of the process table. This
search became infeasible on large systems with many processes. FreeBSD main-
tains a range of unallocated PIDs between lastpid and pidchecked. It allocates a
new PID by incrementing and then using the value of lastpid. When the newly
selected PID reaches pidchecked, the system calculates a new range of unused
PIDs by making a single scan of all existing processes (not just the active ones are
scanned—zombie and swapped processes also are checked).

The final step is to copy the parent’s address space. To duplicate a process’s
image, the kernel invokes the memory-management facilities through a call to
vm_forkproc(). The vm_forkproc() routine is passed a pointer to the initialized
process structure for the child process and is expected to allocate all the resources
that the child will need to execute. The call to vm_forkproc() returns through a
different execution path directly into user mode in the child process and via the
normal execution path in the parent process.

Section 4.5 Process Creation 127

128 Chapter 4 Process Management

Once the child process is fully built, its thread is made known to the scheduler
by being placed on the run queue. The alternate return path will set the return
value of fork system call in the child to 0. The normal execution return path in the
parent sets the return value of the fork system call to be the new PID.

4.6 Process Termination

Processes terminate either voluntarily through an exit system call or involuntarily
as the result of a signal. In either case, process termination causes a status code
to be returned to the parent of the terminating process (if the parent still exists).
This termination status is returned through the wait4 system call. The wait4 call
permits an application to request the status of both stopped and terminated pro-
cesses. The wait4 request can wait for any direct child of the parent, or it can
wait selectively for a single child process or for only its children in a particular
process group. Wait4 can also request statistics describing the resource utiliza-
tion of a terminated child process. Finally, the wait4 interface allows a process
to request status codes without blocking.

Within the kernel, a process terminates by calling the exit() routine. The exit()
routine first kills off any other threads associated with the process. The termination
of other threads is done as follows:

• Any thread entering the kernel from userspace will thread_exit() when it traps
into the kernel.

• Any thread already in the kernel and attempting to sleep will return immediately
with EINTR or EAGAIN, which will force them back out to userspace, freeing
resources as they go. When the thread attempts to return to userspace, it will
instead hit exit().

The exit() routine then cleans up the process’s kernel-mode execution state by
doing the following:

• Canceling any pending timers

• Releasing virtual-memory resources

• Closing open descriptors

• Handling stopped or traced child processes

With the kernel-mode state reset, the process is then removed from the list of
active processes—the allproc list—and is placed on the list of zombie processes
pointed to by zombproc. The process state is changed to show that no thread is
currently running. The exit() routine then does the following:

• Records the termination status in the p_xstat field of the process structure

• Bundles up a copy of the process’s accumulated resource usage (for accounting
purposes) and hangs this structure from the p_ru field of the process structure

• Notifies the deceased process’s parent

Finally, after the parent has been notified, the cpu_exit() routine frees any machine-
dependent process resources and arranges for a final context switch from the process.

The wait4 call works by searching a process’s descendant processes for ones
that have entered the ZOMBIE state (e.g., that have terminated). If a process in
ZOMBIE state is found that matches the wait criterion, the system will copy the ter-
mination status from the deceased process. The process entry then is taken off the
zombie list and is freed. Note that resources used by children of a process are accu-
mulated only as a result of a wait4 system call. When users are trying to analyze the
behavior of a long-running program, they will find it useful to be able to obtain this
resource usage information before the termination of a process. Although the infor-
mation is available inside the kernel and within the context of that program, there is
no interface to request it outside that context until process termination.

4.7 Signals

Signals were originally designed to model exceptional events, such as an attempt
by a user to kill a runaway program. They were not intended to be used as a gen-
eral interprocess-communication mechanism, and thus no attempt was made to
make them reliable. In earlier systems, whenever a signal was caught, its action
was reset to the default action. The introduction of job control brought much
more frequent use of signals and made more visible a problem that faster proces-
sors also exacerbated: If two signals were sent rapidly, the second could cause the
process to die, even though a signal handler had been set up to catch the first sig-
nal. At this time, reliability became desirable, so the developers designed a new
framework that contained the old capabilities as a subset while accommodating
new mechanisms.

The signal facilities found in FreeBSD are designed around a virtual-machine
model, in which system calls are considered to be the parallel of a machine’s hard-
ware instruction set. Signals are the software equivalent of traps or interrupts, and
signal-handling routines do the equivalent function of interrupt or trap service rou-
tines. Just as machines provide a mechanism for blocking hardware interrupts so
that consistent access to data structures can be ensured, the signal facilities allow
software signals to be masked. Finally, because complex run-time stack environ-
ments may be required, signals, like interrupts, may be handled on an alternate
application-provided run-time stack. These machine models are summarized in
Table 4.4

Section 4.7 Signals 129

130 Chapter 4 Process Management

Table 4.4 Comparison of hardware-machine operations and the corresponding software
virtual-machine operations.

Hardware Machine Software Virtual Machine

instruction set set of system calls

restartable instructions restartable system calls

interrupts/traps signals

interrupt/trap handlers signal handlers

blocking interrupts masking signals

interrupt stack signal stack

FreeBSD defines a set of signals for software and hardware conditions that
may arise during the normal execution of a program; these signals are listed in
Table 4.5. Signals may be delivered to a process through application-specified
signal handlers or may result in default actions, such as process termination, car-
ried out by the system. FreeBSD signals are designed to be software equivalents
of hardware interrupts or traps.

Each signal has an associated action that defines how it should be handled
when it is delivered to a process. If a process contains more than one thread, each
thread may specify whether it wishes to take action for each signal. Typically, one
thread elects to handle all the process-related signals such as interrupt, stop, and
continue. All the other threads in the process request that the process-related sig-
nals be masked out. Thread-specific signals such as segmentation fault, floating
point exception, and illegal instruction are handled by the thread that caused them.
Thus, all threads typically elect to receive these signals. The precise disposition of
signals to threads is given in the later subsection on posting a signal. First, we
describe the possible actions that can be requested.

The disposition of signals is specified on a per-process basis. If a process has
not specified an action for a signal, it is given a default action (see Table 4.5) that
may be any one of the following:

• Ignoring the signal

• Terminating all the threads in the process

• Terminating all the threads in the process after generating a core file that con-
tains the process’s execution state at the time the signal was delivered

• Stopping all the threads in the process

• Resuming the execution of all the threads in the process

An application program can use the sigaction system call to specify an action for a
signal, including these choices:

Table 4.5 Signals defined in FreeBSD.

Name Default action Description

SIGHUP terminate process terminal line hangup

SIGINT terminate process interrupt program

SIGQUIT create core image quit program

SIGILL create core image illegal instruction

SIGTRAP create core image trace trap

SIGABRT create core image abort

SIGEMT create core image emulate instruction executed

SIGFPE create core image floating-point exception

SIGKILL terminate process kill program

SIGBUS create core image bus error

SIGSEGV create core image segmentation violation

SIGSYS create core image bad argument to system call

SIGPIPE terminate process write on a pipe with no one to read it

SIGALRM terminate process real-time timer expired

SIGTERM terminate process software termination signal

SIGURG discard signal urgent condition on I/O channel

SIGSTOP stop process stop signal not from terminal

SIGTSTP stop process stop signal from terminal

SIGCONT discard signal a stopped process is being continued

SIGCHLD discard signal notification to parent on child stop or exit

SIGTTIN stop process read on terminal by background process

SIGTTOU stop process write to terminal by background process

SIGIO discard signal I/O possible on a descriptor

SIGXCPU terminate process CPU time limit exceeded

SIGXFSZ terminate process file-size limit exceeded

SIGVTALRM terminate process virtual timer expired

SIGPROF terminate process profiling timer expired

SIGWINCH discard signal window size changed

SIGINFO discard signal information request

SIGUSR1 terminate process user-defined signal 1

SIGUSR2 terminate process user-defined signal 2

SIGTHR terminate process used by thread library

SIGLIBRT terminate process used by real-time library

• Taking the default action

• Ignoring the signal

• Catching the signal with a handler

Section 4.7 Signals 131

132 Chapter 4 Process Management

A signal handler is a user-mode routine that the system will invoke when the sig-
nal is received by the process. The handler is said to catch the signal. The two
signals SIGSTOP and SIGKILL cannot be masked, ignored, or caught; this restric-
tion ensures that a software mechanism exists for stopping and killing runaway
processes. It is not possible for a process to decide which signals would cause the
creation of a core file by default, but it is possible for a process to prevent the cre-
ation of such a file by ignoring, blocking, or catching the signal.

Signals are posted to a process by the system when it detects a hardware
ev ent, such as an illegal instruction, or a software event, such as a stop request
from the terminal. A signal may also be posted by another process through the kill
system call. A sending process may post signals to only those receiving processes
that have the same effective user identifier (unless the sender is the superuser). A
single exception to this rule is the continue signal, SIGCONT, which always can
be sent to any descendant of the sending process. The reason for this exception is
to allow users to restart a setuid program that they hav e stopped from their
keyboard.

Like hardware interrupts, each thread in a process can mask the delivery of
signals. The execution state of each thread contains a set of signals currently
masked from delivery. If a signal posted to a thread is being masked, the signal
is recorded in the thread’s set of pending signals, but no action is taken until the
signal is unmasked. The sigprocmask system call modifies the set of masked sig-
nals for a thread. It can add to the set of masked signals, delete from the set of
masked signals, or replace the set of masked signals. Although the delivery of
the SIGCONT signal to the signal handler of a process may be masked, the action
of resuming that stopped process is not masked.

Tw o other signal-related system calls are sigsuspend and sigaltstack. The
sigsuspend call permits a thread to relinquish the processor until that thread
receives a signal. This facility is similar to the system’s sleep() routine. The
sigaltstack call allows a process to specify a run-time stack to use in signal
delivery. By default, the system will deliver signals to a process on the latter’s
normal run-time stack. In some applications, however, this default is unaccept-
able. For example, if an application has many threads that have carved up the
normal run-time stack into many small pieces, it is far more memory efficient to
create one large signal stack on which all the threads handle their signals than it
is to reserve space for signals on each thread’s stack.

The final signal-related facility is the sigreturn system call. Sigreturn is the
equivalent of a user-level load-processor-context operation. The kernel is passed a
pointer to a (machine-dependent) context block that describes the user-level
execution state of a thread. The sigreturn system call restores state and resumes
execution after a normal return from a user’s signal handler.

Posting of a Signal

The implementation of signals is broken up into two parts: posting a signal to a
process and recognizing the signal and delivering it to the target thread. Signals
may be posted by any process or by code that executes at interrupt level. Signal

delivery normally takes place within the context of the receiving thread. When a
signal forces a process to be stopped, the action can be carried out on all the
threads associated with that process when the signal is posted.

A signal is posted to a single process with the psignal() routine or to a group
of processes with the gsignal() routine. The gsignal() routine invokes psignal()
for each process in the specified process group. The actions associated with post-
ing a signal are straightforward, but the details are messy. In theory, posting a sig-
nal to a process simply causes the appropriate signal to be added to the set of
pending signals for the appropriate thread within the process, and the selected
thread is then set to run (or is awakened if it was sleeping at an interruptible prior-
ity level).

The disposition of signals is set on a per-process basis. The kernel first
checks to see if the signal should be ignored, in which case it is discarded. If the
process has specified the default action, then the default action is taken. If the
process has specified a signal handler that should be run, then the kernel must
select the appropriate thread within the process that should handle the signal.
When a signal is raised because of the action of the currently running thread (for
example, a segment fault), the kernel will only try to deliver it to that thread. If
the thread is masking the signal, then the signal will be held pending until it is
unmasked. When a process-related signal is sent (for example, an interrupt), then
the kernel searches all the threads associated with the process, searching for one
that does not have the signal masked. The signal is delivered to the first thread
that is found with the signal unmasked. If all threads associated with the process
are masking the signal, then the signal is left in the list of signals pending for the
process for later delivery.

Each time that a thread returns from a call to sleep() (with the PCATCH flag
set) or prepares to exit the system after processing a system call or trap, it uses the
cursig() routine to check whether a signal is pending delivery. The cursig() rou-
tine determines the next signal that should be delivered to a thread by inspecting
the process’s signal list, p_siglist, to see if it has any signals that should be propa-
gated to the thread’s signal list, td_siglist. It then inspects the td_siglist field to
check for any signals that should be delivered to the thread. If a signal is pending
and must be delivered in the thread’s context, it is removed from the pending set,
and the thread invokes the postsig() routine to take the appropriate action.

The work of psignal() is a patchwork of special cases required by the
process-debugging and job-control facilities and by intrinsic properties associated
with signals. The steps involved in posting a signal are as follows:

1. Determine the action that the receiving process will take when the signal is
delivered. This information is kept in the p_sigignore and p_sigcatch fields of
the process’s process structure. If a process is not ignoring or catching a sig-
nal, the default action is presumed to apply. If a process is being traced by its
parent—that is, by a debugger—the parent process is always permitted to
intercede before the signal is delivered. If the process is ignoring the signal,
psignal()’s work is done and the routine can return.

Section 4.7 Signals 133

134 Chapter 4 Process Management

2. Given an action, psignal() selects the appropriate thread and adds the signal to
the thread’s set of pending signals, td_siglist, and then does any implicit
actions specific to that signal. For example, if the signal is the continue signal,
SIGCONT, any pending signals that would normally cause the process to stop,
such as SIGTTOU, are removed.

3. Next, psignal() checks whether the signal is being masked. If the thread is
currently masking delivery of the signal, psignal()’s work is complete and it
may return.

4. If the signal is not being masked, psignal() must either perform the action
directly or arrange for the thread to execute so that the thread will take the
action associated with the signal. Before setting the thread to a runnable state,
psignal() must take different courses of action depending on the state of the
thread as follows:

SLEEPING The thread is blocked awaiting an event. If the thread is sleeping
noninterruptibly, then nothing further can be done. Otherwise, the
kernel can apply the action—either directly or indirectly—by wak-
ing up the thread. There are two actions that can be applied directly.
For signals that cause a process to stop, all the threads in the process
are placed in the STOPPED state, and the parent process is notified of
the state change by a SIGCHLD signal being posted to it. For signals
that are ignored by default, the signal is removed from the signal list
and the work is complete. Otherwise, the action associated with the
signal must be done in the context of the receiving thread, and the
thread is placed onto the run queue with a call to setrunnable().

STOPPED The process is stopped by a signal or because it is being debugged. If
the process is being debugged, then there is nothing to do until the
controlling process permits it to run again. If the process is stopped
by a signal and the posted signal would cause the process to stop
again, then there is nothing to do, and the posted signal is discarded.
Otherwise, the signal is either a continue signal or a signal that would
normally cause the process to terminate (unless the signal is caught).
If the signal is SIGCONT, then all the threads in the process that were
previously running are set running again. Any threads in the process
that were blocked waiting on an event are returned to the SLEEPING
state. If the signal is SIGKILL, then all the threads in the process are
set running again no matter what, so that they can terminate the next
time that they are scheduled to run. Otherwise, the signal causes the
threads in the process to be made runnable, but the threads are not
placed on the run queue because they must wait for a continue signal.

RUNNABLE, NEW, ZOMBIE
If a thread scheduled to receive a signal is not the currently execut-
ing thread, its TDF_NEEDRESCHED flag is set, so that the signal will
be noticed by the receiving thread as soon as possible.

Step 1—sendsig()

Step 3—sigtramp() returnsStep 2—sigtramp() called

Step 4—sigreturn()

framen

signal context

framen

signal context

framen

signal context

framen

signal handler

Figure 4.6 Delivery of a signal to a process. Step 1: The kernel places a signal context on
the user’s stack. Step 2: The kernel places a signal-handler frame on the user’s stack and
arranges to start running the user process in the sigtramp() code. When the sigtramp() rou-
tine starts running, it calls the user’s signal handler. Step 3: The user’s signal handler re-
turns to the sigtramp() routine, which pops the signal-handler context from the user’s stack.
Step 4: The sigtramp() routine finishes by calling the sigreturn system call, which restores
the previous user context from the signal context, pops the signal context from the stack,
and resumes the user’s process at the point at which it was running before the signal oc-
curred.

Delivering a Signal

Most actions associated with delivering a signal to a thread are carried out within
the context of that thread. A thread checks its td_siglist field for pending signals
at least once each time that it enters the system by calling cursig().

If cursig() determines that there are any unmasked signals in the thread’s
signal list, it calls issignal() to find the first unmasked signal in the list. If deliv-
ering the signal causes a signal handler to be invoked or a core dump to be made,
the caller is notified that a signal is pending, and the delivery is done by a call to
postsig(). That is,

if (sig = cursig(curthread))

postsig(sig);

Otherwise, the action associated with the signal is done within issignal() (these
actions mimic the actions carried out by psignal()).

Section 4.7 Signals 135

136 Chapter 4 Process Management

The postsig() routine has two cases to handle:

1. Producing a core dump

2. Invoking a signal handler

The former task is done by the coredump() routine and is always followed by a call
to exit() to force process termination. To inv oke a signal handler, postsig() first cal-
culates a set of masked signals and installs that set in td_sigmask. This set normally
includes the signal being delivered, so that the signal handler will not be invoked
recursively by the same signal. Any signals specified in the sigaction system call at
the time the handler was installed also will be included. The postsig() routine then
calls the sendsig() routine to arrange for the signal handler to execute immediately
after the thread returns to user mode. Finally, the signal in td_siglist is cleared and
postsig() returns, presumably to be followed by a return to user mode.

The implementation of the sendsig() routine is machine dependent.
Figure 4.6 shows the flow of control associated with signal delivery. If an alter-
nate stack has been requested, the user’s stack pointer is switched to point at that
stack. An argument list and the thread’s current user-mode execution context are
stored by the kernel on the (possibly new) stack. The state of the thread is manip-
ulated so that, on return to user mode, a call will be made immediately to a body
of code termed the signal-trampoline code. This code invokes the signal handler
(between steps 2 and 3 in Figure 4.6) with the appropriate argument list, and, if
the handler returns, makes a sigreturn system call to reset the thread’s signal state
to the state that existed before the signal. The signal-trampoline code, sigcode()
contains several assembly-language instructions that are copied onto the thread’s
stack when the signal is about to be delivered. It is the responsibility of the tram-
poline code to call the registered signal handler, handle any possible errors, and
then return the thread to normal execution. The trampoline code is implemented
in assembly language because it must directly manipulate CPU registers, including
those relating to the stack and return value.

4.8 Process Groups and Sessions

Each process in the system is associated with a process group. The group of pro-
cesses in a process group is sometimes referred to as a job and is manipulated as a
single entity by processes such as the shell. Some signals (e.g., SIGINT) are deliv-
ered to all members of a process group, causing the group as a whole to suspend
or resume execution, or to be interrupted or terminated.

Sessions were designed by the IEEE POSIX.1003.1 Working Group with the
intent of fixing a long-standing security problem in UNIX—namely, that processes
could modify the state of terminals that were trusted by another user’s processes.
A session is a collection of process groups, and all members of a process group
are members of the same session. In FreeBSD, when a user first logs onto the sys-
tem, he is entered into a new session. Each session has a controlling process,

which is normally the user’s login shell. All subsequent processes created by the
user are part of process groups within this session, unless he explicitly creates a
new session. Each session also has an associated login name, which is usually the
user’s login name. This name can be changed by only the superuser.

Each session is associated with a terminal, known as its controlling terminal.
Each controlling terminal has a process group associated with it. Normally, only
processes that are in the terminal’s current process group read from or write to the
terminal, allowing arbitration of a terminal between several different jobs. When
the controlling process exits, access to the terminal is taken away from any
remaining processes within the session.

Newly created processes are assigned process IDs distinct from all already-
existing processes and process groups, and are placed in the same process group
and session as their parent. Any process may set its process group equal to its
process ID (thus creating a new process group) or to the value of any process
group within its session. In addition, any process may create a new session, as
long as it is not already a process-group leader.

Process Groups

A process group is a collection of related processes, such as a shell pipeline, all of
which have been assigned the same process-group identifier. The process-group
identifier is the same as the PID of the process group’s initial member; thus,
process-group identifiers share the namespace of process identifiers. When a new
process group is created, the kernel allocates a process-group structure to be asso-
ciated with it. This process-group structure is entered into a process-group hash
table so that it can be found quickly.

A process is always a member of a single process group. When it is created,
each process is placed into the process group of its parent process. Programs such
as shells create new process groups, usually placing related child processes into a
group. A process can change its own process group or that of one of its child
process by creating a new process group or by moving a process into an existing
process group using the setpgid system call. For example, when a shell wants to
set up a new pipeline, it wants to put the processes in the pipeline into a process
group different from its own so that the pipeline can be controlled independently
of the shell. The shell starts by creating the first process in the pipeline, which ini-
tially has the same process-group identifier as the shell. Before executing the tar-
get program, the first process does a setpgid to set its process-group identifier to
the same value as its PID. This system call creates a new process group, with the
child process as the process-group leader of the process group. As the shell starts
each additional process for the pipeline, each child process uses setpgid to join the
existing process group.

In our example of a shell creating a new pipeline, there is a race condition.
As the additional processes in the pipeline are spawned by the shell, each is placed
in the process group created by the first process in the pipeline. These conven-
tions are enforced by the setpgid system call. It restricts the set of process-group
identifiers to which a process may be set to either a value equal to its own PID or

Section 4.8 Process Groups and Sessions 137

138 Chapter 4 Process Management

to a value of another process-group identifier in its session. Unfortunately, if a
pipeline process other than the process-group leader is created before the process-
group leader has completed its setpgid call, the setpgid call to join the process
group will fail. As the setpgid call permits parents to set the process group of
their children (within some limits imposed by security concerns), the shell can
avoid this race by making the setpgid call to change the child’s process group both
in the newly created child and in the parent shell. This algorithm guarantees that,
no matter which process runs first, the process group will exist with the correct
process-group leader. The shell can also avoid the race by using the vfork variant
of the fork system call that forces the parent process to wait until the child process
either has done an exec system call or has exited. In addition, if the initial mem-
bers of the process group exit before all the pipeline members have joined the
group—for example, if the process-group leader exits before the second process
joins the group, the setpgid call could fail. The shell can avoid this race by ensur-
ing that all child processes are placed into the process group without calling the
wait system call, usually by blocking the SIGCHLD signal so that the shell will not
be notified of a child exit until after all the children have been placed into the
process group. As long as a process-group member exists, even as a zombie
process, additional processes can join the process group.

There are additional restrictions on the setpgid system call. A process may
join process groups only within its current session (discussed in the next section),
and it cannot have done an exec system call. The latter restriction is intended to
avoid unexpected behavior if a process is moved into a different process group
after it has begun execution. Therefore, when a shell calls setpgid in both parent
and child processes after a fork, the call made by the parent will fail if the child
has already made an exec call. However, the child will already have joined the
process group successfully, and the failure is innocuous.

Sessions

Just as a set of related processes are collected into a process group, a set of
process groups are collected into a session. A session is a set of one or more
process groups and may be associated with a terminal device. The main uses for
sessions are to collect a user’s login shell and the jobs that it spawns and to create
an isolated environment for a daemon process and its children. Any process that
is not already a process-group leader may create a session using the setsid system
call, becoming the session leader and the only member of the session. Creating a
session also creates a new process group, where the process-group ID is the PID of
the process creating the session, and the process is the process-group leader. By
definition, all members of a process group are members of the same session.

A session may have an associated controlling terminal that is used by default
for communicating with the user. Only the session leader may allocate a control-
ling terminal for the session, becoming a controlling process when it does so. A
device can be the controlling terminal for only one session at a time. The terminal
I/O system (described in Section 8.6) synchronizes access to a terminal by permit-
ting only a single process group to be the foreground process group for a

controlling terminal at any time. Some terminal operations are restricted to
members of the session. A session can have at most one controlling terminal.
When a session is created, the session leader is dissociated from its controlling ter-
minal if it had one.

A login session is created by a program that prepares a terminal for a user to
log into the system. That process normally executes a shell for the user, and thus
the shell is created as the controlling process. An example of a typical login ses-
sion is shown in Figure 4.7.

The data structures used to support sessions and process groups in FreeBSD are
shown in Figure 4.8. This figure parallels the process layout shown in Figure 4.7.
The pg_members field of a process-group structure heads the list of member pro-
cesses; these processes are linked together through the p_pglist list entry in the
process structure. In addition, each process has a reference to its process-group
structure in the p_pgrp field of the process structure. Each process-group struc-
ture has a pointer to its enclosing session. The session structure tracks per-login
information, including the process that created and controls the session, the con-
trolling terminal for the session, and the login name associated with the session.
Tw o processes wanting to determine whether they are in the same session can tra-
verse their p_pgrp pointers to find their process-group structures and then compare
the pg_session pointers to see whether the latter are the same.

Job Control

Job control is a facility first provided by the C shell [Joy, 1994] and today is pro-
vided by most shells. It permits a user to control the operation of groups of pro-
cesses termed jobs. The most important facilities provided by job control are the
abilities to suspend and restart jobs and to do the multiplexing of access to the

Figure 4.7 A session and its processes. In this example, process 3 is the initial member
of the session—the session leader—and is referred to as the controlling process if it has a
controlling terminal. It is contained in its own process group, 3. Process 3 has spawned
two jobs: One is a pipeline composed of processes 4 and 5, grouped together in process
group 4, and the other one is process 8, which is in its own process group, 8. No process-
group leader can create a new session; thus, process 3, 4, or 8 could not start its own ses-
sion, but process 5 would be allowed to do so.

Session

process 8

process group 8

controlling
process 3

process group 3

process 4 process 5

process group 4

Section 4.8 Process Groups and Sessions 139

140 Chapter 4 Process Management

• • •

pg_session

pg_session

pg_session

s_login

p_pglist

p_pgrp

p_pgrp

p_pgrp

p_pgrp

pg_hash

LISTHEAD pgrphashtbl

pg_members

pg_members

pg_hash

p_pglist

s_ttyvp

t_termios

t_winsize

struct session

struct pgrp

struct tty

struct pgrp

t_session

s_ttyp

struct pgrp

pg_hash

pg_members p_pglist

s_leader

t_pgrp (foreground process group)

p_pglistprocess 8

process 4 process 5

process 3

pg_id = 8

pg_id = 4

pg_id = 3

pg_jobc = 0

pg_jobc = 2

pg_jobc = 1

s_count = 3

Figure 4.8 Process-group organization.

user’s terminal. Only one job at a time is given control of the terminal and is able
to read from and write to the terminal. This facility provides some of the advan-
tages of window systems, although job control is sufficiently different that it is
often used in combination with window systems. Job control is implemented on
top of the process group, session, and signal facilities.

Each job is a process group. Outside the kernel, a shell manipulates a job by
sending signals to the job’s process group with the killpg system call, which deliv-
ers a signal to all the processes in a process group. Within the system, the two
main users of process groups are the terminal handler (Section 8.6) and the inter-
process-communication facilities (Chapter 12). Both facilities record process-
group identifiers in private data structures and use them in delivering signals. The
terminal handler, in addition, uses process groups to multiplex access to the con-
trolling terminal.

For example, special characters typed at the keyboard of the terminal (e.g.,
control-C or control-\) result in a signal being sent to all processes in one job in

the session; that job is in the foreground, whereas all other jobs in the session are
in the background. A shell may change the foreground job by using the
tcsetpgrp() function, implemented by the TIOCSPGRP ioctl on the controlling ter-
minal. Background jobs will be sent the SIGTTIN signal if they attempt to read
from the terminal, normally stopping the job. The SIGTTOU signal is sent to back-
ground jobs that attempt an ioctl system call that would alter the state of the termi-
nal. The SIGTTOU signal is also sent if the TOSTOP option is set for the terminal,
and an attempt is made to write to the terminal.

The foreground process group for a session is stored in the t_pgrp field of the
session’s controlling terminal tty structure (see Section 8.6). All other process
groups within the session are in the background. In Figure 4.8, the session leader
has set the foreground process group for its controlling terminal to be its own
process group. Thus, its two jobs are in the background, and the terminal input
and output will be controlled by the session-leader shell. Job control is limited to
processes contained within the same session and to the terminal associated with
the session. Only the members of the session are permitted to reassign the con-
trolling terminal among the process groups within the session.

If a controlling process exits, the system revokes further access to the con-
trolling terminal and sends a SIGHUP signal to the foreground process group. If a
process such as a job-control shell exits, each process group that it created will
become an orphaned process group: a process group in which no member has a
parent that is a member of the same session but of a different process group.
Such a parent would normally be a job-control shell capable of resuming stopped
child processes. The pg_jobc field in Figure 4.8 counts the number of processes
within the process group that have the controlling process as a parent. When that
count goes to zero, the process group is orphaned. If no action were taken by the
system, any orphaned process groups that were stopped at the time that they
became orphaned would be unlikely ever to resume. Historically, the system
dealt harshly with such stopped processes: They were killed. In POSIX and
FreeBSD, an orphaned process group is sent a hangup and a continue signal if any
of its members are stopped when it becomes orphaned by the exit of a parent
process. If processes choose to catch or ignore the hangup signal, they can con-
tinue running after becoming orphaned. The system keeps a count of processes in
each process group that have a parent process in another process group of the
same session. When a process exits, this count is adjusted for the process groups
of all child processes. If the count reaches zero, the process group has become
orphaned. Note that a process can be a member of an orphaned process group
ev en if its original parent process is still alive. For example, if a shell starts a job
as a single process A, that process then forks to create process B, and the parent
shell exits; then process B is a member of an orphaned process group but is not
an orphaned process.

To avoid stopping members of orphaned process groups if they try to read or
write to their controlling terminal, the kernel does not send them SIGTTIN and
SIGTTOU signals, and prevents them from stopping in response to those signals.
Instead, their attempts to read or write to the terminal produce an error.

Section 4.8 Process Groups and Sessions 141

142 Chapter 4 Process Management

4.9 Process Debugging

FreeBSD provides a simple facility for controlling and debugging the execution
of a process. This facility, accessed through the ptrace system call, permits a
parent process to control a child process’s execution by manipulating user- and
kernel-mode execution states. In particular, with ptrace, a parent process can do
the following operations on a child process:

• Attaches to an existing process to begin debugging it

• Reads and writes address space and registers

• Intercepts signals posted to the process

• Single steps and continues the execution of the process

• Terminates the execution of the process

The ptrace call is used almost exclusively by program debuggers, such as lldb.
When a process is being traced, any signals posted to that process cause it to

enter the STOPPED state. The parent process is notified with a SIGCHLD signal
and may interrogate the status of the child with the wait4 system call. On most
machines, trace traps, generated when a process is single stepped, and breakpoint
faults, caused by a process executing a breakpoint instruction, are translated by
FreeBSD into SIGTRAP signals. Because signals posted to a traced process cause
it to stop and result in the parent being notified, a program’s execution can be con-
trolled easily.

To start a program that is to be debugged, the debugger first creates a child
process with a fork system call. After the fork, the child process uses a ptrace call
that causes the process to be flagged as ‘‘traced’’ by setting the P_TRACED bit in
the p_flag field of the process structure. The child process then sets the trace trap
bit in the process’s processor status word and calls execve to load the image of the
program that is to be debugged. Setting this bit ensures that the first instruction
executed by the child process after the new image is loaded will result in a hard-
ware trace trap, which is translated by the system into a SIGTRAP signal. Because
the parent process is notified about all signals to the child, it can intercept the sig-
nal and gain control over the program before it executes a single instruction.

Alternatively, the debugger may take over an existing process by attaching to
it. A successful attach request causes the process to enter the STOPPED state and
to have its P_TRACED bit set in the p_flag field of its process structure. The
debugger can then begin operating on the process in the same way as it would
with a process that it had explicitly started.

An alternative to the ptrace system call is the /proc filesystem. The function-
ality provided by the /proc filesystem is the same as that provided by ptrace; it
differs only in its interface. The /proc filesystem implements a view of the sys-
tem process table inside the filesystem and is so named because it is normally
mounted on /proc. It provides a two-level view of process space. At the highest

level, processes themselves are named, according to their process IDs. There is
also a special node called curproc that always refers to the process making the
lookup request.

Each node is a directory that contains the following entries:

ctl A write-only file that supports a variety of control operations. Control
commands are written as strings to the ctl file. The control commands are:

attach Stops the target process and arranges for the sending process to
become the debug control process.

detach Continues execution of the target process and remove it from
control by the debug process (that need not be the sending
process).

run Continues running the target process until a signal is delivered, a
breakpoint is hit, or the target process exits.

step Single steps the target process, with no signal delivery.

wait Waits for the target process to come to a steady state ready for
debugging. The target process must be in this state before any
of the other commands are allowed.

The string can also be the name of a signal, lowercase and without the
SIG prefix, in which case that signal is delivered to the process.

dbregs Sets the debug registers as defined by the machine architecture.

etype The type of the executable referenced by the file entry.

file A reference to the vnode from which the process text was read. This
entry can be used to gain access to the symbol table for the process or to
start another copy of the process.

fpregs The floating point registers as defined by the machine architecture. It is
only implemented on machines that have distinct general-purpose and
floating-point register sets.

map A map of the process’s virtual memory.

mem The complete virtual memory image of the process. Only those addresses
that exist in the process can be accessed. Reads and writes to this file
modify the process. Writes to the text segment remain private to the
process. Because the address space of another process can be accessed
with read and write system calls, a debugger can access a process being
debugged with much greater efficiency than it can with the ptrace system
call. The pages of interest in the process being debugged are mapped into
the kernel address space. The data requested by the debugger can then be
copied directly from the kernel to the debugger’s address space.

Section 4.9 Process Debugging 143

144 Chapter 4 Process Management

regs Allows read and write access to the register set of the process.

rlimit A read-only file containing the process’s current and maximum limits.

status The process status. This file is read-only and returns a single line con-
taining multiple space-separated fields that include the command name,
the process id, the parent process id, the process group id, the session id,
the controlling terminal (if any), a list of the process flags, the process
start time, user and system times, the wait channel message, and the
process credentials.

Each node is owned by the process’s user and belongs to that user’s primary
group, except for the mem node, which belongs to the kmem group.

In a normal debugging environment, where the target does a fork followed by
an exec by the debugger, the debugger should fork and the child should stop itself
(with a self-inflicted SIGSTOP, for example). The parent should issue a wait and
then an attach command via the appropriate ctl file. The child process will
receive a SIGTRAP immediately after the call to exec.

Users wishing to view process information often find it easier to use the proc-
stat command than to figure out how to extract the information from the /proc
filesystem.

Exercises

4.1 For each state listed in Table 4.1, list the system queues on which a process
in that state might be found.

4.2 Why is the performance of the context-switching mechanism critical to the
performance of a highly multiprogrammed system?

4.3 What effect would increasing the time quantum have on the system’s inter-
active response and total throughput?

4.4 What effect would reducing the number of run queues from 64 to 32 have
on the scheduling overhead and on system performance?

4.5 Give three reasons for the system to select a new process to run.

4.6 Describe the three types of scheduling policies provided by FreeBSD.

4.7 What type of jobs does the timeshare scheduling policy favor? Propose an
algorithm for identifying these favored jobs.

4.8 When and how does thread scheduling interact with memory-management
facilities?

4.9 After a process has exited, it may enter the state of being a ZOMBIE before
disappearing from the system entirely. What is the purpose of the ZOMBIE
state? What event causes a process to exit from ZOMBIE?

4.10 Suppose that the data structures shown in Table 4.3 do not exist. Instead,
assume that each process entry has only its own PID and the PID of its par-
ent. Compare the costs in space and time to support each of the following
operations:

a. Creation of a new process

b. Lookup of the process’s parent

c. Lookup of all of a process’s siblings

d. Lookup of all of a process’s descendants

e. Destruction of a process

4.11 What are the differences between a mutex and a lock-manager lock?

4.12 Give an example of where a mutex lock should be used. Give an example
of where a lock-manager lock should be used.

4.13 A process blocked without setting the PCATCH flag may never be awak-
ened by a signal. Describe two problems a noninterruptible sleep may
cause if a disk becomes unavailable while the system is running.

4.14 Describe the limitations a jail puts on the filesystem namespace, network
access, and processes running in the jail.

*4.15 In FreeBSD, the signal SIGTSTP is delivered to a process when a user types
a ‘‘suspend character.’’ Why would a process want to catch this signal
before it is stopped?

*4.16 Before the FreeBSD signal mechanism was added, signal handlers to catch
the SIGTSTP signal were written as

catchstop()

{

prepare to stop;

signal(SIGTSTP, SIG_DFL);

kill(getpid(), SIGTSTP);

signal(SIGTSTP, catchstop);

}

This code causes an infinite loop in FreeBSD. Why does it do so? How
should the code be rewritten?

*4.17 The process-priority calculations and accounting statistics are all based on
sampled data. Describe hardware support that would permit more accurate
statistics and priority calculations.

*4.18 Why are signals a poor interprocess-communication facility?

Exercises 145

146 Chapter 4 Process Management

**4.19 A kernel-stack-invalid trap occurs when an invalid value for the kernel-
mode stack pointer is detected by the hardware. How might the system
gracefully terminate a process that receives such a trap while executing on
its kernel-run-time stack?

**4.20 Describe alternatives to the test-and-set instruction that would allow
you to build a synchronization mechanism for a multiprocessor FreeBSD
system.

**4.21 A lightweight process is a thread of execution that operates within the con-
text of a normal FreeBSD process. Multiple lightweight processes may
exist in a single FreeBSD process and share memory, but each is able to do
blocking operations, such as system calls. Describe how lightweight pro-
cesses might be implemented entirely in user mode.

References
Aral et al., 1989.

Z. Aral, J. Bloom, T. Doeppner, I. Gertner, A. Langerman, & G. Schaffer,
‘‘Variable Weight Processes with Flexible Shared Resources,’’ USENIX
Association Conference Proceedings, pp. 405–412, January 1989.

Dekker, 2013.
Dekker, ‘‘Dekker Algorithm,’’ Wikipedia, available from http:
//en.wikipedia.org/wiki/Dekkers_algorithm, November 2013.

Joy, 1994.
W. N. Joy, ‘‘An Introduction to the C Shell,’’ in 4.4BSD User’s Supplementary
Documents, pp. 4:1–46, O’Reilly & Associates, Inc., Sebastopol, CA, 1994.

McDougall & Mauro, 2006.
R. McDougall & J. Mauro, Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture (2nd Edition), Prentice Hall, Upper Saddle River, NJ,
2006.

Ritchie, 1988.
D. M. Ritchie, ‘‘Multi-Processor UNIX,’’ private communication, April 25,
1988.

Roberson, 2003.
J. Roberson, ‘‘ULE: A Modern Scheduler For FreeBSD,’’ Proceedings of the
USENIX BSDCon 2003, pp. 17–28, September 2003.

Simpleton, 2008.
Caffeinated Simpleton, A Threading Model Overview, available from
http://justin.harmonize.fm / Development / 2008 / 09 / 09 / threading-model-
overview.html, September 2008.

http://en.wikipedia.org/wiki/Dekkers_algorithm
http://en.wikipedia.org/wiki/Dekkers_algorithm
http://justin.harmonize.fm/Development/2008/09/09/threading-modeloverview.html
http://justin.harmonize.fm/Development/2008/09/09/threading-modeloverview.html

Index

/, 45–46
., 443, 450, 474–475, 814
.., 443, 450–451, 462, 474–475, 478, 814
#!, 70
.sujournal, 488

A

ABI. See application binary interface
absolute pathname, 46, 807, 828
accept system call, 597–598, 611–614, 646,

664, 739
definition, 597

access control, 29–34, 47–48, 150–174,
184–200, 803–805

commands, 162, 169–172
functions, NFS version 4, 173–174
interprocess, 34, 159–161, 182
list, 30–32, 48, 150, 154, 162–174,

436–437, 525, 573–574, 807, 814
list, default, 170
NFS, 573

access rights, 608, 617
receiving, 620

access system call, 353
access vnode operator, 432
access_mask, 172–173
accounting, process resource, 31, 67, 129,

790, 800

accton, 799
ACL. See access control list
acl structure, 166
acl_denies(), 172–173
acl_entry structure, 166
ACPI. See advanced configuration and

power interface
active page list, 290
adaptive idle, 125
adaptive replacement cache, 525, 539,

547–548
address family, 596, 608, 611, 807
address resolution protocol, 641, 655–657,

669, 807
implementation of, 655–657
purpose of, 655

address-space management, process,
228–230

address space. See virtual address space
address structure

Internet, 612
local domain, 612
socket, 182, 596, 611, 839

address translation, 222, 807
addresses, IPv6, 660–662
adjtime system call, 74
advanced configuration and power interface,

53, 363–364, 777, 781, 783
advanced-encryption standard, 210, 213

block cipher, 213, 215

847

848 Index

Advanced Micro Devices Corporation, 25,
285, 362, 420–421, 784

virtualization, 421–422
advanced programmable interrupt controller,

363–364, 420, 423, 790
advanced-technology-attachment disk,

363–364, 399, 402, 409–410
advisory locking, 323, 432, 807
advlock vnode operator, 432
AES. See advanced-encryption standard
AFS. See Andrew filesystem
AH. See authentication header
Ahrens, Matt, xxvi
aio_error system call, 321–322, 330
aio_read system call, 321, 359
aio_return system call, 322, 330
aio_suspend system call, 322, 330
aio_waitcomplete system call, 322
aio_write system call, 321, 359
algorithm

for disksort(), 376
elevator sorting, 375, 418
mbuf storage-management, 605
for physical I/O, 372
TCP, 732–741
TCP slow-start, 752–756

Allman, Eric, xxix
allocation

descriptor, 614
directory space, 444–445
extent-based, 516–517
FFS file block, 507, 511–513, 809
FFS fragment, 512–514
inode, 434
kernel address space, 233–244, 787
kernel memory, 38–39
kernel resource, 259–260
mbuf, 605, 795
process identifier, 127
virtual memory map, 304–305
ZFS file block, 542–543

allocator
dynamic per-CPU, 789
keg, 238
slab, 236–237, 787, 791
virtual-network stack, 789
zone, 239–241, 791, 793

allocbuf(), 351
allocdirect structure, 466–468, 470–471

allocindir structure, 467, 470–471
ambient authority, 151, 174–180, 807
AMD. See Advanced Micro Devices

Corporation
AMD-V. See Advanced Micro Devices

Corporation virtualization
ancillary data, 598, 616–618, 808
Andrew filesystem, 552
anonymous object, 245, 248, 808
AOUT executable format, 70
API. See application programming interface
APIC. See advanced programmable interrupt

controller
append-only file, 439
Apple OS/X operating system, 3, 436, 445
application binary interface, 403, 783
application, client-server, 50
application compartmentalization, 30, 149,

151, 174–175, 808
application programming interface, 34, 51,

114, 166, 187, 191, 198, 201, 403, 700
ARC. See adaptive replacement cache
arc4random(), 209
architecture

ARM, 405, 782, 784
MIPS, 7, 405, 782–784, 790
PC, 362–364
PPC, 405
SPARC64, 790

arguments, marshalling of, 553, 824
ARM architecture, 405, 782, 784
ARP. See address resolution protocol
ARPANET, 6, 650
assembly-language startup, 783–784
assembly language in the kernel, 25, 61,

116, 370, 782–784, 786
association, Internet, 721–723
association setup, SCTP, 761–764
association shutdown, SCTP, 766
assured pipeline, 176
AST. See asynchronous system trap
asymmetric cryptography, 206, 700, 808
asynchronous

I/O, 320–322, 326
interrupt, 58, 60, 99
logging facility, 84
system trap, 116–117, 808
transfer mode, 707–708

AT A. See advanced-technology-attachment
disk

ATM. See asynchronous transfer mode
AT&T, xxi, xxii, 6–9, 11–12
ATTA CHED flag, 466

definition, 466
attribute manipulation, filesystem, 432
attribute update, filestore, 497
attributes, extended, 436–438
attributes, system extended, 168
audit

alarm entry, 171
allow entry, 171
deny entry, 171
ev ent, 35, 200–205
informational entry, 171
pipe, 200–205
preselection, 201, 204
queue, 204–205
record, 35, 200–205
system call, 201, 203, 205
trail, 35, 200–205
UID, 35, 201–202, 204
worker thread, 204–205

auditing, security-event, 30–31, 35, 149,
151, 200–205, 792–793, 800, 836

audit_init(), 793
auditreduce, 35
AUID. See audit UID
authentication, 30, 35

data, 691, 693
header, 663–664, 689–691, 693, 697

autoconfiguration, 402, 660, 808
4.4BSD, 403
contribution of, 8
data structures, 407–410
device driver support for, 369, 403–413
IPv6, 666–670
phase, 404
resource, 412–413

B

B programming language, 4
back ends, device driver, 414–428
background fsck, 486
background process, 141, 387, 808, 817
backing storage, 221, 397, 809
bare-metal system library, 780
basic input-output system, 52–53, 364, 377,

775–779, 781, 790

basic kernel services, 787–792
basic security module, 35, 201–203, 205
bawrite(), 348
BCPL programming language, 4
bdwrite(), 348
Bell Laboratories, 3–5
benefit of global vnode table, 345
Berkeley packet filter, 700–701, 703

macro hook, 701
Berkeley Software Design Inc., 11–13
best fit, 234, 512–513
bhyve, 184, 414–415
Biba integrity policy, 151, 158, 186–187,

189–190, 195, 200, 797
bind system call, 182, 664, 723, 767

definition, 597
biodone(), 402, 469
BIOS. See basic input-output system
biowait(), 402
bitmap dependencies, soft updates, 466–467
black-hole route, 680, 809
blkatoff vnode operator, 497–498
block, 433, 809

clustering, 498, 505–507, 514–517, 811
I/O, 375, 498–501, 505, 543
interface, Xen, 427
protection, GELI, 215–216
size, 368, 502, 809

bmsafemap structure, 466–467, 470, 472,
490

boot, 775–801, 817
boot blocks, FFS, 503–504
boot, cryptographically verified, 777
boot device, 776–777, 783
/boot/device.hints, 404
boot flags, 779, 781, 783
/boot/kernel/kernel, 781
boot loader, 777–789

1st-stage, 777–779
2nd-stage, 779
final-stage, 779–781

/boot/loader, 779–782
/boot/loader.4th, 781
/boot/loader.conf, 781
boot menu, 778–781
boot partition, FreeBSD, 779
boot-time diagnostics, 776
boot2, 782
/boot.config, 779

Index 849

850 Index

bootinfo structure, 781, 783
bootstrapping, 25, 52, 809

setting time when, 73
see also boot

bottom half of
device driver, 369
kernel, 59–60, 809
terminal driver, 384

BPF. See Berkeley packet filter
bqrelse(), 349
bread(), 348, 350–351, 375
break character, 390
breakpoint fault, 142, 809
brelse(), 348
bremfree(), 350
broadcast message, 636, 674, 725, 809

address, 636, 653–654
IP handling of, 672

BSD, obtaining, xxvi
BSD, open source, 9–14
BSDI. See Berkeley Software Design Inc.
BSM. See basic security module
bss segment, 69, 263, 784, 809
BTX. See i386 boot extender
buf structure, 375
bufdaemon, 58
buffer cache, 347, 435, 499–501, 790,

793–794, 809
4.4BSD, 302
consistency, 351
effectiveness, 347
implementation of, 350–351
interface, 348–349
management, 347–351
memory allocation, 351
structure of, 349–350

buffer list
CLEAN, 350, 359
DIRTY, 350, 359
EMPTY, 350
LOCKED, 349

buffer update, 468–470
buffer wait, 468–470, 473–474, 476, 496
buffering
filesystem, 499–501
network, 643–644
policy, protocol, 643

bufinit(), 790
bus_add_child(), 413

bus_child_detached(), 413
bus_driver_added(), 413
bus_probe_nomatch(), 413
bus_read_ivar(), 413
bus_write_ivar(), 413
bwrite(), 348, 375

C

C-language startup, 784–785
C library, 73

system calls in the, 62
C programming language, 3–4, 26, 62
cache

alias, virtual-memory, 282
directory offset, 446–447
filename, 346–347, 795
inode, 442–443
page list, 290
vnode, 249

caching delegation and callbacks, 574–581
calendar queue, 121
call gates, 150
callback, 567, 579, 610, 810
callout queue, 67–69, 733, 795, 810
callout_callwheel_init(), 790
CAM. See common access method
camisr(), 402
camisr_runqueue(), 402
canonical mode, 383, 810
capability, 176–180, 810

discipline, 179
mode, 31–32, 176, 179–180
refinement, 176
system, 174–180, 810
system model, 149, 176

cap_check(), 179
cap_enter system call, 179
cap_getmode system call, 179
CAPP. See common access-protection profile
cap_rights(), 179
cap_rights_limit system call, 178
Capsicum, 30–32, 40, 149, 151, 174–181,

420, 810
caught signal, 28, 132, 810
CCB. See common access-method control

block
CD-ROM, 11, 44, 357–358, 399
CD9660 filesystem, 358, 781

cdevsw structure, 368, 371, 373
character device, 370–374, 811

driver, 371
interface, 368, 371, 373–374
ioctl, 374
operations, 373

character-oriented device, 373–374
chdir system call, 46, 813
checksum, 651, 672, 723–725, 741, 746, 811
chflags system call, 439, 481
chgrp system call, 155
child process, 27, 96, 126, 811
chkdq(), 453–454, 506
chmod system call, 47, 164, 169, 171, 201,

481
Chorus operating system, 22
chown system call, 47, 155, 164, 481
chroot system call, 33, 46, 180–181, 834
chunk, SCTP, 762–766
CIDR. See classless inter-domain routing
CIFS. See common Internet filesystem
cipher, AES block, 213, 215
classless inter-domain routing, 652–653,

659, 662
CLEAN buffer list, 350, 359
client ID, 575, 811
client process, 50, 811
client server

application, 50
interaction, NFS, 562–564
model, 612
programming, 596

clock
alternate, 67
interrupt handling, 65–67
interrupt rate, 67
real-time, 58, 795–796

close, device, 391
close-on-exec, 319–321
close system call, 39, 319, 323, 345, 352,

385, 566, 599, 620–621, 700, 741
close vnode operator, 432
closedir(), 445
clustering

block, 498, 505–507, 514–517, 811
page, 268, 280, 294, 309, 811

cold start, 811
common access method, 24, 364–366, 393,

399–402, 404, 429
control block, 399–402

layer, 399–402
SCSI I/O request, 400–402
transport, 400

common access-protection profile, 201
common Internet filesystem, 162, 171, 552
communication domain, 50, 594, 606–608,

811
data structures, 608

communication protocol. See protocol
compartmentalization, application, 30, 149,

151, 174–175, 808
COMPLETE flag, 466, 470, 472–473

definition, 466
composition, MAC policy, 194–195
Computer Systems Research Group, xxii,

xxix, 3, 7–16
condition variables, 112
config, 404, 408, 800, 811
configuration
file, 800, 811
kernel, 800–801
network device, 379–380

congestion control
network buffering, 643–644
TCP, 752–761

congestion window, 754, 757
connect request, 628, 811
connect system call, 182, 597, 612, 614,

664, 697, 723–725, 736, 767, 811
definition, 597

connection
queueing, socket, 610, 613
setup, TCP, 727–728, 736–740
shutdown, TCP, 729, 740–741
states, TCP, 727–730

console, 777, 779, 781, 785, 790, 798–799
serial, 777, 779, 799

contents update, filestore, 497
context switching, 63, 90, 99–114, 812

involuntary, 99, 116
low-level, 100
thread state, 100
voluntary, 99, 101–106

continuation style, 698, 812
control, network device, 379–380
control-output routine, protocol, 630–631
control request, 629, 812
controlling process, 136, 138, 812
controlling terminal, 29, 137–138, 812

revocation of, 345

Index 851

852 Index

cooked mode, 383
copy object, 4.4BSD, 258
copy-on-write, 6, 37, 261, 309, 812
core file, 28, 130, 812
coredump(), 136
cpu_exit(), 129
cpuid instruction, 422
cpu_mp_announce(), 790
cpu_search(), 123–124
cpuset, 124
cpu_set_fork_handler(), 793
cpu_startup(), 789
cpu_switch(), 116
crash dump, 99, 369, 375, 801–803, 812,

828
crash recovery, NFS, 584–586
crash, system, 47–48, 322, 324, 348, 375,

405, 454, 459, 461, 463, 480, 486, 501,
518, 556–557, 561–563, 566–567, 587,
727, 730, 734, 776, 799, 802–803, 812

create vnode operator, 432–433
create_init(), 793
creation and deletion, filestore, 497
credential, 95

process, 31, 34–35, 127, 144, 150–157,
179, 181–182, 201–204, 259, 354–355,
556, 564, 793, 800, 803, 830

structure, 152, 160, 179, 181
critical_enter(), 107
critical_exit(), 107
cron, 799
crypto_done(), 208
crypto_freesession(), 207
cryptographic

descriptor, 207
framework, 30–31, 35–36, 149, 206–208
verified boot, 777

cryptography
asymmetric, 206, 700, 808
session, 206
symmetric, 206, 700, 841

crypto_invoke(), 208
crypto_newsession(), 206–207
crypto_proc(), 208
crypto_register(), 207
csh shell, 139
CSRG. See Computer Systems Research

Group
ctfconvert, 80

CTSS operating system, 4
cubic congestion-control algorithm, 758,

760
current working directory, 46, 449, 800, 813
cursig(), 133, 135
cylinder group, 48, 502

D

D programming language, 78, 80, 188–189
DAC. See discretionary access control
dadone(), 402
daemon, 813

NFS, 559–562
operation of the, pageout, 292–295
pageout, 58, 92, 233, 236, 238, 240–241,

244, 248, 268, 271–273, 275, 290–297,
307–309, 482, 813, 822, 827–828

process, 324, 813
routing, 684

DARPA. See Defense Advanced Research
Projects Agency

dastart(), 401
dastrategy(), 401
data segment, 36, 69, 71, 263, 813

expansion, 263
data structures

autoconfiguration, 407–410
communication domain, 608
interprocess communication, 606–612
socket, 608–611

data transfer, SCTP, 764–766
datagram socket, 595, 813
datalink layer, 622, 813
dead filesystem, 345
deadlock

avoidance during fork system call, 260
avoidance when locking resources,

112–114, 335–336, 647
detection, 456, 519
memory, 259, 274–275, 295–296
network, 324–325
prevention, witness, 109, 112–114
snapshot, 485–486

debugger, kernel, 779, 782, 785, 789, 791,
802–803

debugging
information in exec header, 71
kgdb, 802
lldb, 142

process, 134, 142–144, 161, 182
system, 802–803
see also ptrace system call

decapsulation, 622, 635, 813
decision, local-remote, 678
deduplication, ZFS, 545–546
default pager, 272
Defense Advanced Research Projects

Agency, 6, 8, 650, 813
steering committee, 7

definition
ATTA CHED flag, 466
COMPLETE flag, 466
DEPCOMPLETE flag, 466

defrtrlist_update(), 667
delayed write, 348, 460
delegation, 579, 813
Delta-t, 761
demand paging. See paging
denial-of-service attack, 739, 813
DEPCOMPLETE flag, 466–467, 470,

472–473, 475
definition, 466

dependencies
kernel-module, 776
soft updates, 460–464
virtual memory machine, 298–308

descriptor, 39, 813
allocation, 614
duplication, 320–321
management of, 41–42, 316–321
multiplexing, 324–327
table, 40, 316, 814
table, local, 791
use of, 39–41

design
4.2BSD IPC, 8
FreeBSD IPC, 594, 599
I/O system, 39–44
mbuf, 604–605
memory-management, 36–38
NFS, 552–553

/dev, 42, 334, 366–368, 408, 428, 794
filesystem, 44
operation of, 366–367

/dev/console, 798
/dev/cu, 368
/dev/fd, 358
/dev/kmem, 440, 803

/dev/mem, 370, 374, 440
/dev/netmap, 712
/dev/null, 370
/dev/pts, 383
/dev/random, 35
devclass, 408
devd, 413
development model, FreeBSD, 14–17
DEVFS. See device filesystem
device, 42, 44, 408

boot, 776–777, 783
character-oriented, 373–374
close, 391
configuration, 402–413
enumeration, 777
identification, 405–407
interrupt handler, 64
module initialization, 794–796
overview, 361–367
pager, 248, 270–271
probing, 369, 405
raw, 372–373
special file, 42, 814
swap, 225, 841

device driver, 30, 42, 368, 777, 782, 787,
793–796, 814

attach routine, 405, 407
back ends, 414–428
bottom half of, 369
front ends, 414–428
interrupt handling, 370
maximum transfer size, 371
probe-routine, 405–407
sections of a, 368
support for autoconfiguration, 369,

403–413
support for select system call, 327, 374
top half of, 369

device filesystem, 316, 366–368, 383, 393,
794–795, 797

device_attach(), 406–407
device_identify(), 406
device_probe(), 406–407
devices, network, 378–382
device_t, 367
devinfo, 410, 429
dev_t, 367
df, 479
diagnostics, boot-time, 776

Index 853

854 Index

diradd structure, 468, 472–476
DIRCHG flag, 476
direct block dependencies, soft updates,

469–470
direct dispatch, 397, 673
direct map, 228
direct memory access, 282, 373, 381, 399,

401, 414, 419, 427–429, 523, 814
direct route, 677
directly-mapped region, 783–784
directory, 45, 443, 814

dependencies, soft updates, 472–476
entry, 45, 434, 814
offset cache, 446–447
operations, 46–47
space allocation, 444–445
structure, 444–447
table, 298, 814

dirrem structure, 464, 475–476, 495–496
DIRTY buffer list, 350, 359
discretionary access control, 32, 149–150,

161–174, 184, 217, 814
disk device, 374–377

interface, 374–375
operations, 374

disk label, 376–377
disk, memory, 780
disk partition, 376, 498, 777–782, 814
disk structure, FFS, 502–504
disk subsystem, 364–366
disk write, ZFS, 536–538
disksort(), 375–376, 401

algorithm for, 376
distributed filesystem, 47
distributed program, 593
DMA. See direct memory access
DMU. See zettabyte-filesystem data-

management unit
dnode, 528, 815

structure, 538
ZFS, 528–529

DNS. See domain name system
doadump(), 802
domain, 815

and type enforcement, 186
name system, 665
zero, 420–423, 426, 428
see also communication domain

double indirect block, 435, 815, 820

dpcpu_startup(), 789
dquot structure, 452–454
Dragonfly BSD, xxii, 3
DSL. See zettabyte-filesystem dataset and

snapshot layer
dsl_dataset structure, 533–534, 538, 542,

544
dsl_dir structure, 533
DTE. See domain and type enforcement
DTrace, 78–82, 188–189, 790–791
dtrace_debug_init(), 791
dtrace_pops, 80
dummynet, 702, 704–706
dump, 372, 438, 487, 546

live, 487
dumpsys(), 802
dup system call, 41–42, 48, 319–321, 814,

817
implementation of, 320

dup2 system call, 42, 178, 320, 817
duplication, process virtual memory,

260–262
dynamic inodes, 441–442
dynamic per-CPU allocator, 789

E

EACCES system error, 173, 193
EAGAIN system error, 128, 320, 335–336,

391, 614, 617–618, 826
ECAPMODE system error, 179
ECMP. See equal-cost multi-path route
ECN. See explicit congestion notification
ECONNREFUSED system error, 615
effective GID. See effective group identifier
effective group identifier, 155, 815
effective UID. See effective user identifier
effective user identifier, 132, 155, 815
EFI. See extended-firmware interface
Eighth Edition UNIX, 5
EINTR system error, 62, 98, 128
EINVAL system error, 614, 697
elevated privilege, 158
elevator sorting algorithm, 375, 815
ELF, 245, 779, 781, 785–786, 789

executable format, 70
ELOOP system error, 451
Elz, Robert, 9, 451
embedded systems, 775, 778, 781–784, 796

EMPTY buffer list, 350
EMSGSIZE system error, 616
encapsulating-security payload, 663–664,

689–690, 693, 697
encapsulating security protocol, IPSec, 693
encapsulation, 622, 635, 815
encryption

full-disk, 206, 209, 212–217
initialization vector, 209, 213, 215
public-key, 206, 832

entry point, MAC, 34, 188–189, 191–194
entry to kernel, 60–61
enumeration, device, 777
environment, kernel, 779, 781, 787, 794
environment, location of process, 72
EPERM system error, 173, 193
epoch, 73
equal-cost multi-path route, 682
erase character, 383, 815
ERESTART system error, 98
errno, 26, 62, 163, 193–194, 694, 816
ESP. See encapsulating-security payload
/etc/defaults/rc.conf, 798
/etc/exports, 547, 560
/etc/fstab, 547
/etc/mac.conf, 200
/etc/master.passwd, 800
/etc/rc, 440, 798–799
/etc/rc.conf, 798
/etc/ttys, 798
Ethernet, 6, 52, 623, 650
ev ent

audit, 35, 200–205
channel, 422–424, 426–427
handler, 788–797, 801–802, 816
notification, 329–332
port, 426–427

EVENTHANDLER_REGISTER, 788
exactly once semantics, 576, 816
exchange_id(), 575
exec header, 69
exec system call, 27, 41, 72, 89, 126, 138,

142, 144, 156–157, 161, 181, 232–233,
258, 261–263, 266, 269, 304, 308–309,
319–320, 330, 832, 835, 837

operation of, 262–263
execve system call, 160, 162, 173, 790, 794,

800
exit(), 128, 136

exit system call, 27, 119, 126, 128, 262,
266–267, 330

operation of, 128–129, 266–267
status, 27, 92, 129

explicit congestion notification, 759
explicit privilege, 158, 181–182
exported filesystem services, 343–344
extattrctl system call, 482
extended attributes, 436–438
extended-firmware interface, 377
extension header, 663, 695, 816
extent-based allocation, 516–517
external data representation, 554

F

fast filesystem, 163–164, 166, 168, 170, 174,
209, 353, 431–517, 523–525, 527–529,
531, 535–537, 542, 546, 548, 556, 569,
574, 779–780, 799

32-bit version, 435, 438, 440–441, 445,
447, 502–504, 516–517

64-bit version, 435–436, 438, 440–441,
445–447, 479, 502–504, 516–517

boot blocks, 503–504
cluster map, 515
cylinder group, 502–503, 813
disk structure, 502–504
ffs_balloc(), 506, 511–512
ffs_read(), 505, 515
ffs_realloccg(), 511–512
ffs_write(), 506
file block allocation, 507, 511–513, 809
file block extension, 511
file I/O, 505–507
fragment allocation, 512–514
fragment-descriptor table, 513, 817
fragmentation, 504–507
free-space reserve, 441, 507, 519, 818
implementation of, 502–505, 507–517
layout policies, 508–510
local allocation routines, 510–511
organization, 502–504
overview, 45–48
parameterization, 507
redesign, 501–505
storage optimization, 504–507
superblock, 501

fast retransmission, TCP, 756–757

Index 855

856 Index

fault rate, 224, 816
fbtp_patchpoint, 81
fbtp_patchval, 81
fbt_probe_t, 81
fbtp_savedval, 81
fchflags system call, 439, 481
fchmod system call, 47, 164, 177, 481
fchmodat system call, 180
fchown system call, 47, 164, 481
fcntl system call, 8, 178, 319–321, 390, 814
fdesc filesystem, 358
fdisk, 778
FDT. See flattened device trees
Federal Information Processing Standard, 8
fetch policy, 223, 816
FFS. See fast filesystem
fget(), 179
fhopen system call, 481
FIB. See forwarding information base
fifo, 40, 316
file, 39, 443, 816

access validation, 164
append-only, 439
control, filesystem, 432
deactivation, 344
descriptor, 32, 48, 153, 161, 175–180,

183, 192–193, 200
descriptor locking, 322–324
executable, 69
flags, 390, 439–441
handle, NFS, 555, 816
hole in, 47, 819
I/O, FFS, 505–507
I/O, user, 499–501
immutable, 439
interpretation, filesystem, 432
management, filesystem, 432
mapping, 264–265
mode, 162, 164
offset, 41, 318, 816
owner, 31–32, 34, 150–152, 154–155,

158, 161–174, 186
permissions, 30–32, 48, 150, 152,

161–174, 186, 816
reclaim, 344–345

file block
allocation, FFS, 507, 511–513, 809
allocation, ZFS, 542–543
locality of reference, 509–510
reading, 505

writing, 506
file entry, 318–319, 816
flag, 319, 321
handling during fork system call, 319
implementation of, 319
object oriented, 318, 321
operations, 318

file locking, 319, 322–324, 454–459
implementation of, 323–324, 456–459
NFS, 553
semantics of, 454–456

filecaps structure, 178
file structure, 316, 609, 817
filedesc structure, 316
filename, 45–46, 816

cache, 346–347, 795
negative caching of, 346
whiteout, 356

filestore
abstraction, 498–501
attribute update, 497
contents update, 497
creation and deletion, 497
implementation of, 498–501
operations, 497–498
overview, 48
size update, 498

filesystem, 817
3BSD, 501–502, 504, 508–509
4.2BSD, 502
4.3BSD, 342
4.4BSD, 342, 515
attribute manipulation, 432
buffering, 499–501
CD9660, 358, 781
/dev, 44
distributed, 47
fdesc, 358
file control, 432
file interpretation, 432
file management, 432
independent services, 344–351
initialization, 799
interface, 368
layer, 354–355
links, 449–451
linprocfs, 358
Microsoft NTFS, 47, 171
name creation, 432
name deletion, 432

name lookup, 446–447
name translation, 46, 447–449
naming, 443–451
nullfs, 354–355
operations, 431–433
operator, valloc, 497
operator, vfree, 497
operator, vget, 497
portal, 343, 357–358
/proc, 142–144, 358, 831
procfs, 358
quotas, 8, 451–454, 799
snapshot, 480–487
stackable, 352–358
support for multiple, 43–44
umapfs, 354–355, 564
union, 355–357
see also buffer cache, quotas

firewall, 31, 184, 701–707, 785
firmware, 775–778, 782–790
First Edition UNIX, 89
first-level bootstrap, 377
first prison, 181, 790–791, 794
first process, 793
fit, best, 234, 512–513
fit, segregated, 234
flattened device trees, 53, 777, 783–784
fletcher4, 546, 549
floating point in the kernel, use of, 736
floating-point unit, 421
flock system call, 553
flow control, network, 643–644
flow control in TCP, 726
foreground process, 138, 141, 387, 809, 817
fork file, 573, 817
fork system call, 4, 27, 41, 48, 89, 94, 96,

119, 126, 128, 138, 142, 144, 155, 177,
179, 181, 258–261, 292, 304, 306,
308–309, 319–320, 330, 811, 817, 828,
830, 832

deadlock avoidance during, 260
file entry handling during, 319
implementation of, 259–260
implementation issues, 261
see also process creation

fork1(), 793
Forth interpreter, 780
Fortuna, 35, 212
forward, 650, 655, 662, 664, 670, 673–675,

678, 682–683, 752, 754, 817

forward-mapped page table, 282, 817
forwarding information base, 677
forwarding-mechanism, 677
4.0BSD, 6–9, 501
4.1BSD, 6
4.2BSD, xxii, xxix, 6–8, 36, 40, 42–43, 47,

51–52, 54, 71, 227, 322–323, 326, 371,
385, 403, 593, 653, 674

filesystem, 502
IPC design, 8
scheduler, 791
virtual-memory interface, 7

4.3BSD, xxi, xxii, xxix, 6–8, 37, 71, 291,
309–310, 322, 653, 803

filesystem, 342
Reno release, 6–7
Tahoe release, 6–7, 9

4.4BSD, xxi, xxix, 6–7, 13, 267, 804–805
autoconfiguration, 403
buffer cache, 302
copy object, 258
filesystem, 342, 515
Lite, xxii, 7, 13–14
mbuf design, 604
NFS, 551–552
page replacement, 289, 294
stackable filesystem, 352–353
supported architectures, 7
swap out, 296
swap pager, 273
virtual memory, 37

FPU. See floating-point unit
fragmentation, FFS, 504–507
framework, cryptographic, 30–31, 35–36,

149, 206–208
framework, MAC, 30, 34, 184–200
free(), 38, 241, 309
free list, 248
free page list, 290
freeblks structure, 464, 468, 476, 495–496
FreeBSD

boot partition, 779
development model, 14–17
goals, 17
IPC design, 594, 599
kernel, division of software in, 25
portability of, 23

freefile structure, 468, 476, 495–496
freefrag structure, 468, 470

Index 857

858 Index

front ends, device driver, 414–428
fsck, 372, 376, 463, 480, 486–490, 492–494,

501, 504, 509–510, 798–799
background, 486
dependencies, soft updates, 480

fstat system call, 47, 164, 629
fsync dependencies, soft updates, 477–478
fsync system call, 253, 340, 348, 359,

436–437, 461–463, 474, 477–478, 482,
493, 501, 507, 514, 518, 538–539, 566

fsync vnode operator, 497–498
ftruncate system call, 481
full-disk encryption, 206, 209, 212–217
full virtualization, 414
futimes system call, 481

G

gateway, 658, 675, 818
handling, 677–679

g_down, 58, 396–397
GELI, 30, 35, 53, 151, 206, 209, 212–217,

780
block protection, 215–216
flags, 214, 216
I/O model, 216
key management, 213–214
keyfile, 213–214
limitations, 216–217
passphrase, 213–214, 216
startup, 214
threat model, 216–217

g_eli_ctl_resume(), 216
g_eli_start(), 216
g_eli_suspend_one(), 216
g_eli_takefirst(), 216
g_eli_taste(), 214, 216
g_eli_worker(), 216
generation number, 556, 818
generator, random-number, 31, 35, 206,

208–212, 790, 793
generator_gate(), 212
generic security-service application-program

interface, 206, 209, 584
GENIE operating system, 4
GEOM. See geometry layer
geometry layer, 24, 44, 53, 206, 212, 214,

216, 362, 391–399, 401–402, 407, 429,
524–525, 793–794

flags, 178, 397
operation, 396–397
topology, 392–399

getaddrinfo(), 665
getaddrinfo library call definition, 665
getattr vnode operator, 432
getblk(), 350–351
getdirentries system call, 445
getfsstat system call, 344
gethostbyname(), 665
getlogin system call, 800
getnewbuf(), 351
getnewvnode(), 344–346
getpeername system call, 599
getrusage system call, 75
getsockname system call, 599
getsockopt system call, 599, 627, 631
gettimeofday system call, 73–74
getty, 798–800
getuid system call, 179
GID. See group identifier
g_init(), 793
g_io_request(), 216
gjournal, 398
global page-replacement algorithm, 289, 818
global vnode table, benefit of, 345
globally-unique identifier partition table,

377, 778–779
goals, FreeBSD, 17
GPT. See globally-unique identifier partition

table
gptboot, 779, 781–782
gptzfsboot, 779
grant table, 423–427

entry, 424–426
reference, 424–427

Greenwich time. See Universal Coordinated
Time

group identifier, 31, 151–152, 154–157,
160–166, 168, 170–171, 187, 355, 564,
815, 818, 820, 830, 832, 835, 837

use in file-access validation, 164
gsched, 398
gsignal(), 133
GSSAPI. See generic security-service

application-program interface
gunzip, 175–176
g_up, 58, 396–397
gvirstor, 398

H

H-TCP, 758
half-open connection, 727
halt, 801–802
hammer_time structure, 784
handle_written_inodeblock(), 469
handling, terminal, 382–391
hard limit, 76, 451, 818
hard link, 449, 818
hardclock(), 66–68, 76
hardware performance-monitoring counters,

790–791
processor, 790–791

hardware virtual machine, 421–423, 788
hardware_cache_fetch, 281
Harris, Guy, 9
hash anchor table, 284
hash message-authentication code, 210–211,

216, 403, 546, 549
SHA-256, 213, 215
SHA-512, 213, 215

hash, Modulo-N, 682
HAT. See hash anchor table
HBA. See host bus adapter
header prediction, TCP, 742, 818
heap, 72, 819
heartbeat requests, 767
heartbeat response, 768
heartbeat, SCTP, 767–768
high watermark on, 819

socket, 610, 616, 643
terminal, 388

history of
job control, 7
process management, 89
UNIX, 3–7

HMAC. See hash message-authentication
code

home directory, 46, 819
hop-by-hop option, 664
hop limit, 662, 819
host bus adapter, 365, 415, 418
host cache metrics, TCP, 737
host unreachable, 657

message, 657, 819
HVM. See hardware virtual machine
HWPMC. See hardware performance-

monitoring counters

hybrid capability system model, 151
hypercall, 414–428, 788

region, 422
hypervisor, 184, 414–428, 788

I

I/O, 820
asynchronous, 320–322, 326
memory management unit, 420
model, GELI, 216
nonblocking, 320, 325, 614, 617, 619, 826
physical, 372–373
queueing, 369
redirection, 41, 821
signal driven, 320, 325, 838
system design, 39–44
tree, root of, 366, 406, 410
types of kernel, 367–368

I/O buffer, 375
I/O stream, 39, 821
I/O vector, 332–333
i386 boot extender, 779, 781
ICMP. See Internet control message protocol
icmp_error(), 658
icmp_input(), 658
ICV. See integrity-check value
idempotent, 554, 819
identification, device, 405–407
idle

loop, 116, 819
process, 58, 793
queue, 819
swap time, 296
threads, 792–793

IEEE. See Institute of Electrical and
Electronic Engineers

IETF. See Internet Engineering Task Force
ifaddr structure, 635, 639
if_data structure, 636
if_input, 381
ifnet, 378–379, 381–382

structure, 419, 635, 637, 639–640
if_output(), 669–670
IGMP. See Internet group-management

protocol
ignored signal, 28
IKE. See Internet key exchange
imgact, 70

Index 859

860 Index

immutable file, 439
implementation of

ARP, 655–657
buffer cache, 350–351
dup system call, 320
FFS, 502–505, 507–517
file entry, 319
file locking, 323–324, 456–459
filestore, 498–501
fork system call, 259–260
ioctl system call, 321
kernel malloc, 242–243
kevent system call, 329–332
munmap system call, 264–265
NFS, 558–562
pipe, 40
pmap_enter(), 304–305
pmap_remove(), 305
quotas, 451–454
select system call, 327–329
sleep(), 97–98, 101–104
system call, 62–63
uiomove(), 332–333
wakeup(), 104–106

implicit privilege, 157
implicit send, 765
inactive page list, 290, 307
inactive, reclaim from, 294, 833
inactive vnode operator, 344, 346, 432, 443
INADDR_ANY, 182
inbound, 820
IN_CAPABILITY_MODE(), 180
indirdep structure, 470–471
indirect block dependencies, soft updates,

470–472
indirect route, 677
inetsw, 707
init, 28, 57, 97, 161, 189, 292, 439, 782,

793–794, 798–800, 820, 846
init_dtrace(), 790
init_hwpmc(), 791
initialization
filesystem, 799
kernel, 782–783
user-level system, 798–800
virtual memory, 301–303, 308
see also bootstrapping

initiate_write_inodeblock(), 469
inode, 339, 433, 498, 519, 820

allocation, 434

cache, 442–443
contents, 433
definition, 433–442
dependencies, soft updates, 467–469
locality of reference, 508
management, 442–443
number, 356, 437, 441–446, 467, 473,

476, 483, 495, 556, 814
inode wait, 468, 470, 476
inodedep structure, 467, 469–475, 496
inodes, dynamic, 441–442
inpcb structure, 722, 736
in_pcballoc(), 723
in_pcbbind(), 723
in_pcbconnect(), 723, 736
in_pcbdetach(), 725
in_pcblookup(), operation of, 725
input-output memory-management unit,

420, 427–428
in_rtalloc_ign(), 672
insecure mode, 440
Institute of Electrical and Electronic

Engineers, 8, 136, 364–365, 829
integrity-check value, 691–692, 820
Intel virtualization technology, 421–422
intelligent platform-management interface,

363–364
interactive program, 91, 820
Interdata 8/32, 5
interface

addresses, network, 635–636
buffer cache, 348–349
capabilities, 380
capabilities, network, 636–639
character device, 368, 371, 373–374
disk device, 374–375
filesystem, 368
mmap system call, 251–253
mutex, 109–110
network device, 378–379
pager, 267–275
protocol-network, 634–643
protocol-protocol, 631–634
queue, 381
routines, network, 639–641
routing-table, 683–684
socket-to-protocol, 626–631

International Organization for
Standardization, 8, 823

model, 622, 650

protocol suite, 649
Internet addresses

broadcast, 653–654
multicast, 654–655
packet demultiplexing, 721
structure, 612

Internet association, 721–723
Internet control message protocol, 634,

650–651, 657–659, 666, 669–670, 675,
684, 686, 691, 725, 815, 820

interaction with routing, 658
port unreachable message, 725

Internet domain, 6, 50
Internet Engineering Task Force, 552, 664
Internet group-management protocol, 655
Internet key exchange, 693, 820
Internet ports, 721–723
Internet protocol, xxii, 3, 6, 33, 182, 194,

209, 419, 554, 650–658, 686, 715–716,
723–727, 741, 746, 768–769, 821

firewall, 52, 702–706
fragmentation, 554, 650, 652, 672–673
handling of broadcast message, 672
input processing, 673–675
multicast router, 675
options, 651
output processing, 671–673
packet demultiplexing, 723
packet forwarding, 658, 674–675
protocol header, 652
pseudo-header, 741
responsibilities of, 650
routines, 670–675
version 4 addresses, 652

Internet service providers, 33, 51, 180, 652,
660

interpreter, 70, 820
Forth, 780

interprocess access control, 34, 159–161,
182

interprocess communication, 6, 22, 32, 34,
39–42, 51, 76, 129, 140, 150, 157,
162–164, 180–181, 184, 188, 196, 217,
282, 333–335, 415, 593–646, 648, 790,
820

connection setup, 612–615
data structures, 606–612
data transfer, 615–620
design, 4.2BSD, 8
design, FreeBSD, 594, 599

layers, 599–600
local, 333–338
memory management in, 601–606
message queue, 337–338, 593, 647
model of, 593–599
overview, 50–51
receiving data, 617–620
reliable delivery, 616
semaphores, 335–336
shared memory, 250–258, 338
socket shutdown, 620–621
transmitting data, 616–617
virtualization, 182, 184, 644–646

interprocessor interrupt, 124–125, 421–422,
426, 785, 790, 821

interrupt, 821
asynchronous, 58, 60, 99
handler, device, 64
process, kernel, 57
request, 363
synchronous, 60, 99

interrupt handling, 64–65, 782, 790,
792–793, 795

clock, 65–67
device driver, 370

interrupt-vector table, 783
interrupted system call, 62–63
interruptible sleep(), 97, 133
interval time, 74
inverted page table, 284
involuntary context switching, 99, 116
ioctl, character device, 374
ioctl system call, 42, 78, 141, 178, 204, 214,

318, 321, 374, 379–380, 385–387, 620,
629, 635, 638, 700, 712, 714–715, 812

implementation of, 321
ioctl vnode operator, 432
IOMMU. See input-output memory-

management unit
iovec structure, 332–333, 821, 835, 844
IP. See Internet protocol
ip6_forward(), 702
ip6_input(), 702
ip6_output(), 669, 702, 766
IPC. See interprocess communication
ipcs, 334
ip_fastforward(), 702
ip_forward(), 699
IPFW. See Internet-protocol firewall

Index 861

862 Index

IPI. See interprocessor interrupt
ip_input(), 699, 702, 707
ipintr(), operation of, 673–675
IPMI. See intelligent platform-management

interface
ip_output(), 671, 699, 702, 746, 766

operation of, 671–673
IPSec, 30, 35, 52, 148–149, 151, 206,

208–209, 626, 660, 671–673, 675,
688–690, 693, 695, 698–700, 716–717,
820–821, 836, 843–844

authentication header, 691
encapsulating security protocol, 693
implementation, 698–700
overview, 689–690

ipsec4_process_packet(), 699
ipsec_common_input(), 699
IPv4, 182–183, 611, 623, 815
IPv6, 50, 182–183, 611, 649, 659–670, 688,

690–691, 695, 698, 716–717, 815,
820–821, 826

addresses, 660–662
autoconfiguration, 666–670
introduction, 659–660
packet formats, 662–664
socket API changes, 664–666

IPX. See Xerox network protocols
IRQ. See interrupt request
ISA bus, 405–406, 413, 784
ISA. See ISA bus
iSCSI, 216, 365–366, 525, 792. See also

small-computer system interface
ISN. See transmission control protocol

initial-sequence number
ISO. See International Organization for

Standardization
ISP. See Internet service providers
issignal(), operation of, 135
ITS operating system, 7
IV. See encryption initialization vector

J

jail, 30–34, 149, 151, 158, 180–184, 790,
797, 803, 805

ID, 183–184
jail system call, 183
jail_attach system call, 183
jail_get system call, 184

jail_remove system call, 183
jail_set system call, 184, 645
JID. See jail ID
JIT. See just-in-time compilation
job, 136, 139
job control, 29, 139–141, 821

history of, 7
signals in FreeBSD, 28
terminal driver support for, 387–388, 391
use of process group, 29

journaled soft updates, 487–496
compatibility, 488
future work, 494–495
introduction, 487–488
journal format, 488–489
performance, 493–494
recovery, 492–493
requirements, 489–492

Joy, William, 6
just-in-time compilation, 701

K

KAME, 659
kdump, 78
keepalive packet, 734, 822
keepalive timer, 734, 822
keg allocator, 238
Kerberos, 800
kernel, 22, 822

address space allocation, 233–244, 787
assembly language in the, 25, 61, 116,

370, 782–784, 786
based virtual machine, 415
bottom half of, 59–60, 809
configuration, 800–801
debugger, 779, 782, 785, 789, 791,

802–803
entry to, 60–61
environment, 779, 781, 787, 794
ev ent polling, 325, 822
facilities, 21–23
I/O, types of, 367–368
initialization, 782–783
interrupt process, 57
linker, 785–787, 789
linker classes, 789
loading of, 301
memory allocation, 38–39

memory management, 230–244
memory maps, 231–232
mode, 90, 226, 822
module dependencies, 776
module initialization, 785–786
organization, 23–25, 57–62
partitioning, reason for, 22
preemption, 60
process, 57, 786, 792–794, 822
programming interface, 185, 188–189,

191–192, 194, 639, 785
resource allocation, 259–260
return from, 61–62
security level, 439
state, 90, 822
structure of, 22–23
thread initialization, 792–794
top half of, 59–60, 843
trace-entry structure, 83
trace macros, 83
tracing facility, 77–84

kernel malloc, 241–243, 785, 787–788
implementation of, 242–243
requirements, 241–242

kernel_mount(), 794
kevent system call, 325–326, 329–331, 715

implementation of, 329–332
key, 334, 822

management, 693–698
management, GELI, 213–214
socket, 697

keyfile, GELI, 213–214
kgdb, 802
kick_init(), 794
kill character, 383, 822
kill system call, 132, 182
killpg system call, 140, 831
kinfo_proc structure, 804
kmap_alloc_wait(), 233
kmap_free_wakeup(), 233
kmem_free(), 234
kmem_malloc(), 234
knote structure, 330–332
KPI. See kernel programming interface
kproc_start(), 786
kqueue, 40, 317–318, 822

structure, 330–332
system call, 32, 40, 259, 326, 330

KTR. See kernel tracing facility

ktrace, 77–78, 791
ktrace system call, 161, 482
ktrace_init(), 791
ktr_entry structure, 83
KVM. See kernel based virtual machine

L

L2ARC. See zettabyte-filesystem level-2
adaptive-replacement cache

label structure, 189, 196–197
la_hold structure, 657
LAN. See local-area network
lastlog, 800
layer protocols, network, 51–52
layout, virtual memory, 227–228
lchmod system call, 164, 481
lchown system call, 164, 481
lease, 823

NFS, 559, 580–581
least recently used, 249, 454, 794, 823
LFS. See log-structured filesystem
/libexec/ld-elf.so, 245
libficl, 780
libmemstat, 804
libpcap, 700
libprocstat, 804
library, bare-metal system, 780
library, shared, 72
libstand, 780
lightweight process, 146
limitations, GELI, 216–217
limits

resource, 26, 75–77
in system, 451

line discipline, 383–385, 823
line mode, 383, 823
link count dependencies, soft updates,

478–480
link layer, 622, 823

path, 634
link system call, 46–47, 481. See also

filesystem links
link vnode operator, 432
link_elf_init(), 789
linker, kernel, 785–787, 789
linker sets, 776, 786
linker_init_kernel_modules(), 789
linker_preload(), 789

Index 863

864 Index

linker_stop_class_add(), 789
linprocfs filesystem, 358
Linux operating system, xxi, xxii, xxiii, 7,

11, 17, 71, 95, 358, 815
LISP programming language, 6
listen request, 628, 823
listen system call, 597, 612–613, 738, 823

definition, 597
Lite, 4.4BSD, xxii, 7, 13–14
live dump, 487
lldb, 80, 142
llentry structure, 655–656, 670
lle_timer structure, 656
lltable structure, 655
ln_hold, 670
loadable kernel modules, 31, 34, 44,

775–776, 779, 781, 783–786, 794–797,
823

local-area network, 148, 364, 380, 568, 641,
690, 747–748, 777

local descriptor table, 791
local domain, 50, 432, 823

address structure, 612
local IPC, 333–338
local page-replacement algorithm, 289, 823
local-remote decision, 678
locality of reference, 225, 508–510, 823
lock canrecurse flag, 111
lock synchronization, 110–112
lock vnode operator, 432
LOCKED buffer list, 349
locking

advisory, 323, 432, 807
file descriptor, 322–324
mandatory, 323, 824
NFS version 4, 581–583

locking resources on a shared-memory
multiprocessor, 106–114, 612

locking resources, deadlock avoidance
when, 112–114, 335–336, 647

locking semantics of, file, 454–456
lockstat probe macro, 82
locore.S, 783–784
log-structured filesystem, 537–538, 543
logging, ZFS, 538–540
logical block, 498, 824
login, 155–156, 440, 799–800
login name, 137
login shell, 22

LOMAC. See low watermark mandatory
access control

long-term scheduling, 117
lookup vnode operator, 342–343, 432
lost+found, 480
low-level context switching, 100
low-level scheduling, 114–117
low pin-count interface, 363–364
low watermark, 824

mandatory access control, 186, 199
socket, 610
terminal, 389

lower half terminal input, 390–391
lower half terminal output, 389
LPC. See low pin-count interface
LRO. See transmission control protocol

large-receive offload
LRU. See least recently used
ls, 508
lseek system call, 41, 178, 318, 816
lstat system call, 164, 450
lutimes system call, 481

M

MAC. See mandatory access control
mac_error_select(), 194
mac_get_fd system call, 200
mac_get_file system call, 200
Mach operating system, 7, 22, 37, 227, 258,

267, 273, 299
mac_init(), 791
mac_init_late(), 791
Macklem, Rick, xxvi, 558–559
mac_label_get(), 197
mac_label_set(), 197
mac_late, 189–190
mac_policy_conf structure, 190
mac_policy_ops structure, 190
mac_policy_register(), 791
mac_set_fd system call, 200
mac_set_file system call, 200
mac_t, 200
mac test, 199
mac vnode check write(), 193
m_adj(), 606
magic number, 69, 377, 824
main memory, 221, 824
malloc(), 38, 72, 198, 227–228, 234, 239,

241, 243, 263, 309, 351, 788, 819

management information base, 191, 805
management mode, system, 777
mandatory access control, 30–32, 34,

149–152, 158, 160–161, 184–200, 217,
437, 630, 655, 791, 793, 797, 800, 804,
824–825, 836

entry point, 34, 188–189, 191–194
framework, 30, 34, 184–200
framework startup, 189–190
object association, 198
object destruction, 199
policy composition, 194–195
policy lifecycle, 190
policy registration, 190
security label, 34, 152, 186–189,

195–200, 836
mandatory locking, 323, 824
mapped object, 228, 824
mapping, physical to virtual, 302–303, 781
mapping structure, 299, 824
maps, kernel memory, 231–232
maps, virtual memory, 231–232
marshalling, 553

of arguments, 553, 824
masked signal, 132
Massachusetts Institute of Technology, 4, 7
master boot record, 377, 392–393, 395–396,

778–779
maxcontig, 515
maximum segment lifetime, 729–730,

769–770, 825. See also 2MSL timer
maximum-segment-size option, TCP, 728,

737
maximum transmission unit, 380, 680, 686,

737–738, 770, 825
maxusers, 603
mb_alloc(), 605
MBR. See master boot record
mbuf, 601–605, 795, 825

allocation, 605, 795
cluster, 601–606
data structure description, 601–603
design, 604–605
design, 4.4BSD, 604
storage-management algorithm, 605
structure, 197
utility routines, 606

m_copy(), 746
m_copydata(), 746

m_copym(), 606
memcpy(), 389
memory allocation

buffer cache, 351
kernel, 38–39

memory deadlock, 259, 274–275, 295–296
memory disk, 780
memory management, 36–39, 221–308

cache design, 280–282
design, 36–38
goals, 221–226
hardware, VAX, 37
in IPC, 601–606
kernel, 230–244
page-table design, 298–299
portability of, 37
system, 221, 825

memory-management unit, 223, 280,
282–284, 298, 301, 307, 427, 825

design, 282–284, 298–299
I/O, 420

memory overlay, 223
memory, process, 222–223
memstat, 804
menu, boot, 778–781
merged from current, 16
message queue, 51, 825

POSIX, 337–338
System V, 337–338, 593

metadata, 253, 348, 351, 357, 395, 459–463,
478, 484–485, 516–517, 825, 844

metrics, route, 680, 686
MFC. See merged from current
m_free(), 605
m_get(), 605
m_hdr structure, 601
MIB. See management information base
Microsoft NTFS filesystem, 47, 171
MINIX operating system, 7
MIPS architecture, 7, 405, 782–784, 790
mi_startup(), 786
mi_switch(), 100, 104, 116–117
mkdir

structure, 468, 475
system call, 47, 54, 169, 475, 482
vnode operator, 432

MKDIR_BODY flag, 474–475
MKDIR_PARENT flag, 475
mkfifo system call, 481

Index 865

866 Index

mknod system call, 481
mknod vnode operator, 432
mlock system call, 253, 290, 307

definition of, 253
MLS. See multilevel security
mmap system call, 36–38, 72, 228, 251–252,

259, 264, 266, 270, 304, 334, 347, 548,
824

definition of, 251
interface, 251–253

mmap vnode operator, 432
MMU. See memory-management unit
modular congestion control, 758

TCP, 758–761
module_init(), 789
Modulo-N hash, 682
MOS. See zettabyte-filesystem meta-object

set
motivation for select system call, 324–327
mount, 487, 560–561

mount options, 343
mount system call, 44, 182, 352, 355, 357,

373, 560, 799
mountd, 559–561, 564
mountroot, 794
mprotect system call, 252, 266, 306

definition of, 252
mps_complete_command(), 401
mpssas_action(), 401
mp_start(), 790
m_pullup(), 606, 724, 741
mq_open system call, 318
mq_receive system call, 337–338
mq_send system call, 337
MS-DOS fat filesystem, 552, 777
MS-DOS operating system, 552, 778
msgrcv system call, 337–338
msgsnd system call, 337
MSL. See maximum segment lifetime
msleep (). See sleep ()
msync system call, 253, 268, 271–272

definition of, 253
mtod(), 606
MTU. See maximum transmission unit
mtx_destroy(), 109–110
mtx_init(), 109–110
mtx_lock(), 109
MTX_OWNED flag, 107
MTX_RECURSE flag, 109

mtx_trylock(), 109–110
mtx_unlock(), 110
MTX_UNOWNED flag, 107
multicast, 636

address, router, 667
Internet addresses, 654–655
message, 725
router, IP, 675

Multics operating system, 4, 7
multihoming, SCTP, 766–767
multilevel feedback queue, 125–126, 825
multilevel security, 34, 186–187, 189–190,

195, 200, 825, 836
multiple-root problem, 569, 825
multiprocessor

locking resources on a shared-memory,
106–114, 612

scheduling, 122–125
startup, 789
virtual memory for a shared-memory, 37

multiprogramming, 90–91
multiuser mode, 798, 801
munlock system call, 253

definition of, 253
munmap system call, 252, 255, 257, 264,

305
definition of, 252
implementation of, 264–265

mutex, 107–110, 788
interface, 109–110
spin, 107, 839
synchronization, 107–110

N

Nagle, John, 747–748
name

creation, filesystem, 432
deletion, filesystem, 432
login, 137
lookup, filesystem, 446–447
translation, filesystem, 46, 447–449

named attributes, 573
named object, 248
namei(), 180
naming
filesystem, 443–451
shared memory, 252

NAT. See network address translation

National Bureau of Standards, 8
nd6_na_input(), 670
nd6_output(), 669
nd6_output_lle(), 669–670
nd6_timer(), 670
nd_input(), 669
NEEDRESCHED flag, 116, 134
negative caching of filename, 346
neighbor-discovery, 658, 666–670, 826
Net1 release, 7
Net2 release, 7
NetBSD, xxi, xxii, xxvi, 3, 11, 13–14, 342
netfront, 423
netgraph, 707–711

bridge, 708–711
Ethernet, 708–709

netmap, 712–715
netmask, 652, 826
netstat, 636–637, 646
network

address translation, 700
buffering, 643–644
byte order, 651, 826
data flow, 623–624
deadlock, 324–325
device configuration, 379–380
device control, 379–380
device interface, 378–379
device reception, 380–381
device transmission, 381–382
devices, 378–382
flow control, 643–644
interrupt service routine, 642, 793
layer, 621–623, 826
layer protocols, 51–52
mask, 826
protocol capabilities, 626
queue limiting, 643
stack virtualization, 33, 180, 184,

644–646, 683, 717, 776, 786, 789, 791,
805

stack virtualization linker set, 645
time protocol, 580, 796
time synchronization, 74, 796
timer, 67, 625

Network Filesystem, 50, 53, 153, 162–163,
166, 171–174, 206, 209, 217, 340, 345,
348, 354–355, 357, 432–433, 525–526,
547, 551–587, 610, 781, 810–811, 813,
816, 818, 826

4.4BSD, 551–552
access control, 573
asynchronous writing, 566
client-server interaction, 562–564
crash recovery, 584–586
daemons, 559–562
delayed writing, 565
design, 552–553
ev olution, 567–586
file handle, 555, 816
file locking, 553
hard mount, 562
implementation of, 558–562
interruptible mount, 563
lease, 559, 580–581
lock reclaim, 586
operation, 553–567
overview, 50, 551
procedures, 569, 572–573, 575–581
security issues, 564
session, 576
soft mount, 563

Network Filesystem version 4, 161–174,
817, 837

access, 574
access control functions, 173–174
attributes, 572–573
locking, 581–583
namespace, 572
security, 583–584
versus version 3, 568–571

network interface, 31, 414, 419–420, 423,
428, 634–643, 795

addresses, 635–636
capabilities, 636–639
cards, 53, 414, 419
layer, 826
routines, 639–641
Xen, 427

newblk structure, 467
newbus, 44, 366, 403, 826
newfs, 441–442, 503–504
NFS. See Network Filesystem
nfscbd, 575, 578
nfscb_program(), 579
nfsclclient, 576
nfsclient, 575–576
nfsd, 559–561, 563, 579
nfsiod, 562–563

Index 867

868 Index

nfsiod_setup(), 562
nfslock structure, 582–583
nfslockfile structure, 582–583
nfslockhash, 582
nfssvc system call, 560
nfssvc_program(), 561
nfsv4_fillattr(), 573
NIC. See network interface cards
nice, 28, 75, 120, 297, 826, 831, 836
Ninth Edition UNIX, 5
N:M threading model, 93
nmount(), 561
non-volatile random-access memory, 49,

460, 526
nonblocking I/O, 320, 325, 614, 617, 619,

826
nonbypassability, 187, 189
nonuniform memory access, 106, 827
Not-Quite Network Filesystem, 559, 567,

823
Novell, 8
NQNFS. See Not-Quite Network Filesystem
NTP. See network time protocol
nullfs filesystem, 354–355
NUMA. See nonuniform memory access
NVRAM. See non-volatile random-access

memory

O

O_ASYNC flag, 320
object

association, MAC, 198
destruction, MAC, 199
oriented file entry, 318, 321

object, shadow, 230, 248, 254–258, 837
object, virtual memory, 247–250, 845
objset structure, 529, 531, 533–535,

538–539, 542, 546
obtaining BSD, xxvi
Olson, Arthur, 9
one-time password in everything, 800
1:1 threading model, 94
open-file entry, 442
open firmware, 777
open source BSD, 9–14
open system call, 32, 39–41, 48, 162, 168,

177, 179, 183, 198, 203, 269, 318–319,
334, 352, 373, 385, 432–433, 442,
449–450, 481, 599, 700, 712, 813

open vnode operator, 432
openat system call, 32, 179–180
OpenBSD, xxi, xxii, xxvi, 3, 11, 14, 206,

697
OpenBSM, 201
opendir(), 445
operation of /dev, 366–367
operation, NFS, 553–567
operations
filestore, 497–498
filesystem, 431–433
terminal, 388–391

OPIE. See one-time password in everything
optimal replacement policy, 224, 827
organization, FFS, 502–504
orphaned process group, 141, 827
OS/X operating system, Apple, 3, 436, 445
out-of-band data, 617–619, 630, 827

receipt of, 619
transmission of, 616

overlay, 25, 827
memory, 223

ownership bit, 381

P

packet
filter, 52, 637, 701–702, 706–707
forwarding, IP, 658, 674–675
fragmentation, 761
normalization, 707
processing frameworks, 700–715
reception, 642–643
scheduler, 705
transmission, 641

packet demultiplexing
Internet addresses, 721
IP, 723

page cache, 368, 372
page clustering, 268, 280, 294, 309, 811
page fault, 223, 817, 827–828, 833
page lists, 290

active, 290
cache, 290
free, 290
inactive, 290, 307
wired, 290

page replacement, 6, 224, 289–295
4.4BSD, 289, 294
criterion for, 289–291

in the VMS operating system, 289
page table, 298, 828

forward-mapped, 282, 817
inverted, 284
pages, 298, 828
reverse-mapped, 284, 834

page-table entry, 282–283, 298, 303,
305–306, 308, 828

page usage, 307–308
page, wired, 271–272, 299–300, 302, 307,

846
pagedep structure, 472–476, 495–496
pagein(), 827

operation of, 276–280
pageout daemon, 58, 92, 233, 236, 238,

240–241, 244, 248, 268, 271–273, 275,
290–297, 307–309, 482, 813, 822,
827–828

operation of the, 292–295
pageout in progress, 275
pager, 248–249, 828

definition of, 268–269
device, 248, 270–271
interface, 267–275
physical-memory, 272
swap, 248, 272–275
vnode, 248, 269–270

paging, 6, 36, 71, 223–224, 226, 245–247,
249–250, 276–289, 799, 813, 828

parameters, 291
systems, characteristics of, 223

PAM. See pluggable authentication module
panic, 801, 828. See also system crash
paravirtualization, 184, 414–428, 788
parent directory, 46
parent process, 27, 96, 126, 828
partial fail, 768
partition. See disk partition
passphrase, GELI, 213–214, 216
path MTU discovery, 680, 738, 770, 828
pathname, 46, 828

translation, 342–343
paths through network node, 624
PC-BSD, xxiv
PC. See personal computer
p_cansched(), 160
PCB. See protocol control block
PCH. See peripheral controller hub
PCI. See peripheral-component interconnect

PDP-11, 5, 62, 89–90
PDP-7, 3, 89
per-CPU allocator, dynamic, 789
perfect forward secrecy, 210
performance. See system performance
peripheral-component interconnect, 24–25,

53, 363–366, 405–406, 408–410,
414–416, 420, 423, 428, 777

peripheral controller hub, 362–363
permanent kernel modules, 775, 828
persist timer, 734, 829
personal computer, 7, 60–62, 65, 67, 73,

148, 504, 777, 790
architecture, 362–364
stack growth on, 72

PF. See packet filter
PF_KEY

address extension, 695
association extension, 695
base header, 694

PF_KEY_V2, 693
PF_LOCAL, 630
PFS. See perfect forward secrecy
pgo_alloc(), 268
pgo_dealloc(), 268
pgo_getpage(), 272
pgo_getpages(), 268–272
pgo_haspage(), 268, 272
pgo_init(), 268
pgo_putpages(), 268, 270–272, 275
PGP. See pretty-good privacy
physical block, 499, 829
physical I/O, 372–373

algorithm for, 372
physical mapping, 299, 829
physical-memory pager, 272
physical to virtual mapping, 302–303, 781
physio(), 372–374
PIC. See programmable interrupt controller
PID. See process identifier
ping, 658, 686
pipe, 40–41, 316, 594, 829

audit, 200–205
implementation of, 40
system call, 40–41, 198, 232, 318, 790,

813
pipeline, 29, 41, 829

assured, 176
placement policy, 223, 829

Index 869

870 Index

Plan 9, 5
platform_start structure, 784
pluggable authentication module, 800
pmap, 299–300, 303–308

functions, 300–301
initialization, 302, 785
module, 229, 299–301, 303–308, 829
structure, 829

pmap_bootstrap(), 300–301
pmap_bootstrap structure, 785
pmap_change_wiring(), 301, 307
pmap_clear_modify(), 301, 307
pmap_copy_page(), 301, 308
pmap_enter(), 300, 304–306

implementation of, 304–305
pmap_growkernel(), 300, 302
pmap_init(), 300–302
pmap_is_modified(), 301, 308
pmap_pinit(), 301, 308
pmap_protect(), 301, 304, 306
pmap_qenter(), 300, 305
pmap_qremove(), 300, 305
pmap_release(), 301, 308
pmap_remove(), 300, 305–308

implementation of, 305
pmap_remove_all(), 301, 306
pmap_remove_write(), 301, 306
pmap_ts_referenced(), 301, 307–308
pmap_zero_page(), 301, 308
PMBR. See protective MBR
pmc_soft_ev_register(), 791
point-to-point protocol, 707–708
policy composition, MAC, 194–195
policy registration, MAC, 190
poll interface, System V, 326
poll system call, 32, 110, 325–327,

329–330, 374, 385, 630, 715, 829
poll vnode operator, 432
pollfd structure, 326
polling I/O, 325, 829
portability of

FreeBSD, 23
memory management, 37
Seventh Edition UNIX, 5

portable operating-system interface, xxii, 8,
39–40, 94, 136, 141, 150, 162–163,
166, 168–171, 173–174, 248, 251, 317,
321–323, 334, 336–338, 385–386, 455,
463, 524–525, 528, 780, 829

message queue, 337–338

real-time, 161–174
shared memory, 338

portal filesystem, 343, 357–358
portmap, 559–560
ports, Internet, 721–723
POSIX. See portable operating-system

interface
postsig(), 133, 135–136

operation of, 136
PPC architecture, 405
PPP. See point-to-point protocol
pr_ctlinput(), 633–634, 658, 725
pr_ctloutput(), 631, 725
preadv system call, 419
preemption

kernel, 60
thread, 117

prefix option, 668
prepaging, 224, 829
preselection, audit, 201, 204
pretty-good privacy, 30, 209
primary address, 767
pr_input(), 632–633
priority inversion, 103, 830
priority propagation, 103, 830
prison, first, 181, 790–791, 794
prison structure, 181, 646
private mapping, 251, 254–256, 830
private memory, 254–256, 258
priv_check(), 32, 158
priv_check_cred(), 158
privilege, 830

model, 30–34, 149–151, 157–159,
181–182, 803–805

separation, 174, 830
PRNG. See pseudo-random number

generator
probe, 79, 830
probe effect, 79, 830
/proc filesystem, 142–144, 358, 831
procctl system call, 259–260
procedures, NFS, 569, 572–573, 575–581
process, 26, 89, 830

address-space management, 228–230
context, 26, 830
creation, 126–128, 258–262
credential, 31, 34–35, 127, 144, 150–157,

179, 181–182, 201–204, 259, 354–355,
556, 564, 793, 800, 803, 830

debugging, 134, 142–144, 161, 182

first, 793
flags, 142
isolation, 149
kernel, 57, 786, 792–794, 822
kernel interrupt, 57
lightweight, 146
memory, 222–223
model, 149, 831
open-file table, 442, 831
profiling, 63, 74
resource accounting, 31, 67, 129, 790,

800
scheduling, 58, 68, 73, 91–92, 160–161,

782, 792, 794, 796
state, change of, 128, 134, 142
state organization, 92–99
structure, 59–60, 90, 94–98, 100, 804, 831
termination, 128–129, 161, 266–267
virtual address space, 245
virtual memory duplication, 260–262
virtual memory resources, 244–250
virtual time, 74
visibility, 34, 160

process group, 29, 136–139, 830
association with, socket, 140, 608
hierarchy, 96
identifier, 137, 320, 608, 831
job-control use of, 29
leader, 137
orphaned, 141, 827
terminal, 140, 387–388, 390

process identifier, 27, 54, 92, 94, 126–128,
137–138, 145, 209, 259, 317, 387, 685,
831

allocation, 127
process management, 26–29, 69–73, 89–144

history of, 89
process priority, 28, 63, 75, 831

calculation of, 67
processor affinity, 117–118, 121, 240, 831
processor group, 117, 831
processor hardware performance monitoring

counters, 790–791
processor rings, 149–150
processor-status longword, 60–62
procfs filesystem, 358
procstat, 144, 804
profclock(), 66, 74
profil system call, 85

profiling
process, 63, 74
timer, 66, 74

program relocation, 833
programmable interrupt controller, 427
programming language

B, 4
C, 3–4, 26, 62
D, 78, 80, 188–189
LISP, 6

protect, 260
protected mode, 779, 781
protection, virtual memory map, 306–307
protective MBR, 779
protocol, 51, 811

buffering policy, 643
capabilities, network, 626
communication, 624–626
control block, 722–723, 766
control-output routine, 630–631
switch, 606, 608
switch structure, 624, 831

protocol family, 608, 805, 831
protocol-network interface, 634–643
protocol-protocol interface, 631–634
protocols, network layer, 51–52
protosw structure, 606, 608
pr_output(), 632
pr_usrreqs(), 631
ps, 94, 98, 120
pseudo-header, IP, 741
pseudo-random number generator, 209, 212
pseudo-terminal, 23, 29, 346, 367, 382–384,

388–390, 811–812, 832, 838
psignal(), 133–135

operation of, 133–134
PSL. See processor-status longword
ps_strings structure, 72
PTE. See page-table entry
pthread model, 94
pthread_create(), 94
ptrace system call, 78, 106, 142–143, 161,

182
public-key encryption, 206, 832
pure demand-paging, 224, 832
push migration, 832
pv_entry structure, 299, 302–303, 305–310
pwrite system call, 177–178
pwritev system call, 177–178, 419

Index 871

872 Index

Q

QFQ. See quick fair queueing
queue, audit, 204–205
queue limiting, network, 643
quick fair queueing, 705
quotacheck, 454
quotactl system call, 482
quota.group, 452
quotas

contribution of, 8
format of record, 452
implementation of, 451–454
limits, 451

quota.user, 452

R

racct_init(), 790
race condition, 137–138, 250, 279, 324, 479,

832
radix search trie, 680
RAID. See redundant array of inexpensive

disks
RAIDZ. See zettabyte-filesystem RAIDZ

variant of RAID
random-number generator, 31, 35, 206,

208–212, 790, 793
random_harvestq_internal(), 211
range lock, System V, 323
rapid connection reuse, 743, 832
raw device, 372–373

interface, 371, 832
raw mode, 384
raw socket, 42, 651, 658, 686–687, 832

control block, 686
input processing, 687
output processing, 687

rctl_init(), 790
rdrand instruction, 35, 210–211
read system call, 37, 39, 43, 51, 143, 179,

209, 212, 318, 327, 333, 347, 352, 359,
385, 390–391, 599, 615, 700, 816, 826,
831, 841

read vnode operator, 497
READ_10, 401
readdir(), 445
readdir vnode operator, 432
readlink vnode operator, 432
readv system call, 43, 332, 821

real GID. See real group identifier
real group identifier, 155, 832
real mode, 779
real-time

clock, 58, 795–796
POSIX, 161–174
scheduling, 28, 75, 91, 117, 252–253
timer, 67, 74

real UID. See real user identifier
real user identifier, 155–156, 832
reboot, 801–802
reboot system call, 801–802, 805
receive

descriptors, 381
ring, 381
stream, ZFS, 546
window, 732, 833, 838

reception, network device, 380–381
reclaim from inactive, 294, 833
reclaim vnode operator, 345, 432, 443
reclamation dependencies, soft updates, 476
recommended attributes, 573
record, audit, 35, 200–205
recv system call, 43, 630
recvfrom system call, 43, 615, 664, 761, 766
recvit(), 615
recvmsg system call, 43, 598, 615, 620, 630,

764
data structures for, 598

red zone, 38, 241, 833
redundant array of inexpensive disks, 46, 49,

53, 362, 392, 394, 526, 529, 540,
547–548, 794

reference monitor, 187, 189
reference string, 224, 833
refinement, capability, 176
region, 245, 833

directly-mapped, 783–784
relative pathname, 46, 828, 833
remote filesystem performance, 565–567
remote procedure call, 553–566, 569,

572–573, 575, 577–579, 581–586, 833
remove vnode operator, 432
rename system call, 47, 482, 557

addition of, 47
rename vnode operator, 432
replacement policy, 223, 833
replay protection, 691–692
request for comments, 568, 573, 584, 659,

661, 688, 739–740

required attributes, 573
resident-set size, 290, 833
resource

accounting, process, 31, 67, 129, 790, 800
autoconfiguration, 412–413
limits, 26, 75–77
process virtual memory, 244–250
sharing, 106–114
utilization, 75–76

restore, 438, 546
retransmit timer, 733, 738, 834
return from kernel, 61–62
return from system call, 63
reverse-mapped page table, 284, 834
revocation of controlling terminal, 345
re voke system call, 346, 387, 391, 482
re winddir(), 445
RFC. See request for comments
rfork system call, 40, 94, 126
rip_input(), 658
Ritchie, Dennis, 3–4, 7
rlimit structure, 95
rm, 479
rmdir system call, 47, 475, 478, 482
rmdir vnode operator, 432
root

directory, 45, 834
filesystem, 46, 794, 799, 834
of I/O tree, 366, 406, 410
user, 30–31, 33, 151, 154–155, 157, 174,

181, 793, 834, 841
root_hold_token(), 794
root_mount_rel(), 794
round robin, 115, 834
round-trip time, 565, 735, 769

TCP estimation of, 735–736
route

black-hole, 680, 809
metrics, 680, 686
structure, 683
weight, 682

routed, 684
router, 675, 834

advertisement, 666
entry, 667
IP multicast, 675
multicast address, 667
solicitation, 667, 834

routing, 675–686
daemon, 684, 813, 834

information protocol, 684
interaction with ICMP, 658
interface, 685–686
lookup, 680–683
mechanism, 677–684, 834
policy, 684, 835
redirect, 683, 835
redirect message, 683
socket, 685
table interface, 683–684
tables, 677–684
types of, 677

RPC. See remote procedure call
rpc.lockd, 557, 559, 561–562
rpc.statd, 559, 561–562
rtalloc(), 682–684
rtentry structure, 671, 678, 683
rtfree(), 683
rtprio system call, 97
rtredirect(), 658, 684
RTT. See round-trip time
run queue, 96, 114, 835

management of, 115–117
run-to-completion, 642, 835
runq_add(), 115
runq_choose(), 115

operation of, 115
runq_remove(), 115

S

SA. See security association
SACK. See transmission control protocol

selective acknowledgment
Samba, 552
sandbox, 149, 151, 174–181, 835
SAS. See serial-attached SCSI
SATA. See serial advanced-technology

attachment
savecore, 802
saved GID, 157, 835
saved UID, 156–157, 835
sbappendstream(), 744, 746
/sbin/init, 793
sbrk system call, 72, 259, 263, 819
SC22 WG15 standard, 8
scatter-gather I/O, 43, 54, 332–333, 416,

419, 615, 835
sched_affinity(), 117

Index 873

874 Index

sched_clock(), 117
sched_getparam system call, 160
sched_lend_user_prio(), 117
sched_pickcpu(), 123
sched_setpreempt(), 117
sched_setup(), 791
scheduler(), 296–297
scheduler, packet, 705
scheduling, 90, 414, 836

class, 97, 836
long-term, 117
low-level, 114–117
multiprocessor, 122–125
parameters, 26
priority, 97, 836
process, 58, 68, 73, 91–92, 160–161, 782,

792, 794, 796
real-time, 28, 75, 91, 117, 252–253
short-term algorithm, 126
thread, 106, 114–126
timeshare, 117–126
traditional, 125–126

scripts, user-level startup, 782
SCSI. See small-computer system interface
SCTP. See stream control transmission

protocol
sctp_bindx(), 767
sctp_connectx(), 767
SDT. See statically defined tracepoints
secondary storage, 221, 836
secure mode, 440
securelevel, 161
security, 688–700

association, 689, 691, 693–694, 697, 699,
836

association, transport mode, 689
association, tunnel mode, 690
clearance, 186
ev ent auditing, 30–31, 35, 149, 151,

200–205, 792–793, 800, 836
flavor, 584
introduction, 688
issues, NFS, 564
label, MAC, 34, 152, 186–189, 195–200,

836
level, kernel, 439
localization, 30
parameter index, 689–691, 697, 699, 836
protocols, 690–693

protocols implementation, 698–700
triple, 584

seekdir(), 445
see_other_gids, 160
see_other_uids, 160
segment, 36, 69, 726, 836

bss, 69, 263, 784, 809
data, 36, 69, 71, 263, 813
stack, 36, 69, 263, 839
text, 36, 69, 71, 263, 842

segregated fit, 234
select system call, 32, 325–327, 329–330,

359, 374, 610, 630, 715, 739, 829
device driver support for, 327, 374
implementation of, 327–329
motivation for, 324–327

selfd structure, 327–329
selinfo structure, 327–329
seltd structure, 327–329
seltrue(), 374
selwakeup(), 329, 389
semaphores, 51, 593, 836

System V, 333, 335
virtual memory, 251

semctl system call, 648
semget system call, 336, 648
semop system call, 336, 648
sem_open system call, 317, 336
sem_post system call, 336
sem_wait system call, 336
send stream, ZFS, 546
send system call, 43, 51, 609, 694, 724, 765
send window, 731, 837
sendfile system call, 38, 548
sendit(), 615–616
sendmsg system call, 43, 598, 615, 628, 723

data structures for, 598
sendsig(), 136
sendto system call, 43, 615, 628, 664, 723,

761, 764–765
sense request, 629, 837
sequence

numbers, TCP, 726
space, 726, 837
variables, TCP, 730–732

sequenced-packet protocol, 761
sequenced-packet socket, 595, 837
serial advanced-technology attachment, 363,

365–366, 399, 402, 405, 407

serial-attached SCSI, 365, 402
serial console, 777, 779, 799
server message block, 525, 552
server process, 50, 837
service location, 559
session, 29, 136–139, 387–388, 837

ID, 575, 837
leader, 138, 837

set-group-identifier program, 155, 837
set-user-identifier program, 155, 533, 837
setattr vnode operator, 432
seteuid system call, 157
setfd structure, 329
setgid binary, 31
setgid system call, 155
setlogin system call, 800
setpgid system call, 137–138
setpriority system call, 831
setrunnable(), 100, 134
setsid system call, 138
setsockopt system call, 599, 621, 627, 631,

654, 748, 812
settimeofday system call, 74
setuid, 132

binary, 31, 151, 181
system call, 152, 155

Seventh Edition UNIX, 5
portability of, 5

sh shell, 70, 798
SHA. See hash message-authentication code
shadow object, 230, 248, 254–258, 837

chain, 255–258
collapse, 257–258

share deny, 581
share reservation, 581
shared library, 72
shared mapping, 36, 251, 253–254, 837
shared memory, 51, 250–258, 593, 838

naming, 252
POSIX, 338
System V, 252, 272, 338

shared text segment, 6
sharing, resource, 106–114
shell, 838

csh, 139
login, 22
sh, 70, 798

shmat system call, 338
shmdt system call, 338, 647

shmem system call, 248, 252, 338
shmget system call, 338
shm_open system call, 179–180, 317, 338
shm_unlink system call, 338
short-term-scheduling algorithm, 126, 838
shutdown, system, 52–54, 801–802
shutdown system call, 599, 619, 740
shutdown_final, 802
shutdown_post_sync, 802
shutdown_pre_sync, 802
sigaction system call, 130, 136, 810
SIGALRM, 74
sigaltstack system call, 132
SIGCHLD, 134, 138, 142
sigcode(), 136
SIGCONT, 132, 134, 160, 812
SIGHUP, 141, 387
SIGINT, 136
SIGIO, 320, 390, 608–609, 838
SIGKILL, 28, 132, 134, 160
signal, 28–29, 34, 94–95, 129–141, 160, 838

checking for a pending, 63
comparison with other systems, 129
delivering, 135–136
driven I/O, 320, 325, 838
handler, 28, 130–132, 838
masked, 132
posting, 63–64, 98, 132–134, 142, 838
priority, 28
restrictions on posting, 132
stack, 28, 132
system call, 179
trampoline code, 136, 838

sigprocmask system call, 132, 824
SIGPROF, 74, 85
sigreturn system call, 132, 135–136, 838
SIGSTOP, 28, 132, 144
sigsuspend system call, 101, 132
SIGTHR, 160
sigtramp(), 135
SIGTRAP, 142, 144
SIGTSTP, 145, 391
SIGTTIN, 141, 390
SIGTTOU, 134, 141, 388
SIGURG, 608
SIGVTALRM, 74
silly-window syndrome, 746, 838

TCP handling of, 746–747
single indirect block, 435, 820, 838

Index 875

876 Index

single-user mode, 779, 781, 798, 801
Sixth Edition UNIX, 4–5
size update, filestore, 498
slab allocator, 236–237, 787, 791
sleep(), 98, 100–101, 116, 132–133, 292,

369, 615, 838, 843
implementation of, 97–98, 101–104
interruptible, 97, 133
operation of, 104
use of sleep(), 97–98, 101

sleep queue, 96, 838
sleepqueue structure, 103–105, 115
sliding-window scheme, 726, 838
slow-start algorithm, TCP, 752–756
small-computer system interface, 363–365,

399–402, 405, 415, 418
bus, 404
I/O request, CAM, 400–402

small-packet avoidance, 747, 839
TCP implementation of, 747–748

SMB. See server message block
SMP. See symmetric multiprocessing
snapshot, 48, 480, 839

on a large filesystem, 484–486
creating a, 481–483
deadlock, 485–486
maintaining a, 483–484
user visible, 487
ZFS, 541–542

socantrcvmore(), 745
sockaddr structure, 611, 628, 630, 635, 641,

658, 677, 686, 695
sockaddr_dl structure, 635–636
sockaddr_in structure, 182, 664, 724
sockaddr_in6 structure, 664
socket, 40, 42–43, 50, 316, 368, 595, 839

address structure, 182, 596, 611, 839
connection queueing, 610, 613
data buffering, 609, 616, 618
data structures, 608–611
error handling, 615
low watermark, 610
options, 626
process group association with, 140, 608
shutdown, 620–621
state transitions during rendezvous, 613
state transitions during shutdown, 621
states, 610
structure, 192

types, 595, 607
using a, 596–599

socket system call, 8, 39–41, 50, 198, 318,
596–597, 606, 612, 628, 631, 713, 761,
813

definition, 596
socket-to-protocol interface, 626–631
socketpair system call, 630, 813
SOCK_SEQPACKET, 761, 765
SOCK_STREAM, 596
soconnect(), 614
soft limit, 76, 451, 839
soft link, 449, 839, 841. See also symbolic

link
soft updates, 48, 459–480, 839

bitmap dependencies, 466–467
dependencies, 460–464
direct block dependencies, 469–470
directory dependencies, 472–476
fsck dependencies, 480
fsync dependencies, 477–478
indirect block dependencies, 470–472
inode dependencies, 467–469
link count dependencies, 478–480
overview, 459–460
reclamation dependencies, 476
structures, 464–466
truncation dependencies, 476

softclock(), 66–69, 74
softdep_disk_io_initiation(), 469
softdep_disk_write_complete(), 469
softdep_update_inodeblock(), 468
software interrupt, 59, 65–66, 210, 839

thread, 65, 208, 793, 795, 839
sohasoutofband(), 744
soisconnected(), 615
soisconnecting(), 736
soisdisconnected(), 745
solid-state disk, 49, 402, 526, 539
solisten(), 613
sonewconn(), 613, 738
soreceive(), 559, 617, 619–620, 647
sorwakeup(), 619
sosend(), 559, 616–617, 647, 746, 768
SPA. See zettabyte filesystem storage-pool

allocator
SPARC64 architecture, 790
Spec 1170, 8
special file, 42, 316, 839

SPI. See security parameter index
spin mutex, 107, 839
split device-driver model, 414–428
SPP. See sequenced-packet protocol
SSD. See solid-state disk
ssh, 30, 35, 148–149, 209, 383, 798
stack, 839

growth on PC, 72
segment, 36, 69, 263, 839
zero filling of user, 71

stackable filesystem, 352–358
4.4BSD, 352–353

stale data, 565
stale translation, 280–282, 839
standalone

device driver, 777, 840
I/O library, 779–780, 840
program, 777, 840

standard
error, 41, 840
input, 41, 840
output, 41, 840

start routine, 401, 840
start_init(), 793–794
startup

C-language, 784–785
GELI, 214
MAC framework, 189–190
multiprocessor, 789
scripts, user-level, 782
system, 52–54, 775–800
witness, 788

stat structure, 318, 439, 629
stat system call, 47, 164, 171, 345, 352, 438,

446, 837
statclock(), 66–67, 76
state cookie, 763
stateless protocol, 556, 840
statfs system call, 344
statically defined tracepoints, 80
statistics collection, 66–67, 76
statistics, system, 66–67
sticky bit, 165, 309, 840
stop character, 389
storage-management algorithm, mbuf, 605
strategy(), 351, 401
strategy vnode operator, 469
stream, 762

I/O system, 6
identifier, 764

sequence number, 764
socket, 595, 840

stream control transmission protocol, xxvi,
52, 209, 651, 721, 761–769, 815, 840

association setup, 761–764
association shutdown, 766
chunk, 762–766
data transfer, 764–766
heartbeat, 767–768
multihoming, 766–767
packet header, 762
stream, 764

STREAMS, 326, 632
structures, soft-updates, 464–466
su, 440
Sun Microsystems, 9, 50, 339, 342, 515,

551, 554, 558
superblock, 501, 841
superpages, 284–289, 841
superuser, 46, 154, 158, 322, 803, 805, 841
supplementary group array, 156
suser(), 32
svc_dg_create(), 561
svc_reg(), 561
svc_vc_create(), 561
swap

area, 225, 841
device, 225, 841
out, 92, 295–296
out, 4.4BSD, 296
pager, 248, 272–275
pager, 4.4BSD, 273
partitions, 273, 802
space, 225, 272, 841
space management, 273–275

swapin(), 106
operation of, 296–297

swapoff system call, 274
swapper, 296–297, 793, 822, 841
swapping, 36, 73, 225, 295–297, 799, 841

in FreeBSD, reasons for, 295
SWI. See software interrupt
swp_pager_async_iodone(), 275
symbolic link, 449–451, 841
symlink system call, 481
symlink vnode operator, 432
symmetric cryptography, 206, 700, 841
symmetric multiprocessing, 106, 841
syn-cache, TCP, 739–740, 762

Index 877

878 Index

syn-cookie, TCP, 209, 739–740, 762
sync system call, 341, 482
syncer, 58, 359, 464
synchronization, 81–82, 106–114

lock, 110–112
mutex, 107–110
network time, 74, 796

synchronous interrupt, 60, 99
/sys/kern/sched_4bsd.c, 114
/sys/kern/sched_ule.c, 114
/sys/sys/kernel.h, 786
syscall(), 61
sysctl system call, 84, 122, 160–161, 191,

200, 206, 209, 260, 291, 357, 639, 787,
803–805

SYSINIT, 53, 785–797, 802
syslogd, 799
system activity, 61, 841
system call, 22, 26, 32, 59–60, 150, 152,

200–205, 792, 797–798, 841
handling, 37, 61–63, 100
implementation of, 62–63
result handling, 62–63
return from, 63

system calls
accept, 597–598, 611–614, 646, 664, 739
access, 353
adjtime, 74
aio_error, 321–322, 330
aio_read, 321, 359
aio_return, 322, 330
aio_suspend, 322, 330
aio_waitcomplete, 322
aio_write, 321, 359
audit, 201, 203, 205
bind, 182, 664, 723, 767
cap_enter, 179
cap_getmode, 179
cap_rights_limit, 178
chdir, 46, 813
chflags, 439, 481
chgrp, 155
chmod, 47, 164, 169, 171, 201, 481
chown, 47, 155, 164, 481
chroot, 33, 46, 180–181, 834
close, 39, 319, 323, 345, 352, 385, 566,

599, 620–621, 700, 741
connect, 182, 597, 612, 614, 664, 697,

723–725, 736, 767, 811
dup, 41–42, 48, 319–321, 814, 817

dup2, 42, 178, 320, 817
exec, 41, 72, 89, 126, 138, 144, 156–157,

161, 181, 232–233, 258, 261–263, 266,
269, 304, 308–309, 319–320, 330, 832,
835, 837

execve, 160, 162, 173, 790, 794, 800
exit, 27, 119, 126, 128, 262, 266–267, 330
extattrctl, 482
fchflags, 439, 481
fchmod, 47, 164, 177, 481
fchmodat, 180
fchown, 47, 164, 481
fcntl, 8, 178, 319–321, 390, 814
fhopen, 481
flock, 553
fork, 4, 27, 41, 48, 89, 94, 96, 119, 126,

128, 138, 142, 144, 155, 177, 179, 181,
258–261, 292, 304, 306, 308–309,
319–320, 330, 811, 817, 828, 830, 832

fstat, 47, 164, 629
fsync, 253, 340, 348, 359, 436–437,

461–463, 474, 477–478, 482, 493, 501,
507, 514, 518, 538–539, 566

ftruncate, 481
futimes, 481
getdirentries, 445
getfsstat, 344
getlogin, 800
getpeername, 599
getrusage, 75
getsockname, 599
getsockopt, 599, 627, 631
gettimeofday, 73–74
getuid, 179
ioctl, 42, 78, 141, 178, 204, 214, 318,

321, 374, 379–380, 385–387, 620, 629,
635, 638, 700, 712, 714–715, 812

jail, 183
jail_attach, 183
jail_get, 184
jail_remove, 183
jail_set, 184, 645
kevent, 325–326, 329–331, 715
kill, 132, 182
killpg, 140, 831
kqueue, 32, 40, 259, 326, 330
ktrace, 161, 482
lchmod, 164, 481
lchown, 164, 481
link, 46–47, 481

listen, 597, 612–613, 738, 823
lseek, 41, 178, 318, 816
lstat, 164, 450
lutimes, 481
mac_get_fd, 200
mac_get_file, 200
mac_set_fd, 200
mac_set_file, 200
mkdir, 47, 54, 169, 475, 482
mkfifo, 481
mknod, 481
mlock, 253, 290, 307
mmap, 36–38, 72, 228, 252, 259, 264,

266, 270, 304, 334, 347, 548, 824
mount, 44, 182, 352, 355, 357, 373, 560,

799
mprotect, 266, 306
mq_open, 318
mq_receive, 337–338
mq_send, 337
msgrcv, 337–338
msgsnd, 337
msync, 253, 268, 271–272
munlock, 253
munmap, 252, 255, 257, 264, 305
nfssvc, 560
open, 32, 39–41, 48, 162, 168, 177, 179,

183, 198, 203, 269, 318–319, 334, 352,
373, 385, 432–433, 442, 450, 481, 599,
700, 712, 813

openat, 32, 179–180
pipe, 40–41, 198, 232, 318, 790, 813
poll, 32, 110, 325–327, 329–330, 374,

385, 630, 715, 829
preadv, 419
procctl, 259–260
profil, 85
ptrace, 78, 106, 142–143, 161, 182
pwrite, 177–178
pwritev, 177–178, 419
quotactl, 482
read, 37, 39, 43, 51, 143, 179, 209, 212,

318, 327, 333, 347, 352, 359, 385,
390–391, 599, 615, 700, 816, 826, 831,
841

readv, 43, 332, 821
reboot, 801, 805
recv, 43, 630
recvfrom, 43, 615, 664, 761, 766
recvmsg, 43, 598, 615, 620, 630, 764

rename, 47, 482, 557
re voke, 346, 387, 391, 482
rfork, 40, 94, 126
rmdir, 47, 475, 478, 482
rtprio, 97
sbrk, 72, 259, 263, 819
sched_getparam, 160
select, 32, 325–327, 329–330, 359, 374,

610, 630, 715, 739, 829
semctl, 648
semget, 336, 648
semop, 336, 648
sem_open, 317, 336
sem_post, 336
sem_wait, 336
send, 43, 51, 609, 694, 724, 765
sendfile, 38, 548
sendmsg, 43, 598, 615, 628, 723
sendto, 43, 615, 628, 664, 723, 761,

764–765
seteuid, 157
setgid, 155
setlogin, 800
setpgid, 137–138
setpriority, 831
setsid, 138
setsockopt, 599, 621, 627, 631, 654, 748,

812
settimeofday, 74
setuid, 152, 155
shmat, 338
shmdt, 338, 647
shmem, 248, 252, 338
shmget, 338
shm_open, 179–180, 317, 338
shm_unlink, 338
shutdown, 599, 619, 740
sigaction, 130, 136, 810
sigaltstack, 132
signal, 179
sigprocmask, 132, 824
sigreturn, 132, 135–136, 838
sigsuspend, 101, 132
socket, 8, 39–41, 50, 198, 318, 596–597,

606, 612, 628, 631, 713, 761, 813
socketpair, 630, 813
stat, 164, 171, 345, 352, 438, 446, 837
statfs, 344
swapoff, 274
symlink, 481

Index 879

880 Index

system calls (continued)
sync, 341, 482
sysctl, 84, 122, 160–161, 191, 200, 206,

209, 260, 291, 357, 639, 787, 804–805
tcsetattr, 815, 822, 846
truncate, 47, 479, 481, 494
umask, 169
undelete, 357, 482
unlink, 46–47, 479, 481, 557
unmount, 352, 482
utimes, 439, 481
vfork, 94, 126, 138, 261–262, 309
wait, 27, 75, 89, 96, 101, 138, 144, 261,

266–267
wait4, 27, 128–129, 142, 161
write, 26, 37, 39, 42–43, 51, 143, 177,

179, 193, 318, 325, 327, 333, 359, 385,
389, 452, 481, 506, 536, 563, 565–566,
599, 609, 615, 694, 700, 816, 831, 841

writev, 43, 177, 332, 821
system, capability, 174–180, 810
system crash, 47–48, 322, 324, 348, 375,

405, 454, 459, 461, 463, 480, 486, 501,
518, 556–557, 561–563, 566–567, 587,
727, 730, 734, 776, 799, 802–803, 812

system debugging, 802–803
system entry, 58–59
system error

EACCES, 173, 193
EAGAIN, 128, 320, 335–336, 391, 614,

617–618, 826
ECAPMODE, 179
ECONNREFUSED, 615
EINTR, 62, 98, 128
EINVAL, 614, 697
ELOOP, 451
EMSGSIZE, 616
EPERM, 173, 193
ERESTART, 98

system extended attributes, 168
system library, bare-metal, 780
system management mode, 777
system operation, 800–805
system performance, 62, 65, 69, 71, 73, 91,

116, 617
system shutdown, 52–54, 801–802
system startup, 52–54, 775–800

scripts, 798–799
system statistics, 66–67

System V, xxi, 6, 11–12, 95
message queue, 337–338, 593
poll interface, 326
range lock, 323
semaphores, 333, 335
shared memory, 252, 272, 338
terminal driver, 385

SYSUNINIT, 53, 786

T

tag queueing, 514, 842
tags, 604, 842
tasklist, 464, 470, 476
TCB. See trusted computing base
TCP. See transmission control protocol
tcp_attach(), 736
tcpcb structure, 722, 736
tcp_close(), 741
tcp_connect(), 736
tcp_ctloutput(), 748
tcp_delack(), 744
tcpdump, 700
tcp_hc_get(), 737
tcp_hc_purge(), 738
tcp_input(), 732, 742, 745, 757

operation of, 741–745
tcp_output(), 732–733, 736, 742, 744–748,

751
operation of, 746

tcp_slowtimo(), 733
tcp_usr_send(), 732, 746
tcp_usr_shutdown(), 740
tcsetattr system call, 815, 822, 846
tcsetpgrp(), 141
tdq_idled(), 124
TE. See type enforcement
telldir(), 445
TENEX operating system, 7
Tenth Edition UNIX, 5
terminal

handling, 382–391
low watermark, 389
multiplexer, 368
operations, 388–391

terminal driver, 384–385
bottom half of, 384
close(), 391
data queues, 388–391
functions, 385–387

ioctl(), 385–387
modes, 383–384, 390
open(), 388
special characters, 383
System V, 385
top half of, 384
user interface, 7, 385–387

terminal process group, 140, 387–388, 390
termios structure, 385, 842
text segment, 36, 69, 71, 263, 842. See also

shared text segment
Thompson, Ken, 3–4, 7, 22
thrashing, 92, 842
thread, 92, 251, 842

preemption, 117
priority, 96–97, 101
priority, calculation of, 105, 117–126
priority, while sleeping, 97
queues, 96
scheduling, 106, 114–126
software interrupt, 65, 208, 793, 795, 839
state, 100
state block, 60, 93, 98, 100, 842
state, change of, 105
structure, 59–60, 90, 98–99, 125, 842

thread_exit(), 128
threading model

1:1, 94
N:M, 93

threads, idle, 792–793
threat model, GELI, 216–217
three-way handshake, 727–728, 734, 739,

762, 842
3BSD, 6
filesystem, 501–502, 504, 508–509

tick, 65, 842
time, 65–67

of day, 58, 73
interval, 74
process virtual, 74
quantum, 115, 842
representation, 73
slice, 91, 115, 842–843
stable identifier, 556, 843
synchronization, network, 74, 796
wall clock, 73–74

time zone handling, 9
timeout(), 67–69, 790, 792–793, 795
timer

2MSL, 735, 844

backoff, 734, 843
network, 67, 625
profiling, 66, 74
real-time, 67, 74
resolution of, 73
routines, TCP, 734
virtual-time, 66, 74
watchdog, 67

timeshare scheduling, 117–126
timestamp counter, 422, 790
timestamp option, TCP, 728, 736
timing services, 73–74
TLB. See translation lookaside buffer
TLS. See transport-layer security
top, 120
top half of

device driver, 369
kernel, 59–60, 843
terminal driver, 384

TOPS-20 operating system, 7
trace trap, 142, 843
traced process, 133, 142
tracepoint, 78
track cache, 514–515, 843
tracking file-removal dependencies,

495–496
traditional scheduling, 125–126
trail, audit, 35, 200–205
translation lookaside buffer, 283–288,

304–307, 421, 424, 783, 841, 843
transmission control protocol, xxii, 3, 6, 52,

209, 358, 552, 554, 561, 564, 586, 623,
643–644, 649–651, 664, 671, 689, 691,
693, 698, 704, 707, 721–722, 725–762,
764–765, 767–770, 787, 815, 818–819,
831, 842–843

algorithm, 732–741
congestion control, 752–761
connection setup, 727–728, 736–740
connection shutdown, 729, 740–741
connection states, 727–730
data buffering, 754–755
delayed acknowledgments in, 744,

748–749
estimation of round-trip time, 735–736
fast retransmission, 756–757
features of, 725
flow control in, 726
handling of silly-window syndrome,

746–747

Index 881

882 Index

transmission control protocol (continued)
handling of urgent data, 744
header prediction, 742, 818
host cache, 737
host cache metrics, 737
implementation of small packet

avoidance, 747–748
implementation, use of 4BSD, 8
initial-sequence number, 209, 726, 740,

837
input processing, 741–745
large-receive offload, 419
maximum-segment-size option, 728, 737
modular congestion control, 758–761
options, 727
output processing, 745–761
packet header, 727
receive window, 742
retransmission handling, 751–752
segmentation offload, 419, 423, 427
selective acknowledgment, 728, 740,

749–751, 764
selective acknowledgment block, 750
send policy, 733, 745–761
sequence numbers, 726
sequence variables, 730–732
slow-start algorithm, 752–756
state diagram, 730
syn-cache, 739–740, 762
syn-cookie, 209, 739–740, 762
timer routines, 734
timers, 733–735
timestamp option, 728, 736
window-scale option, 728
window updates, 748–749

transmission, network device, 381–382
transmission sequence number, 764
transmit descriptor, 382
transmit ring, 382
transport layer, 622, 843
transport-layer security, 30, 149, 209, 688
transport mode, 689, 843

security association, 689
trap(), 61
trap handling, 58, 61–62, 64–65, 100
trap type code, 61
TRIM disk advisory, 402
triple indirect block, 435, 820, 843

truncate system call, 47, 479, 481, 494
addition of, 47

truncate vnode operator, 498
truncation dependencies, soft updates, 476
truss, 78
trusted computing base, 30, 147–149, 151,

157–158, 176, 184, 187, 204, 217, 797,
805, 844

trusted system, 148
trylock(), 240
TSB. See thread state block
TSC. See timestamp counter
TSN. See transmission sequence number
TSO. See transmission control protocol

segmentation offload
tty driver. See terminal driver
ttydevsw, 385, 388
ttydev_write(), 388
ttydisc_close(), 391
ttydisc_getc(), 389, 391
ttydisc_read(), 390–391
ttydisc_reprint(), 389
ttydisc_write(), 389
ttypoll(), 385
tunables, 787
tunefs, 487
Tunis operating system, 7, 22
tunnel mode, 623, 632, 690, 844

security association, 690
turnstile, 107, 844

queue, 96, 844
structure, 102–105, 107–108, 112, 115

2MSL timer, 735, 844. See also maximum
segment lifetime

TXG. See zettabyte filesystem transaction
group

type-ahead, 383, 844
type enforcement, 34, 186–187

U

U-Boot, 777, 782
uberblock, 523, 527, 532–533, 535,

538–540, 844
ubldr, 782
ucred structure, 152
UDP. See user datagram protocol
udp_append(), 725

udp_attach(), 723
udp_bind(), 723
udp_detach(), 725
udp_input(), 724
udp_output(), 724
udp_send(), 724
UEFI. See unified extensible-firmware

interface
UFS. See fast filesystem
UFS1. See fast filesystem, 32-bit version
UFS2. See fast filesystem, 64-bit version
ufs_accessx(), 163
ufs_bmap(), 505, 515
ufs_vaccessx(), 168
ugidfw, 187, 200
UID. See user identifier
uintptr_t, 197
uio structure, 332–333, 373, 388, 390–391,

497, 765, 844
uiomove(), 333, 373, 389

implementation of, 332–333
ULE scheduling, xxvi, 114, 117–125, 791
umapfs filesystem, 354–355, 564
umask, 164, 170

system call, 169
uma_startup3(), 791
uma_timeout(), 791
uma_zalloc(), 244
uma_zcreate(), 244
uma_zfree(), 244
uma_zone_set_max(), 241
undelete system call, 357, 482
unified extensible-firmware interface, 777,

797
union filesystem, 355–357
Universal Coordinated Time, 73–74, 85
universal serial bus, 213, 363–366, 428
universal UID, 208, 423
University of California at Berkeley, 6
UNIX

32V, 5–6
history of, 3–7
Programmer´s Manual, 4
Support Group, 5–6
System III, 5–6, 8
System Laboratory, 11–13
System V, 5–6, 8
System V, Release 3, 6

unlink system call, 46–47, 479, 481, 557

unlock vnode operator, 432–433
unmount, 478
unmount system call, 352, 482
unprivileged_proc_debug, 161
update dependency, 461, 844
update vnode operator, 467, 470, 472–473,

476, 497
upper half terminal output, 388–389
urgent data, 320, 726, 733, 746, 844

TCP handling of, 744
transmission, styles of, 617

USB. See universal serial bus
use of descriptor, 39–41
USENET, 9, 516
user credential, 152, 844
user datagram protocol, 52, 552–554, 561,

564, 586, 649–651, 689, 691, 693, 698,
707, 721–726, 733, 736, 741, 746, 761,
768–769, 815, 831, 845

control operations, 725
initialization, 723
input, 724–725
output, 724

user file I/O, 499–501
user identifier, 31, 34, 47, 151–152,

154–158, 160–166, 168–173, 187, 204,
354–355, 552, 564, 815, 820, 830, 832,
835, 837, 841, 845

use in file-access validation, 164
user-level startup scripts, 782
user-level system initialization, 798–800
user mode, 90, 226, 845
user-request routine, 622, 625–630, 697, 845

operations, 628–630
USL. See UNIX System Laboratory
/usr/bin/login, 799
/usr/local/etc/rc.d, 798
/usr/sbin/config, 429
UTC. See Universal Coordinated Time
utimes system call, 439, 481
utmpx, 800
UUID. See universal UID

V

V Kernel operating system, 22
vaccess(), 163–164, 167–168
vaccess_acl_nfs4(), 163, 168, 172–173
vaccess_acl_posix1e(), 163, 168

Index 883

884 Index

valloc filesystem operator, 497
/var/quotas, 452
/var/run/lock, 561
VAX, 5–7

memory management hardware, 37
veg as congestion control algorithm, 759
vfork system call, 94, 126, 138, 261–262,

309
implementation issues, 261
operation of, 262
see also process creation

vfree filesystem operator, 497
VFS. See virtual filesystem interface
vfs_mountroot(), 794
vfs_mountroot_devfs(), 794
vfs_mountroot_shuffle(), 794
vfs_unixify_accmode(), 162
vfs.usermount, 357
vget filesystem operator, 497
vgone(), 345–346
VIMAGE. See network stack virtualization
Virtio, Xen, 414–420, 423–424, 427
virtual-address aliasing, 284, 845
virtual address space, 779, 781–784,

787–789, 793, 845
layout of user, 69–73
process, 245

virtual disk, 420, 428
ZFS, 525

virtual filesystem interface, 162–164, 167,
169, 172, 182, 184, 188, 191, 315,
339–344, 795

virtual local area network, 180
virtual machine, 32, 130, 545, 700, 845
virtual memory, 6, 30, 149, 414, 419–421,

782, 785, 787–789, 792–794, 796,
804–805, 845

4.4BSD, 37
for a shared-memory multiprocessor, 37
advantages of, 225–226
cache alias, 282
cache coherency, 270
change protection, 266
change size, 263–264
data structures, 228–230
duplication, process, 260–262
hardware requirements for, 226
implementation portability, 298–308
initialization, 301–303, 308

interface, 4.2BSD, 7
layout, 227–228
machine dependencies, 298–308
manipulation of, 263–266
map allocation, 304–305
map protection, 306–307
maps, 231–232
object, 247–250, 845
overview, 227–230
resources, process, 244–250
semaphores, 251
usage calculation of, 259–260, 263–264

virtual-network stack allocator, 789
virtual private network, 30, 35, 690, 845
virtual-time timer, 66, 74
virtualization, 32–34, 149–151, 180–184,

414–428, 788
IPC, 182, 184, 644–646

vmcall instruction, 422
vm_daemon(), 58, 296
vmem resource allocator, 234–243
vm_fault(), 76, 249, 276–278, 299, 307
vm_forkproc(), 127
vm_ksubmit_init(), 789
vm_map structure, 230–232, 254, 280, 300
vm_map_entry structure, 230–232, 245–248,

253, 255, 259, 261–262, 264–267, 276,
286, 303, 306, 309

vm_object structure, 229–230, 245,
247–250, 253–258, 264–276, 278–280,
287, 294–295, 302–305, 309, 334, 339

vm.overcommit, 260
vm_page structure, 230, 237, 247, 249–250,

267–268, 270–271, 285, 301–302, 305,
307–308

vm_page_alloc(), 291
vm_page_io_finish(), 275
vm_pageout(), 292
vm_pageout_scan(), 292–294
vm_pageout_update_period, 295
vm_pager_bufferinit(), 790
vm_page_startup(), 301
vm_page_test_dirty(), 307–308
vm_pmap structure, 229–230, 299–302,

306–308
VMS operating system, 7–8, 289

page replacement in the, 289
vmspace structure, 229–230, 245–246, 259,

262

vmspace_exec(), 308
vmspace_fork(), 308
vmspace_free(), 308
vnet structure, 644–646
vnet_data_startup(), 789
vnlru vnode recycling daemon, 58
vnode, 43, 316, 339, 609, 845

cache, 249
description of, 339–342
operations, 342

vnode operator
access, 432
advlock, 432
blkatoff, 497–498
close, 432
create, 432–433
fsync, 497–498
getattr, 432
inactive, 344, 346, 432, 443
ioctl, 432
link, 432
lock, 432
lookup, 342–343, 432
mkdir, 432
mknod, 432
mmap, 432
open, 432
poll, 432
read, 497
readdir, 432
readlink, 432
reclaim, 345, 432, 443
remove, 432
rename, 432
rmdir, 432
setattr, 432
strategy, 469
symlink, 432
truncate, 498
unlock, 432–433
update, 467, 470, 472–473, 476, 497
write, 497

vnode pager, 248, 269–270
vnode structure, 192–194, 196, 198
vnode_pager_setsize(), 269
vn_write(), 193–194
voluntary context switching, 99, 101–106
VOP_ACCESS(), 162
vop_access_args structure, 353

VOP_ACCESSX(), 162, 168
VOP_ACLCHECK(), 167
VOP_GETACL(), 167
VOP_SETACL(), 167
vop_stdaccessx(), 162
VPN. See virtual private network
vring structure, 416
vring_avail structure, 418
vring_desc structure, 417
vring_used structure, 418
vring_used_elem structure, 418
VT. See Intel virtualization technology

W

WAFL. See write-anywhere file-layout
filesystem

wait channel, 98, 101, 104–105, 111, 846
wait system call, 27, 75, 89, 96, 101, 138,

144, 261, 266–267, 846
wait4 system call, 27, 128–129, 142, 161

operation of, 129
wakeup(), 104–105, 120, 275

implementation of, 104–106
operation of, 105

wakeup_one(), 105
wall clock time, 73–74
WAN. See wide-area network
watchdog timer, 67
whiteout, filename, 356
wide-area network, 568, 759
wildcard route, 677, 725, 846
window probe, 734, 846
window-scale option, TCP, 728
window system, 140. See also X Window

System
Windows operating system, xxii
wine, xxix
wired page, 271–272, 299–300, 302, 307,

846
definition of, 233
list, 290

witness
deadlock prevention, 109, 112–114
startup, 788

word-erase character, 383, 846
working set, 225, 846
worklist structure, 464, 467
workstation, 221

Index 885

886 Index

write-anywhere file-layout filesystem, 543
write system call, 26, 37, 39, 42–43, 51,

143, 177, 179, 193, 318, 325, 327, 333,
359, 385, 389, 452, 481, 506, 536, 563,
565–566, 599, 609, 615, 694, 700, 816,
831, 841

write vnode operator, 497
writev system call, 43, 177, 332, 821
wrmsr instruction, 422

X

X Display Manager, 799
X/OPEN, 8
X Window System, 748
X.25, 641
XDR. See external data representation
Xen, 184, 414–415, 419–427, 788, 790

block interface, 427
network interface, 427
Virtio, 414–420, 423–424, 427

XenBus, 423
xen_hvm_init(), 422
XenStore, 420, 423
Xerox network protocols, 631, 815
xform-switch structure, 699
XINU operating system, 7
XPT. See common access-method transport
xpt_action(), 401
xpt_done(), 402
xpt_schedule(), 401
xterm, 383

Y

Yarrow, 35, 210–212, 793

Z

zalloc(), 39, 243–244
ZAP. See zettabyte-filesystem attribute

processor
zero filling of user stack, 71
zettabyte-filesystem, xxvi, 25, 33, 166, 171,

180, 182, 184, 270, 420, 427, 496–497,
523–549, 556, 574, 779–780, 794, 799

attribute processor, 524, 528–529,
533–535, 545–546

block free, 543–545
block pointer, 529–531

data-management unit, 524, 528, 530, 546
dataset and snapshot layer, 524, 527, 529,

533
deduplication, 545–546
design tradeoffs, 546–549
disk write, 536–538
dnode, 528–529
features, 523–527
file block allocation, 542–543
input-output module, 525
intent log, 524, 528, 535, 538
level-2 adaptive-replacement cache, 525,

539
logging, 538–540
meta-object set, 525, 527–528, 531–534,

538–539, 542, 546
objset layer, 534–535
objset structure, 531–532
operation, 535–546
organization, 527–532
overview, 49
POSIX layer, 524, 528, 538
RAIDZ variant of RAID, 524–525,

530–531, 540–541, 543, 547–549, 779
receive stream, 546
remote replication, 546
send stream, 546
snapshot, 541–542
storage-pool allocator, 525, 527–529, 531,

533, 542–545
structure, 532–535
transaction group, 530–532, 535–536,

538–539, 543
virtual disk, 525
ZVOL volume, 525, 527–528, 531–536,

539, 542–548, 815
zfree(), 39
ZFS. See zettabyte-filesystem
ZIL. See zettabyte-filesystem intent log
zil_header structure, 535
ZIO. See zettabyte-filesystem input-output

module
znode, 528, 815
zombie process, 96, 128–129, 846
zone allocator, 239–241, 791, 793
zone, red, 38, 241, 833
zones, 239–241, 243–244
ZPL. See zettabyte-filesystem POSIX layer
ZVOL. See zettabyte-filesystem ZVOL volume

	Contents
	Preface
	About the Authors
	Chapter 4 Process Management
	4.1 Introduction to Process Management
	4.2 Process State
	4.3 Context Switching
	4.4 Thread Scheduling
	4.5 Process Creation
	4.6 Process Termination
	4.7 Signals
	4.8 Process Groups and Sessions
	4.9 Process Debugging
	Exercises
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

