
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321961785
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321961785
https://plusone.google.com/share?url=http://www.informit.com/title/9780321961785
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321961785
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321961785/Free-Sample-Chapter

App Accomplished
Strategies for App Development Success

Carl Brown

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom
cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@
pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014938789

Copyright © 2015 Carl Brown

All rights reserved. Printed in the United States of America. This pub-
lication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-96178-5
ISBN-10: 0-321-96178-1

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.

First printing: July 2014

Editor-in-Chief
Mark Taub

Senior Acquisitions Editor
Trina MacDonald

Development Editor
Sheri Cain

Managing Editor
Kristy Hart

Senior Project Editor
Betsy Gratner

Copy Editor
Kitty Wilson

Senior Indexer
Cheryl Lenser

Proofreader
Kathy Ruiz

Technical Reviewers
Mark Kolb

Wes Miller

Bob Wesson

Editorial Assistant
Olivia Basegio

Cover Designer
Alan Clements

Compositor
Nonie Ratcliff

❖
This book is dedicated to the app creators, entrepreneurs, CEOs, and managers

who have an idea for a mobile app and bother to find the money, take the time,
and expend the effort to get the app built. You have fueled an impressive

ecosystem the past few years, and I am proud to be a member of it.
I hope this book will help you to get better apps for your money and effort.

❖

This page intentionally left blank

Table of Contents

 Foreword .xi

 Preface. .xiii

1 What Could Possibly Go Wrong? . 1
App Projects Are Not Small and Easy .1

Apps Are Not Easy to Program .5

Poor Skill Set Fit .8

If You Get a Good Developer, You Still Have to Worry . 10

The Idea Is Not More Important Than the Execution . 12

Unwillingness to Delegate: Micromanaging. 15

Bikeshedding . 16

Poorly Defined Requirements . 16

Out-of-Date Requirements Documentation . 18

Constantly Changing Requirements . 20

Leaving the Worst for Last . 20

Cost Overruns. 24

That Last 10% . 26

The Whack-a-Mole Problem . 27

Poor Communication . 29

Abdication of the Management Process . 31

Wrapping Up. 31

2 The App Development Life Cycle .33
The Design Phase . 34

The Development Phase. 39

The Testing Phase. 45

Repeating the Cycle as Needed . 49

Wrapping Up. 52

App Accomplishedvi

3 Prototyping and Wireframing Your App .53
Focus on the Core Experience. 54

Wireframe the App . 58

Build an Interactive Prototype. 76

Prototyping Tips and Tricks . 91

Wrapping Up. 95

4 Determining Your App’s Components .97
Dealing with Devices . 97

Native, Web, and Hybrid Apps .104

Dealing with Third-Party Frameworks .111

Dealing with Analytics .119

Dealing with Video and Audio .120

Dealing with Peripherals. .121

Dealing with Accessibility .122

Dealing with Custom or Complex Animations .122

Dealing with Conditional Formatting. .123

Dealing with Localization .124

Dealing with User Preferences .125

Dealing with Data Storage .125

Dealing with Servers. .131

Dealing with Syncing. .133

Dealing with Push Notifications. .134

Dealing with Background Tasks. .134

Wrapping Up. .135

5 Finding the Right Tools .137
Selecting Tools for Your Project Size .138

Source Control. .138

Bug Tracking .144

Project and Schedule Tracking .148

The Development Environment. .154

Continuous Integration .157

Beta Testing Distribution .159

Crash Reporting .160

End-User Feedback .161

Wrapping Up. .162

viiTable of Contents

6 Skill Gap Analysis .163
Programming .163

Testing and Quality Assurance .168

Server Support and Troubleshooting .168

User Experience Design. .169

Graphic Design .173

Sound Design and Music .176

Copywriting .178

Marketing. .179

About Games .181

Wrapping Up. .183

7 Finding a Developer .185
Template App Sites .185

App Developer Matchmaker Sites .189

Local Versus Remote Developers .191

Creative Agencies .194

App Development Companies .196

Independent Developers .199

Grow Your Own Developer (Maybe Even You). .203

Wrapping Up. .204

8 Interviewing and Selecting a Developer .207
Nondisclosure Agreements .208

Setting Up an Interview. .208

Previous Work .210

Gap Analysis. .212

Contingency Plans .213

Estimating and Planning. .214

Working Relationship .217

Wrapping Up. .224

9 Managing to Milestones .227
Never Agree to “30% Down, and I’ll Talk to You in Three Months” 227

Minimizing Risk with Frequent Milestones .228

How I Learned to Stop Grumbling and Love Milestones. .229

Milestones Are Not Sprints .230

App Accomplishedviii

Organization, Sequencing, and Focus .232

Let Conway’s Law Be Your Guide .235

Scheduling Software: Strongly Suggested. .237

Remember That Estimates Are Only Estimates. .239

Renovation Versus New Construction .243

Estimates and Entomology. .245

Plan Reevaluation and Project Feedback Loops .246

Wrapping Up. .246

10 Understanding What You’re Getting .249
Living Within Your Means .250

The Ticking Clock .251

Justifying Effort for Your Project Size .253

Get the Code, Even if There’s Nothing to See in the UI. .253

Comments in Source Control .254

Comments in Code .256

Build and Run the App Yourself .258

Third-Party Libraries .260

Source Code Project Organization. .261

Automated Test Coverage .262

Detecting Plagiarism .262

Compiler Warnings .264

Duplicated Code .264

Commented Out Code. .265

Magic Numbers. .265

Huge Combinatorial Complexity. .266

Useless, Ambiguous, or Confusing Naming .266

The “UI Thread” or “Main Thread” .267

Wrapping Up. .267

11 Pulling the Plug Early .269
So You Missed a Milestone. .270

Stop the Presses! Figure Out Where You Are. .270

Discussing Failure .271

Milestone Hit but Bugs Abound. .272

If Your Developer Is Proactive .274

If Your Developer Isn’t Honest. .275

ixTable of Contents

If It Might Have Been Your Fault .275

Evaluating the Recovery Plan. .277

How Far Gone Are You? .282

Trying to Salvage a Project .283

Fair Compensation. .284

Transitioning to a New Developer .284

Wrapping Up. .285

12 Communicating Using Bugs .287
Vocabulary. .287

Bug Trackers as Communication Tools .288

One Bug per Bug Report, Please .290

Anatomy of a Bug Report .291

Feature Request Versus Bug Fix .292

Placeholder Issues .294

Bug Trackers as Business Continuity .295

Bug Trackers Versus Code Comments .295

Writing Useful Bug Reports .296

Attaching Files to Bugs .298

Data-Specific Bugs .299

Reproduction: There’s the Rub .299

Bug States .300

Reopening Bugs Versus Creating New Ones .301

Splitting Bugs .303

Two Bugs, One Cause .303

Saving for Posterity .304

Wrapping Up. .304

13 Testing. .305
Types of Testing .305

Failures of Imagination .306

Your Testing Schedule .308

Approaching Deadlines. .311

Your Testing Team .311

Getting and Incorporating Feedback .319

Wrapping Up. .327

App Accomplishedx

14 Submission and Beyond .329
Getting Your Marketing Material Together .330

Reviewer Instructions .331

Last-Minute Plea for Sanity. .333

Pushing the Button .334

Dealing with Rejection .335

Resubmission .340

Launch .340

Getting Feedback .340

The Next Release .342

The Red Queen’s Race. .343

Wrapping Up. .343

 Index .345

Foreword

Mobile apps have become big news and even bigger business in recent years.
There are shockingly few people who haven’t had the “next great app” idea.
With frequent news of overnight millionaires and multibillion dollar buyouts,
who can blame them for wanting to explore app development? What
prevents most of these people from making their mark in the emerging app
market is failing to understand the process of creating the app itself. A great
idea with poor execution isn’t worth anything, but even the most modest idea
with fantastic execution can be a valuable product.

Despite all the popularity and buzz surrounding mobile applications, there
hasn’t been a publication focused on how to successfully plan and build a
mobile app—until now. App Accomplished fills the same demand that pick-
and-shovel salesmen did for nineteenth-century gold miners. Without a
proper plan, the right tools, and resources, no app project can be successful,
and certainly not on time and on budget.

Carl Brown has been a fixture within the app consulting world for many
years. His views are from the trenches and are battle hardened. The current
world of mobile development for hire is fraught with peril, from less-than-
reputable development companies to outright scams. The release of the
iPhone Software Development Kit (SDK) in 2008 was said to usher in a new
gold rush era for developers. The landscape quickly shifted from a small com-
munity of just a few thousand registered developers to well over a million in
just a few short years. With the influx of developers came a lot of fantastic tal-
ent as well as a small minority looking to take advantage of those seeking to
mine gold. Carl’s unabashed and realistically candid look at the current state
of mobile development will help even the most novice entrepreneur get a leg
up on the competition.

In an industry that is still very much in its infancy, Carl has more than a
decade of experience working with some of the most demanding and
challenging projects conceived. Development is often described as having
to break down a complex task into thousands or even millions of very small
problems. Building a mobile app, whether as a developer, designer, or
entrepreneur, follows the same pattern. It is all about knowing how to see
each step and how to resolve it properly. Carl’s experience with software

App Accomplishedxii

consulting stretches back more than 20 years, and he has solved countless
app development problems. App Accomplished provides guidelines, advice,
and recommendations to handle the potential pitfalls that you will encounter
along your journey. For the first time in history, the knowledge from more
than a decade of mobile experience fueled by hundreds of projects is available
in an easy-to-follow reference.

From understanding the project and development life cycle to finding the
perfect developer for your project, from conception to marketplace, App
Accomplished will walk you through the entire app development process.
Communicating with developers and designers can often be more challenging
than building the business strategy of a project. If you cannot properly convey
your intentions and feedback to your partners and team, time and money will
be wasted before you can bring your true vision to life.

As someone who has overseen teams that have shipped more than a
thousand mobile apps since the release of the iPhone, I wish that every
one of our clients would first read App Accomplished before hiring us. The
information presented, from the author’s warnings of potential pitfalls and
beyond, provides the reader with the knowledge needed to understand the
development process. Those aspiring mobile entrepreneurs who have a rich
understanding of the process will encounter fewer disputes, speed bumps,
costly change orders, and overall frustration. Thoroughly understanding the
topics discussed on the following pages can easily save a not insignificant
portion on the cost of development and design by repeating the history of
those who have come before you.

—Kyle Richter

Kyle Richter is Chief Executive Officer of MartianCraft, a leading mobile
development studio. He is the coauthor of iOS Components and Frameworks:
Understanding the Advanced Features of the iOS SDK (Addison-Wesley, 2013)
and author of Beginning iOS Social Games (Apress, 2013) and Beginning iOS
Game Center and Game Kit: For iPhone, iPad, and iPod touch (Apress, 2011).

Preface

You have an idea for a mobile app. You want to build it, but you don’t have
the expertise or the time to build it yourself. So what do you do?

You need to know three things:

 1. How to distinguish between a developer who can do a good job with your
app and one who can’t

 2. How to work with your chosen developer to get the best result you can

 3. Why 1 and 2 are important

Who This B ook Is For
This book is for anyone who has an idea for an app. For the purposes of this
book, I define app as any mobile smartphone or tablet software application
that is available for download from one or more of the app stores, like Apple’s
App Store, Google Play, Amazon’s App Store, or Microsoft’s Windows Phone
Store. This book talks about the skills and processes needed to make a
successful app.

No matter what skills you possess (even if you’re a programmer), you’re
unlikely to have all the skills needed yourself. So I’ll talk about how to acquire
those skills, either by learning them yourself or by hiring or contracting with
another person.

This book is about how to turn your app idea into the best possible app, based
on the resources you have.

What This Book Is Not
This book is not a “get rich quick on the App Store” book. I don’t believe there
is a one-size-fits-all formula for guaranteed success.

This book is not about validating or marketing your idea. I’ve seen apps that
I thought were sure-fire hits go nowhere, and I’ve seen apps that I laughingly
insisted no one would waste money on pull in more than $10,000 in one day.

App Accomplishedxiv

The same old rules of marketing apply for apps: You have to find a real market,
and you have to solve a real problem (or get insanely lucky, but don’t count
on that). If you want to know how to determine if your app is likely to make
any money, start by searching online for “lean startup.” Once you’ve decided
that people will pay money for your idea, come back to this book for help
building it.

This book is not about how to write code. I briefly discuss code, but this is
more about process than code. This is also not a book about graphic design
or user experience design.

This book is also not the One True Way™ to create an app. It’s a collection of
techniques and strategies that I’ve found helpful, but apps can be (and have
been) built successfully without them. I’m not saying that you must do things
the book’s way.

Finally, this book, being a book, is not going to be the most up-to-date
resource available on mobile app development. Specific how-to instructions
and details placed herein would become out of date before this book went
to press. Therefore, I’ve created a companion website and blog at http://
AppAccomplished.com that contains more current information. I’ll be able to
keep the website updated over time, as new tools and platforms are released
and old ones fall by the wayside. This way, I can keep the book’s content
focused on the “what and why” of mobile development; you can find out
about the “how” elsewhere.

Why This B ook
More than anything else, this book is about how to get your app built
while making the most of your time and money. Hiring an app developer is
effectively placing a bet (or making an investment). This book gives you the
tools and techniques to increase your odds of success as much as I know how.

There’s nothing in my professional life I dread more than looking over the
code for an app on which someone has spent tens of thousands of dollars or
hundreds and hundreds of hours (or both), and having to tell them that they
are much, much further from a sal able product than they believe.

In addition to the personal unpleasantness, it’s bad for the profession, and for
everyone involved. Lots of money is wasted, lots of effort is squandered, and
many apps that could have made an impact never see the light of day.

There is no 100% dependable way to make sure you have a successful project.
This is very important, so I’ll say it again: There is no 100% dependable way to
make sure you have a successful project. It is, however, possible to dramatically

http://AppAccomplished.com
http://AppAccomplished.com

xvHow This Book Is Organized

increase your chance of success. Most failed projects that I’ve been asked to
evaluate have failed in particular ways and had warning signs and red flags all
along. This book helps you make the most of your odds, avoid the common
traps, and recognize the warning signs as they appear.

How This B ook Is Organized
To the extent possible (excluding Chapter 1, which is about why you need
this book), this book is organized chronologically as you go through the
app development process. However, I structured it so that you don’t have
to read it in order. You should be able to start reading at whatever place is
most relevant to your particular project and find references to other relevant
material as you need it.

Here’s a brief summary of what you’ll find in each chapter:

 • Chapter 1, “What Could Possibly Go Wrong?”—Explains some of the
common misconceptions about mobile app development and gives some
reasons many app projects fail.

 • Chapter 2, “The App Development Life Cycle”—Provides an overview of
the high-level steps in the app development process.

 • Chapter 3, “Prototyping and Wireframing Your App”—Explains how
to turn your app idea into something a developer can understand how to
develop.

 • Chapter 4, “Determining Your App’s Components”—Provides a list of
the different kinds of technologies, libraries, features, and functionalities
that are commonly used in mobile apps and explains what each is and
why you might want to include it in your app.

 • Chapter 5, “Finding the Right Tools”—Provides a list of the different
services and kinds of development environments and tools that are used
to build apps and explains why and when you might use them.

 • Chapter 6, “Skill Gap Analysis”—Explains how to figure out what skills
you need to get your app built and how to figure out which ones you are
missing and what you might do about that.

 • Chapter 7, “Finding a Developer”—Explains the different kinds of
potential development resources you might use, where each can be
found, and the pros and cons of each.

 • Chapter 8, “Interviewing and Selecting a Developer”—Discusses the
process of determining whether a particular developer might be a good fit
for your app project.

App Accomplishedxvi

 • Chapter 9, “Managing to Milestones”—Explains how app projects can
be organized and managed and gives some recommendations about
strategies that have worked for me.

 • Chapter 10, “Understanding What You’re Getting”—Explains how to
estimate the quality of the app you are getting and the code that is being
written for it.

 • Chapter 11, “Pulling the Plug Early”—Explains how to determine
how far off track your project seems and how to decide whether it’s
recoverable.

 • Chapter 12, “Communicating Using Bugs”—Explains how to use a
bug or issue tracking tool to communicate with your present and future
development teams.

 • Chapter 13, “Testing”—Explains how to find and work with testers of
your app to get the quality you need.

 • Chapter 14, “Submission and Beyond”—Discusses submitting your app
to an app store, what to do if it gets rejected, and how to start planning
your follow-up release.

The Case Studies

You’ll find sidebars like this throughout this book. These are based on real
projects that had real problems and provide examples of the issues being
discussed. I’ve anonymized them by avoiding identifying specific apps,
people, and companies. Sometimes, when maintaining privacy dictated
it, I also changed some details that didn’t directly impact the points under
illustration. They all really happened, though.

Acknowledgments

I need to start by thanking my wife, Penny, and my daughter, Tamara, for the
many hours I spent writing instead of spending time with them. I love you
both, and I couldn’t have done this without your help and support.

The guidance of my editor, Trina MacDonald, has been invaluable, especially
during the initial stages, when we were trying to figure out what this book
should be. I’d like to thank my technical reviewers: Wes Miller for his writer’s
eye and his encouragement, Bob Wesson for his app creator’s perspective, and
Mark Kolb for another app developer’s second opinion. Thanks also to Olivia
Basegio, for herding the necessary cats (yours truly included), and Sheri Cain,
for making me sound like a professional author.

Thanks also to John and Nicole Wilker of 360|iDev, who encouraged me to
become a conference speaker, and Mike Lee, who pushed me to step up my
presentation game—without any of whom I’m unlikely to have been asked to
write a book in the first place. Likewise, I am grateful to Brandon Alexander,
Bill Dudney, Kevin Kim, and Kirby Turner, who shared with me some of their
experiences writing their own books, along with Joe Keeley, Graham Lee, Erik
Price, David Fox, and (once again) Wes Miller, for reviewing and providing
valuable feedback on the early outlines of this book as it was taking shape.

About the Author

Carl Brown (@CarlBrwn) started writing software for client companies while
working at EDS in 1993. He became enamored of developing for mobile
connected devices in 2005, starting with the Palm VII and moving on to
Windows CE. Since 2008, he’s been focused primarily on the iOS app market
(with some Android thrown in). He’s worked on dozens of apps, starting
with the Calorie Tracker for LIVESTRONG.com. He’s also been brought in to
rescue a number of troubled or failing app projects, with varied success.
He’s a frequent speaker at the annual 360|iDev iOS developer conference
and a speaker and organizer with CocoaCoder.org, the largest Mac and iOS
developer meet-up group in Austin, Texas, where he lives with his wife and
daughter.

xixEditor’s Note: We Want to Hear from You!

Editor’s Note: We Want to Hear from You!
As the reader of this book, you are our most important critic and
commentator. We value your opinion and want to know what we’re doing
right, what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I might
not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or e-mail address. I will carefully review your
comments and share them with the author and editors who worked on the
book.

E-mail: trina.macdonald@pearson.com

Mail: Trina MacDonald
 Senior Acquisitions Editor
 Addison-Wesley/Pearson Education, Inc.
 75 Arlington St., Ste. 300
 Boston, MA 02116

This page intentionally left blank

What Could Possibly Go Wrong?

In my consulting practice, I am often asked to take over, or at least examine,
app development projects that are in trouble. Usually, months of effort and
tens of thousands of dollars have been expended, and I often find that the
quality of the existing development is so bad that it would be less work to
just start over. I dread few things more than breaking that bad news to entre-
preneurs, business owners, and managers. Those conversations are unpleas-
ant and heartbreaking.

I fervently hope the information in this book can reduce the frequency of
those conversations—not just for me but for all competent contract app
developers.

One aspect of most of those conversations is surprise that the situation could
possibly be so bad. Part of it is pure denial: People never want to find out
they’ve wasted their effort. But I think there’s more to it than that. I think that
there is a common misconception that apps are easy to make and that any
developer ought to be able to make them. Unfortunately, that is simply not
the case.

 App Projects Are Not Small and Easy
Compared to enterprise software running on a desktop or in a web browser,
it’s true that apps are smaller and cheaper, but that’s really not saying a
whole lot. A fairly typical iPhone app project in 2014 can take two or three
developers three or four months and can easily run between a hundred

1

Chapter 1 What Could Possibly Go Wrong?2

thousand and a quarter of a million lines of code. While that’s not a lot
compared to some kinds of development, it’s not trivial.

Through the years, many studies have reported that a significant percentage
of software projects fail (although the percentage can vary wildly). App
projects are definitely software projects, and they have many of the same
issues and risks as any other software project. App projects can and do
fail—some of them spectacularly. I haven’t seen any studies specifically on
the percentage of app development projects that fail, but I’d expect it to be
similar.

I would say that anecdotally more than half and maybe as many as two-thirds
of app projects I have knowledge of would be considered failures under the
criteria outlined in the following sections. Several examples of such project
failures can be found in sidebars in this chapter (and throughout the rest of
this book). This is not a scientific survey, and I don’t know how representative
my experience might be. I have talked to many would-be app creators about
what it would take to rescue their failed projects (some I could help, many I
could not), and this might skew my experience. However, I know other app
developers who have also spent a significant amount of time attempting to
rescue failed projects and their anecdotal estimates are comparable.

Defining Project Failure
Let’s talk about what I mean by the word failure in the context of app
development. Different people and different studies use different definitions,
which is likely part of the reason that different studies reach such different
conclusions. When I say a project failed, I mean that one of these four things
happened:

 • The app failed to ship (that is, didn’t become available to users).

 • The app failed to work (that is, didn’t work as intended for a noticeable
percentage of intended users).

 • The project cost significantly more money than planned (more than 10%
or 20% over budgeted funding).

 • The project took significantly more time than planned (more than 10% or
20% over budgeted time).

Let’s talk through these situations.

First, the app has to ship. I think we can all agree that if the app was never
seen by any user in its target audience, then the project failed. You have to

3 App Projects Are Not Small and Easy

ship in order to succeed. End of story. This is the least controversial of my
criteria.

Second, the app has to work. This doesn’t mean that the app has to be bug-
free, as virtually none of them are. But the end user has to be able to use it in
order for it to be called a success. This can be a subjective criterion; there can
be legitimate arguments on both sides about whether an app is “useable” or
“functional.” For purposes of determining via this criterion whether an app has
failed, though, it’s usually either clear or irrelevant. (This criterion is irrelevant
if the last two criteria fail, and if the app’s functionality is in question, they
usually do.)

Finally, the app can’t have gone significantly over budget or schedule. These
final two are the most controversial of my criteria, but I stand by them. I live in
a world where I have customers, and those customers are depending on me to
produce an app for them. Those customers care how much it’s going to cost
and when it’s going to be done, and they need to plan on that.

Getting Clarity on Functionality
The second criterion, “the app has to work,” is necessarily subjective. It
depends very much on the nature of the app and the project, and it’s just not
possible for a book to give an unambiguously measurable way to determine
functionality for any possible project. But that doesn’t mean you can’t.

Every app creator should (although most don’t) insist on writing into the
contract (or an accompanying statement of work) criteria for determining
whether an app is considered fully functional. Agreeing on that up front (and
amending it as you go, if needed) can save a lot of disagreement later.

Project Success Is Mostly About Estimates
Notice that the last two criteria—the project cost significantly more money
or took significantly more time than planned—make a distinction between
the outcome for the app itself and the project that produced it. It’s possible
(and not uncommon) for an app to be launched successfully but the project
that produced it to have been a failure. Many contract app developers who
get paid by the hour would likely count such a project as a success. If the app
makes it to market and gets good reviews and the client company paid the
bill, then most contractors are happy, even if it took twice as long and cost
three times as much as planned.

Chapter 1 What Could Possibly Go Wrong?4

To me, this feels dishonest. If a contracting company tells you that they will
build your app for $50,000, but in the end you end up paying $75,000 or
$100,000 or more, I consider that a bait-and-switch tactic. And it’s unfortunate
because it creates an incentive for contracting companies to generate
unrealistically low estimates, knowing that they’ll just charge the customer
more in the end.

Project Success Is Also About Scope
An estimate , however, is only valid for a given scope (a given set of features). If
new functionality is added to a project, then the budget and schedule have to
be revised.

There is sometimes a disagreement about whether a given feature or bug or
issue is within scope. Assuming that everyone is acting in good faith, such
disagreements result from failure in the communication process between the
client and contractor. Scope should be documented unambiguously.

Communication failures arise consistently, though, and often contractors who
work on a time-and-materials basis choose not to clearly define the scope.
Assuming that they can talk their clients into continuing to pay, this is to their
advantage.

Another tactic contractors use is ignoring the scope as agreed and beginning
work on new features as if they are in scope. This leads to unpleasant
conversations after the work has been done. It should be incumbent on a
contract developer to make sure any changes to the scope are mutually
agreed upon and documented before work on the new functionality begins.

The Specter of Unprofitability
There is one important factor about an app project’s success that these criteria
do not take into account: profitability. I can’t consider profitability in my
criteria because I don’t generally have access to app revenue information. All
I (or any contract app developer) can do is build the best app I can within the
time and budget I promised.

But profitability (or at least return on investment [ROI]) should be important
to app creators. And if I had access to profitability information and could con-
sider ROI goals as a failure criterion, then I would expect an even higher per-
centage of app projects to be failures. As it stands, app projects have to make
it all the way through the funnel depicted in Figure 1.1 to be u ltimately suc-
cessful. I don’t know what percentage of apps fail at each stage, but I’m confi-
dent that a large percentage of them don’t make it all the way to profitability.

5Apps Are Not Easy to Program

Became Available for Download

Provided Functionality to Users

Developed Within Budget

Developed on Schedule

Turned a Profit

Figure 1.1
App projects must work through this funnel to be ultimately successful to their creators.

Apps Are Not Easy to Program
App development requires skill and experience. Because of the relative lack of
raw computing power, one of the difficulties with mobile development is that
the code in an app is fairly interdependent. It’s unfortunately way too easy for
this piece of code in this part of the app over here to have an effect on that
piece of code in that part of the app over there. So the developer has to be
extra careful.

Our Expectations Were Set by the Web…

We software developers as an industry got somewhat spoiled during the
late 1990s and early 2000s because much of the exciting work being done
in technology used web technologies and web servers. And the good thing
about web servers at the dawn of the century is that really powerful servers
could be purchased for a modest amount of money. With the rise of the 64-bit
PC CPU, servers could hold more RAM than most web transactions could ever
use, and it became not just feasible but expected for servers to hold entire
databases in memory cache.

Add to that the fact that web protocols themselves were becoming widely
adopted, and it became easier than ever to build a web application that

Chapter 1 What Could Possibly Go Wrong?6

could be reached by millions or tens of millions of users with a relatively small
team of programmers working out of someone’s garage. Web protocols also
allowed the creation of much richer user experiences than had previously
been possible for widely distributed applications because the layout
rendering, font handling, and image display were offloaded to the machine
running the web browser.

The good thing about this kind of web development is that each web request
is mostly independent of every other web request, and the servers have
enough power that each request can have all the resources it wants. Under
enough traffic, that ceases to be true, but then at that point, it’s relatively
simple (assuming that things are engineered correctly) to put more web
servers in parallel and use the networking infrastructure to share the incoming
traffic load between them. Eventually if a service became popular enough,
it would start running into tricky scaling problems that required a lot of
performance tuning, but a lot of companies avoided this entirely.

…And Then Invalidated in the Mobile World
But mobile development has different constraints and requires different
techniques. There’s never as much memory in the device as the app developer
wants because memory banks draw too much power, and battery life is the
overriding concern of the device vendor. All the graphics have to be drawn
on the device’s screen as well, so you don’t have the luxury of offloading
it to another machine as you can with the web. And apps don’t even have
exclusive use of the device; there’s often mail being fetched or music being
played in the background, and the app could be interrupted at any instant if
a phone call or text message comes in. This means that apps are constantly
resource constrained. It’s a delicate balancing act that doesn’t happen so often
in the web world.

So the situation in mobile app development today is much closer to the client/
server programming of the 1980s and 1990s than the web programming of
the early 2000s. The primary differences from a programming standpoint
are that mobile platforms have far, far better development environments
(developer tools, frameworks, libraries, and components) than existed back
in the heyday of client/server, and mobile apps generally only have to
implement the client half of the client/server equation. Figure 1.2 shows the
major differences between web, enterprise, and mobile development.

7Apps Are Not Easy to Program

Memory Pressure Release Cycle Time Code Interdependency

Web Services

Enterprise Client/Server

Mobile Apps

Figure 1.2
Visualization of the three largest differences between mobile app development and other common types.
(Shorter b ars are better in this case.)

Mobile Apps Are Outside Your Control
The other thing that web servers made us lazy about is bugs (and I say that as
a recovering ASP.Net and Ruby on Rails programmer). The nice thing about
writing server code is that when something goes wrong, you can figure out
what happened (hopefully) from the server logs, and you can make a change
and push it to the servers and fix the bug before it affects too many of your
users (again, hopefully). There were times, especially immediately after
particularly poorly tested releases, that teams I’ve worked on have done a
dozen or so different releases of web server code in a day, each one fixing one
or more bugs or performance problems. And the great thing there is that as
soon as the server is patched, every subsequent web request will get the fixed
behavior.

In mobile app development, by contrast, you can’t iterate as quickly. Once an
app is installed on a user’s phone, only that user can decide to upgrade to the
next version of the app. Depending on the bug, the user might choose to just
delete your app instead of update it (and maybe even leave a bad review). But
even worse, in mobile app development, you don’t ever have direct access to
the machine your code is running on, so if there’s a problem, you can’t just
look at your server logs and find it. Tracking down a bug that’s happening
only on a subset of smartphones and tablets and doesn’t happen for the
developer can be a real nightmare.

Chapter 1 What Could Possibly Go Wrong?8

And last but not least, there’s often the dreaded “Waiting for Review” lag.
Although some app stores, like Google Play, will let you upload new app
versions as soon as you’ve fixed a bug, other stores, like those from Apple and
Amazon, require your update to be reviewed before it can be released, and
that causes even more time to elapse between when a bug is brought to your
attention and when a fix is available to your users.

Poor Skill Set Fit
Some parts of mobile development are more difficult than others, and some
are relatively easy. Unfortunately, it’s not immediately obvious which parts
are which, and it varies from platform to platform. It’s actually common for
a developer who is familiar with one programming language or library to
believe that familiarity is more relevant when moving to a new programming
language or platform than it actually is.

Example: Threading on the iPhone
Most development platforms and operating systems these days have some-
thing called threads, which you can think of as containers inside an app into
which commands are placed so that they can be executed. By having multiple
threads, an app can do more than one thing at the same time (or nearly the
same time). For example, one thread can be redrawing the app’s screen as it
scrolls, while another thread is downloading a video that will be displayed at a
later time.

If a programmer knows how threads work, and that programmer learns that
iOS (the operating system that runs on the iPhone and iPad) has threads, that
programmer can easily assume that he or she knows how to make the iPhone
do multiple things simultaneously. But he or she would be wrong. Although
the iPhone does have threads, it also has queues, and Apple recommends that
programmers should almost always use queues, and Apple’s libraries then
manage the threads automatically. Programmers who don’t realize this often
use the wrong mechanism and create their own threads, which can cause the
app to malfunction under load.

The bad news is that when there isn’t a whole lot going on (for example, when
you’re using small amounts of test data), spawning your own threads works
fine. If the programmer assumes that it will work the same way with a lot of
data, then he or she will likely fail to test at higher loads. Such an app may
develop unexpected, undesired, and likely unacceptable behavior right at the
end of the development cycle.

9Poor Skill Set Fit

Your App Isn’t Just Any App
The takeaway is that different apps need different skills, and just because
developers did a good job with someone else’s app doesn’t necessarily
mean they can do a good job with yours, unless the apps are really similar.
Unfortunately, you can’t always rely on developers to volunteer what skills
your app needs that they lack (especially since it’s in their best interest for you
to hire them, and for you to do that, they want you to think they know what
th ey are doing).

But don’t worry. In Chapter 4, “Determining Your App’s Components,” you’ll
learn how to figure out what skills your app needs, and in Chapters 7, “Finding
a Developer,” and 8, “Interviewing and Selecting a Developer,” you’ll learn
how to select the developer who is the best fit you can find.

The Case of the Videos Hung by a Thread

I was once asked to talk to app creators who were having problems with their
app. It was presented to me as yet another one of the many mythical “it’s
90% of the way to being done” projects (which has never actually been the
case…see the section later in this chapter called “That Last 10%”). The app
creators had fired the original developer and were looking for someone to
finish the project before an impending deadline.

The app creators had actually done a better job at selecting a developer
than I am used to seeing. The app being built was an audio/visual (A/V) app
that let users create their own multimedia content. The developer who had
been chosen had built several (as I remember it) disc jockey and A/V mixing
apps that seem to have done well in Apple’s App Store. The developer had
also been recommended by an acquaintance of the app creators. So the
developer seemed like a logical fit from the perspectives of both skill set and
work ethic.

One critical feature was missing, though. The app required that the user
would be able to upload completed A/V files to a server, and that feature was
a complete disaster. First off, the app, as written, required the user to leave
the phone on the Uploading screen until the upload was complete. There
was no status indicator, so the user didn’t know how long the upload would
take, and the app appeared to be hung (also referred to as being locked-up,
or unresponsive). In addition, if the user went to any other screen in the app,
touched the Home button, launched another app, or received a phone call
or text message, the upload would stop. As a result, the upload almost never
worked.

The developer (I’m told) insisted to the app creators that what they wanted
wasn’t possible, despite the fact that there were a number of apps already in
the app store that did the same thing. After some dispute to which I wasn’t

Chapter 1 What Could Possibly Go Wrong?10

a party, the app creators and the developer parted ways, and then the app
creators came to me.

By looking at the code, I discovered that the previous developer seemed to
have no concept of threads or background tasks (discussed further in Chapter
4). It appeared that the developer had come to mobile development from
Flash development, which is a technology where background tasks aren’t
an option. My guess is that the successful apps this developer had written
previously managed to work without needing to use more than one thread,
but large network data transfers absolutely require multiple things to be
happening simultaneously.

Unfortunately, it wasn’t feasible for the app to be completed before the
deadline, so I wasn’t able to solve the app creators’ immediate problem.

As discussed further in Chapter 8, there are two questions that the app
creators could have asked that might have prevented this problem:

 • Have you ever written code that performed a large file upload? This
question would have illuminated the potential risk and allowed every-
one to manage it differently.

 • What resources for honing mobile development skills have you recently
used, and where would you turn if something unfamiliar came up dur-
ing the project? Apple and many third parties have created tutorials,
videos, and documents that explain how large file uploads should be
done on a background thread. Asking this question would have uncov-
ered the fact that this developer wasn’t familiar with any of those.

If You Get a Good Developer, You Still Have to Worry
Although it is certainly true that inexperienced programmers have far lower
success rates than established firms, despite what the established firms
might want you to believe, there is plenty of failure to go around. Once
cost and schedule overruns are considered, even established firms have an
uncomfortably high percentage of failures.

The good news is that with well-established firms, in order for a project to fail,
something has to have gone wrong. The bad news is that these days, things
go wrong surprisingly often.

Inexperienced Members of an Experienced Firm
In the current app development business climate, demand is outstripping
supply by a large margin. This causes a number of problems: Hiring is nearly
constant, turnover is high, and responsibilities are in flux pretty much across

11If You Get a Good Developer, You Still Have to Worry

the board. It’s not unusual for most or all of a project team at a reputable
development firm to have been hired in the past few months.

It’s also common for existing employees to be promoted from developer to
lead developer, often so there is someone to supervise newly hired junior
developers placed under them. The skills needed to be a successful member
of a project team are but a subset of the skills needed to lead a project team,
and mistakes made when learning development supervision and project
management skills can mean the difference between the success and failure
of a project.

Subcontractors
Another consequence of demand outstripping supply is that firms often
have more business than they can handle. Instead of turning away business,
many subcontract some of their business out to other developers, taking
some percentage of the revenue off the top. Since the firm that signed the
deal wants to make some money, it stands to reason that the subcontractor
will be working for less money than the original firm’s prices (that is, the
subcontractor is almost always a cheaper developer). The communication
between the original firm and the subcontractor is also likely to be inferior to
the communication that the original firm would have with its own employees.

Juggling Resources
When any project at any company goes wrong, the company working on it
usually tries to fix it. The good news is that if your project is being developed
by a reputable firm and something goes wrong, the company will likely do its
best to marshal its resources and attempt to get your project back on track.
The bad news is that if your project is going fine and some other project at the
firm you are paying goes off the rails, the resources on your project may be
pulled off (fully or partially) to try to shore up that other project. This can have
a negative impact on your project and can seem to come out of nowhere,
even when a project seems to be going well.

Contractor Company Overhead
Another question with large firms, reputable or otherwise, is what the firm
considers billable. Some firms consider time spent on internal activities,
meetings, emails, and conferences calls billable to you, even when those
activities don’t involve your project (or involve it only peripherally). This can
cause your budget to get used up by activities that aren’t related to your
project.

Chapter 1 What Could Possibly Go Wrong?12

Another overhead item is hours billed to project management (often at a
high rate). If your firm is billing you for project management time, you need
to make sure that you understand what that time is spent on and decide
whether that amount of money is worth it to you.

It’s Important to Know What You’ve Signed Up For
The solution to all these issues (and many more) is to clearly document
up front exactly what you’re paying for. You need to know what team is
actually going to be working on your project, what their experience is,
what their relationship to the firm you are paying is, and under what, if any,
circumstances those staffing arrangements might change. You need to know
what the firm considers billable work and what that work will be. If you’re
paying higher rates to get an established, experienced development firm,
then you are paying to have experienced staff working on your project, and
you need to make sure that happens.

The Idea Is Not More Important Than the Execution
A common fallacy is that once you get an idea for a great app, you’re most of
the way there. In fact, that’s not the case at all. As with most other inventions,
a truly exceptional idea is still only the first step in the process of making
an app.

In the process of making an app out of that idea, literally thousands of
additional decisions have to be made. Some of those decisions involve colors,
graphics, data storage, workflow, architecture, layout, transitions, animations,
and monetization, and each of these requires even more related decisions.
Some of the decisions you need to make have a wide-ranging impact on the
success of the app, and some have little or none. It’s not always possible to
tell how much of an app’s success or failure is attributable to any particular
decision. In general, I’ve found that app creators often underestimate the
impact of each of the little decisions.

Each decision must be executed upon and turned into code, and that
code becomes part of the final app. There are lots of opportunities for
poor execution in this phase that can render an otherwise fantastic idea
unworkable.

There Is No Idea So Good That It Can’t Be Poorly Executed
There’s a tendency I’ve seen among app creators to become so enamored of
their idea that they don’t want to worry about anything else. They often say
(or think) they are looking for a developer to “implement their idea,” by which

13The Idea Is Not More Important Than the Execution

they mean to make all the decisions and execute those decisions, often in
return for half (or less) of the app’s eventual revenue. I’ve never seen or heard
of this strategy working out (which doesn’t mean it can’t, but it’s definitely a
low-percentage bet).

The root cause of this situation is usually that the app creator doesn’t
participate in the decision-making process except at a very high level. In such
a case, the developers end up implementing their own vision instead of the
app creator’s, slavishly copying some other app, or just guessing what the app
creator wants.

In the virtually certain event that the app creator is unsatisfied with the result,
an adversarial relationship usually forms between the app creator and the
developer. The app creators point out things that they consider to be obvious
deficiencies (but generally can’t articulate or communicate alternatives
in sufficient detail to be implemented). The developer, frustrated, builds
something else that is still unlikely to appease the app creators. And the cycle
often repeats.

Programmers often refer to this as “rock fetching,” and it can be hugely
frustrating. Imagine the following scenario:

Your boss: “Bring me a rock.”

You, after bringing back a rock: “Here is a rock for you.”

Your boss: “I don’t like that one. Bring me a different rock.”

You, after getting a different one: “How about this one?”

Your boss: “No, I don’t want that one either.”

You: “What’s wrong with it?”

Your boss: “I just don’t like it.”

You: “What kind of rock are you looking for?”

Your boss: “A better one than that one.”

You: “Better how?”

Your boss: “You know, better. Rockier. More rock-like.”

You, confused and hesitating: “Uhhhhh.”

Your boss: “What are you waiting for? Bring me a rock.”

Most people find rock fetching irritating. It certainly doesn’t facilitate a
person’s best work. Given enough of this, most people will eventually quit. But
when app creators refuse to involve themselves with detailed questions about
how an app should look or work and either don’t know or can’t communicate
what they really want, they create a rock-fetching scenario.

Chapter 1 What Could Possibly Go Wrong?14

A word of warning: Some developers love this kind of app creator and are
happy to continue billing by the hour to write code that will be rejected until
the app creator runs out of money. Personally, I find this distasteful, but some
legitimate developers make the argument that they aren’t responsible for
their customers’ whims or lack of requirements. And they have a point. Caveat
emptor.

The Case of “Facebook for Insert Demographic Here” for
Four Times the Price

I was once approached by an app creator who had been unable to get
his app launched, despite having spent many months and many tens of
thousands of dollars having it developed. From his initial description, I could
tell that the project was in a late-stage failure mode that is always a hard
state to recover from. I arranged to meet him for lunch and sat down with
him to talk about what had been happening with his project.

At lunch, he spent roughly twice as much time telling me about how great
his app idea was as he spent on how the project had gone. This was difficult
for me because (1) I was there to figure out what was going on with his
project, not how much money he thought his app would make and (2) the
idea wasn’t good. (Not that it matters for this story, but his idea was “I’m
going to make a new social network just like Facebook, except targeted at
this one particular market segment of the population.” I hear that idea every
few months with a different segment of the population, and none of them
have gotten any traction.)

He asked his current developer to send him the latest copy of the source
code they had built for him so far, and he gave it to me to look at. Based on
the wireframes, the requirements, and the source control, I thought he had
spent about three times as long and about four times as much money as I
would have estimated in order to have built it by myself.

As I looked through the code, I realized what had been happening. The
developers had built many, many different versions of the app, one after the
other. They would build a version and present it to the app creator. He would
tell them to do it differently, and perhaps make some vague suggestions.
They would then pile his new suggestions on top of the existing code and
show it to him again. Over time, they had written tons and tons of code,
much of which was from several iterations ago and no longer called but had
never been cleaned up. It was incredibly difficult and time-consuming just
to understand what was supposed to do what and what should have been
deleted. It was a horrid mess.

I wrote up my set of recommendations for getting his code cleaned up and
for creating a well-defined set of features and documenting them before
doing any more development. I gave him my recommendations document

15Unwillingness to Delegate: Micromanaging

and never heard back (which wasn’t surprising, as I didn’t have time to take
on more development tasks at the time, so having me do his development
wasn’t an option). As near as I can tell, that app never made it to any
app store.

Unwillingness to Delegate: Micromanaging
If refusing to get involved in discussions about the details of their app is on
one end of the app creator engagement spectrum, the opposite extreme is
micromanaging, and it’s no less destructive.

Some app creators insist on being far too involved in the minutia of their
projects. They question the necessity of every code change and want
justifications for every hour spent. They’re insistent on getting exactly what
they think they want and/or spending as little money as possible, but they end
up forcing work to be done over (and therefore wasted) and making people
wait on them. Causing developers to wait for someone to make a decision is a
waste of time and money, and causing them to have to do something over is a
waste of time, money, and goodwill.

It’s important for app creators to have control over what happens on their
projects. I’m not trying to contradict that at all. The question is one of
frequency. The vast majority of the time developers spend on a project should
be time spent doing development. That’s what developers are being paid to
do, and it’s where their expertise is. That sounds obvious, but it’s quite often
not what happens.

There’s a way for app creators to maintain control of their projects, and it’s to
make (and document) decisions the developer needs to have made before
the developer needs them, so the developer doesn’t have to wait (or guess
wrong and do it over). A good developer should be able to generate a list of
questions that are going to need to be answered far enough ahead of time
to give the app creator time to think and decide. If you as an app creator find
that your developer is having to wait on you, or that you are frequently asking
your developer to redo things a different way, it’s time to have a conversation
about doing a better job about defining requirements.

We’ll discuss this more in Chapter 2, “The App Development Life Cycle.” For
now, understand that it’s not necessary for all the requirements for an entire
app to be completely documented before any development starts, but it is
important for developers to know what’s required of the piece of functionality
they are currently working on when they start it. Not doing so leads to wasted
time and mon ey and can put the whole project at risk.

Chapter 1 What Could Possibly Go Wrong?16

Bikeshedding
Some projects feature endless repetitive design meetings with arguments
over font sizes, RGB color values, and pixel-level control placement. The
developers are paralyzed and spend a lot of (billable) time waiting for
decisions to be made by the client, and progress is correspondingly slowed.

I’m not implying that control placement or color choice aren’t important—
they are—but they should take up a relatively small portion of the overall
project budget and schedule (at least for the vast majority of apps).

C. Northcote Parkinson coined the term bikeshedding in 1957 for groups
spending far more time arguing about things that don’t matter than things
that do. The canonical example is a group of townspeople tasked with
commenting on plans for a nuclear reactor spending their time arguing about
the color of the bike shed at the reactor. Obviously, the color of the bike
shed makes no difference to the efficiency or safety of the reactor, but it’s
something that everyone in the group can feel qualified to have an opinion
about. Everyone wants his or her opinion to be heard about something and
to leave a mark on the project, so any trivial item can become a source of
arguments. For the important things (like cooling redundancy and radiation
shielding), the nuclear experts’ opinions are usually left unquestioned because
no townspeople in the group feel qualified to argue those points and don’t
want to be responsible if they turn out to have been wrong.

Most app creators don’t have much (if any) experience with app
programming, and so they don’t feel qualified to weigh in on issues of coding
style and data models. They do, however, often feel that they are qualified to
give opinions about colors and fonts and graphic design. So in trying to feel in
control, they cause large amou nts of time to be spent on noncritical items.

Poorly Defined Requirements
With software, the old adage is true: “The devil is in the details.” Software can
have lots of details, and each one has to be decided upon and communicated.
As discussed in the proceeding sections, sometimes the details aren’t
considered important, and sometimes they become the source of arguments,
but sometimes the problem is one of communication. On many projects, the
app creator has an understanding of what he or she wants the app to do but
does a poor job of transferring that understanding to the developer who is
doing the implementation.

Sometimes this is because the app creator is trying to avoid what he or
she considers unnecessary paperwork. When this is the case, requirements

17Poorly Defined Requirements

documents, if they exist at all, often take the form of lists of bullet points—
short phrases that can mean very different things to different people. Often
the developers don’t object to this because they don’t like paperwork, either.
Then the developers implement what they think is meant by a given line item,
the app creator thinks that work has just started on it, and the cycle repeats
for a while. It usually comes to a head when the developers check some
number of items off the list, and the app creator objects because those items
aren’t done yet. Arguments and recriminations may follow from there, and the
likelihood of a successful project is greatly diminished.

Other times, the opposite is true. On projects for very large companies,
sometimes the requirements document is a large binder full of contradictory
legalese that is the output of many rounds of the request for proposal (RFP)
process. Verbiage from an early section implies that a feature should be
implemented one way, and many pages later in the binder, an answer to an
RFP question seems to say that a different implementation is required. Jargon
can be a problem here, too, as large organizations often create their own
vocabulary. Here, the problem is not a lack of detail but a lack of clarity.

In either case, what ends up happening is that both sides work on the project
as if they understand each other—after all, there is documentation that
purportedly explains what should be built. The project can go a long time
like this, with both sides thinking that everything is going well. And then one
day, one side says something that the other side disagrees with, and then the
gloves come off. Voices are raised and accusations fly as the two sides begin
to realize how far apart they are. Success is not a likely outcome.

The Case of the Required Preferences

I was once asked to look at an incomplete app project that had already
passed its initial estimated completion date. It had a requirements document
that was a giant list of one-liners like “The user must be able to specify
preferences.”

The developer interpreted this particular line to mean that the app was
required to have a settings screen (which it did). On the other hand, the
app creator expected an elaborate menu system that synced with the
server so that if the user had an iPhone and an Android tablet and changed
the preferences on one that those preferences would be reflected on the
other. The app creator justified this by pointing out another line in the
document that said that the iOS and Android versions should be “functionally
interchangeable” (or words to that effect).

The developer had expected this requirement to take at most a day, but what
the app creator wanted would take multiple developers a week or more,
including adding additional capabilities to the server platform. And because

Chapter 1 What Could Possibly Go Wrong?18

this was just one of many insufficiently specified requirements, it was no
surprise (at least to me) that the project had run way over on both schedule
and budget.

The other problem was that the discrepancy between the developer’s and
app creator’s expectations didn’t come to light until well past the point when
the project was initially estimated to have been completed, when both sides
were already upset. If requirements are vague (as they sometimes need to
be at the beginning of a project), the time to get clarification is early in the
process, not once the relationship is already falling apart.

In the case of this app, though, neither side wanted to spend the effort to
flesh out the details in the requirements document up front, so they ended
up with a mess at the end.

Out-of-Date Requirements Documentation
Yet another way projects go wrong is when the requirements documentation
exists but is not kept up to date as things change. This often happens
in projects that involve multiple organizations and many simultaneous
conversations. Decisions get made, and the two people on the phone know
what was discussed, but nothing gets written down, and the rest of the folks
on the project are left in the dark. Alternatively, sometimes the requirements
document does get updated, but the change doesn’t get announced, and
other parties execute the instructions from an old copy of the document.

Requirements documents often start out as multipage documents that are
basically tables of contents. Someone (usually a single person) starts the
project with every intention of documenting all the requirements and begins
by writing a three-page list of stuff that needs to be documented. Then as
the project goes on, less and less gets written on the requirements document
each day, until finally it ends up a derelict Word file on some shared drive
somewhere and serves only to confuse the unwary.

Another common setup is that someone sets up a project wiki server with the
expectation that people will use it to document the project, but the wiki never
ends up being integrated into the project’s workflow. The content on it grows
stale over time, and the wiki ends up being worse than useless because no
one knows whether it can be trusted.

The way to solve this problem is to force the documentation to be part
of the workflow for the project—either documentation that the quality
assurance (QA) team uses to do testing (so the team opens bug reports
when the documentation doesn’t match the reality) or in the form of a

19Out-of-Date Requirements Documentation

suite of automated acceptance tests that are run on a frequent (or at least
periodic) basis. The automated acceptance test idea works especially well for
documenting the requirements between the server development team and
the mobile development team.

Without some way to bring to light discrepancies between the documented
requirements and reality, documentation usually becomes out of date to some
degree during a project, and this can cause headaches for everyone involved.

The Case of the API Document That Became an End in Itself

I was once a subcontractor on a mobile project that had a server component
that was being written simultaneously. The project had someone with the
title “architect” whose job was to oversee the technical teams. (I was the
senior developer on the iOS team, and there were Android, server, and
graphic design teams as well.)

One of the required deliverables to the client was a document that explained
the interactions between the mobile client and the server (I presume so that
if the client wanted a Windows Phone or Blackberry version of the app to
be created at a later date, they would have enough information to do so).
The project architect worked with a contract technical writer to build this
document.

The API document was running behind schedule, and the architect was
pushing to get it completed. The problem was that the focus of the
document was on the document itself, and not on the service it was
supposed to be documenting.

From time to time, one of the developers would run into an issue that
required a change to the contract between the server and the client. For
example, the iOS developer would see that the graphics designer had added
an element like “date user joined” on a wireframe, but the server wasn’t
providing that information, or the server developer would realize that two
different API calls could be combined to reduce latency since they were
always called together. At that point, the developer would figure out what
needed to change, and the server developer would make the change and
send a note to the architect. But that information would never make it into
the document. So when a different developer started working on that API
call (for example, implementing it for Android this time instead of iOS), that
developer would be working from a document that was now out of date.

Easily 15% (any maybe 20%) of the time spent working on the networking
between the mobile devices and the server ended up being wasted
because the tool that was supposed to make it easier for the developers to
communicate (the document) became focused not on furthering the project
but on checking a box on a c hecklist of deliverables.

Chapter 1 What Could Possibly Go Wrong?20

Constantly Changing Requirements
Another thing that can cause a project to fail is indecision. Many projects start
without a clear idea of what needs to be accomplished and have the design
spend months changing over and over while never getting any closer to a
ship date. Hundreds of thousands of dollars get spent, and there’s no evidence
that the design changed for the better during the process.

Sometimes the trigger for this is user testing; sometimes it’s anecdotal,
with someone showing the app to a friend or two and the friend(s) not
immediately understanding how the app is supposed to be used. Sometimes
someone says it just doesn’t feel like the design is progressing in the right
direction. Sometimes the desire is to find something “better” than some
competitor’s app, but with no clear idea of what “better” would look like.
However it starts, it costs a lot of money and doesn’t accomplish much (if
anything).

What makes this especially hard is that there are times you can tell from user
testing that an app design really isn’t working. You don’t want to ship a design
that people can’t figure out, so it’s important to get a better design. The
problem is the amount of money that change will cost.

When I see this happen, it’s usually for apps that went from concept directly
to coding and skipped the prototype phase. The point of a prototype is to
get a design in front of people to figure out whether it works in the cheapest
way possible. If you figure out that users aren’t understanding (or liking)
your app, you can try a different design (or several different designs) without
needing to have a single line of code written. If there’s confusion in the
middle of a project, you could even hopefully move all your development
effort to a part of the app that you know will stay the same (like data storage
or networking or something) while you show potential users several different
prototypes in an effort to get clarification. (For more information, see Chapter
3, “Prototyping and Wireframing Your App.”)

But if you are well into building your app when you run into problems and
you try to quickly come up with a new design that you think will be better and
have your developers start coding on it before you know whether it’s going
to actually improve the user experience, you’re starting a chain of events that
can lead to months of churn with nothing useful to show.

Leaving the Worst for Last
A constant theme I hear when talking to app creators about their failed
projects is that things seemed to be going very well right up until the point
where they thought they were about to be done.

21Leaving the Worst for Last

It’s rare that a project fails a week or two after starting (and if that happens, it’s
usually due to an external event). This is because at the beginning of a project
(or at least the beginning of the development phase of a project), there’s
often nothing to see, so expectations are low. It’s only when the project has
been going on long enough that there should be something to see that
expectations are raised to the point that failure seems an option.

A common pattern is that the developer periodically meets with the app
creator and says that progress is being made. Something might be shown at
the meeting, but there seems to be plenty of time in the schedule to get the
rest of the work done. As the time remaining in the project dwindles, the app
creator might begin to be uncomfortable but is assured that everything is
still on schedule, and there’s nothing to worry about. It’s only when the app
creator looks at the list of outstanding items and sees that the schedule is
almost gone that the platitudes of the developer start to ring hollow, and the
app creator can no longer believe that everything is on track. This is when the
failure becomes obvious.

There are two ways this can happen. First, the developer may be dishonest
and just lie to the app creator, trying to get as much money out of the deal
as possible. Second, the developer may be incompetent and genuinely just
as surprised as the app creator when things seem to fall apart at the end. The
good news is that the same remedy works for both of these cases.

To avoid failure, it’s important to identify the pieces of a project that have the
most risk and push them as early into the project as you can. That way, if there
is going to be a problem, you can find out about it before you’ve spent most
of your budget and you still have money to pay for a different developer.

For what it’s worth, the two things that I find to be the most risky on the
majority of projects are integration and performance. Not coincidentally, these
are often the last two things that are done in a project before testing starts in
earnest. This is not the best risk management strategy.

Figure 1.3 shows a typical project development schedule. Note how right
after the project begins, many tasks are started in parallel by several different
developers, and only toward the end is their work integrated (connected
together) and tested for functionality and performance.

Figure 1.4 shows a different schedule for the same project. Note how much
earlier the first integration and performance test occurs. This is a much safer
plan because, if problems show up in the test, there is far more time to deal
with them.

Chapter 1 What Could Possibly Go Wrong?22

Figure 1.3
A simple Gantt chart for part of a fictitious project. Note how all three views are created and styled before the
integration test starts at item #4.

Figure 1.4
An alternate Gantt chart for the same part of the same fictitious project as in Figure 1.3. Note that the integration
test has been moved much sooner in the project, to item #2.

The downside to using this technique is often calendar time. Typically you
can complete an app in the smallest amount of time if the project is chopped
up into many small pieces of functionality, and each piece has a different
programmer, and all their work is hooked together at the end. The problem
is that this is a high-risk strategy: If something goes wrong, you don’t know
it until the very end, and then you might not have money left to fix it. Many
development shops love this model, though, because they can extract the
maximum number of dollars in the minimum amount of time, and they don’t
have to show an app that actually works until most of the money is already
paid.

23Leaving the Worst for Last

But if you want to reduce your risk, time is on your side. By having your
developer build a piece at a time and not moving on until it’s integrated and
working, you reduce the amount of your budget that you spend before you
have evidence that things are proceeding the way you need them to.

The Case of Throwing Out the UI with the Bathwater

I once was brought into the middle of an iPhone project that had a fairly busy
user interface. It wasn’t badly designed, but it crammed a whole bunch of
information into a very small portion of an already small screen.

Some time before I was brought onto the project, a decision was made that
the interface would use an Apple technology called Auto Layout , which
Apple had recently released to developers. Auto Layout is a cool technology
that allows you to program a user interface once, and then it adjusts to
different screen sizes and orientations. It’s a nice time-saver for developers
(once they get the hang of it) because they no longer have to write a bunch
of code that figures out what the X and Y coordinates of each interface
element need to be for the current screen size and what else has already
been added to it.

The downside of Auto Layout is that it requires the device to solve fairly
complicated equations every time the screen needs to be redrawn to figure
out where everything needs to be placed. The good news is that computer
processors are very good at solving these kinds of equations. The bad news is
that sometimes, the processor in a mobile phone has better things to do.

Two other mistakes were made on this project that are relevant for this
discussion. First, the contract didn’t specify which models of iPhones the
app needed to support. Second, the project schedule called for performance
testing to be done at the end of the project.

Toward the end of the project, the app creator declared that the app was
too slow on older iPhone models. The app had never been tested on iPhone
models that old because the development team assumed that they weren’t
going to be supported. Effort was put into making the app faster, but it
couldn’t be made fast enough. The older, slower processors in the much
older iPhones just didn’t have enough power to solve the equations to lay
out the screen while doing everything else that they needed to do.

And so, at the end of the project, long after the budget and schedule were
exhausted, the Auto Layout code had to be removed from the user interface,
rendering all the work than had been done on Auto Layout wasted and
requiring lots of additional code to replace what Auto Layout had been
doing. Earlier performance testing would have saved a lot of wasted effort.

Chapter 1 What Could Possibly Go Wrong?24

 Cost Overruns
This book spends quite a bit of time discussing risks. The cost of a project
turning out to be way more than expected is probably the most likely failure
mode in the contract app development space. This is sad because app
development billing rates start higher than those of many (if not most) other
forms of contract development right now. Costs are high under even the best
of circumstances, and they become downright stratospheric if not kept under
control.

Much of this book focuses on getting you your money’s worth, but the
following sections discuss a few of the most common ways that costs get out
of control.

Unnecessary Staffing
One way that projects run way over budget is by having too many developers.
The more developers a project has, the more communication effort is
required. Each additional developer is not only less productive than the
previous one but actually slows down the existing developers. This effect
was documented in 1975 in The Mythical Man-Month by Fred Brooks (which I
mention several more times in this book).

Especially when your development company has a number of developers on
salary who are idle, the company may pressure you to have more developers
on your project than you need. Make sure that the company can articulate
what every developer will be doing and why each is necessary before you
approve additional headcount.

Unnecessary or Wasteful Work
Not all work gets you closer to the project’s goal. Some work turns out not
to have been worth it. Under what circumstances should you have to pay for
that?

First, understand that just because a particular piece of work doesn’t make it
into the final product doesn’t mean it was wasteful. Sometimes there’s more
than one way to implement something, and it makes sense to spend time
experimenting with multiple possibilities to figure out which is the best fit
for your app. It’s better to do that than to guess with no data and risk ending
up with an unworkable solution. These experiments are often referred to
as spikes , and we discuss them more in Chapter 2. Mockups and prototypes
are also useful work that won’t ever ship, and we discuss them at length in
Chapter 3.

25 Cost Overruns

However, some kinds of work are wasted. What happens when a developer
makes a mistake? What happens when fixing the bugs in a feature turns out
to take twice as long as building that feature initially? What happens when the
developer you got was less experienced than the developer you needed and
ended up making a mess? Under many contracts, that cost is passed directly
to the app creator, so there’s not a lot of incentive for the developer to get it
right the first time.

Unproductive Billable Time
We touched on this earlier: Developers should be developing. Try to keep
meetings and administrative tasks to a minimum and make sure you aren’t
being billed for time when the developer is not working on your project. (For
example, time spent eating lunch should not normally be billed to you.) Note
that explaining and documenting the code that is being written should be
considered part of development, not administrative time.

Unexpected Bugs
Sometimes projects run into bugs that take a while to fix. Sometimes those
bugs are in code that the developer wrote, and sometimes they’re in third-
party libraries or the framework for the mobile platform itself. Bugs always
happen, but most of the time they don’t take a project off the rails. Sometimes
they do. However , project-endangering bugs should not happen in areas of
the project that are similar to what your developer has done before. Talk to
your developers about what risks they see in your project before you start.
(See the “Gap Analysis” section of Chapter 8 for more details.)

Unforeseen Circumstances
Sometimes bad things happen. Sometimes developers become ill or quit
or have to leave a project to care for a sick family member. Developers are
human, and most humans have chaotic and unpredictable periods at some
points in their lives. Discuss what might happen in such a case with your
developer before work starts. (See the “Contingency Plans” section of Chapter
8 for more details.)

Poor or Changing Requirements
As discussed earlier in this chapter, requirements need to be clearly decided,
communicated, and understood. If they’re not, they might as well be
randomly generated.

Chapter 1 What Could Possibly Go Wrong?26

Poor Initial Estimation
One of the things that can throw project costs far afield is unforeseen work
being “discovered” or “found” during the development process. If this sort of
thing occurs and wasn’t a result of bad requirements, then it was most likely
missed during the estimation process. Ask your developer before work starts
about who will pay for poor estimates and how much. (I suggest that you at
least should never have to pay full price for work that wasn’t estimated.)

The other common result of poor estimation is everything just taking longer
than expected. This could be a result of insufficient information during the
estimation process (which happens a lot on projects that involve taking over a
code base that someone else wrote and the code base turns out to be worse
than you thought). It also happens when the developers who end up on your
project are slower and less experienced than the developers that the person
doing the estimation had in mind (in which case you probably shouldn’t be
paying the same hourly rate as the estim ator had in mind either).

That Last 10%
Many people have come to me with projects that they believe are “90%
complete.” They never have been. It’s hard to know exactly how far along a
project actually is, but when someone tells you they’re 80% or 90% of the
way done with a project, they’re almost always wrong. Why does this happen
so often?

Well, first off, most people don’t actually bother to go through the effort of
really measuring project status but want to act as if they know what they’re
doing. So they tend to make up numbers, and 80% and 90% are good
round, made-up numbers. Really, it’s just a common and convenient lie told
by developers and project managers the world over. When people tell you
they’re 80% or 90% done, ask them how they arrived at that percentage.

Despite the frequent fabrications, there is an underlying truth here: Most
mobile app developers leave testing until the end of the project. Testing is
how you find out how well a project is really going. If a developer has written
code for half the features on the project, the project may be as much as half
done. But if that set of features turns out to have tons of bugs, then there are
tons of bug fixes that must be written before the project is half done. And
before testing, there’s no way to know which.

What happens is that developers write all the code to implement all the
features before turning over the code to QA for testing, and they assume
that testing is just a formality and won’t turn up very much. They assume,

27The Whack-a-Mole Problem

for example, that the testing at the end will be 10% or so of the project time.
When testing turns up a whole bunch of stuff, they stick to their guns and
think (or at least say) that they’re still 90% done. This is where we get the joke
that “the first 90% of the project takes 90% of the time, and the last 10% of the
project takes the other 90% of the time.”

Avoiding this situation requires testing early, testing often, and testing the
right things.

First, understand that early testing doesn’t reduce risk; it just reduces
uncertainty, so it’s still important not to leave the riskiest parts of the project
until the end. (See the “Leaving the Worst for Last” section earlier in this
chapter.) Sequencing of features is still critical, even with lots of testing.

Second, each feature or component needs to be tested to make sure it’s
functioning correctly. Note that it needs to be tested to make sure it behaves
well when expected things happen and that it doesn’t behave badly when
obvious but unexpected things happen. Most developers do at least an
adequate job of this.

Finally, testing needs to verify that when each new feature is added, all
the previous features still work. This is called regression testing , and lots of
developers don’t do a good job of it.

For more about testing, see Chapter 12, “Communicating Using Bugs,” and
Chapter 13, “Testing.”

The Whack-a-Mole Problem
There’s a specific situation that causes cost overruns and stretches out the last
10% of a project. It sometimes happens earlier in the project, but most often
it shows up at the end. I call it the whack-a-mole problem, after the carnival
game where a player with a hammer tries to hit mechanical creatures as they
pop up out of holes.

The whack-a-mole problem occurs when it seems that the fix for any given
bug causes a new bug to pop up. This is often an indication of a poor
architecture (or poor developers). Unfortunately, if you’ve reached whack-a-
mole, it’s usually too late to change out the architecture (or the development
team) without a lot of effort. There are many ways to end up in this situation,
but let me take you through a common scenario.

Mobile apps are largely driven by events —things like the user pressing a
button or new information being received from the network. Somewhere in
the source code, a set of instructions gets called when a particular button gets

Chapter 1 What Could Possibly Go Wrong?28

pressed. When that set of instructions becomes too complicated, you get the
whack-a-mole problem.

Imagine a banking app with a button that says Account History on the main
screen. The user taps the button, and the account history screen appears.
Everything works fine.

Then someone asks, “What should that button do if the user isn’t logged in?”
So the programmer is tasked with writing code so that if the user is logged in,
that button shows the account history screen but otherwise shows the login
screen. Then the login screen gets programmed to return to one place if it was
shown from the login button and another place if it was called by the Account
History button.

Then later in the project, someone says, “We shouldn’t open the login screen
if the network isn’t available since the user won’t be able to log in; that would
be confusing.” Now the programmer goes through the code and finds all the
places that the login screen is called and puts a check at each one to see if the
network is available, and if it isn’t, it shows the screen that says the network
isn’t connected and asks the user to connect to Wi-Fi.

At this point, the code that is executed when the button is pressed depends
on two states: whether the user is logged in and whether the network is
available. The programmer isn’t thinking about all the different possibilities,
only the case where the user isn’t logged in and the case where the network
isn’t available. The programmer makes the change to show the screen that
asks the user to connect to Wi-Fi and checks in the change.

If the programmer wasn’t careful, when the user taps the Account History
button when the network isn’t available, the app will ask the user to connect
to Wi-Fi, even if the user was already logged in, which wasn’t part of the
requirement.

As time passes, more and more states can get thrown into the mix. There
could be a special screen that needs to be shown on login when the users
have overdrawn their accounts. There could be a special screen that’s shown
on the user’s birthday. There could be an alert that needs to be shown when
fraud has been detected on the account. Maybe an interstitial ad needs to
be shown, and so on and so on. Each time a new set of behaviors is added to
that button, all the previous behaviors are at risk of becoming broken, and the
amount of time it takes to do a thorough test gets longer and longer because
each combination of states needs to be tested. Multiply that by the number of
buttons in the app, and you see how big the whack-a-mole problem can be.

29Poor Communication

Some application architectures and programming techniques do a good job
of handling this complexity (assuming that the programmer is experienced
with such techniques). The trick is that they have to be put in place at the
right time. If they’re put in place too early, they are more trouble than they are
worth, but if the programmer waits too long, it becomes tedious and time-
consuming to move all the existing behavior to the new architecture.

Poor Communication
Poor communication dooms any software project, but mobile projects, with
their relatively smaller budgets, shorter time lines, and often remote teams are
particularly susceptible. The solution, though, is not more meetings. I’ve been
on projects that had conference calls every day, and the communication was
still horrible. In fact, lots of meetings often make it worse because everyone
thinks that if nothing came up on the conference call, everything must be
going fine, when that’s not necessarily the case at all.

It’s in vogue these days for every project to have a daily stand-up meeting . I’m
not going to tell you not to have one; there’s nothing inherently wrong with
those meetings. What I am going to tell you is that a daily stand-up doesn’t
give you information about how well the work is being done or whether the
whole project is on track. A daily stand-up just tells you what everyone is
working on that day, and what, if anything, they’re waiting on to be able to
complete their current tasks.

And then there are project status meetings where everyone says that his or
her part of the project is going just fine. Again, these aren’t particularly useful.

Making the Most of Meetings
As with requirements, good communication is all about details. And to prompt
your developers to give you good details, you have to ask the right questions.
The questions usually asked at meetings are either two narrow (“What are you
doing today?”) or too vague (“Is your part of the project going okay?”).

One recommendation is that you should never have a project meeting
without a written agenda, and the agenda should be circulated to everyone
who will attend the meeting in advance to give people time to think about
what they need to say.

The agenda should ask the questions that you as the app creator need
answered, like “What’s the biggest risk to this project as you see it right
now?” or “What’s the most likely thing that you think could go wrong on this

Chapter 1 What Could Possibly Go Wrong?30

project, and what can be done about it?” or even “What decisions need to be
made in order to complete the tasks you are currently working on, and what
alternatives are there for each decision?” These kinds of questions will prompt
discussion of the details that you need to know.

Then, once the meeting is over, make sure that someone writes up a summary
of what happened in the meeting and distributes it to the group. These
meeting notes become very useful later in the project when confusion arises.

Examine the Project’s Artifacts and Ask Questions
Contemporaneously

Another way to facilitate communication is to look at what’s happening on
a project and ask questions about it. I try to review changes to the source
control repository and bug trackers at least every day or two during a project
to keep up to date with what’s going on. (See Chapter 10, “Understanding
What You’re Getting,” for how to do this.) If I have any questions after reading
the commit messages on the code check-ins or the updates to the bugs, I
send someone email and ask for clarification. If the developers know that
they’re going to be contacted if they don’t write clear commit messages or
bug updates, they eventually put more thought into what they write, and the
quality of that information goes way up. (There are many discussions of source
control and bug trackers throughout this book, so don’t worry if these terms
are unfamiliar right now.)

It’s important to ask these questions soon after the developer does the work.
If you wait a week or two (or maybe even a few days), the developer might
not remember as well what he or she was doing, and the quality of the
explanation will suffer.

Insist on Getting a Plan
Periodically (at least weekly), you need to insist on getting a plan that shows
what needs to be done between now and the end of the project, with specific
details about what the next few steps are. Much of the report will be the
same from week to week, but as you get more and more of these reports, you
should see how the things that have been done have lined up with what the
plan had previously said was going to happen. As with everything else, make
sure you understand what you are looking at and ask detailed questions until
you do.

If at all possible, I recommend getting these plans in the form of Gantt charts
(which are discussed in Chapter 5, “F inding the Right Tools,” and Chapter 9,
“Managing to Milestones”).

31Wrapping Up

Abdication of the Management Process
Many of the issues discussed in this chapter boil down to one root cause: The
app creator didn’t pay enough attention to managing the project or left the
management of the project up to someone else (who may or may not have
done it at all). Whether you are doing the programming yourself or can’t write
a line of code, if you want your app idea to come to fruition, you have to keep
an honest and vigilant perspective on where you are in the project and make
good decisions based on that knowledge.

Many app development companies provide a professional project manager to
do this for you (and charge a premium for the privilege), but project managers
don’t have the same incentives you do, and their loyalty is not to you or your
project but to their employer. Often, those project managers don’t want to ask
hard questions. They don’t want to admit that failure is an option. They are
generally incentivized primarily to manage your expectations and get you to
pay your invoices.

You, as an app creator, are responsible for understanding where a project
is now and where it is going, what risks are involved and what can be done
about them, and whether your developer is doing a good job or needs to be
replaced. If you don’t feel comfortable about that responsibility, welcome to
the club. This is difficult stuff to do, and anyone who says differently is selling
something.

The simple fact remains that there’s no one else you can trust to do it. You are
the one selecting the developer, and you are the one controlling the purse
strings. It’s your vision and your goal. But despite the difficulty, it is possible. It
can be done, and this book is here to help you do it .

Wrapping Up
This chapter discusses the different ways that app projects fail and provides
some tips about what can be done about it. Here are some key points to take
away:

 • Despite the relatively small size of app development projects, they are still
software development projects, and many of them fail.

 • App projects can fail by taking too long or costing too much, even if the
app produced at the end is acceptable.

 • A number of factors make mobile development more difficult than web
development, but inexperienced programmers don’t always recognize
that.

Chapter 1 What Could Possibly Go Wrong?32

 • Even experienced development companies with good reputations can
have failing projects.

 • Good requirements are key to getting a good estimate, a good project,
and a good app. And they don’t just have to be defined well but also have
to be communicated well.

 • To the extent possible, uncertainty and risk need to be pushed early into
the project schedule to avoid catastrophic failure at the end.

 • Testing should never be left until the end of a project.

 • You can prevent project failure. It’s difficult, but this book is here to help.

Index

A
abandoned third-party components, 115-116
accessibility features, 122
accessing

source code, 253-254
stored data, 127-130

accounts
app stores, 151
providing to app reviewers, 332

accuracy of estimates, 239
bug fixes, 245-246
familiarity, 239-240
granularity, 243
isolation, 241-242
padding, 242-243
renovation versus construction, 243-245
tasks included, 243
uncertainty, 240-241

ad agencies, 194-196
adapting screens for tablets, 67
advertising services, 154
agenda for meetings, 29
analytics, 119, 320

services, 119-120, 153-154
what to collect, 120

animations
custom/complex, 122-123
in design phase, 38
in user experience design, 171

API (application programming interface), 43
Apollo I fire, 306
app builder tools, 187, 189
app creators

source control usage, 142-143
stealing app ideas, 179-180

app development
companies, 196-199
interactive prototypes. See interactive

prototypes
life cycle, 33-34

design phase, 34-39
development phase, 39-45
repeating, 49-51
testing phase, 45-49

project failure. See project failure
prototyping. See prototyping
wireframing. See wireframing

app programming. See app development;
mobile development

app projects. See projects
app reviews. See reviews
app stores

accounts, 151
discoverability, 110-111
number of apps in Apple iOS App

Store, 337
rejections. See rejections
resubmission, 340
review requirements, 329
reviewer instructions, writing, 331-332
submission process, 334-335

Apple, 50
iOS App Store, number of apps in, 337
WWDC, 336-337

application as a service, 152-153
application programming interface (API), 43
apps

avoiding last-minute changes, 333-334
building from source code, 258-260
components. See components

Index346 apps

blocked (bug state), 300
blogs, creating, 179
Blub Paradox, 201
Bluetooth, 121-122
boilerplate code, 265
books for improving programming skills, 166
Borman, Frank, 306
branching, 70, 141
Brooks, Fred, 24, 50, 235
Brooks’s law, 235
budgeting, 40-42

considering in app development, 49
constraints, 250-251
cost overruns, reasons for, 24-26

bug reports
archiving, 304
attaching files to, 298-299
described, 291-292
how to write, 296-298
language usage in, 292-294
merging, 303
number of bugs in, 290-291
as placeholders, 294-295
reopening versus creating new, 301-302
splitting, 303
states, 300-301
writing, 146-147

bug trackers, 144-145
bug reports. See bug reports
bugs versus features, 147
as business continuity, 295
code comments versus, 295-296
as communication tools, 288-290
defined, 287
in feedback structure, 321
selecting, 145-146
when to use, 145

bugs, 144. See also testing phase
accuracy of estimates, effect on, 245-246
after app release, developer support, 224
as bug-report category, 291
cost overruns, 25
data-specific bugs, 299
defined, 287-288
as failures of imagination, 306-307
features versus, 147, 292-294
in hybrid frameworks, 108
in milestones, 272-274
number in bug reports, 290-291

feedback after app release, 340
crash reports, 340
infrastructure for, 342
reviews, 341-342

HTML5 apps, defined, 104
hybrid apps

comparison with HTML5 and native
apps, 105-110

corner cases, 118-119
defined, 105
game engines, 117-118
third-party frameworks, 111-117

icon design, 175
launching, 340
marketing materials, creating, 330-331
mobile web apps, defined, 104
native apps, defined, 104
new releases, 342-343
publishing to testers, 310-311
releasing after review, 335
submitting. See submitting apps
websites as, 110-111

archiving bug reports, 304
areas of attention (in release notes), 319
as designed (bug state), 301
asking questions, 30
assigned (bug state), 300
attaching files to bug reports, 298-299
audio components, 120
Auto Layout, 23
automated testing, 48-49, 305, 314-315
availability of developer, problems with, 277

B
Back buttons, prototyping, 92
back end, front end versus, 43-44
background tasks, 134-135, 267
Balsamiq, 61, 79
barebones wireframing style, 62-63
being verified (bug state), 301
beta release cycles, 321-322
beta testers, 315-319

distribution tools, 159-160
diversity of, 317-318
expectations for, 318-319
finding, 316-317

bikeshedding, 16, 62
billable hours, 11, 25

347communication

centralized source control, 140
change requests

avoiding last-minute changes, 333-334
cost overruns, 25
project failure reasons, 20

changing developers
compensation for old developer, 284
transition to new developer, 284-285

check-ins. See commits (source code)
CI (continuous integration) environment,

157-159, 310
classes for improving programming skills, 166
closed (bug state), 301
closed as duplicate (bug state), 301
Cocos2D, 118
code base. See source code
code comments, bug trackers versus,

295-296
code coverage, 262
code signing, 335
collaborative bug tracking, 289-290
collecting information. See analytics
comments

in source code, 256-258
bug trackers versus, 295-296
commented out code, 265

in source control, 254-256
commercials, writing, 55
commits (source code)

comments in, 254-256
defined, 254

communication
budget constraints, 250-251
Conway’s law, 235-237
expectations, 223
importance of, 228
local versus remote developers, 191-193
miscommunication with developer,

275-276
mistakes

lack of coordination, 281
wasted effort, 280-281

proactive developer communication,
274-275

project failure reasons, 29-30
with reviewers, 336-337
time constraints, 251-253
uncertainty in schedule estimation, 240

platform bugs, 279
prioritizing, 323-326
as rejection reasons, 338
reproducing, 299-300
testing, case study, 312
in third-party frameworks, 112
triage, 323
verifying, 326
whack-a-mole problem, 27-29

bug-tracking tools. See bug trackers
build verification tests, 157
building apps from source code, 258-260
built-in art assets, benefits of, 173-174
business continuity, bug trackers as, 295
buttons, gestures versus, 75

C
Cancel buttons, prototyping, 92
capabilities of devices, supporting, 103
capturing

app-usage videos, 332
screenshots, 298

Carroll, Lewis, 343
case studies

API documentation, 19
app development company outsourcing,

198-199
Auto Layout UI code, 23
cookie refreshing, 312
design changes, 51
Groovy and Grails languages, 114
miscommunication with developer, 276
missing source code, 157
multiple bug reports, 302-303
number comparison bug, 325
optimization updates, 333-334
outsourcing developers, 210
plagiarism detection, 263-264
regression testing, 46
rejecting previously approved apps, 338
resource sharing, 168
signup wizards, 78
spaghetti code, 14-15
sprints, 231
thread usage, 9-10
vague requirements, 17-18
WWDC (Worldwide Developers

Conference), 336-337

Index348 communication tools, bug trackers as

conflicts in synchronization, 134
consolidating screens, 73-74
Consumer Reports, 50
contingency plans, interviewing developers,

213-214
continuous integration (CI) environment,

157-159, 310
converting wireframes for interactive

prototypes, 82-86
Conway’s law, 235-237
cookie refreshing case study, 312
coordination, lack of, 281
copying

screens, 65-66
user experience design elements, 172

copyright misuse rejections, 338
copywriting, skills needed, 178-179
Core Data framework, 128
core experience, focus on, 54-58
corner cases, third-party frameworks, 118-119
cosmetic bugs, 325-326
cost estimates

interviewing developers, 217-223
fixed-price projects, 218-219
hourly fees, 219-220
invoice timing, 221-223
milestone-based fees, 220-221
revenue sharing, 218

project failure reasons, 3
cost overruns, reasons for, 24-26
couldn’t verify claim rejections, 339
crash bugs, 323
crash reports, 160-161, 320

after app release, 340
crash/debugging rejections, 338
creative act, programming as, 167
creative agencies, 194-196
cross-platform applications, 105
custom animations, 122-123
customers, platform selection, 99

D
data consistency bugs, 324-325
data loss bugs, 324
data storage, 125-131

access methods, 127-130
amount needed, 126-127
frequency of changes, 131
performance, 131

communication tools, bug trackers as, 288
collaborative tracking, 289-290
comprehensive tracking, 289
notifications, 290

compensation for developers, 284
competition, considering in app

development, 49
compiler warnings, 264
complexity of apps, programming skills

needed, 164-165
components

accessibility, 122
analytics, 119

services, 119-120
what to collect, 120

audio and video, 120
background tasks, 134-135
conditional text formatting, 123-124
custom/complex animations, 122-123
data storage, 125-131
defined, 97
device support, 97

form factors, selecting, 100
newer software, 102-103
older hardware, 101
older software, 101-102
platforms, selecting, 98-100
rotation, 100-101
sensors, 103

HTML5 apps, defined, 104
hybrid apps, 105-110
localization, 124-125
mobile web apps, defined, 104
native apps, defined, 104
peripherals, 121-122
push notifications, 134
servers, 131-133
synchronization, 133-134
third-party components, 164

source control usage, 143
third-party frameworks. See third-party

frameworks
third-party libraries, 260-261
user preferences, 125
websites as apps, 110-111

comprehensive bug tracking, 289
computer programming. See programming
conditional text formatting, 123-124
conferences for improving programming

skills, 167

349device support

finding, 185
app development companies, 196-198
creative agencies, 194-196
independent developers, 199-203
local versus remote developers, 191-193
matchmaker sites, 189-191
template app sites, 185-189
training new developers, 203-204

hiring, 208
interviewing, 207-208

communication expectations, 223
contingency plans, 213-214
estimating and planning skills, 214-217
financial arrangements, 217-223
gap analysis, 212-213
previous work experience, 210-212
setting up interviews, 208, 210
support after app release, 224
technical support, 223-224
tool usage, 223

miscommunication with, 275-276
outsourcing case study, 210
poor skill set fit, 8-10, 201
poor task estimation, 277-282
proactive communication, 274-275
recovery plans for missed milestones,

270-271
as testers, 313-315
third-party framework experience, 113
trust, establishing, 137
unforeseen circumstances, 25

development environment, 154
IDEs (integrated development

environments), 155
importance of, 156
simulators/emulators, 155-156

development phase (app development), 39
deadline for, 311
feature sequencing, 42-45
features, 40
scheduling, planning, budgeting, 40-42
screens, 39-40

device mismatch (performance failures), 273
device support, 97

form factors, selecting, 100
newer software, 102-103
older hardware, 101
older software, 101-102
platforms, selecting, 98-100

security, 130
services, 152
types of information to store, 125-126

data-specific bugs, 299
deadlines, scheduling, 311
debugging. See bugs
defects, 144. See also bugs
deferred (bug state), 301
dependencies, 144

identifying, 233
unforeseen, 279

design, skills needed
game design, 182
graphic design, 173-176
sound design, 176-178
user experience design, 169-173

design elements, expense of, 44
design phase (app development), 34

case study, 51
deadline for, 311
early decisions, benefits of, 36-37
error handling, 37-38
first-run conditions, 38
initial steps, 35
interactive prototypes. See interactive

prototypes
prototyping. See prototyping
scrolling and element obstructions, 38
text length assumptions, 39
transitions and animations, 38
wireframing. See wireframing

design testing, 45
designers, developers as, 41
developers

asking questions, 30
availability issues, 277
buggy milestones, 272

performance failures, 273-274
regression failures, 272-273

changing
compensation for old developer, 284
transition to new developer, 284-285

communication. See communication
cost overruns, 24
as designers, 41
discussing project failure, 271
dishonesty from, 275
evaluating, 42
experienced firms, problems with, 10-12

Index350 device support

poor estimation issues, 277-282
project failure reasons, 3
reevaluating, 246
skills in, interviewing developers, 214-217

evaluating
developers, 42
project failure. See project failure,

evaluating
recovery plans, 277-282

events, 27
examples. See case studies
exception testing, defined, 306
execution, ideas versus, 12-15
exit strategy, 98
expectation mismatch (performance

failures), 273-274
expectations for beta testers, 318-319
expensive design features, whether to use, 44
experience in programming (skill gap

analysis), 164-165
experienced developer firms, problems with,

10-12
external dependencies, unforeseen, 279
external services, 150

advertising, 154
analytics, 153-154
app store accounts, 151
data storage, 152
in-app purchasing, 154
platform/software/application as a

service, 152-153
push notifications, 152
social media, 151

external testers, 315-319

F
Facebook, 92, 151, 172
failures of imagination, 306-307. See also

project failure
familiarity (estimate accuracy), 239-240
features

as bug-report category, 291
bugs versus, 147, 292-294
defined, 40
determining necessary features, 50-51
of devices, supporting, 103
sequencing, 42-45

rotation, 100-101
sensors, 103

direct database queries, 128
discoverability in app stores, 110-111
dishonest developers, 275
distributed source control, 140
document format apps, 129
documentation

as contingency plans, 213-214
out-of-date documentation, 18-19
poorly defined requirements, 16-18
system of record, maintaining, 80-82
for third-party frameworks, 116

drag-this-and-drop-that apps, 187, 189
drawing tools for wireframing, 61-62
duplicating

code, 264-265
effort, 280-281
screens in interactive prototypes, 89-91

dynamic screens, wireframing, 64-65

E
early builds, testing, 159
early design decisions, benefits of, 36-37
element obstruction in design phase, 38
elevator pitches, 55
emulators, 155-156
end-user feedback, 161-162, 321
enhancements

as bug-report category, 291
bugs versus, 292-294

epiphany, scheduling for, 308-309
error functions, wireframing, 69-70
error handling in design phase, 37-38
errors

cost overruns, 25
whack-a-mole problem, 27-29

estimates
accuracy of, 239

bug fixes, 245-246
familiarity, 239-240
granularity, 243
isolation, 241-242
padding, 242-243
renovation versus construction, 243-245
tasks included, 243
uncertainty, 240-241

cost overruns, 26

351hardware

FOSS (free or open-source software). See
third-party frameworks

fractured third-party components, 115-116
frame rate, 273
frequency of milestones, 228-230
front end, back end versus, 43-44
full text search, 129
functionality

defining, 3
options versus, 43

G
game building, skills needed, 181-183
game design, skills needed, 182
game engines, 117-118

programming skills needed, 181
Gantt charts, 149-150
gap analysis. See skill gap analysis
general testing, defined, 305
gestures, buttons versus, 75
git (source control system), 141
GitHub, 112-113, 146
golden path, 54, 69

testing, 47
Google, interviewing developers, 207
Graham, Paul, 252
Grails, 114
granularity of estimates, 243
graphic design

finding professional designers, 175-176
skills needed, 173-176

app icon design, 175
built-in art assets in platforms, 173-174
games, 182-183
stock photos, 174
vector icon packages, 174

Groovy, 114
grouping screen data, 74-75
GUI tools for source control, 142

H
hardware

adapting to new features for third-party
frameworks, 116

peripherals, 121-122
providing to app reviewers, 332
supporting older hardware, 101

feedback, 161-162, 319
after app release, 340

crash reports, 340
infrastructure for, 342
reviews, 341-342

beta release cycles, 321-322
from beta testers, 318-319
bug triage, 323
from end users, 161-162
infrastructure for, 320-321
prioritizing bugs, 323-326
in prototyping, 94
in schedule management, 246
verifying bugs, 326
on wireframes, 72-73

file system mismanagement rejections, 338
files, attaching to bug reports, 298-299
fill-out-this-form apps, 187
financial arrangements, interviewing devel-

opers, 217-223
fixed-price projects, 218-219
hourly fees, 219-220
invoice timing, 221, 223
milestone-based fees, 220-221
revenue sharing, 218

finding. See also hiring developers
beta testers, 316-317
developers, 185

app development companies, 196-198
creative agencies, 194-196
independent developers, 199-203
local versus remote developers, 191-193
matchmaker sites, 189-191
template app sites, 185-189
training new developers, 203-204

graphic designers, 175-176
sound designers, 178
user experience designers, 172

first-run conditions
in design phase, 38
wireframing, 70-71

fixed (bug state), 301
fixed-price project work, 218-219
focus, importance of, 234-235, 278
forced-failure testing, 313-314
forks, 115
form factors, selecting, 100
formatting text, 123-124
forms, building websites from, 187

Index352 hg (source control system)

interactive wireframing style, 63
internationalization, 124-125
interviewing developers, 207-208

communication expectations, 223
contingency plans, 213-214
estimating and planning skills, 214-217
financial arrangements, 217-223
gap analysis, 212-213
previous work experience, 210-212
setting up interviews, 208, 210
support after app release, 224
technical support, 223-224
tool usage, 223

investors, platform selection, 98
invoices, submitting, 221, 223
iOS threads, 8
isolation (estimate accuracy), 241-242
issue trackers. See bug trackers
issues, 144
iteration, defined, 59

J–K
Jobs, Steve, 34, 51

kanban boards, 149-150
keyboards

Bluetooth, 122
prototyping, 93

Keynote, 79-80
known issues (in release notes), 319

L
language usage in bug reports, 290-294
last-minute changes, avoiding, 333-334
launching apps, 340
learning

copywriting, 179
marketing, 180
programming skills, 165-167

licensing third-party frameworks, 116
linking screens in interactive prototypes,

86-89
local developers, remote developers versus,

191-193
localization, 124-125
locked-up, defined, 9

hg (source control system), 141
high-risk items at end of project (project

failure reasons), 20-23
hiring developers, 208. See also finding

interviewing, 207-208
NDAs (nondisclosure agreements), 208

Hofstadter’s law, 242
hourly fees, 219-220
HTML5 apps

comparison with native and hybrid apps,
105-110

defined, 104
hung, defined, 9
hybrid apps

comparison with HTML5 and native apps,
105-110

defined, 105
third-party frameworks. See third-party

frameworks

I
icons

app icon design, 175
vector icon packages, 174

ideas, execution versus, 12-15
IDEs (integrated development environ-

ments), 155
if statement complexity, 266
improvements

as bug-report category, 291
bugs versus, 292-294
scheduling for, 308-309

improving programming skills, 165-167
in test (bug state), 301
in-app purchasing services, 154
in-progress (bug state), 300
independent developers, 199-203
inexperienced developers, 10
information collection. See analytics
integrated development environments

(IDEs), 155
interactive prototypes, 76-77

Back and Cancel buttons, 92
benefits of, 77-78
converting wireframes for, 82-86
duplicating screens, 89-91
linking screens, 86-89
tools for creating, 78
wireframes versus, 80-82

353older software, supporting

missing source code case study, 157
mistakes. See also bugs

lack of coordination, 281
wasted effort, 280-281

mobile development, web development
versus, 5-8. See also app development

mobile device support. See device support
mobile platforms. See platforms
mobile web apps, defined, 104. See also

HTM5 apps
mockups. See wireframing
monetization, 181

of apps versus websites, 111
multimedia components, 120
multiple bug reports case study, 302-303
multiple platforms, building on, 99-100
multitasking, 134-135
music

in games, 182-183
skills needed, 176-178

The Mythical Man-Month (Brooks), 24, 50, 235

N
naming conventions, 266-267
native apps

comparison with HTML5 and hybrid apps,
105-110

defined, 104
navigation bugs, 323-324
NDAs (nondisclosure agreements), 208, 316

case study, 168
necessary features, determining, 50-51
negative testing, 47
newer software, supporting, 102-103
niche bugs, 326
nondisclosure agreements (NDAs), 208, 316

case study, 168
notifications

from bug trackers, 290
push notifications, 134, 152

number comparison bug case study, 325

O
object relational mapper (ORM), 128
obstruction on screen in design phase, 38
offline mode failure rejections, 338
older hardware, supporting, 101
older software, supporting, 101-102

log/console uploading, 320
logged out workflow, prototyping, 93-94
login screens in first-run workflow, 71

M
magic numbers, 265-266
main threads, 267
“Maker’s Schedule, Manager’s Schedule”

(Graham), 252
mapped objects, 128
marketing, skills needed, 179-181
marketing materials, creating, 330-331
matchmaker sites (finding developers),

189-191
measuring

development, 39-40
progress, 228-230

meetings
communication in, 29-30
expectations for, 223
time constraints and, 251-252

meet-up groups for improving programming
skills, 167

Mercurial, 141
merging, 141

bug reports, 303
metadata

for app marketing, creating, 330-331
rejections, 339

methods, defined, 262
micromanaging, 15
milestone-based pricing, 220-221
milestones

bugs in, 272-274
focus, 234-235, 278
frequency of, 228-230
missed. See missed milestones
organization with, 232-233
sequencing, 233-234, 277
sprints versus, 230-231

miscommunication with developer, 275-276
missed milestones, 270

developer availability, 277
evaluating recovery plans, 277
poor task estimation, 277-282
proactive developer communication,

274-275
recovery plans for, 270-271
timing of, 282-283

Index OmniGraffle354

preferences, 125
preprogrammed components. See

third-party components
previous work experience, interviewing

developers, 210-212
pricing, 181

interviewing developers, 217-223
fixed-price projects, 218-219
hourly fees, 219-220
invoice timing, 221, 223
milestone-based fees, 220-221
revenue sharing, 218

prioritizing bugs, 323-326
private API use rejections, 339
proactive developer communication, 274-275
procrastination, 148

avoiding, 227-228
production design, 176
productivity of billable time, 25
professional testers, 311-313
profitability of projects, 4-5, 201-202
programming

apps, 5-8
as creative act, 167
skills needed, 163-164

app complexity, 164-165
experience, 164-165
game programming, 181
improving your skills, 165-167
third-party components, 164

progress, measuring, 228-230
project failure

changing developers
compensation for old developer, 284
transition to new developer, 284-285

defined, 2-3
discussing with developer, 271
evaluating, 269-270

buggy milestones, 272-274
dishonest developers, 275
miscommunication with developer,

275-276
missed milestones, 270
proactive developer communication,

274-275
recovery plans, 270-271
timing of missed milestones, 282-283

percentage of, 1-2

OmniGraffle, 61
open (bug state), 300
OpenGL, 117-118
optimization case study, 333-334
options, functionality versus, 43
organizing

with milestones, 232-233
screens, 73-74
source code files, 261-262

ORM (object relational mapper), 128
out-of-date requirements documentation,

18-19
outsourcing case study, 198-199, 210
overhead items, 11, 279-280

P
PaaS (platform-as-a-service), 133, 152-153
package-your-website apps, 187
padding estimates, 242-243
PDF viewers, 79
performance

data storage and retrieval, 131
hybrid apps, 106

performance failures, 273-274, 325
performance testing case study, 23
peripherals, 121

Bluetooth, 121-122
Wi-Fi, 122

permutation testing, defined, 306
phone screens in tablets, 75-76
photorealistic wireframing style, 63
photos, stock, 174

in games, 183
Pitch Perfect (Sadun and Sande), 180, 330
placeholder bug reports, 294-295
plagiarism, detecting, 262-264
planning, 40-42

importance of, 30
as mandatory, 42
skills, interviewing developers, 214-217

platform bugs, 279
platform-as-a-service (PaaS), 133, 152-153
platforms

built-in art assets, benefits of, 173-174
selecting, 98-100

popularity versus quality in third-party
frameworks, 112-113

PowerPoint, 79-80

355rejections

project plans, importance of, 30. See also
planning

projects
defined, 261
functionality, defining, 3
salvaging, 283-284
scope, 4

prototype testing, 46
prototyping. See also interactive prototypes;

wireframing
Back and Cancel buttons, 92
benefits of, 53-54
core experience, focus on, 54-58
logged out workflow, 93-94
screen titles, 92
user feedback, 94
virtual keyboard, 93

publishing apps to testers, 310-311
purpose of apps, determining, 35
push notifications, 134, 152

Q–R
QA (quality assurance)

departments, 311-313
skills needed, 168

quality versus popularity in third-party
frameworks, 112-113

questions, asking, 30

Reachability (Apple library), 338
recovery plans

evaluating, 277
developer availability, 277
poor task estimation, 277-282

for missed milestones, 270-271
reevaluating schedules, 246
refactoring, 262, 265
refining screens, 73-74
Reflector, 332
regression failures, 272-273
regression testing, 27, 46, 158

case study, 46
defined, 306

rejections, 335
communicating with reviewers, 336-337
copyright misuse rejection, 338
couldn’t verify claim rejection, 339
crash/debugging rejection, 338

reasons for
bikeshedding, 16
communication problems, 29-30
constantly changing requirements, 20
cost overruns, 24-26
difficulty of app programming, 5-8
high-risk items done last, 20-23
ideas versus execution, 12-14
micromanaging, 15
out-of-date requirements

documentation, 18-19
poor developer skill set fit, 8-9, 201
poorly defined requirements, 16-17
problems with experienced developer

firms, 10-12
project management problems, 31
scope of projects, 4
testing at end of project only, 26-27
time and cost estimates, 3
unprofitability, 4-5, 201-202
whack-a-mole problem, 27-29

recovery plans. See recovery plans
salvaging projects, 283-284
sunk cost fallacy, 269

project fees, 218-219
project management

automated testing, 262
budget constraints, 250-251
communication, importance of, 228
Conway’s law, 235-237
effort versus project size, 253
estimates, accuracy of. See estimates,

accuracy of
plagiarism, detecting, 262-264
procrastination, 227-228
project failure reasons, 31
reevaluating schedules, 246
risk mitigation

focus, 234-235, 278
frequent milestones, 228-230
milestones versus sprints, 230-231
organization with milestones, 232-233
sequencing milestones, 233-234, 277

scheduling software, importance of,
237-239

skills, interviewing developers, 216-217
source code. See source code
time constraints, 251-253
tools, 148-150

Index rejections356

revision control. See source control
rewritten third-party components, 115-116
risk mitigation. See also contingency plans

focus, 234-235, 278
frequent milestones, 228-230
milestones versus sprints, 230-231
organization with milestones, 232-233
project failure reasons, 20-23
sequencing milestones, 233-234, 277
third-party frameworks, 117

“Roach Motel” bugs, 323-324
rock fetching, 13
ROI (return on investment) of apps versus

websites, 111
rotation, supporting, 100-101
RubyMotion, 118

S
SaaS (software as a service), 152-153
Sadun, Erica, 180, 330
salvaging projects, 283-284
Sande, Steve, 180, 330
saving bug reports, 304
schedule management

elements needed for, 232
estimates, accuracy of. See estimates,

accuracy of
reevaluating schedules, 246
sequencing milestones, 233-234, 277
time constraints, 251-253

schedule tracking tools
benefits of, 148-149
Gantt charts, 149-150
importance of, 237-239
kanban boards, 149-150

scheduling, 40-42
considering in app development, 50
deadlines, 311
testing, 308-311

for epiphany, 308-309
publishing apps for testers, 310-311
sequencing problems, 309
user-facing functionality, 308

scope of projects, 4
screen navigation bugs, 323-324
screens

adapting for tablets, 67
consolidating and refining, 73-74
copying, 65-66

file system mismanagement rejection, 338
metadata rejection, 339
offline mode failure rejection, 338
of previously approved apps, 338
private API use rejection, 339

relational data, 127
release notes, 319
releasing apps, 340

after review, 335
developer support after, 224

remote developers, local developers versus,
191-193

renovating code bases (accuracy of esti-
mates), 243-245

reopened (bug state), 301
reopening bugs, creating new versus, 301-302
repeating app development life cycle, 49

budget considerations, 49
competition considerations, 49
necessary features, determining, 50-51
schedule considerations, 50
user testing, 50

reports
bug reports. See bug reports
crash reports, 160-161, 320

after app release, 340
status reports, 228

expectations for, 223
reproducing bugs, 299-300
reproduction steps in bug reports, 296
requirements

constantly changing, 20, 25
out-of-date documentation, 18-19
poorly defined requirements, 16-18

resolved (bug state), 301
resource juggling, 11
resource sharing case study, 168
REST (representational state transfer), 132
resubmitting apps, 340
return on investment (ROI) of apps versus

websites, 111
revenue sharing, 218
reviewers

case study, 336-337
communicating with, 336
instructions, writing, 331-332

reviews
after app release, 341-342
app store requirements, 329
releasing apps after, 335

357source code

skill gap analysis
copywriting, 178-179
game building, 181-183
graphic design, 173-176

app icon design, 175
built-in art assets in platforms, 173-174
finding professional designers, 175-176
games, 182-183
stock photos, 174
vector icon packages, 174

interviewing developers, 212-213
marketing, 179-181
programming, 163-164

app complexity, 164-165
as creative act, 167
experience, 164-165
game programming, 181
improving your skills, 165-167
third-party components, 164

server support and troubleshooting,
168-169

sound design, 176-178
games, 182-183

testing and quality assurance (QA), 168
user experience design, 169-173

skinning, defined, 44
slicing, 63
social media services, 133, 151
soft landing problem, 38
software

adapting to new features for third-party
frameworks, 116

newer software, supporting, 102-103
older software, supporting, 101-102

software as a service (SaaS), 152-153
software development kits (SDKs), 133
sound design, skills needed, 176-178

games, 182-183
source code

accessing, 253-254
automated testing, 262
building app from, 258-260
missing source code case study, 157
organizing files, 261-262
plagiarism, detecting, 262-264
third-party libraries, 260-261
understanding

commented out code, 265
comments in code, 256-258

in development phase, 39-40
duplicating in interactive prototypes,

89-91
dynamic screens, wireframing, 64-65
grouping like data, 74-75
linking in interactive prototypes, 86-89
login screens in first-run workflow, 71
phone screens in tablets, 75-76
simplified scrolling, 75
sketching, 59-61
titles, prototyping, 92

screenshots, capturing, 298
scripts in use case development, 58
scrolling

in design phase, 38
simplifying, 75

SDKs (software development kits), 133
searching with full text search, 129
security, data storage, 130
selecting. See also finding; hiring developers

bug trackers, 145-146
form factors, 100
platforms, 98-100
source control system, 142
tools based on project size, 138

self-reporting capable attributes
(use cases), 56

sensors, supporting, 103
sequencing

features, 42-45
milestones, 233-234, 277
in testing schedule, 309

servers, 131-132
estimation accuracy, 241
PaaS (platform-as-a-service), 133
SDKs (software development kits), 133
for source control, 142
support and troubleshooting skills

needed, 168-169
writing your own, 132-133

services
analytics, 119-120
external services. See external services
marketing, 180

settings, user preferences, 125
signup wizards case study, 78
simulators, 155-156
situations in use case development, 57
sketching screens, 59-61

Index source code358

services, 152
types of information to store, 125-126

structured data, 127
subcontractors, 11, 195, 198
submitting apps

avoiding last-minute changes, 333-334
marketing materials, creating, 330-331
optimization updates case study, 333-334
rejections. See rejections
resubmission, 340
reviewer instructions, writing, 331-332
submission process, 334-335

Subversion, 141
sunk cost fallacy, 269
surveys for beta testers, 319
SVN (source control system), 141
switch statement complexity, 266
synchronization, 133-134
synthesizing sounds, 177
system of record, maintaining, 80-82

T
tablets

adapting screens for, 67
phone screens in, 75-76

tasks
as bug-report category, 291
in estimates, 243
poor estimation of, 277-282
unexpected, 280
in use case development, 57

team members
developers as testers, 313-315
external testers, 315-319
professional testers, 311-313

technical support, interviewing developers,
223-224

template app sites, 185-189
drag-this-and-drop-that apps, 187, 189
fill-out-this-form apps, 187
package-your-website apps, 187

test coverage, 262
TestFlight, 159, 310
testing phase (app development), 45. See

also bugs
at end of project only (project failure

reasons), 26-27
automated testing, 48-49, 262, 314-315
beta testing, distribution tools, 159-160

comments in source control, 254-256
compiler warnings, 264
duplicated code, 264-265
effort versus project size, 253
if/switch statement complexity, 266
importance of, 252-253
magic numbers, 265-266
naming conventions, 266-267
threads, 267

source control
benefits of, 138-140
branching, 141
comments in, 254-256
GUI tools, 142
selecting, 142
servers for, 142
third-party component usage, 143
types of, 140-141
usage by app creators, 142-143
what to include, 144

spaghetti code case study, 14-15
spikes, 24, 41
splitting bug reports, 303
sprints

case study, 231
milestones versus, 230-231

SpriteKit, 118
SQL (Structured Query Language)

databases, 127
standard art assets, benefits of, 173-174
stand-up meetings, 29
state testing, defined, 306
states

of bug reports, 300-301
of screens

copying, 65-66
wireframing, 64-65

status reports, 228
expectations for, 223

stealing app ideas, 179-180
stencil wireframing style, 63
stock photos, 174

in games, 183
stock sound effects, 177
storing data, 125-131

access methods, 127-130
amount of storage needed, 126-127
frequency of changes, 131
performance, 131
security, 130

359use cases, developing

invoice submissions, 221, 223
of missed milestones, 282-283

TIOBE Code Quality Indicator, 262
titles of screens, prototyping, 92
tools

beta testing distribution, 159-160
bug trackers. See bug trackers
CI (continuous integration) servers,

157-159
crash reporting, 160-161
development environment, 154-156
end-user feedback, 161-162
external services. See external services
interactive prototype creation, 78
interviewing developers about, 223
project/schedule management, 148-150
selecting based on project size, 138
source control. See source control
for wireframing, 61-62

tracer bullets, defined, 41
tracking schedules. See schedule tracking

tools
training new developers, 203-204
transitions in design phase, 38
triage (of bugs), 323
troubleshooting server connections, skills

needed, 168-169
trust, establishing, 137, 193
tutorial screens in first-run workflow, 71
Twitter, 151
typical users in use case development, 56

U
UI stencil wireframing style, 63
UI threads, 267
uncertainty (estimate accuracy), 240-241
unexpected tasks, 280
unforeseen circumstances, cost overruns, 25
unforeseen external dependencies, 279
unit tests, 262
Unity, 118
universal apps, phone screens in tablets,

75-76
unnecessary work, cost overruns, 24-25
updates, new app releases, 342-343
usability testing, 47
use cases, developing

scripts, 58
situations, 57

feedback. See feedback
forced-failure testing, 313-314
negative testing, 47
overly optimistic mindset, 46
performance testing case study, 23
regression testing, 46
scheduling, 308-311
with simulators/emulators, 155-156
skills needed, 168
team members

developers as testers, 313-315
external testers, 315-319
professional testers, 311-313

types of, 305-306
usability testing, 47
user testing, 50
when to test, 45-48

text
conditional formatting, 123-124
full text search, 129
length assumptions in design phase, 39

third-party components, 164
source control usage, 143

third-party frameworks, 111
abandoned components, 115-116
adapting to new features, 116
bugs, 112
case study, 114
corner cases, 118-119
developer experience with, 113
documentation, 116
game engines, 117-118
licensing, 116
locking into, 113
quality versus popularity, 112-113
risk mitigation, 117
savings with, 112

third-party libraries, 260-261
third-party services, 133
thread safe, defined, 302
threads, 8

case study, 9-10
understanding, 267

Through the Looking Glass (Carroll), 343
time constraints, 251-253
time estimates (project failure reasons), 3
time-and-materials work, 219-220
timing

for independent developer projects,
202-203

Index use cases, developing360

barebones style, 62-63
buttons versus gestures, 75
consolidating and refining screens, 73-74
converting for interactive prototypes,

82-86
copying screens, 65-66
drawing tools for, 61-62
dynamic screens, 64-65
error functions, determining, 69-70
feedback on, 72-73
first-run workflow, 70-71
grouping screen data, 74-75
initial screen sketches, 59-61
interactive prototypes versus, 80-82
interactive style, 63
phone screens in tablets, 75-76
photorealistic style, 63
simplified scrolling, 75
stencil style, 63

wizards, 78
won’t fix (bug state), 301
workflows

additional workflows, 67-68
core experience, 54-58
documentation as part of, 18
error functions, determining, 69-70
first-run workflow, 70-71
golden path. See golden path
logged out workflow, prototyping, 93-94
prototyping. See prototyping

Worldwide Developers Conference (WWDC),
336-337

writing
bug reports, 146-147, 296-298
commercials, 55
copywriting, skills needed, 178-179
reviewer instructions, 331-332
servers, 132-133

WWDC (Worldwide Developers Conference),
336-337

Xamarin, 118

Zawinsky’s law, 35
Zuckerberg, Mark, 109

tasks, 57
typical users, 56

user experience design, skills needed,
169-173

user feedback. See feedback
user interface case study, 23
user preferences, 125
user testing, 50
user-facing functionality in testing

schedule, 308

V
vector icon packages, 174
verification testing, defined, 305
verifying bugs, 326
version control. See source control
versions

in beta release cycles, 321-322
new releases, 342-343

video components, 120
videos

of app usage, creating, 332
for improving programming skills, 166

virtual keyboard, prototyping, 93
Visio, 61

W–Z
warnings (compiler), 264
wasted effort, 280-281

cost overruns, 24-25
web API servers, 131
web development, mobile development

versus, 5-8. See also app development
web services, 132
websites

as apps, 110-111
building apps from, 187

whack-a-mole problem, 27-29, 272
white box testing, defined, 306
whole-screen data files, 128-129
Wi-Fi peripherals, 122
wireframing, 35-36, 58-59

adapting screens for tablets, 67
additional workflows, 67-68

	Table of Contents
	Foreword
	Preface
	1 What Could Possibly Go Wrong?
	App Projects Are Not Small and Easy
	Apps Are Not Easy to Program
	Poor Skill Set Fit
	If You Get a Good Developer, You Still Have to Worry
	The Idea Is Not More Important Than the Execution
	Unwillingness to Delegate: Micromanaging
	Bikeshedding
	Poorly Defined Requirements
	Out-of-Date Requirements Documentation
	Constantly Changing Requirements
	Leaving the Worst for Last
	Cost Overruns
	That Last 10%
	The Whack-a-Mole Problem
	Poor Communication
	Abdication of the Management Process
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

