A COMPOSER’S GUIDE

Writing INTERACTIVE MUSIC for VIDEO GAMES

Michael SWEET

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
Praise for Writing Interactive Music for Video Games

“Behind every great game experience is an interactive score that defines the emotional through-line of a game. Writing Interactive Music for Video Games will show you how to create such a score, from basic concepts to sophisticated techniques. It is filled with advice from some of the greatest video game composers working today, and written with the clarity and insight that comes from experience.”

—Tracy Fullerton, Director, USC Game Innovation Lab

“Michael Sweet’s book provides a much-needed text that walks a composer through all of the critical considerations when first starting to work in the video game industry. Not simply a ‘how-to’ but a ‘why-to’ that dives deep into the aesthetics and best practices of writing an interactive score. Through his years of work in the industry and years of teaching, he is able to bring together a comprehensive discussion on composing interactive scores. Professor Sweet brings together the nuts and bolts, the business, and pertinent historical moments—all while setting composers’ expectations for working in the industry. There is no better book to be found if you are a composer looking to understand writing for games.”

—Jeanine Cowen, Vice President for Curriculum and Program Innovation, Academic Affairs, Berklee College of Music

“Michael Sweet demonstrates a formidable depth and breadth of knowledge related to adaptive music. He adroitly covers both the creative and technical components critical to being successful in this field. This book is a must-read for newcomers and experienced composers wanting to learn more about the art of video game composition.”

—Chuck Doud, Director of Music, Sony Computer Entertainment Worldwide Studios

“Clear, complete, concise, and filled with vital information. This is a must-read for any composer serious about scoring for games. If you want to know what makes game music unique, look no further; this book will take you to the next level!”

—Steve Horowitz, Composer
“The processes and techniques for composing for games has typically been a black art of strange terms and byzantine processes. *Writing Interactive Music for Video Games* uncovers the issues you have to deal with when composing music for games and presents them in an easy-to-understand way, from the creative and technical issues to making bids and dealing with contracts. An excellent resource for both the professional and aspiring composer, this book should be on the shelf of anyone interested in writing music for games.”

—Brian Schmidt, Executive Director, GameSoundCon, and President, Game Audio Network Guild

“Michael Sweet has written a thorough and comprehensive guide for any composer or audio professional wishing to understand the technical and creative aspects of scoring video games. Students and professionals at all levels will find this book valuable and well worth reading.”

—Garry Schyman, Composer, Bioshock series, Middle-earth: Shadow of Mordor, Dante’s Inferno, and Xcom: The Bureau Declassified; and Adjunct Professor, USC’s SMPTV Program
Writing Interactive Music for Video Games
Essential References for Game Designers and Developers

These practical guides, written by distinguished professors and industry gurus, cover basic tenets of game design and development using a straightforward, common-sense approach. The books encourage readers to try things on their own and think for themselves, making it easier for anyone to learn how to design and develop digital games for both computers and mobile devices.

Visit informit.com/series/gamedesign for a complete list of available publications.
Writing Interactive Music for Video Games

A Composer’s Guide

Michael Sweet

Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City
I dedicate this book to all my former, current, and future students, who continue to surprise me every semester with their talent and ability to teach me equally about life, music, and supporting one another.
This page intentionally left blank
Contents

About This Book
Acknowledgments
About the Author

Introduction
Welcome
Games and Popular Culture
Scoring for Games

Intended Audience
Game Development Teams
Audio Teams
Game Players

Structure of the Book
Part I: Scoring for Games
Part II: Fundamental Video Game Scoring Techniques
Part III: Advanced Video Game Scoring Techniques
Part IV: Bringing Music into the Game
Part V: The Business of Scoring Music for Video Games
Part VI: Conclusion and Appendixes
Digital Tools
Companion Website

Conventions Used in This Book

Part I: Scoring for Games

1 The Language of Music Storytelling in Games
What Makes a Video Game Unique?
Passive versus Active Interaction
Variable Length of Experience
Number of Plays
Game Mechanics
Pacing, Synchronization, and Flow
CONTENTS

Multiple Story Paths and Repeatability 20
Technology 20

Types of Music within Games 21
Extra-Diegetic Music (Underscore) 21
Diegetic Music (Source Music) 23
Music as Gameplay 24
Player Customized Music 25

Exploring Music Function within Games 26
Synchronization and Integration of Music 28
Serendipitous Sync 28

Music Conceptualization 29
1. Gather and Assess Materials 29
2. Prioritize Primary Music Objectives 29
3. Create an Asset List 30
4. Define Interactive Elements in the Score 30
5. Create a Supporting Audio Style Guide 31
6. Create an Audio Design Document 31
7. Revise 32

Analysis and Critique of a Game Score 32
Review 33
Exercises 34

2 Breaking Down the Language of Interactive Music 35
What Is Interactive Music? 36

Types of Interactive Music 37
Improvisational Construction: Variation and Form 37
Real-Time Composition and Arranging 38
Performance-Based Dynamics and Tempo Changes 40
Experimental Composition Techniques 40
Instrument Design and User Interactive Performance 41

Control Inputs 42
The Composer’s Toolbox 44
Cue Switching and Musical Form Adaptation 45
Dynamic Mixing	46
Tempo and Rhythmic Manipulation	47
DSP and Effect Application	47
Stinger and Musical Flourish Additions	48
Instrumentation and Arrangement Alteration	49
Harmonic Approach, Melodic Adaptation, and Note Manipulation	49
Review	50
Exercises	51

3 Spotting the Game

The Game Production Process	54
The Spotting Process	55
The Goals of a Video Game Music Score	58
Outlining the Emotional Context and Narrative Arc	59
Structuring Interactive Music throughout Gameplay	61
Synchronization	61
Video Game Scoring Techniques	62
Noninteractive Game Score	62
Horizontal Resequencing	62
Vertical Remiking	63
MIDI Scores	64
Advanced Interactive Scores	64
Music Control Inputs	65
Repetition, Randomization, and Surprise	66
Review	67
Exercises	68

4 Working with a Game Development Team

Who’s in Charge?	70
Game Development Teams	70
Audio Teams	71
Finding the Composer	71
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborating and Approving the Music</td>
<td>72</td>
</tr>
<tr>
<td>Defining the Tone and Voice of a Game</td>
<td>73</td>
</tr>
<tr>
<td>Assessing the Music</td>
<td>75</td>
</tr>
<tr>
<td>Preparing for Music Production</td>
<td>76</td>
</tr>
<tr>
<td>Team Workflow</td>
<td>76</td>
</tr>
<tr>
<td>Setting Schedules and Milestones</td>
<td>77</td>
</tr>
<tr>
<td>Considering the Technology</td>
<td>78</td>
</tr>
<tr>
<td>Sharing Documents</td>
<td>79</td>
</tr>
<tr>
<td>Collaboration Technology</td>
<td>79</td>
</tr>
<tr>
<td>Game Testing</td>
<td>81</td>
</tr>
<tr>
<td>Review</td>
<td>81</td>
</tr>
<tr>
<td>Exercises</td>
<td>83</td>
</tr>
</tbody>
</table>

5 Video Game Composition over the Past 40 Years
85

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why Video Game History Is Important</td>
<td>86</td>
</tr>
<tr>
<td>The Dawn of Coin-Operated Machines</td>
<td>87</td>
</tr>
<tr>
<td>Musical Machines</td>
<td>87</td>
</tr>
<tr>
<td>Gambling and Slot Machines</td>
<td>87</td>
</tr>
<tr>
<td>Novelty Machines, Shooting Games, and Racing Games</td>
<td>88</td>
</tr>
<tr>
<td>Pinball Machines</td>
<td>88</td>
</tr>
<tr>
<td>The Ascent of the Arcade Machine</td>
<td>89</td>
</tr>
<tr>
<td>Circuits</td>
<td>89</td>
</tr>
<tr>
<td>The Programmable Sound Generator and the Rise of Melody</td>
<td>90</td>
</tr>
<tr>
<td>Laserdisc Games</td>
<td>91</td>
</tr>
<tr>
<td>The Golden Age of Arcades</td>
<td>91</td>
</tr>
<tr>
<td>Social Arcade Games</td>
<td>92</td>
</tr>
<tr>
<td>The Game Console Revolution</td>
<td>93</td>
</tr>
<tr>
<td>Cartridge-Based Consoles</td>
<td>93</td>
</tr>
<tr>
<td>CD-ROM–Based Consoles</td>
<td>95</td>
</tr>
<tr>
<td>128-Bit and DVD-ROM–Based Game Consoles</td>
<td>96</td>
</tr>
<tr>
<td>The Evolution of PC Gaming</td>
<td>97</td>
</tr>
<tr>
<td>MOD Files</td>
<td>97</td>
</tr>
<tr>
<td>MIDI Scores (SMF) and Sound Cards</td>
<td>98</td>
</tr>
<tr>
<td>iMuse</td>
<td>99</td>
</tr>
<tr>
<td>CD-ROM/Redbook Audio</td>
<td>99</td>
</tr>
</tbody>
</table>
The Rise of Handheld and Network Games 100
Handheld Game Systems 100
Internet Games 101
Mobile and Cell Phone Games 101
The Advancement of Audio Middleware 102
The Beginnings of Audio Middleware 103
Publisher Tools 103
Standards 104
Modern Middleware 104
The Evolution of the Modern Gaming Platform 105
Game Engines, Indie Games, and Distribution 106
Game Distribution and Future Cloud Computing 106
Review 107
Exercises 108

6 Historical Perspective of Experimental Music 109
The Beginning of Interactive Music 110
Pre-Twentieth Century 110
J. S. Bach: The Art of Fugue (1740s) 110
Amadeus Mozart: Musikalisches Würfelspiel (1787) 111
1900–1950 112
Marcel Duchamp: Erratum Musical (1913) 112
Charles Ives: Concord Sonata (1919) 112
Arnold Schoenberg: Variations for Orchestra, Op. 31 (1928) 113
Henry Cowell: Rhythmicon (1930) and The Banshee (1925) 113
Paul Hindemith: The Craft of Musical Composition (1937) 114
Pierre Schaeffer: Études de Bruits (1948) 114
Post-1950s 115
John Cage: Music of Changes (1951) and 4′33″ (1952) 115
Pierre Boulez: Structures I (1952) 116
György Ligeti: Musica Ricercata II (1953) 116
Morton Feldman: Projections (1953) 117
Karlheinz Stockhausen: Klavierstücke XI (1956) 117
Krzysztof Penderecki: Threnody to the Victims of Hiroshima (1960) 117
Terry Riley: In C (1964) 118
Earle Brown: *Calder Piece* (1966) 118
Alvin Lucier: *I Am Sitting in a Room* (1969) 119
Steve Reich: *Clapping Music* (1972) 119
Review 120
Exercises 121

Part II: Fundamental Video Game Scoring Techniques 123

7 Composing and Editing Music Loops 125
 The Art of Looping Music 126
 Musical Construction, Connections, and Cadences 128
 Audio Editing 131
 Zero Crossing Points 133
 Waveform Shape and Direction 134
 Transient and Legato Elements 135
 Music Tempo, Meter, and Performance 135
 Reverb Tails and Long Decays 136
 Crossfading 138
 Auditioning Your Finished Loops 139
 Review 140
 Exercises 141

8 Horizontal Resequencing 143
 Sequencing Music in Real Time 144
 Crossfading Scores 145
 Transitional Scores 147
 Branching Scores 149
 Composing for Horizontal Resequencing 151
 Harmonic and Tempo Considerations 151
 Working within the DAW 151
 Delivery 152
 Review 152
 Exercises 153
9 Vertical Remixing
- Remixing Music for Intensity
- Deciding How Many Layers to Use
- Types of Vertical Remixing
 - Additive Layers
 - Individually Controlled Layers
- The Art of Fading Layers In and Out
 - Fade Times
 - Layer Anatomy
- Nonsynchronization of Layers
- Composing for Vertical Remixing
- Review
- Exercises

10 Writing Transitions and Stingers
- Enhancing without Interrupting
- Connecting Two Pieces of Music
 - Crossfading
 - Transitioning
 - Transition Matrixes
- The Concept of Musical Interruption
- Composing Transitions
 - Synchronized Transitions
 - Nonsynchronized Transitions
- Transition Construction and Considerations
 - Ambient (Rubato) versus Rhythmic
 - Tempo Considerations
 - Harmonic Considerations
 - Introducing Destination Music
 - Repeating Transitions
- Example Transitions
- Using and Placing Stingers
 - Synchronized Musical Stingers
 - Nonsynchronized Musical Stingers
11 Using Sound Design Techniques in Music

What Is Sound Design? 176
Basic Synthesis 177
 Sound Generator 177
 Filters 178
 Envelopes 179
 Low-Frequency Oscillator 181
Audio Signal Processing 182
Techniques for Creating Sound Design 183
 Recording Live Instruments for a Sampling Session 183
 Sending Sounds into Infinite Reverb 184
 Using Speakers to Add Acoustic Resonance 184
 Using DSP to Create Unusual Sounds 184
Review 185
Exercises 185

12 Music as a Gameplay Element 187
Engaging Players with Music 188
Music Games 188
 Beat Matching 190
 Performance Simulation 191
 Music Mixing and Adaptivity 192
 Memory Matching 192
 Music Creation and Construction 193
Level Design, Construction, and Adaptation 194
Instruments in Interfaces and the Game World 195
Diegetic Music in Video Games 195
Music Approaches in Other Games 196
Review 196
Exercises 197
Part III: Advanced Video Game Scoring Techniques 199

13 MIDI and Virtual Instruments 201
 An Alternative to Prerendered Audio 202
 Working with MIDI-Based Scores 204
 Using Virtual Instruments 206
 Review 209
 Exercises 209

14 Real-Time Tempo Variation and Synchronization 211
 Immersing the Player through Tempo 212
 Varying Tempo Based on Game Events 212
 Tempo Changes with Prerendered Audio 213
 Tempo Changes with MIDI or MOD 215
 Tempo Synchronization 216
 Phrase Synchronization 216
 Review 217
 Exercises 218

15 Advanced Dynamic Music Manipulation Techniques 219
 Weighing More Expensive Options 220
 Melodic Manipulation and Reinterpretation 221
 Ensemble, Rhythmic, and Style Alteration 221
 Embellishment and Fills 222
 Motivic Elements in a Running Score 223
 Dynamic Reharmonization and Chord Mapping 224
 Building an Event-Driven Sequencer 225
 Review 226
 Exercises 227

16 Aleatoric Performance Techniques for Video Games 229
 What Is Aleatoric Composition? 230
 Aleatoric Techniques 231
 Pitch 232
CONTENTS

Rhythm, Tempo, and Form 233
Articulations, Instrumentation, and Dynamics 234
Review 234
Exercises 235

17 Algorithmic and Generative Music Systems 237
Using Algorithmic and Generative Music 238
Generating Music 239
Composer-Defined Rule Sets 240
Knowledge-Based Musical Intelligence 240
The Rules of Game Composition 240
Mapping the Harmonic and Rhythmic Framework 241
Melodic and Thematic Development 242
Chord Construction, Counter-Melodies, and Supporting Instruments 242
Mapping Control Inputs to Music 243
Applying Algorithmic Composition 243
Review 244
Exercises 245

18 Using Middleware to Create Advanced Compositions 247
Simplifying Composition with Middleware 248
Using Multiple Interactive Techniques 251
Creating Scores Using a Middleware Engine 251
Intelligent Music Engines 252
Looping within a Middleware Engine 254
Variation and Randomization 255
Random Playlists, Track Variation, and Alternative Start Points 255
Time Variation 256
Review 256
Exercises 257

19 Creating a Custom Music Solution 259
Solving Problems with Custom Solutions 260
Limitations of Interactive Techniques 261
Teaching a Computer the Rules of Music 262
Selling the Idea to the Developer 262
Shaping an Interactive Musical Engine 263
Prototyping the Idea 263
Design and Specification 264
Implementation in the Game 265
Review 265
Exercises 266

Part IV: Bringing Music into the Game 267

20 Composing Music with a Digital Audio Workstation 269
 Getting Started with a DAW 270
 Choosing a Sequencer 270
 Sequencing Standard MIDI Files 272
 MOD File Sequencing 272
 Sequencer Setup and Track Layout 273
 Sample Rate and Bit Depth 273
 Track Layout, Submixes, and Stems 274
 Planning for an Interactive Score 276
 Looping 276
 Vertical Remixing 277
 Horizontal Resequencing 278
 Auditioning the Transitions between Cues 278
 Organizing the Musical Cues 279
 Transitioning between the DAW and the Game 279
 Review 280
 Exercises 281

21 Live Recording, Session Preparation, and Mixing 283
 Elevating the Score with Live Musicians 284
 Preparing, Orchestrating, and Arranging 284
 Preparing Sequences for an Orchestrator or Arranger 286
Session Preparation and Planning 286
 Determine the Recording Order of Cues 286
 Multitracking 287
 Sequence Preparation 287
 Preparing for What Can Go Wrong 289
Exporting a Sequence to Another DAW 290
Session Flow and Practices 291
Time Management 292
Final Mixing and Editing 292
Musicians and Recording 293
 Union Contracts 293
 Musician Expenses 294
 Musician Releases 295
 Recording Studio Expenses 296
Review 297
Exercises 298

22 Mixing and Exporting Audio Files to the Game Engine 299
 Considerations for Mixing Music for Games 300
 Bouncing and Exporting Master Files 301
 File Formats and Compression 302
 Audio File Compression Formats 303
 Game Audio Formats 304
 Surround Mixing within Games 305
Review 307
Exercises 307

23 Implementation and Programming 309
 Defining the Music Framework 310
 The Implementation Process 311
 Game Production Methodology 312
 Scheduling and Milestone Delivery 313
 Managing Assets and Files 313
Tracking Asset Reviews and Feedback 315
Naming Conventions 315
Balancing Compression with Quality 315
 Physical Removable Storage 316
 Downloadable Games and Onboard Media Storage 317
 Onboard Working RAM 317
 Online Network Storage 318
 Voice Considerations 318
Allocating Time for Programming 318
 Setting Up the Music Framework and Interactivity 319
 Implementing the Hooks 319
 Integrating Middleware Solutions 320
Mixing and Real-Time DSP 320
Review 321
Exercises 322

24 Large-Scale Music Development 323
 Establishing a Unique Creative Direction 324
 Unification and Planning 325
 Organization, Revisions, and Backups 326
 Mapping the Overarching Emotional Arc 328
 Integration and Follow-Through 328
 Large-Scale Interactive Music Challenges 329
 Closed System (Games on Rails) 329
 Open System (Open World–Based Games) 330
 Combat-Triggered Musical Interactivity 330
 Review 331
Exercises 332

Part V: The Business of Scoring Music for Video Games 333

25 The Life of a Video Game Composer 335
 A Day in the Life of a Game Composer 336
The Business of Scoring Games 337
Size of the Industry 337
Game Development 338
Game Development Education 339
Working In-House versus Out-of-House 340
In-House Composer 341
Part-Time Contractor 342
Freelance and Your Own Music Production Company 342
Skill Sets 344
Music Production Companies 346
Internships as Entry Points 346
Learning Experience 346
Relationships 347
Job Conversions 347
Music Libraries 348
Justifying Composer Fees 348
Additional Income Streams 349
Review 349
Exercises 350

26 Contracts, Rights, and Work for Hire 351
The Legal Side of Composing 352
Non-disclosure Agreements 352
Music Rights and Work for Hire 354
The Project Contract 356
The Employment Contract 359
Demos 360
When Things Go Wrong 360
Federal Forms 361
Employee 361
Individual (Sole Proprietor) 362
Corporation 362
Review 363
Exercises 364
27 Creating an Estimate

- Proposing Your Talents and Fees 366
- Questions for the Developer 366
 - Game-Related Questions 366
 - Audio-Related Questions 367
 - Budget-Related Questions 368
- Using an Estimate as a Sales Pitch 368
- The Psychology of Bidding 369
 - Price 369
 - Presentation and Delivery 370
- The Organization of an Estimate 370
- Breaking Music Down into Components 372
 - Interactive Music versus Linear Music 373
- Determining How Much Music to Write 374
- Knowing How Much to Charge 375
 - Calculating the Cost of One Minute of Music 376
 - Getting to Know the Client 376
- Review 377
- Exercises 378

28 Contract Negotiation Tactics

- Working for Less Than You're Worth 380
- Collaborating with Developers 381
- Renegotiating the Estimate 382
- Royalty Arrangements 383
- Offering Discounts for Multiple Projects 385
- Licensing 386
- Additional Rights and Opportunities 386
 - Music Publishing and Performance Royalties 387
 - Guaranteed Work on Derivative Products 388
 - Screen and Box Credits 388
- Review 389
- Exercises 389
Contents

29 How Composers Find Work 391
 Building Relationships 392
 Networking 393
 Informational Interview 395
 Video Game Conferences 395
 Working for Free 397
 Game Developer Organizations 397
 Your Website and Blog 398
 Social Networking 399
 Cover Sheets and Résumés 400
 Partnerships 400
 Representation and Salespeople 401
 Advertising and Public Relations Agencies 402
 Review 403
 Exercises 404

30 The Challenges of Working as a Composer 405
 Setting Expectations and Goals 406
 Traits for Success 407
 Passion 407
 Speaking the Language 407
 Belief in Yourself 408
 Write Music for the Person Signing the Check 409
 Reliability 410
 Adaptability 410
 Entrepreneurship 411
 People Skills 411
 Talent 411
 Humility 412
 Objectivity 412
 Technical Skills 413
 Experience 413
 Courage 414
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>414</td>
</tr>
<tr>
<td>Handling Rejection and Failure</td>
<td>415</td>
</tr>
<tr>
<td>Finances</td>
<td>416</td>
</tr>
<tr>
<td>Expenses and Budgeting</td>
<td>416</td>
</tr>
<tr>
<td>Taxes</td>
<td>417</td>
</tr>
<tr>
<td>Legal Fees</td>
<td>417</td>
</tr>
<tr>
<td>Review</td>
<td>418</td>
</tr>
<tr>
<td>Exercises</td>
<td>419</td>
</tr>
</tbody>
</table>

Part VI: Conclusion and Appendixes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion</td>
<td>423</td>
</tr>
<tr>
<td>Where to Go from Here</td>
<td>424</td>
</tr>
<tr>
<td>The Future of Game Scoring</td>
<td>424</td>
</tr>
<tr>
<td>A Companion Website and Supporting Software Tools</td>
<td>425</td>
</tr>
<tr>
<td>Companion Website</td>
<td>426</td>
</tr>
<tr>
<td>Composer Tools</td>
<td>426</td>
</tr>
<tr>
<td>B Glossary</td>
<td>427</td>
</tr>
<tr>
<td>C Game Music Canon</td>
<td>437</td>
</tr>
<tr>
<td>1970 to 1989</td>
<td>438</td>
</tr>
<tr>
<td>1990 to 1999</td>
<td>438</td>
</tr>
<tr>
<td>2000 to 2009</td>
<td>439</td>
</tr>
<tr>
<td>2010 to 2013</td>
<td>440</td>
</tr>
<tr>
<td>D Resources</td>
<td>441</td>
</tr>
<tr>
<td>Organizations</td>
<td>442</td>
</tr>
<tr>
<td>Game Conferences</td>
<td>442</td>
</tr>
<tr>
<td>Web Resources and Podcasts</td>
<td>442</td>
</tr>
<tr>
<td>Books</td>
<td>443</td>
</tr>
<tr>
<td>Twentieth-Century Experimental Music</td>
<td>443</td>
</tr>
<tr>
<td>Film Scoring</td>
<td>443</td>
</tr>
</tbody>
</table>
CONTENTS

Game Scoring 443
Game Audio 443
The Business of Game Scoring and Audio 444
History of Video Game Music 444
Adaptive and Generative Music 444
Audio Middleware 444
Game Engines and 3D Middleware 445

E Composer Biographies 447

Index 453
About This Book

When I first meet new students every semester, I tell them how difficult the music industry can be. Many of the friends with whom I went to music college many years ago are no longer in the music industry. To me, the most important aspect of being a teacher is to pass on all the knowledge that I have gained about the music industry to enable my students to be successful. I want to improve their odds of being in music decades after they graduate. This book is an extension of those ideas. I've tried to assemble much of the experience and knowledge that I have learned as a professional video game composer in hopes that I can help others become successful composers. I believe that our collective wisdom will help shape future generations of composers, allowing music to get even better.
I have many people to thank for helping me develop and write this book. Without my editor at Addison-Wesley, Laura Lewin, there would be no book at all. Her encouragement, support, and commitment helped me believe that I should write this book. At many points during the writing process, I suggested to her that it would be much easier for me to just write a piece of music. Luckily for you and me, she didn’t accept this offer, and now you hold this book in your hands. Many additional people at Addison-Wesley contributed their talents to this book by helping to connect my ideas together, politely keeping me organized and on task, and correcting a crazy amount of grammatical errors. Special thanks to Olivia Basegio, Stephane Nakib, Elizabeth Ryan, Michael Thurston, and everyone else at Addison-Wesley, and to freelancers Anna Popick and Jill Hobbs.

My enormously talented and experienced technical editors, Brian Schmidt, Paul Lipson, and Chuck Doud, were the first to read the book. They offered sage wisdom and advice to make this book much better than I ever imagined.

I’d also like to thank all the incredible composers who contributed sidebars to this book, including Yoshino Aoki, Vincent Diamante, Ben Houge, Noriyuki Iwadare, Akari Kaida, Laura Karpman, Yuzo Koshiro, Bear McCreary, George “The Fat Man” Sanger, Tetsuya Shibata, Yoko Shimomura, Rich Vreeland, Duncan Watt, and Guy Whitmore. Special thanks to Shota Nakama, founder of the Video Game Orchestra, and Maho Azuma for coordinating and translating the contributions from Japanese composers.

Additional thanks go out to Peter Bufano and his expert knowledge in the craft of scoring music for circuses. Thanks also to my friends Eric Zimmerman and Tracy Fullerton for continuing to believe in, support, and evangelize my music over the last 20 years.

Berklee College of Music gave me the opportunity to come to Boston in 2008 to create its video game scoring curriculum. This adventure helped me build on my professional experience by allowing me to spend time analyzing many video game scores, giving me the opportunity to talk with myriad talented composers, and enabling me to develop curriculum and resources for students. Thanks to the many talented and supportive individuals at Berklee, including Jeanine Cowen, Dan Carlin, Alison Plante, George Clinton, and Kari Juusela, for helping to guide and support the game scoring programs.

Last, I’d like to thank my family, Robin and Lucas, for believing in me and loving me every day. You inspire me to become a better person and help me laugh at myself. Thanks to my mom and dad for continuing to support everything that I’ve ever done, without an ounce of criticism, only with love.
Michael Sweet leads the development of the video game scoring curriculum at Berklee College of Music. For the past two decades, Michael has been an accomplished video game audio composer and has been the audio director for more than 100 award-winning video games. His work can be heard on the Xbox 360 logo and on award-winning games from Cartoon Network, Sesame Workshop, PlayFirst, iWin, Gamelab, Shockwave, RealArcade, Pogo, Microsoft, Lego, AOL, and MTV, among others. He has won the Best Audio Award at the Independent Games Festival and the BDA Promax Gold Award for Best Sound Design, and he has been nominated for four Game Audio Network Guild (GANG) awards.
INTRODUCTION

Have you ever wondered what goes into creating a music score for a video game? Scoring music for games is very different than composing music for other linear media like film and television. This book aims to teach you how composers work with game development teams to create interactive music scores in an effort to make better games.
Welcome

Many of today’s video games use numerous interactive music techniques to adapt to how the player drives the action in real time. Video game music changes dynamically based on decisions that a player makes. The composer must score multiple outcomes and be able to transform the music from one emotional state to another seamlessly.

This book will teach you the fundamental music approaches and skills that professional composers use to create these interactive scores for games. This book focuses on these game scoring techniques from conceptualization, to creation, to implementation, through to the game's release. Using numerous examples, we'll examine each technique in depth, and then compare and contrast the various techniques.

This book illustrates these techniques as used in video game scores and assesses their effectiveness. Readers will also gain insight into fundamental concepts by evaluating historical perspectives on interactive composition. This book serves as a gateway for discovering innovative interactive music throughout the twentieth century, exploring numerous scores with applications for modern video games. These scores can be a jumping-off point for inspiring and developing your own compositional strategies.

In addition, readers will learn about the business aspects associated with being a music composer for games. This coverage includes marketing and sales advice, explanation of typical contract language, ways to price music services, the challenges of pursuing this career, and strategies to break into the industry.

When I first began composing music for video games more than 20 years ago, it was difficult to imagine a time when students entering college would want to learn the craft of composing video game scores because it was such a small field. Now, some of the world’s leading contemporary music institutions are teaching video game scoring to their students.

How did we get here? In this introduction, we take a quick look at the game industry and see how it relates to music scoring for games.

Games and Popular Culture

Video games have been evolving for many decades. As we approach the fiftieth anniversary of the first video game with sound (Pong, 1972), contemporary video game scores are now being played by many of today’s elite orchestras. Live showcases of orchestral video game music like Video Games Live and Final Fantasy: Distant Worlds sell out concert venues around the world to young audiences who have grown up playing video games.

Fundamentally, video games are another medium through which we express ideas and tell stories to one another. As with the best storytelling, we are able to share similar experiences in the same way that film, television, and the arts have brought us new perspectives by allowing us to relate to one another.
From colossal AAA (pronounced “triple-A”) games played on consoles like the Xbox, PlayStation, and Wii, to casual games played on handhelds and social networks, the diversity of audiences that play games is enormous. Video games no longer exist only on the fringe of society, but rather have become an integral part of mainstream and popular culture. In 2014, according to the Entertainment Software Association (ESA), there were some remarkable statistics on the diversity of gaming:

- Approximately 58 percent of Americans play video games.
- The average game player is 30 years old and has been playing games for more than 13 years.
- Approximately 25 percent of people older than the age of 50 play video games.
- Nearly 45 percent of all game players are female.

For people involved in game development, this diversity allows teams to create games in many different genres that appeal to a wide range of audiences. Composers and music teams have the opportunity to specialize in myriad musical styles, ranging from kids’ music (Lego Universe, 2010; Minecraft, 2009), to jazz (Grim Fandango, 1998; L.A. Noire, 2011) and orchestral scores (BioShock, 2007; Dead Space, 2008), to world music (Prince of Persia, 2008; Uncharted: Drake’s Fortune, 2007) and historically inspired music (Assassin’s Creed III, 2012).

At the time this book was written, games were producing global revenues of approximately $60 billion each year. The size of these revenue streams, along with the explosion of popularity of video games in modern society, creates many opportunities for composers and musicians to create music for games. A typical game budget for a console game might run from a few million dollars to $50 million or more. Budgets for music and sound typically represent 5 to 10 percent of the overall production budget for the game. As a consequence, a sizable amount of money may be spent to create music for games.

Contemporary video games have an enormous reach in culture and society. They can provoke broader discussions about life and culture, including relationships (Papa Y Yo, 2013; Braid, 2009), life (The Sims, 2008; Passage, 2007), discovery (Mass Effect, 2007; Journey, 2012), and music (Chime, 2010; Rez, 2001).

Over the past several years, games have also evolved into an art form. Shows featuring video games have popped up at some of the nation’s leading art museums, including “The Art of Video Games” at the Smithsonian (Myst, 1993; Flower, 2009) and “Applied Design” at the Museum of Modern Art (Katamari Damacy, 2004; Portal, 2007).

Many of today’s games also turn players into content creators by giving them the tools needed to create their own game content (examples include The Sims, 2000, and Little Big Planet, 2008). Players are able to express their own creativity, stories, and ideas through games. In the same way that narrative forms like film and television are being remixed and recombined on YouTube, so games are becoming a means of expression—a trend that has wide cultural
implications. Musicians and composers can also take advantage of our mash-up and mod-ing culture by placing their own music into games to tell their own stories.

Scoring for Games

Writing music for games relies on many techniques inherited from dramatic film scoring, including harmonic development, cadences, non-song-form–based music development, and themes. But, as you’ll learn in this book, video game music differs significantly from the music found in linear media such as film and television.

Many contemporary video games use numerous interactive music techniques to adapt to the player in real time. Video game music changes dynamically based on the decisions that a player makes. For example, the game player might have the choice to sneak around an enemy using camouflage or enter into a fight with guns blazing. The music that accompanies this scene should adapt to the choices made by the player. In turn, the composer must score these multiple paths with several music cues that are able to transform from one cue to another in a seamless fashion.

Music teams working on a game can range in size from a single individual who composes all the music to a huge team of people that may include a composer, an audio director, editors, an orchestrator, programmers, and implementers. Whether you’re working on a small iPhone or Facebook game, or a large AAA PlayStation title, this book teaches you about the different kinds of interactive scoring methods that will be available to you. We’ll explore the creative, methodology, technology, and business issues associated with the creation of the score for all these types of games.

Although many games use the techniques outlined in this book, choosing to use interactive music in a game is a complicated decision that takes into account many different factors, including the overall music budget, programming resources, and investment of the time it takes to create and implement an interactive score. Also, there may sometimes be a lack of understanding of how interactive scores work within games.

This book informs readers about their choices regarding the creation and implementation of music interactivity in their games. It shows how interactive music can enhance storytelling in games as well as improve the overall game experience.

You’ll learn the fundamental music approaches and skills that professional composers and game development teams use to create interactive music for games from the initial stage of conceptualization and creative direction of the music, through to the composition and creation process, until the final implementation of the music into the game. Important concepts you’ll learn about in this text include the following:

- Music conceptualization and creative direction
- Music critique and analysis
Intended Audience

This book is intended for a variety of audiences, from novices to experienced professionals, who are interested in how they can improve the music in their games. Whether you’re a game designer looking to understand how music works in your game or a composer looking to understand interactive techniques for video games, this book will help you discover the innovative processes involved in the creation and integration of music into games.

All readers will gain insight into what makes a great music score through examples. This book also teaches you how to listen to current games so as to better understand how the music is implemented; such greater appreciation will allow you to broaden your game music knowledge and listen more critically. This will, in turn, help add depth and innovation to the design and implementation of your own scores.

Readers will walk through every step that goes into the creation of a score, from the score conceptualization phase all the way through implementation and release of the video game.

One of the goals in writing this text was to help the individual teams working on a game collaborate to create the best score and music implementation for their game. Once an entire team understands how interactive music works, it becomes easier to use music to its full potential.

Game Development Teams

From a design perspective, game development teams will acquire a broader understanding of how music can shape and enhance the overall mood and feel of their game. In turn, they’ll learn about how music systems work within games to augment the player’s experience. They’ll also take away ideas about how game mechanics can be used to control the music score within their game.

In game production, producers need to know what the music costs and which best practices can ensure efficient music design in a game. This book discusses the assets and costs associated with the production and implementation of various interactive music techniques. The coverage provided here gives producers a better understanding of music production processes for a game.
Programmers will discover the best ways to collaborate with composers by learning how to implement interactive music and how such techniques affect the audio physics of the game world. This book covers a variety of implementation options, ranging from basic techniques all the way through advanced implementation including middleware solutions.

Audio Teams

Musicians and composers will learn about fundamental and advanced interactive music techniques that will enable them to create their own interactive scores for games. In addition, they'll gain an understanding of the business acumen that is required to break into the world of game audio. Professional composers who are already working in video games or looking to enter into the video game industry will find this book a valuable resource, as it shows techniques and examples of methods that are currently being used in video game scores.

Sound designers and audio directors will also be interested in this text, as it will teach them about music techniques and explain how those techniques relate directly to their own fields. By better understanding how music engines work, they’ll gain a broader perspective on the entire sonic landscape that makes up the game. In addition, some of the interactive music techniques can be applied directly to sound design.

Game Players

Fans of game music will gain a greater insight into the creation process that many composers use to score video games. Once you've read through the techniques described here, you'll be able to hear music in games differently—that is, you’ll be able to identify different musical structures and listen to the “music mechanics” of games. In addition, you’ll be able to hear links between your actions in the game and appreciate how these decisions are reflected in the music of the game.

Structure of the Book

This book is structured in such a way as to allow readers of different backgrounds to quickly grasp the basic concepts of designing music in games, then continue on to explore fundamental and advanced scoring techniques. As you read through this book, you’ll find that each chapter builds on the concepts discussed in the previous chapter.

Each chapter begins with an overview of the chapter. It then expands on the topics covered by explaining techniques through specific examples used in video game scores and offering tips to assess their effectiveness.

Throughout the book, you’ll find suggested exercises that put the techniques described in the book into practice. After each chapter discussing a specific game scoring technique, there is an
“Exercises” section in which game audio scenarios challenge readers to write or edit their own music to see how it works.

At the end of each chapter, concepts and techniques are reinforced with a review, followed by sample exercises.

This book is augmented with a series of software tools specifically created to accompany this text. The fundamental interactive techniques described in this book are reinforced by this software, which seeks to help composers simulate how their music might work in a game. These indispensable tools help readers learn each technique in turn, so they can better understand the pros and cons of each compositional method.

The companion course website (see page 426) also includes suggested lesson plans to help use this book as a teaching tool in higher learning institutions.

The chapters in this book are organized into five parts. What follows is a detailed overview of each section of the book and its learning outcomes.

Part I: Scoring for Games

In the first part of this book, you’ll explore the language of storytelling through music in games, and break down the basic ways to approach game scoring. We begin with an overview of how music for games is conceptualized, including interactive music methodology and creative decisions regarding how a score is created for a game. This material doesn’t require you to have a music composition degree, but rather is a top-down overview of the terminology and the thinking that goes into building a score.

Topics include how to analyze a game for musical opportunities, develop thematic ideas, apply basic integration and synchronization of music to game events, think about control inputs and triggers, and perform game score analysis. In addition, Part I explores how game genres affect music choices.

Last, you’ll learn about historical perspectives on interactive music in video game composition and about composers in the age of post-modernism. You’ll explore the history of interactive music and the different techniques that helped composers implement their scores.

Part II: Fundamental Video Game Scoring Techniques

As the book progresses, you’ll dig deeper into how these scores are actually written and learn interactive scoring best practices and various implementation techniques. Composers and students will receive practical advice on composing multiple types of interactive scores for video games, including coverage of video game music analysis, historical perspectives, methodologies, and future trends in music for video games.
In Part II, we break down the fundamental interactive scoring techniques found in games. We show you how to write effectively in each of the different interactive music models and how to manage game considerations that influence which model to use. Among the techniques we’ll focus on are horizontal resequencing, vertical remixing, transitions and stingers, and use of music as a gameplay element.

Every fundamental technique is explained and reinforced with case studies from real games. Readers will be able to enhance their composition skills with an understanding of how to create interactive-based music and best practices for each technique.

Part III: Advanced Video Game Scoring Techniques

Part III delves into advanced video game scoring methods, including the use of virtual instruments within games, real-time tempo and harmonic variation, aleatoric methods, and algorithmic techniques. This section is primarily intended for advanced composers and implementers looking to augment basic music techniques in their games.

In addition, Part III looks at the current generation of audio middleware tools that composers often use to implement advanced scores and that offer fewer of the programming challenges associated with building your own music engine. Figure 0.1 shows an example of the audio middleware tool Fmod with some interactive music that was written for a game level.

![Figure 0.1](image)

Figure 0.1 Fmod is an example of audio middleware software implemented to play interactive music.
Part IV: Bringing Music into the Game

Continuing into Part IV, we focus on the actual technology associated with both the writing and the implementation of music in the game. We explore the digital audio workstation (DAW), notation and recording for games, file formats, creation of virtual instruments for games, collaborative tools, and audio middleware for games.

This section is meant to complement Parts II and III by going beyond the conceptual language and getting into the practical side of creating an interactive score using your DAW. It also explains the entire process, from setting up for recording live musicians to implementing the music within the game.

Part V: The Business of Scoring Music for Video Games

In Part V, readers will find chapters detailing the business of being a composer for video games. Topics covered include pricing, contracts, negotiation, sales and marketing, the challenges of working as a composer, and strategies to break into the industry. You’ll learn about the noncreative skills that are required to be a successful composer and see how to develop those skills.

The business chapters of the book do not rely on the same foundational material in earlier parts of the book. Consequently, they can be read at any time.

Part VI: Conclusion and Appendixes

In the conclusion, you’ll find closing thoughts as well as an analysis of future trends in video game music. The appendixes contain useful information including a glossary and additional reference material, along with recommended organizations and groups.

Digital Tools

Included with this book is a set of software tools that demonstrate fundamental interactive scoring techniques. These tools can be found at the book’s companion website (see page 426). With these tools you’ll be able to take music that you create in a DAW and simulate how it might operate in a game. Throughout the book, we’ll point out how to use these tools to better reinforce the concepts you’re reading about.

These digital tools will help you compose and test your own interactive compositions. In addition, they allow composers and producers to play interactive music for game developers before that music has even been implemented in the game, thereby demonstrating how the music might work in tandem with the game’s action.
INTRODUCTION

When a composer is writing interactive music, it’s very difficult for the composer to show a game design team what the music will sound like in the final game because it may take weeks for the programmers to implement the score. The included software tools allow game designers to hear the interactive music a composer has written before it is programmed into the game (Figure 0.2); they can use this information to make creative decisions about the music faster and get a more complete picture of what the final product will sound like. Many hours have been spent putting these tools together so that composers can concentrate on creating great music instead of getting hopelessly bogged down in figuring out a way to play their music for the game designers.

Companion Website

This book’s companion website contains a variety of useful information, including web links to many gameplay examples from the text as well as updates and errata for the book. Throughout the text we’ll show interactive techniques in action through examples used in actual games. The companion website provides links to gameplay videos showing these examples. Also available on the course website are example projects using the fundamental interactive music techniques found in audio middleware engines such as Fmod and Wwise. See page 426 for information about accessing the site.

Figure 0.2 The Branching Engine Music Tool, which is one of the tools included with this book to help compose interactive music.
Conventions Used in This Book
Several different elements are used to enhance your learning in this book. This section provides examples of what they indicate.

note
A note provides additional clarification or information about a concept.

warning
WARNINGS LOOK LIKE THIS A warning gives you a heads-up about ways to avoid problems.

tip
A tip gives you specific hints or advice about putting techniques into practice.
This page intentionally left blank
In this chapter you’ll learn about the language of music storytelling in games and basic approaches to game scoring. Beginning with an overview of how game music is conceptualized, you’ll understand the methodology to make the best creative music choices for your game. This material doesn’t require you to have a music composition degree, but rather is a top-down overview of the fundamental processes and terminology that drives the creation of a game score. You’ll learn about game music types, music functions within a game, and the building blocks for critical analysis of interactive scores.
What Makes a Video Game Unique?

To build a language to use when describing video game music, it’s important to understand some of the unique characteristics of the medium of video games. This chapter begins by breaking down the anatomy of a video game, comparing and contrasting elements to linear media. These differences affect how the music is conceptualized, composed, and synchronized to work within a game.

There are several key differences between scoring for linear media like film and scoring for video games. If we look at a direct comparison between films and games, as you’ll see in Table 1.1, you’ll begin to discover and identify some of these key differences.

Passive versus Active Interaction

Video games require the player to be actively involved so as to make decisions based on the action that is occurring on screen. This active interaction is the most important element that distinguishes the medium. Players are actively involved in determining the outcome of a game, whereas in linear media like film there is no interaction; instead, viewers watch passively.

This interaction between player and story in video games creates a reactive feedback loop, with each one affecting the other. The level of interaction is determined by the rules and mechanics of the game and is usually controlled by the player through a game controller or a keyboard/mouse combination.

This active interaction between the game and the player also affects how the music must change and react to player decisions. The music must be written in such a way that it is adaptable based on the player interaction. Throughout this book you’ll learn about different ways to compose adaptive and interactive music compositions for video games.

Table 1.1 Key Differences between Films and Games

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Film</th>
<th>Console Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of experience</td>
<td>Passive watching</td>
<td>Active interaction</td>
</tr>
<tr>
<td>Average length</td>
<td>2 hours</td>
<td>10+ hours</td>
</tr>
<tr>
<td>Number of plays</td>
<td>Usually once</td>
<td>Many times</td>
</tr>
<tr>
<td>Structure</td>
<td>Linear: one beginning, one middle, one end</td>
<td>Nonlinear: multiple outcomes and evolving storylines</td>
</tr>
<tr>
<td>Average amount of music</td>
<td>1 hour</td>
<td>2–3 hours</td>
</tr>
</tbody>
</table>
Table 1.2 Length of Music in Games

<table>
<thead>
<tr>
<th>Game Type</th>
<th>Play Experience</th>
<th>Average Amount of Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casual game</td>
<td>2–3 hours</td>
<td>15+ minutes</td>
</tr>
<tr>
<td>Console game</td>
<td>10+ hours</td>
<td>2–3 hours</td>
</tr>
<tr>
<td>MMORPG</td>
<td>50+ hours</td>
<td>15+ hours</td>
</tr>
</tbody>
</table>

Variable Length of Experience

Length of the gameplay experience is one of the most important aspects in determining the amount of music that must be conceived and written for a game. Video games vary greatly in the length of experience compared to film. Furthermore, each game genre has a length that is most suitable for the style of play, whether it’s puzzle solving in a game like *Myst* (1993) or defeating an alien invasion in a game like *Halo* (2001).

Casual games (*Tetris*, 1984; *Bejeweled*, 2001; *Diner Dash*, 2004) that are played from beginning to end might be only 2 to 3 hours in length, whereas a massively multiplayer online roleplaying game (MMORPG) like *World of Warcraft* (2004) might have a play experience totaling more than 50 hours. Typically AAA (pronounced “triple-A”) console titles for Xbox or PlayStation have a play experience that lasts 10 or more hours.

Table 1.2 summarizes the differences in the length of play between different game types.

The time it takes to play a game depends on many different factors, including length of the story, game variability, and the experience of the player. These additional factors are discussed throughout the chapter. In some very large games, players sometimes play for as much as 20 to 30 hours per week!

Many games today also have expansion packs that allow the game to grow by extending the player experience with new storylines and additional content. These expansion packs may also increase the amount of music in a game. Popular games that include expansion packs include *Angry Birds* (2009) and *Bioshock: Infinite* (2013).

note

Game players from around the world play MMORPGs together on computer servers where they interact with one another in real time, helping each other with quests and battles. These games are massive in scope and take hundreds of hours to complete. Consider the scale of a game like *World of Warcraft* (2004):

- The average *World of Warcraft* player plays approximately 20 hours per week.
There is more than 23 hours of composed music within *World of Warcraft*.

At the game’s peak success, there were approximately 14 million subscribers, each paying a monthly fee of $15 to play the game.

The game development team that works exclusively on *World of Warcraft* consists of several hundred members, along with a team of audio professionals working on the music and sound.

Number of Plays

The play experience in games is significantly longer than the experience with most linear media. Consequently, players often don’t finish games in one session. Instead, it typically takes many sessions for a game player to finish a game.

This has direct implications for the music. How do we approach the interruptions caused by players stopping and starting in our music? Is there a way to bring the player back into the story more seamlessly, reminding the player where he or she left off?

A composer can use several different approaches to enhance the storytelling in the game between interruptions. For example, composers often use thematic material to tie the story together by representing characters or places in their music. The “Music Conceptualization” section of this chapter discusses this in more detail.

warning

THE REPLICATION PROBLEM George “The Fat Man” Sanger—a pioneer video game composer primarily known for his work on *Wing Commander*—is generally credited with the quote “Repetition is the problem” with regard to video game music.

You may have noticed in Table 1.2 that the play experience is typically far longer than the music can support. Video games in the past have been known for their repetition, and it’s a problem to look out for when developing music for video games.

Composers are challenged by many constraints when working on video games, including memory, voices, and games growing in scope and size. Sometimes the music must be repeated within games because of one factor or another.

Composers must take this issue into account when creating their scores. To minimize music repetition in games, composers frequently look to interactive composi-
Game Mechanics

In addition to a storyline, video games have specific game mechanics that make them different from film. These mechanics or rules define the play experience and dictate how the player interacts with the game system. For instance, in the early arcade game *Space Invaders* (1978), the basic gameplay mechanic is to shoot the impending alien march while avoiding getting hit by the enemy’s lasers or having the aliens reach your home world. Put even more simply, the mechanic is about winning or losing a specific game level. The player’s skill level determines whether the game continues or ends. Other examples of game mechanics include solving puzzles, taking turns, racing against a clock, beat-matching, and many more.

Game mechanics are a system of rewards and challenges that a player faces when entering the game. Game music systems need to be aware of game mechanics and, in turn, enhance the play experience by supporting these mechanics.

Pacing, Synchronization, and Flow

Video game players typically drive the storyline at their own pace. Players can move quickly or more slowly through a level, depending on their skill level. Since a composer cannot write a customized score for every individual player, he or she may instead write an adaptive score that takes the player’s skill level and pacing into account. This way the composer supports the same emotional pacing for each player. For example, in an open-world game like *World of Warcraft* (2004), the player at any given moment may decide to go to places within the world like Elwynn Forest or Ironforge. These decisions affect which music will play and determine the transitions that happen to get us from one piece of music to the next.

Unlike in linear media, where a composer can synchronize the music to a specific frame number, the game storyline is driven by the player. Synchronization in music is achieved by following changes in emotional context. These changes then direct how the music might play, in the same way that a conductor cues the woodwinds in a symphony.

The interactive music system in a game can take into account many different factors besides location, including the player’s health, proximity to enemies, various artificial intelligence (AI) state(s), the length of time the music has been playing, and so on. These variables can help change and adapt the music so it is synchronized to the events that unfold for the player.
Multiple Story Paths and Repeatability

When you watch a film, the experience is static—it doesn’t change from viewing to viewing. In games, however, the narrative and dramatic arcs are based on real-time choices made by the player. This may mean that there are multiple story outcomes.

Because of this possibility, the music must follow the player’s decisions throughout the game to support the emotional context for the scene or level at any given time. The music must change dynamically based on these decisions and conditions, which requires composers, music editors, and game designers to think differently when approaching the composition of the score. For instance, in the game *Mass Effect* (2007), the player makes decisions about which characters to support throughout the story. Characters that aren’t supported may actually die during the game. Since these characters have musical themes attached to them, we need to be aware of how these themes are shaped and evolve over time based on the player’s decisions.

When games have multiple outcomes, they can be played through multiple times. This increases the chance that a player might hear music multiple times. Many composers use the interactive music techniques outlined in this book to minimize the repetition. For example, one technique is to play back a music cue in a different order. A composer might also write multiple introductions to the same piece of music so the player will hear it begin differently each time it plays. More of these techniques will be reviewed in later chapters of this book.

Technology

Composing for video games is ostensibly reliant on the underlying technology used to play back music within the game. Hence interactive music systems are tied to advances in this technology. Composers who are interested in creating music for games need to be fearless when it comes to learning about new technology because they are often asked to learn a new music format while they are writing in it.

Mobile and web games typically have greater memory and voice constraints than console games, making composing for these platforms very challenging. Conversely, a game like *Batman: Arkham City* (2011) uses the audio middleware engine Wwise by AudioKinetic. Wwise is a very advanced interactive audio and music engine. Even so, when composing for this system, the audio team needs to understand its strengths and limitations to use the system effectively.

Recent technology advances such as cloud storage and remote rendering for games are rapidly changing how games are delivered to consumers. In the future, therefore, game developers may have fewer limitations in terms of technology.

Although it can be a huge benefit to composers to understand the technology and score design that will ultimately be integrating their music into the game, it isn’t essential knowledge. On large games, an entire team of people may work on creating the music for a game. In these
circumstances, getting the right creative fit may be more important than having a composer who knows about the technical and adaptive techniques that will be implemented in the final game. The team would include interactive music specialists who take the raw materials from the composer to create the adaptive music components. In this scenario, composers may never have to deal with formats other than handing off their Pro Tools sessions (or similar digital audio workstation [DAW] files).

There are many unique challenges to composing music for games:

- Repetition is caused by play repeatability, size of game, and budgetary constraints.
- There are often technology constraints like limited memory, limited voices, and new formats depending on the platform.
- Games require music to be programmed and implemented based on a rule set.
- Games are interactive and require variable synchronization.

Types of Music within Games

Composers can use music in many different ways within games to achieve the desired emotional effect. In this section we begin by defining the categories of music used within video games. In the next section you'll learn about the function of music in games.

Sometimes as composers we're adding music to support the game on an emotional level (extra-diegetic). At other times we're adding to what the avatar of the player might be hearing as part of the game universe. It's useful to define these different types of music in terms of function.

Extra-Diegetic Music (Underscore)

Extra-diegetic music, or non-diegetic music, refers to music that is added to a scene purely to enhance the emotions that the player should be feeling. This is commonly known as underscore. The musical ensemble or device that plays this music is not established to the player in the game. Its existence is not even inferred in the game world. Underscore works on a subconscious level to bring story elements together in its use of themes and motifs, as well as to intensify the emotional context of a scene. It also may inform the player or viewer of something that might be off-screen. Extra-diegetic music also helps with setting the stage by implying a
specific time in history or a place within the world. With extra-diegetic music, the viewer does not expect to see the instruments on the screen playing the music.

It is commonly said that the best film scores are not noticed by the audience or viewer. More obvious (and clumsier) scores take the viewer out of the experience of watching a movie by bringing what should be an unconscious element to the forefront for the listener.

A classic film example is John Williams’s two-note motif from *Jaws* (1975). Whenever there is impending danger of the shark, the audience hears this motif. Later in the film, even though the shark is not on screen, this motif builds tension for the viewers because they expect to see the shark soon. Williams is a master film composer, as he actually uses this motif to teach the audience that this music equals an impending shark attack. Later in the film he breaks this mechanic by not playing the two-note motif before the shark’s entrance; when the shark appears, it’s one of the most terrifying moments in the film. Williams uses music to trick the audience into believing something based solely on his use of music, increasing the horror of the film.

In almost any modern video game, we hear extra-diegetic music enhancing the emotional underpinning of the story. In the game *Red Dead Redemption* (2010), for example, we hear an Ennio Morricone–inspired score as we follow the adventures of a former outlaw in the American frontier. The interactive score changes dynamically as the player goes from scene to scene, and from plot point to plot point. In the game *Bioshock* (2007), Garry Schyman composes music for an underwater city engulfed in chaos using aleatoric music techniques, along with solo violin passages creating a terrifying but beautiful collage of themes.

COMPOSER PERSPECTIVE: REPETITION KILLS SUSPENSE

Bear McCreary

The more often the audience is exposed to a sonic idea, the less impact it has. For film and television, you can bend (or even take advantage of) this rule, because you know exactly how often the audience will hear a musical idea. In video games, however, repetition is often at the mercy of the gamer’s decisions. Composers must be extra careful to maximize the impact of their music.

The primary function of music in video games is to create tension. The resolution of that tension amplifies the gamer’s euphoria when finishing a goal, feeding his or her desire to keep playing. Historically speaking, this tension has been created using music that repeats.

Why does repetition kill suspense? Have you ever heard an annoying car alarm blaring for so long that you notice it again only when it finally shuts off? Have you ever been in a loud, crowded restaurant, but noticed that after a few minutes you are chatting with your friends without interference?
Types of Music Within Games

Diegetic Music (Source Music)

Diegetic music is music that a character would hear if he or she were actually in the game world itself. In films, we usually refer to this as “source music.” If we see someone on screen playing a violin, we expect to hear the violin. The function of diegetic music is to enhance the player’s experience. Typically it’s used to increase the realism of the simulated world.

In *Bioshock Infinite* (2013), there are moments when we see various musical ensembles, including a barbershop quartet. When we see the barbershop quartet on screen and hear them singing, it’s an example of diegetic music.

Another example is from *Mass Effect 2* (2010). When the player is standing outside of a nightclub, he hears the music from inside. This is music that the player would be hearing as part of the world itself.

Games like *Grand Theft Auto V* (2013) and *L.A. Noire* (2011) are 3D simulations of another world. Both games revolve around a driving mechanic where players drive different vehicles through this simulated world. These vehicles have radios, and players can change the radio...
station, so the music changes as they’re driving through this world. This is another example of
diegetic music.

One last example of diegetic music within games occurs at the beginning of *Assassin’s Creed III* (2012), when the player is sneaking around a theater while an opera is being performed. We see
the actors and musicians, and the music is coming from the universe itself.

In all of the previous examples, the music placement in the speakers is also very important to sim-
ulate where the music is coming from. We use real-time panning, equalization, and reverb tech-
niques to simulate the position within the 3D space. As the player moves around this 3D space,
the instruments or devices must pan dynamically to simulate the fact that this is a real place.

In many instances, diegetic music is *licensed music*. Licensed music has been created previously
by an artist, and the game publisher must obtain the rights to use this music within a video
game. On large games, a music supervisor may coordinate the licensing process by obtaining
(and paying for) the relevant rights to the piece of music.

While playing a game, if we see a jukebox or some other music-making device or musician on
screen, then we’ll want to hear the music that it creates. The realism of that world or simulation
would be broken if we didn’t hear the sound. As composers, it’s critical to be wary of destroying
the illusion of a world for the player.

Occasionally the distinction between diegetic music and extra-diegetic music becomes
blurred. For example, we might start off listening to diegetic music, but then as the story pro-
gresses the same theme can be heard holding emotional elements of the storyline together.

Music as Gameplay

The third classification of music in games is music as gameplay—that is, when the player gener-
ates the music in real time as he or she plays the game.

One might consider all interactive music in games to be “music as gameplay,” but the differ-
ence here is that the game system is reacting *directly* to the actions of the player. Most interac-
tive music systems have an indirect relationship to the underlying music system. For instance,
when a player makes choices in a game that then affect the state of the character (e.g., explore
or combat), the music would change based on those indirect choices. This is *not* an example of
music as gameplay.

Games that use the music-as-gameplay paradigm typically operate on a lower level of detail
than state changes in the music. If the game player makes an action that triggers a sound in
rhythm or creates a sequence of notes, that would fall into this classification.

Game developers work with composers to devise an overall music system that complements
the gameplay, defining the rules of how the music will play on a note-to-note or phrase-to-
phrase level.
There are several different gameplay scenarios in this classification, including simulated performance, player-generated music, and rhythm action.

Simulated Performance
Games like Rock Band (2007) and Guitar Hero (2005) use musical controllers to simulate the effect of being in an actual band performing the music. These games typically use licensed music from popular bands and artists. The music in these games is played back depending on how well the player performs in the game. The better the player performs, the closer to the original licensed song the result will be.

Player-Generated Music
In some games, the player creates music dynamically while playing the game. In PaRappa the Rapper (1996), for example, the player is able to direct the lead character to rap. In what is essentially a rhythm action game, the player presses the control in rhythm in a specified order to get the lead character to rap in real time.

Another example of player-generated music is found in the first-person shooter/rhythm action game Rez (2001) from game designer Tetsuya Mizaguchi. In this game, the player creates music dynamically by shooting down geometric shapes in rhythm with the music, triggering musical notes and patterns.

Last, the game Bit.Trip Runner (2010) is a 2D platformer where the avatar runs from left to right at a constant pace. As the player jumps or collects coins in the world, a musical phrase or set of notes begins to play.

Just as we sometimes blur the lines between diegetic and extra-diegetic music, so you could make a case that games like Portal 2 (2011), which allow you to manipulate physical objects in a 3D world that make noise, feature player-generated music.

Rhythm Action
The last category of music as gameplay is rhythm action games. Dance Dance Revolution (1998), Amplitude (2003), and Space Channel 5 (1999) are all examples of rhythm action games. In these games, players listen to the rhythm of the music and then synchronize their actions by either dancing or hitting buttons on a controller in time with the music to gain rewards.

Player Customized Music
Players may also choose to import their own music into a game. The original Xbox 360 release mandated that every game must be made in such a way that you could turn off the musical underscore and replace it with user-chosen content. If the player wanted to hear John Williams's Superman (1978) theme while he played Halo, for example, the system would allow for that.
To enable users to bring their own music into a game, systems would allow the players to encode music from a CD or flash drive directly to the memory of the console. Then, while playing a game, users could select to hear their personalized music within the game.

Entire games have been built around customized music, including Audiosurf (2008) and Vib Ribbon (1999). These rhythm action games create dynamic game levels built around the music that the player chooses.

Player-customized music is also popular in racing games. The 2012 release of SSX, which is a snowboarding game, allows players to import any music that they want into the game. The game then uses various digital signal processing (DSP)—filters, beat-matching delays, reverbs—remixing on the fly during gameplay to augment and enhance the custom music.

Exploring Music Function within Games

Music can be a compelling and useful device to bring players into the game or to enhance the storytelling aspects of character-driven games. Breaking it down even further, music within video games has various functions, ranging from ephemeral state changes to longer-lasting thematic devices. Following are the various music functions that we find in games:

- **Set the scene.** Players need clues about where they are when they enter a virtual game environment. Music can help define the time and place by using instrumentation and/or harmonic relationships. The Final Fantasy series (1987–2010) is known for its extensive use of musical themes to establish locations within the game. In Super Mario Bros. (1985), different parts of the level have their own themes (e.g., above-ground versus underground).

- **Introduce characters.** Throughout many games, a tapestry of characters may be introduced to the player. Character themes can help the player develop perceptions of certain characters (allies or villains) or enhance the emotional connection between characters. In addition, themes may help organize a large cast of characters in a very sizable game. The Mass Effect trilogy (2007–2012) uses many character themes and is a great example of how to weave these themes throughout an enormous game.

- **Signal a change in game state.** Music is often used to signal when a player has gone from one state to another. Typically this is an ephemeral change that quickly goes back to its original state. This technique is frequently used in vertical resequencing (layering of tracks), which we’ll focus on in the next part of the book. Red Dead Redemption (2010) uses this technique to distinguish between the exploring, riding, and combat states.

- **Increase or decrease dramatic tension.** Tempo and the addition of music layers are frequently used in games to increase the tension. In both the early games Asteroids (1979) and Space Invaders (1978), the tempo increases to raise the dramatic tension toward the end of each level.
- **Communicate an event to the player.** Frequently in games, composers use musical stingers to signal something to a player. In many games a musical stinger is played when a character dies in a particular level. A musical stinger is a short musical phrase (3–12 seconds) that acts like a musical exclamation point and is played to enhance a particular event in a game or film. In the game *Metro: Last Light* (2013), a musical stinger plays once the combat sequence has been completed.

- **Emotionally connect a player to a game.** Developing an iconic theme for your game, like the themes in the *Legend of Zelda* (1986–2013) and *Halo* (2001–2013) series, can go a long way toward establishing the overall tone and feel of your game and instilling anticipation and excitement when players hear it.

- **Enhance narrative and dramatic story arcs.** Similar to films, games generally have an overarching narrative and dramatic arc that plays out across the story. The music can enhance the emotional high and low points in your game.

BREAKING DOWN THE STRUCTURE OF A VIDEO GAME

Games can be broken down into a number of elements. Following is a description of each of the elements commonly found in games:

- **Introduction Movie:** An introduction that plays generally when the game begins.

- **Attract Sequence:** A movie that plays after the game is left alone for a period of time; it is used to advertise the video game in game shops.

- **Main Menu and Title Screen:** Generally a mostly static screen that waits for the user to start the game; it appears after the introduction movie.

- **Loading and Transition Screen:** After the player has chosen to start the game from the main menu, this screen appears while the game is loaded from the media or Internet. In general, it is difficult to put music on this screen because it consumes too many hardware resources.

- **Cinematics (Cut-Scenes or Full-Motion Video [FMV]):** A full-screen movie that plays to introduce the story or exposition elements during the game. Cinematics are typically linear video with very limited or no player interactivity.

- **Gameplay:** When the player is actually playing the game by either solving puzzles or controlling an avatar.

- **In-Game User Interface (UI) Screens/Level Select Screens/Pause/Settings:** User interface screens that typically interrupt gameplay. Special care must be taken to figure out how to handle the music in these sections.
Synchronization and Integration of Music

Inside film and linear media, we can usually rely on time codes or streamers and punches to synchronize our music. In contrast, in a game, the player is essentially directing the next shot in real time.

The game engine that is built makes requests to the music engine to change from one state to another, or to play a musical stinger. These requests are called “hooks” because the game is hooking into the music engine.

In many cases a programmer from the development team needs to program these hooks into the game for the music system to run properly. The game development team and the composer strategize about which actions in the game would trigger a music hook. This allows the music to stay appropriately in sync with the gameplay. After all, it’s unlikely that you would want to hear the intense boss-battle music when you killed the boss minutes ago. The best video game scores are connected to the game engine so that the music is aware of what’s happening in the game.

Although you’ll explore this topic more in depth in the next chapter, here’s a list of triggers you might see in a game that affect the music:

- Changing the emotional state (e.g., going from explore to combat)
- Moving to a different location within the game
- Number of enemies that are attacking
- Amount of health the player has remaining
- Time of day or the weather
- Proximity of an enemy
- Solving a puzzle or finding a treasure
- Killing a boss or finishing a stage

Serendipitous Sync

What happens when there is no synchronization of music in a video game? This is typically called serendipitous sync. It’s similar to turning on the radio while watching a movie. Sometimes the music lines up wonderfully, but mostly it doesn’t. There are ways to write music that suits the game without using external synchronization, but it might not be as reliable. Probably the most famous example of serendipitous sync is Pink Floyd’s album *Dark Side of the Moon* (1973) played in tandem with the film *The Wizard of Oz* (1939).

Some games rely on serendipitous synchronization, including the original *BioShock* (2007). In that game, music cues begin when you enter a new area, but the music is static after that
Music Conceptualization

To create successful music for a game, the game development team works with the composer to conceptualize the music. Conceptualization helps define the stylistic, creative, and functional goals of the music before the actual composing begins.

In this section we discuss how to conceptualize the score. You’ll find some guidelines for how to establish the overall creative direction, but you should feel free to revise these ideas based on whatever process works best for your team. Music conceptualization is often jointly developed between the composer and the game developer, although very large games may be an exception (see the note on this topic on page 32).

When setting out to write music for a game, it’s best to come up with an overall strategy first. The following steps will help you keep focused as you determine which direction is the most effective for your game.

1. Gather and Assess Materials

When beginning to generate the overall creative framework for a music score, the first step is to gather all the materials related to the game: game design documents, scripts, art assets, prototypes, and notes. Some or all of these assets might be missing when you begin the project, and in many cases composers start with very little on a project. Don’t be too concerned if there isn’t a lot to go on. You can revise the creative direction as more material is defined.

2. Prioritize Primary Music Objectives

The materials gathered in the first step will help you start to prioritize the most important ideas that you want to convey in your music. If you had to distill all the information down to a few key ideas, what would they be? For instance, are the puzzle elements the most important aspect of the game, or is the overall story more important, or a particular character? Making these decisions will better inform the music you create for your game.

Once you’ve narrowed down your primary objectives, then it’ll be easier to determine how the music will function in the game. Compare your objectives with the music functions listed earlier in the chapter.

Are there secondary objectives that you might want to include in the overall creative strategy? Many games use multiple objectives in defining the overall music direction.
3. Create an Asset List
Once you’ve determined your primary and secondary objectives, start planning the music asset list around them. A music asset is any cue that you’ll need for the final game. If you’re basing your music around character themes, then write out which themes you’ll need and when you might use them in the game. Later in this book, we’ll look at how best to determine the lengths of music for particular sequences.

4. Define Interactive Elements in the Score
The music score may contain additional interactive components that allow it to change in real time based on player decisions. In this step of the conceptualization phase, you want to define the parameters in the game that control the various elements in your score. These parameters might include AI behavior such as when an enemy attacks or when you solve a puzzle. These game parameters might be mapped to changes in the music.

See the previous “Synchronization and Integration of Music” section to help define the interactive elements. Throughout this book, you’ll continue to learn about many interactive scoring techniques for use within your game.

COMPOSER PERSPECTIVE

Tetsuya Shibata
When I’m composing music for a video game, the first step involves a meeting with the director where we closely examine and discuss the game’s content, story, and world or setting. Then, we discuss what we would like the user or gamer to get out of this game and come up with several keywords to focus on. For example, the keywords that I was given for Devil May Cry 3 were “an epic sibling fight”; in Devil May Cry 4, they were “love and friendship.”

Especially for those games that have a strong storyline, I use the keywords initially to compose the main theme. Then, I arrange the main melody several times and disperse it here and there throughout the rest of the game. I do this to help build empathy toward the world of the game for the players.

Particularly in my case, before I compose anything I study the entirety of the game and all of the scenes that are shown to the audience and create a blueprint of the music.

I even go abroad for two weeks to observe the voice recording process to get a better understanding of the larger scenes. This helps me develop an even deeper understanding of the emotions and the attitudes of the characters as they interact with each other. I should add a disclaimer here: I have never met another composer who goes to the voice recording sessions, so maybe my method is unique.
5. Create a Supporting Audio Style Guide

A style guide is a tool that many designers use to help focus the direction of a creative element. In art, style guides are used to define the overall look and feel of a project. For a video game, an art style guide is made up of many different pictures representing the unified direction that the game should take.

An audio style guide usually consists of a variety of musical selections that represent musical genres and that help the design team hone in on the final direction of the music. It also helps the team identify criteria for judging whether a final piece is effective.

Generally, when groups listen to music for the first time, if they don’t have a specific criterion on which to judge the music, they use their own music background to judge it. This can be difficult for a composer when presenting new music. For example, perhaps the game designer on the project broke up with his girlfriend while listening to music that had a saxophone in it. This association may have caused the game designer to hate saxophones. If this person is listening to the first presentation of the game music without the criteria in place, he’s going to hate the saxophone no matter what, even if it’s the best instrument for the game. In such a case, it’s important to establish that the game designer doesn’t like saxophone music before the composer begins working on a project.

The audio style guide helps inform the overall direction of the music before the composer begins writing. When each new piece of music is written, it can be compared to the initial style guide to determine whether you’re making progress on your project or whether you need to rethink your initial approach.

Here is a list of criteria that you should establish with a style guide:

- Genre of the music (e.g., classical, techno, jazz)
- Tempo of the music (e.g., fast, slow)
- Instrumentation (e.g., orchestral, synthetic)
- Size of the group playing (e.g., intimate, grand)

You may need to have different style guides for different parts in the game. For example, if the character in a game is jumping around the globe as in Uncharted 2: Among Thieves (2009), each part of the game may need its own style guide.

6. Create an Audio Design Document

After you’ve done all of the work establishing your objectives, asset list, and style guide, it’s important to create a document that you can share with your development team that outlines the overall creative strategy for your game. The audio design document is a compilation of the overall audio strategy for the game in written form. This document usually includes information
about not only the music, but also all of the audio including sound effects (SFX), dialog, and music. In this book we focus primarily on the music aspects. The audio design document should contain information about the following music items:

- Overall creative direction for the style of music
- Music interactivity and implementation outline
- Preliminary asset list outlining the number and lengths of pieces
- The file names and formats that will be used

7. Revise
Throughout game development, you may find that some of your initial assumptions have changed. For this reason, it’s important to update and revise your audio design document as the game progresses. Developing design documents is a standard practice in the game industry, as these documents generally contain all the information critical to the game development team and are considered a blueprint for how the game will be made.

note
On large games, the game publisher, franchise holder, or game developer may not involve the composer in many of the steps outlined in the music conceptualization phase. Frequently these companies employ audio directors or music supervisors who work to establish the overall creative direction of the music before hiring a composer for the project. These individuals then serve as the primary point of contact when conveying preproduction materials to potential or hired composers. Additionally, on large titles, the design documents are almost always drafted at the publisher/developer level and are not the responsibility of the composer.

Analysis and Critique of a Game Score
In this section, we begin to explore what makes a good game score versus a bad one. To analyze game scores in any way, you’ll need to form a language through which you can express your judgment of a composition’s effectiveness within the context of gameplay. Developing this language is a key component in developing the most effective music for your game.

Composition is a purely creative endeavor; therefore analysis of the music is purely subjective. Decisions regarding music are qualitative as opposed to quantitative. Unfortunately, there is no right answer to the question, “Is this music good?” Therefore it’s important for you to establish a set of criteria of what satisfies the needs of the story so that you can best judge the effectiveness and determine whether you’ve reached your goal after the music is written. A style guide
is generally an excellent way to begin narrowing down which kinds of music work for your game. Better yet, it can define what’s not appropriate for your game. In addition to the previous criteria, there are several other ways of determining whether a game score is effective:

- Do you notice the music, or are you enveloped in the storytelling of the world?
- Is the game succeeding in the goals outlined in the audio design document?
- Is the music score seamless, or does it jump from one piece of music to another without a transition?
- Does the music effectively enhance and support the overall story or experience?

Review

To build a language to use when describing video game music, it’s important to understand some of the unique characteristics of the medium of video games. There are many important differences between linear experiences like film and nonlinear experiences like video games. These differences affect how the music is conceptualized, composed, and synchronized in video games. Some of the prominent differences include the following:

- Type of experience
- Length of experience
- Number of plays
- Game mechanics
- Pacing, synchronization, and flow
- Multiple story paths and repeatability
- Technology

Video games use music in different ways, including on a purely emotional level to increase empathy in the player, or as music that can be heard by the player in the game world itself. The important classifications of music within games include these four categories:

- Diegetic music
- Extra-diegetic (or non-diegetic) music
- Music as gameplay
- Player-customized music

Music can be a compelling and useful device to bring players into the game or to enhance the game’s storytelling aspects. Music within video games can have many different functions:

- Setting the scene
- Introducing characters
Signaling a change in game state
Forging an emotional connection to the player
Enhancing narrative and dramatic story arcs

To create successful music for a game, the game development team works with the composer to conceptualize the music. Conceptualization helps define the stylistic, creative, and functional goals of the music before the actual composing begins. The following steps are designed to help you keep focused as you determine which direction is the most effective for your game:

2. Prioritize primary music objectives.
3. Create an asset list.
4. Define interactive elements in the score.
5. Create a supporting audio style guide.
6. Create the audio design document.
7. Revise.

Exercises

1. Analyze a portion of any commercially released game by listing all the music cues and defining them in terms of function and categorization.
2. Broadly talk about any music triggers and music synchronization in any commercially released title.
3. Perform a critical analysis of the music in any commercially released game to determine its effectiveness.
This page intentionally left blank
Arcade machines, continued
social arcade games, 92–93
tape playback in 1950s for, 88
Archives, 273, 301, 314
Arrangement alteration, composer tools for, 49
Arranger, 284–286
Art form, games as, 3
The Art of Fugue (Bach, 1740s), 110–111
Articulation, aleatoric composition, 234
Artificial intelligence (AI) states, 19, 428
Asheron’s Call 2 (2002) video game, 50, 111, 195
Assassin’s Creed III (2012) video game, 23–24, 65, 196
Assessment of music, by client, 75–76
Asset list, 30, 382–383
Assets
management systems for, 313–314
naming conventions for, 314
organization, revision, and backup of, 326–327
in spotting process, 55–56
tracking reviews and feedback on, 315
Assurances section, project contract, 358
Asteroids (1979) video game
increasing dramatic tension with music, 26
multiple circuit boards used in, 89
tempo variation in, 47, 212
Atari 2600 (1977) game console, 93–94
Atmosphères (Ligeti, 1961), 117
Attack time, envelope of sound, 180
Attorney Fees section, project contract, 358, 418–419
Attract sequence, video game structure, 27
Audible pops, music loops, 132–133
Audience
best film scores not noticed by, 22
diversity of game-playing, 3
how repetition kills suspense, 22–23
intended for this book, 5–6
networking to find your, 393
Audio click tracks, 288–290
Audio compression, 302–303
Audio design document, 31
Audio directors
assessing music written by composer, 75
composer collaboration with, 311
creating overall creative direction of music, 32, 73
hiring composers, 32
as in-house employees, 341
supervising game production, 71
team workflow and, 77
Audio editing
crossfading for, 138–139
cues by live musicians, 292–293
of loops, 131–133
music tempo, meter, and performance, 135–136
reverb tails and long decays, 136–138
transient and legato elements, 135
waveform shape and direction, 134
zero crossing points, 133–134
Audio editor, testing finished loops, 130
Audio integration specialists, 249, 310
Audio Interchange File Format (AIFF), 303, 428
Audio middleware. See also 3D middleware
adding musical stingers in, 173
auditioning loops directly in, 277
automatic loop compensation in, 140
composer interface as editor in, 66
compressing embedded samples in MOD files, 272
creating DSP effects in, 182
creating scores in, 251–252
creating transition matrixes in, 167
cue switching in, 45
customized branching of cues in, 147
decision to use, 249
delivering horizontal resequencing files with, 152
DSP options, 321
dynamic reharmonization in, 224
implementation of, 320
integrating game audio formats, 305
intelligent music engines of, 46, 252–254
interactive techniques of, 251
limitations of, 261
looping within, 254
mixing audio while game is running, 301
overview of, 102–104
resources on, 444
reverb tails in, 138
review, 256–257
simplifying compositions with, 248–251
sound mixing with, 320
synchronized transitions in, 168
tempo and phrase synchronization in, 217
variation and randomization with, 255–256
Audio-only conferences, 397
Audio-related questions, estimates, 367–368
Audio signal processing, 182
Audio style guide, music conceptualization, 31
Audio teams
as audience for this book, 6
roles within, 71
Audio Video Interleaved (AVI) format, 304
Audiosurf (2008) video game, 26, 194
Auditioning
finished loops, 139
loops in your sequencer, 277
transitions between cues, 278
Automated compositions. See Algorithmic and
generative music systems
Avatar, defined, 428
Awards section, project contract, 358
Chord mapping, 50, 224–225
Chroma (2014) video game, 193
Chrono Trigger (1995) video game, 94
Cinematic
defined, 429
music and gameplay structure, 57–58
video game structure, 27
Circus music, 39–41
Cirque de Soleil, 40
Clancy, Tom, 225–226
Clapping Music (Reich, 1972), 119
Cleopatra pinball machines, 88
Client application, middleware engines, 254
Closed systems (games on rails), 329–330
Cloud computing, 106–107, 317
Coin-operated machines
dawn of, 87
gambling and slot machines, 87–88
musical machines, 87
novelty machines, shooting and racing games, 88
pinball machines, 88–89
Colecovision game console, 94
Collaboration
composer, 72–74
developer, 381–382
technology, 79–80
Combat-triggered musical interactivity, 330–331
Commit, version control, defined, 80, 314
Communications, with developers, 382
Companies, music production, 346
Compensation, composer, 357, 361
Compensation, musician, 293–296
Competition, dealing with, 414–415
Composers
assessing music of, 75–76
awareness of sound effects in design, 161
biographies of, 448–451
core tools. See Tools, composer
defining tone and voice of game, 73–74
finding bugs, 329
horizontal resequencing and, 151–152
mapping schedule to milestone dates, 326
music framework defined by, 310–311
process of finding and hiring, 71–72
rule sets for generative music, 240
team workflow and, 77
using DAWs. See Digital audio workstations (DAWs), workflow
vertical remixing and, 163
Composers, career of
contract negotiation. See Contract negotiation
contracts and agreements. See Contracts and agreements
day in the life, 336–337
estimates. See Estimates
as freelancer, 342–344
game development, 338–339
game development education, 339–340
as in-house composer, 341
internships as entry points, 346–347
music libraries, 348–349
music production companies, 346
as part-time contractor, 342
reiterating your background in estimates, 372
review, 349–350
size of industry, 337–338
skill sets required, 344–345
Composers, challenges of. See also Traits of successful composers
competition, 414–415
expenses and budgeting, 416–417
handling rejection and failure, 415–416
legal fees, 417–418
overview of, 405
review, 418–419
setting expectation and goals, 406–407
taxes, 417
Composition techniques
horizontal resequencing. See Horizontal resequencing
middleware for advanced. See Audio middleware
music as gameplay. See Music as gameplay
music loops. See Music loops
skill of composer in, 344
sound design. See Sound design
vertical remixing. See Vertical remixing
writing stingers. See Stingers
writing transitions. See Transitions
Compression
audio file formats, 303–304
audio vs. file, 302
balancing with quality, 315–318
defined, 429
due to memory constraints, 302
overuse of, 182
tempo changes with prerendered audio, 214
video file formats, 304
Computer, teaching rules of music to, 262
Conceptualization, music, 29–32
Concerto for Orchestra (Carter, 1969), 117
Concord Sonata (Ives, 1919), 112
Conductor, live recordings, 284–286
Conferences, video game
networking at, 395–397
resources for, 441
Confidentiality section, project contract, 358
Connection, creating loops from cues, 130
Console games, 17
Contact (1933) pinball machines, 88
Content creators, players as, 3–4
Continuous tempo changes, 213
Contract negotiation
additional rights and opportunities, 386–387
by agents, 401–402
by developers, 381–382
guaranteed work on derivative products, 388
licensing, 386
music publishing and performance royalties, 387–388
offering discounts for multiple projects, 385–386
overview of, 379
renegotiating estimate, 382–383
review, 389
royalty arrangements, 383–385
screen and box credits, 388–389
working for less than your worth, 380–381
Contractors, part-time, 342
Contracts and agreements
demos, 360
debits, 360–361
employment contract, 359–360
federal forms, 361–362
legal side of composing, 352
music rights and work for hire, 354–356
non-disclosure agreements, 352–354
project contract, 356–359
review, 363–364
when things go wrong, 360–361
when to pay for legal fees, 418–419
Contrast (2013) video game, 196
Control inputs
improvisation vs. real time composition
with, 39
interactive game music with, 36–37, 41
mapping beat matching to buttons, 190
mapping to music, 243
musical interruption with, 167–168
overview of, 42–43
setting up, 65–66
use of term in this book, 43
vertical remixing’s over-reliance on, 163
Controllers, player
beat matching games, 190–191
music mixing games, 192
performance simulation games, 191
Conventions, used in this book, 11
The Conversation (1974) movie, 176
Copyright laws, 353–356
Corporation, income taxes, 361
Costs, in estimates
calculating for one minute of music, 376
knowing how much to charge, 375
renegotiating, 383
scaling to how much client can afford, 376–377
Counter-melodies, game composition, 242
Courage, as trait for success, 414
Cover letter, for estimates, 370–371
Cover sheets, standing out in, 400
Cowell, Henry, 113–114
CPU (central processing unit), 315–318, 429
CPU load
defined, 429
stereo voices increasing, 318
tempo changes of prerendered audio and,
213–214
The Craft of Musical Composition (Hindemith, 1937), 114
Creative vision
assessing music for, 75
defining tone and voice of game, 73–74
importance of in estimates, 371
for large scores, 324–325
skill of composer in, 344
in spotting process, 56
writing music for someone else’s, 72–73, 336, 410
Credits
hiring composers by reviewing, 72
negotiating contract for, 388–389
in project contracts, 358
Crossfading
branching scores compared to, 150
connecting two pieces of music with, 166–167
cue switching with, 45
defined, 429
disadvantages of, 167
editing loops with, 138–139
in horizontal resequencing, 145–147
pros and cons of, 162
transitional scores vs., 147–148
vertical remixing vs., 157
CRTs (cathode ray tubes), circuit board computer
games, 89
Crytek format, 305
Cue sheets, 56–58, 430
Cue switching, composer tools for, 44–45
Cues
adding variety with, 130
audio middleware creating complex, 248
audio middleware customizing branching
of, 147
audio middleware with time variation for, 256
auditioning transitions between, 278
branching scores and, 149–150
constructing transitions, 169–170
crossfading scores and, 145–147
defined, 37, 144, 429
final mixing/editing of live recordings, 292–293
horizontal resequencing based on, 144–145, 151, 278
individuals responsible for approving, 73
Cues, continued
organizing, 279
randomizing, 255
session flow and practices using, 291
session preparation and planning using, 286–287
in spotting process, 56
structuring interactive music, 61
transitional scores bridging, 148, 166
underestimating time to implement, 55, 251
vertical remixing based on, 156–159

Customizing music solutions
design and specification, 264–265
implementing into game, 265
limitations of interactive techniques, 261
overview of, 259
prototyping idea, 263–264
review, 265–266
selling idea to developer, 262
solving problems with, 260
teaching computer rules of music, 262

Cut-scene. See Cinematic
Cutoff frequency, 179, 430

D
DAC (digital-to-analog converters), arcade
machines, 91, 93
Dance Central (2010) video game, 189, 190
Dance Dance Revolution (1998) video game
as beat matching game, 190
music as gameplay in, 25, 188
as music game, 93, 189
player controller for, 190–191
DAWs. See Digital audio workstations (DAWs)
Daytona (1993) racing game, 93
Dead Space (2008) video game, 113, 176
Dead Space II (2011) video game, 231
Deal breaker, reliability as, 410
Decay time parameter, envelope of sound,
180–181
Decibel (dB), 430
Defender (1980) video game, 89–90
Delivery
creating estimate, 370
of horizontal resequencing files, 152
Demos
choosing composer using, 72
defined, 430
delivering with estimate, 372
exporting sequence to another DAW with, 290
music rights and, 360
proposing your talents and fees with, 366
submitting multiple tracks, 74
testing branching scores, 150
testing crossfading scores, 146–147
testing transitional scores, 148

Derivative products, negotiating contract for
guaranteed work on, 388
Desert Demolition (1995) video game, 61
Designers, as audience for this book, 5
Destination music
constructing transitions, 169–171
crossfading from source music to, 166–167
defined, 166
musical interruption and, 167–168
transitioning from source music to, 167
Developer subcontracts, 356
Development, game, 338–339
Development team, game
assessing music, 75–76
audio teams, 71
choosing composer, 71–72
collaborating, 72–74
defining music framework, 310–311
defining tone and voice of game, 73–74
delivering horizontal resequencing files to, 152
developing custom music engine, 263–265
game production methodology for, 312–315
interactive music and, 160
overview of, 69–70
preparing for production. See Production
review, 81–83
this book intended for, 5–6
understanding, 70–71
Devices, overall media storage for, 317
Dialog
as audio team role, 71
checking volume of, 320
costs associated with game, 339, 371
determining how much music to write, 374
layer anatomy and, 161
mixing music and, 292, 300
placement in 3D universe, 306
vertical remixing memory usage and, 157
Diamante, Vincent, 250, 448
Diegetic music
defined, 430
knowledge-based systems supporting, 240
realism with, 23–24
surround mixing for, 306
telling stories with, 195–196
Dig Dug (1982) video game, 91
Digital audio workstations (DAWs)
audio middleware not substitute for, 252
defined, 430
editing loops in, 130
exporting sequence to other, 290
file formats, 302
for horizontal resequencing, 151
MIDI triggering high-quality libraries in, 205
mixing in, 300
testing finished loops, 130
testing vertical remixing, 163
Digital audio workstations (DAWs), workflow
choosing sequencer, 270–271
getting started, 270
MOD file sequencing, 272
overview of, 269
planning interactive score, 276–279
review, 280–281
sequencer setup and track layout, 273–276
sequencing Standard Midi Files, 272
transitioning between game and, 279–280
Digital production skills, of composers, 344
Digital scoring, 1970s pinball machines, 88
Digital signal processing (DSP) effects
audio signal processing as, 182
in composer's toolbox, 47–48
creating unusual sounds with, 184–185
effect manipulation using, 119
mixing music and real-time, 320–321
music as gameplay using, 195
Digital-to-analog converters (DAC), arcade
machines, 91, 93
Digital tools, included with this book, 9–10
Digitized audio, CD-ROM-based games, 96

Diner Dash
(2004) video game, 48, 111

Direct relationships, control inputs with, 42–43
DirectMusic middleware engine, 49–50, 224, 430
Discount pricing, for multiple projects, 385–386
Disney films, Mickey-Mousing in, 61
Disputes, contract, 361
Distortion, DSP effects, 48
Distribution, modern gaming, 106–107
Dither, 430
DJ Hero
(2009) video game, 192
DLS instrument standard. See Downloadable
sample bank (DLS)
Documentation, 310–312
Donkey Kong Country
(1994) video game, 94
Donkey Konga
(2003) video game, 189
Downbeats, editing loops to tempo, 135–136
Downloadable games, on-board media
storage, 317
Downloadable sample bank (DLS)
defined, 430
emergence as standard, 104, 203
overview of, 207
PC sound cards for, 99
Dragon's Lair
(1983) video game, 91
Dramatic story arcs, music, 27
Dropbox, sharing documents, 79
Drum circles, 38, 41
DSP. See Digital signal processing (DSP) effects
Duchamp, Marcel, 112
Dynamic mixing, 46–47
Dynamic music manipulation, advanced
building event-driven sequencer, 225–226
embellishment and fills, 222–223
ensemble, rhythmic, and style alteration, 221–222
melodic manipulation and reinterpretation, 221
more expensive options, 220
motivic elements in running scores, 223
overview of, 219
reharmonization and chord mapping, 224–225
review, 226–227
Dynamic range, DSP effects within game, 48
Dynamics, aleatoric composition, 234

E
E3 Entertainment Expo, Los Angeles, 396
Earthworm Jim
(1994) video game, 94
Ebcioglu, Kemal, 240
Ecco the Dolphin
(1992) video game, 94
Editing. See Audio editing
Education, 339–340, 346
Effect application, with DSP, 47–48
Eight-track tapes, 88
Einstein on the Beach
(Glass, 1975), 119
Electromechanical games. See Coin-operated
machines
Electronic sound, 1970s pinball machines, 88
Electroplankton
(2005) video game, 118, 189, 193
The Elephant Man
(1980) movie, 176
Embellishments, synchronizing musical, 222
Emotions
altering intensity with vertical remixing. See
Vertical remixing
benefits of closed systems, 329
changing music based on, 20
changing with branching scores, 149
extra-diegetic music enhancing, 21–22
interactive music enhancing, 36, 61
mapping for large scores, 328
pacing of, 19
real-time composition for silent films and, 39
theme music enhancing, 27
understanding context for game score, 59–60
Employees, income taxes, 361
Employment contract, 359–360
End transitions, 172
EndWar
(Clancy) video game, 225–226
Ensemble
dynamically changing instrument, 221–222
skills for live recordings, 284–286
Entrepreneurship
composer skill in, 345
of composers, 336–337
of freelance composers, 343
as trait for success, 411
Envelopes, shaping volume of sound, 179–181
Equalizers (filters), 48, 178–179, 430
Equipment, using income to buy, 415–416

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>Estimates breaking music down into components, 372–374</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>determining how much music to write, 374</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>knowing how much to charge, 375–377</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>organization of, 370–372</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>overview of, 365</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>proposing your talents and fees, 366</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>psychology of bidding, 369–370</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>questions for developer, 366–368</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>renegotiating, 382–383</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>review, 377–378</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>as sales pitch, 368–369</td>
<td></td>
</tr>
<tr>
<td>Erratum Musical (Duchamp, 1913), 112</td>
<td>working for less than you are worth, 380–381</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>Events. See Gameplay events</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>Event-driven sequencers, 225–226</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>Events. See Gameplay events</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>Exporting final elements from recording sessions, 291</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>loops, 276–277</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>master files, 301</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>Exporting audio to game engine</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>bouncing and exporting master files, 301</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>file formats and compression, 302–305</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>mixing music for games, 300–301</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>overview of, 299</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>review, 307</td>
<td></td>
</tr>
<tr>
<td>Études de Bruits (Schaeffer, 1948), 114–115</td>
<td>surround mixing within games, 305–306</td>
<td></td>
</tr>
<tr>
<td>Extra-diegetic music (underscore)</td>
<td>defined, 21, 430</td>
<td></td>
</tr>
<tr>
<td>Extra-diegetic music (underscore)</td>
<td>enhancing emotions, 21–22</td>
<td></td>
</tr>
<tr>
<td>Extra-diegetic music (underscore)</td>
<td>surround mixing within games, 306 using sound, 176</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Fading layers, art of, 160–161</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Failure, handling, 415–416</td>
<td></td>
</tr>
<tr>
<td>“The Fat Man” (George Sanger), 18–19, 203, 450</td>
<td>Federal forms, 361–362</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>ability to receive, 78, 345, 410</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>assessment of music and, 75</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>composer being proactive on, 313</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>creating mechanism for, 325</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>creating revisions from, 410–411</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>performance, 192</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>tracking asset review and, 315</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>writing down specific, 292</td>
<td></td>
</tr>
<tr>
<td>Feldman, Morton, 117</td>
<td>Fighting games, multiplayer arcade, 92–93</td>
<td></td>
</tr>
<tr>
<td>File formats</td>
<td>accepted by game engines, 302</td>
<td></td>
</tr>
<tr>
<td>File formats</td>
<td>audio compression, 302–304</td>
<td></td>
</tr>
<tr>
<td>File formats</td>
<td>containers, 304</td>
<td></td>
</tr>
<tr>
<td>File formats</td>
<td>testing loops, 140</td>
<td></td>
</tr>
<tr>
<td>File formats</td>
<td>video compression, 304</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td>asset management systems for, 313–314</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td>delivering horizontal resequencing, 152</td>
<td></td>
</tr>
<tr>
<td>Fills, synchronizing, 222–223</td>
<td>Filters (equalizers), 48, 178–179, 430</td>
<td></td>
</tr>
<tr>
<td>Final Fantasy series (1987–2010) video game</td>
<td>cue switching using crossfading, 45</td>
<td></td>
</tr>
<tr>
<td>Final Fantasy series (1987–2010) video game</td>
<td>establishing location using music, 26</td>
<td></td>
</tr>
<tr>
<td>Final Fantasy VII (1997) as best one, 96</td>
<td>Final Fantasy XII (2009) transitional score, 148</td>
<td></td>
</tr>
<tr>
<td>Final Fantasy VII (1997) as best one, 96</td>
<td>musical innovation on SNES, 94</td>
<td></td>
</tr>
</tbody>
</table>
Final Stereo Mix audio track, 276
Finances, handling composer, 416–418
First-party developers, 70
First-person shooter (FPS), 193, 430
First Playable Prototype, 54–55
FLAC, 430
Flash format, game audio, 305
Flipper scoring, in (1947) pinball machines, 88
The Floor Is Jelly video game, 264
Flow, adaptive score for individual, 19
Flower (2009) video game, 250
FM sound chips, 1984 arcade games, 91–92
FM synthesis, 89, 94
Fmod by Firelight. See also Audio middleware, 431
FMV (Full-Motion Video), 431
Folder structure, 327
Foley, 345, 431
Follow-through, large-scale music development, 328–329
Form, aleatoric performance technique, 233
Formant, 431
Formats
 - compression, 302–304
 - container, 304
 - instrument, 202–204, 304–305
Forms, common musical, 128–130
Fountain (Duchamp, 1917), 111
FPS (first-person shooter), 193, 430
FRACT OSC (2014) video game
 - algorithmic composition in, 238
 - authoring with audio middleware, 261
 - control inputs, 42
 - musical objects in 3D space, 114
 - solving musical puzzles, 193
Fragmentation, 117–118
Frames Per Second (FPS), 431
Freelance composers, 342–344
FreQuency (2001) video game, 189, 192
Frequency-based effects, 182
Frequency, low-frequency oscillator and, 181
Frogger (1981) video game, 45, 90
Full mix audio tracks, 288–289
Full-Motion Video (FMV), 431
Future cloud computing, 106–107

G
Gambling machines, history of, 87–88
Game Audio Education Curriculum Guidelines, 340
Game Audio Network Guild (GANG), 394, 398, 431
Game conferences
 - networking at, 395–397
 - resources for, 441
Game consoles
 - 128-bit and DVD-ROM-based, 96–97
 - cartridge-based, 93–95
 - CD-ROM-based, 95–96
 - overview of, 93
Game design
 - defined, 431
 - music playback influenced by, 36
 - taught at universities, 339–340
Game design document (GDD), 54
Game designer, 75–76
Game developer organizations, 397–398
Game developers
 - defined, 431
 - estimates as sales pitches to, 368–369
 - game development and, 338
 - game development education and, 339–340
 - having music assessed by, 75–76
 - networking with, 394–395
 - overview of, 70
 - project contract with, 356–359
 - pushing envelope for music quality, 73
 - questioning to create estimate, 366–368
 - selling custom music solution to, 263–265
 - successful relationships with, 392
Game Developers Convention (GDC), 337, 396, 431
Game development
 - learning music aspect after, 43
 - production timeline, 54–55
 - team. See Development team, game
Game directors, 75–76, 409–410
Game engines
 - audio formats, 304–305
 - defining music framework for, 310–311
 - exporting audio to. See Exporting audio to game engine
 - guidelines for music formats, 302
 - overview of, 106
 - primitive for changing audio levels, 300–301
 - resources, 445
 - testing finished loops in, 139–140
Game mechanics
 - defined, 431
 - music as. See Music games
 - overview of, 19
 - skill of composer in, 345
 - with tight synchronization, 216
Game music cannon
 - 1970–1989, 438
 - 1990–1999, 438–439
 - 2010–2013, 440
Game production timeline, 54–55
Game publisher, 70, 431
Game-related questions, estimates, 366–367
Game Sound: An Introduction to the History, Theory, and Practice of Video Game Music and Sound Design (Collins), 87
Game testing. See Testing
Gamemaker format, game audio, 305
Gameplay
 defined, 431
 music and gameplay structure, 57
 video game structure, 27
Gameplay events
 dramatic, in games with tempo synchronization, 216
 tempo synchronization of, 212
 varying tempo based on, 212–213
Gameplay structure
 break down of, 27
 music and, 57–58
 skill of composer in, 345
 in spotting process, 56
Games
 popular culture and, 2–4
 scoring for, 4–5
 structure of video, 27
Games for Change Conference, New York, 396
GANG (Game Audio Network Guild), 394, 398, 431
GDD (game design document), 54
General legal items section, project contract, 358–359
General MIDI Instrument Set
 defined, 431
 disadvantages of, 205
 play back on game console, 202
Generative music. See also Algorithmic and generative music systems, 239
Genres, diversity of gaming, 3
Giacchino, Michael, 96, 176
Gig (job)
 defined, 431
 hiring contractor to arrange musicians for, 295
 musician fees for carting instruments to, 294
 musician fees for use of samples in, 183, 232
 using demos to obtain, 360
 using estimate as sales pitch to get, 368–369
Glass, Philip, 119
Glossary, for this book, 428–436
Goals, realistic job, 406–407
Goals, video game scores
 interactive music throughout, 61
 outline emotional context/narrative arc, 59–60
 overview of, 58–59
Gold Master Candidate, 55
Golden age of arcade machines, 91–92
GoldenEye 007 (1997) video game, 95
Google Adwords, 403
Google Docs, 79
Gorgar (1979) pinball machine, 88
Grand Theft Auto video game series, 23–24, 196, 330
Grandia (1999) video game, 96
Graphic notation, Feldman, 117
Graves, John
 aleatoric performance techniques of, 118, 231
 creating own library of sounds, 176
 use of serialism, 113
Grim Fandango (1998) video game, 196
Guaranteed work on derivative products, negotiating contract, 388
Guitar Hero (2005) video game
 interactive music in, 36
 music as gameplay in, 25
 as performance-based music game, 189
 as performance simulation game, 191
Gun Fight (1970) coin-operated shooting game, 88
Gyruss (1983) video game, 91

H
H.264, video compression standard, 304
Halbreicht’s Law, 381
Halo (2001–2013) video game series, 27, 162
Handheld games, 100, 374
Harmonic framework, 431
Harmony, music games of, 189
Harmony
 with branching scores, 149–150
 changing with improvisation, 38
 composer tools for, 49–50
 dynamic reharmonization using chord mapping for, 224–225
 rules of composition, 241–242
 between sound effects and music, 176
 stingers and, 173
 synchronized crossfading scores for, 146
 for transitions, 168, 170–171
 using horizontal resequencing, 151
 vertical remixing and, 156–157
Haunted House coin-operated game, 88
High pass filter (HPF), 178–179, 431
High points, outlining emotional, 59–60
Hindemith, Paul, 114
History. See Experimental music, history of; Video game composition/music, history of
Hitman (2000) video game series, 163
Hooks, 28, 319–320
Hopkins, Jon, 73
Horizontal resequencing
 branching scores, 149–150
 composing for, 151–152
 creating successful interactive score with, 278
 crossfading scores, 145–147
 defined, 144, 432
 overview of, 46, 143
 playing theme using, 223
 prerendered audio dependent on, 220
 pros and cons of, 62–63, 162
 randomization of musical phrases in, 111
review, 152–153
sequencing music in real time, 144–145
transitional scores, 147–148
using vertical remixing at same time as, 158
vertical remixing vs., 157
Horror genre, video games, 96
Houge, Ben, 225–226, 448
HTML5 format, game audio, 305
Humility, as trait for success, 412

I Am Sitting in a Room (Lucier, 1969), 119
I-Ching, Cage’s use of, 115
IASIG (Interactive Audio Special Interest Group), 340, 394, 398, 432
IGDA (International Game Developers Association), 394, 398, 432
Imagination, composing adaptive score, 44
Implementation
allocating time for programming, 318–320
balancing compression with quality, 315–318
composer seeing music through to, 374
costs associated with game, 339
defining music framework, 310–311
game production methodology, 312–313
managing assets and files, 313–314
mixing and real-time DSP, 320–321
overview of, 309
process of, 311–312
review, 321–322
scheduling and milestone delivery, 313
skill of composer in, 344
tracking asset review and feedback, 315
Improvisation, 37–39
iMuse, 99, 432
In C (Riley, 1964), 118
In-house composers, 340, 344
In the pocket, 136
Indemnification section, project contract, 358
Indeterminate music, 40–41, 432
Indie games, 106
Indiecade, game conference Los Angeles, 396
Indirect relationship, control inputs with, 42–43
Individual (sole proprietor), income taxes for, 361
Individually controller layers, vertical remixing, 159
Industry, size of video game, 337–338
Infinite reverb, for sound design, 184
Informational interviews, 395
Initial development stage, game production, 55
Initial idea, game production, 55
Innovation, aleatoric, 230
Input monitoring, 275
Instrumentation
adding variety with optional, 112
aleatoric composition using, 234
alteration of, 49
in Bach’s The Art of Fugue (1740s), 110–111
defining tone and voice of game, 74
designing user interactive performance, 41–42
editing loops in live, 136
formats for, 202–203
generating new sounds with live, 183
in modern DAWs, 205
modifying ensemble and rhythm, 221–222
preparing for live recordings, 284–286
rules of game composition, 242
session preparation and planning, 286–287
use of virtual, 206–208
working with low bit rates, 305
Integration
of adaptive scores, 44–45
in large-scale music development, 328–329
synchronization of music and, 28
Intellectual property, 352–354, 432
Intelligent music engines
audio middleware, 248
defining, 46
features of middleware, 252–254
musical form adaptation and, 45–46
superimposing motivic elements, 223
Intellivision (1978) game console, 93–94
Intensity
altering with vertical remixing. See Vertical remixing
with transitions, 170
Interaction
defined by game mechanics, 19
uniqueness of video games, 16
Interactive Audio Special Interest Group (IASIG), 340, 394, 398, 432
Interactive elements, conceptualizing music, 30
Interactive music. See also Adaptive music
control inputs, 42–43
cue switching and musical form adaptation, 45–46
DSP and effect application, 47–48
development team and, 160
dynamic mixing, 46–47
estimating cost of, 373–374
experimental compositions as, 40–41
harmonic approach, melodic adaptation, note manipulation, 49–50
hearing mechanics of, 65
improvisation as, 37–38
instrument design/user interactive performance as, 41–42
instrumentation and arrangement alteration, 49
minimizing repetition problem with, 19
overview of, 35
performance-based dynamics/tempo changes as, 40
Interactive music, continued
publisher tools for, 145
real-time composition as, 38–40
review, 50–51
scoring methods, 4–5
stinger and musical flourish additions, 48–49
structuring throughout gameplay, 61
techniques of middleware for. See Audio middleware
understanding, 36–37
tempo and rhythmic manipulation, 47
International Game Developers Association (IGDA), 394, 398, 432
Internet games
amount of music to write for, 374
downloadable games and media storage for, 317
online network storage for, 318
overview of, 101
Internships, as entry points, 346–347
Interruptions in game, for storytelling, 18–19
Introduction movie, game structure, 27
Introduction to this book
companion website, 10
conventions used, 11
digital tools, 9–10
games and popular culture, 2–4
intended audience, 5–6
overview of, 1–2
scoring for games, 4–5
structure, 6–9
iOS, 305, 317
Iterative process
creating scores with middleware, 252
mixing requiring, 301
scoring as, 270
iTunes playlist, 144
Ives, Charles, 112
Iwadare, Noriyuki
biography of, 448
epic orchestral score in Grandia, 96
perspectives of, 74, 409
Iwai, Toshio, 189

J
Janney, Christopher, 42
Jaws (1975) movie, 22
Jazz, 38, 41
Job conversions, from internships, 347
Joker Poker pinball machine, 88
Journey (1983) video game, 73, 91

K
Kaida, Akari
biography of, 449
perspectives of, 43, 271, 408
Karpman, Laura, 60–61, 449
Kawaguchi, Hiroshi, 92
Keino, Yuriko, 91
Kingdom Hearts video game series, 92
Klavierstücke XI (Stockhausen, 1956), 117
Knowledge-based musical intelligence, 240–242
Konami, music games of, 189
Kondo, Koji, 94–95, 341
Koshiro, Yuzo, 208, 449
Kung Fu Panda video game, 60
Kyd, Jesper, 163

L
L.A. Noire (2011) video game, 23–24, 196, 330
Large-scale music development
challenges of, 329–331
establishing unique creative direction, 324–325
integration and follow-through, 328–329
mapping overarching emotional arc, 328
organization, revisions, and backups, 326–327
review, 331–332
unification and planning, 325–326
Laserdisc games, 91
Layered scores. See also Vertical remixing
defined, 432
session preparation and planning, 287
tendency to overwrite in vertical remixing, 163
Layered variation, audio middleware, 255–256
Legal fees, handling, 417–418
Legalities, of composing, 352
Legato elements, editing loops with, 135
Legend of Zelda (1986–2013) series, 27
Legend of Zelda: Ocarina of Time (1998)
control inputs, 43
instruments in UI and game world, 195
music as gameplay in, 188
music innovation, 95
Legend of Zelda: Skyward Sword (2011) video game, 49, 111, 222
Length of music, 17–18, 55
Level editors, game engine
implementing hooks, 319
music control inputs and, 65–66
overview of, 66
placing sounds in game world or level, 310
Level select screens, video game structure, 27
Levels, 194–195, 216
LFE (low-frequency effect), 306, 432
LFO (low-frequency oscillator), 181–182, 432
Liberty Bell slot machine, 87
Libraries of code, 102
music. See Music libraries
sound. See Sound libraries, creating
Licenses
middleware engine, 249
for music from popular artists, 189
renewing between client and composer, 386
for rights to music for set time, 385–386
for use of your music, 354, 356
for work on game platforms, 338
Ligeti, György, 116–117, 230
Likeness section, project contract, 358
Limbo (2010) video game, 176
Live recordings
adding after basic sequencing, 275
elevating score with live musicians, 284
exporting sequence to another DAW, 290
final mixing and editing, 292–293
musicians and, 293–296
of new sounds, 183
overview of, 283
preparing, orchestrating and arranging, 284–286
review, 297–298
sampling session for new sounds, 183
session flow and practices, 291
session preparation and planning, 286–289
for sound design, 183
time management, 292
Loading and Transition Screen, video game structure, 27
Location within scene, music challenges of, 330
Logic, 128
Long decays, 136
Long delays, 137
Loop test track, 277
Loops. See Music loops
Lossless compression, 303, 432
Lossy compression, 303, 432
Lost World: Jurassic Park (1997) video game, 96
Low-frequency effect (LFE), 306, 432
Low-frequency oscillator (LFO), 181–182, 432
Low pass filter (LPF), 178–179, 432
Low points, emotional, 59–60
LPF (low pass filter), 178–179, 432
LucasArts iMuse system, 45
Lucier, Alvin, 119
Lunar Lander (1979) video game, 89

M
Mad Maestro! (2001) video game, 192
Main Menu, video game structure, 27
Main production begins, game production process, 55
Mappy (1983) video game, 212
Marble Madness (1984) video game, 92
Mario & Luigi: Superstar Saga video game series, 92
Markers
delivering horizontal resequencing files, 152
motivic elements, 223
tempo, 212
Mass Effect 2 (2010) video game, 23, 156, 159, 196
Massively multiplayer online roleplaying games (MMORPGs), 17–18, 433
Master agreement, developer subcontracts, 356
Master files, bouncing and exporting, 301
Master music asset list, 312
Master’s degree programs, game audio, 340
Materials, music conceptualization, 29
Mathis de Maler (Hindemith, 1938), 114
Matrixes, transition, 167
Max software by Cycling74, 263, 302, 433
McCreary, Bear, 22–23, 449
Medal of Honor (1999) video game series, 96, 176
Mega Man X (1993) video game, 94
Melody
branching scores and, 149–150
composer tools for adaptations to, 49–50
fading layers in and out and, 161
improvisation changing, 38
instruments in UI and game world, 195
manipulation/reinterpretation of, 221
nonsynchronized scores and, 146
rules of game composition, 242
transitional scores and, 148
with transitions, 168
vertical remixing and, 156–157
Memory constraints
balancing compression with quality, 315–316
on-board working RAM, 317
compressing audio files for, 302
downloadable games and on-board storage, 317
physical removable storage for, 316
sequencing MOD files, 272
Memory footprint, 302, 315–318
Memory matching, in music games, 192–193
Meter, editing loops, 135–136
Metro: Last Light (2013) video game, 27
Metroid (1986) video game, 94
Mickey-Mousing, 61, 216, 433
Microphone bleed
customizing audio click tracks to avoid, 287
defined, 433
from instrument groups, 287, 296
vertical remixing to avoid, 293
Middleware
3D. See 3D middleware
audio. See Audio middleware
defined, 433
MIDI file/MIDI sequence. See Standard MIDI File (SMF).
MIDI Manufacturers Association (MMA), 202
Miles Sound System middleware engine, 433
Milestone dates, 78, 313, 326
Mitsuda, Yasunori, 94
Mitsuyoshi, Takenobu, 93
Mix-minus, 288–289
Mixing music
for games, 300–301
real-time DSP and, 320–321
for surround systems in games, 305–306
Mizaguchi, Tetsuya, 25, 189
MMA (MIDI Manufacturers Association), 202
MMORPGs (massively multiplayer online roleplaying games), 17–18, 433
Mobile games, 101–102, 374
MOD files
defined, 433
development of, 203
PC gaming, 97–98
sequencing, 272
tempo changes with, 215
MOD tracker, 272, 433
Mode, defined, 433
Modern gaming platform, evolution of, 105–107
Money Honey slot machine (1964), 88
Monkey Island 2: LeChuck's Revenge (1991) video game
advanced cue switching in, 45
dynamically changing ensemble, 222
instrumentation alteration in, 49
instrumentation creating randomness in, 111
Morricone, Ennio, 22
Mortal Kombat (1992) video game, 92
Motifs (themes), musical
defined, 37
estimating cost of, 373
renegotiating estimates by swapping out, 383
rules of game composition, 242
in running scores, 223
MOV, container format, 304
Mozart, Amadeus, 111–112, 238
MP3 format, 303–304, 433
MPEG2/M2V format, 304
MPEG4 format, 304
Multichannel-broadcast WAV Files, 152, 214
Multiple story paths, minimizing repetition, 20
Multitracking, 287, 433
Music
breaking down into components on estimate, 372–374
budgeting for sound and, 3
costs associated with game, 339
future of game assets, 424
how much music to write for, 374
popularity of orchestral game, 2
programming engines based on, 239
scoring for games, 4–5
in spotting process, 56
storytelling with. See Music storytelling in games
writing for person signing check, 409–410
Music as gameplay
adaptation, 194–195
approaches in other games, 196
construction, 194–195
diegetic music, 195–196
engaging players, 188
instruments in interfaces and game world, 195
level design, 194–195
in music games. See Music games
overview of, 24–25, 187
review, 196–197
Music creation games, 193
Music cues. See Cues
Music frameworks, 310–312, 319, 329
Music games
audio middleware limitations, 261
beat matching, 190–191
memory matching in, 192–193
music as gameplay in, 188
music creation and construction, 193
music mixing and adaptivity, 192
overview of, 188–190
performance simulation, 191
Music libraries, 348–349
Music loops
art of seamless, 126–128
creating extra audio channel for cutting, 279
cues for seamless, 279
within middleware, 254
musical construction, connections and cadence, 128–130
musician compensation for recording, 295
nonsynchronized and synchronized, 127
overview of, 125
planning for interactive score, 276–277
review, 140–141
software package for creating, 128
Music loops, editing
auditioning finished, 139–140
crossfading, 138–139
music tempo, meter, and performance, 135–136
overview of, 131–133
reverb tails and long decays, 136–138
transient and legato elements, 135
waveform shape and direction, 134
zero crossing points, 133–134
Music mixing games, 192
Music of Changes (Cage, 1951), 115–116
Music production companies, 346
Music rights. See also Contracts and agreements
 guaranteed work on derivative products, 388
 music publishing/performance royalties, 387–388
 screen and box credits, 388–389
 work for hire, 354–356
Music storytelling in games
 analyzing and critiquing game score, 32–33
 with diegetic music, 195–196
 function of music within games, 26–27
 game mechanics, 19
 multiple story paths and repeatability, 20
 music conceptualization, 29–32
 music synchronization and integration, 28–29
 music types. See Music, types of game
 number of plays, 18–19
 overview of, 15
 pacing, synchronization and flow, 19
 passive vs. active interaction, 16
 review, 33–34
 synchronization and integration of, 28–29
 technology, 20–21
 unique challenges of, 21
 variable length of experience, 17–18
Music, types of game
 diegetic (source), 23–24
 extra-diegetic (underscore), 21–22
 music as gameplay, 24–25
 player customized, 25–26
 repetition kills suspense, 22–23
Musica Ricercata II
 (Ligeti, 1953), 116–117
Musical dice game, eighteenth century, 111
Musical flourish additions, 48–49
Musical form adaptation, 45–46
Musical Instrument Digital Interface (MIDI)
 defined, 433
 SMF. See Standard MIDI File (SMF)
 and virtual instruments. See Standard MIDI File
 (SMF)
Musical intelligence. See Intelligent music engines
Musical machines, history of, 87
Musicians
 compensation for, 294–295
 preparing for live recordings. See Live recordings
 recording live instruments and, 293
 rewarding for sampling session, 183
 session preparation and planning, 286–289
 union contracts, 293–294
 waiver and release form, 295–296
 when using aleatoric techniques, 231
Musicians section, project contract, 358
Musikalisches Würfelspiel
 (Mozart, 1787), 111–112, 238
Musique concrète, 114–115
Mutual nondisclosure agreement (mutual NDA), 354
Myst (1993) video game, 189, 193

N
Nagai, Kazuhiko, 94
Name section, project contract, 358
Naming conventions
 game materials, 327
 music assets, 314
 production methodology, 315
Narrative story arcs, 27, 59–60
NATO Defense video game, 91
NDAs (non-disclosure agreements), 352–354, 433
Nebulous chord transition, 172
Negotiation process. See Contract negotiation
Net profits, royalties collected from, 384–385
Networking with potential clients
 at game developer organizations, 397–398
 overview of, 393–395
 through your website and blog, 398–399
 at video game conferences, 395–397
 working for free, 397
Night Driver (1976) video game, 89
Nintendo Entertainment System (NES; 1983), 94
Nintendo N64 console, 95
Nishikado, Tomohiro, 89
No Obligation to Use section, project contract, 358
No One Lives Forever (2000) video game, 50, 223
Non-compete clauses, employment contracts, 359–360
Non-diegetic music. See Extra-diegetic music
 (underscore)
Non-disclosure agreements (NDAs), 352–354, 433
Noninteractive game scores, 62
Nonsynchronized crossfading scores, 146–147
Nonsynchronized layers, 162
Nonsynchronized music loops, 127, 133–134
Nonsynchronized musical stingers, 173
Nonsynchronized transitions, 168–169
Normalization, 278
Notes
 composer tools for manipulating, 50
 tracking, 190
 use of in this book, 11
Novelty machines, 88
Number of plays, scoring for, 18–19
Number Pieces (1987–1991), Cage, 115
Numbers section, costs in estimates, 371–372

O
Objectivity, as trait for success, 412–413
Obstruction and occlusion, 301, 434
O’Donnell, Marty
 as in-house composer, 341
 nonsynchronized layers used, 119, 162
 recognition of, 73
OFF-SITE backups, 327
Office365, sharing documents, 79
Ogg Vorbis
defined, 434
gapless looping of, 304
open source format of, 303
On-board media storage, downloadable games, 317
On top of the beat, 136
Online network storage, 318
Open form style, 116, 118
Open systems (open world-based games), 330
Operas, performance-based dynamics, 40
Orchestral video game music, 2, 284
Orchestras, non-union, 294
Orchestrators, of live recordings, 284–286
Organizations, promoting game audio, 442
Outcomes, of realistic goals, 406
OutRun (1986), 92
Overage costs
giving advance warning of, 361, 382
in project contract, 359
specifying number of revisions before, 78
Overlap transition, 171–172
Ownership of rights
composers and, 72
musicians signing waivers to play your music, 356
in project contract, 357
under work for hire agreement, 355
Performance
music games simulating, 191
real-time composition based on, 39–40
royalties, 387–388
tempo changes and dynamics based on, 40
Performance rights organizations (PROs)
defined, 434
how performance royalties work, 387–388
registering works to, 355
Phonography technology, coin-operated machines, 88
Photoplay music, silent films, 39
Phrases
branching scores for short, 149
musical construction based on, 232–233
envelopes controlling instrument, 179
filters shaping sound, 178–179
mapping with sound generator, 177–178
measuring audio as, 131
Pitch phase, game production, 55
Piano Concerto (Carter, 1964–1965), 117
Pinball machines, 88–89
Pitch (frequency)
aleatoric performance techniques, 232–233
envelopes controlling instrument, 179
filters shaping sound, 178–179
mapping with sound generator, 177–178
measuring audio as, 131
Planning
for interactive score, 276–279
large-scale music development, 325–326
Platform holders, 70
Playback
mixing and game, 301
random playlist, 255
Player-generated music, as gameplay, 25, 193
Players
as audience for this book, 6
benefits of open systems, 330
challenges of closed systems, 329–330
challenges of combat-triggered musical interactivity, 330–331
as content creators, 3–4
as controllers of beat matching games, 190
customizing music in games, 26
game mechanics defining interaction of, 19
generating music as gameplay, 24–25
immersion in gameplay with music, 188
immersion through tempo, 212
real-time DSP related to health status of, 320
signalling events via music to, 27
synchronizing music to, 62
tempo changes from, 212

Pac-Man video game, 90
Pacing
session flow and practices, 291
synchronization and flow, 9–10
writing adaptive score for individual, 19
Parameters, envelope, 179–181
PaRappa the Rapper (1996) video game
c control inputs, 42
as music game, 189
performance simulation game, 191
player-generated music in, 25
Part-time contractors, 342
Partnerships, work through business, 400–401
Passion, trait for success, 407
Passive interaction, of films, 16
Pause, video game structure, 27
PAX-Dev (Penny Arcade Expo), Seattle, 397
PC gaming, 97–99
Pd (PureData), 434
Penderecki, Krzysztof, 117–118, 230
Penny Arcade Expo (PAX-Dev), Seattle, 397
People skills, trait for success, 411
Peppy the Clown coin-operated machines, 88
Percussion swell transition, 171
Playlists
 creating with horizontal sequencing, 144
 defined, 434
 randomization of, 255
Podcasts, resources for, 442
Pong (1966) video game, 89
Pong (1972) Atari video game, 2
Pops, in music loops, 132–133
Popular culture, games and, 2–4
Portal 2 (2011) video game, 65, 114, 195
Porting gaming platforms, 249
Power-up, 434
PR (public relations) agencies, 402–403, 434
Pre-twentieth century, experimental music of, 110–111
Preproduction phase, 55, 71–72
Prerendered audio files
 audio middleware using, 261
 defined, 434
 in horizontal resequencing/vertical remixing, 220
 intertwining MIDI with, 206
 MIDI alternative to, 207
 MIDI and virtual instruments used with, 207
 MIDI taking backseat to, 206
 tempo variation with, 212–215
Presentation, of estimate, 370
Prioritizing, primary music objectives, 29
Process music, 120
Producer, 5, 75–76
Production
 affecting royalty percentage, 384
 asset and file management, 313–314
 collaboration technology, 79–80
 considering technology, 78–79
 defining tone and voice of game, 74
 game testing, 81
 naming conventions, 315
 overview of, 312–313
 schedules and milestone delivery, 313
 schedules and milestones, 77–78
 sharing documents, 79
 skill of composer in, 344
 team workflow, 76–77
 tracking asset review and feedback, 315
Programmable sound generator (PSG), 90–91, 434
Programmers
 as audience for this book, 6
 composer collaboration with, 311
 defining music framework for, 310–311
 developing custom music engine, 263–265
Programming, allocating time for, 318–320
Programming languages
 customizing game with scripting language, 311
 developing custom music engine, 263, 265
Project contract, 356–360
Project info or opening, project contract, 357
Project-tracking systems, 313
Projections (Feldman, 1953), 117
Proposals. See Estimates
ProTools
 learning to use, 271
 omnipresence in recording studios, 270–271, 296
 seamless loops with, 128
Prototyping phase, 263–265
PSG (programmable sound generator), 90–91, 434
Psychology of bidding, estimates, 369–370
Public relations (PR) agencies, 402–403, 434
Publisher review, game production process, 55
Publishing rights, writing music library, 349
Publishing royalties, 387–388
PureData (Pd), 434
Q
QA (quality assurance)
 interactive music and development team, 160
 often not tracking or reporting bugs, 328–329
Quality, balancing compression with, 315–318
R
Racing games
 arcade machines, 93
 coin-operated machines, 88
Process music, 120
RAM
 constraints of on-board working, 317
 MIDI scores taking very little, 204
Random playlists, 150
Randomization
 aleatoric performance techniques, 231–233
 of Amadeus Mozart, 111
 of Arnold Schoenberg, 113
 with audio middleware, 102, 255–256
 composer technique, 66–67
 of Charles Ives, 112
 of Henry Cowell, 113–114
 of J. S. Bach, 110–111
 of John Cage, 115–116
 of laserdisc video games, 91
 of Marcel Duchamp, 112
Range or depth, LFO, 181
Rayman: Legends (2013) video game, 194, 216
“Reach” sound installation, 42
Real time
 composition in, 38–40
 DSP effects, 320–321
 exporting, bouncing final materials in, 301
 melodic variation in, 50
 music sequencing in, 144–145
 virtual instrument playback with MIDI, 47, 49–50
Real-world instrument installations, 41–42
Realism, diegetic music enhancing, 23–24
Rearrangements, 373, 383
Recording section, project contract, 358
Recording studios
determining sequencer based on, 271
expenses, 296
fees, 293
Recordings. See Live recordings
Red Dead Redemption (2010) video game
exa-diegetic music in, 22
signaling change in game state with
music, 26
use of sound elements, 176
vertical remixing in, 156, 159
Reich, Steve, 119
Rejection, 407, 415–416
Relationships
building by working for free, 397
building successful industry, 392
humble and, 413
maintaining client, 361
reconciling when project does not go well,
385–386
through internship, 347
working for less than you are worth, 380–381
Release time, envelope of sound, 181
Reliability, as trait for success, 410
Remixes, 373, 383
Remote Control, music production
company, 346
Repeat symbols, musical notation, 126
Repetition
extending cues, 66–67
killing suspense with, 22–23
multiple story paths minimizing, 20
problem of, 18–19
transition variations overcoming, 148
of transitions, 170
Repository, collaboration technology, 80
Representation, working with agents, 401–402
Resident Evil (1996) video game, 96
Resonance, 179, 434
Resources
audio middleware, 444
books, 443–444
companion website to this book, 426
contracts and agreements, 352
game conferences, 441
game engines and 3D middleware, 445
organizations, 442
overview of, 441
web resources and podcasts, 442
Résumés, standing out in, 400
Revenues, global gaming, 3
Reverb, 184, 289
Reverb tails
creating seamless loops with, 136–137
customizing within middleware
ingines, 254
embedding in first part of loop, 277
using Wwise with, 138
Reviews, tracking asset, 315
Revisions
charging for, 375
converting feedback into, 410–411
in large-scale music development, 326–327
music conceptualization and, 31
in project contract, 359
Rewards, in game mechanics, 19
Rez (2001) video game
authoring with audio middleware, 261
control inputs, 42
music creation game, 25, 193
as music game, 189
synchronized stingers in, 173
tempo changes in, 47, 213, 215
Rhythm
aleatoric performance techniques, 233
in beat matching games, 190
composer tools for manipulating, 47
constructing transitions, 170
in drum circle improvisation, 38
dynamically changing, 221–222
music as gameplay, 25
rules of game composition, 241–242
synchronized crossfading scores for, 146
Rhythmicon (Cowell, 1930), 113–114
Rhythmicon instrument, 113
Riff, defined, 434
Rights. See Music rights
Riley, Terry, 118
Risk, 74, 289–290
ritardando, tempo change, 212
Road Kings (1986) pinball machine, 88
Rock Band (2007) video game
control inputs, 42
music as gameplay in, 25
as performance-based music game, 189, 191
Romero, Brenda, 413
Royalties
for composers for music-only distribution of
game, 357
for game composers, 355
for musicians, and union contracts, 294
negotiating back-end arrangements, 383–385
publishing and performance, 387–388
spelling out in contract, 361
Rule sets, 240–242
Rules of music, teaching to computer, 262
Runtime, defined, 434
Russian Squares video game, 223
Sales pitch, estimate as, 368–369
Salespeople, relationships with game developers through, 401–402
Samba de Amigo (1999) video game as beat matching game, 190
Slot machines, 87–88
SMF. See Standard MIDI File (SMF)
Social arcade games, 92–93
Social networking, advertising via, 399
Software development kit (SDK), 435
Software, using income to buy, 415–416
Solos, 38
Sonic the Hedgehog (1991) video game, 94
Sony Playstation (1994) game console, 95
Sound based programming engines, 239
Sound design
audio signal processing, 182
costs, 339
defined, 435
developing custom musical engine, 263–265
enhancing originality of score, 175
with envelopes, 179–181
with filters, 178–179
infinite reverb for, 184
with low-frequency oscillator, 181
placing sounds directly in game world or level, 310
recording live instruments for, 183
review, 185
skill of composer in, 345
with sound generator, 177–178
speakers for acoustic resonance, 184
understanding, 176–178
unusual sounds with DSP, 184–185
sound effects. See SFX (sound effects)
Sound generator, pitch mapping, 177–178
Sound hooks, 28, 310, 319
Sound libraries, creating, 176, 183–185
SoundFont file format, 203, 435
Source control technologies, 80
Source music
constructing transitions, 169–171
crossfading to destination music from, 166–167
defined, 166
musical interruption and, 167–168
transitioning to destination music from, 167
Space Channel 5 (1999) video game
memory matching game, 193
music as gameplay in, 25
player controller for, 190–191
tempo changes with MIDI or MOD, 215
Space Harrier (1985) video game, 92
Space Invaders (1978) video game
adaptive score in, 89
arcade game, 19
increasing dramatic tension with music, 26
tempo variation in, 47, 212
Speakers, acoustic resonance, 184
Speaking language of games, as trait for success, 407–408
Special interest groups (SIGs)
defined, 435
IASIG. See Interactive Audio Special Interest Group (IASIG)
of International Game Developers Association, 398
Specifications, custom music engines, 265
Speech synthesis, arcade games, 91
Spotting
game production timeline, 54–55
goals of music score, 58–62
music control inputs, 65–66
overview of, 53
process of, 55–58
repetition, randomization, and surprise, 66–67
review, 67–68
scoring techniques, 62–65
Sprints, Scrum development, 76–77
SSX (2012) video game, 25, 119, 195
SSX Tricky (2001), 47, 178–179
Standard MIDI File (SMF)
as alternative to prerendered audio, 202–204
in beat matching games, 190
common commands, 202
defined, 435
definition of, 202
exporting sequence to another DAW, 290
most interactive techniques requiring, 261
music manipulation. See Dynamic music manipulation, advanced
overview of, 201
pros and cons, 64
review, 209
sequencing, 272
sound cards, 98–99
tempo changes with, 215
virtual instruments with, 206–208
working with, 204–206
Standardization, audio middleware, 260
Standing meetings, Scrum development, 77
States, game
adapting music between two short, 46
changing using music, 26
in combat-triggered musical interactivity, 330–331
Static tempo changes, 213
Stems
defined, 435
normalization changing relationships of, 278
overview of, 274–275
signal flow of tracks and, 274–275
vertical remixing using, 277–278
Stingers
as composer tool, 48–49
defined, 435
estimating cost of, 373
introduction to, 166
nonsynchronized, 173
overview of, 172–173
review, 173–174
synchronized, 173
Stockhausen, Karlheinz, 117
Stone, Chris, 91
Storage, 316–318
Storytelling
 with music. See Music storytelling in games
real-time composition based on, 39
Street Fighter 2 (1991) video game, 92, 213
Structure of this book, 6–9
Structures I (Boulez, 1952), 116–117
Studio setup, 291
Style adaptations, dynamic, 222
Submixes. See also Stems, 274–275, 435
Subwoofer, 435
Success
 realistic expectation and goals for, 406–407
 traits for. See Traits of successful composers
Super Mario Bros. (1985) video game
 adaptive soundtrack of, 94
 cue switching, 45
 establishing location using music, 26
 tempo changes, 212
Super Mario Galaxy (2007) video game, 47, 206, 213
Super Metroid (1994) video game, 94
Super Nintendo Entertainment System (SNES; 1991), 94
Surprise, extending cues for, 66–67
Surround mixing, 305–306
Suspense, repetition killing, 22–23
Sustain level, envelope of sound, 181
Sweet, Michael, xxxi
Symphony performances, tempo changes, 40
Synchronization
 branching scores and, 149
 in circus music, 40
 of crossfading scores, 145–147
 defined, 435
 following changes in emotional content, 19
 as goal of game score, 61–62
 integration and, 28
 of loops, 127–128
 phrase, 216–217
 serendipitous, 28–29
 of stingers, 48, 172–173
 of tempo, 212, 216
 tempo, 216
 of transitions, 168–169
 vertical remixing and, 156–157
 zero crossing points and, 133–134
Synthesizers, 177–182

T
Tacet, 116, 285
Talent, and success, 411–412, 415
Tanaka, Hirokazu “Hip,” 94
Tape playback, 1950s arcade machines, 88
Taxes
 deductions of part-time contractors/freelancers, 342
 federal forms for, 361–362
 handling, 417
Teamwork
 as composer skill set, 345
 preparing for music production, 76–77
Technology
 ability to learn new, 413
 big circus shows adopting music, 40
 collaboration, 79–80
 constraints, 20–21
 production considerations, 78–79
Tekken (1994) video game, 92
Templates, sequencer, 275
Tempo
 aleatoric performance techniques, 233
 composer tools for manipulating, 47
 dynamically changing rhythm, 222
 editing music loops, 135–136
 for horizontal resequencing, 151
 MIDI scores easily shifting in, 204–205
 player adjustment to, 192
 synchronizing, 212, 216
 for transitions, 168, 170
Tempo map, beat matching games, 190
Tempo, real-time variation/synchronization
 immersion player with, 212
 with MIDI or MOD, 215
 overview of, 211
 phrase synchronization, 216–217
 with prerendered audio, 213–215
 review, 217–218
 synchronization, 216
 varying based on game events, 212–213
Tension level
 dynamic mixing changing, 46
 high and low points changing, 59–60
 music changing, 26
Termination, project contract, 358
Terminology
 asset management server, 314
 audio middleware, 250
 glossary of, 428–436
 Wwise loops, 254
Terms and conditions, estimates, 372
Testing
 branching scores, 150
 crossfading scores, 146–147
 finished loops, 139
Testing, continued
in game development, 81
loops in sequencer, 277
transition between DAW and game, 279–280
transitional scores, 148
transitions between cues, 278
vertical remixing, 163
Themes. See Motifs (themes), musical
Theremin, Léon, 113
Thief (1981) video game, 90
Third String Quartet (Carter, 1971), 117
Threnody to the Victims of Hiroshima (Penderecki, 1960), 117–118
Ticketing system, game testing, 81
Time
calculating for musicians, 295
calculating for musicians and studios, 293
choosing fade-in and fade-out, 160–161
managing for recording sessions, 291–292
Time-based effects, 48, 182
Timespan, music composition process, 55
Tips, use of in this book, 11
Title Screen, video game structure, 27
Toejam and Earl (1991) video game, 94
Tools, composer
cue switching/musical form adaptation, 45–46
DSP effects, 47–48
dynamic mixing, 46–47
harmony/melody/note manipulation, 49–50
instrumentation/arrangement alterations, 49
reference guide, 426
software, 9–10
stingers/musical flourishes, 48–49
tempo/rhythmic manipulation, 47
Tracking
asset reviews and feedback, 315
assets, 313–314
software, for game testing, 81
system for project, 313
Tracks
DAW signal flow of, 274–275
defined, 435
exporting sequence to another DAW with audio, 290
planning for interactive score, 276–279
Traits of successful composers
adaptability, 410–411
belief in yourself, 408–409
courage, 414
entrepreneurship, 411
experience, 413–414
humility, 412
objectivity, 412–413
passion, 407
people skills, 411
reliability, 410
speaking the language, 407–408
talent, 411–412
technical skills, 413
writing music for person signing check, 409–410
Transfer of rights, project contract, 357
Transients, editing loops, 135
Transitional scores
horizontal resequencing and, 147–148
pros and cons of, 162
vertical remixing vs., 157
Transitions
audio middleware for seamless, 253
branching scores for clean, 149
bridging with stingers or musical flourishes, 48–49
composing, 168–170
crossfading vs., 166–167
defined, 435
echoing music without interrupting
using, 166
estimating cost of, 373
elements of, 171–172
music and gameplay structure, 58
music and gameplay structure, 58
music interruption and, 167–168
overview of, 165, 167
synchronized crossfading scores for seamless, 146
synchronized vs. nonsynchronized, 169
writing effective, 148
Transposition, 50
Two-beep (two-pop), 290, 435
U
Uematsu, Nobuo, 73, 94
UI. See User interface (UI)
Uncharted 2: Among Thieves (2009) video game
dynamic mixing in, 46
interactive music in, 36
randomization of musical phrases in, 111
transitions in, 170
vertical remixing, 148
Uncompressed files
audio middleware support for WAV files, 305
compressed vs., 302
formats for audio, 303
storing, archiving master files as, 301
Underscore. See also Extra-diegetic music
(underscore), 435
Unification, large scores, 325–326
Union contracts, musicians, 293–295
Unity format, game audio, 305
Universities
algorithmic composition in, 239
game development education at, 339–340
Unreal middleware format, game audio, 305
Update, defined, 80, 314
User interactive performance, instruments for, 41–42
User interface (UI)
 creating instrument palette for, 195
 defined, 436
 in game design document, 54
 gameplay structure, 27
 games utilizing as instrument, 113
 music and gameplay structure, 57
 video game screens, 27

V
Variation
aleatoric composition introducing, 230
The Art of Fugue (1740s), 110–111
with audio middleware, 255–256
creating transitions for, 148, 172
estimating cost of, 373
in improvisational styles, 38
Variations for Orchestra Op. 31 (Schoenberg, 1928), 113
Verbille fortune-telling machine, 88
Vertical remixing
 arrangement alteration similar to, 49
 composing for, 163
 defined, 46–47, 436
 fading layers in and out for, 160–161
 nonsynchronized layers in, 162
 number of layers to use, 158–159
 overview of, 155
 planning for interactive score, 277–278
 prerendered audio dependent on, 220
 pros and cons of, 63, 156–158, 162
 review, 164
 types of, 159–160
Vessel video game, 73
Vib Ribbon (1999) video game, 26, 189
Video, compression standards, 304
Video game composition/music, history of
 arcade machines, 89–93
 audio middleware, 102–104
 coin-operated machines, 87–89
 game console revolution, 93–97
 handheld games, 100
 importance of history, 86–87
 Internet games, 101
 mobile and cell phone games, 101–102
 modern gaming platform, 105–107
 overview of, 85
 PC gaming, 97–99
 review, 107–108
Video games
 career as composer. See Composers, career of conferences for, 394–397
 primary control inputs for, 41
 that contributed to advancing music in, 437–440
Videogame/Interactive Media Agreement (VIMA) contract, 294
Violano (1909) musical machine, 87
Virtua Cop (1994) video game, 92
Virtual instruments
 aleatoric techniques used with real-time, 231
 DAW signal flow of tracks with, 274
 generative music using, 239
 MIDI sequences with, 206–208
 writing for audio middleware, 252
Virtual private network (VPN), 79
Vision of music. See Creative vision
Voices, 318, 436
Volume (amplitude)
 audio editing and, 131
 normalization changing relationships, 278
 shaping over time using envelopes, 179–181
 volume-based effects in audio signal processing, 182
Vreeland, Richard, 264, 451

W
W-9 tax forms, 361–362
Waiver and release form, for musicians, 295–296
Warnings, use of in this book, 11
Warranties section, project contract, 358
Watermarked materials, 354
Watt, Duncan, 343, 451
WAV (WAVE) files
 audio middleware support for, 305
 defined, 436
 uncompressed audio format, 303
Waveforms
 and air pressure, 131–132
 editing music loops at zero crossing points, 133–134
 low-frequency oscillator and, 181
 played by sound generator, 177
 shaping and directing for music loops, 134
Web references. See Resources
Website
 elements to include on, 398–399
 promoting your skills on your, 398
 resources and podcasts, 442
Weighting playlist playback, audio middleware, 255
WFH (work for hire) agreement, 354–356, 436
Whitmore, Guy
 biography of, 451
 composing adaptive score, 44–45
 dynamic reharmonization, 224–225
 motivic elements of, 223
 pushing limits of interactive techniques, 261
Wii Music (2008) video game, 192, 212
Williams, John, 22
Windows Media Audio (WMA), 303
Wing Commander (1990) video game, 18, 203
Wintory, Austin, 73
WMA (Windows Media Audio), 303
WMV format, 304
Work. See Composers, career of
Work, finding
advertising and public relations agencies, 402–403
building successful relationships, 392
cover sheets and résumés, 400
game developer organizations, 397–398
informational interview, 395
networking, 393–395
overview of, 391
partnerships, 400–401
representation and salespeople, 401–402
review, 403–404
social networking, 399
video game conferences, 395–397
working for free, 397
your website and blog, 398–399
Work for hire (WFH) agreement, 354–356, 436
Workflow, team, 76–77
Working for free, 397
World of Warcraft video game, 17–18, 330
Wwise by AudioKinetic. See also Audio middleware, 436
X
Xenakis, Iannis, 240
XMA/XMA2, for Xbox, 303
XNA Game Studio format, 305
Y
Yoshino, Aoki, 59
YouSendIt, 79
Z
Zero crossing point, 133–134, 436
Zoltan fortune-telling machine, 88