
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321961570
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321961570
https://plusone.google.com/share?url=http://www.informit.com/title/9780321961570
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321961570
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321961570/Free-Sample-Chapter

Praise for Essential Mobile

Interaction Design

“In Essential Mobile Interaction Design, Banga and Weinhold do a great job of explaining what

it takes to make a good-looking and easy-to-use app. The accessible language and visual

examples of quality work combine to make this book a great resource for those looking to get

into app design, or to take their craft to the next level.”

— Jon Becker

 boom. reactive.

“Essential Mobile Interaction Design is not merely a book full of pictures and design concepts or

one of straight technical drivel. Instead, it is a guidebook for creating human-based interfaces

that feature simplicity, functionality, and value. Whether you have questions about how mobile

design is different from traditional desktop design, how to work with a developer, or even

what tools to use for the creation process, Essential Mobile Interaction Design demonstrates the

answer for that.”

— Phil Dutson

 Lead UX and Mobile Developer, ICON Health & Fitness

“Filled with nuggets of useful information, this book is a solid resource for the many aspects

of designing a mobile app. I’ve found many recommendations in this book that we can use in

our apps.”

— Lucius Kwok

 CEO, Felt Tip, Inc.

“A well-rounded, easy-to-read book that provides a good grounding in mobile design and how

to keep all those small details in mind so that your apps will really shine.”

— Dave Verwer

 Shiny Development and iOS Dev Weekly

This page intentionally left blank

Essential Mobile
Interaction Design

This page intentionally left blank

Essential Mobile
Interaction Design

Perfecting Interface Design in Mobile Apps

Cameron Banga

Josh Weinhold

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

App Store, Apple, the Apple logo, Apple TV, Aqua, Cocoa, Cocoa Touch, Cover Flow, Dashcode,
Finder, iMac, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the iTunes logo, Leopard,
Mac, the Mac logo, Macintosh, Maps, Mavericks, Multi-Touch, Objective-C, Safari, Snow Leopard,
Spotlight, and Xcode are trademarks of Apple, Inc., registered in the U.S. and other countries.
Android, Google Chrome, Google Maps, and Google Play are trademarks of Google, Inc. Chatheads,
Facebook, Facebook Chat, Facebook Home, and the Facebook logo are trademarks of Facebook, Inc.
Bitbucket and the Bitbucket logo are trademarks of Atlassian Software Services. The TestFlight logo
is a trademark of Burstly, Inc. SkyDrive, Skype, Windows 8, and Windows Phone 7 are trademarks
of Microsoft, Inc. The Twitter logo and the Vine logo are trademarks of Twitter, Inc. The Tumblr
logo and the Yahoo! logo are trademarks of Yahoo!, Inc. Chicago Fire and the Chicago Fire logo
are trademarks of Andell Holdings, LLC and Major League Soccer. The CNN logo is a trademark of
Turner Broadcast System, Inc. The Cincinnati, Inc. logo and CL-900 are trademarks of Cincinnati, Inc.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-96157-0
ISBN-10: 0-321-96157-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, March 2014

 Editor-in-Chief
Mark L. Taub

 Executive Editor
Laura Lewin

 Development Editor
Michael Thurston

 Managing Editor
 John Fuller

 Project Editor
Elizabeth Ryan

Packager
Anna Popick

 Copy Editor
Melinda Rankin

 Indexer
Jack Lewis

 Proofreader
 Anna Popick

 Technical Reviewers
Jonathon Becker
Victor Lara
Francisco Velazquez

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasertsith

 Compositor
Shepherd, Inc.

I dedicate this book to Gavin. Although we’ve only just met, I couldn’t be
more excited to be your uncle. Hopefully, you’ll be interested in interface

design one day so that you can read through this and remind me how silly
and archaic our phones and computers once were.

—Cameron

I dedicate this book to Mallory. Thank you for always encouraging me to
take on new challenges and pushing me to always aim higher.

—Josh

This page intentionally left blank

 Preface xvii

 Acknowledgments xix

 About the Authors xxi

 1 A Look at Mobile and Its Main Players 1

The Field of Interface Design 2

The Dawn of the App 3

Defining an App in Today’s Context 5

Build It and They Will Come 7

What Is a Mobile Device? 8

A Portable, Pocket Computer 9

Tablets, Too 10

Other Devices That Are Part of the Revolution 11

The Industry’s Key Players 12

Apple 12

Google and Android 13

The Other Players 14

Distinctions between Platforms 16

Conclusion 19

 2 Design for Humans, by Humans 21

What Is Interaction Design? 22

Goals When Designing an Interface 25

Designing for Humans 25

Designed by Humans 28

Where to Begin 30

Anticipating Your User Base 32

Mobile’s Role in User Workflow 35

Conclusion 37

Contents

x CONTENTS

 3 Dynamic Differences in Mobile Design 39

Understanding the Role of Mobile 40

Mobile-Only Interactions 41

Interactions Only Possible with a Smartphone 42

Interactions Only Possible with a Tablet 44

Interactions That Aren’t Possible on Mobile 46

Keyboards and Data Entry 46

Click, Tap, Point 47

Expandability 48

Universal Appeal 48

Interaction Experiences for Phones and Tablets 48

Interaction Experiences for Multiple Platforms 53

Complementing Traditional Workflows 55

Conclusion 57

 4 First Sketches of an App 59

What Tools Do You Need? 60

Becoming a Designer 65

Planning for a Specific Platform 66

Starting with a Workflow 68

Meeting Design Expectations 70

Wrapping Up Design Documentation 73

Creating Pixel-Perfect Digital Mockups 73

Reiterating Before It’s Too Late 75

Preparing for the Next Stage 77

Conclusion 79

 5 Finding the Right Design Flow 81

The Big Three App Types 82

Native Apps 82

Web Apps 83

Hybrid Apps 84

 CONTENTS xi

Common App Navigation Methods 85

Single View 85

Stacked Navigation Bar 87

Tab Controller 88

Scroll Views 89

Search-Driven Navigation 90

Modal Controller 91

Gesture-Based Navigation 92

Picking an Interaction Type 93

Minimizing Interface Friction 96

Preparing for Connectivity Failure 98

Conclusion 102

 6 Designing for Visual Appeal 103

How Appearance Changes Interactions 104

Skeuomorphic Design 104

Flat Design 106

Creating an App Icon 107

Finding a Unique Look 111

Matching Art to Interaction Design 115

Crossing Platforms 117

App Branding Guides 118

Building Art That Scales 119

Adding the Final Touches 123

Conclusion 126

 7 Working with Programmers 127

Understanding Your Programmer 128

Learning Programming Languages 128

From Sketch to Programmable Design 130

Describing Your Design 132

xii CONTENTS

Communicating During Development 136

Clear Communication 136

Tracking Issues 137

Learning More 139

Comprehending the Source Code 141

A Designer’s Introduction to Programming 141

Writing Source Code 143

Knowing What to Change 144

Conclusion 148

 8 Making Apps Usable by All 149

Knowing Your Audience 150

How Sandboxing Changed Mobile 152

Interactions for the Mass Market 157

Trait 1: Not a Computer Geek 157

Trait 2: Only Uses a Handful of Apps 158

Trait 3: Uses Apps in Short Bursts 159

Trait 4: Follows the 80/20 Rule 159

Trait 5: Likes What Everyone Else Likes 160

Building Multilingual Interaction Designs 160

Designing for Users with Disabilities 163

Conclusion 166

 9 Designing for Simplicity 167

The Sophistication of Simplicity 168

Striving for Simple Interaction Design 168

The Difficulties of Simplicity 170

Simple Design Goals 171

Clarity 171

Continuity and Flow 172

Retention and Growth 173

Interfaces That Do It Well 175

iOS’s Slide-to-Unlock 175

Android’s Action Bar 176

 CONTENTS xiii

Creating Simple Interactions 178

Learning to Say No 178

Making Tasks Obvious 178

Offering Subtle Hints 179

Putting Elements in the Right Location 180

Addition by Subtraction 182

Simplicity through Familiarity 183

Using Well-Known Visuals 184

Following Industry Leaders 185

Going Against the Grain 186

Testing Simplicity 186

Speed of the App 186

How the App Is Being Used 187

Social Reach 188

Dogfooding 189

Conclusion 191

 10 Gaining Valuable Feedback 193

Showing Off Your Work 194

Protecting Your Secrets 194

Choosing the Right Testers 195

When to Share Your Work with Testers 196

Devising a Beta-Test Strategy 198

Tracking an App’s Issues 199

Prepping Every Build 200

Handing the Beta Off 203

Analyzing Valuable Test Data 204

Knowing Where Testers Spent Their Time 205

Finding Software Bugs and Crashes 206

Managing Issue Resolve 207

From Beta to Positive Changes 208

Determining When Enough Is Enough 208

Releasing the App 210

Conclusion 211

xiv CONTENTS

 11 Refreshing a Design 213

Improving as a Designer 214

Maintaining a Work Journal 215

Evaluating Your Own Work 216

Judging Who Is Worth Listening To 218

Review Web Sites 219

App Store Reviews 221

Personal Messages 222

Avoiding Negativity 223

Turning Requests into Changes 224

Preparing Users for Design Changes 226

The Resubmission Process 228

Conclusion 230

 A Standout Apps 231

1Password 232

Amazon Mobile 232

CNN News 233

Coach’s Eye 234

Evernote 234

Facebook 235

Flipboard 236

Google Chrome 237

Google Maps 237

Instagram 237

Instapaper 239

MLB.com At Bat 240

Twitter 240

TuneIn Radio 241

Wolfram|Alpha 242

 B Apps for Designers 243

Adobe Photoshop 244

Balsamiq 244

 CONTENTS xv

Bugshot 245

Dribbble 246

Icon Slate 247

MindNode Pro 247

Pngyu 248

Skitch 249

Spark Inspector 249

xScope 249

 C Artwork Requirements for Android and iOS 251

Android 252

Icon Sizes 252

General Art File Format 252

General Art File Management 253

Naming Conventions 254

Other Tips 254

iOS 255

Icon Sizes 255

General Art File Format 256

General Art File Management 257

Naming Conventions 258

Other Tips 258

 Index 261

This page intentionally left blank

PREFACE

This text offers an introduction to and general overview of interaction design for all mobile

computing platforms, with a particular emphasis on Google’s Android and Apple’s iOS

platforms.

Mobile apps should feel natural and intuitive. Users should quickly and easily understand them.

This means that effective interaction and interface design is crucial to the success of any mobile

app. Few mobile app developers (or even designers), however, have had adequate training in

these areas.

Touchscreen-focused, mass-market mobile applications are a type of technology that’s only

been possible to create since 2008, and the industry has seen monumental shifts and growth in

the six years between the introduction of the “app economy” and the publication of this work.

This book aims to help put you in a place to succeed as a designer in today’s app market by

teaching proven principles and techniques that you can use in your next app, no matter what

mobile platform, targeted device, form factor, or user base you’re targeting.

In short, the tutorial style used here aims to help you master the mindset, processes, and vocab-

ulary of mobile interaction design so that you can start making better choices right away. This

book guides you through the entire process of app design, demystifying many of the tasks and

issues that arise during the many stages of developing, releasing, and improving a mobile app.

Cameron Banga has been working in mobile application development since 2009, and in the

nearly five years since releasing his first app he’s contributed as a designer or as an adviser to

more than 100 applications for iPhone, iPad, Android, and OS X. In that time, he’s seen firsthand

the growth and change experienced in the mobile industry and has worked to meet client and

customer expectations throughout the many evolutions of mobile platforms.

This book aims to serve as a central resource for programmers or designers looking to best

determine how to establish themselves in today’s modern mobile landscape by offering advice

formulated and acquired through Cameron’s experiences over the past several years as a pio-

neer of the mobile app economy.

Topics chosen for this book were selected carefully by Cameron with advice from and in coordi-

nation with several successful and award-winning industry colleagues. The goal of each chapter

was to focus on a particular strong primary skill required of any successful designer, breaking

that skill down into a few key components that any novice could focus on and, with some

strong advice and clear guidance, work to master quickly.

xviii PREFACE

No programming knowledge and only basic design knowledge is required to understand this

book, as it’s been carefully crafted to be universally readable and helpful. In situations in which

it does dive into extremely specific terminology or a topic for which prior information would

be required, breakout boxes offer context and suggestions as to where the reader can look for

further information that’s beyond the scope of this book.

Only basic design tools were used to create the example work included in this book, and the

software or hardware that was used is detailed where relevant. Much of this book focuses on

general theories and somewhat universal design practices that can be slightly modified and

fine-tuned to the reader’s specific circumstances. Additional resources that are required or may

be helpful have been posted online at http://cameronbanga.com/EMIDbook.

We hope you enjoy this book and that it helps you make progress toward your goal of becom-

ing an outstanding mobile app designer. If you would like to share your thoughts or if you have

a question, feel free to contact the authors at book@cameronbanga.com.

http://cameronbanga.com/EMIDbook

ACKNOWLEDGMENTS

This book would not exist without the dedicated work of Laura Lewin (our gracious and ever-

helpful executive editor) and Olivia Basegio (our wonderful editorial assistant, always willing

to lend a hand and keep us on track). We’d like to give a huge thank you to the entire Addison-

Wesley editorial team, especially Michael Thurston and Melinda Rankin.

Special thanks go out as well to our technical reviewers: Jonathon Becker, Victor Lara, and

Francisco Velazquez. The book is significantly better due to their recommendations, nitpicking,

and fact-checking.

Cameron

I am extremely thankful for all of the people who worked with me and tolerated me through-

out the lengthy process of book development, particularly my mother, father, brother, and

sister-in-law. I can’t explain the gratitude I have for my family and their ability to put up with

the absences, stress, and limited schedule that comes with writing a book. Thanks to the entire

9magnets team: Dillon Carter, Nathan Feldsien, Michael Phelps, and Francisco Velazquez; they

were amazing coworkers and even better friends throughout the entire process. I would also

like to give special thanks to all the amazing people that I’ve had the pleasure to meet in the

independent app development community that serve as my biggest source of inspiration every

day. Cabel Sasser, I hope that this makes you proud.

Josh

I am incredibly grateful for the patience and understanding of my wife, Mallory, who was amaz-

ingly focused on planning our wedding while I was off working on this book. I’m also thankful

for my parents, who never stopped encouraging me to work hard and see what followed, and

for the grandparents, aunts, and uncles who feigned amazement at the not-so-creative writing

of my childhood. I’m also indebted to the many teachers and editors over the years who offered

invaluable lessons and priceless opportunities, especially Jeff Burton, Greg Halling, Linda

Jegerlehner, Marshall King, Pat Milhizer, Paul Oren, Mark Schwehn, and Susan Swift.

This page intentionally left blank

ABOUT THE AUTHORS

Cameron Banga is the lead designer at a company he cofounded, 9magnets, LLC. He has

worked on more than 100 mobile apps for clients ranging from professional sports teams, to

educators, to large corporations. His first application, Battery Go!, quickly became an iPhone

best-seller, and his apps have been recommended by the New York Times, Fox Business News,

Macworld, PC Magazine, and many other media outlets. Cameron holds a B.A. in economics

from Valparaiso University.

When not writing, Cameron is an avid photographer, novice runner, and coffee connoisseur in

training. Cameron can be most easily reached via Twitter, at @CameronBanga.

Josh Weinhold is the assistant editor of the Chicago Daily Law Bulletin newspaper and Chicago

Lawyer magazine. He spent five years as a political reporter and has written hundreds of news

articles and feature stories published in the Daily Law Bulletin, the Elkhart Truth, the Dubuque

Telegraph Herald, and on msnbc.com. He shared a National Press Club Online Journalism Award

with other members of an msnbc.com and Elkhart Truth reporting team, and won The Chicago

Bar Association’s Herman Kogan Award for legal beat reporting.

He spends his free time slowly working through the long list of movies and TV shows he’s been

dying to see and fanatically following many real-life and fantasy sports teams.

This page intentionally left blank

C H A P T E R 4

FIRST SKETCHES

OF AN APP

You won’t need a hammer or a screwdriver; maybe

you’ll need a tape measure—though preferably one

in digital form on the top and side of your computer

screen. Like any job, there’s an established set of

tools that most interaction and interface designers

use to create their projects. Programs such as

Photoshop, Balsamiq, xScope, and others are critical

components of the interface-building process. In

this chapter, you’ll find a general strategic outlay

for planning the design of a mobile application.

Using the steps and techniques presented, you’ll be

prepared for the different phases a design evolves

through during its infancy, before a programmer

writes the first lines of code.

60 CHAPTER 4 FIRST SKETCHES OF AN APP

What Tools Do You Need?
A mechanic is only as good as his or her tools, or so the saying goes. The ones that care about

their work the most are the ones that most significantly invest in their tools. It’s true for auto

body shops, and it’s true for design shops as well.

Before making a serious effort to create an app, designers need to make sure they have the best

equipment available at all times. When starting out, this can be a bit difficult, as new comput-

ers and professional software are often quite expensive. To avoid wasting money on improper

tools, it’s important to get the best bang for your tech buck.

Many of the tools and tips recommended in this chapter developed from labors of love: fond-

ness and expertise forged over a couple of years and a hundred apps worth of experience. But

it’s important to note that there are no one-size-fits-all solutions when it comes to choosing

tools or selecting a process to draft a design. The following recommendations come from a

process that has led to the creation of several successful apps, but if you come across a piece of

software better suited to your task at hand don’t be afraid of going your own route. Likewise,

the tools available to designers grow and evolve at a lightning-quick pace, and new products

are constantly hitting the market that make design faster, easier, and more efficient. It’s always

worth giving new products a try, as any learning curve involved may pay off significantly down

the road.

The first tool needed in a designer’s supply kit is one that’s essential to everyone from elemen-

tary school students to rocket scientists: a quality notebook, journal, or word processor. Being

a successful interaction designer requires taking notes consistently and excessively. Everything

from trends in the industry seen in other apps to thoughts on personal work should be docu-

mented for future reference.

note

Remember that the tool suggestions in this chapter are just that: suggestions. If

you currently have a workflow that functions better than what’s recommended,

feel free to diverge (or, even better, share your setup with other designers online).

The goal is to do apps well, regardless of the tools and methods used.

Interaction design focuses on the constant development of a product in order to increase

usability and value, so there’s always room to improve a work. As is also true for painters

and comedians, inspiration doesn’t always strike at the most convenient moments. Some of

a designer’s best ideas will come when he or she isn’t working; they’ll arrive while walking

down the street or in the middle of the night. Always having a notebook or phone-based word

processor handy is a great way to quickly jot down thoughts as soon as genius strikes. Try Field

 WHAT TOOLS DO YOU NEED? 61

Notes by Draplin Design Company and Coudal Partners. These handy, portable notebooks

come in a standard size that’s roughly the same aspect ratio, width, and height as a smartphone

screen and, likewise, work well to approximately portray a scaled-down tablet screen. They fit

well in a pants pocket or purse, and they’re great for scrawling out quick ideas or sketching out

design prototypes.

When it comes to computer hardware for a designer’s utility belt, it’s tough to suggest anything

other than an Apple laptop running OS X, preferably the most recent version available so there

are no issues with compatibility for Apple’s development applications. There’s no denying that

all iOS development and interface design implementation and most Android development

takes place on computers running OS X. Access to Windows is required, however, for Win-

dows phone app development, so designers planning on taking that route will need to keep

that in mind.

If you don’t plan on doing any coding at all and most of your work will be focused on creating

visual designs, you could be perfectly fine with a Windows PC. Do consider using a machine, how-

ever, that will allow you to commit code for the projects you plan on contributing to, even if you

don’t see yourself as the programming type. It can be very valuable for designers to have access

to source code for modifying art files or making basic code changes, typography selections, or

color choices. If you plan on developing for iOS, it will be well worth your while to have an Apple

laptop or desktop so that you won’t be limited in case you want to tinker with code in the future.

The most frequently recommended computer for mobile design is Apple’s MacBook Pro, ide-

ally one with a Retina display. The benefits of the mobility a laptop provides far outweigh the

added power provided by a desktop. Apple’s most recent laptops with Retina display are great

for designing work that looks fantastic on the high-resolution displays found in most phones

and tablets. Designing on a low-density display can be difficult, because in some cases you

may not be able to preview app designs from Photoshop or a similar program in full resolution.

If cost is an issue, the MacBook Air is an excellent laptop, but steer clear of the 11-inch model;

such a small screen size will make design work difficult.

If a stationary computer is preferable based on your personal needs, a designer can’t go wrong

with an iMac, either. These need to be capable of professional-level functionality, so it’s best to

purchase the most well-equipped computer you can afford. If you’re low on budget, Apple’s

Mac mini is a more than capable machine for design and development. The biggest and best

system isn’t always essential; for most practical purposes, Apple’s recently redesigned Mac Pro

is probably overkill for the type of work you’ll be doing.

warning

UPGRADES CAN BE DIFFICULT It’s important to note that for many Apple com-

puters, specifically the MacBook Air, MacBook Pro, and iMac, it can be difficult or

62 CHAPTER 4 FIRST SKETCHES OF AN APP

impossible to upgrade RAM or hard drive storage space after purchase. Carefully

consider your spec decisions before ordering a computer.

Preferences for design software can vary greatly based on personal taste, but there are a few

essential tools to look for in any program. First and foremost, designers need some sort of

wireframe or mockup function that can take interaction ideas and translate them into a visual

element programmers can use to begin their work.

Balsamiq by Balsamiq Tools LLC (see Figure 4.1) is the multiplatform industry standard for

quickly creating visual wireframes. The application is built specifically for digital design work

and comes equipped with many templates and styles that cater to building Web sites and

mobile software. Balsamiq balances speed and style and also quickly visualizes interaction

thoughts into something others can see, understand, and offer feedback on.

Figure 4.1 Creating attractive, quick wireframes with a tool like Balsamiq is rather simple, as designs

take just minutes and can be extremely helpful in the visualization process.

 WHAT TOOLS DO YOU NEED? 63

Two other valuable sketching and early prototype applications of note are OmniGraffle by

The OmniGroup and MindNode Pro by IdeasOnCanvas GmbH. OmniGraffle is a wireframing

and digital prototype application in the same light as Balsamiq, but OmniGraffle focuses more

heavily on creating work that looks close to reality. Such a feature offers output that’s visually

appealing for clients or stakeholders, but it does add time to the concept process. MindNode

Pro, shown in Figure 4.2, is a mind-mapping application that’s used for creating general text

outlines. It’s a fairly simple tool, but it allows a designer to take a simple idea, spread it out into

actual words and thoughts, and then transform those thoughts into patterns that outline a

more complete thought process.

MindNode Pro is a favorite tool of designers due to its ability to easily and quickly visualize

ideas. It’s also useful for a variety of non-app-related tasks. For one example, look no farther

than this very page; MindNode Pro for iPad and OS X was used to visualize and outline each

chapter of this book.

When it comes to rendering anything in pixels, meanwhile, Adobe’s Photoshop is far and away

the most popular choice for computer graphics creation and editing, and it’s a piece of software

that’s used heavily in interaction and interface design. If it’s something visual and not something

done in code, odds are it’ll need to be done in Photoshop. Adobe recently made a major model

shift to its Creative Cloud platform, which is basically an all-you-can-eat buffet for their products.

For a monthly fee ($50 currently), users have access to Adobe’s entire Creative Suite. This is a

great shift for designers who previously found the high cost of each Adobe program prohibitive,

as they are no longer limited to one program but can instead now use other Adobe products

when creating software, such as Illustrator for vector art creation or Audition for audio editing.

Figure 4.2 MindNode Pro offers a simple, clean interface for creating mind maps.

64 CHAPTER 4 FIRST SKETCHES OF AN APP

Still, there are other options available for small app-creation teams who find that monthly

expense to be a creative barrier or for designers who simply want a product not offered by

Adobe. Several strong—and extremely affordable—competitors have emerged recently,

including Pixelmator by Pixelmator Team Ltd. and Sketch by Bohemian Coding. The down-

side of going with less popular products, though, is losing out on the wisdom of the crowds.

Countless online tutorials, books, and instructional videos have been developed to walk users

through basic and advanced Photoshop techniques, so individuals not experienced in visual

design may have some trouble instantly mastering alternative programs.

Finally, a software gem that’s absolutely imperative to have in a designer’s tool kit is xScope by

The Iconfactory. It’s essentially the Swiss Army knife for interaction designers, offering a variety

of magnification and pixel-measuring tools to use when analyzing an application on the iOS

simulator or an Android virtual device. The tool is priceless because designers sweat to make

sure every pixel is in exactly the right place while debugging and testing software.

It’s somewhat difficult to describe what xScope does (or appreciate how well it does it) without

using it. Essentially, the application makes it simple to measure a variety of important on-screen

metrics when designing and developing apps. In Figure 4.3, you’ll see an on-screen ruler and

magnification loupe being used to inspect the visuals of a Web site.

Figure 4.3 xScope helps designers measure a variety of on-screen metrics.

 BECOMING A DESIGNER 65

Becoming a Designer
Once your design utility belt is firmly buckled and your tool kit fully equipped, it’s time to

determine how to actually tackle the job of becoming a designer. There’s no certification

exam to pass or credentials to acquire, but there are many classes to enroll in (for a fee) and

even some universities offering to teach the trade of design; but are they worth your time

and money?

If you’re young and either in college or about to head off to it, by all means enter a program

that’s focused on design and product creation, even if it’s not specifically geared toward the

development of mobile apps. There’s a great deal of benefit to be derived from going through

a full college or trade-school program on how to become highly proficient in computer soft-

ware creation.

But if your college years have passed you by or the cost or time required for a full course load

is daunting, there’s a nearly endless supply of free information available on the Internet that

can help you become more adept at this craft.

Currently, most mobile app designers are either self-taught or have some background in

computer engineering or another traditional visual design field. Eventually, though, the lead-

ers of the industry five, ten, or twenty years from now will have gone through some post-high

school program focused on software development.

Another way to hone your skills or grow your knowledge base is something often discussed

by those looking to get into the world of app development: conferences. There’s certainly no

shortage of events, ranging anywhere from a day to a week in length, vying for developers’

time and dollars. These sessions are often quite expensive, but they remain one of the only

ways a programmer or designer can spend hours upon hours listening to or talking with titans

of the industry.

Based on personal experience, conferences offer the opportunity to draw from a wealth of

knowledge and enjoy a healthy dose of much-needed social interaction and networking. The

face-to-face benefits of a conference cannot be understated, especially in the tech industry.

Many mobile developers work alone at home or at small companies of two to three people and

each one is perhaps the only person in town with such a hobby or profession. Thus, confer-

ences offer a valuable opportunity to foster camaraderie between people with similar interests,

providing both inspiration and motivation.

66 CHAPTER 4 FIRST SKETCHES OF AN APP

With many conferences making audio and video of lectures and roundtable discussions avail-

able via the Internet, though, any technical expertise gained by attending in person becomes

less and less valuable. If you’re paying your own way to an event, aim for the ones that are

most affordable—something in line with what you’d spend on a short and cheap weekend

getaway. Look at conferences as the entree of establishing friendships and interacting with

individuals with shared passions that just happens to come with a side dish of learning. Don’t

break the bank on pricey conferences, and you won’t be saddled with overeater’s remorse

the day after.

tip

For a good list of various conferences that anyone can attend regardless of their

mobile platform of choice, check out http://lanyrd.com. The site is dedicated to

helping connect users to different professional conferences.

Planning for a Specific Platform
Once the basic wireframes of an application are drawn up, it’s time to move on and begin

preparing for the intricacies of a specific platform. Now, you should start thinking about how an

application will look and feel on one specific mobile device or another.

First, it’s essential to find the developer documentation for the appropriate platform. The

human-interface guidelines will be the most important document for a designer, along with

any other design-specific documentation available from the platform’s developer center. For

iOS or Android, Apple and Google frequently update documents on human interfaces much

like they do for API and other technical processes. Major mobile platform developers also have

other documents available detailing how to implement specific looks and feels for common

interface features, and they often update these style bibles after a major operating system

update. Even if you’re comfortable with a platform’s interface guidelines, it’s always important

to check back with the developer’s recommendations to see if anything has changed. Human-

interface guidelines are most definitely a living document, sometimes even more so than the

platform programming guides themselves.

While reading over a platform’s documentation, it’s valuable to make sure that one or more test

devices are available at a designer’s disposal. Ideally, a minimum of one fairly new and up-to-

date physical device should be handy, and some virtual devices should be installed and loaded.

These can be things such as an iOS simulator that’s prepackaged with Xcode, an emulated

Android device from the Android SDK, or something similar that allows a designer to run test

applications on a computer. These vary by platform, so visit the manufacturer’s developer

resources page to learn what options are available.

http://lanyrd.com

 PLANNING FOR A SPECIFIC PLATFORM 67

tip

A good rule of thumb is to always have three devices for testing: one device that’s

new and uses the most recent technology, one that’s old and contains the least

powerful technology that you plan to support, and one dedicated for use in offline

or other edge-case scenarios.

Once you get your hands on a device, ensure that you’re comfortable using it. One recom-

mended strategy during app development is to carry the targeted device as your primary

phone or tablet for at least a week. After using it for several consecutive days, you’ll become

familiar with its common interaction practices and begin to appreciate how users work with the

device in professional and personal settings.

New designers often make the mistake of using only screenshots or the human-interface guide-

lines document to draft their interface work for a new platform. Interaction design, though, is

less about the look of an application and more about the feel and flow of how an application

works. It’s impossible to accurately judge what feels natural on a platform based solely on

screenshots, and the guidelines document is written using colloquial terms that only make

sense after using a device for a couple of days.

In Apple’s human interface guidelines for iPhone and iPad, for example, the author uses the

following sentence: “And, although people might not be aware of human interface design

principles such as direct manipulation or consistency, they can tell when apps follow them and

when they don’t.” Users will know if an application feels out of place, and there’s no way for a

designer to know if he or she has implemented principles correctly unless the operating system

has been used personally for day-to-day tasks.

Once a device is in your pocket or backpack and you’ve studied up on an interface’s official

documentation, take a look at some third-party development resources such as books or blog

tutorials on the design for your target platform. Although the interface guidelines will be your

rulebook going forward, and the device itself will help you experience how to use the plat-

form, advice and instruction from leading developers is one of the best ways to learn about

real-world user expectations. Follow some top developers and designers on Twitter or RSS

feeds to get a constant flow of information on how platform design changes daily. The mobile

development community is still a very tight-knit group, and many bloggers or book authors are

approachable and more than willing to discuss your interaction plan online or over lunch at a

conference, so don’t hesitate to reach out and ask for help.

And again, don’t underestimate the power of social interaction. Find local groups or meet-

ups with like-minded mobile developers; most medium- to large-sized cities have clubs with

monthly meetings to discuss trends and evolutions in the industry. Getting together to chat

and interact is crucial for members of an industry known for having its fair share of people

68 CHAPTER 4 FIRST SKETCHES OF AN APP

working alone at home. You’re designing for some of the hottest platforms in the world, and

people love offering up their opinions, so go out and be social.

Starting with a Workflow
Now that you’ve got a device and have a plan of attack for learning about a specific platform

and staying up to date on its news and trends, it’s time to begin the real work: developing an

application’s interaction design. The best place to start is by composing a wireframe and build-

ing a general overview of the application’s workflow.

If the world of interaction design is like a house, an application’s workflow is the cement foun-

dation, and the wireframe is the wood that supports the walls. It’s not time yet to pick what

type of doors to install or what color to paint the living room, but a number of important deci-

sions are made at this early stage that will influence how an application works—decisions that

will be very difficult to change once you progress further. It’s crucial to make sure these choices

are thought out well and thoroughly evaluated.

Begin this process by writing down or drawing a graph of a basic plan for what users will experi-

ence when first launching the application and then how they will move through it to accomplish

a certain task. This initial phase of the workflow should be extremely abstract initially. The gen-

eral purpose of this exercise is to understand the reasons why users will download this app, what

their first impressions of it will be, and how information can be presented to them as quickly and

efficiently as possible. You can conduct this process by using an application such as the previ-

ously mentioned MindNode Pro or you can simply use a large piece of paper with boxes, lines,

and text that describes the setup and flow. You’re essentially developing an advanced connect-

the-dots process while also working to remove as many dots from the system as possible.

Figure 4.4 shows a relatively simple workflow design, starting with the user entering the

application and ending with the user’s purchase of a pair of jeans. The goal with the design is to

minimize the steps needed to reach that end result and properly identify places in the inter-

face at which a user might find interaction difficult. That helps a designer determine where to

devote the most time during the development process. The key at this stage is simplicity, mak-

ing rapid iteration easy as you see the need for changes while working on your ideas.

In this example, we realized it might be difficult to present a way for the user to quickly and

easily pick out the exact size of jeans they want. We’ve got a couple of strategies in mind that

might solve that problem, but we’re not sure which one we like best yet, so we’ve jotted down a

few notes to return to later.

Even at this early stage of working with a wireframe, it’s not too soon to begin gauging user

experience. One of the most common ways to evaluate an application is to calculate how many

 STARTING WITH A WORKFLOW 69

taps the user must make or the number of page transitions required to go from launching an

application to completing the desired task. As designers, we have two factors that are very much

in our control: how easy it is for users to understand where to make input decisions on an inter-

face and how many screen-to-screen transitions they must go through. Decisions made about

those elements directly influence how much time a user spends moving through an application,

and you’re unlikely to find someone who enjoys an application that fruitlessly wastes his or her

time. Respect the user, and always find the quickest way to get from Point A to Point B.

Ideally, designers should strive to strip away as much complexity and as many obstacles from

an application as possible, removing until they can’t remove anymore. Interaction design is all

about creating an optimal experience for users, and for many reasons apps are optimal when

they are the most simple. They’re used on the go and on small screens, so complex experiences

often do nothing but frustrate the average person. Designers should always be aware of those

factors and aim to avoid complexities when designing a workflow.

tip

Another valuable metric—aside from measuring the number of taps or screens

required to get to a solution—is measuring how much time it takes the user to

complete tasks after entering the app. The faster the experience, the happier

the user.

Figure 4.4 MindNode Pro can be used to build a plan for a hypothetical application designed to help

a user pick out a pair of jeans at a store.

70 CHAPTER 4 FIRST SKETCHES OF AN APP

Meeting Design Expectations

Once a general workflow is laid out—something that looks like a combination of general word

associations and a connect-the-dots puzzle—it’s time to move on to a generalized wireframe.

At this phase of the design process, it’s time to imagine and render every single interface piece

and interaction method that will be replicated inside the application. Now, decisions will have

to be made about whether to use elements such as integrated voice commands or advanced

uncommon system gestures. The documentation created here will also be the primary way to

communicate design concepts and philosophies to involved parties—programmers, managers,

marketers, or other stakeholders—that might be involved in the app production process.

While wading into these waters, it’s the perfect time to research how other applications with

similar functions and features implement interaction design, especially ones developed and

designed by the maker of the operating system itself. Keeping in mind prime examples of soft-

ware on a platform helps guide how your own application should look and feel. It also allows

you to spot flaws or problem areas in competitor apps, presenting an opportunity for your app

to offer something different that helps it stand out in the marketplace.

tip

Constantly peruse the “Top Apps” lists for all major platforms that you plan to sup-

port and take note of how they handle complex interaction challenges. Hundreds

of new applications are released each day, and the best of the best often tackle

difficult problems in unique ways.

Once you’ve gained a good understanding of the way other applications address the problems

your app might face and you’ve analyzed the best work on the platform by the people who

made it, you can begin crafting a voice for your application. Will it be one that truly fits in with

the rest of the apps on a user’s phone, or will it be something that boasts a truly unique design

and aims to stand out from the crowd? There are positives and negatives to both approaches,

and now is the time to thoughtfully consider where your application will fit. Because most

operating systems have a rather coherent universal design philosophy, it’s important to remain

cognizant of what breaking from that pattern will mean. If a user is aware of that design out-

look, they know it by name—or at least by sight—and expect applications to look a certain

way. Offering something strikingly different can be eye-catching, but it can also sometimes be

unsettling to a user.

An operating system design philosophy is a deep concept that permeates an entire platform.

Just look at Apple’s Aqua visual interface design in OS X, unveiled in January 2000 but still in

use today. Aqua (shown in Figure 4.5) is easily recognizable in the standard OS X window, with

polished metal chrome capping off the top edge of the view; bright, glass-styled red, yellow,

 STARTING WITH A WORKFLOW 71

and green buttons in the top-left corner; rounded rectangle buttons; and bright blue that

highlights selected items.

Apple, though, sees Aqua as something much more than a basic visual look. To the company’s

designers, Aqua represents the foundation of the operating system’s entire graphical user inter-

face; it presents elements with a goal of “incorporating color, depth, translucence, and com-

plex textures into a visually appealing interface,” according to Apple’s OS X Human Interface

Guidelines.

Apple’s plan was to use these principles in combination with an animation system that

appeared to be as fluid as water itself to create designs that looked so great that (especially in

the early versions, which far outpaced competitors at the time) you can understand what the

writer is talking about and how that design principle set a standard for every single application

on the operating system.

Clearly, Aqua is not just a visual style; it represents a design goal, one that Apple makes easy

for developers to achieve in their own work. Aqua is also a great example of iterative design.

The style was introduced nearly 15 years ago and has gotten better through 10 (and counting)

major releases. The design language contained within it has evolved, but Aqua’s core design

philosophy remains unchanged.

As with Aqua, current mobile application platforms also have their own sets of design goals. It’s

extremely important for designers to understand the intentions and aims of these design goals

and not just view them as a visual style to occasionally abide by. Currently, Google recommends

Figure 4.5 If you’ve worked with OS X before, you’ll recognize Apple’s Aqua visual interface design

by its steel window appearance and blue tint.

72 CHAPTER 4 FIRST SKETCHES OF AN APP

that developers design to its Holo style, a system designed to unify applications’ appearance,

color scheme, and typography after a period in which Android software offered a very mixed

bag when it came to interface design. The style has been hugely successful, creating a standard

for applications that lets the platform appear distinct while also allowing for a design that is

scalable and usable on multiple types of devices.

It’s also worth noting that, because Android is open source, hardware manufacturers are free

to customize the experience and make modifications to the standard interface design. Popular

examples of this are Samsung’s TouchWiz and HTC’s Sense. As long as you design applications

that conform to Google’s Holo design standards, your interface should have no issues with

being displayed on these manufacturer-specific designs.

Apple, meanwhile, is in a major transition phase, dropping its instantly recognizable iOS 6 look

and feel in favor of a radically reimagined, visually simplified aesthetic and design functionality

in iOS 7.

Well-designed interaction and interface designs often share an important trait: The designs are

consistent across all applications on the operating system, and the user can easily predict how

a common button, gesture, or interface structure will respond to interaction. There’s much to

be learned from using these operating systems repeatedly; you gain an understanding of the

feel of the system, but you also develop a sense of what the creator’s design expectation is.

Through that, a designer can decide if it’s wiser to stick to the platform norms or venture out

onto a creative new path.

In most situations, especially for novice or inexperienced designers, it’s best to stick to the

platform’s design conventions. As a result, you’re less likely to make a serious design mistake or

create an interaction design method that is confusing and discouraging to users. The interac-

tion methods that are baked into an operating system are tried and true, tested with a multi-

tude of usability drills and established as the common (and often best) practices on a system.

By venturing out and attempting to create a new interface and interaction style, a designer risks

stepping too far away from a user’s comfort zone.

tip

New designers may see sticking to standard user-interface conventions as boring,

opting instead to get wild and pursue their own creative ideas. But remember,

the first goal of interaction design is to create something that works, not some-

thing that breaks the mold. Simple and boring trumps complex and confusing

every time.

That’s not to say there aren’t wonderful examples of designers taking risks and reaping big

rewards as a result. Look at Loren Brichter, a digital designer renowned for his creation of

 CREATING PIXEL-PERFECT DIGITAL MOCKUPS 73

the pull-to-refresh interaction method, now common among thousands of apps on multiple

platforms. Brichter took an action that was fairly common—scrolling up and down to view

content—and used an “excessive pull” gesture at the top of a page to launch a screen-refresh

function. The design is beautiful, immediately discoverable, easily comprehensible, and visually

hypnotizing, and it in no way interferes with the rest of the application’s interface.

Keep in mind, though, that Brichter was originally an Apple designer who worked on software

for the first iPhone. When he created this new interface technique, he was already an accom-

plished expert in the field and understood the ramifications of what he was building. His story

presents an important lesson on attempting to create new application interaction types: When

choosing to throw caution to the wind and ignore pre-existing conventions, a designer had

better know full well what he or she is doing.

Wrapping Up Design Documentation

Once the relatively primitive sketch of an app’s general look and feel is complete—and thought

has been put into its interaction and usability—it’s almost time to move to the next big phase

of the process and begin turning your design ideas into pixels and programming code. Work in

the wireframe and early design stages shouldn’t be brushed aside, however, as it’s important

to create as detailed a preliminary document as possible. Often, a designer will be tempted

to jump quickly to Photoshop files or other advanced design work, but devoting extra time to

these early steps will pay off down the road. An extra hour or two spent creating documenta-

tion can save dozens of hours further along in the project.

Keep this key guideline in mind: If you can’t describe an animation, gesture, or other piece

of interaction implementation to a programmer or teammate in a simple sentence or two, it

probably needs additional refinement or further thought. The documentation you create at this

stage of development will be the foundation for everything else on the project, from program-

ming, to art, to testing. Be as direct and explicit as possible when discussing and writing direc-

tions for implementation.

Software development can often be like the “telephone” game that kids play in which a phrase is

whispered from one person, to another, to another. Usually, the sentence the last person in the chain

says out loud is far different from the one the originator first uttered. In app development, the lead

designer is much like the person at the start of that game. If the direction and plan isn’t clear, con-

cise, and simple, it’s likely that the vision will get misinterpreted somewhere along the development

chain, resulting in an application that’s much different than the one the designer intended.

Creating Pixel-Perfect Digital Mockups
After fully documenting the application in a wireframe or sketches, it’s time to start creat-

ing art assets for the implementation of the software’s design. Some designers may only be

74 CHAPTER 4 FIRST SKETCHES OF AN APP

working on interaction design and concepts—such as interface feature implementation or

gesture utilization—and as a result won’t be implementing the actual visual design of the

project. If that’s the case for you, feel free to skip this section.

Creating art designs for a project is often one of the most difficult concepts to teach in any field

of design, not just app development. Although interaction is very much an objective concept,

and a platform’s descriptive documentation clearly outlines when to use gestures, aesthetic

design is much more subjective. Ahead are general tips and recommendations for creating app

art, but for those looking to get additional help on aesthetic design, consider taking an art class

or reviewing books on visual design principles.

Most of the example work described in this section is performed using Adobe’s Photoshop, an

industry-standard tool for anyone in the creative arts. The program allows designers to use a variety

of visual tools such as brushes, shapes, and erasers to create nearly anything imaginable. Developing

your own style and skills in Photoshop is something that takes time to master; the best artists in the

industry often have a dozen or more years of experience and are still learning and growing.

If you’re a new designer and uncomfortable with Photoshop, consider searching for tutorials

online that best mimic the specific visual style you hope to achieve in your app and then use

blog posts, podcasts, or videos to walk you through the steps needed to create this look. There

are thousands upon thousands of Photoshop instruction sources online, and they can be an

invaluable resource. Likewise, there are many books on Photoshop that can help you tap into

the potential of every tool the program has to offer.

note

Photoshop talents and design skills require a lot of practice and plenty of trial and

error to develop. Do you see an icon design or app style that you like? Practice by

trying to recreate the look in Photoshop. Your first few attempts will be difficult,

but with repetition you’ll quickly learn how to create similar designs.

A great visual design is a very important component of interaction design; if a designer can’t

fully represent how to interact with an app via simple text, iconography, and interactive features

users won’t be able to understand the software, and in turn the app won’t see much success.

Visual cues create a path for users, helping them find safe ground so they don’t fall astray. That’s

a reason why it’s often wise for a project’s interaction designer to also be the visual designer,

because a uniform thought process by a single individual helps maintain coherence between

interaction intention and visual implementation. Imagine interaction design as the artistic

idea, Photoshop or programmed code as the paintbrush, and the visualization of the app as

the canvas. It’s much easier to bring a work of art to life if only one person is in control of the

paintbrush from start to finish.

 REITERATING BEFORE IT’S TOO LATE 75

The amount of art required for an app can fluctuate from project to project based on the tech-

nical requirements of the software, the desired visual aesthetics, and the platform, so there’s

no straight answer for how much art will be needed every time. A thorough discussion with

the project’s lead programmer is the best way to determine how to bring a wireframe to life

with both art and code. Once again, this is where that extra time spent developing a detailed

wireframe and application design document comes in handy; a programmer can review these

and instruct the designer how they want the project’s visual assets to be created.

On iOS and Android, most art will be produced in the PNG file format and will be imported

and referred to in code to make the visuals appear on screen. It’s best to create as little art as

possible in Photoshop or another image-based program, instead implementing elements with

code for native interface design pieces. Code is typically more nimble and able to be altered

more easily while also being rendered on screen more quickly. Applications will thus be more

responsive and require less work while also being less likely to break down when the operating

system changes in the future. Each programmer has a different opinion, however, on what they

prefer to do in code and what they want to do using other assets, and so constant communica-

tion with the app programmer is required.

Reiterating Before It’s Too Late
One of the primary goals of interaction design is to be constantly iterating on an implementa-

tion in an effort to improve upon the original work. Although you’ve already done this for a

wireframe, you now have actual art assets in PNG or another format along with full Photoshop

design files that will aid in a more complete analysis.

note

Remember, iterating on a design is the thoughtful and intentional process of tak-

ing original work, questioning decisions, and potentially revising and recreating

parts of the project in an effort to improve its design.

Now is the perfect time to sit down and review your design work with every stakeholder in the

project, from the client who’s funding it to the programmer that’s implementing the design.

The following five questions are often simple and easy to answer when working only with con-

cept art designs, but they’ll grow more difficult and expensive to resolve once the application

becomes actual lines of code, so it’s best to address them now:

1. Does the app look like it will fit in with the platform?

It’s a designer’s prerogative whether he or she wants the work to blend in on the

platform or not, so this question can often be answered either positively or negatively

76 CHAPTER 4 FIRST SKETCHES OF AN APP

and still be OK, depending on the person’s intentions. What’s most important, though,

is creating a coherent design that looks and acts like mobile software.

2. Will users be able to use the application with no guidance?

Long gone are the days in which each piece of software came with a hefty instruc-

tion manual. Mobile apps must be capable of remaining useful while standing alone,

because the production team won’t be there to guide the user along the way. This

question can often be answered by showing the Photoshop work to another tech-

minded person who can offer an outside perspective while also understanding what

the designs in the program are intended to represent.

3. Can the programmer implement the design with art assets and design documen-

tation only?

Most likely, a designer will be working hand-in-hand with the programmers on a proj-

ect, who will hopefully be able to ask questions about why something was designed

the way it was and how it should be implemented. This isn’t always the case, though,

and designers should be prepared for that possibility. Once design documentation is

handed off to a manager or programmer, they should be able to deduce the designer’s

intentions and planned interaction design without being required to check in with

concerns every five minutes. If a programmer can’t create a design with only the docu-

mentation provided, more work is likely.

4. Will the design age gracefully?

Age can wear heavily on things, and mobile apps are no different. There’s an adage

frequently quoted when creating logos for corporations or businesses that says that

the goal should be to design something that would have looked outstanding 100

years ago, would look outstanding today, and will look outstanding 100 years in

the future. Strive for a general style and brand that will remain tasteful and visu-

ally appealing as an operating system or platform changes over time. This can vary

in difficulty based on platform, but it’s wise to avoid trendy “flavor-of-the-week”

design practices that will fall out of fashion quickly. Instead opt for classic, traditional,

platform-friendly looks.

5. Does the design meet future project goals?

A lot of new designers get tripped up in their development by creating a great first

version of an app but failing to allow space for future feature improvements that will

be necessary in subsequent releases. Designs shouldn’t be handcuffed by hypotheti-

cal “maybes,” but it is important to consider how an application’s design might evolve

after another six or twelve months of work. Take a journaling application, for example,

in which a designer uses a swipe interaction to open various menus but fails to rec-

ognize that the app’s 2.0 release will include a photo-adding function in which users

 PREPARING FOR THE NEXT STAGE 77

will swipe to move through pictures. This will cause an interaction conflict, leading

to a complete design overhaul a few months after launch, complete user confusion,

a completely unreliable design, or some other terrible cocktail of those poor-design

consequences.

note

Identify each stakeholder in a project long before work begins, especially if your

project is for a client. Stakeholders will be managers, bosses, programmers, and

anyone else who has a vested interest in a project. Moving too far along with the

design before receiving stakeholder approval on a feature or style may result in

work disapproval and unsatisfied clients.

As you get more and more involved with the world of software, you may run into an increas-

ingly common programming approach called agile software design that runs in direct contra-

diction to the strategy just outlined. Agile software design involves design and programming

team members working out basic features and plans to constantly add more to the product

based on user response, testing, and developer experience. It’s a great strategy, but only for

those who are quite familiar with software development and are comfortable with how to han-

dle a product constantly in motion. If you’re new to design and programming, hesitate before

adopting this strategy; you may be better off thoroughly thinking through a design prior to the

start of programming.

Preparing for the Next Stage
Although the app remains in its infancy at this phase of the development process, it’s not too

soon to take formal opinions of it from potential users or colleagues. As designers, it’s often our

job to dictate or direct the development path and make important decisions about the project,

but we’re by no means dictators. Don’t let yourself be above healthy discussion or critiques of

your work from anybody. Each and every voice that responds to your output can be valuable,

so don’t jump to dismiss the opinions of others who don’t have design experience. Apps aren’t

just for the tech elite; everyone from mothers to bank tellers to baristas are potential users too.

Inevitably, someone in such a position will point out a bad design idea.

Ultimately, if you can’t defend your own design it’s probably not that great of a design to begin

with. Be willing to question and evaluate your own ideas with the goal of an improved user

experience in mind. Developing apps is very much a team sport, and your work will inevitably

grow with thoughtful critique and constant iteration.

78 CHAPTER 4 FIRST SKETCHES OF AN APP

IN-DEPTH

In order to build apps, you need apps. A few great software-development tools were

briefly mentioned in this chapter, but here’s a more detailed look at these favorites, along

with a few additional gems that you might come to depend on. These pieces of OS X

software will give you a leg up on the competition when designing your app.

 ■ Adobe Photoshop is the gold standard by which all other design tools are

judged. Originally released by Adobe in 1990, the software has been used for a

variety of graphic design purposes and has permeated society to such a point

that “to Photoshop” has become a household verb. Regardless of the platform

you’re designing for or the platform you’re building with, Photoshop will be an

indispensable tool.

 ■ Skitch is a simple application currently owned and managed by Evernote that

allows for simple text and graphical markup on screenshots captured by a com-

puter. It’s very quick to use; just take a screenshot and then mark up the image

with arrows to point out errors, text to explain intention, or simple shapes to

note where content should be. When building work in a preproduction emula-

tor, Skitch is a useful tool for quickly noting where interface errors exist so that

programmers can fix bugs and improve the app.

 ■ Balsamiq is a multiplatform tool that allows for rapid creation of a basic soft-

ware wireframe, which is used to show stakeholders and programmers how an

interaction design works when programmed. Clear communication is a neces-

sary skill for any interface designer, and Balsamiq is a great tool to graphically

indicate design intentions to the people who will be coding your work.

 ■ xScope is the Swiss Army knife of interaction design, with a variety of invaluable

tools to help improve and iterate on an interface. The application includes vari-

ous measurement utilities, color indicators, and magnification tools that allow

a designer to zoom in and view tiny details easily. xScope—created by Iconfac-

tory, a team known for building some of the most beautiful interfaces available

on OS X and iOS—provides a great way to double-check that you’ve properly

placed all of your interface pieces.

 ■ Pixelmator is renowned as a worthy competitor to the almighty Photoshop. It’s

an extraordinary digital art enhancement tool currently available for much less

than a single monthly subscription payment to Photoshop. If you’re a novice

designer looking to get your feet wet with as little cash overhead as possible,

Pixelmator is your soulmate.

 CONCLUSION 79

Conclusion
A carpenter doesn’t build a house the first time he or she picks up a hammer. A writer doesn’t

crank out a great novel the first time he or she sits down at the keyboard. Likewise, it takes

time and development for designers to become comfortable with—much less master—using

the tools of their trade. You’ve just begun to crack the surface of the work involved in creating

an app by learning about the early steps of design. With a solid foundation laid, you can now

begin building the framework of your original mobile creation.

This page intentionally left blank

This page intentionally left blank

Numbers
1Password (from AgileBits), 56, 232
80/20 rule (Pareto principle), applying to mobile

development, 159–160

A
AAC (augmentative and alternative

communication), accessibility for disabled
users, 166

A/B testing, 187–188
Accessibility tools

anticipating user base and, 32–33
for users with disabilities, 163–166
in iOS, 258
naming conventions and, 258

Action bar, in Android, 87, 176–178
Adobe Creative Cloud suite, 63, 244
Adobe Illustrator, creating app icon, 108
Adobe Photoshop

creating pixel-perfect mockups, 74–75
overview of, 78
tools for minimizing fi le size, 186
translating Photoshop design into mockup for

iPhone or Android, 135
for visual design, 244

Alpha channels, PNG support, 253
Amazon

examples of outstanding apps, 232–233
marketplace for native software, 8

Analytics. See also Tests
analyzing test data, 204–205
making positive changes based on beta

tests, 208
testing app use, 187
understanding how analytic services work,

205–206
viewing how users are interacting with

app, 217
Android

accessibility tools, 33
action bar, 87, 176–178
APIs for accessing hardware features, 6
branding guides for apps, 118
building art that scales, 119–123
choosing as mobile platform, 17–18
cross-platform visual styles, 117–118
designing for specifi c platforms, 66
display densities, 252
distribution methods for beta testing, 203

INDEX

fi le format, 252–253
fi le management, 253–254
gesture-based navigation, 92–93
history of mobile devices, 10
history of tablets, 11
HockeyApp integration with, 206
Holo style, 71–72
hybrid apps, 84–85
icons, 108–109, 252
interaction experience for both phones and

tablets, 51–52
interaction experience for multiple platforms,

53–55
iOS compared with, 14
keyboard support, 47
Linux basis of, 138
managing connectivity failure, 98–101
modal controllers in navigation, 91–92
naming conventions, 254
native apps, 7–8, 82–83
navigation views, 93–96
open source basis of, 13–14
pixel-perfect mockups with, 75
putting elements in right location, 180–182
sandboxing in fi le management, 153, 155
scroll view navigation, 90
search-driven navigation, 90
single-view navigation, 86
stacked navigation, 87
tips for working with, 254–255
touchscreen interface, 13
translating Photoshop into mockup, 135

Android Asset Studio, 254
Android Developer Studio, 140, 143
Animation

app speed and, 187
viewing with xScope, 249–250

APIs (application programming interfaces), for
accessing advanced hardware features, 6

APK fi les, distribution methods for beta
testing, 203

App Store (Amazon), 7–8
App Store (Apple)

encouraging user exploration, 26–27
marketplace for native software, 7–8
registered accounts, 9
time required to test apps available in, 35

App stores
marketplace for native software, 7–8
resubmission process, 228–229
reviews from, 221–222

262 APPADVICE.COM

AppAdvice.com, 219
Appcelerator’s Titanium SDK, 85
Appearance, how it changes interactions, 104
Apple

accessibility tools, 32–33, 164–165
app icons and, 108
app review and standards, 156–157
Aqua theme, 70–71
building art that scales, 119–123
in choosing a mobile platform, 17–18
in choosing operating system for mobile app

design, 61
commitment to simplicity, 169–170
conferences for product rollout, 31
Cover Flow technology, 54–55
cross-platform visual styles, 117–118
designing for humans, 27
designing for specifi c platform, 66
example of fl at design style, 106
history of tablets, 11
human-interface guidelines, 67
as industry leaders, 185
interaction experience for both phones and

tablets, 50
key player in mobile industry, 12–13
marketplace for native software and, 7–8
multilingual interaction designs, 160–161
registered users, 9
reviews from App Store, 221–222
single-view navigation, 85–86
slide-to-unlock interaction in iOS, 175–176
“There is an app for that” marketing

campaign, 3
Time Machine backup, 138
understanding role of mobile devices, 40–41

Application programming interfaces (APIs), for
accessing advanced hardware features, 6

Apps. See Mobile apps
Aqua theme, in OS X, 70–71
Art

artwork requirements for iOS and Android, 251
building art that scales, 119–123
matching to interaction design, 115–117

Aspect ratio, of smartphones or tablets, 51–52
Assembla (from Assembla Inc.), project

management software, 139
AssistiveTouch (from Apple), accessibility tools,

32, 164
Asus, Google partnership with, 11
Audience

identifying user traits, 157–160
knowing your audience, 150–152

Audio, writing source code, 143
Audition (Adobe), 63
Augmentative and alternative communication

(AAC), accessibility for disabled users, 166

Auto-layout, 50
Automatic app (from Automatic Labs, Inc.), 147
Azure. See Windows Azure

B
Babylon Translator, for multilingual interaction

design, 162
Back button, putting elements in right location,

180–182
Backup software, 138
Balsamiq (from Balsamiq Tools LLC)

creating design documentation, 131
matching art to interaction design, 116
overview of, 78
as recommended design software, 62
for wireframming, 244–245

Bard Mobile app (from Library of Congress), 166
Beta-testing. See also Tests

analyzing test data, 204–205
caps on number of tests per developer, 201
choosing testers, 195–196
deciding when to share work with testers,

196–198
determining when you are ready to

release, 209
developing strategy for, 198–199
distribution method for beta tests, 203–204
fi nding software bugs and crashes, 206–207
interaction design and, 29
maintaining relationship between

development team and testers, 205
making positive changes based on tests, 208
managing issue resolution, 207
minimizing interface friction, 97
preparing builds for testing, 200–203
protecting your secrets, 194–195
tracking issues and bugs, 199–200
understanding how analytic services work,

205–206
Binary code, 210
Bitbucket web site

source-code-control systems, 138–140
tracking app issues, 199–200
turning requests into changes, 224–225

BlackBerry
adoption of touchscreen interface, 13
key player in mobile industry, 15
market share, 15
mobile device interfaces, 11–12
mobile device operating systems, 8

BlackBerry World, 8
Blogs

avoiding negative feedback, 195
learning programming languages, 129

 DEMOGRAPHICS, ANTICIPATING USER BASE 263

Bluetooth, support for wireless keyboards, 46
Branding guides, for mobile apps, 118–119
Brichter, Loren, 72–73, 113
Briefs (from MartianCraft), 135
Bugs

determining when you are ready to
release, 209

developing beta-testing strategy, 198–199
fi nding, 206–207
making positive changes based on beta

tests, 208
managing issue resolution, 207
tracking, 137, 199–200
turning requests into changes, 224–225

Bugshot (from Marco Arment), for marking up
screenshots, 245–246

Builds
preparing for testing, 200–203
version numbers for, 202–203

Burnout, cautions in app development, 214

C
Calculator app, example of single view, 86
Calendar app, in iOS 7, 180
Cameras, skeuomorphic style, 104
Cavanagh, Terry, 190
C/C++, for writing native apps in Android, 82
cd command, for working with Git, 142
Cell phones, history of, 9
Change/change management

keeping up with platform changes, 185
making positive changes based on beta

tests, 208
preparing users for design changes,

226–228
role of technology changes in interaction

design, 24
turning requests into changes, 224–225

Clarity, elements in simplicity of design, 171–172
Clear for iPhone (from Realmac Software), 93
Clicking, not using in reference to mobile

devices, 131
Clients

email clients, 40
getting feedback, 217

Cloud Messaging (from Google), for cross platform
computing, 41

Cloud storage, SkyDrive app for, 31
CNN News app, 233–234
Coach’s Eye app, 234
Code

binary code, 210
converting design ideas into, 73
sharing, 137–138
source code. See Source code

Collaboration
code sharing and, 137–138
on design issues, 136–137

Color blindness, accessibility tools, 32–33, 166
Color ID Free for iOS, accessibility for color blind

users, 166
Colors

app branding guides, 118
determining what to change in source

code, 144–146
editing with xScope, 249–250
user style preferences, 160

Communication, between designers and
programmers, 136–137

Compass app, skeuomorphic style in, 105, 184–185
Compression

PNG fi le format and, 252–253
Pngyu for compressing PNG images, 248
third party solutions, 257
turning off automatic compression in

Xcode, 257
visual quality and, 187

Computer geeks, mass market design vs., 157
Computers

desktop. See Desktop computers
laptop. See Laptop computers
options for designing mobile apps, 61
upgrades and, 61–62

Conferences, educational benefi ts of, 65–66
Connectivity, managing connectivity failure,

98–101
Continuity, elements in simplicity of

design, 172–173
Cover Flow technology (from Apple), 54–55
Crashes. See also Bugs

analyzing test data, 204
fi nding, 206–207

Crashlytics, 206–207
CrashPlan (by Code42), backup software, 138
Creative Cloud suite (from Adobe), 63, 244
Criticism, using criticism but avoiding

negativity, 223
Cross-platform design, Evernote example, 234–235
CSS, Web apps and, 83–84
Customers

are they pleased with app design? 217
determining which feedback is valuable, 219

D
Data entry, interactions not possible on mobile

devices, 46–47
Data loss, protecting against, 26–27
Data portability, 227
Day One Journal app, 215–216
Demographics, anticipating user base, 32

264 DESIGN

Design
bridging gap between programming and, 128
describing to programmers, 132–136
evaluating own work, 218
importance of consistency, reliability, and

sophistication, 17
interaction design. See Interaction design
interface design. See Interface design
intuitive and natural basis of, 172
preparing users for design changes, 226–228
refreshing. See Updating released apps
simplicity in. See Simplicity of design
using Photoshop for, 244
visual. See Visual style

Designers
becoming a designer, 65–66
determining which feedback is valuable,

218–219
evaluating own work, 216–218
introduction to programming, 141–143
learning opportunities for, 139–140
maintaining work journal, 215–216
making constant improvement, 214–215

Desktop computers
computers recommended for mobile app

design, 61
sandboxing use on, 156
understanding role of mobile devices and,

40–41
Devices. See Mobile devices
Direct feedback usability testing, 188
Direct user feedback, 225
Disabilities, accessibility options, 32–33,

163–166
Displays

densities on Android, 252
hardware recommended for mobile app

design, 61
Distribution methods, for beta testing, 203–204
Diversity

anticipating user base, 32
designing for humans and, 26

Documentation
Balsamiq for, 244
creating design documentation, 131
meeting design expectations, 70–73
in mobile app design, 73

Documents, designing for humans and, 27
Dogfooding, in usability testing, 189
Dribble

design community for getting feedback,
246–247

design community for testing apps, 28
Dropbox, 55, 147
Dyslexia, accessibility for disabled users, 166

E
Eclipse

creating mobile apps, 3
writing source code, 143

Email
clients, 40
diffi culties in creating e-mail apps, 147
getting feedback from users, 206
from smartphones, 36–37
soliciting reviews, 220–221

Emulators/simulators
testing source code, 144
virtual devices for simulation and testing, 66–67

Entertainment, benefi ts of tablets devices, 46
Entertainment apps

MLB.com At Bat, 240
TuneIn Radio, 241

Evernote
examples of outstanding apps, 234–235
Skitch software from, 78, 136–137, 249

Expandability, interaction design and, 48

F
Facebook

examples of outstanding apps, 235–236
getting personal reviews, 222–223
Zuckerberg and, 32

Familiarity
following industry leaders, 185
going against the grain, 186
simplicity through, 183
using well-know visuals, 184–185

Fantastical 2 app, 229
Features

saying no to added features, 178
turning requests into changes, 224–225
when to eliminate, 226–228

Feedback
analyzing test data, 204–205
app store reviews, 221–222
choosing testers, 195–196
conclusions, 210–211
deciding when to share work with testers,

196–198
determining when you are ready to release,

208–210
determining which feedback is valuable,

218–219
developing beta-testing strategy, 198–199
direct feedback usability testing, 188
distribution method for beta testing, 203–204
fi nding software bugs and crashes, 206–207
learning from human error, 28

 GOOGLE ANALYTICS 265

making positive changes based on beta
tests, 208

managing issue resolution, 207
minimizing interface friction, 97
mobile app design and, 77
personal reviews, 222–223
preparing builds for testing, 200–203
protecting your secrets, 194–195
releasing the app, 210–211
reviews Web sites, 219–221
showing off your work, 194
tracking issues and bugs, 199–200
turning requests into changes, 224–225
understanding how analytic services work,

205–206
Field Notes (by Draplin Design Company and

Coudal Partners), 60–61
File formats

Android, 252–253
iOS, 256–257

File management
Android, 253–254
iOS, 257–258
SkyDrive app for, 31
tranditional vs. sandboxing, 153–156

Firefox (from Mozilla), 16
Fitts’ Law, in interface design, 18
Flat design, 106–107
Flicking gesture, 132
Flipboard app, 236–237
Flow, elements in simplicity of design, 172–173
Flurry Analytics, 187, 205–206
Focus groups, anticipating user base, 34–35
Folders

fi le management and integration with mobile
devices, 153–154

re-evaluating layout between projects, 214–215
Fonts

branding guides, 119
challenges in designing for web, 101
determining what to change in source code,

144–146
user style preferences, 160

Forecast.io, 84, 101–102
Form factor, of smartphones or tablets, 51–52
Forrst community, for testing apps, 28
Forstall, Scott, 13
Forums, for learning programming languages, 129
Friction, minimizing interface friction, 96–98

G
Gestures

gesture-based navigation, 92–93
interaction design and, 37

interactions not possible on mobile devices, 47
pull-to-refresh gesture, 113
retention and growth in design and, 173–174
role of technology changes in interaction

design, 24
slide-to-unlock interaction in iOS, 175–176
types of, 132

GIF fi le format, 119
Git

learning how to use, 141–143
as source-code-control system, 137–138

git commit command, 142
git help command, 143
git pull command, 142
git push command, 142
git status command, 142
GitHub web site

as source-code-control system, 138–140
tracking app issues, 199–200
turning requests into changes, 224–225

Gmail, 170
GmbH, 248
Google

accessibility tools, 33, 164–165
Android. See Android
building art that scales, 119–123
in choosing a mobile platform, 17–18
commitment to simplicity, 169–170
cross platform computing and, 41
designing for specifi c platform, 66
diffi culties in achieving simplicity, 170–171
examples of outstanding apps, 237
getting reviews from app stores, 221–222
history of tablets, 11
Holo style, 71–72
icons, 108, 125, 252
as industry leaders, 185
key player in mobile industry, 13–14
making positive changes based on beta

tests, 208
marketplace for native software and, 7–8
mission statement, 170
multilingual interaction designs, 160–161
native apps, 82–83
role of technology changes in interaction

design, 24
scaling interface for various devices, 49
search-driven navigation, 90
testing app use, 187, 205–206
viewing how users are interacting with app, 217

Google Analytics
making positive changes based on beta tests, 208
testing app use, 187
testing user-reaction to app features, 205–206
viewing how users are interacting with

app, 217

266 GOOGLE CHROME

Google Chrome, 237
Google Glass visual platform, 24
Google Maps

diffi culties in achieving simplicity, 170
examples of outstanding apps, 237

Google News, 170
Google Now, 90
Google Play Store

icons and, 125, 252
marketplace for native software, 7–8

GPS
APIs for accessing, 6
interactions possible only with

smartphones, 43
Grades 2 app, 229
Grandmother test, for ease of use, 151
Graphical user interface (GUIs), 143
Graphics tools, in designing mobile apps,

63–64
Gruber, John, 140
GUIs (graphical user interface), 143
Gyroscope, 6, 43

H
HDPI (high density), display densities, 252, 253
Help manuals (instruction manuals)

designing for humans and, 28
rarely available, 150
using applications without guidance, 76

Hints, making clues subtle, 179–180
HockeyApp

for direct feedback usability testing, 188
fi nding software bugs and crashes, 206–207

Holo style, Google, 71–72
Hourly News app (from Urban Apps), 43–44
HTML

building mobile programs, 6
hybrid apps, 84–85
Markdown compared with, 140
Web apps, 83–84

Human-interface guidelines
designing for specifi c platform, 66–67
going against the grain, 186
reasons for straying from, 113–115

Humans
designing for, 25–28
learning from human error, 28–30

Hybrid apps, 84–85

I
iBiker app (from iTMP Technology Inc.), 36–37
iBooks apps (from Apple), 105
ICanLocalize Web service, multilingual interaction

designs and, 162

iCloud (from Apple)
cross platform computing and, 41
having mobile applications complement

traditional workfl ows, 55
Icon Slate (from Jeremy Marchand), 247
Iconfactory

Instagram app. See Instagram app
xScope. See xScope (from Iconfactory)

Icons
creating app icons, 107–111
Google Play Store and, 125
newsstand icons, 256
retention and growth in design and, 173–174
sizes in Android, 252
sizes in iOS, 255–256
user style preferences, 160
vector construction, 249

IDEs (integrated development environments)
creating mobile apps, 3
defi ning today’s apps, 5–6
multilingual interaction designs and, 162
writing source code, 143

Illustrator (Adobe)
creating app icon, 108
recommended design software, 63

iMac computers, for mobile app design, 61
ImageOptim, for compressing PNG images, 257
Images

app speed and, 186
compressing, 248, 257
fi le formats. See File formats
writing source code, 143

Information apps, Wolfram|Alpha, 242
Instagram app

examples of outstanding apps, 237–238
examples of simplicity in app design, 190
examples of teamwork, 147
iconography features, 97–98
pull-to-refresh gesture and, 133

Instant-messaging services, 222–223
Instapaper app, examples of outstanding apps, 239
Instruction manuals (help manuals)

designing for humans and, 28
rarely available, 150
using applications without guidance, 76

Integrated development environments. See IDEs
(integrated development environments)

Interaction design
anticipating user base, 32–35
conclusions, 37–38
designing for humans, 25–28
in everyday life, 24–25
goals, 25
having mobile applications complement

traditional workfl ows, 55–57
interaction experience for both phones and

tablets, 48–52

 ISSUES 267

interaction experience for multiple platforms,
53–55

interactions not possible on mobile devices,
46–48

interactions possible only with smartphones,
42–44

interactions possible only with tablets, 44–46
interface design compared with, 22–24
learning from human error, 28–30
matching art to, 115–117
multilingual designs, 160–163
from sketch to programmable design, 130–131
striving for simplicity, 168–170
universal appeal across devices, 48
user workfl ow in mobile environment and,

35–37
where to begin, 30–31

Interface Builder, Xcode, 143
Interface design

Fitts’ Law in, 18
getting familiar with new OS, 19
goals, 25
interaction design contrasted with, 22–23

Interfaces
design, 2–3
minimizing interface friction, 96–98
options for mobile devices, 11–12
software compared with, 30–31

iOS
accessibility tools, 32–33, 258
Android compared with, 14
APIs for accessing hardware features, 6
choosing a mobile platform, 17–18
designing for humans, 27
designing for specifi c platforms, 66
distribution methods for beta testing, 203–204
example of interaction design, 24
example of interface design, 22
example of skeuomorphic style, 105
fi le format, 256–257
fi le management, 257–258
gesture-based navigation, 92–93
hybrid apps, 84–85
icons, 108–109, 255–256
interaction experience for multiple platforms,

53–55
interaction experience for phones and

tablets, 50
keyboard options, 47
managing connectivity failure, 98–101
modal controllers in navigation, 91–92
multilingual interaction designs, 160–161
naming conventions, 258
native apps, 82
navigation views, 93–96
off ering subtle hints, 180
operating systems for mobile devices, 8

pixel-perfect mockups, 75
putting elements in right location, 180–182
sandboxing in fi le management, 153–154
scroll view navigation, 89–90
search-driven navigation, 90–91
segmented view (tab view) controllers, 88–89
single-view navigation, 86
slide-to-unlock interaction in, 175–176
Springboard iOS launcher, 5
stacked navigation, 87
tips for working with, 258–259
transition from iOS 6 to iOS 7, 72
Unix foundation in, 138

iOS Dev Weekly, 129
iPad

example of skeuomorphic style, 105
Flipboard app and, 236–237
history of tablets, 11
human-interface guidelines, 67
interaction experience, 50
interactions possible only with tablets, 44–46
role of Apple in mobile revolution, 13

iPhone
accessibility tools, 32–33
branding guides, 118
building art that scales, 119–123
cross-platform visual styles, 117–118
example of skeuomorphic style, 105
gesture-based navigation, 93
history of mobile apps, 4
history of mobile devices, 10
HockeyApp integration with, 206
human-interface guidelines, 67
interaction experience, 48, 50, 53–55
interactions possible only with smartphones,

42–44
marketplace for native software and, 7–8
role of Apple in mobile revolution, 13
scroll view navigation, 90
search-driven navigation, 90
segmented view (tab view) controllers, 88
software compared with interfaces, 31
success of slide-to-unlock interaction, 175–176
translating Photoshop into mockup for, 135
Tweetie app, 113
Voice Memos example of single view, 85–86

iPod
history of mobile devices, 9
role of Apple in mobile revolution, 12–13

Issues. See also Bugs
determining when you are ready to release, 209
developing beta-testing strategy, 198–199
making positive changes based on beta

tests, 208
managing resolution, 207
tracking, 199–200
turning requests into changes, 224–225

268 ITERATIONS

Iterations
fi nishing touches and, 124
making improvements via, 197
in mobile app design, 75–77

Ive, Jony, 13, 124

J
Java, 5–6, 128–129
JavaScript, 6, 83
JIRA (from Atlassian), for project management, 139
Jobs, Steve, 13, 40, 170, 208–209
Journalists, soliciting reviews from, 220–221
Journals, note taking tools, 60–61
JPEG fi le format

app speed and, 186
PNG compared with, 187, 253
as raster format, 119

K
Karras, James, 210–211
Keyboards

interactions not possible on mobile devices,
46–47

as interface, 11–12
Kickstarter crowd funding site, 210
Knowledge apps, Wolfram|Alpha, 242

L
Languages, multilingual interaction designs,

160–163
Laptop computers

recommendations for mobile app
design, 61

understanding role of mobile devices and,
40–41

Launch strategy, 209–210
Launchpad, Web service for beta test

distribution, 204
Layout (from SwordSoft), matching art to

interaction design, 116
Learning opportunities, for designers, 139–140
Linux

Android based on, 13
author of, 138
reference materials, 140
Ubuntu distributor, 16

Logos, app branding guides, 118
Lossless compression, PNG fi le format and, 187,

248, 252–253
Lossy compression, JPEG fi le format and,

187, 253
LTE networks, managing connectivity failure, 98

M
MacBook Air, recommended for mobile app

design, 61
Macintosh computers

Apple’s commitment to simplicity, 170
recommended for mobile app design, 61
use of personas, 33

Mailbox app, Dropbox, 147
Maps, Google Maps, 237
Marchand, Jeremy, 247
Markdown markup language, 139–140
Marketplace, for native software, 7–8
MarvelApp (from Marvel Prototyping), 135
Mass market, keys to succeeding in, 157
Mayer, Marissa, 170
MDPI (medium density), display densities, 252, 253
Mercurial, source-code-control systems, 137
Metrics, usage metrics, 187–188
Microsoft

adoption of touchscreen interface, 13
app review and standards, 156–157
choosing mobile platforms, 18
conferences for product rollout, 31
cross platform computing and, 41
early history of tablets, 10–11
example of fl at design style, 106
as key player in mobile industry, 15
multilingual interaction designs, 160–161
operating systems for mobile app design, 61
reviews from app stores, 221–222
Windows OSs. See Windows OSs

Microsoft PowerPoint, 248
Microsoft Surface, 11, 44–46
Microsoft Zune, 9
Mind mapping. See MindNode Pro
MindNode Pro

creating workfl ows, 68–69
for mind mapping, 247–248
recommended design software, 63
use of personas, 33

Miyamoto, Shigeru, 209
MLB.com At Bat app, 240
Mobile apps

anticipating user base, 32–35
beta-testing. See Beta-testing
branding guides, 118–119
checking out award winning apps, 185
creating app icons, 107–111
examples of successfully updated apps, 229
getting feedback. See Feedback
history of, 3–4
managing connectivity failure, 98–101
marketplace for native software, 7–8
minimizing interface friction, 96–98
multitasking, 156
navigating. See Navigation methods

 MOBILE PLATFORMS 269

review and standards, 156–157
testing speed of, 186–187
in today’s context, 5–7
types of, 82–85
usability of. See Usability
use in short bursts, 159
user preferences and, 158
user workfl ow in mobile environment and, 35–37
visual styles. See Visual style

Mobile apps, for designer use
Adobe Photoshop, 244
Balsamiq, 244–245
Bugshot, 245–246
Dribble, 246–247
Icon Slate, 247
MindNode Pro, 247–248
overview of, 243
Pngyu, 248
Skitch, 249
Spark Inspector, 249
xScope, 249

Mobile apps, outstanding examples
1Password, 232
Amazon Mobile, 232–233
CNN News, 233–234
Coach’s Eye, 234
Evernote, 234–235
Facebook, 235–236
Flipboard, 236–237
Google Chrome, 237
Google Maps, 237
Instagram, 237–238
Instapaper, 239
MLB.com At Bat, 240
overview of, 232
TuneIn Radio, 241
Twitter, 240
Wolfram|Alpha, 242

Mobile apps, planning
becoming a designer, 65–66
computer selection, 61
conclusions, 79
creating mockups, 73–75
creating multiple iterations, 75–77
creating workfl ows, 68–69
documentation, 73
getting feedback, 77
graphics tools, 63–64
meeting design expectations, 70–73
note taking tools, 60–61
operating systems and, 61
overview of, 59
on-screen metrics, 64
software development tools, 62, 78
for specifi c platforms, 66–68
tools for, 60
wireframe or mock up tools, 62–63

Mobile devices. See also Mobile phones; Tablets
history of mobile apps, 3–4
interaction experience for multiple platforms,

53–55
interaction experience for phones and tablets,

48–52
interactions not possible on, 46–48
interactions possible only with smartphones,

42–44
interactions possible only with tablets, 44–46
interface options, 11–12
knowing your audience, 152
phones, 9–10
tablets, 10–11
understanding role of, 40–41
universal appeal across devices, 48
user workfl ow in mobile environment and,

35–37
what they are, 8–9

Mobile industry key players
Apple, 12–13
BlackBerry, 15
Google, 13–14
Microsoft, 15
mobile Web sites and browsers, 16
overview of, 12

Mobile phones. See also Mobile devices
Android OS and, 13
Android phone. See Android
history of mobile apps, 3–4
human-interface guidelines, 67
interaction experience for multiple platforms,

53–55
interaction experience for phones and tablets,

48–52
interactions possible only with smartphones,

42–44
iPhone. See iPhone
knowing your audience, 152
limits to expandability, 48
marketplace for native software and, 7–8
native apps, 82
sandboxing in fi le management, 153–156
skeuomorphic style, 104
in today’s context, 5–7
user workfl ow in mobile environment and,

35–37
Windows Phone. See Windows Phone

Mobile platforms
cross platform computing and, 41
cross-platform design, 234–235
cross-platform visual styles, 117–118
designing for specifi c platform, 66–68
interaction experience for multiple platforms,

53–55
keeping up with platform changes, 185
overview of, 16–19

270 MOCKUPS

Mockups. See also Wireframe (mock up) tools
creating pixel-perfect, 73–75
translating Photoshop into mockup for iPhone

or Android, 135
Modal controllers, in app navigation, 91–92
Monitors. See Displays
Mouse, interactions not possible on mobile

devices, 47
Mozilla Firefox, 16
Multitasking, mobile apps and, 156

N
Naming conventions

Android, 254
iOS, 258
re-evaluating between projects, 214–215

Napkin (from Aged & Distilled LLC), for design
documentation, 131

Native apps
Facebook going native, 235
hybrid apps, 84–85
marketplace for, 7–8
overview of, 82–83

Navigation (physical), Google Maps, 237
Navigation Bar, in iOS, 87
Navigation methods

gesture-based navigation, 92–93
modal controllers in navigating, 91–92
overview of, 85
picking navigation interaction type,

93–96
sandboxing and, 152–156
scroll view navigation, 89–90
search-driven navigation, 90–91
single-view navigation, 85–86
stacked navigation, 87–88
tab view navigation, 88–89

Negativity, using criticism but avoiding
negativity, 223

News services, 233–234
Newsletters, learning programming

languages, 129
Newsstand icons, 256
Nexus 7 tablet

history of tablets, 11
interactions possible only with tablets,

44–46
native apps, 82–83

Nokia Symbian Store, 8
Note taking tools

examples of outstanding apps, 234–235
overview of, 60–61
skeuomorphic style of, 184

O
Objective-C

defi ning today’s apps, 5–6
learning programming languages, 128–129
writing native apps in iOS, 82

OmniGraffl e (from The Omni Group), 63, 116
Online shopping, Amazon.com, 232–233
On-screen metrics, in designing mobile apps, 64
open command, working with Git, 143
OpenDyslexic, accessibility for disabled users, 166
OS X

Aqua theme, 70–71
fi le management and integration with mobile

devices, 153–154
for mobile app design, 61

OSs (operating systems)
Android. See Android
challenges in designing for web, 101
comparing Android with iOS, 14
iOS. See iOS
mobile devices and, 8–9
options for designing mobile apps, 61
OS X. See OS X
software compared with interfaces, 30–31
support for keyboard options, 47
tablets and, 10–11
updates, 31

OUYA, 210–211

P
PaintCode (from PixelCut), 123
Pareto principle (80/20 rule), applying to mobile

development, 159–160
Parse, cross platform computing and, 41
Passwords

1Password app, 232
syncing across multiple devices, 56

PCs, understanding role of mobile devices and,
40–41

PDF readers, 40
Personas, in anticipating user base, 33–34
Phones. See Mobile phones
Photo sharing services, 237–238
Photos app, in iOS 7, 180
Photoshop. See Adobe Photoshop
PHP

building Web apps, 83
Web forms for tracking app issues, 200

Pinching
on iPhone, 31
types of gestures, 132
using proper terminology, 131

Pinch-to-zoom, 23

 SEARCH-DRIVEN NAVIGATION 271

Pinterest social networking sites, 33
Pixelmator

as alternative to Photoshop, 244
overview of, 78
recommended design software, 64

Pixels
building art that scales, 120
converting design ideas into, 73
creating pixel-perfect mockups, 73–75
editing, 244
icon sizes and, 255
viewing with xScope, 249–250

Plants vs. Zombies 2 app, 229
Platforms. See Mobile platforms
PNG fi le format

for Android, 252–253
app speed and, 186
compressing, 248
creating app icons, 110
creating pixel-perfect mockups, 75
for iOS, 256–257
JPEG compared with, 187
as raster format, 119

Pngyu, for compressing PNG images, 248, 257
Pointer devices, interactions not possible on

mobile devices, 47
Post-PC OSs. See OSs (operating systems)
Power users, knowing your audience, 151
PowerPoint (Microsoft), for sharing ideas, 248
Pressing gesture, 132
Programmers, working with

clear communication with, 136–137
comprehending source code, 141
conclusions, 148
describing your design, 132–136
designer’s introduction to programming,

141–143
determining what to change, 144–147
interface design and, 2
learning opportunities, 139–140
learning programming languages, 128–130
from sketch to programmable design, 130–131
tracking issues, 137–139
understanding, 128
writing source code, 143–144

Programming code. See Code
Programming languages, learning, 128–130
Project management software, 139
Proloquo2Go, accessibility for disabled users, 166
PSD fi le format, 119
Pull-to-refresh gesture

Instagram app and, 133
overview of, 113
retention and growth in design and, 174

Python, for building Web apps, 83

Q
QWERTY keyboard

in BlackBerry phones, 15
interactions not possible on mobile devices,

46–47
mobile device interfaces, 11–12

R
Radio, TuneIn Radio app, 241
Raster formats

building art that scales, 120
comparing JPEGs and PNGs, 187
list of, 119

Ratio scaling, in Android, 253
Reader apps, 239
Releasing apps

determining when you are ready, 208–210
making the release, 210–211

Resubmission process, updating released apps,
228–229

Retention and growth, elements in simplicity of
design, 173–175

Reviews. See also Feedback
app store reviews, 221–222
personal reviews and feedback, 222–223
reviews Web sites, 219–221

Revision process. See Updating released apps
Rotate gesture, 132
Rubin, Andy, 13
Ruby on Rails, for building Web apps, 83

S
Samsung

conferences for product rollout, 31
marketplace for native software, 8
TouchWiz, 72

Samsung Apps, 8
Sandboxing

usability and, 152–156
use on desktop computers, 156

Schedules
for communicating with programmers, 136
determining when you are ready to

release, 210
Screens. See Displays
Screenshots, Bugshot for marking up, 245–246
Scroll view navigation, 89–90, 95
SDKs (software development kits), 5–6
SDPI (small density), 254
Search engines, 242
Search-based navigation, 94–95
Search-driven navigation, 90–91

272 SECURITY

Security
passwords, 56, 232
protecting secrets while getting feedback,

194–195
Sense (from HTC), 72
Simplicity of design

action bar in Android, 176–178
clarity and, 171–172
conclusions, 191
continuity and fl ow and, 172–173
diffi culties in achieving, 170–171
direct feedback usability testing, 188
dogfooding, 189
examples, 189–191
familiarity and, 183
following industry leaders, 185
going against the grain, 186
locating elements properly, 180–182
making tasks obvious, 178–179
off ering hints, 179–180
overview of, 167–168
retention and growth and, 173–175
saying no to added features, 178
slide-to-unlock interaction in iOS, 175–176
speed of app, 186–187
striving for simple interaction design, 168–170
testing, 186
trimming the app down, 182–183
usage metrics, 187–188
using well-know visuals to create familiarity,

184–185
Simulators/emulators

testing source code, 144
virtual devices for simulation and testing, 66–67

Single-view navigation, 85–86
Siri

accessibility for disabled users, 164
diffi culties in achieving simplicity, 170
role of technology changes in interaction

design, 24
search-driven navigation, 90

Sketch (from Bohemian Coding), 64
Sketches. See Wireframe (mock up) tools
Skeuomorphic style

compass app, 184–185
note taking app, 184
overview of, 104–106

Skitch software (from Evernote)
for collaboration on design issues, 136–137
overview of, 78
transitioning to vector format, 249

SkyDrive app, for cloud storage, 31
Slideshow presentations

mobile devices complementing traditional
computing functions, 40

PowerPoint for sharing ideas, 248
Slide-to-unlock interaction, in iOS, 175–176

Smartphones. See also Mobile phones
accessibility for disabled users, 163–166
Android OS and, 13
computer literacy of users, 156
designing for the mass market, 157
history of mobile apps, 3–4
history of mobile devices, 9–10
interaction experience for both phones and

tablets, 48–52
interactions possible only with, 42–44
interface design and, 2
knowing your audience, 150–151
limits to expandability, 48
operating systems and, 9
user workfl ow in mobile environment and, 35–37

Social networking
designing for specifi c platform and, 67–68
Facebook. See Facebook
icons, 110
learning programming languages, 129
soliciting reviews, 220–221
Twitter. See Twitter

Software
applifi cation of, 150
backup software, 138
beta-testing. See Beta-testing
bug-tracking software, 137–138
for building interactive prototypes, 135
development tools, 62, 78
fi nding bugs and crashes, 206–207
interfaces compared with, 30–31
Markdown markup language, 139–140
mobile. See Mobile apps
not showing off too soon, 197–198
project management software, 139
source-code-control systems, 137

Software development kits (SDKs), 5–6
Source code

committing code, 145
comprehending, 141
determining what to change, 144–146
source-code-control systems, 137–140
underestimating time for replacing, 134
writing, 143–144

Source-code-control systems, 137–140, 145
Spark Inspector, for runtime inspection, 249
Speech impairment, accessibility for disabled

users, 166
Speed, testing app speed, 186–187
Spreadsheets, 40
Springboard (from Apple)

for app navigation, 153
iOS launcher, 5

Stacked navigation, 87–88, 94
Stakeholders

are they pleased with app design? 217
who they are, 194

 TWITTER 273

Subversion, source-code-control system, 137
Super Hexagon app, 190–191
Surface. See Microsoft Surface
Surface (Microsoft), 11, 44–46
Swipe gestures

software compared with interfaces, 31
swipe from the edge, 113
swipe-to-unlock, 23

T
Tab view navigation, 88–89, 94
Tablets

designing for the mass market, 157
evolution of mobile devices, 10–11
interaction experience for multiple platforms,

53–55
interaction experience for phones and tablets,

48–52
interactions possible only with, 44–46
knowing your audience, 152
limits to expandability, 48
native apps, 82
sandboxing in fi le management, 153–156
understanding role of mobile devices, 40–41
user computer literacy and, 156

Tapbots, LLC
Tweetbot app, 100, 114–115
Web site support, 150

Tapping gesture
types of gestures, 132
using proper terminology, 131

Tasks, making obvious, 178–179
Terminal

commands for working with Git, 142–143
for source code management, 140

Terminology app, in search-driven navigation, 91
TestFlight

direct feedback usability testing, 188
distribution methods for beta testing, 204
fi nding software bugs and crashes, 206–207

Tests
analyzing test data, 204–205
choosing testers, 195–196
deciding when to share work with testers,

196–198
developing beta-testing strategy, 198–199
direct feedback usability testing, 188
distribution method for beta testing, 203–204
fi nding software bugs and crashes, 206–207
making positive changes based on beta

tests, 208
managing connectivity failure, 98–101
managing issue resolution, 207
preparing builds for testing, 200–203
protecting your secrets, 194–195

for simplicity of design, 186
source code, 144
speed of app, 186–187
tracking issues and bugs, 199–200
understanding how analytic services work,

205–206
usage metrics, 187–188
virtual devices for simulation and testing,

66–67
Text

accessibility tools in Android, 33
interaction experience for both phones and

tablets, 50
interactions not possible on mobile devices, 46
as an interface, 30
writing source code, 143

Text editors, 143
TextExpander (from Smile), 203
Text-to-voice, accessibility tools, 33, 164
“There is an app for that” , Apple marketing

campaign, 3
Time Machine backup software, 138
Time until response test, 186–187
TinyPNG app, 257
Titanium SDK (from Appcelerator), 85
Toca Boca, iOS and Android apps from, 152
Tools, for designing mobile apps

computer options, 61
graphics tools, 63–64
note taking tools, 60–61
operating system options, 61
overview of, 60
on-screen metrics, 64
software development tools, 62
wireframe or mock up tools, 62–63

TortoiseGit project, for source code
management, 140

Torvalds, Linus, 138
Touchscreen interface

in history of mobile apps, 4
interactions not possible on mobile devices, 47
role of Apple in mobile revolution, 13
software compared with interfaces, 31

TouchWiz (from Samsung), 72
Tracking bugs and issues, 137–139, 199–200
Translation services, 162
TuneIn Radio app, 241
Tutorials, 150
Tweetbot app (from Tapbots, LLC), 100, 114–115
Tweetie app, iPhone, 113
Twitter

avoiding negative feedback, 195
examples of outstanding apps, 240
getting personal reviews, 222–223
from smartphones, 36–37
Tweetie app, 113

274 TWO-FINGER TAP GESTURE

Two-fi nger tap gesture, 132
Typography

branding guides, 118
Instapaper app and, 239

U
Ubuntu distributor, Linux, 16
UDID, iOS distribution methods for beta testing,

203–204
Unix

iOS foundation in, 138
learning how to work with, 142
references materials, 140

Updates
OSs (operating systems) and, 31
platform changes, 185

Updating released apps
app store reviews, 221–222
conclusions, 230
determining which feedback is valuable, 218–219
evaluating own work, 216–218
maintaining work journal, 215–216
making constant improvement as a designer,

214–215
personal reviews and feedback, 222–223
preparing users for design changes, 226–228
refreshing a design, 213
resubmission process, 228–229
reviews Web sites and, 219–221
turning requests into changes, 224–225
using criticism but avoiding negativity, 223

Upgrading computers, 61–62
Urban Apps, 43–44
Usability

accessibility for disabled users, 163–166
conclusions, 166
direct feedback usability testing, 188
dogfooding, 189
fi nding success in mass market, 157
identifying user traits, 157–160
knowing your audience, 150–152
multilingual interaction designs, 160–163
overview of, 149
sandboxing and, 152–156
usage metrics, 187–188
viewing how users are interacting with app, 217

Usage metrics, 187–188, 217
User workfl ow, in mobile environment, 35–37. See

also Workfl ows

V
Vector formats

list of, 121–122
Skitch for transitioning to, 249

Video, app speed and, 186
Views. See Navigation methods
Virtual devices, for simulation and testing, 66–67
Vision impairment, accessibility options, 163–166
Visual cues, creating pixel-perfect mockups, 74
Visual style

app branding guides, 118–119
building art that scales, 119–123
conclusions, 123–125
creating app icon, 107–111
cross-platform, 117–118
fi nding a unique look, 111–115
fi nishing touches, 123–125
fl at design, 106–107
how appearance changes interactions, 104
matching art to interaction design, 115–117
skeuomorphic style, 104–106
using well-know visuals, 184–185

Voice Memos app
example of single view, 85–86
redesign of, 95–96

Voice search (from Google), 33
VoiceOver app, in iOS, 165, 258

W
Weather apps, YahooWeather app, 179
Web apps

building mobile programs and, 6
challenges in designing for web, 101
hybrid apps, 84–85
overview of, 83–84
stacked navigation, 88

Web browsers
building Web apps and, 83
Google Chrome, 237
mobile Web sites and browsers, 16

Web forms, tracking app issues, 200
Web forums, tracking app issues, 199–200
Web sites

Dribble.com, 246–247
mobile Web sites and browsers, 16
review sites, 219–221
support sites, 150

Wi-Fi, managing connectivity failure, 98
Windows Azure

cross platform computing and, 41
having mobile applications complement

traditional workfl ows, 55
Windows OSs

fi le management and integration with mobile
devices, 153–154

for mobile app design, 61
mobile device operating systems, 8
multiple interfaces in Windows 8, 30
Windows 7 references materials, 140

 ZUNE (MICROSOFT) 275

Windows Phone
example of fl at design style, 106
hybrid apps, 85
key players in mobile industry, 15
sandboxing in fi le management, 153

Windows Store, marketplace for native software, 8
Wireframe (mock up) tools

Balsamiq for, 244–245
creating workfl ows, 68–69
designing mobile apps, 62–63
matching art to interaction design, 116–117
meeting design expectations, 70–73
to programmable design, 130–131

Wolfram|Alpha app, 242
Word processors

mobile devices complementing traditional
computing functions, 40

note taking tools in mobile app design, 60–61
for sharing ideas, 248

Work journal, maintaining, 215–216
Workfl ows

creating in mobile app design, 68–69
in mobile environment, 35–37

Worldwide Developers Conference (WWDC), 185
Wozniak, Steve, 170
WWDC (Worldwide Developers Conference), 185

X
Xcode

creating mobile apps, 3
Interface Builder, 143

multilingual interaction designs and, 162
source-code-control, 140
writing source code, 143

Xcode Interface Builder (XIBs), 50
XHDPI (extra high density), display densities,

252, 253
XIBs (Xcode Interface Builder), 50
xScope (from Iconfactory)

accessibility for disabled users, 165–166
overview of, 78
recommended design software, 64
tool for anticipating app look to the color

blind, 32
viewing pixels and analyzing animations, 249

XXHDPI (extra extra high density), display
densities, 252, 253

XXXHDPI (extra extra extra large density), 254

Y
YahooWeather app, 179, 189–190

Z
Zoom, accessibility tools, 33
Zuckerberg, Mark, 32
Zune (Microsoft), 9

	Contents
	Preface
	Acknowledgments
	About the Authors
	4 First Sketches of an App
	What Tools Do You Need?
	Becoming a Designer
	Planning for a Specific Platform
	Starting with a Workflow
	Meeting Design Expectations
	Wrapping Up Design Documentation

	Creating Pixel-Perfect Digital Mockups
	Reiterating Before It’s Too Late
	Preparing for the Next Stage
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

