
final spine = 0.346"

Responsive
Design
 WordPress

How to make great responsive
themes and plugins

Joe Casabona

with

Level: Intermediate
Category: Web Development/Web Design
Cover Design: Aren Straiger

US $39.99 CAn $41.99

www.newriders.com

Joe Casabona is a web

developer, teacher, speaker, and

writer currently working for the

University of Scranton. He has

been making websites since

2002 and using WordPress

since 2004. He is also the author

of Building WordPress Themes

from Scratch.

With the ever-increasing need to view websites on mobile devices,
websites have to be adaptable to thousands of different screen
resolutions. In Responsive Design with WordPress, expert web
developer Joe Casabona teaches you how to leverage WordPress
to get the most out of responsive design, implement best practices,
automate important processes, and make your life easier overall.
You’ll start with a refresher on the core functionality of WordPress,
then dive into developing responsive themes and plugins. Find out
what to consider at the outset of the design process to save hours of
work during redesigns. Learn up-to-date best practices for deter-
mining breakpoints, accessibility, and preventing website bloat for
better user experience no matter the user’s connection speed.
Finally, you’ll apply the principles you learn to specific tutorials,
such as building a photo gallery, map page, and products page.

• Learn when to rely on themes and when it’s best to use plugins.

• Apply your responsive CSS to a WordPress theme.

• Learn various navigation techniques, such as Jump to with
smooth scrolling or Select box.

• Use popular responsive techniques, like picturefill.js, to make
images respond to different screen resolutions and connection
speeds.

• Explore frameworks, including Bootstrap and Foundation.

• Download dozens of code samples to help implement responsive
design techniques, and test yourself with end-of-chapter quizzes.

Responsive Design
 with WordPress

R
esponsive D

e
s

ig
n

 w
ith

 W
ordPress

C
A

S
A

B
o

n
A

9780321957412_ResponsiveWordPress_Cvr.indd 1 11/13/13 10:56 AM

Responsive
DESIGN
 WordPress

How to make great responsive
themes and plugins

Joe Casabona

with

Responsive Design with WordPress
Joe Casabona

New Riders
www.newriders.com
To report errors, please send a note to: errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education.
Copyright © 2014 by Joseph Casabona

Acquisitions Editor: Michael Nolan
Project Editor: Nancy Peterson
Development Editor: Eric Schumacher-Rasmussen
Copyeditor: Joanne Gosnell
Proofreader: Scout Festa
Technical Reviewer: Stephen N. Mekosh
Production Coordinator: David Van Ness
Compositor: Danielle Foster
Cover Designer: Aren Straiger
Interior Designer: Danielle Foster
Indexer: FireCrystal Communications

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. For information on getting permission for reprints and
excerpts, contact permissions@peachpit.com.

Image of Treo used courtesy Jonathan Vasata/Shutterstock.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by
the computer software and hardware products described in it.

Trademarks
WordPress is a registered trademark of the WordPress Foundation in the United States
and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of the
trademark. All other product names and services identified throughout this book are used
in editorial fashion only and for the benefit of such companies with no intention of infringe-
ment of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN 13: 978-0-321-95741-2
ISBN 10: 0-321-95741-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.newriders.com

Dedication

To my parents, Louis and Marie, for their continued support. And to Joe and Jean

Rizzi, whose advice, kindness, and patience helped me get to where I am today.

RESPONSIVE DESIGN WITH WORDPRESSiv

Acknowledgments

I’d like to thank the following people, without whom this book wouldn’t be in

your hands:

RR Stephen Mekosh for not only being a fantastic tech editor and a good friend,

but also being the first person to show me both CSS and WordPress.

RR Michael Nolan for giving me the chance to write this book and welcoming me

to Peachpit Press/New Riders.

RR Nancy Peterson and Eric Schumacher-Rasmussen for advice and guidance,

editing, keeping me on track, and our weekly talks.

RR Joanne Gosnell and Scout Festa for copyediting and proofreading, respec-

tively, and for making it seem like I have a good command over grammar and

the English language.

RR The design team at Peachpit Press for making this book look amazing.

RR Jesse Friedman for the wonderful foreword and kind words.

RR Jason Coleman, Stephanie Leary, Lisa Sabin-Wilson, and Pippin Williamson for

letting me pick their brains on both WordPress and the art of writing a book.

RR My family and friends, especially my parents; my brothers Phil, Mike, and

Rob; Dave Redding; Rob McManus; Matt Wren; and my wonderful girlfriend,

Erin Holman.

I’d also like to make a quick mention of my brother Phil’s website,

http://phil.casabona.org. He took the headshot used in this book, and

I love his work.

http://phil.casabona.org

Contents v

Contents

Foreword viii

Introduction x

Chapter 1 What Is Responsive Web Design? 1
Responsive Web Design Origins 2

Breakpoints & Media Queries 3

The Current State of Devices 7

Consider Connection Speeds 8

Wrapping Up 11

Chapter 2 Creating a Basic WordPress Theme 13
Meet Our Website 16

Template Structure 16

The Loop 23

Custom Post Types 26

Plugins and Shortcodes 29

Wrapping Up 33

Chapter 3 Making Your Theme Responsive:
The Ground Floor 35
Responsive Techniques 36

Adding the Responsive Layout 42

Testing WordPress’ Default CSS Classes 47

Wrapping Up 55

RESPONSIVE DESIGN WITH WORDPRESSvi

Chapter 4 Making Your Theme Responsive:
Core Features 57
Handling Navigation 58

Handling Images 75

Handling Widgets 81

Wrapping Up 88

Chapter 5 Making Your Theme Responsive:
Blog Features 91
Handling Comments 92

Handling Archives 103

Wrapping Up 119

Chapter 6 Using Responsive Theme
Frameworks 121
Some Principles of Reuse to Keep in Mind 122

About WordPress Frameworks 129

Popular WordPress Frameworks 132

Wrapping Up 140

Chapter 7 Techniques and Tutorials 141
Introduction 142

How to Build a Responsive WordPress

Photo Gallery 144

How to Build a Responsive WordPress Map Page

Using Google Maps 150

How to Build a Responsive WordPress

Image Slider 154

Contents vii

How to Build a Responsive WordPress

Contact Form 161

How to Build a Responsive WordPress

Products Page 167

Wrapping Up 177

Appendix Resources 179
A Few Words to Sum Up 180

Books 181

Meetups 184

Links 185

 Index 186

RESPONSIVE DESIGN WITH WORDPRESSviii

Foreword

By Jesse Friedman
Today WordPress powers 20% of all websites, and we can look forward to it

powering 1 in 4 sites launched in 2014. I launched my first WordPress-powered

website in 2005, before all the “cool kids” were doing it. I am very proud to be a

veteran developer and strategist for a product used by millions of people all over

the world.

Since I launched that first site back in 2005, I have written my own book on devel-

oping for WordPress, and I have a few more coming out in spring 2014. I have also

contributed to other books and written articles for online publications such as

Smashing Magazine and net Magazine, and I teach both in universities and online.

I have also spoken at conferences all over the world, including one where I met

Joe Casabona.

I was honored when Joe asked me to write the foreword for this book, because I

knew it was going to be great. Joe has a real talent for turning complicated solu-

tions into very simple step-by-step directions. WordPress was built to be simple—

simple to set up, simple to install, and simple to extend. Still, it can be somewhat

challenging to understand for novice designers and developers who are looking to

build on basic WordPress functionality.

These challenges prompted me to write my book Web Designer’s Guide to
WordPress: Plan, Theme, Build, Launch in 2012 and is exactly why Joe wrote his

book this year. We are both veteran developers who want to help grow the

WordPress community. The best way to do that is to help educate the community

and share our experiences and knowledge around a product we use every day. Joe

has done just that with Responsive Design with WordPress. This is a solid book with

lots of great examples.

As a professor at two universities in Rhode Island, I know this book will compli-

ment my class curriculum beautifully. The lessons, examples, and even questions

at the end of each chapter help you build a great foundation on WordPress and

Responsive Web Design. You also will develop a WordPress theme as you follow

along with the book, so you’ll be reinforcing the skills you’re building as you read.

Foreword ix

Not to mention you’ll be learning two skills at the same time. You’ll be learning

WordPress and, at the same time, gaining experience specifically in Responsive

Web Design. This approach will not only help to strengthen your skills in both

areas but will also make you an expert in a very profitable niche.

As I mentioned earlier, WordPress will power 25% of all websites launched

in 2014. This means that 1 in 4 new sites will need a developer who knows

WordPress. What’s more, as of this year more information is being consumed on

mobile devices than on traditional computers. If you didn’t have strong skills in

Responsive Web Design in 2013, you’re definitely going to need them in 2014

and beyond.

In my opinion, there is no better way to learn a skill than by doing it yourself. This

book is the best way to learn both WordPress and Responsive Web Design at the

same time. Great job, Joe!

RESPONSIVE DESIGN WITH WORDPRESSx

Introduction

I got my first portable device when I was a freshman in high school. It was the

Palm m100 and I loved it dearly. It didn’t do much, and, well, at 13 or 14 I didn’t

have much to use it for. But having a computer in my pocket? Crazy! As a result,

it went everywhere with me (and may have gotten taken away once or twice after

I used it in class).

Then I moved to the Compaq iPAQ, which ran Windows and had a color screen.

Even crazier, I thought. I could run real programs on this. I even asked about

campus Wi-Fi when I was visiting colleges in the early 2000s, when it was just

becoming popular. I thought of all the amazing things I could do with a tiny com-

puter that came with a pen (stylus) and fit in my pocket. Still, I found myself want-

ing more after a while. This brings me to my first smartphone: the Palm Treo 650

(Figure 0.1).

Figure 0.1 Oh, Treo
650. I still miss you
sometimes.

IntroduCtIon xi

I would do everything on this phone—make calls, take photos, sync my Google

Account to it. It even had a primitive browser called Blazer. I could visit websites

from my phone!

Since then, of course, the mobile landscape has changed. The iPhone brought

a full-featured browser to mobile devices, capable of everything from CSS to

JavaScript. It didn’t solve one problem, though: the problem of the small screen.

That’s where Responsive Web Design comes in.

Perhaps you’ve heard of it. It’s apparently pretty popular right now. Lots of

people—developers, designers, agencies, and users—are asking about it. And why

shouldn’t they? On top of catering to what is a quickly growing market, it’s pretty

cool. Responsive Web Design has become one of those things people check for

when they visit a site (resizing a webpage is totally the new “check the source for

table layouts”).

If you’re designing a website, you ultimately have no control over how it’s viewed;

you don’t get to decide where it’s viewed or what it’s viewed on or the connection

on which it’s viewed. That might sound scary to some, but to me (and I bet to you,

too) it’s quite the contrary. I love solving that problem. That’s not to say it’s not a

little daunting. I mean, you need to create a website that is easy to use on mobile

but that totally “wows” on the desktop. That’s what Responsive Web Design is

all about.

WordPress is pretty great too. It powers millions of webpages. Hundreds of mil-

lions, even. As you read in the Foreword, it will run 1 of every 4 websites launched

in 2014. It does a lot for us while allowing us to do a lot. So how does WordPress

fit in with Responsive Web Design? Well, as it turns out, it can be really helpful

when creating responsive themes; it has a lot of really great built-in features that

we, as developers, can leverage to create better responsive sites. And that’s just

what I’m going to show you how to do.

Who Is This Book for?
I’d like to tell you that this book is for anyone looking to develop WordPress sites,

but in order to get into the real heart of why I wrote this book, I need to make a

few assumptions about you, dear reader.

First, I assume you have a working knowledge of HTML, CSS, PHP, JavaScript,

and MySQL. I also assume you have some familiarity with WordPress—you’ve

installed it, you use it, you’ve possibly even coded a theme for it. Finally, I assume

you’ve used a server in some capacity; you should at least know the WordPress

directory structure and how to use FTP/SFTP.

RESPONSIVE DESIGN WITH WORDPRESSxii

So this book is for web developers and WordPress developers who want to take

advantage of what WordPress has to offer in order to create great responsive

websites. In this book, we are going to cover a wide range of topics and techniques

for converting website elements to responsive WordPress theme features.

I will provide a bit of a primer, however. In the first chapter, we will take a closer

look at Responsive Web Design: what it is, where it came from, and best practices

for using it. Then, there will be a brief overview of WordPress theme develop-

ment; this will go over some of the major parts of the WordPress theme—impor-

tant files, the Loop, Custom Post Types, plugins, and more. Then, we’ll get into the

real fun part.

The real meat of the book—making a responsive WordPress theme—is divided

into three parts. Chapter 3 will cover prominent responsive techniques and

how to integrate them into the WordPress theme. Chapters 4 and 5 will look at

specific components of a WordPress website, including navigation, images, com-

ments, widgets, archives, and plugins.

We will wrap up the book by looking at responsive theme frameworks and child

themes in Chapter 6, followed by a cookbook-style section full of tutorials for

responsive development in Chapter 7.

Why Did I Write This Book?
When I came up with the idea for this book, there were a lot of things floating

through my head. Responsive Web Design is always changing; WordPress is

always changing. The best practices of a couple of years ago have changed in both

fields, and it’s important to get that information out.

There is a big movement in the web development community toward “doing

responsive responsibly” (a phrase coined by Scott Jehl); this is the idea that

responsive isn’t just about screen sizes. There is another big movement in the

WordPress community to remove functionality from themes (features such as

sliders and Custom Post Types that rely on content). I wanted to create a single

place that talks about these things, as a lot of web developers are likely working

with both responsive design and WordPress.

IntroduCtIon xiii

Coding Conventions
First of all, any code you come across in the book will be presented in one of two

ways. It could be inline, like this: <?php echo “Hello World!”; ?>, or it could be in

its own block, which looks like this:

function hello_world(){

 $s= “Hello World”;

 return $s;

}

print hello_world();

Either way, you should be able to recognize it pretty quickly. As far as standards,

the WordPress Codex lays out quite a few (http://rwdwp.com/16). I will do my

best to adhere to these coding standards.

To denote that the code on the page takes place in the middle of a block of code

(that is, there was some code skipped between the first line listed and the next),

look for an ellipses (...).

A couple of things I’d like to point out: I will be using HTML5 markup here, but we

won’t do anything with the more advanced facets of HTML5, like Web Sockets or

Storage APIs.

In most cases, the CSS will use .classes instead of #ids. This should make for

cleaner CSS while eliminating the need for really specific selectors. All of my CSS

will be formatted like this:

.class-name{

 color: #FFFFFF;

 background: #000000;

 }

Notice the use of dashes (-) instead of camel case or underscores, and the fact

that the closing bracket is also indented. This makes it easier to read the CSS,

especially when there is a lot.

Conversely, my PHP function names will always use underscores (_) and be pre-

fixed with mf_, like this: mf_get_featured_images().

TIP
Look for text like

this in the margins

for Tips and Notes.

http://rwdwp.com/16

RESPONSIVE DESIGN WITH WORDPRESSxiv

Finally, sometimes the layout limitations of a print publication mean that we have

to stretch single lines of code over more than one line. In those cases, you’ll see

a light gray arrow (p) to indicate that these lines of code should not be broken

when you use them. If you’ve got the digital version of this book, you may find that

code breaks unpredictably in the text. In that case, it’s important to rely on the

downloadable files (www.rwdwp.com) for accuracy.

Other Book Notes
There is a lot of code in the book. Most of the time I will point out where

you can find that code. If I don’t, all of it is available on the book’s website,

www.rwdwp.com, as well as on GitHub. You will also find a list of all the

short URLs and the sites they point to.

As you code throughout the book, you’ll notice that I don’t make much mention

of testing before Chapter 6; it’s important to test on at least a couple of devices,

especially if you plan on using these techniques in production-ready sites (and I

hope you do).

Finally, I tend to use a lot of acronyms, which are usually defined in context.

In case they aren’t, here are the most common ones:

RR RWD: Responsive Web Design

RR WP: WordPress

RR RESS: Responsive Design + Server Side Components

RR The Codex: the WordPress Codex (or documentation of the API)

http://www.rwdwp.com
http://www.rwdwp.com

Chapter4
Making

Your Theme
Responsive:

Core Features

RESPONSIVE DESIGN WITH WORDPRESS58

So far, you’ve seen multiple ways to make a website responsive. Now it’s time to

really dig in and combine those techniques with WordPress’ unique capabilities.

In Chapter 3, you learned how to apply your responsive CSS to a WordPress theme.

You also got an in-depth look at WordPress’ generated CSS classes and created

some default styles for what are considered the “essential” ones. From here on out,

you’ll go even further, focusing on two types of features: core and blog.

This chapter looks at some of the core features of WordPress instrumental to

a good User Experience. The next chapters are about using what WordPress

provides developers and leveraging those tools to create better responsive sites.

That said, you’ll look at three areas of development in this chapter: navigation

menus, images, and widgets.

Handling Navigation
Responsive navigation techniques are bountiful in books and blog posts;

many developers have come up with their own implementations for navigation

menus on responsive sites. Brad Frost outlines some of the most popular ones at

http://rwdwp.com/32.

In this section, we will look at a few popular techniques and how they look on the

Millennium Flights site, and then decide what’s best.

A Look at Popular Techniques
If you looked at Brad Frost’s post, you’ll see that he also wrote a second one and

linked to several others. In other words, there are lots of navigation menu pat-

terns to choose from.

We will explore three possible options for the Millennium Flights navigation: Do

Nothing (or Top Nav), Jump to (or Footer nav), and the Select box…plus a bonus

technique that may surprise you. While we won’t be implementing it, we will also

look at the Off-Canvas technique, which is a bit more advanced

DO NOTHING (OR TOP NAV)

This is the easiest one to implement. You simply leave the navigation as is at the

top of your site; you’ll see what the “technique” looks like in Figure 4.1.

http://rwdwp.com/32

makIng Your tHeme responsIve: Core Features 59

As long as your navigation styles are not limited by a specific Media Query, they

will apply to the entire site if you employ the Do Nothing technique. It is easy to

apply because you don’t have to make changes to your code, but there are some

pitfalls. Luckily the navigation for Millennium Flights uses big text, but imagine a

site with smaller text using this approach. Users may have difficulty selecting the

menu items on smaller screens (Figure 4.2).

Figure 4.2 On the left is how this website navigation renders on an Android phone. On the right,
you see what happens when you resize the browser. In both cases, the nav appears small and
difficult to press without zooming.

Figure 4.1 Millennium Flights with the
“Do Nothing” responsive navigation technique.

“Hide and Cry”

Frost mentions one technique in which you hide your navigation from mobile users, naming it “Hide
and Cry.” This reflects the all-too-prevalent thinking that users on mobile don’t need as much function-
ality as those on the desktop, and it’s wrong. 31% of American adults in 2012 used their phones for the
majority of their Internet access. In essence, you’re punishing mobile users by limiting their experience
and making them download content that they’ll never see. It might be a convenient way to handle other
pages—saving on page height and adjusting the navigation—but it’s a bad practice, for some of the
reasons discussed in Chapter 1, primarily that you make users download sections of websites they will
never see, increasing bandwidth required to download the site and slowing things down.

RESPONSIVE DESIGN WITH WORDPRESS60

The other big issue with the technique is that as a user adds more menu items, the

height of the page increases. You don’t want to have a situation where the user

only sees a logo and menu items on page load on a smart phone.

“DO SOME THINGS”

I have a slight modification to this approach, which I’ve very cleverly called

“Do Some Things.” It’s the idea that functionally, nothing about the navigation

changes; it doesn’t change locations or implementations. It’s still an unordered

list at the top of the page. That is, it will stay in the same place and it will be a list

of menu items, exactly the same on both layouts. However, you do make slight

tweaks and changes to the CSS, optimizing it a little bit for mobile. An example

can be seen on my personal site, Casabona.org (Figure 4.3).

Figure 4.3 Casabona.org’s navigation on both mobile and desktop layouts. The position of the navigation doesn’t change,
but the items become more button-like on mobile to make pressing them easier for the user.

Not too much has changed in the overall webpage layout, but you’ll see each menu

item on smaller screens is its own individual button (as opposed to the contiguous

grey bar on wider screens), and the font gets a little bolder on smaller screens.

This slightly modified approach still runs into some of the pitfalls of the “Do

Nothing” approach, like taking up a lot of screen real estate on small screens.

JUMP TO OR FOOTER ANCHOR

In this technique, as the screen gets smaller, the navigation is replaced by a single

link that jumps the user to navigation in the footer. This, like the “Do Nothing”

approach, is easy to implement, but it saves on screen real estate, as the menu is

no longer at the top to take up space (Figure 4.4).

NOTE
It should be men-

tioned that this

section isn’t going

to present a single

“right” approach; it

all depends on the

situation. These are

just the options.

makIng Your tHeme responsIve: Core Features 61

There are a couple of ways to code this technique. The most common one is to

use CSS’s display: none; to hide the navigations that should not be in use. For

example, if this is the header and footer markup:

Header Markup

<nav id=”main”>

<div class=”full”>

 <?php wp_nav_menu(array(‘menu’ => ‘Main’)); ?>

 </div>

 <div class=”jump”>

 Jump to Nav

 </div>

</nav>

Footer Markup

<nav id=”footernav”>

 <?php wp_nav_menu(array(‘menu’ => ‘Main’)); ?>

</nav>

The CSS would look like this:

nav#main .full{ display: none; }

#footernav ul{

 margin: 0;

 padding: 0;

 }

#footernav li{

 font-size: 1.5em;

Figure 4.4 The Jump
to navigation. The menu
items are replaced with
a single link that brings
users to the bottom of
the page.

RESPONSIVE DESIGN WITH WORDPRESS62

 border-bottom: 1px solid #FFFFFF;

 }

#footernav li a{

 padding: 10px;

 }

...

@media screen and (min-width: 34.188em){

...

nav#main .full{

 display: block;

 }

#footernav, nav#main .jump{

 display: none;

 }

...

}

This code works fine, but it’s forcing the user to download code that he isn’t going

to see. Later in this section, you are going to see how this method can be improved

using RESS.

Aside from the extra code, this experience might be a jarring one for the user.

The page view would change from the top of the page to the bottom without

any scrolling or animations, changing everything the user was looking at; it’s not

very smooth. A better solution, and one that takes into account the issues we’ve

seen with the techniques we’ve looked at, would be to convert the navigation to a

Select box for mobile.

THE SELECT BOX

The Select box is a clean, user-friendly method that places the navigation at the

top of the page without taking up too much screen space. One drawback is that

it’s not as easy to implement as the previous methods because you actually need

to code up two separate menus—one normal menu, and one inside of a select box

(Figure 4.5).

makIng Your tHeme responsIve: Core Features 63

Figure 4.5 The Select box navigation
approach clears up a lot of room while still
keeping navigation at the top; however,
the user still has to download two different
navigation menus.

Adding Smooth Scrolling to the “Jump to” Technique

You can make the transition a bit smoother using a jQuery scroll effect. After adding jQuery, add this
function to your header (or functions.php using the wp_head action):

$(function() {

 $(‘a[href*=#]:not([href=#])’).click(function() {

 if (location.pathname.replace(/^\//,’’) ==

 pthis.pathname.replace(/^\//,’’)

 || location.hostname == this.hostname) {

 var target = $(this.hash);

 target = target.length ? target : $(‘[name=’ +

 pthis.hash.slice(1) +’]’);

 if (target.length) {

 $(‘html,body’).animate({

 scrollTop: target.offset().top

 }, 1000);

 return false;

 }

 }

 });

});

RESPONSIVE DESIGN WITH WORDPRESS64

Let’s think outside of WordPress for a second, and look at the HTML structure for

a select menu navigation:

<select onchange=”location=this.options[this.selectedIndex].

pvalue;”>

 <option value=”” selected=”selected”>Go to...</option>

 <option value=”/home/”>Home</option>

 <option value=”/about/”>About</option>

 <option value=”/destinations/”>Destinations</option>

 <option value=”/contact/”>Contact</option>

</select>

While this seems like a pretty standard implementation, it’s actually going to take

a little bit of work to get this properly working in WordPress because it changes

the entire structure of the menu. Luckily, WordPress allows developers to do just

that with the Walker_Nav_Menu class. A “Walker” in programming is a way to tra-

verse, or process, tree-like data structures, which create hierarchical data. In this

case, it’s traversing HTML to create an unordered list of nav items. You will create

a file called Select_Nav_Walker.php, where you will write a class that extends

Walker_Nav_Menu, using the four functions it uses to display the menu:

class Select_Nav_Walker extends Walker_Nav_Menu {

 public function start_lvl(&$output, $depth){}

 public function end_lvl(&$output, $depth){}

 public function start_el(&$output, $item, $depth, $args){}

 public function end_el(&$output, $item, $depth){}

}

The functions start_lvl and end_lvl print the opening and closing elements for

the menu; by default this is and . You will actually add the new markup

(the <select> tags from above) in a different area, so both of those functions will

remain as is: blank.

The other two functions, start_el and end_el, will be used to print the individual

menu items. end_el is incredibly simple:

public function end_el(&$output, $item, $depth){

 $output .= “</option>\n”;

 }

makIng Your tHeme responsIve: Core Features 65

The function is just one line—the markup that closes the menu item. By default,

it is , but since this is a select menu, you are changing it to </option>. The

variable $output is what this class continually adds to before sending it back to be

printed on the screen. Because of that, it’s important to use “.=” and not just “=”.

If you don’t, your menu will just be </option>.

The start_el function is a little more complicated than that, and it will make use

of the $item argument passed to it:

public function start_el(&$output, $item, $depth, $args){

 $item->title = esc_attr($item->title);

 parent:: start_el(&$output, $item, $depth, $args);

 $output .= ‘ <option value=”’. $item->url .’”>’.

 p$item->title;

}

The first line escapes the title, converting special characters to HTML entities.

Then it calls the parent function (remember this class is extending the built-in

Walker_Nav_Menu class), which will apply all CSS classes that would otherwise be

applied. Finally, we send the <option> element to $output. $item is an array that

has several values, including url and title.

That completes the class, with the entire thing looking like this:

class Select_Nav_Walker extends Walker_Nav_Menu {

 public function start_lvl(&$output, $depth){}

 public function end_lvl(&$output, $depth){}

 public function start_el(&$output, $item, $depth, $args){

 $item->title = esc_attr($item->title);

 parent::start_el(&$output, $item, $depth, $args);

 $output .= ‘ <option value=”’. $item->url .’”>’.

 p$item->title;

 }

 public function end_el(&$output, $item, $depth){

 $output .= “</option>\n”;

 }

}

RESPONSIVE DESIGN WITH WORDPRESS66

You can either place it directly into functions.php or in its own file, including it in

functions.php.

After that, you’ll need to attend to the header.php markup, which looks like this:

<nav id=”main”>

<div class=”full”>

 <?php wp_nav_menu(array(‘menu’ => ‘Main’)); ?>

 </div>

 <div class=”select-menu”>

 <?php

 wp_nav_menu(array(

 ‘menu’ => ‘Main’,

 ‘walker’ => new Select_Nav_Walker(),

 ‘items_wrap’ => ‘<select ONCHANGE=

 p”location=this.options[this.selectedIndex].

 pvalue;”><option>Go to..</option>%3$s</select>’,

 ‘container’ => false

)

);

 ?>

 </div>

</nav>

You will show/hide the proper menu the same way you did with the Footer

Anchor technique, but we will explore a better option later in this section.

What should be pointed out here are the new entries for the select-menu version

of wp_nav_menu(). There are three new arguments being passed to it:

RR walker: The value of the Walker is the instantiation of your Select_Nav_

Walker class. This tells WordPress to use this walker instead of the default to

construct the menu.

RR items_wrap: By default, this is the wrapper for the normal walker. Since

your walker is for a select menu, the appropriate markup should be sent. You’ll

also notice the %3$s. This is necessary to make sure $output is included.

RR container: This by default wraps the entire list in a div, which we don’t

need to do.

makIng Your tHeme responsIve: Core Features 67

That’s everything. Now you should have the regular menu at full width and the

select menu for smaller screens. This still has the issue of multiple menus being

downloaded, but we will fix that later.

OFF CANVAS

This technique is by far the most advanced one we’ll cover, but it’s also the slick-

est. With this method, you’ll have your main content on screen and then a button

(or even swipe) to reveal more content off to the left or right. This is used by a

lot of mobile applications to place the navigation on the left side, hidden away

(Figure 4.6).

This technique completely frees up screen space so the user only sees content.

The biggest drawback is the difficulty in implementing it. Depending on how you

do it, you could be hiding content, and you will almost definitely use JavaScript

(probably jQuery) for the animation effect. It would also, in essence, create

an entirely new page section you would have to manage. If you want to see

TIP
There are Word-

Press plugins that

achieve this same

effect. It seems the

most popular one

is this one: http://

rwdwp.com/33.

Figure 4.6 Forecast.io,
an incredible mobile
website, employs the
off canvas technique.

http://rwdwp.com/33
http://rwdwp.com/33

RESPONSIVE DESIGN WITH WORDPRESS68

this technique in action or take a crack at it yourself, Jason Weaver and Luke

Wroblewski have released code, resources, and examples at http://rwdwp.

com/34 (Figure 4.7).

Figure 4.7 The Off Canvas website has a live demo, sample code, and resources for those interested in trying it out.

This is not the only implementation of the off canvas approach. If menus (or any

content) slide down from the top or up from the bottom, it’s also considered off

canvas, which is really just the viewable area on the screen. Due to its popularity, an

open source JavaScript plugin was created to easily implement it. It’s called respon-

sive-nav.js. Let’s look at implementing that into the Millennium Flights theme.

RESPONSIVE-NAV.JS

In Chapter 3, we saw some questions that should be asked when considering

using some piece of JavaScript; questions like, “Do I need this?” and “How large is

the file?” Truth be told, we really don’t need to use responsive-nav.js. However, it is

one of the best and most lightweight implementations of the off canvas approach

out there. At 1.7 KB, it’s considered small by anyone’s standard.

Everything you’ll need to implement this can be found at http://rwdwp.com/26

(Figure 4.8).

http://rwdwp.com/34
http://rwdwp.com/34
http://rwdwp.com/26

makIng Your tHeme responsIve: Core Features 69

A few things need to happen in order to make responsive-nav.js work in the

Millennium Flights theme. First, you’ll need to enqueue the script (after down-

loading the files). Since there is already a function to do that in the theme, you can

just add a new line to it:

function mf_scripts() {

 wp_enqueue_style(‘googlewebfonts’,

 p‘http://fonts.googleapis.com/css?family=

 pOpen+Sans+Condensed:300’);

wp_enqueue_script(‘responsivenav’,

pTEMPPATH.’/js/responsive-nav.min.js’, array());

 echo ‘<!--[if lt IE 9]>’;

 echo ‘<script src=”http://html5shim.googlecode.com/

 psvn/trunk/html5.js”></script>’;

 echo ‘<script src=”’. TEMPPATH .’/js/respond.min.js”>

 p</script>’;

 echo ‘![endif]-->’;

}

Figure 4.8
The Responsive Nav
home page, illustrating
how the JavaScript
works.

RESPONSIVE DESIGN WITH WORDPRESS70

Since the script requires the containing div to have a CSS ID, you’ll have to modify

the nav function slightly. In header.php, change the wp_nav_menu function to this:

<nav id=”main”>

<?php wp_nav_menu(array(‘menu’ => ‘Main’,

p‘container_id’ => ‘top-menu’)); ?>

</nav>

You’re adding one more argument, container_id, which will add id=”top-menu”

to the div containing the nav menu. Then it’s time to add the CSS.

From the downloaded files, you’ll also find a style sheet called responsive-nav.

css. You can copy that CSS into your theme’s style.css file, but you’ll need to make

some modifications. This will go before any Media Queries:

#top-menu ul {

 margin: 0;

 padding: 0;

 width: 100%;

 display: block;

 list-style: none;

 }

#top-menu li {

 width: 100%;

 }

.js #top-menu {

 clip: rect(0 0 0 0);

 max-height: 0;

 position: absolute;

 display: block;

 overflow: hidden;

 zoom: 1;

 }

makIng Your tHeme responsIve: Core Features 71

nav.opened {

 max-height: 9999px;

 }

This is a slight modification of the default CSS, changed only to match our new

menu selector. The same thing goes for the CSS added after the first Media Query:

@media screen and (min-width: 34.188em){

 .js #top-menu {

 position: relative;

 }

 .js #top-menu {

 max-height: none;

 }

 #nav-toggle {

 display: none;

 }

...

}

Finally, there is a bit of JavaScript that should go before the </body> tag. To insert

it into the theme, we can use the wp_footer action:

function mf_responsive_nav(){

echo ‘<script>

 var navigation = responsiveNav(“#top-menu”);

 </script>’;

}

add_action(‘wp_footer’, ‘mf_responsive_nav’);

This will tell responsive-nav.js to look for the div with the ID top-menu and apply

the changes to the menu in that container. Once that is done, you should be able

to refresh your page and see the results (Figure 4.9).

RESPONSIVE DESIGN WITH WORDPRESS72

Most of what can be seen in the screenshot is customizable using CSS or the

arguments you pass to the responsiveNav() function. In the final version of

the theme, instead of the text, “Menu,” the common menu icon (often called

the “hamburger” for some unfortunate reason) is used.

Changing Navigation on the Server Side
Up until this point, the techniques you’ve been using relied completely on

CSS—namely showing and hiding navigation based on breakpoints. However,

in Chapter 3, you saw a function that could be especially helpful for navigation:

mf_is_mobile_device(). Using this, you can choose to conditionally show one

version of the site’s navigation over another instead of loading both. Let’s first

look at the select box navigation. Instead of having this:

<nav id=”main”>

<div class=”full”>

 <?php wp_nav_menu(array(‘menu’ => ‘Main’)); ?>

 </div>

 <div class=”select-menu”>

 <?php

 wp_nav_menu(array(

 ‘menu’ => ‘Main’,

 ‘walker’ => new Select_Nav_Walker(),

 ‘items_wrap’ => ‘<select ONCHANGE=

 p”location=this.options[this.selectedIndex].

 pvalue;”><option>Go to..</option>%3$s</select>’,

 ‘container’ => false

)

);

 ?>

 </div>

</nav>

Figure 4.9 Millennium
Flights with the default
settings for responsive-
nav.js. Most of what’s
seen here is customiz-
able through JavaScript
or CSS.

makIng Your tHeme responsIve: Core Features 73

…we can have something much cleaner, and requiring much less CSS:

<nav id=”main”>

<?php

if(!ISMOBILE){

 wp_nav_menu(array(‘menu’ => ‘Main’, ‘container_id’ =>

 p‘top-menu’));

 }else{

 wp_nav_menu(array(

 ‘menu’ => ‘Main’,

 ‘walker’ => new Select_Nav_Walker(),

 ‘items_wrap’ => ‘<select ONCHANGE=

 p”location=this.options[this.selectedIndex].

 pvalue;”><option>Go to..</option>%3$s</select>’,

 ‘container’ => false

)

);

 }

?>

</nav>

Notice there isn’t an extra class to hide one menu over the other. It simply says, “If the

user is not on a mobile device, print the normal menu. Otherwise, print the select box

menu.” This means the user isn’t downloading two sets of navigation, and you don’t

have to write extra CSS to hide or show that navigation based on breakpoints.

The same thing can be done with the Jump to or Footer Anchor approach.

In header.php, you’ll have:

<nav id=”main”>

<?php

 if(!ISMOBILE){

 wp_nav_menu(array(‘menu’ => ‘Main’,

 p‘container_id’ => ‘top-menu’));

 }else{

 echo ‘Jump to Nav’;

 }

 ?>

</nav>

NOTE
When testing a

layout using RESS,

you won’t be able

to just resize your

browser window;

you will have to do

device testing.

RESPONSIVE DESIGN WITH WORDPRESS74

This is constructed just like the Select box code above, except there is a jump link

to the footer. And here is what the footer.php markup looks like:

<?php if(ISMOBILE){ ?>

<nav id=”footernav”>

 <?php wp_nav_menu(array(‘menu’ => ‘Main’)); ?>

 </nav>

<?php } ?>

In the footer, you are checking to make sure the user is on a mobile device before

printing out the navigation.

Moving forward, we will be able to employ this technique in several other areas

of the theme. So with all of these techniques and more, how do you decide which

one to use?

Ask What’s Best for the Users
As with just about anything in the field of web development (nay, design and

development in general), it’s best to ask what’s best for your users. In many cases,

that might be whatever takes up the least amount of screen real estate.

However, maybe your users would understand the navigation better if they saw

it all laid out in front of them. Maybe your users don’t realize what the “ham-

burger” icon is. The best thing to do is some research into how your users use

your website. Do some A/B testing, or at the very least, get the opinion of friends

and family. Ask your users for feedback. As with a lot of things in coding, simple is

probably better than clever.

To determine what’s best for your users, ask yourself a few questions:

RR From what class/type of devices do my users access the site?

RR Are my users there to see what’s on the home page, or do they usually go to a

different page?

RR What information do I want to present as most important?

RR How tech-savvy are my users?

And, as mentioned earlier, give them some options and see what works out best.

TIP
If you are having

issues implement-

ing RESS into your

theme or need some

added functionality,

Jesse Friedman’s

WP Mobile Detect

plugin is available in

the Plugin Reposi-

tory http://rwdwp.

com/35.

http://rwdwp.com/35
http://rwdwp.com/35

makIng Your tHeme responsIve: Core Features 75

Handling Images
Images are one of the biggest sticking points for making a website truly respon-

sive; it’s not good enough to just resize them along with the layout or container.

There are a lot of tools and techniques out there to aid in better resizing, smaller

file sizes, faster loading, and more. What really helps is the way WordPress pro-

cesses uploaded images.

How WordPress Uploads Images
By default, when you upload an image, the WordPress media uploader creates

several different sizes: thumbnail (150x150px max), medium (300x300px max),

large (1024x1024px max), and full, which is the original size of the uploaded

image. You can also specify different sizes using the_post_thumbnail() or

get_the_post_thumbnail(), but this will only return an tag with width and

height specified. If you want just an image URL, you can use wp_get_attachment_

image_src(), which returns an array with URL, width, height, and a Boolean; the

Boolean tells you if the image is a resized version (true) or the original (false).

Using SVG Images

We won’t discuss Scalable Vector Graphics (SVG) extensively here because it’s not specific to
WordPress, but it is a very good technique to use when it comes to scalable images. SVGs have no set
pixel widths or heights associated with them (though there is a default width and height). Because of
this, they scale well without losing quality, and even look great on Apple Retina displays.
 Using them is as easy as using the tag, though there are some support issues, namely for
IE 8 and below and Android 2.3 and below. Chris Coyier has a really great tutorial for getting started
here: http://rwdwp.com/36. In order to allow SVG uploads in WordPress, you will also need this
function (also courtesy of Chris Coyier):

function mf_allow_svg($mimes){

 $mimes[‘svg’] = ‘image/svg+xml’;

 return $mimes;

}

add_filter(‘upload_mimes’, ‘mf_allow_svg’);

http://rwdwp.com/36

RESPONSIVE DESIGN WITH WORDPRESS76

You can add new image sizes associated with keywords like “thumbnail,” or

“medium,” for example, which will get resized. That function is add_image_size();

if you want to create a feature Destination image for the Millennium Flights CPT,

you would use this code:

add_image_size(‘mf_destinations_featured’, 650, 300, true);

In order, the parameters are: $name (which can be used in functions like

the_post_thumbnail()), $width, $height, and $crop. $crop (which is false

by default) tells WordPress if it should do a hard crop. A hard crop will crop to

the exact dimensions specified, regardless of aspect ratio. If $crop is false, it

will do a soft or proportional crop. The image’s width and height are treated as

maximum dimensions.

So when you upload an image, at least three new images (or different sizes) are

created. Because of this, the file size is affected; smaller images will have smaller

files sizes. We can take advantage of these images by calling them using a light-

weight JavaScript library called picturefill.js to show the appropriately sized

images based on screen size.

Using picturefill.js
picturefill.js was created by Scott Jehl to mimic functionality for a proposed

<picture> HTML element that would nicely handle responsive (and even

Retina-ready) images. All of the information about it can be found at

http://rwdwp.com/23.

To use it, you list several lines in this format:

The data-src is the image source, and the data-media is the Media Query at which

the image should be used. A full block might look like this example on GitHub:

<span data-picture data-alt=”A giant stone face at The Bayon

temple in Angkor Thom, Cambodia”>

<span data-src=”medium.jpg”

pdata-media=”(min-width: 400px)”>

<span data-src=”large.jpg”

pdata-media=”(min-width: 800px)”>

TIP
This is also really

useful if you want

to create a more di-

verse image range

for the technique

we are going to

implement in the

next section.

http://rwdwp.com/23

makIng Your tHeme responsIve: Core Features 77

<span data-src=”extralarge.jpg”

pdata-media=”(min-width: 1000px)”>

 <!-- Fallback content for non-JS browsers. Same img src

 pas the initial, unqualified source element. -->

<noscript>

<img src=”external/imgs/small.jpg” alt=”A giant stone face at

pThe Bayon temple in Angkor Thom, Cambodia”>

</noscript>

The first one is assumed to be for the smallest screens, and you can have as many

entries/Media Queries as you like. The GitHub page talks about various uses

before the basic example here, but this will serve us well.

As you might imagine, we can use this script along with the multiple image sizes

produced by WordPress’ Media Manager to automatically generate a picturefill

object that can be called in your themes:

function mf_get_featured_image($html, $aid=false){

 $sizes= array(‘thumbnail’, ‘medium’, ‘large’, ‘full’);

 $img= ‘’;

 $ct= 0;

 $aid= (!$aid) ? get_post_thumbnail_id() : $aid;

 foreach($sizes as $size){

 $url= wp_get_attachment_image_src($aid, $size);

 $width= ($ct < sizeof($sizes)-1) ? ($url[1]*0.66) :

 p($width/0.66)+25;

 $img.= ‘

 <span data-src=”’. $url[0] .’”’;

 $img.= ($ct > 0) ? ‘ data-media=”(min-width: ‘.

 p$width .’px)”>’ :’>’;

 $ct++;

 }

RESPONSIVE DESIGN WITH WORDPRESS78

 $url= wp_get_attachment_image_src($aid, $sizes[1]);

 $img.= ‘<noscript>

 <img src=”’.$url[0] .’” alt=”’.

 pget_the_title().’”>

 </noscript>

 ’;

 return $img;

}

There are a few things going on here. The first is that the function has an array of all

the default sizes in WordPress. If you have your own sizes defined, you will have to

add them here. This is so the picturefill element is accurately populated. After some

setup (defining the image sizes, opening the picturefill element, initializing a coun-

ter), it moves through the $sizes, printing an image entry for each size.

For each entry, wp_get_attachment_image_src() is called to grab the URL of the

image based on the image’s ID (which get_post_thumbnail_id() returns based

on the post ID) and the size. wp_get_attachement_image_src() returns an array

that includes the image, the width, the height, and whether or not it’s cropped.

The first time through the Loop, we don’t need to specify a minimum width, since

that image will be a default. That’s where the counter comes in. For the rest of the

iterations, the width is calculated using a simple formula and an assumption. Let’s

look at that line again:

$width= ($ct < sizeof($sizes)-1) ? ($url[1]*0.66) :

p($width/0.66)+25;

What’s happening here in most cases is that we start showing the next image

size up at 66% the width of the image; so if the image is 1000px, it will start being

shown at 660px. However, if it is the last image in the array, the assumption is that

this is the biggest image (the image at full width). There are some strange results

returned in some cases with this image, so you can’t rely on the width and height

returned with the full width image. We simply take the previous image’s width

and add 25px to it.

The last thing this function does before returning the picturefill code is set a

default image in case JavaScript is disabled. The medium image is the default.

Since this plugin requires picturefill, one more task needs to be performed, and

that’s to actually add picturefill.js to the rest of the JavaScript loaded on the site.

Looking at the mf_scripts() we’ve used throughout the book, you’ll notice that

makIng Your tHeme responsIve: Core Features 79

the line wp_enqueue_script(‘picturefill’, TEMPPATH.’/js/picturefill.

js’, array()); has already been added.

If you’d rather continue to use the_post_thumbnail() instead of a new function,

or if you want this to apply to all features images/instances of the_post_

thumbnail(), you can easily do that by adding this filter to your functions.php file:

add_filter(‘post_thumbnail_html’, ‘mf_get_featured_image’);

It’s important to note that this function will not automatically run for all images

on pages and blog posts; this is strictly for getting featured post images. To

replace all post images would require content filters, as well as some regex magic

to replace the tag with the picturefill script.

There is a plugin available that will replace content images with picturefill, located

at http://rwdwp.com/37. Based on my testing, it works fairly well, but you may see

performance issues. That said, this might be your best bet as what I was experi-

menting with returned worse performance than the plugin.

Moving forward, you can also use a shortcode, along with the above function.

I didn’t touch on the arguments the function accepts, but the first is $html; this

is the HTML send by the post_thumbnail_html filter. The second is $aid, for

attachment ID. This will allow you to call the function on any image you want,

not just featured ones.

The shortcode you’re going to create is [mf_image src=’path/to/image’]. This

is a shortcode that will accept a URL for an argument and print out the picturefill

markup for that image. The function that does the heavy lifting is a modified ver-

sion of one by wpmu.org (http://rwdwp.com/38) and is listed below, but first let’s

look at the function used for the actual shortcode:

function mf_responsive_image($atts, $content=null){

 extract(shortcode_atts(array(

 ‘src’ => false

), $atts));

 if(!$src){

 return ‘’;

 }else{

 $aid= mf_get_attachment_id_from_src($src);

 $img= mf_get_featured_image(‘’, $aid);

 }

NOTE
To support

featured images,

you will need to

add add_theme_
support(‘post-
thumbnails’);

to your functions.

php file.

http://rwdwp.com/37
http://rwdwp.com/38

RESPONSIVE DESIGN WITH WORDPRESS80

 return $img;

}

add_shortcode(‘mf_image’, ‘mf_responsive_image’);

The function will check to make sure a URL is passed, then grab the ID for that

URL (that’s where wpmu.org’s function comes in) before passing that ID off to the

mf_get_featured_image function. It will then return the HTML generated. Here

is the function that grabs the attachment ID based on the URL:

function mf_get_attachment_id_from_src($url) {

 global $wpdb;

 $prefix = $wpdb->prefix;

 $attachment = $wpdb->get_col($wpdb->prepare(“SELECT ID

 pFROM “ . $prefix . “posts” . “ WHERE guid=’%s’;”, $url));

 return $attachment[0];

}

Between the shortcode and the featured image function, you have two good

methods for using picturefill and responsive images moving forward. Hopefully

an efficient way to do all images will emerge in the near future. In the mean-

time, there is another method that can be used to make images a bit more

responsive-friendly.

Overriding Set Width and Height
This is a technique that Jesse Friedman put forth in his book, Web Designer’s Guide
to WordPress. jQuery would allow us to search for all tags in the content and

remove the set width and height attributes applied to images. This will, at the very

least, ensure that the images resize properly:

$(function(){

 $(“.post img).removeAttr(“width”).removeAttribute(“height”);

}

You can add this function to your header (or even better, using add_action) and

enqueue jQuery, and you’re all set.

NOTE
Unfortunately, the

shortcode means

you won’t be able

to use the media

uploader to insert

images into posts.

makIng Your tHeme responsIve: Core Features 81

CSS may also be used for the technique, though results may vary based on

custom posts, images, and other CSS rules; because of that, this code may need

to be tweaked:

img[class*=”align”],

img[class*=”wp-image-”] {

 height: auto; }

img.size-full {

 width: auto; }

Handling Widgets
Sidebars and widgets are a staple of many sites, including those powered by

WordPress. The WordPress admin makes it incredibly easy for end users to

manage their own sidebars; however, it’s up to you to ensure that the sidebars

and widgets don’t break when it comes to responsive design. First, let’s look at

responsive sidebars.

The Sidebar
It’s worth noting right off the bat that using the term sidebar (at least in this book)

doesn’t necessarily mean the physical location of this content. The sidebar can be

any auxiliary content. It just so happens that the main example of our sidebar is on

the right side.

Responsive sidebar development starts right at the beginning of the coding

process, in determining where in the markup the sidebar will go. It’s important to

structure and stack each column properly, especially when taking a Mobile First

approach to development; if we don’t, it might be the case that on small screens,

the sidebar shows first, and then the main content area.

The way content should be structured or stacked is Header > Main Content >

Sidebars > Footer (Figure 4.10).

TIP
Proper page

structure also helps

with search engine

optimization. By

placing the main

content first, it tells

search engines,

“This is more

important.”

Figure 4.10
Here is the Content
stack, illustrated for a
three-column layout.

RESPONSIVE DESIGN WITH WORDPRESS82

The Millennium Flights site actually only has a right sidebar, so the structure of

things in the HTML will look like this:

<div id=”content” class=”group”>

 <div class=”entry”>

 <!--Content Goes Here-->

 </div>

 <aside class=”sidebar”>

 <!--Widgets Go Here-->

 </aside>

</div>

Notice that the div with the id “content” serves as a container for both the main

content area and the sidebar. The div “entry” will be for the site’s main content,

and the aside element will house the sidebar.

Since the sections are in the proper order, there is actually no CSS required for

smaller screens, layout wise. Any pre–Media Query styles will be strictly for some

padding, font adjustments, image aligning, and so on. However, once the screen

reaches a certain width, it’s time to move the entire sidebar up to the right, next

to the main content area. The CSS looks like this:

@media screen and (min-width: 40.625em){

 #wrapper #content .entry{

 float: left;

 width: 66%;

 }

 #wrapper #content aside{

 margin-left: 68%;

 width: 30%;

 }

If you’ve worked with non-fluid (or fixed) layouts, this should look familiar to you.

The main content area, .entry, is being floated to the left and limited to a width of

66%. The sidebar is then given a slightly larger margin and a width that accounts

for the extra spacing. As users expand out even more, we may want the sidebar

and content area to adjust further so the content and sidebar look proportionally

better compared to the width of the screen:

makIng Your tHeme responsIve: Core Features 83

@media screen and (min-width: 55.652em){

 #wrapper #content .entry{

 float: left;

 width: 75%;

 }

 #wrapper #content aside{

 margin-left: 78%;

 width: 22%;

 }

}

As you develop, it’s important to test and try different layouts along the way.

Remember—the breakpoints are based on content, not device! Do what’s best for

your own content.

That’s all we need as far as structural CSS goes for the sidebar. Of course, now

there is the question of handling widgets…

The .group Class

In order to ensure there is no runaway floating content without using the
common .clearfix class, the .group class can be used. This technique was
put forth by Dan Cederholm as a better alternative that cuts down on
markup. The CSS looks like this:

.group:after {

 content: “.”;

 display: block;

 height: 0;

 clear: both;

 visibility: hidden;

 }

 This will make the containing class “self-clearing” and alleviate the
need for an empty container. It’s worth noting that the :after pseudo-class
does not work in IE7 and below.

RESPONSIVE DESIGN WITH WORDPRESS84

Sidebar Widgets
A widget in WordPress is defined as adding features and content to sidebars.

Generally speaking, they are boxes placed outside the main content area that

can contain any kind of content—text, images, forms, and so on. As designers and

developers, we should plan to support these elements and more, as there are

hundreds (perhaps thousands) of widgets out there.

First, you must properly register your sidebars to use containers and class names

you assign. Here’s what’s added in the Millennium Flights theme:

register_sidebar(array (

 ‘name’ => __(‘Sidebar’, ‘main-sidebar’),

 ‘id’ => ‘primary-widget-area’,

 ‘description’ => __(‘The primary widget area’, ‘wpbp’),

 ‘before_widget’ => ‘<div class=”widget”>’,

 ‘after_widget’ => “</div>”,

 ‘before_title’ => ‘<h3 class=”widget-title”>’,

 ‘after_title’ => ‘</h3>’,

));

register_sidebar(array (

 ‘name’ => __(‘Sidebar2’, ‘secondary-sidebar’),

 ‘id’ => ‘secondary-widget-area’,

 ‘description’ => __(‘The secondary widget area’, ‘wpbp’),

 ‘before_widget’ => ‘<div class=”widget”>’,

 ‘after_widget’ => “</div>”,

 ‘before_title’ => ‘<h3 class=”widget-title”>’,

 ‘after_title’ => ‘</h3>’,

));

You can see that the same structure is used for both sidebars. Each widget gets

the class “widget,” and the titles are <h3> tags with the class “widget-title.” This

will allow you to apply general styles to HTML elements without them being over-

ridden by other plugins.

In the Millennium Flights theme, before any Media Queries, there are some basic

styles applied to elements you might find in a sidebar widget. These will also

optimize certain elements (like form fields) for touchscreen devices.

TIP
When developing

your own plugins or

widgets for release,

use the least

amount of CSS

possible and make

it easily available

to theme editors

who might want to

change it.

makIng Your tHeme responsIve: Core Features 85

aside .widget h3{

 margin-top: 0px;

 color: #8E6DD7;

 }

aside .widget{

 border-bottom: 2px solid #FFFFFF;

 margin: 10px 1.5%;

 text-align: left;

 padding: 5px 0.4%;

 }

aside .widget p, aside .widget ul,

aside .widget ol, aside .widget dl{

 margin: 0;

 padding: 0;

 font-size: 1.2em;

 }

aside .widget li{

 padding: 0;

 margin: 0 0 0 1em;

 list-style-type: none;

 }

aside .widget input, aside .widget select{

 margin: 1%;

 padding: 7px;

 font-size: 1.6em;

 width: 100%;

 border: 1px solid #CFCFCF;

 -moz-border-radius: 10px;

 -webkit-border-radius: 10px;

 -o-border-radius: 10px;

 border-radius: 10px;

 }

RESPONSIVE DESIGN WITH WORDPRESS86

Then, as users move to larger screens, only slight adjustments are needed:

@media screen and (min-width: 40.625em){

aside .widget input[type=submit], aside .widget

input[type=button]{

 margin: 0 auto;

 padding: 3px;

 font-size: 1.25em;

 width: 40%;

 }

 footer aside .widget{

 width: 30%;

 margin: 10px 1.2%;

 float: left;

 text-align: left;

 }

}

As a matter of fact, very little needs to be done here. There is a small adjustment

for submits and buttons, and some styles for the widgets found in the footer, which

should be placed three per line. However, there is a small issue with this approach.

I ran into a situation where a breakpoint was already added to a previous layout

I was using, so I kept it in. If you look at the page with a screen width of 40em

(650px), the widgets are a bit scrunched (Figure 4.11).

Figure 4.11
The footer widgets
at 650px are a bit too
scrunched to be three
per line.

makIng Your tHeme responsIve: Core Features 87

Because of this, I needed to determine new breakpoints. Here’s what the new

adjustments look like in the CSS:

@media screen and (min-width: 34.188em){

 ...

 footer aside .widget{

 width: 46%;

 margin: 10px 1.2%;

 float: left;

 text-align: left;

 }

}

@media screen and (min-width: 51em){

 footer aside .widget{

 width: 30%;

 }

}

I created two new breakpoints—one for a two-column widget layout and one for

a three-column layout. Things look much better with the 3-column layout now

(Figure 4.12).

Figure 4.12 With the
adjusted breakpoints,
the widgets look much
better.

RESPONSIVE DESIGN WITH WORDPRESS88

As you continue to add widgets to your theme, it’s important to consider

the following:

RR Is the widget properly coded? Will it use the HTML structure you defined

when registering the sidebars?

RR Does it come with its own complicated CSS? If it does, overriding styles

(especially if they are inline) might be a pain in the neck due to the need to

nest classes and be incredibly specific with your style selectors.

RR Does the author make the class names intuitive and easy to find (through

documentation)? If so, you’ll have an easier time styling for them.

If you properly plan and code consistently, you shouldn’t run into issues with your

widgets. Between the reset, default element styles, and default widget styles

discussed in this chapter, most bases should be covered.

Wrapping Up
We explored quite a bit in this chapter, from several navigation techniques using

Media Queries, RESS, and JavaScript to making our images respond to both

screen resolutions and connection speeds, as well as making the most out of our

sidebar widgets.

Images proved to be a tough task to tackle, but we can now replace featured

images automatically and post images with a shortcode. While images still remain

a bit of a question mark as far as the best way to replace in-content images on a

large scale due to some possible performance issues, what we looked at will at

least help you and your users moving forward. Trying to fix all images at load time

puts a lot of stress on the website that results in it being visibly slower. Hopefully

we will see this improved upon in the near future.

Since this chapter focused primarily on layout elements, in the next chapter we

will go back to WordPress’ roots and look at making elements of the blog por-

tion of a site responsive. Specifically, we’ll look at comments, archives, and other

developers’ plugins.

makIng Your tHeme responsIve: Core Features 89

Questions
1. What is the biggest pitfall of the “Do Nothing” navigation approach?

2. When should RESS be employed in regard to navigation?

3. What does picturefill.js do?

4. How do you ensure content integrity as far as multicolumn layouts

are concerned?

Answers
1. It will take up a lot of vertical space, pushing the content down the page.

2. RESS should be employed when we are hiding navigation/markup based on

screen width.

3. It replaces a single with multiple image options, to be displayed based

on screen width.

4. Structure the columns so the main content is on top, followed by the sidebars.

This page intentionally left blank

RESPONSIVE DESIGN WITH WORDPRESS186

Index

<body> tag, 20
Boilerplate, 135
Bootstrap, 132–133, 134, 140
brackets, xiii
bradfrostweb.com, 185
breakpoints, 3–8, 12, 143
Brighthand.com, 7
broadband connections, 125
Browsershots, 126
BrowserStack, 126
browser testing, 119, 125, 126, 143
Building WordPress Themes from Scratch

(Casabona), 19, 181
business directories, 15, 27

C
Calendar widget, 54
camel case, xiii
captions, 19, 48, 149–150
Casabona, Joe, 181
Casabona.org, 60, 103
catalog pages, 167, 177
categories, 24, 28, 115
Categories widget, 115
category.php page, 105
Cederholm, Dan, 83
child themes, 138–139, 140
Chrome, 119, 125
classes, CSS, xiii, 19, 47–55, 146
.clearfix class, 83
closing brackets, xiii
CMS, 26
code

conflicts, 143
designing, 122
documenting, 122
reusing, 122–129, 140
testing, 122

Codex. See WordPress Codex
coding conventions, xiii, 118. See also

WordPress Codex
columns, 81, 87, 89
comment forms, 96–97, 100
commenting systems, 93
Comment Loading plugin, AJAX, 98–99, 118

- (dashes), xiii
_ (underscores), xiii
3G/4G connections, 125
320press, 132

A
A/B testing, 74
actions, 31–32, 34
add_image_size() function, 76
Adobe Edge Inspect, 126
AJAX Comment Loading plugin, 98–99, 118
.aligncenter class, 49
.alignleft class, 47, 49, 50
.alignright class, 47, 49, 50
alistapart.com, 185
A List Apart webzine, 2, 12, 185
Android, 2, 4, 7, 124
An Event Apart, 184
Apple, 7
archive.php, 105
archives, 103–118
Archives by Date widget, 104–110
archives.php, 21, 105–107, 110, 113
Archives widget, 105
archive templates, 105–106
attachments, 27, 34
author pages, 105
Autocompleter plugin, 117
Automattic, 137

B
best practices

CSS, 18–19
RWD, 2, 4, 182
WordPress, 15, 18, 143

Beta Tester, WordPress, 128
beta testing, 119, 125
Big Web Show, 185
Blackberry, 124
Blazer, xi
blog features, 92–120

handling archives, 103–118
handling comments, 92–103

blog posts, 27. See also posts
body_class() function, 55

187Index

comment pagination, 98, 102
comments, 92–103

counting, 103
creating form for entering, 96–97
creating page for, 101–103
displaying photos with, 93
incremental loading of, 98–101
styles associated with, 50–52
styling, 92–95
and User Experience, 92

comments_number() function, 103
comments page, 101–103
commercial themes, 132
Compact Archives plugin, 105, 107
Compaq iPAQ, x
compressing files, 10–11
conferences, 184
connection speeds, 8–11, 125
Contact Form 7, 161–167
contact forms, 142, 161–167
container argument, 66, 70
content, separating features from, 14, 122
content-based breakpoints, 5–8, 12
Content Management Systems, 26
content sliders, 154
Content stack, 81
Core, modifying the, 15, 29
Coyier, Chris, 75
CPTs

and CMSes, 26
coding, 28
creating new taxonomies for, 171
frameworks/templates for, 28
and functions.php, 19
for image slider, 159–160
meaning of acronym, 15
planning, 28, 142
for products page, 168, 170–176
purpose of, 26
registering, 28
tips for developing, 28
ways of using, 27, 28

creativebloq.com, 185
Creative Market, 131, 140
cropping images, 76
CSS

adding to style.css, 145, 157, 178
for aligning images, 19
best practices, 18–19
classes, xiii, 19, 47–55, 146
coding conventions, xiii

consolidating into single file, 18
for contact form, 165–166
frameworks, 9, 127
gzipping, 11
license considerations, 32
modifying, 145
for photo gallery, 146–150
and plugins, 118
resets, 44
for responsive forms, 161
and RWD, 2
for styling captions, 19
vs. JavaScript, 41
and WordPress site development, xi, 2

CSS-Tricks, 185
custom logos, 19
Custom Post Types, xii, 15. See also CPTs

D
Damstra, David, 182
Dashboard, 14
dashes (-), xiii
data, storing, 32
database errors, 128
database tables, 32
Date Archive widget, 115
debugging, 128
definition lists/tags, 149
design patterns, 123
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma), 123
desktop systems, 5
device detection, 19, 37, 38–40
device testing, 123–124, 143
Digging into WordPress blog, 53
directories, 14–15, 27. See also folders
Disqus, 93
documentation, 122, 143
Dolphin, 119, 125
“Do Nothing” navigation, 58–60, 89
“Do Some Things” navigation, 60
dot releases, 120, 128
download speeds, 11

E
e-commerce sites, 29, 161, 168
Edge Inspect, Adobe, 126
Elegant Themes, 131, 140
em-based breakpoints, 4–5, 12
em-to-px conversion, 5

RESPONSIVE DESIGN WITH WORDPRESS188

end_el function, 64–65
end_lvl function, 64
enqueue_script() function, 143
Envato, 130
e-Readers, 124
excerpts, 24, 25
extract() function, 152, 178

F
Facebook, 93
featured images, 79, 80, 88, 159, 168, 169
file-size considerations, 10, 41
filters, 31–32, 34
Firefox, 125
fitvid.js, 41
flexible text, 4, 5
FlexSlider, 154, 156, 160
Flickr, 144
floating styles, 50
folders, 29–30, 127. See also directories
font size, 4
“Footer Anchor” navigation, 60–62, 66
footer.php, 20–21, 74
footer widgets, 86
Forecast.io, 67
form labels, 165, 166
forms plugins, 161
Foundation, 133–134, 140
frameworks

CPT, 28
CSS, 9, 127
customizing, 134
defining needs for, 126–129
descriptions of popular, 132–139
developing your own, 128–129, 139
evolution of, 127–128
sources of, 129–131
testing, 139
theme, 126–139
WordPress, 129–139

Friedman, Jesse, viii–ix, 17, 74, 80, 181
front-page.php, 21, 22
Frost, Brad, 9, 58, 59, 124, 185
FTP, xi
functions.php, 19, 45, 127

G
gallery, photo, 144–150
gallery_shortcode function, 149
gallery_style hook, 145

Gamma, Erich, 123
Genesis, 136
Gently Mad, 185
get_footer() function, 20, 101, 107
get_header() function, 20, 101, 107
get_posts() function, 24, 25–26
get_the_post_thumbnail() function, 159
Ghostlab, 126
Gingerbread phones, 124
GitHub, xiv, 28, 37, 42, 101
GNU General Public License, 32. See also GPL
Google

Glass, 7, 180
Maps, 150–153
mobile devices, 7
Web Fonts, 45, 127

GPL, 18, 30, 32, 131
Gravatar, 93
Gravity Forms, 161
.group class, 83
gzip, 10–11

H
“hamburger” icon, 72, 74
Happy Monday Podcast, 185
have_posts() function, 24
header.php, 20–21, 44–46, 66, 70, 73
<head> tag, 20
“Hello World” shortcode, 33
“Hide and Cry” navigation, 59
hierarchical data, 64
home page, 21–22
home.php, 21–22
hooks, 19, 31–32
HTC phones, 124
HTML, xi, 2, 11, 41
HTML5, xiii, 9, 127, 135, 137, 151

I
#ids, xiii
IE, 9, 41, 46, 75, 83, 125
if/else statements, 24
image gallery, 144–150
ImageOptim, 10
images

aligning, 19, 47
cropping, 76
featured, 79, 80, 88, 159, 168, 169
how WordPress uploads, 75–76
license considerations, 32

189Index

limiting width of, 50
managing, 144
optimizing, 10
overriding set width/height of, 80–81
resizing, 10, 76, 80–81, 147, 175–176
scalable, 75

Image Slider tutorial, 154–160
 tag, 75
Implementing Responsive Design (Kadlec), 183
index.php, 16, 19, 21–22
Internet Explorer. See IE
iPad, 5, 7, 124
iPAQ, x
iPhone, xi, 5, 7, 124
items_wrap argument, 66

J
JavaScript

deciding when to include, 56
and file size, 41
gzipping, 11
libraries, 9
loading, 20
and “Off Canvas” navigation, 67
picturefill.js, 76–80
placing comments on webpage with, 93
responsive-nav.js, 68–72
and RWD, xi, 41
vs. HTML/CSS, 41

Jehl, Scott, xii, 76
jQuery, 9, 20, 63, 67, 117, 138
Jumbotron, 133
“Jump To” navigation, 60–62, 63

K–L
K2 theme, 126
Kadlec, Tim, 183
Kindle, 7, 124
labels, form, 165, 166
layouts

multicolumn, 81, 87, 89
non-fluid/fixed, 82
responsive, 42–46
testing, 83

lazy loading, 36
Lifehacker, 124
lightbox, 145
links, 180, 185. See also permalinks
login screens, 19
logos, 19

Loops, 23–26
lukew.com, 185

M
Main Loop, 24, 26
Map Page tutorial, 150–153
Marcotte, Ethan, 2, 5, 12, 182
Masonry, jQuery, 138
Media Manager, 144
Media Queries, 3–4, 19, 36, 55, 125
Media Uploader, 144, 145
meetups, 184
menu icon, 72
menus. See navigation menus
mfp_register() function, 170–171
mfs_get_slider() function, 158
Microsoft Xbox, 7
Millennium Flights

Archive by Date section, 109
comments page, 102
custom CSS, 44
default styles, 48
Destinations CPT, 27
footer.php, 20–21
header.php, 44–46
HTML Template, 42
navigation menus, 58–72
sidebar, 82, 84–88

minifying files, 10, 41
mobile browsers, 119
mobile devices. See also specific devices

detecting, 38–40
hiding navigation from, 59
popularity of, ix, 3
screen size/resolution, 7
testing design on multiple, 119, 124

Mobile First (Wroblewski), 10, 183
“Mobile First” design, 9–10, 81, 125
modifying the Core, 15, 29
Motorola phones, 124
muleradio.net, 185
Mullenweg, Matt, 32
multicolumn layouts, 81, 87, 89
MySQL, xi

N–O
navigation.js, 137
navigation menus

adding smooth scrolling to, 63
changing on server side, 72–74

RESPONSIVE DESIGN WITH WORDPRESS190

navigation menus (continued)
creating, 58–72
and functions.php file, 19
getting user feedback on, 74
hiding from mobile users, 59, 89
managing, 27
testing, 74

.net magazine, viii, 131, 185
NextGen Gallery, 149
Nexus phone, 7, 124
Ninja Forms, 161
“Off Canvas” navigation, 67–68
Off Canvas website, 68
online resources, 184–185
Open Device Labs, 119, 123, 125
open source software, 32, 128, 129
Opera/Opera Mini, 119, 125
optimizing images, 10
options functions, 32

P
pages

applying styles to specfic, 55
as WordPress post types, 27

page structure, 81, 89
page weight, 11
pagination, comment, 98, 102
Palm devices, x–xi
parent themes, 138–139, 140
permalinks, 23, 24, 25, 107
Photo Gallery tutorial, 144–150
PHP, xi, xiii, 19, 128, 152, 178
phpdoc, 143
picturefill.js, 41, 76–80, 89, 159, 160
pixel-based breakpoints, 4
pixel-to-em conversion, 5
Plugin Directory, WordPress, 149, 161
Plugin Repository, 74
plugins, 29–32

autocomplete, 117
choosing responsive-friendly, 117–119
coding conventions, 30
defining, 30, 155
developing your own, 84
documenting, 143
forms, 161
free vs. commercial, 132
and GPL, 32
guidelines for developing, 118, 142
keeping CPTs in separate, 28
loading information from, 20

loading too many, 118
photo gallery, 149
purpose of, 29
storing data for later use, 32
vs. themes, 14–15
and WordPress Codex, 15

Plugins area, WordPress admin, 29
/plugins/ directory, 14
podcasts, 185
polyfills, 41, 55
portfolios, 142, 173
post_class() function, 55
posts

applying styles to specfic, 55
displaying, 24, 25
listing by date, 54
modifying, 25

post types, 27, 34
prices, product, 172, 173, 174
print.css, 18, 19
Products Page tutorial, 167–177
Professional WordPress: Design and

Development (Williams et al.), 182
progress bars, 113
px-to-em conversion, 5

Q–R
query_posts() function, 25, 34, 107
Reading settings, WordPress admin, 22
README file, 143
real estate listings, 28
register_post_type() function, 28
register_taxonomy() function, 28
remote code inspection, 126
Resizer, Window, 6
resizing images, 10, 76, 80–81, 147,

175–176
resolution, screen, 5, 7–8, 19
respond.js, 41
Responsive Design + Server Side

Components, xiv, 56. See also RESS
responsive frameworks, 129, 132–139, 140
responsive layout, 42–46
Responsive Nav home page, 69
responsive-nav.js, 68–72, 137
Responsive Nav script, 41
responsive.rga.com, 185
“Responsive” theme, 130
Responsive Web Design

best practices, 2, 4, 182
books about, 182–183

191Index

breakpoints, 3–8, 12, 143
and connection speeds, 8–11
image-handling techniques, 75–81
importance of learning, ix
and JavaScript (See JavaScript)
and Media Queries (See Media Queries)
navigation techniques, 58–74
origins of, 2–3
purpose of, xi
resources, 180–185
and RESS, 37–40 (See also RESS)
testing, 119
tutorials, 144–177
widgets, 81–88

Responsive Web Design (Marcotte), 182
RESS, xiv, 37–40, 55, 56, 73, 89
reuse, software, 122–129, 140
revisions, 27
RFPs, 123
Rieger, Stephanie, 4, 5
RIOT, 10
roundups, 131, 140
RSS widget, 19
RWD, xiv. See also Responsive Web Design
rwdwp.com, xiv, 180, 185

S
SaaS, 132
Safari, 125
Samsung Galaxy phones, 7, 124
Scalable Vector Graphics, 75
ScientiaMobile, 19
screen resolution, 5, 7–8, 19
screenshots, 18, 126
screen size, 7
scripts, 20, 41, 143, 156–160. See also

JavaScript
scroll effect, jQuery, 63
SearchAutocomplete plugin, 117
search bars, 116
search engine optimization, 81
search forms, 54
search function, 104, 117
search results page, 21
Search widget, 116
Secondary Loop, 24
security patches, 120
“Select Box” navigation, 62–67, 72–73
Select_Nav_Walker class, 64, 66
separation of concerns, 14, 122, 140

Server Side Components, xiv
server-side device detection, 19, 37
Settings>Permalinks section, WordPress

admin, 23
setup_postdata() function, 26
SFTP, xi
Shop Talk Show, 185
shortcode

for image slider, 157–158
for map page, 151–153
for products page, 168–170
purpose of, 29, 33

shortcode_atts() function, 152
sidebars, 19, 53, 81–88
Skins, 136
sliders, xii, 156–160
smartphones, x–xi, 7, 124. See also specific

devices
Smashing Magazine, viii, 131, 185
Software as a Service, 132
software reuse, 122–129, 140
Sony mobile devices, 7
spec docs, 123
Speedtest app, 11
speed testing, 11, 119, 125
start_el function, 64–65
start_lvl function, 64
StatCounter, 8
Stern, Hal, 182
Storage APIs, xiii
storing data, 32
StudioPress, 136
style.css, 16, 18–19, 42, 70, 138
SVG images, 75
Swappa, 124

T
tabular data, 105
tag clouds, 110–115
Tag Cloud widget, 114
tag pages, 105
tags, 18, 28, 115. See also template tags
taxonomies, 28, 32, 171
Template Hierarchy, 17, 21
templates

archive, 105–106
CPT, 28
fallback structure for, 17
serving up device-based, 19

template tags, 23, 24–25, 32, 149,
157–158, 168–170

RESPONSIVE DESIGN WITH WORDPRESS192

testing
automated multi-device, 126
browser, 119, 125, 126, 143
code, 122–123
device, 123–124, 143
frameworks, 139
layouts, 83
navigation menus, 74
speed, 119, 125
websites, xiv, 119

text fields, 28
text size, 4
The Codex. See WordPress Codex
the_content() function, 19, 25
the_excerpt() function, 25
thegentlymad.com, 185
theme development, 15–34. See also themes

Custom Post Types, 26–28 (See also CPTs)
Loops, 23–26
template structure, 16–22

ThemeForest, 130–131, 140
theme frameworks, 126–140. See also

themes
customizing, 134
defining needs for, 126–127
descriptions of popular, 132–139
developing your own, 128–129, 139
evolution of, 127–128
free vs. commercial, 132
sources of, 129–131
testing, 139

themes
applying general templates to, 42–46
default WordPress, 137
defined, 16
defining needs for, 126–127
documenting, 143
feature-loading, 15
free vs. commercial, 132
and GPL, 32
making searchable, 18
modifying, 139, 140
pages required for, 16
removing functionality from, xii
simple boilerplate, 42
sources of, 129–131
using child/parent, 138–139
vs. plugins, 14–15
what to include in, 142
and WordPress Codex, 15

Themes directory, 135
/themes/ directory, 14

the_permalink() function, 25
the_post() function, 24
Thesis, 135–136
This Is Responsive, 185
thumbnails, 19, 75, 76, 159, 176
titles, 24
“Top Nav” navigation, 58–60
touchscreen devices, 84
Treo, x–xi
trolls, 92
“’Trouble’ with Android, The,” 4
tutorials, 142–177

autocomplete feature, 117
child themes, 138
comment form, 97
contact form, 161–167
image slider, 154–160
map page, 150–153
photo gallery, 144–150
products page, 167–177

Tuts+, 185
tutsplus.com, 138, 185
tweets, 31. See also Twitter
Twenty Fourteen theme, 138
Twenty Ten theme, 146
Twenty Thirteen theme, 137–138
Twitter, 93, 132

U–V
underscores (_), xiii
Underscores framework, 137
updates, WordPress, 120
URLs, 23, 107. See also permalinks
User Agent detection, 36, 40
User Experience (UX), 41, 58, 92, 104
variables, 32, 152, 155

W–Z
walker argument, 66
Walker_Nav_Menu class, 64
Weaver, Jason, 68
web browsers, testing on multiple, 119,

125, 126, 143
Web Designer’s Guide to WordPress

(Friedman), viii, 17, 80, 181
Web Fonts, Google, 45, 127
websites

controlling how they’re viewed, xi
creating custom home page for, 21–22
creating responsive, xii (See also

Responsive Web Design)

193Index

and download speeds, 11
e-commerce, 29
lazy loading of, 36
Millennium Flights (See Millennium

Flights)
“Mobile First” approach to designing,

9–10, 81
optimal load time for, 9
popularity of WordPress for powering, viii
presenting products on, 167
search considerations, 116–117
testing, xiv, 119, 122–126
URL for this book’s, xiv, 180, 185
WordPress resources, 185

Web Sockets, xiii
widgets, 52–54, 81–88
Williams, Brad, 182
Window Resizer, 6
Windows Phone, 124
Wireless Universal Resource FiLe, 37, 56.

See also WURFLs
WooThemes, 117, 131, 140
WordCamp Central, 184
WordPress

APIs, 15
best practices, 15, 18, 143
Beta Tester, 128
blog features, 92–120
books about, viii, 17, 19, 181–182
as CMS, 26
Codex (See WordPress Codex)
comments, 50–52 (See also comments)
core features, 58–89
creating responsive websites with, xii

(See also Responsive Web Design)
Dashboard, 14
default CSS classes, 47–55
directories, 14–15
and download speeds, 11
extending functionality of sites created

with, 29
frameworks, 129–140
and GPL, 32
installing betas/nightly releases of, 128
Loops, 23–26
Media Manager, 144
Media Uploader, 144, 145
native post types, 27
as open source software, 32
page URLs in, 23
Plugin Directory, 149, 161

popularity of, viii, ix, xi
resources, 180–185
search feature, 117
separation of content/function, 14, 122
and SVG images, 75
Template Hierarchy, 17, 21
themes (See themes)
tutorials (See tutorials)
updating, 120
widgets, 52–54

WordPress admin
Plugins area, 29
Reading settings, 22
Settings>Permalinks section, 23
Themes/Appearance section, 18

WordPress Codex
and CPTs, 28, 171
and CSS, 18, 19, 118
and database tables, 32
and hooks, 31
and Loops, 23, 24, 25
and page URLs, 23
and plugins, 118
purpose of, xiv, 15
and query_post() function, 25
and template tags, 24

WordPress directory, 129–130, 143
WordPress for Web Developers (Leary), 182
WordPress.org, 129, 140
WP-Bootstrap, 132
.wp-caption class, 48, 49–50
wp-comments-page plugin, 101
/wp-content/ directory, 14, 15
/wp-content/plugins directory, 29
WP e-commerce, 168
wp_enqueue_script() function, 20, 46, 69,

79, 156, 178
wp_footer() function, 20
wp_head() function, 20, 21
wp_is_mobile() function, 38–40
WP Mobile Detect plugin, 74
wpmu.org, 129, 134
wp_nav_menu() function, 66
WP_Query() function, 24, 25–26
wp_tag_cloud() function, 110
WPTuts+, 117
Wroblewski, Luke, 7, 10, 68, 183, 185
WURFLs, 37, 40, 56
ZURB, 133

	Contents
	Foreword
	Introduction
	Chapter 4 Making Your Theme Responsive: Core Features
	Handling Navigation
	Handling Images
	Handling Widgets
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N-O
	P
	Q-R
	S
	T
	U-V
	W-Z

