
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321947864
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321947864
https://plusone.google.com/share?url=http://www.informit.com/title/9780321947864
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321947864
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321947864/Free-Sample-Chapter

 Learning Mobile App
Development

97803e21947864_Book 1.indb i97803e21947864_Book 1.indb i 11/21/13 2:56 PM11/21/13 2:56 PM

97803e21947864_Book 1.indb ii97803e21947864_Book 1.indb ii 11/21/13 2:56 PM11/21/13 2:56 PM

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Learning Mobile App
Development

A Hands-on Guide to Building
Apps with iOS and Android

 Jakob Iversen
 Michael Eierman

97803e21947864_Book 1.indb iii97803e21947864_Book 1.indb iii 11/21/13 2:56 PM11/21/13 2:56 PM

 Editor-in-Chief

Mark Taub

 Senior Acquisitions Editor

Trina MacDonald

 Senior Development Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Project Editor

Andy Beaster

 Copy Editor

Barbara Hacha

 Indexer

 Heather McNeill

 Proofreader

 Sara Schumacher

 Technical Reviewers

Frank McCown
 Aileen Pierce
 Ray Rischpater
 Valerie Shipbaugh

Editorial Assistant

 Olivia Basegio

Media Producer

 Dan Scherf

Interior Designer

Gary Adair

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013951436

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-321-94786-4
 ISBN-10: 0-321-94786-X

 Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

 First printing: December 2013

97803e21947864_Book 1.indb iv97803e21947864_Book 1.indb iv 11/21/13 2:56 PM11/21/13 2:56 PM

❖

 Dedicated to Kim, Katja, Rebecca, and Natasja.

 Dedicated to my wife, Theresa, and daughters,
Lindsey and Kyra.

❖

97803e21947864_Book 1.indb v97803e21947864_Book 1.indb v 11/21/13 2:56 PM11/21/13 2:56 PM

vi Contentsvi Contents

Contents

 Preface xiv

Part I Overview of Mobile App Development 1

 1 Why Mobile Apps? 3

Transformative Devices 3

Reaching Customers 4

Changing Business Process 6

Making Money 9

Summary 10

Exercises 10

 2 App Design Issues and Considerations 13

App Design 13

Operating System Design Issues 13

Screen Size and Orientation Issues 17

Connectivity Issues 18

Battery Issues 19

Hardware Issues 19

Device Differences 21

Android 21

iOS 23

Introducing Your First App 23

Contact Screen 24

Contact List Screen 24

Map Screen 25

Settings Screen 26

Summary 26

Exercises 27

 Part II Developing the Android App 29

 3 Using Eclipse for Android Development 31

Starting a New Project 31

Setting Up the Workspace 32

Creating the Project 32

97803e21947864_Book 1.indb vi97803e21947864_Book 1.indb vi 11/21/13 2:56 PM11/21/13 2:56 PM

viiContents viiContents

Components of the IDE 35

The Android Manifest 37

Configuring the Emulator 39

Coding the Interface 42

Coding App Behavior 50

Adding Code 52

Summary 54

Exercises 54

 4 Android Navigation and Interface Design 55

Activities, Layouts, and Intents 55

The Activity Class 56

Layout 56

Intents 57

Creating the Interface 57

Create the Project 58

Create the Navigation Bar 59

Create the Contact Layout 64

Activating the Interface 78

Code the Navigation Bar 78

Code the Toggle Button 80

Code the DatePicker Dialog 82

Summary 86

Exercises 87

 5 Persistent Data in Android 89

Preferences, Files, and Database 89

Preferences 89

Files 90

Database 90

Creating the Database 91

Create the Database Helper Class 91

Create the Data Source Class 93

Using the Database 98

Capture User-Entered Data 99

Save User-Entered Data 101

Use the Debugger 105

97803e21947864_Book 1.indb vii97803e21947864_Book 1.indb vii 11/21/13 2:56 PM11/21/13 2:56 PM

viii Contentsviii Contents

Using Preferences 107

Create the Settings Layout 107

Code the Page’s Behavior 109

Summary 113

Exercises 114

 6 Lists in Android: Navigation and Information

 Display 115

Lists and Adapters 115

Lists 115

Adapters 116

Simple Lists 116

Create the Data Source Method 116

Create the Layout 118

Code the Activity 118

Complex Lists 121

Create the Data Source Method 121

Create the Layout 123

Create the Custom Adapter 125

Code the Activity 127

Add Delete Functionality 128

Completing the ContactList Activity 135

Populating the ContactActivity Screen 135

Coding the Add Button 138

Sort the Contacts List 139

Set ContactListActivity as the Default Activity 141

Set ContactActivity as Default Activity with no
 Contacts in Database 142

Summary 143

Exercises 143

 7 Maps and Location in Android 145

Location Sensors, Maps, and Fragments 145

Location Sensors 145

Maps 146

Fragments 146

Setting Up for Maps 146

Passing Data Between Controllers 151

97803e21947864_Book 1.indb viii97803e21947864_Book 1.indb viii 11/21/13 2:56 PM11/21/13 2:56 PM

ixContents ixContents

Finding Your Location 152

Geocoding: Get Coordinates from an Address 152

Get Coordinates from the GPS Sensor 155

Get Coordinates from Network Sensor 159

Get Coordinates from the Map 161

Displaying Your Contacts’ Locations 164

Summary 170

Exercises 171

 8 Access to Hardware and Sensors in Android 173

Sensors, Managers, and Other Hardware 173

Sensors 173

Managers 174

Other Hardware 174

Monitoring the Battery 174

Using Sensors to Create a Compass 177

Using the Phone 181

Using the Camera 183

Summary 189

Exercise 190

 Part III Developing the iOS App 191

 9 Using Xcode for iOS Development 193

Creating the Xcode Project 193

Project Settings 196

Creating the User Interface 199

Running the App in the Simulator 200

Adding App Behavior 202

Dismissing the Keyboard 205

App Icons and Launch Images 208

Summary 211

Exercises 211

 10 iOS Navigation and Interface Design 213

Views and Controllers 213

View Controller 213

Tab Bar Controller 214

Navigation Controller 215

97803e21947864_Book 1.indb ix97803e21947864_Book 1.indb ix 11/21/13 2:56 PM11/21/13 2:56 PM

x Contentsx Contents

Creating the Interface 215

Creating the Project 215

Creating the Views 216

Design the Contacts Screen 222

Add Navigation Controller for the Date Screen 226

Activating the Interface 230

Summary 233

Exercises 233

 11 Persistent Data in iOS 235

File Data Storage 235

User Defaults 236

Core Data 236

Setting Up Core Data 237

Creating the Project 237

Designing Data Structure 241

Passing Data Between Controllers 243

Saving Data to Core Data 248

Storing the Settings 251

Creating the Settings Interface 252

Working with NSUserDefaults Object 256

Activating the Settings Interface 257

Global Constants 259

Summary 262

Exercises 262

 12 Tables in iOS: Navigation and Information

 Display 263

Overview of Tables 263

Setting Up Tables 265

Populate the Table with Data 265

Retrieve Data from Core Data 269

Adding Contact Data 272

Display Detailed Data 273

Save Changes to Records 276

Deleting Records 277

Accessory Buttons 280

Alert View 281

97803e21947864_Book 1.indb x97803e21947864_Book 1.indb x 11/21/13 2:56 PM11/21/13 2:56 PM

xiContents xiContents

Show Subtitles in the Table 285

Sort the Table 285

Summary 288

Exercises 288

 13 Maps and Location in iOS 289

Overview of Location and Mapping 289

Hardware and Sensors 289

Core Location 290

MapKit 290

Adding Location Information to the App 291

Finding Location 291

Adding a Map 300

Summary 309

Exercises 309

 14 Access to Hardware and Sensors in iOS 311

Getting Device Information 311

Monitoring Battery Status 314

Controlling the Camera 317

Calling a Phone Number 324

Long Press Gesture 324

Adding Long Press to Enabled Text Field 326

Using Core Motion for Accelerometer Data 328

Summary 333

Exercises 333

 Part IV Business Issues 335

 15 Monetizing Apps 337

App Monetization Strategies 337

Paid Apps 337

Ad Supported Apps 338

In-App Purchases 340

Understanding the Economics of App Stores 341

Owning Your Own Business 342

Create an LLC 342

Plan Your Business 342

97803e21947864_Book 1.indb xi97803e21947864_Book 1.indb xi 11/21/13 2:56 PM11/21/13 2:56 PM

xii Contentsxii Contents

Other Income Possibilities 343

Choosing a Platform 343

Summary 345

Exercises 345

 16 Publishing Apps 347

App Distribution Through the App/Play Stores 347

Android Play Store Distribution 348

iOS App Store Distribution 351

App Distribution for the Enterprise 353

Android Enterprise Distribution 353

iOS Enterprise Distribution 354

Testing and Fragmentation 354

Keeping Up with the Platform 356

Summary 356

Exercises 357

 Part V Appendixes 359

 A Installing Eclipse and Setup for Android

 Development 361

Setting up Java and Eclipse 361

Download and Install Java SE SDK 362

Downloading Eclipse 363

Installing Eclipse on Windows 363

Installing Eclipse on Mac 365

Installing Android 366

Setting Up the Classroom 369

97803e21947864_Book 1.indb xii97803e21947864_Book 1.indb xii 11/21/13 2:56 PM11/21/13 2:56 PM

xiiiContents xiiiContents

 B Installing Xcode and Registering Physical

 Devices 371

Download and Install Xcode 371

Apple Developer Programs 372

Setting Up the Classroom 373

Deploying Apps to Real Devices 373

Creating Developer Accounts 375

Backing Up the Development Certificate 376

Registering Devices 378

Checking the Development Environment 379

 C Introduction to Objective-C 383

A Brief History of Objective-C 383

Two Languages in One 384

Objects and Classes 385

Properties in Detail 394

Declaring and Calling Methods 396

Inheritance and Protocols 397

Memory Management 398

 Index 399

97803e21947864_Book 1.indb xiii97803e21947864_Book 1.indb xiii 11/21/13 2:56 PM11/21/13 2:56 PM

 Preface

 Welcome to mobile application development!

 Developing apps can be fun and is potentially lucrative, but it is also quickly becoming a core
skill in the information technology field. Businesses are increasingly looking to mobile apps to
enhance their relationships with their customers and improve their internal processes. They
need individuals skilled in developing the mobile apps that support these initiatives.

 This book is intended to be an introduction to mobile app development. After you successfully
complete the book, you will have the basic skills to develop both Android and iPhone/iPad
apps. The book takes you from the creation of an app through the publication of the app to
its intended audience on both platforms. We (the authors) have been teaching technology for
many years at the collegiate level and directly to professionals and strongly believe that the
only way to learn a technology is to use it. That is why the book is structured as a series of
tutorials that focus on building a complete app on both platforms.

 Although the book is an introduction, it does cover many of the unique features of the mobile
platforms that make apps a technology offering new capabilities that businesses may use to
enrich or augment their operations. The features covered in the book include using the device’s
capability to determine its location, using hardware sensors and device components in apps,
and mapping.

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact us at jhiversen@gmail.com or michael.eierman@gmail.com . We
appreciate any and all feedback that helps make this a better book.

 —Jakob Iversen & Michael Eierman, September 2013

 What You’ll Need

 You can begin learning mobile application development with very little investment. However,
you will need a few things. The following list covers the basics of what you need for Android
programming:

 ■ Eclipse and the Android SDK —You can download the SDK from Google (http://
developer.android.com/sdk/index.html) as an Android Development Tools (ADT)
bundle that includes the Eclipse Integrated Development Environment (IDE), Android
development tools, Android SDK tools, Android platform tools, the latest Android SDK,
and an emulator. The ADT bundle is for Windows only. If you are going to develop on
the Mac, you will have to download Eclipse separately and use the preceding URL to
get the various other tools. If you have an existing Eclipse installation, you can use this
location to add the Android tools. Appendix A , “Installing Eclipse and Setup for Android
Development,” has more details on how to install the tools. If your existing Eclipse
installation is earlier than the Helios version, we recommend that you update your
installation to be perfectly in sync with this book. If you cannot upgrade, you should

97803e21947864_Book 1.indb xiv97803e21947864_Book 1.indb xiv 11/21/13 2:56 PM11/21/13 2:56 PM

xvPreface

still be able to work the tutorials. Some of the menu commands may be slightly different
and some of the windows may have minor differences, but you should still be able to
complete the tutorials.

 ■ An Android device —This is not necessary for purely learning, but if you plan to release
your apps to the public, you really should test them on at least one device. The more
types of devices, the better—Android on different manufacturers’ devices can sometimes
behave in different manners.

 ■ Familiarity with Java —Android apps are programmed using the Java programming
language. You should be able to program in Java. At a minimum you should have
programming in some object-based programming language such as C# or C++ so that
you can more easily pick up Java.

 The following list covers the basics of what you need for iPhone/iPad programming:

 ■ A Mac running Mac OS X Lion (v 10.8 at a minimum) —iPhone/iPad programming can
be done only on a Mac. That Mac should have a fair amount of disk space available and
a significant amount of RAM so you don’t have to spend as much time waiting for things
to compile and execute.

 ■ Xcode 5 —Xcode is an IDE provided by Apple available from Apple’s iOS Dev Center
(http://developer.apple.com/ios). Xcode 5 is free, but you can only run the apps you
develop on the simulator provided with Xcode. If you want to distribute your apps, you
must sign up as a registered developer ($99/year for individuals, $299/year for corporate
developers). If you are a teacher at the university level, your university can sign up for
the University Program (http://developer.apple.com/support/iphone/university). This
will allow you and your students to test apps on actual devices but does not allow public
distribution of the apps you create. If you are a student at a university, check with the
computer science or information systems department to see if they have signed up for
this program.

 ■ An iOS device —As with Android, this is not necessary for learning how to program
an iOS app, but it is important for testing apps that you want to release to the public.
Additionally, some features of iOS programming cannot be tested on the simulator.
 Appendix B , “Installing Xcode and Registering Physical Devices” has more details both
on installing Xcode and the work needed to be able to test your apps on a physical iOS
device.

 ■ Knowledge of Objective-C 2.0 —iOS apps are programmed in Objective-C. Objective-C is
a language that extends the C programming language and is organized like the SmallTalk
object-oriented programming language. If you have previous experience with Java or C++
it will ease your transition to Objective-C. Appendix C , “Introduction to Objective-C,”
contains an introduction to Objective-C that will help you with that transition.

97803e21947864_Book 1.indb xv97803e21947864_Book 1.indb xv 11/21/13 2:56 PM11/21/13 2:56 PM

xvi Preface

 What if I Can’t Upgrade My Lab Computers?

 Xcode 5 requires OSX 10.8. If your existing Macs cannot be upgraded to 10.8 you should still
be able to use this book to learn iOS development. In that case use Xcode 4.6. The sample
code provided with this book will not work, but you should be able to develop your own working
code by working through the tutorials. Some of the menus and windows will be different, but
the tutorial will still work.

 Your Roadmap to Android/iOS Development

 This book is intended as an introduction to mobile development for both Android and iOS.
Although the book provides everything you need to know to begin creating apps on both
platforms, it is not intended to be a comprehensive work on the subject. The book assumes
programming knowledge. At a minimum you should have taken at least one college-level
course in the Java or C programming languages. Mobile development introduces issues and
concerns not associated with traditional development, but at its core requires the ability to
program. Experience with an IDE is a plus. This book will help you learn the Eclipse and Xcode
IDEs but if you have some understanding and experience prior to working through this book, it
will ease your learning curve.

 As a beginner’s book, that should be enough to successfully work through the tutorials.
However, to truly master Android and iOS development there is no substitute for designing and
implementing your own app. For this you will likely need some reference books. Following is a
list of books we have found helpful in our app development efforts. Of course, if all else fails—
Google it! And then you’ll likely end up with the good folks at StackOverflow.com, which has
quickly become a trusted source for answers to programming questions.

 ■ iOS Programming: The Big Nerd Ranch Guide, by Joe Conway & Aaron Hillegass (Big Nerd
Ranch, 2012)

 ■ Programming iOS 6, by Matt Neuburg (O’Reilly, 2013)

 ■ iPad Enterprise Application Development BluePrints: Design and Build Your Own Enterprise
Applications for the iPad , by Steven F. Daniel (Packt Publishing, 2012)

 ■ Android Wireless Application Development, by Lauren Darcy & Shane Conder (Addison-
Wesley, 2011)

 ■ Android Wireless Application Development Volume II: Advanced Topics, by Lauren Darcy &
Shane Conder (Addison-Wesley, 2012)

 How This Book Is Organized

 This book guides you through the development of mobile applications on both Android and
iOS. The book focuses on building a single, complete app on both platforms from beginning
to publication. The book is meant for the beginner but goes into enough depth that you could
move into developing your own apps upon completion of the book. The philosophy embedded

97803e21947864_Book 1.indb xvi97803e21947864_Book 1.indb xvi 11/21/13 2:56 PM11/21/13 2:56 PM

xviiPreface

in the book’s approach is that the best way to learn to develop is to develop! Although the
book begins with Android development, you could choose to begin with iOS without any
problem or setback in understanding. However, we do suggest that you read Chapter 2 , “App
Design Issues and Considerations,” before beginning either platform. After that, you can choose
either Chapters 3 – 8 on Android or Chapters 9 – 14 on iOS. You could even switch back and
forth between the platforms, reading first the introduction to Android in Chapter 3 , then the
introduction to iOS in Chapter 9 , and then continue switching back and forth between the
platforms.

 Here’s a brief look at the book’s contents:

 ■ Part I , “Overview of Mobile App Development”

 ■ Chapter 1 , “Why Mobile Apps?” —Mobile apps are a potentially disruptive
technology—technology that changes the way business works. This chapter
explores the potential impact of mobile technology and discusses how apps can
and do change the way organizations do business.

 ■ Chapter 2 , “App Design Issues and Considerations” —Mobile technology has
different capabilities and limitations than more traditional computing platforms.
This chapter discusses many of the design issues associated with app development.

 ■ Part II , “Developing the Android App”

 ■ Chapter 3 , “Using Eclipse for Android Development” —Eclipse is an open source
development environment commonly used for Android development. Chapter 3
shows how to use Eclipse to build a simple “Hello World” app. The chapter is your
first hands-on look at app development.

 ■ Chapter 4 , “Android Navigation and Interface Design” —The limited amount
of “real estate” on a mobile device typically requires multiple screens to build
a complete app. This chapter introduces how you program movement between
screens in Android. The chapter explores in depth on how a user interface is coded
in Android where the number of screen sizes that your app has to accommodate is
relatively large.

 ■ Chapter 5 , “Persistent Data in Android” —Business runs on data. An app has to
be able to make sure important data is preserved. This chapter explores two types
of data persistence methods in Android: the persistence of large and complex
data in a relational database using SQLite and simple data persistence through
 SharedPreferences .

 ■ Chapter 6 , “Lists in Android: Navigation and Information Display” — Chapter 6
introduces a structure ubiquitous in mobile computing—the list. Lists display data
in a scrollable table format and can be used to “drill down” for more information
or to open new screens. This chapter explains how to implement a list in an
Android app.

97803e21947864_Book 1.indb xvii97803e21947864_Book 1.indb xvii 11/21/13 2:56 PM11/21/13 2:56 PM

xviii Preface

 ■ Chapter 7 , “Maps and Location in Android” —Displaying information on a
map can be a very effective way to communicate information to an app user. This
chapter examines implementing Google Maps in an app and also demonstrates
how to capture the device’s current location.

 ■ Chapter 8 , “Access to Hardware and Sensors in Android” —Mobile devices
come equipped with a number of hardware features that can enhance an app’s
functionality. The code required to access and use these features is discussed in this
chapter.

 ■ Part III , “Developing the iOS App”

 ■ Chapter 9 , “Using Xcode for iOS Development” — Chapter 9 begins the book’s
discussion of iOS. Xcode is the development environment used to develop iPhone
and iPad apps. Xcode and iOS development is introduced by guiding you through
the implementation of a simple “Hello World” app.

 ■ Chapter 10 , “iOS Navigation and Interface Design” —Just as in Android,
interface design and navigation between screens are important concepts to master
in mobile development. This chapter guides you through the development of a
Storyboard for app navigation and demonstrates how to use Xcode’s Interface
Builder to implement a user interface.

 ■ Chapter 11 , “Persistent Data in iOS” —Many of the same data persistence features
available in Android are also present in iOS. One primary difference is that the
database feature of iOS is implemented through a wrapper kit called Core Data.
Core Data enables the updating and querying of an underlying SQLite database.

 ■ Chapter 12 , “Tables in iOS: Navigation and Information Display” —Tables in
iOS provide the same type of information presentation format as Lists in Android.
Tables display data in a scrollable table format and can be used to “drill down” for
more information or to open new screens. Chapter 12 describes how to implement
this very important mobile computing concept.

 ■ Chapter 13 , “Maps and Location in iOS” — Chapter 13 covers the implementation
of maps and capturing device location information on an iOS device. It is
analogous to the Android chapter on maps and location.

 ■ Chapter 14 , “Access to Hardware and Sensors in iOS” —This chapter
demonstrates the techniques used to access hardware features of the device. It
covers many of the same sensors and hardware features covered in the Android
chapters on the topic.

 ■ Part IV , “Business Issues”

 ■ Chapter 15 , “Monetizing Apps” —One of the reasons many people consider
getting into mobile application development is to make money. Both Android and
Apple provide a marketplace for apps that has a wide reach. This chapter discusses
various approaches to making money from your apps and briefly discusses
organization of your app development business.

97803e21947864_Book 1.indb xviii97803e21947864_Book 1.indb xviii 11/21/13 2:56 PM11/21/13 2:56 PM

xixPreface

 ■ Chapter 16 , “Publishing Apps” —After you have developed an app, you’ll likely
want to make that app available to its intended audience. This chapter discusses
publishing apps on Google Play and the App Store, as well as distribution of
corporate apps that are not intended for the public at large.

 ■ Appendixes

 ■ Appendix A , “Installing Eclipse and Setup for Android Development” —This
appendix provides instruction on installing the Eclipse development environment
and how to set up Eclipse specifically for Android development.

 ■ Appendix B , “Installing Xcode and Registering Physical Devices” —This
appendix provides instruction on installing iOS development environment, Xcode,
and describes how to register iOS devices so that they can be used to test your
apps.

 ■ Appendix C , “Introduction to Objective-C” —This appendix provides a brief
tutorial on the Objective-C language.

 About the Sample Code

 The sample code for this book is organized by chapter. Chapters 3 and 9 contain a single
“Hello World” app in Android and iOS, respectively. Chapters 4 through 8 build a complete
Android contact list app, and Chapters 10 through 14 build the same contact list app in iOS.
Each chapter folder contains the code for the completed app up to that point. For example,
at the end of Chapter 7 the code includes the code developed for chapters 4 , 5 , 6 , and 7 . The
exception to this single completed app per folder model is in chapters 7 and 13 . These chapters
demonstrate several approaches to getting location information on the mobile device. Each
technique has a folder with the complete app that demonstrates the technique. If a book
chapter requires any image resources, you will find those images in the respective chapter.

 Getting the Sample Code

 You’ll find the source code for this book at https://github.com/LearningMobile/BookApps on
the open-source GitHub hosting site. There you find a chapter-by-chapter collection of source
code that provides working examples of the material covered in this book.

 You can download this book’s source code using the git version control system. The Github site
includes git clients for both Mac and Windows, as well as for Eclipse. Xcode already includes git
support.

 Contacting the Authors

 If you have any comments or questions about this book, please drop us an e-mail message at
 jhiversen@gmail.com or michael.eierman@gmail.com .

97803e21947864_Book 1.indb xix97803e21947864_Book 1.indb xix 11/21/13 2:56 PM11/21/13 2:56 PM

 Acknowledgments

 Acknowledgments from Jakob Iversen

 Thank you goes out to Mindie Boynton at the Business Success Center in Oshkosh for
organizing the training seminars that formed the first basis for the tutorials at the core of the
book. Thank you also to all the students taking those seminars for keeping the idea alive and
providing feedback and catching mistakes in early versions.

 Thanks go as well to everyone who worked with us at Pearson: Trina MacDonald, Chris Zahn,
and Olivia Basegio, all of whom worked hard to answer our questions and keep us in line.
Thank you also to the technical editors, Valerie Shipbaugh for making sure the material was
accessible to the target audience and Aileen Pierce for detailed insights in getting the original
material updated for iOS 7.

 Thank you to my family and friends for providing support and encouragement during long
hours of programming and writing. Especially to my wife, Kim, and daughters, Katja, Rebecca,
and Natasja, for picking up the slack around the house.

 Acknowledgments from Michael Eierman

 A big thank you is owed to my friend and business partner George Sorrells. After I showed him
an app that I was fooling around with he said, “We should sell that!” That led to a level of
work in Android and iOS that gave me the depth of knowledge required to write this book. I’d
also like to thank Mindie Boynton at the Business Success Center in Oshkosh for organizing the
training seminars that helped us develop the tutorials that are the basis for this book.

 Thanks go as well to the good people at Pearson, Trina MacDonald, Chris Zahn, and Olivia
Basegio, who worked so hard to get this book in shape. Thank you also to the technical editors,
Valerie Shipbaugh, Ray Rischpater, and Frank McCown, for their help in getting many of the
inevitable technical errors and oversights eliminated from the text. I would especially like to
single out Frank McCown for in-depth reviews that greatly improved the final product.

 Finally, thank you to my friends and family. They supported me by providing feedback on the
apps I was developing and encouraged me to continue the effort even when things were most
frustrating. My wife, Theresa, and daughters, Lindsey and Kyra, deserve extra special thanks for
putting up with my constant work on app development and writing this book.

97803e21947864_Book 1.indb xx97803e21947864_Book 1.indb xx 11/21/13 2:56 PM11/21/13 2:56 PM

 About the Authors

 Jakob Iversen, Ph.D. is Associate Professor of Information Systems, Chair of the Interactive
Web Management Program, and Director of Information Technology Services at the University
of Wisconsin Oshkosh College of Business. His current research interests include software
process improvement, agile software development, e-collaboration, and mobile development.
Dr. Iversen teaches and consults on web development, mobile development, technology
innovation, information systems management, strategy, and software development processes.

 Michael Eierman, Ph.D is a Professor of Information Systems and Chair of the Information
Systems Department at the University of Wisconsin Oshkosh College of Business. Dr.
Eierman has worked in the information systems field for nearly 30 years as a programmer,
analyst, and consultant, but primarily as a teacher. From the very first class taken in college
at the suggestion of an advisor, information systems have been his passion. His research has
taken many directions over his years as a professor but is currently focused on the impact
of collaborative and mobile technology. Dr. Eierman is also co-owner and manager of Ei-Sor
Development, LLC—a provider of Android and iOS apps designed for the outdoorsman.

97803e21947864_Book 1.indb xxi97803e21947864_Book 1.indb xxi 11/21/13 2:56 PM11/21/13 2:56 PM

97803e21947864_Book 1.indb xxii97803e21947864_Book 1.indb xxii 11/21/13 2:56 PM11/21/13 2:56 PM

 3
 Using Eclipse for Android

Development

 This chapter is an introduction to building a complete Android app. The chapter includes creating a
new app project, exploring the components of an Android app, setting up the emulator to run and test
apps, and building a variation of the traditional Hello World app. This and the following chapters in
this part assume that you have access to Eclipse and that it is set up for Android development. If this
is not the case, refer to Appendix A , “Installing Eclipse and Setup for Android Development” before
continuing.

 Starting a New Project

 Eclipse is a powerful, open source, integrated development environment (IDE) that facilitates
the creation of desktop, mobile, and web applications. Eclipse is a highly versatile and adapt-
able tool. Many types of applications and programming languages can be used by adding differ-
ent “plug-ins.” For example, plug-ins are available for a very large number of programming
languages as diverse as COBOL, PHP, Java, Ruby, and C++, to name a few. Additionally, plug-
ins provide the capability to develop for different platforms, such as Android, Blackberry, and
Windows. Many of the tools in the Eclipse IDE will be explained through the act of developing
an Android app.

 Android is a mobile operating system designed for smartphones and tablets. The operating
system is very powerful, enabling access to a diverse set of hardware resources on a smartphone
or tablet. Android is provided by Google and is continually updated, improved, and extended.
This makes the development of apps for Android smartphones and tablets both exciting and
challenging. As with Eclipse, the many features of the Android environment are best explained
through the act of developing an app.

97803e21947864_Book 1.indb 3197803e21947864_Book 1.indb 31 11/21/13 2:56 PM11/21/13 2:56 PM

32 Chapter 3 Using Eclipse for Android Development

 Setting Up the Workspace

 Eclipse uses the concept of a workspace for organizing projects. Because Eclipse can be used to
develop many types of applications, this is very useful. A workspace, in reality, is just a folder
on some drive on your computer. The folder contains the application’s code and resources,
code libraries used by the application (or references to them), and metadata that is used to keep
track of environment information for the workspace.

 To begin, run Eclipse. The Workspace Launcher dialog window opens, asking which workspace
you want to use. The default workspace (or last used) is displayed in the dialog window’s text
box. Most IDEs are designed with the idea that developers are going to be working on the same
machine each time they work on a project. This can cause problems in the education environ-
ment where students do not have the ability to work on the same machine and/or store their
work on the machine they are currently working on. If you are using your own machine, you
can skip to the next section; your workspace was created when you installed Eclipse and is
ready to go. However, if you are working in an environment where you cannot use the same
machine each time, you need to set up a workspace on either a flash drive or on a network
drive. Determine which of these options is best for your situation and perform the following
steps:

 1. Create a folder in your selected location named workspace .

 2. Go back to the Workspace Launcher and browse to your new folder. Click OK.

 Often in a situation where you change the workspace to a location not on the machine
that Eclipse is installed on, Eclipse will not be able to find the Android SDK. If it cannot
find the SDK, a dialog window opens. If this happens, you will have to tell Eclipse where
the files are located by performing the next steps.

 3. Click Open Preferences on the dialog window and browse to the sdk folder. This is
usually located in the .android folder. Click Apply.

 The available Android versions should be displayed in the window.

 4. Click OK to close the dialog window. Your workspace is now ready to begin Android
development.

 Creating the Project

 The traditional beginning tutorial for many different languages and development platforms
is “Hello World.” Your first Android app will be a slightly modified “Hello World” app. In
Eclipse, all Android apps are created within a project. To create your first app, you will have to
create your first project. Creating a new project requires stepping through a series of windows
and making choices to configure your app. To get started, from Eclipse’s main menu choose
File > New > Android Application Project. You should see the New Android Application dialog
window, as shown in Figure 3.1 .

97803e21947864_Book 1.indb 3297803e21947864_Book 1.indb 32 11/21/13 2:56 PM11/21/13 2:56 PM

33Starting a New Project

 Figure 3.1 Initial new Android application window configured for “Hello World.”

 Fill out the screen as shown. The application name is displayed on the phone’s screen as the
name of the app. You can use spaces if you want. As you type the name, the project name and
package name will be completed. There are no spaces allowed in these items. The wizard will
remove them as you type. Don’t put them back in either of these fields. The package name is
important. For this initial project you don’t need to change the default. However, if you are
building an app for sale, in place of “example” you should put your company name. This iden-
tifier will be used in the Play Store to link your apps to the services they use and connect all
your apps.

 Next, click the Minimum Required SDK drop-down. A list of potential Android SDKs are listed.
SDK stands for Software Development Kit, and it is a set of tools and code libraries used to write
software for a specific platform. Each release of the Android OS is associated with an SDK so
that programmers can write code for that platform. An application programming interface (API)
is a set of routines that allow a program (app) to access the resources of the operating system
to provide functionality to the user. The minimum required SDK determines what phones
and other Android devices will be able to install your app. (Phones and tablets using Android
operating systems earlier than this selection will not even see your app in the Play Store.) This
selection will also determine the features you can program into your app. The recommended
minimum is the default: Froyo API 8 . An app that has this minimum will be accessible to more
than 90% of the devices “in the wild.”

97803e21947864_Book 1.indb 3397803e21947864_Book 1.indb 33 11/21/13 2:56 PM11/21/13 2:56 PM

34 Chapter 3 Using Eclipse for Android Development

 The Target SDK should usually be set to the latest version of the Android operating system. At
the writing of this book, that version is the Jelly Bean (API 17). After you release an app, you
should periodically update these values and recompile your app as new versions of Android
are released. At times, new versions of the operating system can affect the performance of your
app, so it is best to keep the app up to date. The Compile With target should also be the
latest SDK.

 Themes are a useful way to ensure a consistent look for your app. However, because this is an
introduction you will not be using them in this book. Click the drop-down and select None as
your theme.

 After you have verified that your selections match those in Figure 3.1 , click the Next button
and the Configure Project window will be displayed. You should accept the defaults on this
screen. After you learn the app creation process, you may want to modify the default settings
to better match your requirements. However, by using the defaults, some work is done for you
that can easily be changed later as needed. Click the Next button to display the Configure
Launcher Icon window.

 The Configure Launcher Icon window allows you to associate an icon with your app that will
be displayed on the phone’s screen along with the app name. Notice the different sizes of the
icons. If you are providing an icon for your app, you will have to supply several sizes of the
same picture. This is because Android apps can run on any Android device that meets the app’s
SDK requirements. However, these devices can have different screen resolutions and different
screen sizes. By supplying different icon sizes, the app will pick the one that best matches the
device it is running on. This helps ensure that your app will show up as you design it, regard-
less of the characteristics of the device it is running on. Suggested sizes for app icons are 32×32,
48×48, 72×72, 96×96, and 144×144 pixels for low to extra high density screens. Accept the
default icon for this app by clicking the Next button.

 The Create Activity window is the next step in configuring your project. An Activity is a core
component of any Android application. Activities are typically associated with a visible screen.
Most of the core functionality of an app is provided by an activity and its associated screen
(called a layout). Click among the different activity options. Notice that when you have selected
some of them, the Next button is disabled. The choices are limited by your choice of minimum
and target SDK. Eclipse won’t let you use features that will not work on the devices you
targeted. In this case, because you selected API 8 as the minimum SDK that your app would be
allowed to run on, some activity types are not available, even though they are available in the
target SDK you selected.

 From the list of possible activities, choose Blank Activity and click the Next button. The Blank
Activity window is displayed (Figure 3.2). This allows us to configure the first Activity in our
app. With this screen we can change the name of the activities we create. In the Activity
Name text box, delete MainActivity and type HelloWorldActivity. Notice below Activity Name
is Layout Name. As you typed in the activity name, the text in this box changed to reflect
the text you entered. A layout is an XML file that provides the user interface for the activity.
Layouts are discussed in detail later. For now, just remember that every activity has an associ-
ated layout file.

97803e21947864_Book 1.indb 3497803e21947864_Book 1.indb 34 11/21/13 2:56 PM11/21/13 2:56 PM

35Starting a New Project

 Figure 3.2 Blank Activity window with default selections.

 The final item on this page is Navigation Type. Select it and click among the options. Notice
that just like the Create Activity window, you are not allowed to use some navigation types.
Again this is based on the SDK choices you made earlier. Select None as your Navigation Type
and click Finish. Your app project is created! Depending on the capability of your computer, it
may take some time to create the project. When Eclipse has finished creating your project, your
Eclipse environment should look like Figure 3.3 .

 Components of the IDE

 Many of the items in the IDE will be explained as needed. For now you will examine just a
few. The top center section is the Editor . Much of the development work is done here, includ-
ing the UI design and writing code. It should currently be displaying the layout for the
HelloWorldActivity in Graphical Layout mode. You can switch between graphical layout and
the XML code that generates the layout with the tabs below the layout. One tab will always say
Graphical Layout. The other will be the filename of the layout. In this case it is activity_hello-
world.xml.

97803e21947864_Book 1.indb 3597803e21947864_Book 1.indb 35 11/21/13 2:56 PM11/21/13 2:56 PM

36 Chapter 3 Using Eclipse for Android Development

 The left side of the IDE shows the Package Explorer. The Package Explorer displays the structure
of the Android app and is used to move between different components of the app. Many of
these items will be generated for you, and many others you will work with as you create your
app. The src folder will contain all the Java code files for the app. Each file typically represents
one class. Double-click the folder and its subfolders until you see HelloWorldActivity.java. This
is where the code to create the activity’s functionality is written. Double-click the HelloWorld.
java file. The file contents are displayed in the editor with some Java code listed. This code is
explained later.

 Next, look for the res folder in the Package Explorer. This folder contains a number of folders
that all contain a different kind of resource file needed for your Android app. One very impor-
tant note about resource files: There are no capital letters allowed in the file names! Double-
click through the drawable-xxx folders. The drawable folders are for images. Android uses
Portable Network Graphics (PNG) files for its images. Notice the ic_launcher.png file is in all
the drawable folders except the drawable-lhdp folder. Each one of these files is the launcher
icon in a different size to match the size recommendations for different screen resolutions.

 Figure 3.3 Eclipse with the newly created Hello World project.

97803e21947864_Book 1.indb 3697803e21947864_Book 1.indb 36 11/21/13 2:56 PM11/21/13 2:56 PM

37Starting a New Project

The lhdp folder does not contain an icon because no Android devices with low resolution are
available with an API 8 or higher. When your app is installed on a device, Android automati-
cally uses the one appropriate for the device it is installed in by selecting it from the correct
folder.

 Next is the layout folder. This folder holds all the layouts for the user interface of your app. The
menu folder holds the menu items to be displayed in your app when a user clicks the device’s
menu button. Menu functionality is not required for an app, and this book will not work
with them.

 The final set of folders is that of the values folders. Double-click the values folder. Three XML
files will be displayed: dimens.xml, strings.xml, and styles.xml. The values files hold configu-
ration data for an Android app. Android uses this information to limit the hard-coding of
potentially changeable data. For example, the dimens.xml file could hold a value for screen
title size that could be reused on each layout in the app. If you later decide that you want the
screen title size to be different, you only have to change the value in the dimens.xml file and it
automatically applies the new size to all titles that use that dimension. The values folders with
a dash and number or other information are for values to be used for specific versions of the
Android operating system. This enables the developer to take advantage of different OS capa-
bilities within the same app. Some common values files are described below:

 ■ dimens.xml—Values for the display size of items in a layout.

 ■ color.xml—Values for the displayed color of item in a layout.

 ■ strings.xml—Values for text.

 ■ array.xml—Defines string arrays and the values in those arrays.

 ■ ids.xml—IDs that cannot be reused by items in layouts.

 The Android Manifest

 The final and very important item in the Package Explorer that we will examine is the
AndroidManifest.xml file. The manifest file is not in a folder but is listed as one of the folder
independent files following all the folders in the project. Double-click this file. The Manifest
editor will be displayed in the editor. The manifest is used to configure the whole app and tell
the device it is installed on what it can and should be able to do. There are multiple tabs (at
the bottom of the editor) associated with the manifest. These are used to configure different
aspects of your app. The Manifest tab (which is the initial tab open) includes several important
elements. First, note the Version Code and Version Name elements. Version code is an integer
value. It is used to indicate that there is a new version of the app available. Increasing the
value enables the Play Store to notify users of the app that a new version is available. It also
controls the install of the upgrade so that no user data is lost during an upgrade. The Version
Name is the displayed version of your app. Beyond that it is nonfunctioning. However, it is
good practice to have a consistent approach to changing this so that you know what version
of the app is at issue when communicating with users about their problems with the app.
Click Uses Sdk. The current selections for minimum and target SDK are displayed. These can

97803e21947864_Book 1.indb 3797803e21947864_Book 1.indb 37 11/21/13 2:56 PM11/21/13 2:56 PM

38 Chapter 3 Using Eclipse for Android Development

be modified here. Next click the Application tab at the bottom of the editor. This tab provides
the capability to configure specific operational and display elements of the app. Finally, click
the AndroidManifest.xml tab. The selections made in the editors generate code that is displayed
here.

 Interpreting the XML

 Although the tabs in the Manifest editor can be used to create a basic configuration of the
manifest, the ability to read and manipulate XML is a critical skill for the Android app devel-
oper. Modifying a manifest to allow your app to do more advanced behaviors is common,
and most online help on doing so, either from the Android Developer site or developer
forums, is provided in XML. To get started, take a look at the manifest components in the
AndroidManifest.xml file (Listing 3.1).

 Listing 3.1 Manifest XML

 <? xml version= " 1.0 " encoding= " utf - 8 " ?>
 //1
 < manifest xmlns:android= " http :// schemas.android.com / apk / res / android "
 package= " com.example.helloworld "
 android:versionCode= " 1 "
 android:versionName= " 1.0 " >
 //2
 < uses - sdk
 android:minSdkVersion= " 8 "
 android:targetSdkVersion= " 17 " />
 //3
 < application
 android:allowBackup= " true "
 android:icon= " @ drawable / ic _ launcher "
 android:label= " @ string / app _ name "
 android:theme= " @ style / AppTheme " >
 //4
 < activity
 android:name= " com.example.helloworld.HelloWorldActivity "
 android:label= " @ string / app _ name " >
 //5
 < intent - filter >
 //6
 < action android:name= " android.intent.action.MAIN " />
 //7
 < category android:name= " android.intent.category.LAUNCHER " />
 </ intent - filter >
 </ activity >
 </ application >

 </ manifest >

97803e21947864_Book 1.indb 3897803e21947864_Book 1.indb 38 11/21/13 2:56 PM11/21/13 2:56 PM

39Starting a New Project

 The manifest contains a number of XML elements. Those elements and their attributes define
basic operational aspects of your app. Refer to the numbers in Listing 3.1 to see the complete
code associated with each element explanation below.

 1. The <manifest> component is the root element. The attributes associated with this
element define the application package, version code, and version name (as well as
others).

 2. The <uses-sdk> element and its attributes define the minimum and target SDKs for
the app.

 3. The <application> element has both attributes and child elements that configure how
the app works. Application attributes in this manifest define the app icon, theme, and
name. Each activity in an app must have an entry in the <application> element. In our
manifest there is one activity: the one created when we created the project. Its attributes
identify the Java class file for the activity and the display name of the activity. Currently,
that name is the same as the app’s name.

 4. The <activity> element tells the operating system that an activity has permission to
run in your application. All activities used in an app must be defined in the manifest. If
they are not, the app will crash when the user navigates to that activity. In this element
the Java source file for the activity and the activity’s title are identified.

 5. A child element of the <activity> element, the <intent-filter> element, defines
what the Android OS should do with this activity. Not all activities will have an intent-
filter. Specifically, activities that you want users to launch when they are using the app
do not need intent-filters. However, for this app you want this activity to be displayed
when the user runs it.

 6. Therefore, the <action> tag identifies the activity as the main or first activity to run.

 7. The <category> tag tells the OS to use the app launcher to start this activity.

 Configuring the Emulator

 Now that you have some understanding of the development environment, you are almost
ready to start creating the app. Don’t worry. Future projects will take less time to set up. You
could start coding at this point, but until you tell Eclipse how to execute the app, you will not
be able to see your results. Therefore, the next step will be to set up the test environment.

 Android apps may be tested on either the emulator provided by the Eclipse IDE or on an
Android device. The emulator is a program that simulates an Android device. If you choose to
test on the emulator, you should also test on several varieties of real devices before you publish
your app. Real devices often perform differently than the emulator. If you do not test on a real
device, you will likely have many unhappy users.

 To set up the emulator, we first must set up an Android Virtual Device (AVD). An AVD is a soft-
ware replication of one or more types of Android devices. Multiple AVDs with different charac-
teristics may be set up for testing. To set up an AVD we use the AVD Manager. From the main

97803e21947864_Book 1.indb 3997803e21947864_Book 1.indb 39 11/21/13 2:56 PM11/21/13 2:56 PM

40 Chapter 3 Using Eclipse for Android Development

menu select Window > Android Device Manager to display the Android Virtual Device Manager
(Figure 3.4).

 Figure 3.4 Android Device Manager in initial state.

 The manager opens with the Virtual Devices tab displayed. Click the Device Definitions tab.
This displays all the device configurations your system knows about. Scroll through these to see
how many devices your app could run on. Press the Device Definitions tab and then click the
New button. The Create New Android Virtual Device (AVD) window is displayed. Complete the
device definition as follows, changing only these options:

 AVD Name: MyTestDevice

 Device: 3.2 QVGA (ADP2) (320 x 480: mdpi)

 Target: Android 4 2.2 – API Level 17

 SD Card: Size 1024 MiB

 When you click the Device drop-down, a large number of devices are available. Scroll down the
list to find the device: 3.2 QVGA (ADP2) (320 x 480: mdpi) and select it. After you’ve selected
the device, choose ARM from the CPU/ABI drop-down. Most devices have an SD card. However,
if you want to test your app for those that do not, don’t change anything for the SD Card
option. Click OK. The new AVD will be displayed in the Android Virtual Devices tab. Click the
new AVD named MyTestDevice that now shows in the existing AVD list, and the buttons on

97803e21947864_Book 1.indb 4097803e21947864_Book 1.indb 40 11/21/13 2:56 PM11/21/13 2:56 PM

41Starting a New Project

the right of the AVD Manager will be enabled. Click the Start button and the Launch Options
window will be displayed. Leave all the defaults. Checking the Scale Display to Real Size box
will show the virtual device at the size of the real device. However, this can be hard to use
during initial development. Checking the Wipe User Data box will wipe out any data created in
a previous session. It is useful to leave the data intact so that you will not have to reenter data
every time you want to test some aspect of the app.

 Note

 I like to start my development with one of the smaller devices because I find it easier to scale
up when developing the user interface than to scale down. Also, I like to pick a lower API for
the device for similar reasons. Later, you can create different AVDs to test different device
configurations.

 Click Launch. The Start Android Emulator window will display and start loading the AVD.
When it is done, the virtual device displays (Figure 3.5) and begins further loading. The speed
at which the device loads depends greatly on your computer. At times it can be quite slow. If I
am testing with the emulator, my first task when beginning any development session is to start
the virtual device so that it is ready when I am. After the AVD is displayed, you can close the
Start Android Emulator and AVD Manager windows. The AVD will remain running.

 Figure 3.5 Android Emulator at initial launch.

97803e21947864_Book 1.indb 4197803e21947864_Book 1.indb 41 11/21/13 2:56 PM11/21/13 2:56 PM

42 Chapter 3 Using Eclipse for Android Development

 Setting Up Run Configurations

 The final step in setting up the test environment is to tell our app to use this newly created
AVD. To do this you need to set up a Run Configurations.

 1. From the main menu select Run > Run Configurations. The Run Configurations window
is displayed.

 2. Click Android Application in the left side of the screen. Then click the New button,
which is the leftmost button above the text box that says Type Filter Text. The window
changes, showing configuration options. Change the name to HelloWorldRunConfig.

 3. Use the Browse button to select your HelloWorld project. Click the Launch Default
Activity option button.

 4. Click the Target tab. Click the box next to MyTestDevice. When you start testing on
a real device, you will need to click the option button next to Always Prompt to Pick
Device. This displays a device selection window where you can pick the device you want
to test on.

 5. Click the Apply button and then the Close button. You are ready to begin coding
your app!

 Coding the Interface

 As mentioned earlier, the interface for any Android app is created through the use of a layout
file. A layout file is an XML file that contains the XML used to create the objects and controls
that the user can interact with. The first step in coding the HelloWorld app is to modify the
layout so that it has some controls that the user can interact with. Your modifications will
be simple. You will make the app take a name entered by the user and display Hello [entered
name] after a button click.

 Double-click the activity_hello_world.xml file in the layout folder of the Package Explorer to
begin work coding the interface. If it is already open in the editor, click the activity_hello_
world.xml tab at the top of the editor (Figure 3.6 , #1). If the Graphical Layout is displayed,
click the activity_hello_world.xml tab at the bottom of the editor (Figure 3.6 , #2). The XML
code that creates the user interface is displayed with two elements in it. The root element is a
RelativeLayout. Because Android devices have so many screen sizes and resolutions, it is often
best to design the UI components as relative to one another rather than designing them as a
fixed position. Because the RelativeLayout is the root, it encompasses the whole screen. You
must have only one layout root in an Android layout file. All other items are children of this
root element.

 Examine the attributes of the RelativeLayout element (Listing 3.2). A closer look at the attri-
butes reveals a certain structure. Attributes have the format library:attribute name =
"attribute value" . First, all the attributes in the listing start with android: This indicates
that the attribute is associated with Android SDK library and that is where the compiler should
look for information on what to do. Other libraries are available from third parties. Adding

97803e21947864_Book 1.indb 4297803e21947864_Book 1.indb 42 11/21/13 2:56 PM11/21/13 2:56 PM

43Coding the Interface

other libraries will be covered later in this text. The attribute name and values differ based on
the element to which they are applied.

 Figure 3.6 Editor and layout tabs.

 Listing 3.2 Layout XML

 <RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 xmlns:tools ="http://schemas.android.com/tools"
 //1
 android:layout_width ="match_parent"
 android:layout_height ="match_parent"
 //2
 android:paddingBottom ="@dimen/activity_vertical_margin"
 android:paddingLeft ="@dimen/activity_horizontal_margin"
 android:paddingRight ="@dimen/activity_horizontal_margin"
 android:paddingTop ="@dimen/activity_vertical_margin"
 tools:context =".MainActivity" >
 //3
 <TextView
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:text ="@string/hello_world" />

 </ RelativeLayout >

97803e21947864_Book 1.indb 4397803e21947864_Book 1.indb 43 11/21/13 2:56 PM11/21/13 2:56 PM

44 Chapter 3 Using Eclipse for Android Development

 1. The first attributes of interest in the RelativeLayout are android:layout_
width="match_parent" and android:layout_height="match_parent" . These
attributes define the size of the element. In this case the value "match_parent" indicates
that the layout should be the height and width of the device screen. If a child element of
RelativeLayout has this value for either layout_height or layout_width, it will fill up
as much of the RelativeLayout as it can.

 2. The next few attributes: paddingRight , paddingLeft , paddingBottom , and
 paddingTop , all tell Android that it should not fill the entire screen with the
RelativeLayout. Instead, there should be blank space between the edge of the screen and
the edge of the layout. The amount of space is dictated by the value. The values in these
attributes are your first introduction to the use of the XML files in the values folder. To
refer to values from these XML files, Android also has a specific structure. That structure
is "@xml_file_name/value_name" . All values are enclosed in quotation marks. The
value for the attribute android:paddingBottom is "@dimen/activity_vertical_
margin" . This tells Android it should use the value named activity_vertical_margin
from the dimens.xml file. Double-click the dimens.xml file in the values folder in the
Package Explorer. The file will open to the Resources tab. Click the dimens.xml tab at the
bottom of the editor. This displays the XML used to define the dimensions. The <dimen>
tag is used to define each dimension. Each dimension has a name attribute, a value, and
then a closing tag that looks like this: </dimen> . The value between the beginning tag
and the closing tag is the value that Android uses as the size of the padding.

 Valid dimensions for Android include px (pixels), in (inches), mm (millimeters), pt
(points), dp / dip (density-independent pixels), and sp (scale-independent pixels). It
is generally recommended that dp be used for most dimensions and sp be used for
specifying font sizes. These two units of measure are relative to screen density. They
help keep your UI consistent among different devices. The reason that the sp unit is
recommended for fonts is because it also scales to the user’s preference in font size.

 3. The only child element of the RelativeLayout, and thus the only item on the screen, is
a TextView. TextView is Android’s version of a label. It is primarily used to display text.
This element currently has only three attributes. The two size attributes differ from the
RelativeLayout in that they have the value "wrap_content" . This tells Android to size
the TextView to the size of the text displayed in it. The only other attribute tells Android
what text to display. In this case it gets the text from the strings.xml file in the values
folder. Open the strings.xml file and examine the XML to find the “hello_world” item.
Note that its value is “Hello World!”, exactly what is displayed in the running app and
on the Graphical Layout view of the activity_hello_world.xml file. The TextView does
not have any attributes describing its positioning, so Android puts it in the first available
position, which is the very top-left position in the RelativeLayout.

 Switch back to the Graphical Layout view of the activity_hello_world.xml file. At the left of
the layout is a panel titled Palette. Palette contains a set of folders with different components
(called widgets) that can be used to design a user interface. If it is not open, click on the Form
Widgets folder in the Palette. Form Widgets contains a set of widgets for designing the user

97803e21947864_Book 1.indb 4497803e21947864_Book 1.indb 44 11/21/13 2:56 PM11/21/13 2:56 PM

45Coding the Interface

interaction with your app. Hover your mouse over each of the icons to see what type of control
the widget implements. Notice that some controls have multiple versions that enable you to
pick the size that you want for your interface.

 A TextView that displays “Hello World” is already on the layout. This is used to display your
app’s message. However, the size of the text needs to be bigger. To the right of the editor
should be a panel with a tab with the label Outline (Figure 3.7). If this is not present, click
Window > Show View > Outline to display it. The top of the tab should show the structure
of the layout. It should have RelativeLayout as its root and textView1 indented below it. The
TextView should be displaying “Hello World” after it. As widgets are added to the layout, they
are displayed in the structure. This is very useful because sometimes controls are added to the
layout that get lost (not visible) in the Graphical Layout. However, if they are in the layout
they will be displayed in the structure.

 Figure 3.7 Layout Outline and Properties panels.

 Below the structure is the Properties window. If you haven’t clicked anything in the Graphical
Layout, that window will be displaying <No Properties>. Click “Hello World” in the Graphical
Layout. The Properties window should populate with all the attributes that can be set for
a TextView widget. Locate and click the ... button next to the bold attribute Text Size. The
Resource Chooser window is displayed. Two dimensions created when the project was created
are listed (the padding margins). Click the New Dimension button at the bottom of the
Resource Chooser. In the window that opens, enter message_text_size as the dimension name
and 24sp as the value. Click OK until you have closed these two windows. The size of Hello
World! should be increased. Open the dimen.xml file and switch to the XML view to see the

97803e21947864_Book 1.indb 4597803e21947864_Book 1.indb 45 11/21/13 2:56 PM11/21/13 2:56 PM

46 Chapter 3 Using Eclipse for Android Development

dimension you created. Close this file and click back to the activity_hello_world.xml tab.
Switch from Graphical Layout to the XML view and examine the XML changes to the TextView
element. Switch back to the Graphical Layout.

 Note

 The values files are used to hold values that are going to be reused in your app. Unfortunately,
the only way to know what values are available is to open the file and inspect its contents
for the value you’d like to use. We recommend that when you add values, you name them
very clearly and limit the number of values you use to keep it somewhat manageable. Naming
clearly is very important because Eclipse’s code completion capability will list the value names
but not their actual value.

 Locate the Small TextView widget just below the Form Widgets folder label. Click and drag it to
the layout, position it as in Figure 3.8 , and drop it. Notice the green arrows pointing to the left
side of the layout and to the Hello World! TextView. These arrows show what object the widget
is relative to for positioning purposes. Click the XML view (Listing 3.3). A number of changes
have been made to the XML.

 Listing 3.3 Layout XML with TextView Added

 <RelativeLayout xmlns:android ="http://schemas.android.com/apk/res/android"
 xmlns:tools ="http://schemas.android.com/tools"
 android:layout_width ="match_parent"
 android:layout_height ="match_parent"
 android:paddingBottom ="@dimen/activity_vertical_margin"
 android:paddingLeft ="@dimen/activity_horizontal_margin"
 android:paddingRight ="@dimen/activity_horizontal_margin"
 android:paddingTop ="@dimen/activity_vertical_margin"
 tools:context =".HelloWorldActivity" >

 <TextView
 //1
 android:id ="@+id/textView2"
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:text ="@string/hello_world"
 android:textSize ="@dimen/message_text_size" />

 <TextView
 android:id ="@+id/textView1" //2
 android:layout_width ="wrap_content"
 android:layout_height ="wrap_content"
 android:layout_alignLeft ="@+id/textView2" //3
 android:layout_below ="@+id/textView2"

97803e21947864_Book 1.indb 4697803e21947864_Book 1.indb 46 11/21/13 2:56 PM11/21/13 2:56 PM

47Coding the Interface

 android:layout_marginLeft ="19dp" //4
 android:layout_marginTop ="36dp"
 android:text ="Name:" //5
 android:textAppearance ="?android:attr/textAppearanceSmall" /> //6

 </ RelativeLayout >

 1. The Hello World! TextView now has an attribute android:id="@+id/textView2" . To
correctly relatively position the new TextView, Android needed a way to reference it so
it added the ID. The +id tells Android to create the ID for the widget. IDs can be defined
in the ids.xml values file. However, to use these IDs for widgets, you need to define
them prior to use, and they cannot be reused. Using +id enables you to tell Android to
create an ID for the widget as you need it. textView2 is not a very useful ID. It does not
describe what the TextView is used for, so change the ID to textViewDisplay .

 2. The new TextView also has a +id . However, it is different from the first one. +id s may be
reused in different layouts but cannot be reused within the same layout! Next come the
widget size attributes. All items in a layout must contain these attributes.

 3. As the arrows on the Graphical Layout showed, this widget is positioned relative to
the Hello World! TextView. The layout attributes are the XML used to do the relative
positioning. alignLeft tells Android to align this widget’s left edge with the referenced
widget’s left edge. alignBelow tells Android to position the widget below the referenced
widget.

 4. The margin attributes layout_marginLeft and layout_marginTop tell Android how
much space to put between the widget and the referenced widget. Change the left
margin to 20dp and the top margin to 55dp. You will often have to tweak these values to
get the layout to look exactly the way you want it to.

 5. The android:text attribute indicates what text should be displayed. This attribute is
underlined with a yellow triangle on the left edge. This is a warning. Hover over or click
the yellow triangle. The warning is displayed. The value "Small Text" is a hard-coded
value. Android wants all values to be referenced from a value’s XML file. This is for ease
of maintenance. You can change a string value used multiple times just once in the
strings.xml file, and the changes will be made throughout your app. Also, by substituting
a different string’s.xml file, you can adapt your app to different languages more easily.
To simplify this example, leave the string hard-coded but change it to meet your needs.
Delete "Small Text" and replace it with "Name:".

 6. The final attribute in the new TextView is textAppearance . The value for this attribute
references the Android attr.xml file and is used in place of the textSize attribute. The
attr.xml file is a file supplied by the Android SDK. Switch back to the Graphical Layout
view. The TextView you added should now be displaying Name:.

97803e21947864_Book 1.indb 4797803e21947864_Book 1.indb 47 11/21/13 2:56 PM11/21/13 2:56 PM

48 Chapter 3 Using Eclipse for Android Development

 UI Design—Android Versus iOS

 UI design in Android is done through relative positioning of the controls that make up the inter-
face. However, in iPhone and iPad, absolute positioning is used. Absolute position holds the
control to a fixed position on the screen. The use of absolute position makes the design of
the UI easier. Unlike in Android, when you move a control it has no effect on other controls in
the UI. Often in Android, moving one control changes the whole design. This can be frustrating!
When moving or deleting a control in an Android layout, especially if you do this in the XML, be
sure to check the impact of the change in the Graphical Layout.

 Interface design is not without its challenges in iOS. Devices that run iOS have a fixed screen
size, which is controlled by Apple. This enables the use of absolute positioning because all
device screen sizes are known by the developer. However, this means that the UI has to be cre-
ated multiple times for each device that you want your app to run on. These different screens
all run on the same code, so during design, the developer must be sure to be perfectly consis-
tent among the different screens needed.

 Figure 3.8 A Small TextView positioned properly on a Graphical Layout.

97803e21947864_Book 1.indb 4897803e21947864_Book 1.indb 48 11/21/13 2:56 PM11/21/13 2:56 PM

49Coding the Interface

 Locate and click the Text Fields folder in the Palette. A number of widgets for entering infor-
mation are displayed. The widget for entering data in Android is called an EditText. Each of
the EditText widgets listed is configured for the entry of a different type of data. The different
configurations dictate what soft keyboard is displayed when the widget is clicked and, in some
cases, how the text is formatted as it is entered. For example, the EditText with the number 42
in it will display a keyboard with only numbers on it, whereas the EditText with Firstname
Lastname in it will display an alpha character keyboard and it will capitalize each word
entered. Drag the Firstname Lastname EditText to the right of the Name: TextView. As you are
dragging it, pay attention to the green arrows. You want this relative to the Name: TextView,
so there should be only one arrow, and it should point at the TextView. A dotted green line
should go from the bottom of the TextView through the EditText. This aligns the EditText with
the bottom of the TextView.

 Click the Form Widgets folder and drag a Small Button below the EditText. In this case you
want the green arrow pointing to the EditText and the dotted green line going through the
middle of the bottom, from the top of the screen to the bottom, to center it horizontally in the
RelativeLayout.

 Note

 Although Eclipse is a very powerful and useful tool in Android development, the need to make
all items in the UI relative makes designing a layout difficult. We recommend that you use the
Graphical Layout to get the UI approximately correct and then fine-tune in the XML.

 Switch to the XML view for the layout. Locate the EditText element. Change the default
 id to "@+id/editTextName" so that we have some understanding what data that widget is
handling. Change the marginLeft attribute to "5dp" . There are two new attributes. The first
is android:ems . This attribute sets the displayed size of the layout to 10 ems. Ems is a size
measurement equal to the number of capital Ms that would fit into the control. The second
new attribute is android:inputType . This attribute tells Android how you want text handled
as it’s entered and the type of keyboard to display when the user is entering data.

 Locate the Button element. Change the default id to "@+id/buttonDisplay" . There is also a
new attribute in this element: layout_centerHorizontal . This attribute is set to true to tell
Android to center the widget in the parent. Finally, change the text attribute to "Display" .
Change the value in the layout_below attribute to @+id/editTextName to match the change
you made in the EditText element. Switch to the Graphical Layout to see the changes.

 Run the app in the emulator using Run > Run Configurations > HelloWorldRunConfig and
click the Run button to see the layout as it would appear running (Figure 3.9). The first time
you run the emulator, you will have to slide the lock to unlock the device (like a real phone).
Note that the emulator might be behind Eclipse, so you will have to minimize windows or in
some other way bring it to the foreground. The button clicks but does not do anything. For this
you need to write code.

97803e21947864_Book 1.indb 4997803e21947864_Book 1.indb 49 11/21/13 2:56 PM11/21/13 2:56 PM

50 Chapter 3 Using Eclipse for Android Development

 Figure 3.9 Initial run of Hello World.

 Note

 Either close the activity_hello_world.xml file or switch to the XML view after you are done editing
it. The reason is that if you close Eclipse with the layout file open in Graphical mode, Eclipse
will take a long time opening the project the next time you want to work on it.

 Coding App Behavior

 Code to give behavior to the layout is written and stored in the Java class file associated with
the layout. Open the HelloWorldActivity.java file by double-clicking it. If it is already open,
click its tab in the editor. You should see the basic code structure (Listing 3.4).

 Listing 3.4 Initial Activity Code

 //1
 package com.example.helloworld;
 //2
 import android.os.Bundle;
 import android.app.Activity;
 import android.view.Menu;
 //3

97803e21947864_Book 1.indb 5097803e21947864_Book 1.indb 50 11/21/13 2:56 PM11/21/13 2:56 PM

51Coding App Behavior

 public class HelloWorldActivity extends Activity {

 @Override
 //4
 protected void onCreate(Bundle savedInstanceState) {
 super .onCreate(savedInstanceState);
 setContentView(R.layout. activi ty_hello_world);
 }

 @Override
 //5
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu. main , menu);
 return true ;
 }
 }

 This code was generated by Eclipse when you created the activity at the start of the HelloWorld
project. It is important to understand what this code does to properly code an activity.

 1. At the top of the file is the keyword “package” followed by com.example.helloworld .
This identifies this class as belonging to the Hello World package. All source Java files (in
src folder) will have this entry as the first code in the file.

 2. After the package line and before any other code are the imports. Click the plus (+) sign
in front of the import android.os.Bundle; line of code. You should now see three
import lines. This code is used to get the source code needed for your activity. The
Activity class provides the functionality required for any class that uses or interacts with
other Activities used in this class. The Menu class provides the functionality for the menu
that is displayed when the user presses the device’s Menu button. The Bundle import
requires a bit more explanation.

 A Bundle is an object for passing data between activities. In this way we can have an
application that can perform some activity based on what another activity has done or
the data it has used. You will use this functionality later in the book. However, Bundle
also performs another very important function. It passes data back to the activity itself.
When the user rotates the device, the displayed activity is destroyed and re-created in the
new orientation. So that the user doesn’t have to start over if this happens, the activity
stores its current state just before it is destroyed in a bundle and passes that data to itself
when it re-creates the activity in the new orientation.

 3. The public class line of code begins the Activity class and declares that this class
is referred to as HelloWorldActivity and that it is a subclass of the SDK-provided
Activity class. Within the class are two methods, onCreate and onCreateOptionsMenu .

97803e21947864_Book 1.indb 5197803e21947864_Book 1.indb 51 11/21/13 2:56 PM11/21/13 2:56 PM

52 Chapter 3 Using Eclipse for Android Development

Before each method declaration is @Overide . This annotation tells the compiler that the
following method is to be used in place of the super class’s method of the same name.

 4. The onCreate method is the first method executed by the Activity when it is started.
The method has a parameter that is of type Bundle named savedInstanceState . This
is the object that contains information on the state of the Activity if it was destroyed in
an orientation change as explained earlier. The next line super.onCreate calls the super
class’s onCreate method. Because this method is overriding the Activity class’s inherited
 onCreate method, it must call that method explicitly to use that functionality to create
the Activity. It is passed the savedInstanceState bundle. The final line of code is
 setContentView(R.layout. activity_hello_world) . This code tells the activity to
use the activity_hello_world.xml file as the layout to be displayed when the activity is
running. It is very important to understand the parameter R.layout. activity_hello_
world . The R parameter tells the compiler that we want to use a resource from the layout
folder named activity_hello_world . Whenever we want to access or manipulate a
resource, it has to be referred to in this manner. However, this does not refer directly to
the res folders; instead it refers to a file generated by the compiler that is named R.java.
To see this file, double-click into the gen folder in the Package Explorer until you see it.
You should not edit this file because it is automatically generated by the compiler. The
 onCreate method will be modified with our code to add further functionality to the
activity.

 5. The onCreateOptionsMenu(Menu menu) method is called when the user clicks the
device’s Menu button. It returns a Boolean (true or false) value indicating whether the
menu was successfully created. The first line of code (getMenuInflator()) gets an object
that can create a menu from the running activity. It then tells it to inflate (create) a
visual representation of the menu based on the main.xml file in the menu resource folder
and refer to it with the name “menu”.

 Adding Code

 Our app has only one function, to display the name entered into the EditText when the
Display button is pressed. Enter the code in Listing 3.5 before the last curly bracket in the activ-
ity Java file:

 Listing 3.5 Display Button Code

 //1
 private void initDisplayButton() {
 Button displayButton = (Button) findViewById(R.id. buttonDisplay); //2
 displayButton.setOnClickListener(new OnClickListener () { //3

 @Override
 public void onClick(View arg0) {

97803e21947864_Book 1.indb 5297803e21947864_Book 1.indb 52 11/21/13 2:56 PM11/21/13 2:56 PM

53Coding App Behavior

 EditText editName = (EditText) findViewById(R.id. editTextName); //4
 TextView textDisplay = (TextView) findViewById(R.id. textViewDisplay); //5
 String nameToDisplay = editName.getText().toString(); //6
 textDisplay.setText("Hello " + nameToDisplay); //7
 }
 });
 }

 This code does the work and illustrates a number of important concepts in Android
development.

 1. This line declares a new method in the HelloWorldActivity class. The method is only
useable by this class (private) and does not return any value (void). The method
signature is initDisplayButton() . The signature, or name, of the method is completely
up to you. However, you should name it to give some idea what it does.

 2. Associate the code with the button on the layout. This line of code declares a variable
of type Button that can hold a reference to a button and then gets the button reference
using the command findViewById . All widgets on a layout are subclasses of the View
class. The method findViewById is used to get a reference to a widget on a layout so
it can be used by the code. The method can return any View object, so you have to use
 (Button) before it to cast the returned View to a Button type before it can be used as a
 Button by the code. Button is underlined in red after you type it in. This is because the
code for the button class is not automatically available in the class. You have to import
it. Fortunately, this is easy. Hover your cursor over the underlined word and a menu will
pop up. Select Import Button... Do this for any other items underlined in red.

 3. Set the button’s listener. There are a number of different listeners for widgets, which gives
great flexibility when coding app behavior. For this button we use an onClickListener .
The code creates a new instance of the listener and then adds a method (public void
onClick(View arg0)) to be executed when the button is clicked.

 4–5. The code for when the button is clicked gets references to the EditText where the name
was entered and the TextView where the message will be displayed.

 6. The name entered by the user is retrieved from the EditText and stored in a String
variable named nameToDisplay .

 7. The text attribute of the TextView is changed to the value of the String variable.

 Notice that initDisplayButton() is underlined in yellow. This is because the method is never
called by the code. To call it and get the behavior associated with the button to execute, you
have to call the method in the onCreate method. After the setContentView line of code enter

 initDisplayButton();

 The yellow underline goes away and your code is done! Run the app in the emulator using Run
> Run Configurations, and click the Run button to test your first app. You could also run your
app using Run > Run or by pressing Ctrl+F11.

97803e21947864_Book 1.indb 5397803e21947864_Book 1.indb 53 11/21/13 2:56 PM11/21/13 2:56 PM

54 Chapter 3 Using Eclipse for Android Development

 Connecting Code to UI—Android Versus iOS

 In both Android and iOS (iPhone and iPad), the user interface (UI) and the code that makes
the UI work are stored in different files. This means that both types of app coding require that
the code has to be linked to the UI in some way. The chapters in this book that cover iOS
explain the process of “wiring up” an interface using the features of the Xcode IDE. However, in
Android, connecting the UI to the code is done entirely in the code itself.

 Whenever some code needs to use a widget on a layout, it has to get a reference to it
using the findViewById command. This requires extra coding but provides great flexibility.
Forgetting to connect the code to the UI widget needed in both operating systems will result in
a runtime error.

 Summary

 Congratulations! You have built your first app. You created an Android project, designed and
coded a user interface, and, finally, made the app do something. Along the way you learned the
process of Android App development, the Eclipse development environment, and the compo-
nents of an Android app.

 Exercises

 1. Change the Hello World app to allow the entering of a first and a last name and display
“Hello firstname lastname !” when the button is clicked. Be sure to label the EditText s to
reflect the new data that is to be input.

 2. Add a Clear button. The Clear button should remove any data in the EditText (s) and
change the display back to “Hello world!”

 3. Create a new Android Virtual Device that uses a bigger device to test your app on a
different screen size. Run the app using the new AVD.

97803e21947864_Book 1.indb 5497803e21947864_Book 1.indb 54 11/21/13 2:56 PM11/21/13 2:56 PM

97803e21947864_Book 1.indb 19297803e21947864_Book 1.indb 192 11/21/13 2:56 PM11/21/13 2:56 PM

 9
 Using Xcode for iOS

Development

 This part of the book covers how to create iOS apps. You learn to use the powerful Xcode development
environment. If you need to get this installed on your computer, refer to Appendix B , “Installing Xcode
and Registering Physical Devices,” before continuing. In this first chapter, you learn to build a simple
but complete iOS app—a variation on the traditional “Hello World” app—and run it on the simulator.

 Creating the Xcode Project

 You’re no doubt eager to get started creating your first iOS app, so jump right in and launch
Xcode. You should find it in the Applications folder on your Mac. After Xcode starts, you
should see the screen shown in Figure 9.1 . Select the Create a New Xcode Project option.

 Next, you’re given a number of options for creating projects based on various templates, as
shown in Figure 9.2 . You’ll notice in the left sidebar of the window that you can create projects
for both iOS and OS X. Our focus here is on iOS applications, so choose that entry. You will
see several templates that will make creating a new app simpler. For our first app, choose Single
View Application, and click Next.

97803e21947864_Book 1.indb 19397803e21947864_Book 1.indb 193 11/21/13 2:56 PM11/21/13 2:56 PM

194 Chapter 9 Using Xcode for iOS Development

 Figure 9.2 Choose the Single View template for the first project.

 Figure 9.1 Xcode’s Welcome screen.

97803e21947864_Book 1.indb 19497803e21947864_Book 1.indb 194 11/21/13 2:56 PM11/21/13 2:56 PM

195Creating the Xcode Project

 On the next screen (shown in Figure 9.3), you choose a name for your app. Type “Hello
World!” The next fields are not all that important for sample projects like this, but for real
projects, you should add your company’s name, identifier (reverse web address), and class
prefix. The class prefix is at least three capital letters that are prepended to any class you create
to distinguish them from library classes. Apple has reserved two-letter prefixes for use with
the frameworks that come with the platform, so you will see these in classes like NSArray,
CLLocation, and UIButton. Although you don’t have to use prefixes or stay with three-letter
prefixes, it is a best practice that you should follow. I typically use my initials or initials of the
organization. Throughout this book, we use the initials LMA (for Learning Mobile Apps). You
can choose your own abbreviation, but it will be easier to follow the code examples if you use
LMA. On this screen you can also choose which device to target (iPhone, iPad, or Universal).
Universal creates a single app but with a different user interface for iPhone and iPad, enabling
the same app to be installed on both devices.

 Figure 9.3 Choosing options for the iOS project.

 Then click Next, and you will have to choose a location to save your project. You can navigate
to an appropriate place on the disk to create the project files. Click Create.

 Xcode Project Folder

 The Xcode project is created in a folder and consists of a file with the extension .xcodeproj and
a number of other files and folders. You can easily move the entire project between computers
by copying the directory that contains the .xcodeproj file and any subfolders as well. We have

97803e21947864_Book 1.indb 19597803e21947864_Book 1.indb 195 11/21/13 2:56 PM11/21/13 2:56 PM

196 Chapter 9 Using Xcode for iOS Development

found that when we work on our regular computers (office, home, and so on), using Google
Drive or Dropbox works well to keep all the files of a project in sync. But we often find our-
selves compressing the project folder and emailing or copying to a thumb drive to make sure
we have a good copy of the project. To reopen a project that has been moved, you can double-
click the .xcodeproj file. You also have the option of using version control systems by taking
advantage of Xcode’s built-in support of Git.

 After creating the project, you’re now looking at the main Xcode workspace window. Figure 9.4
shows an overview of the Xcode workspace.

Navigation Selector Bar

Debug AreaDebug Area

Utility AreaUtility Area

Filter Bar Debug Bar Library Selector Bar

Inspector
Pane

Inspector Selector BarJump BarsToolbar

Library
Pane

Navigator AreaNavigator Area

Editor AreaEditor Area

 Figure 9.4 Overview of the Xcode workspace.

 Xcode is a very powerful development environment with a lot of functionality. If you decide to
do any serious development for iOS, you should take some time to figure out how everything
works. You can find a detailed description of the Xcode workspace in the documentation (Help
> Xcode Overview). We won’t go into a lot of detail now, but you will discover some of the
Xcode functionality as you need it. However, if you take some time to look through the docu-
mentation, you will likely save a lot of time later on.

 Project Settings

 After you’ve created the Hello World project, you should see the view of Xcode as shown in
 Figure 9.5 . In the center of the workspace is a summary of the app and several appwide settings.
The first section enables you to specify the version and build for the app. The version is used

97803e21947864_Book 1.indb 19697803e21947864_Book 1.indb 196 11/21/13 2:56 PM11/21/13 2:56 PM

197Creating the Xcode Project

when the app is published to the App Store. Anytime an app with a higher version number
is published, all your users will be prompted to download a new version. The build number
is for internal use by the developer. You can choose which device types to target, as well as
which version of iOS you want to target. As of this writing, the current version of iOS is 7.0.
This setting determines the minimum version of iOS your users have to be running in order to
run your app. This is just a signal within the app store. Apps are typically built using the latest
available base SDK, so if you use features in a later SDK than your deployment target, you will
need to insert checks in your code to make sure your app doesn’t crash on devices with older
versions of iOS.

 Figure 9.5 Overview of the Xcode workspace with our newly created Hello World app.

 This is also where you can specify which device orientations are supported. By default, iPhone
apps support Portrait and Landscape Left and Right but not Upside Down (iPad default is to
support all four orientations).

 On the left, in the navigation area, you can see the files that Xcode created for you. Figure 9.6
shows what it should look like. The exact number and types of files created depends on which
choices you made when creating the project. Here’s an overview of some of the files and folders
created in this project:

 ■ AppDelegate.h and AppDelegate.m—The App Delegate files manage issues related to the
entire app and are primarily used to manage the life cycle of the app—how it is started,
what happens when it goes to the background, and so on. This life cycle is covered in
more detail in Chapter 2 , “App Design Issues and Considerations,” and in Chapter 11 ,

97803e21947864_Book 1.indb 19797803e21947864_Book 1.indb 197 11/21/13 2:56 PM11/21/13 2:56 PM

198 Chapter 9 Using Xcode for iOS Development

“Persistent Data in iOS.” Objective-C programs follow the C-style and have both a header
(.h) and method (.m) file. See Appendix C , “Introduction to Objective-C” for more detail.

 Figure 9.6 Contents of the Hello World project.

 ■ Main.storyboard—The storyboard is used to design the interaction between multiple
screens in your app as well as designing the layout of the individual screens.

 ■ ViewController.h and ViewController.m—The view controller contains the code that
controls the user interactions with the app. Most of the programming we do in this book
will be in these files.

 ■ Images.xcassets—This folder contains all the images, including icons, needed for
your app.

 ■ Supporting Files—This directory contains a number of files that the app may or may not
use. Here’s a description of a few of them:

 ■ Hello World!-Info.plist—This file contains a few app-specific settings. Most of these
are controlled in other parts of Xcode.

 ■ main.m—The file that is responsible for launching the app.

 ■ Hello World! Tests—Xcode comes with a built-in Unit Test framework, which you can
use to create automated testing frameworks to ensure you deliver quality code. We
recommend using Unit Tests on all production projects, but here the focus is on learning
how to create iOS apps, so we don’t have room to also cover unit testing. You can read
more about this framework in Test-Driven iOS Development by Graham Lee.

97803e21947864_Book 1.indb 19897803e21947864_Book 1.indb 198 11/21/13 2:56 PM11/21/13 2:56 PM

199Creating the Xcode Project

 ■ Frameworks—These are various libraries that you can include in your project to add
functionality to your app, such as maps or audio capabilities. The default ones that
are already included are UIKit , which is responsible for all the user interface controls,
 Foundation , which has a lot of the core functionality needed in any program, such as
object-oriented data types, and CoreGraphics , which handles low-level graphical tasks and
is used by UIKit.

 ■ Products—This is your compiled app file.

 Creating the User Interface

 To open a file for editing in Xcode, you need to click it only once. Double-clicking will open it
in a separate window. Click once on the Main.storyboard file. This opens the file in Interface
Builder (see Figure 9.7), where you can easily create the user interface for your app. With the
storyboard open, you can drag user interface elements from the utility pane on the bottom
right and control a range of settings on the top of the utility pane.

 Figure 9.7 Interface Builder.

 In the lower right of the utility area, you should see the Object Library, which contains all the
user interface elements you can use in your app. If you don’t see the Object Library, click the
cube-shaped icon highlighted in Figure 9.7 .

97803e21947864_Book 1.indb 19997803e21947864_Book 1.indb 199 11/21/13 2:56 PM11/21/13 2:56 PM

200 Chapter 9 Using Xcode for iOS Development

 Start by dragging a label onto the user interface canvas (see Figure 9.8). You may have to scroll
down the list of controls to find the label. You can also use the Search bar below the controls
and type in label . Notice that you get blue dotted guidelines as you drag the label around.
Drag it to the middle left of the screen and let go when both guidelines appear. Double-click
the label to change the text of it to “Hello World!” and then press Enter. Expand the label by
clicking the right side of it and dragging it to the right side until the blue dotted guidelines
appear. Above the utility area on the right, you have a little menu bar of five items. The fourth
one from the right should be selected. This is the Attributes Inspector, which enables you to set
many properties for the currently selected user interface element. For the label, you can change
its appearance quite a bit. Feel free to play around, but you just need to center the text of
the label.

 Figure 9.8 Dragging a label onto the canvas and using guidelines for placement.

 Running the App in the Simulator

 Launching the app in the built-in simulator that comes with Xcode is quite simple. In the
top-right corner of Xcode, you will see a big Run button, and next to that, something called
a Scheme, which enables choosing which device is targeted (see Figure 9.9). Click the right
side of the scheme and choose the iPhone simulator. If you have a registered physical device
connected to your computer, it will also show up in this list. See Appendix B for how to register
physical devices to run your apps.

97803e21947864_Book 1.indb 20097803e21947864_Book 1.indb 200 11/21/13 2:56 PM11/21/13 2:56 PM

201Creating the Xcode Project

 Figure 9.9 Choosing the iPhone simulator to run the app.

 Click the Run button on the top left of the Xcode toolbar and wait a few seconds for the simu-
lator to launch with your app (see Figure 9.10). You can control how the simulator looks and
behaves in the Hardware menu. If you choose a device with a high-resolution screen, it may
not fit on your computer screen comfortably. In that case, you can go to Window > Scale and
choose a zoom level.

 Figure 9.10 iOS simulator with the Hello World! App.

97803e21947864_Book 1.indb 20197803e21947864_Book 1.indb 201 11/21/13 2:56 PM11/21/13 2:56 PM

202 Chapter 9 Using Xcode for iOS Development

 Adding App Behavior

 Switch back to Xcode. Next, you’ll see how to add some real functionality to your app. First,
you’ll need to set up the user interface, so make sure the storyboard is open. Then double-click
the Hello World label and change it to Please enter your name. Drag a Text Field (scroll or
search for it in the Object Library) onto the canvas and place it below the label. Then drag a
button below the text field. Double-click the button and change its text to Tap Here! Finally,
add a label below the button. Make the label as wide as the width of the screen, delete its text,
and specify its content to be centered and blue.

 Select the text field and look in the Attributes Inspector at some of the settings available.
Change the Capitalization to Words, and then look at the Keyboards option. You can specify
a keyboard that will show up on screen that is suited to the kind of data being input (for
instance, if you need to have the user input only numbers, you can specify a Number Pad. This
would be a good time to try out the different keyboards. You need to run the simulator to test
the effect each time you choose a different one. Before moving on, make sure the keyboard is
set to Default. Figure 9.11 shows the completed UI in both the Interface Designer and the iOS
simulator with the default keyboard activated.

 Figure 9.11 Completed UI in Interface Designer and the iOS simulator.

97803e21947864_Book 1.indb 20297803e21947864_Book 1.indb 202 11/21/13 2:56 PM11/21/13 2:56 PM

203Creating the Xcode Project

 Having created the user interface, your next task is to add some action to the app. The action
you want is to have the app take the name entered and say Hello to the user by name.

 To do this, return to Xcode and click Stop to quit the simulator. Then make sure the storyboard
is open. Next, click the Show Assistant Editor button in the top-right corner of the Xcode
window (it’s the second button from the left; see Figure 9.12).

 Figure 9.12 Creating an outlet for a user interface element.

 This opens an extra editor that by default contains the file that best matches what is displayed
in the main window. For this user interface screen, this is the header file for the view control-
ler (LMAViewController.h). We will need to create what’s called outlets for those user interface
elements we want to be able to access from the code. This includes the two text fields, where
we need to be able to read the text the user entered and the bottom label that will be updated
to contain our own text string based on the two text fields. To create the outlets, hold down
the Control key, click the text field, and drag to the view controller between the @interface
and @end entries. Then let go, and you should see the situation as shown in Figure 9.13 .

 Figure 9.13 Creating an outlet for a user interface element.

 Enter txtName in the Name field and click Connect. You should now have this line of code in
LMAViewController:

 @property (weak, nonatomic) IBOutlet UITextField *txtName;

 For more detail on what this code means, you can look in Appendix C . For now, all you need
to know is that this has provided a name for the text field that we can reference in our code by
adding an underscore in front of the property name. Do the same for the bottom label, naming
it lblOutput . Next, you’ll add the code for the button. Switch back to the storyboard. The first
step is the same: control-drag from the button to the view controller below the properties for
the text fields and label. However, this time, in the top drop-down choose Action instead of
Outlet (See Figure 9.14). Give it the name showOutput . For the Event, we will use the default
Touch Up Inside, but take a moment and look through the list of all the possible events that

97803e21947864_Book 1.indb 20397803e21947864_Book 1.indb 203 11/21/13 2:56 PM11/21/13 2:56 PM

204 Chapter 9 Using Xcode for iOS Development

this button will respond to. Touch Up Inside means that the button responds to events where
users touched the button and then released their fingers while still inside the button. The
convention in iOS is that to cancel a touch, you would drag your finger outside the target and
then let go (try it on your own device to see how it works). Leave the Arguments as Sender .

 Figure 9.14 Creating the action for the button.

 Connecting Code to UI—iOS Versus Android

 In both Android and iOS, the user interface (UI) and the code that makes the UI work are stored
in different files. This means that both types of app coding require that the code has to link to
the UI in some way. In iOS, this is often referred to as “wiring up” the user interface. However,
in Android, connecting the UI to the code is done entirely in the code itself.

 If you’ve ever created a program with a UI on a different platform, you’re probably used to hav-
ing to provide variable names for all UI elements. In iOS and Android, we just provide names to
those UI elements we will need to access in code. So, the static label at the top of our UI isn’t
given a name. The same goes for the button, where we will need to intercept the event that
happens when the user taps the button.

 In Android, whenever some code needs a reference to a control, we use a special command
that will find it by its ID. This requires extra coding but provides great flexibility. Forgetting to
connect the code to the UI widget needed in either operating system will result in a runtime
error.

 Switch the LMAViewController.m file, and notice that you now have a method at the bottom
of the file called showOutput: . Between the curly braces of this method, enter the code shown
in Listing 9.1 .

 Listing 9.1 The showOutput : Method

 - (IBAction)showOutput:(UIButton *)sender {
 NSString *name = [_ txtName text];
 NSString *output = [NSString stringWithFormat :
 @"Hello %@!" , name];
 [_ lblOutput setText :output];
 }

97803e21947864_Book 1.indb 20497803e21947864_Book 1.indb 204 11/21/13 2:56 PM11/21/13 2:56 PM

205Dismissing the Keyboard

 A brief explanation: The first line is the method declaration (Appendix C has more detail on
how Objective-C methods are declared). The second line declares a string variable (NSString)
and assigns the value in the text field (_ txtName) by calling the text methods on the property.
Notice the use of the underscore to refer to the property. The third line declares an NSString
object that is initialized with a string that combines the string “Hello” with the name variable
followed by an exclamation mark. The last line calls the setText method on the label, passing
in the value of the output string. Run the app and test it by entering different names and
touching the Tap Here! button.

 UI Design—iOS Versus Android

 UI design in iOS is done through absolute positioning, where each UI item is held to a fixed
position on the screen. However, in Android, relative positioning is used. This enables creation
of UI designs that are independent of the physical screen of the device. This means that app
developers don’t have to worry (too much) about screen sizes of different devices. However,
relative positioning also means that the position of one control affects other controls. Often in
Android, moving one control changes the whole design.

 In iOS we need to provide a different UI layout for different screen sizes. If you want your app to
run on both iPad and iPhone, you have to create two separate storyboard files and correspond-
ing view controllers. These screens all run on the same code, so during design the developer
must be sure to be perfectly consistent between the different screens needed.

 Dismissing the Keyboard

 As you may have noticed, the keyboard doesn’t go away by itself when a text field loses focus.
To get the keyboard to disappear, you have to add a little code to the program. What you need
to do is change the View, which is the background of the app, so that it is able to respond to
a tap. When the view intercepts a tap, it will then send a message to the text field to resign
control. This makes the keyboard disappear. The first thing to do is set up the code to handle
the event and then tie the event to the code.

 In LMAViewController.h, add this line between the @interface line and the @end line to
define a new action method:

 - (IBAction)backgroundTap:(id)sender;

 In LMAViewController.m, add the code in Listing 9.2 to implement the method.

 Listing 9.2 The backgroundTap : Method

 -(IBAction)backgroundTap:(id)sender
 {
 [self . view endEditing : YES];

 }

97803e21947864_Book 1.indb 20597803e21947864_Book 1.indb 205 11/21/13 2:56 PM11/21/13 2:56 PM

206 Chapter 9 Using Xcode for iOS Development

 This code tells the View to end editing, which will cause the keyboard to disappear. Next, you
will have to specify how this code gets called. Select the storyboard file. Make sure the Dock
is in list mode. The Dock is the vertical bar between the left and center panes. To expand it to
list view, click the triangle in a rounded rectangle (this is already done in Figure 9.15). After
the Dock is in list mode, select the top-level View (see Figure 9.15). The View is the background
canvas that all the other controls sit on. First, you will need to change this to a Control, so it
can fire events. With the View selected, show the Identity Inspector in the far-right pane (you
can also press Option-Cmd-3 to open the Identity Inspector—and the other options in that
section can be accessed by just changing the number, so Option-Cmd-4 will open the Attributes
Inspector). Change the Class field to UIControl by simply typing over UIView (see Figure
 9.16). All controls that are capable of firing events are subclasses of UIControl , so by changing
the underlying class from UIView to UIControl we make the View capable of firing events.

 Figure 9.15 Xcode with the Dock in List View.

 Figure 9.16 Changing the View class to UIControl.

97803e21947864_Book 1.indb 20697803e21947864_Book 1.indb 206 11/21/13 2:56 PM11/21/13 2:56 PM

207Dismissing the Keyboard

 Select the Connections Inspector in the right pane (Option-Cmd-6). This shows all the possible
actions that can be taken for the current control and can be used to connect those actions to
methods in the code. Drag the circle by Touch Down to the View Controller in the Dock (see
 Figure 9.17). When you release it, select backgroundTap: . This will then call the background-
Tap: method every time the Touch Down event fires on the View.

 Note

 Touch Down means the event fires as soon as the user taps, in contrast to the Touch Up
Inside event that we used earlier, which fires only if the user releases the finger inside the
specified control.

 Figure 9.17 Connecting the Touch Down event for the View to File’s Owner.

 The View Controller object is the object that loads the current view controller (single screen
in an iOS app)—typically the UIViewController class itself. Connecting to View Controller
in this manner is the same as connecting to the methods in the code, so this is just a different
technique for achieving the same result. Click some of the other controls to view them in the
Connections Inspector and see how events are linked to methods (see Figure 9.18).

 Run the app and see how the keyboard disappears when you tap outside the text field.

 Note

 If you are developing iPad apps, this is not an issue, because the iPad keyboard has a key to
make it disappear, but this doesn’t exist in the iPhone keyboard.

97803e21947864_Book 1.indb 20797803e21947864_Book 1.indb 207 11/21/13 2:56 PM11/21/13 2:56 PM

208 Chapter 9 Using Xcode for iOS Development

 Quick Reference: Dismiss the Keyboard

 For future reference, here are the four steps needed to have the keyboard dismissed:

 1. Make the View a control, by changing its class from UIView to UIControl .

 2. Define the backgroundTap: action method in the .h file.

 3. Implement backgroundTap: in the .m file to end editing (Listing 9.2).

 4. Control-drag from Touch Down in Connections Inspector with Control (formerly View)
selected to View Controller in the expanded Dock. Choose the backgroundTap: method.

 App Icons and Launch Images

 The images.xcassets folder is called the Asset Catalog and was introduced with Xcode 5 as a way
to manage all the images needed for your app, including app icons and launch images.

 App Icons are graphical images that are used to indicate your app on the home screen of the
iOS device your app is running on. When you create the icon for your app, you should be
prepared to create it in a number of resolutions so that it looks great on different devices, and
for various uses within the app as well. The icon is used for three places:

 ■ On the home screen, to give the user an easily recognizable image of your app.

 ■ In Spotlight results when the user is searching on the device.

 ■ In the Settings app where the user can change various settings for your app.

 In each of these three places, the icon is supplied in different resolutions, and the resolutions
also differ between iPad and iPhone as well as between whether the device is a regular display
or a retina display. There can also be differences between whether your app is targeting iOS 7

 Figure 9.18 Connection Inspector after setting up the action to dismiss the keyboard.

97803e21947864_Book 1.indb 20897803e21947864_Book 1.indb 208 11/21/13 2:56 PM11/21/13 2:56 PM

209Dismissing the Keyboard

or earlier versions of iOS. In all, a Universal app targeting both iPhone and iPad and made
available for both iOS 6 and iOS 7 may have to have as many as 14 versions of the app icon.

 Fortunately, the asset catalog makes it relatively simple to find out what you need. Click the
images.xcassets folder and then AppIcon (Figure 9.19). On the right you see three spots for
icons. For this app, the icons will be supplied only for iOS 7 and iPhone. To determine the reso-
lution you need to supply, you look at the number in the last line under each spot (29pt, 40pt,
and 60pt). This is how many logical points the image takes up. However, if you look just below
each of these images, it says 2x, which means these images will be used on a retina display,
so the resolution has to be doubled because a retina display has twice as many pixels in each
direction as a regular display. This means that these three images have to be 58x58, 80x80, and
120x120 pixels, respectively.

 Figure 9.19 Asset catalog.

 To supply icons for other situations, you can right-click anywhere with a white background in
the asset catalog and select New App Icon. This will give you many more options, as shown in
 Figure 9.20 . The same principle applies, though. Use the pt number and multiply by the 1x or
2x number to get the resolution of the image.

 Test out the app icon resolutions by dragging the icons available into the appropriate spot. A
very simple icon is available in various resolutions. You can test how the icon looks by running
the app in the simulator and then clicking the Home button (Hardware > Home) to get to
the home screen where the app icon will be shown along with the app name. You can see
the Spotlight icon in the simulator if you click the home screen and drag down. This will pull
down a search field. Type Hello into the resulting search field, and the icon will show up in the
search results.

97803e21947864_Book 1.indb 20997803e21947864_Book 1.indb 209 11/21/13 2:56 PM11/21/13 2:56 PM

210 Chapter 9 Using Xcode for iOS Development

 Figure 9.20 Possible app icon resolutions.

 To have your app listed in the app store, you also need to supply icons in sizes of 512x512 and
1024x1024 pixels.

 The other option that is available in the asset catalog is launch images. A launch image is
shown as the app is launching. Apple recommends that your launch image is a blank version of
the app’s first screen. This way, the user will quickly see the app and what it looks like, before it
is filled in with data. Launch images are also supplied in different resolutions depending on the
device. Table 9.1 shows the possible resolutions for launch images.

 Table 9.1 Typical Launch Image Dimensions

 Device Portrait Landscape

 iPhone and iPod touch 320 x 480 pixels

 640 x 960 pixels (@2x)

 Not supported

 iPhone 5 and iPod touch
(5th generation)

 640 x 1136 pixels (@2x) Not supported

 iPad 768 x 1004 pixels

 1536 x 2008 pixels (@2x)

 1024 x 748 pixels

 2048 x 1496 pixels (@2x)

97803e21947864_Book 1.indb 21097803e21947864_Book 1.indb 210 11/21/13 2:56 PM11/21/13 2:56 PM

211Exercises

 iPhone Screen Sizes and Resolutions

 When the first iPhone was released, the resolution was set to 320x480 pixels. Programmers
would use this coordinate grid to arrange their user interface. When the iPhone 4 was released,
it sported a retina display with double the resolution (640x960). However, from the perspec-
tive of the programmer, the original 320x480 grid was still used to position everything on the
screen, so apps didn’t have to be updated to handle the higher resolution. But all the UIKit
controls were rendered in higher resolution, and all images could now be supplied in retina ver-
sions with double the resolution. If you need an image in your app, you can create a regular
file to be used on nonretina screens, as well as a version with double the resolution for retina
screens. By dragging the file into the appropriate spot in the images.xcassets container, the
system will automatically pick the right one for the device the app is running on.

 With the iPhone 5 and iPod touch 5, Apple again changed the resolution, this time increasing
the vertical size to 1136 pixels (giving a grid of 320x568). Images can now also be supplied
in this higher resolution. The iPhone 5 increased the physical size of the screen from 3.5 to 4
inches, so when you see references to a 4-inch screen, this is the screen introduced with the
iPhone 5 (and iPod touch 5).

 Summary

 Congratulations! You have built your first iOS app. You created an Xcode project, designed and
coded a user interface, and finally made the app do something. Along the way you learned the
process of iOS app development, the Xcode development environment, and the components of
an iOS app.

 Exercises

 1. Split the name field into first and last name. Then make sure both first and last names
show up when tapping the button.

 2. Change the functionality of the showOutput method so that if no text has been entered,
the output changes to Hello World!

 3. Explore the properties for the text fields, buttons, and labels within Xcode. Change the
label to green and bold text. Change the border style for the text field, and add a clear
button.

 4. Add a new button to the app, with a method that will change the lblOutput text to
Hello World!

 5. Rotate the simulator while running the app.

97803e21947864_Book 1.indb 21197803e21947864_Book 1.indb 211 11/21/13 2:56 PM11/21/13 2:56 PM

212 Chapter 9 Using Xcode for iOS Development

 6. Run the app in the iPad simulator. Then change the Devices setting to Universal and run
again in the iPad simulator.

 7. Have the keyboard dismiss when the user taps the button.

 8. Add a new field to enter a number, and set the keyboard to be numeric. Be sure that the
keyboard dismisses appropriately from this new field.

97803e21947864_Book 1.indb 21297803e21947864_Book 1.indb 212 11/21/13 2:56 PM11/21/13 2:56 PM

Index

 A
 absolute positioning, 48 , 205

 accelerometer, 178 , 328

 data collection, starting/stopping, 332

 label movements, updating, 331 - 332

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 accessing hardware components, 20

 accessory buttons, 280 - 281

 accuracy (hardware), 21

 actions

 Alert View button selection, 283

 changeEditMode, 231

 geocoding, 293

 map types, changing, 308

 Settings interface, configuring, 253

 activities

 Activity class, 56

 declaring, 52

 FragmentActivity subclass, 56

 ListActivity subclass, 56

 onCreate() method, 52

 onCreateOptions() method, 52

 adding to projects, 58 - 59

 camera intent, 185

97803e21947864_Book 1.indb 39997803e21947864_Book 1.indb 399 11/21/13 2:57 PM11/21/13 2:57 PM

400 activities

 custom dialogs, implementing, 85

 default, setting, 141 - 142

 empty database default, 142 - 143

 fragments, 56

 lists, 56

 displaying, 118 - 120

 layout population with retrieved
contents, 137 - 138

 responding to item clicks, 120 - 121

 sorting according to user
preferences, 139 - 141

 specific data, retrieving, 135 - 136

 ListView widget, adding, 118 - 119

 overview, 56

 phone app, starting, 182

 Activity class, 56

 declaring, 52

 onCreate() method, 52

 onCreateOptions() method, 52

 subclasses

 FragmentActivity, 56

 ListActivity, 56

 adapters, 116

 AdapterView class, 115

 Add button (lists), 138 - 139

 addressToCoordinates: method, 294

 AdMob

 ads, embedding in apps

 Android, 338 - 339

 iOS, 339

 registration, 340

 SDK, downloading, 338

 ad supported apps, 338 - 340

 ADT (Android Development Tools) plug-in,

installing, 367 - 369

 advertising paid apps, 338

 afterTextChanged() method, 100

 AlertDialog object, 168

 alertView:clickedButtonAtIndex:

method, 283

 Alert View, 281 - 284

 Android

 activities. See activities

 ads, embedding in apps, 338 - 339

 app behaviors, coding

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 initial activity code, 50 - 52

 menu, 52

 source code, importing, 51

 application package (APK) files,
creating, 349 - 350

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 custom dialogs, creating

 Change button, 85 - 86

 class, creating, 83 - 84

 implementing in activities, 85

 data persistence

 files, 90

 iOS, compared, 91

 SharedPreferences, 89 - 90

 SQLite databases. See SQLite
databases

97803e21947864_Book 1.indb 40097803e21947864_Book 1.indb 400 11/21/13 2:57 PM11/21/13 2:57 PM

401Android

 Development Tools (ADT) plug-in,
installing, 367 - 369

 devices. See devices (Android)

 dialog boxes, creating, 75 - 78

 Eclipse. See Eclipse

 emulator, 39 - 42

 AVD, 40 - 41

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 initial launch, 41

 location control, 157

 run configurations, 42

 fragments

 FragmentActivity class, 56

 maps, 146 , 161

 in-app purchases, 341

 installing, 367 - 369

 ADT plug-in, 367 - 369

 SDK, 369

 intents

 battery status, 176

 camera, 185

 overview, 57

 phone app, starting, 182

 layouts. See layouts

 life cycles, 14 - 15

 lists

 activity to open if database empty,
 142 - 143

 adapters, 116

 Add button, 138 - 139

 data retrieval method, 116 - 117

 default activity, setting, 141 - 142

 displaying, 118 - 120

 layout population with retrieved
content, 137 - 138

 ListView widget, 116 , 118 - 119

 responding to item clicks, 120 - 121

 sorting data according to user
preferences, 139 - 141

 specific data, retrieving, 135 - 136

 locations

 choosing best, 159 - 160

 contacts. See locations, contacts
map

 emulator, 157

 geocoding, 152 - 155

 GPS sensors, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 managers

 overview, 174

 sensor, 178 - 179

 manifest file

 components, 38 - 39

 overview, 37 - 38

 maps. See maps (Android)

 market, 344

 method signatures, 53

 navigation bars, creating, 60 - 64

 button activities, 78 - 80

 color resources, creating, 61

 copying and pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 press-and-hold user action
listener, 181

 user permission, 181

v

97803e21947864_Book 1.indb 40197803e21947864_Book 1.indb 401 11/21/13 2:57 PM11/21/13 2:57 PM

402 Android

 projects

 adding activities, 58 - 59

 choosing activities, 34

 creating, 58

 default settings, 34

 Google Play Services SDK, adding,
 148 - 149

 icon configuration, 34

 importing, 57

 navigation, 35

 new Android application
window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 publishing apps

 app descriptions, 348

 audiences, 347

 enterprise distribution, 353 - 354

 Google Play Store, 348 - 351

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 requirements , xiv-xvi

 SDK download, xiv

 sensors

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 iOS sensors, compared, 298

 location, 145 - 146

 overview, 173 - 174

 registering for monitoring, 178 - 179

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 saving, 112 - 113

 tables, 285

 toggle buttons, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbars, creating, 65 - 66

 user interfaces

 associating code with button on
layout, 53

 attributes, 43 - 44

 code, connecting, 54

 EditText widgets. See EditText
widgets

 form widgets, 45

 properties, 45

 relative positioning, 48 , 205

 root element, 42

 structure, 45

 TextView widgets. See TextView
widgets

 Virtual Device (AVD), 40 - 41

 annotations (maps), 303 - 306

 contacts, plotting, 305 - 307

 LMAMapPoint class, creating, 303 - 304

 user location, adding, 304 - 306

 API keys, 149

 APK (Android application package) files,

creating, 349 - 350

 app delegates

 files, 198

 MKMapViewDelegate protocol,
implementing, 302

 motion manager, retrieving, 329 - 330

 Objective-C classes, 390

 View Controller, launching, 238

97803e21947864_Book 1.indb 40297803e21947864_Book 1.indb 402 11/21/13 2:57 PM11/21/13 2:57 PM

403apps

 provisioning profiles, 374

 students as developers, setting
up, 374

 team admins, 374

 team agents, 374

 team members, 374

 team provisioning profiles, 374

 UDID, 375

 Fence Builder Pro, 7

 GoFishing! app, 10

 icons (Android), 34

 icons (iOS), 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 monetizing, 9 - 10 , 337

 Android versus iOS, 344

 ad supported apps, 338 - 340

 advertising apps, 338

 app store economics, 341

 Blackberry, 344

 business LLCs, creating, 342

 business planning, 342 - 343

 business use apps, 338

 corporate app developers, 343

 in-app purchases, 340 - 341

 independent developers/
freelancers, 343

 paid apps, 337 - 338

 selling apps outside an app
store, 341

 Windows, 344

 MyContactList. See MyContactList app

 publishing

 Android enterprise distribution,
 353 - 354

 app descriptions, 348

 audiences, 347

 Google Play Store, 348 - 351

 iOS enterprise distribution, 354

 Apple University Program , xv

 application:didFinishLaunchingWithOptions:

method, 15

 applicationWillResignActive: method, 15

 apps

 ads, embedding, 338 - 340

 behaviors (Android)

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 displaying preferences, 109 - 112

 initial activity code, 50 - 52

 menu, 52

 saving preferences, 112 - 113

 source code, importing, 51

 behaviors (iOS), 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 Bossy, 7 - 8

 customer reach advantages, 4 - 6

 availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 data values, storing in key-value
list, 256

 deploying to real devices

 App ID, 375

 challenges, 373

 developer accounts, creating,
 375 - 376

 developer certificates, 374

 development certificates, backing
up, 376 - 377

 development environment,
checking, 379 - 381

 device registration, 378 - 379

 devices, setting up, 374

97803e21947864_Book 1.indb 40397803e21947864_Book 1.indb 403 11/21/13 2:57 PM11/21/13 2:57 PM

404 apps

 layout_toRightOf, 69

 nextFocusDown, 69

 Objective-C properties, 395

 phone widgets, 70

 relative layouts, locking, 65 - 66

 user interface widgets, 45

 autofocus, stopping, 82

 Automatic Reference Counting (ARC), 398

 availability (hardware components), 20

 AVD (Android Virtual Device), configuring,

 40 - 41

 B
 Back Button (navigation), 229

 backgroundTap: method

 defining, 205

 implementing, 205

 BaseAdapter class, 116

 batteries

 conserving, 297

 design issues, 19

 status, monitoring, 175 - 177 , 314 - 317

 changes, handling, 316 - 317

 current level, displaying, 175

 status bar percentage discrepancies,
 317

 status broadcasts, listening/
responding, 176 - 177

 user interface, configuring, 315 - 316

 batteryChanged: method, 317

 BatteryManager, 175 - 177

 current battery level, displaying, 175

 status broadcasts, listening/responding,
 176 - 177

 batteryStatus: method, 317

 beforeTextChanged() method, 100

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 Square, 6

 State Farm Pocket Agent, 9

 states, 14

 stores, 341

 testing, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 ARC (Automatic Reference Counting), 398

 ArrayAdapter class, 116

 ArrayList objects, 117

 array.xml file, 37

 asset catalog

 app icons, 209

 images, adding, 221

 launch images, 210

 attributes

 birthday widgets, 74

 city, state, zip code EditText
widgets, 71

 email widgets, 73 - 74

 ems, 68

 imeOptions="actionNext," 68

 inputType, 68

 layout_alignBottom, 69

 layouts, 43 - 44

 blank space padding, 44

 size, 44

 text, displaying, 44

97803e21947864_Book 1.indb 40497803e21947864_Book 1.indb 404 11/21/13 2:57 PM11/21/13 2:57 PM

405buttons

 processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 process reengineering (BPR), 7

 buttons

 accessory, 280 - 281

 actions, creating, 203 - 204

 Add (lists), 138 - 139

 Back, 229

 Change, 85 - 86

 Get Location, 153 - 154

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 navigation

 activities, coding, 78 - 80

 contacts map, 170

 image, 60

 press behaviors, 52 - 53

 associating code with button on
layout, 53

 listeners, 53

 method, declaring, 53

 results, 53

 Save

 hiding keyboards when
pressed, 103

 initializing, 101 - 103

 toggle, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 behaviors (apps)

 Android

 activities, creating, 52

 Activity class, 52

 button press, 52 - 53

 initial activity code, 50 - 52

 menu, 52

 preferences, 109 - 113

 source code, importing, 51

 iOS, 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 birthday widgets, 74 - 75

 Blank Activity window, 34

 blank space, padding, 44

 Book class

 app delegate availability, 390

 completing, 387

 creating, 385 - 387

 Java implementation, 392 - 394

 LMABook.h file, 386

 LMABook.m file, 386

 methods, implementing, 388 - 390

 objects, declaring/manipulating,
 390 - 392

 Bossy app, 7 - 8

 boundary value analysis, 355

 BPR (business process reengineering), 7

 brand loyalty/awareness, 5

 breakpoints, setting, 105 - 106

 BroadcastReceiver objects, 176 - 177

 businesses

 business use apps, 338

 creating

 business plan, 342 - 343

 LLC, creating, 342

97803e21947864_Book 1.indb 40597803e21947864_Book 1.indb 405 11/21/13 2:57 PM11/21/13 2:57 PM

406 callContact() method

 BaseAdapter, 116

 Book

 app delegate availability, 390

 completing, 387

 creating, 385 - 387

 Java implementation, 392 - 394

 LMABook.h file, 386

 LMABook.m file, 386

 methods, implementing, 388 - 390

 objects, declaring/manipulating,
 390 - 392

 CLGeocoder, 295

 Contact, creating, 94 - 96

 ContactActivity, 99

 ContactDataSource, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 ContactDBHelper, 91 - 93

 CursorAdapter, 116

 database helper, creating, 91 - 93

 data source, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 DatePickerDialog, 83 - 84

 FragmentActivity, 56 , 146

 Intent, 57

 iOS user interface, 213

 ListActivity, 56

 LMAMapPoint, 303 - 304

 NSSortDescriptor, 286

 Objective-C

 app delegate availability, 390

 creating, 385 - 387

 inheritance, 397

 methods, implementing, 388 - 390

 Sensor, 174

 SensorManager, 174

 C
 callContact() method, 182

 CAMERA_REQUEST variable, 186

 cameras (Android), 4 , 174

 functionality, implementing, 185 - 186

 permission, 184

 pictures

 displaying, 188 - 189

 retrieving from database, 188

 saving to database, 187 - 188

 setters/getters, 186

 cameras (iOS), 4 , 317

 controller, creating, 319 - 320

 lightweight migration of Core Data,
 323 - 324

 outlet, 318

 pictures

 handling, 321 - 322

 saving to database, 321 - 323

 user interfaces, configuring, 318

 cause-effect graphing, 355

 cells (tables)

 accessories, 264

 styles, 264

 Change buttons (custom dialogs), 85 - 86

 changeEditMode action, 231

 changeEditMode: method, 327

 changePicture: method, 319

 classes

 Activity, 56

 declaring, 52

 FragmentActivity subclass, 56

 ListActivity class, 56

 onCreate() method, 52

 onCreateOptionsMenu() method,
 52

 AdapterView, 115

 ArrayAdapter, 116

97803e21947864_Book 1.indb 40697803e21947864_Book 1.indb 406 11/21/13 2:57 PM11/21/13 2:57 PM

407ContactActivity

 Eclipse workspaces, 32

 emulator, 39 - 42

 AVD, 40 - 41

 initial launch, 41

 Google Play Store accounts, 350

 run configurations, 42

 txtPhone field editing modes, 327 - 328

 connectivity

 design issues, 18 - 19

 user interfaces to code

 Android, 54 , 204

 iOS, 204

 Constants.h file, 260

 Constants.m file, 260

 ContactActivity

 birthday input, 75 - 74

 class, 99

 contact locations, displaying on
map, 164

 data entry forms, 66

 addresses, 68 - 69

 city, state, zip code fields, 69 - 71

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information fields, 70

 DatePicker dialog, 82 - 86

 Change button, 85 - 86

 DatePickerDialog class, 83 - 84

 implementing in activities, 85

 email input, 73 - 74

 ImageButton initialization, 184

 layout with ImageButton, 183

 LongClickListener, 181

 navigation bar, coding, 78 - 80

 pictures, displaying, 188 - 189

 setting as default for empty database,
 142 - 143

 SharedPreferences, 89

 SimpleAdapter, 116

 UIDevice, 312

 UIResponder, 326

 UITextField, 326

 UIView, 213

 UIViewController, 214

 UIWindow, 213

 classrooms, configuring

 Eclipse, 369 - 370

 Xcode, 373

 CLGeocoder class, 295

 CLHeading object, 299

 CLLocationCoordinate2D struct, 296

 CLPlacemark objects, 295

 CMMotionManager object

 creating, 328 - 329

 retrieving from app delegate, 329 - 330

 color resources

 navigation bars, 61

 toolbars, 65

 color.xml file, 37

 commit() method, 113

 communication

 business process change, 7

 mobile devices, 4

 compass, creating, 177 - 180

 Android versus iOS, 180

 event listener, implementing, 179 - 180

 heading widget, 177 - 178

 registering sensors for monitoring,
 178 - 179

 Configure Launcher Icon window, 34

 Configure Project window, 34

 configuring

 AVD, 40 - 41

 Core Data support, 237 - 241

 data structure design, 241

97803e21947864_Book 1.indb 40797803e21947864_Book 1.indb 407 11/21/13 2:57 PM11/21/13 2:57 PM

408 ContactActivity

 ContactSettings activity, 107 - 110

 displaying user preferences, 109 - 112

 layout, creating, 107 - 110

 saving user preferences, 112 - 113

 control-dragging, 217

 controls

 camera, creating, 319 - 320

 Navigation

 adding, 227

 adding to View Controllers, 228

 navigating back to previous
screen, 229

 overview, 215

 Picker View, 253 - 255

 data sources, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 Scroll View

 adding, 224 - 225

 content size, 224 - 225

 keyboards, dismissing, 226

 moving, 227

 Segmented Control, overlapping,
 226

 Segmented

 map types, changing, 307 - 309

 moving, 227

 multiple segments, 222

 switching between view and edit
modes, 230 - 233

 Tab Bar, 214 , 217

 Table, 265

 View

 adding, 217

 code files, renaming, 220

 displaying at launch, configuring,
 238

 toggle buttons, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbars, creating, 65 - 66

 Contact class, creating, 94 - 96

 ContactDataSource class, creating, 93 - 98

 insert/update methods, adding, 96 - 98

 required code, 94

 ContactDBHelper class, 91 - 93

 ContactListActivity

 Add Contact button, 138 - 139

 battery level TextView, 175

 BroadcastReceiver objects, 176 - 177

 as default activity, setting, 141 - 142

 displaying lists, 118 - 121

 item click responses, 120 - 121

 layout population with retrieved
contacts, 137 - 138

 sorting contact list according to user
preferences, 139 - 141

 getContacts() modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific contacts, retrieving, 136

 contact list screen (MyContactList app),

 24 - 25

 ContactMapActivity

 contact locations, displaying on
map, 165

 heading TextView, adding, 177 - 178

 locations, finding

 addresses, 152 - 154

 GPS sensors, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 map toolbars, adding, 168 - 170

 contact screen (MyContactList app), 24

97803e21947864_Book 1.indb 40897803e21947864_Book 1.indb 408 11/21/13 2:57 PM11/21/13 2:57 PM

409data persistence (Android)

 corporate app developers, 343

 Cox, Brad, 383

 Create Activity window, 34

 Create New Android Virtual Device (AVD)

window, 40

 currentContact variable association, 99

 CursorAdapter class, 116

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software capabilities, 6

 payment industry, 6

 D
 dairy farmer app (Bossy), 7 - 8

 database helper class, creating, 91 - 93

 data entry widgets, 4 , 66

 addresses, 68 - 69

 birthdays, 75 - 74

 city, state, zip code, 69 - 71

 email, 73 - 74

 enabling/disabling, 81 - 82

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information, 70

 data models, migrating, 242 - 243

 data persistence (Android)

 files, 90

 iOS, compared, 91

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 SQLite databases

 capturing user-entered data, 99 - 101

 database helper class, creating,
 91 - 93

 keyboards, dismissing, 205 - 208

 Location, adding, 291 - 292

 Map, renaming, 300 - 301

 navigation bar, adding, 228

 overview, 213 - 214

 segues, 228

 Settings interface, adding, 252 - 253

 switching between view and edit
modes, 231

 title names, changing, 218 - 219

 Core Data

 data models, migrating, 242 - 243

 data structure design

 configuring, 241

 Objective-C class, 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up, 237 - 241

 table data, retrieving, 269 - 271

 Core Data for iOS: Developing Data-Driven

Applications for the iPad, iPhone, and

iPod touch (Isted/Harrington), 237

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 Core Motion framework, 328

 data collection, starting/stopping, 332

 label movements, updating, 331 - 332

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

97803e21947864_Book 1.indb 40997803e21947864_Book 1.indb 409 11/21/13 2:57 PM11/21/13 2:57 PM

410 data persistence (Android)

 development

 certificates, 374 - 377

 environment, checking, 379 - 381

 devices

 registration, 378 - 379

 devices, setting up, 374

 provisioning profiles, 374

 students as developers, setting up, 374

 teams

 admins, 374

 agents, 374

 members, 374

 provisioning profiles, 374

 UDIDs, 375

 design

 app life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 batteries, 19

 connectivity, 18 - 19

 data structure

 configuring, 241

 Objective-C class, 242

 hardware, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 screens

 orientation, 18

 size, 17

 user interaction buttons

 Android, 22 - 23

 iOS, 23

 user interfaces, 205

 Developer Console (Google), 350 - 351

 developers (iOS)

 accounts, creating, 375 - 376

 programs, 372 - 373

 data source class, creating, 93 - 98

 debugging, 105 - 107

 overview, 90 - 91

 retrieving data, 104 - 105

 saving user-entered data, 101 - 105

 data persistence (iOS)

 Android, compared, 91

 Core Data. See Core Data

 file storage, 235

 user defaults, 236

 data source class, creating, 93 - 98

 insert/update methods, adding, 96 - 98

 required code, 94

 data structure design

 configuring, 241

 Objective-C class, 242

 DatePickerDialog class, 83 - 84

 DatePickers (Android), 75 , 82 - 86

 Change button, 85 - 86

 DatePickerDialog class, creating, 83 - 84

 displaying, 78

 implementing in activities, 85

 DatePickers (iOS), 230

 debugging

 breakpoints, setting, 105 - 106

 log statements, 107

 SQLite databases, 105 - 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 debug keys (maps), 149 - 150

 Debug toolbar buttons, 105 - 106

 deleting records, 277 - 279

 deploying apps to real devices

 App IDs, 375

 challenges, 373

 developer accounts, creating, 375 - 376

97803e21947864_Book 1.indb 41097803e21947864_Book 1.indb 410 11/21/13 2:57 PM11/21/13 2:57 PM

411 devices (iOS)

 hardware buttons, 22

 managers, 174

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 user permission, 181

 sensors, 173 - 174

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listeners, implementing,
 179 - 180

 location, 145 - 146

 registering for monitoring, 178 - 179

 user interaction buttons, 22 - 23

 virtual buttons, 22 - 23

 devices (iOS)

 batteries

 conserving, 297

 monitoring, 314 - 317

 business processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 capabilities for innovations, 10

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 features

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

 development

 certificates, 374 - 377

 device capabilities innovations, 10

 environment, checking, 379 - 381

 deviceCoordinates: method, 296

 devices (Android)

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 business processes, changing, 7 - 9

 automation, 7

 business process reengineering, 7

 internal processes, 9

 scheduling/communication, 7

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from database,
 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 capabilities for innovations, 10

 customer reach advantages, 4 - 6

 app availability, 5

 brand loyalty/awareness, 5

 device hardware/software
capabilities, 6

 payment industry, 6

 features

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

97803e21947864_Book 1.indb 41197803e21947864_Book 1.indb 411 11/21/13 2:57 PM11/21/13 2:57 PM

412 devices (iOS)

 Dock, list view, 206

 dot notation (Objective-C), 392

 drawable folders (Eclipse), 36

 E
 Eclipse

 Android

 installing, 367 - 369

 manifest file, 37 - 39

 classroom, configuring, 369 - 370

 downloading, 361 , 363

 Editor, 35

 emulator, 39 - 42

 AVD, 40 - 41

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 initial launch, 41

 location control, 157

 run configurations, 42

 folders

 drawable, 36

 Ihdp, 37

 layout, 37

 res, 36

 values, 37

 installing

 Mac, 365 - 366

 Windows, 363 - 365

 new projects, creating, 32 - 36

 activities, choosing, 34

 default settings, 34

 icon configuration, 34

 navigation, 35

 new Android application
window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 information, retrieving, 312 - 313

 model, 313

 name of device, 313

 name of OS, 313

 orientation, 313

 OS version number, 313

 simulator test, 313

 testing on device, 313

 vendor app unique identifier, 313

 locations, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 movement. See accelerometer

 registering, 378 - 379

 screen sizes/resolutions, 211

 user interaction buttons, 23

 dialog windows

 creating, 75 - 78

 custom, 82 - 86

 Change button, 85 - 86

 class, creating, 83 - 84

 implementing in activities, 85

 New Android Application, 32

 Workspace Launcher, 32

 didFailWithError: method, 300

 didFinishDatePickerDialog() method, 85

 didUpdateHeading: method, 299

 didUpdateLocations: method, 298

 dimens.xml file, 37

 disabling data entry widgets, 81 - 82

 distance filters, 297

97803e21947864_Book 1.indb 41297803e21947864_Book 1.indb 412 11/21/13 2:57 PM11/21/13 2:57 PM

413focus

 F
 features (mobile devices)

 communication capabilities, 4

 computing platform similarities, 4

 environment awareness sensors, 3

 technological capabilities dramatic
changes, 4

 feedback (Alert View), 281 - 284

 Fence Builder Pro app, 7

 files

 Android manifest, 37 - 39

 AppDelegate, 198

 Constants.h, 260

 Constants.m, 260

 data persistence, 90

 IInAppBillingService.aidl, 341

 LMAAppDelegate.m, 260

 LMABook.h, 386

 LMABook.m, 386

 LMAContactsController.h, 232

 LMAContactsController.m, 232

 LMAContactsTableConroller.m,
 269 - 271

 LMAMapPoint.h, 303

 LMAMapPoint.m, 304

 LMASettingsController.m, 261

 renaming, 220

 resource, 36

 values, 37

 Xcode supporting, 198

 filters (distance), 297

 findViewById() method, 53

 focus

 top of screen in viewing mode, 103

 widgets, clearing, 82

 Package Explorer, 36

 projects, importing, 57

 SDKs, adding, 147

 workspaces, setting up, 32

 Editor (Eclipse), 35

 EditText widgets, 49

 contacts

 addresses, 69

 birthday input, 75 - 74

 city, state, zip code, 69 - 71

 email, 73 - 74

 names, 68

 phone information, 70

 hiding keyboards upon button
press, 103

 listeners, adding, 100 - 101

 long click event response, 182

 phone number, 101

 email widgets, 73 - 74

 ems attribute (EditText widget), 68

 emulator

 Google Maps v2 compatibility, 152

 Hello World! app, running, 49

 location control, 157

 setting up, 39 - 42

 AVD, 40 - 41

 initial launch, 41

 run configurations, 42

 enabling data entry widgets, 81 - 82

 enterprise app distribution

 Android, 353 - 354

 iOS, 354

 environmental sensors, 177

 equivalence partitioning, 354

 error handling

 database updates, 104 - 105

 device locations, finding, 299 - 300

 Toast messages, 157

97803e21947864_Book 1.indb 41397803e21947864_Book 1.indb 413 11/21/13 2:57 PM11/21/13 2:57 PM

414 folders

 retrieving motion manager from
app delegate, 329 - 330

 starting motion detection, 330

 stopping motion detection, 332

 iOS, 199

 MapKit

 adding, 301

 overview, 290

 UIKit, 213

 freelance developers, 343

 G
 geoCodeAddressString:completionHandler:

method, 295

 Geocode variable, 154

 geocoding (Android), 152 - 155

 address coordinates, looking up, 153

 layout, creating, 152

 testing, 155

 geocoding (iOS), 291 - 295

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 user interface

 button actions, 293

 keyboard, dismissing, 293

 outlets, 293

 user interface, creating, 291 - 293

 view controller code files, adding,
 291 - 292

 gesture recognizer, 325

 getBaseContext() method, 156

 getContactName() method, 116 - 117

 getContacts() method, 139

 getFromLocationName() method, 154

 getLastContactId() method, 104

 Get Location button, 153 - 154

 getMyLocation() method, 152

 getPicture() method, 186

 folders

 Eclipse

 drawable, 36

 Ihdp, 37

 layout, 37

 res, 36

 values, 37

 Images.xcassets, 198

 Xcode project, 196

 formatting EditText widgets as typed, 101

 form widgets (Android), 45

 FragmentActivity class, 56 , 146

 fragments

 FragmentActivity class, 56

 maps, 146 , 161

 frameworks

 adding to projects, 294

 Core Data, 237

 data models, migrating, 242 - 243

 data structure design, 241 - 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up,
 237 - 241

 table data, retrieving, 269 - 271

 Core Location

 adding to projects, 293 - 294

 overview, 290

 Core Motion, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion manager, creating, 328 - 329

97803e21947864_Book 1.indb 41497803e21947864_Book 1.indb 414 11/21/13 2:57 PM11/21/13 2:57 PM

415hardware (Android)

 H
 hardware (Android)

 batteries, monitoring, 175 - 177

 current level, displaying, 175

 status broadcasts, listening/
responding, 176 - 177

 buttons, 22

 cameras, 174

 displaying pictures with contacts,
 188 - 189

 functionality, implementing,
 185 - 186

 permission, 184

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 setters/getters, 186

 design issues, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 managers, 174

 phone calling, 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number, accepting, 182

 press-and-hold user action listener,
 181

 user permission, 181

 sensors

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 location, 298

 overview, 173 - 174

 registering for monitoring, 178 - 179

 getPreferences() method, 90 , 111 , 113

 getSharedPreferences() method, 90

 getSpecificContact() method, 136

 getString() method, 111

 getSystemService() method, 156

 getters, picture variable, 186

 global constants, 259 - 261

 Glyphish, 221

 GoFishing! app, 10

 Google

 AdMob Ads SDK, downloading, 338

 Developer Console website, 150

 Maps

 debug key, 149 - 150

 emulator compatibility, 152

 required code, 163 - 164

 Play Services SDK

 adding, 148 - 149

 downloading, 147 - 148

 Play Store, 348 - 351

 accounts, setting up, 350

 Android application package (APK)
files, creating, 349 - 350

 Billing Library, 341

 Developer Console, 350 - 351

 economics, 341

 licensing, 348

 publication requirements, 347

 GoogleMap object, 146 , 162 - 163

 GPS coordinates. See locations

 gpsListener variable, 156

 GPS sensors

 emulator, 157

 locations, finding, 155 - 159

 with network sensors, 159 - 160

 stopping, 157

 testing on devices, 158 - 159

97803e21947864_Book 1.indb 41597803e21947864_Book 1.indb 415 11/21/13 2:57 PM11/21/13 2:57 PM

416 hardware (iOS)

 location sensors, 298

 locations. See locations (iOS)

 phone calling, 324

 long press gesture, 324 - 325

 txtPhone field editing mode,
setting, 327 - 328

 heading TextView widget, 177 - 178

 heading updates, 299

 Hello World! app (Android)

 activities, choosing, 34

 default settings, 34

 Display button, 52 - 53

 icon configuration, 34

 layouts

 attributes, 43 - 44

 EditText widgets, 49

 form widgets, 45

 properties, 45

 root element, 42

 running in emulator, 49

 structure, 45

 TextView widget, adding, 46 - 47

 navigation, 35

 new Android application window, 32

 project/package names, 33

 run configurations, setting up, 42

 SDK requirements, 33 - 34

 themes, 34

 Hello World! app (iOS)

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 user interface, creating, 202

 hideKeyboard() method, 103

 hiding keyboards, 103

 hardware (iOS)

 accelerometer, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion detection, starting, 330

 motion detection, stopping, 332

 motion manager, creating, 328 - 329

 retrieving motion manager from
app delegate, 329 - 330

 battery status, monitoring, 314 - 317

 changes, handling, 316 - 317

 status bar percentage discrepancies,
 317

 user interface, configuring, 315 - 316

 buttons, 22 , 23

 cameras, 317

 controller, creating, 319 - 320

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlet, 318

 saving pictures to database,
 321 - 323

 user interfaces, configuring, 318

 design issues, 20 - 21

 accuracy, 21

 component availability, 20

 time delays, 20

 device information, retrieving, 312 - 313

 model, 313

 name of device, 313

 name of OS, 313

 orientation, 313

 OS version number, 313

 simulator test, 313

 testing on device, 313

 vendor app unique identifier, 313

97803e21947864_Book 1.indb 41697803e21947864_Book 1.indb 416 11/21/13 2:57 PM11/21/13 2:57 PM

417iOS

 initAddContactButton() method, 138 - 139

 initChangeDateButton() method, 86

 initContact() method, 137

 initGetLocationButton() method, 153

 initMapButton() method, 164

 initSettings() method, 111 - 112

 initTextChangedEvents() method, 99 - 101

 inputType attribute, 68

 insertContact() method, 98

 installing

 Android, 367 - 369

 ADT plug-in, 367 - 369

 SDK, 369

 Eclipse

 Mac, 365 - 366

 Windows, 363 - 365

 Java SE SDK, 362

 Xcode, 371

 Intent class, 57

 IntentFilter variable, 177

 intents, 57

 battery status, 176

 camera, starting, 185

 phone app, starting, 182

 Interface Builder, 199

 iOS

 accelerometer, 328

 data collection, starting/stopping,
 332

 label movements, updating,
 331 - 332

 motion manager, creating, 328 - 329

 retrieving motion manager from
app delegate, 329 - 330

 starting motion detection, 330

 stopping motion detection, 332

 ads, embedding in apps

 AdMob, 339

 iAd, 340

 I
 iAd, 340

 icons

 Android, configuring, 34

 iOS, 208 - 210

 asset catalog, 209

 Glyphish, 221

 placement, 208

 resolutions, 209 - 210

 ids.xml file, 37

 Ihdp folder (Eclipse), 37

 IInAppBillingService.aidl file, 341

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 Image Picker

 handling, 321 - 322

 launching, 319

 images. See also pictures

 adding to asset catalog, 221

 app icons (iOS)

 asset catalog, 209

 Glyphish, 221

 placement, 208

 resolutions, 209 - 210

 Glyphish, 221

 launch, 210

 navigation bar buttons, 60

 tab bars, 221 - 222

 Images.xcassets folder, 198

 imeOptions="actionNext" attribute, 68

 importing projects, 57

 in-app purchases, 340 - 341

 independent developers, 343

 inheritance (Objective-C), 397

97803e21947864_Book 1.indb 41797803e21947864_Book 1.indb 417 11/21/13 2:57 PM11/21/13 2:57 PM

418 iOS

 Core Data

 configuring data structure
design, 241

 data models, migrating, 242 - 243

 data structure design, 241 - 242

 framework, 237

 images, saving, 321 - 323

 lightweight migration, 323 - 324

 Managed Object Context, 236

 Managed Object Model, 236

 overview, 236

 Persistent Object Store, 236

 project support, setting up,
 237 - 241

 table data, retrieving, 269 - 271

 data persistence, 91

 deployment to real devices

 App ID, 375

 challenges, 373

 developer accounts, creating,
 375 - 376

 developer certificates, 374

 development certificates, backing
up, 376 - 377

 development environment,
checking, 379 - 381

 device registration, 378 - 379

 devices, setting up, 374

 provisioning profile, 374

 students as developers, setting up,
 374

 team admin, 374

 team agents, 374

 team members, 374

 team provisioning profile, 374

 UDID, 375

 developers

 accounts, creating, 375 - 376

 programs, 372 - 373

 app behaviors, adding, 202 - 204

 button actions, creating, 203 - 204

 outlets, creating, 203

 output, displaying, 204 - 205

 app delegates, 198

 files, 198

 MKMapViewDelegate protocol,
implementing, 302

 motion manager, retrieving,
 329 - 330

 Objective-C classes, 390

 View Controller, launching, 238

 app icons, 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 ARC (Automatic Reference
Counting), 398

 asset catalog

 app icons, 209

 images, adding, 221 - 222

 launch images, 210

 batteries

 conserving, 297

 status, monitoring, 314 - 317

 cameras, 317

 controller, creating, 319 - 320

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlet, 318

 saving pictures to database,
 321 - 323

 user interfaces, configuring, 318

 compass, creating, 180

 controllers

 Navigation, 215

 Tab Bar, 214

 View, 213 - 214

97803e21947864_Book 1.indb 41897803e21947864_Book 1.indb 418 11/21/13 2:57 PM11/21/13 2:57 PM

419iOS

 user tracking, 302

 zooming in on user locations,
 302 - 303

 market, 344

 Navigation Controllers, 227

 Objective-C

 app delegate availability, 390

 C language coding constructs
supported, 384 - 385

 classes. See Objective-C, classes

 dot notation, 392

 history, 383 - 384

 inheritance, 397

 memory management, 398

 methods. See Objective-C,
methods

 objects, declaring/manipulating,
 390 - 392

 properties, 394 - 396

 protocols, 397 - 398

 Object Library, 199

 phone calling, 324 - 328

 long press gesture, 324 - 325

 txtPhone field editing mode,
setting, 327 - 328

 projects

 class prefixes, 195

 Core Data support, adding,
 237 - 241

 Core Location framework, adding,
 293 - 294

 folder, 196

 frameworks, adding, 294

 Main storyboard setting, 238

 MapKit framework, adding, 301

 MyContactList app (iOS), creating,
 215 - 216

 new, creating, 58

 saving, 195

 settings, 197 - 199

 development certificates, backing up,
 376 - 377

 devices. See devices (iOS)

 Dock, list view, 206

 Enterprise Developer license, 354

 file storage, 235

 frameworks, 199

 global constants, 259 - 261

 in-app purchases, 341

 iPhone screen sizes/resolutions, 211

 keyboards, dismissing, 205 - 208

 actions, connecting to
methods, 207

 backgroundTap: method, 205

 geocoding user interface, 293

 process overview, 208

 Scroll View control, 226

 View, changing to UIControl, 206

 launch images, 210

 life cycles, 15 - 17

 apps, 15

 views, 16 - 17

 locations. See locations (iOS)

 MapKit framework, 301

 maps

 Android maps, compared, 151 , 290

 annotations, 303 - 306

 contacts, plotting, 305 - 307

 Core Location framework, 290 - 294

 device locations, finding. See maps
(iOS), device locations, finding

 displaying user locations, 301

 geocoding, 291 - 295

 hardware/sensors, 289 - 290

 MapKit framework, 290 , 301

 Map View Controller, renaming,
 300 - 301

 outlets, 302

 types, changing, 307 - 309

97803e21947864_Book 1.indb 41997803e21947864_Book 1.indb 419 11/21/13 2:57 PM11/21/13 2:57 PM

420 iOS

 overview, 263 - 264

 populating with data, 265 - 269

 retrieving data from Core Data,
 269 - 271

 saving record changes, 276 - 277

 sorting, 285 - 287

 subtitles, displaying, 285

 user interface, populating, 275

 UIKit framework, 213

 unit tests, 198

 user interfaces

 absolute positioning, 48 , 205

 app data values, storing in
key-value list, 256

 battery monitoring, configuring,
 315 - 316

 classes, 213

 code connectivity, 54 , 204

 code files, renaming, 220

 Contacts screen, 222 - 226

 control-dragging, 217

 creating, 199 - 200

 Date Pickers, 230

 default settings, saving, 257

 design, 205

 geocoding, creating, 291 - 293

 global constants, 259 - 261

 labels, dragging on canvas, 200

 navigation. See Navigation
Controllers

 outlets, creating, 203

 Picker View, 253 - 255

 populating, 275

 scrolling, adding, 224 - 225

 Settings interface, 252 - 255

 switching between view and edit
modes, 230 - 233

 UI controls based on stored values,
setting, 257 - 258

 View Controllers. See View
Controllers

 target device, choosing, 195

 templates, 193

 publishing apps

 app descriptions, 348

 audiences, 347

 enterprise distribution, 354

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 pricing, 348

 resources, 348

 screenshots, preparing, 348

 testing, 354 - 355

 requirements , xv-xvi

 sensors

 Android sensors, compared, 298

 location, 160 , 289 - 290

 simulator

 apps, running, 200 - 201

 device information, retrieving, 313

 limitations, 373

 location services, 300

 SQLite database support, 236

 storyboard, 198

 structs, 296

 tab bars, creating, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 tables

 accessory buttons, 280 - 281

 Alert view, 281 - 284

 Android tables, compared, 285

 cells, 264

 contact data, adding, 272

 creating, 265 - 266

 deleting records, 277 - 279

 detailed data, displaying, 273 - 275

97803e21947864_Book 1.indb 42097803e21947864_Book 1.indb 420 11/21/13 2:57 PM11/21/13 2:57 PM

421layouts (Android)

 backgroundTap: method, 205

 geocoding user interface, 293

 process overview, 208

 Scroll View control, 226

 View, changing to UIControl, 206

 Kochan, Stephen G., 398

 L
 labels

 dragging onto canvas, 200

 widgets, aligning, 72

 LatLng object, 167

 launch images, 210

 layout_alignBottom attribute, 69

 layout_alignParentLeft attribute, 66

 layout_alignParentRight attribute, 66

 layout_alignParentTop attribute, 66

 layout folder (Eclipse), 37

 layouts (Android)

 associating code with button on
vlayout, 53

 attributes, 43 - 44

 blank space padding, 44

 size, 44

 text, displaying, 44

 contact activity. See ContactActivity

 dialog boxes, creating, 75 - 78

 EditText widgets. See EditText widgets

 form widgets, 45

 ImageButtons

 adding to layouts, 183

 images, importing, 60

 initialization, 184

 positioning, 61

 ListView widget, 116 , 118 - 119

 View

 changing to UIControl, 206

 connecting actions to methods,
 207

 Xcode. See Xcode

 iPhones/iPads

 requirements, xv-xvi

 screen sizes/resolutions, 211

 isBetterLocation() method, 159 - 160

 iTunes Connect

 App Information screen, 351

 apps, uploading, 352

 overview, 351

 website, 351

 iTunes Store, 351 - 352

 app review process, 352

 economics, 341

 iTunes Connect

 App Information screen, 351

 apps, uploading, 352

 overview, 351

 website, 351

 publication requirements, 347

 J
 Java

 Objective-C classes, implementing,
 392 - 394

 SE SDK, installing, 362

 Jobs, Steve, 383

 K
 keyboards, dismissing

 Android, 103

 iOS, 205 - 208

 actions, connecting to
methods, 207

97803e21947864_Book 1.indb 42197803e21947864_Book 1.indb 421 11/21/13 2:57 PM11/21/13 2:57 PM

422 layouts (Android)

 listings

 address EditText widget, 69

 address TextView widget, 69

 ads, embedding in apps, 339

 AndroidManifest.xml file, 38

 annotation for user location, 305

 app behaviors, coding, 50

 backgroundTap: method, 205

 batteries

 levels (TextView), 175

 monitoring, 176 , 315- 316

 Book class Java implementation,
 392 - 394

 callContact() method, 182

 camera, starting/capturing results, 185

 Change Birthday button, 86

 color resources, 61

 compass, creating, 177

 completed LMABook.h, 387

 completed LMABook.m, 388

 Contact class, 94

 ContactDataSource class, 94

 contact name EditText widget, 68

 contacts map

 data retrieval, 165

 markers, placing, 165 - 168

 plotting contacts on map, 306

 toolbar, adding, 168 - 170

 database helper class, 92

 data retrieval from Core Data, 274

 date entry forms, enabling/disabling,
 81

 DatePickerDialog class code, 83

 declaring/manipulating objects, 390

 default activity, setting, 141

 default settings, saving, 257

 device information, retrieving, 312

 displaying retrieved data code, 138

 geocoding (iOS), 293- 294

 navigation bars, creating, 60 - 64

 color resources, creating, 61

 copying and pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 overview, 56

 padding, removing, 63

 populating with retrieved content,
 137 - 138

 properties, 45

 relative

 locking, 65 - 66

 positioning, 48

 root element, 42

 structure, 45

 TextView widget. See TextView widgets

 toolbar, creating, 65 - 66

 layout_toRightOf attribute, 69

 licensing

 Google Play Store, 348

 iOS Enterprise Developer license, 354

 life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 apps, 15

 views, 16 - 17

 Lightweight Migration, 243

 Limited Liability Corporations (LLCs),

creating, 342

 LinearLayouts, 76

 ListActivity class, 56

 listeners

 button press, 53

 dialogs, 84

 location, 146 , 156

 press-and-hold user action, 181

 sensor event, 174 , 179 - 180

 text changes, 99 - 101

97803e21947864_Book 1.indb 42297803e21947864_Book 1.indb 422 11/21/13 2:57 PM11/21/13 2:57 PM

423listings

 LMABook.m file, 386

 LMAMapPoint.h, 303

 LMAMapPoint.m, 304

 Location Manager

 error handling, 300

 heading updates, 299

 location updates, 298

 starting/stopping, 296

 LongClickListener, 181

 MapFragment, 161

 maps

 location retrieval from map
object, 161

 permissions, 151

 types, changing, 308

 user locations, displaying, 302

 motion detection

 starting, 330

 stopping, 332

 motion manager

 creating, 329

 retrieving from app delegate,
 329 - 330

 navigation bar XML code, 62

 onResume() method, 140

 onUpgrade() method for database
structure changes, 187

 Picker View

 implementing, 253 - 255

 protocols, adding, 253

 pictures

 displaying with contacts, 188

 retrieving from database, 188

 saving to database, 188

 variable setters/getters, 186

 RadioButton widget, 108 , 112

 registering sensors for monitoring,
 178 - 179

 retrieving data from Core Data, 270

 Save button, 102

 getContactName() method, 117

 getLastContactId() method, 104

 getSpecificContact() method, 136

 global constants, 260 - 261

 Google required map code, 163

 GPS coordinates, retrieving

 addresses, 153

 GPS sensor, 155

 GPS sensors, stopping, 157

 Hello World! app

 Display button code, 52

 TextView, 46

 hideKeyboard() method, 103

 ImageButtons

 configuration, 183

 initialization, 184

 Image Picker

 handling, 321

 launching, 319

 initAddContactButton() method, 138

 initContact() method, 137

 initMapButton() method, 164

 initSettings() method, 111

 initTextChangedEvents() method, 99

 inserting new objects when editing,
avoiding, 277

 insert/update contact methods, 97

 isBetterLocation() method, 159 - 160

 label movements, updating, 331

 layout element attributes, 43

 lightweight migration of Core
Data, 323

 List ImageButton, 79

 lists

 displaying, 119

 item click responses, 120 - 121

 ListView widget, 118

 LMAAppDelegate.m file, 240

 LMABook.h file, 386

97803e21947864_Book 1.indb 42397803e21947864_Book 1.indb 423 11/21/13 2:57 PM11/21/13 2:57 PM

424 listings

 sorting data according to user
preferences, 139 - 141

 getContacts() method
modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific data, retrieving, 135 - 136

 ListView widget, 116 , 118 - 119

 LLCs (Limited Liability Corporations),

creating, 342

 LMAAppDelegate.m, 260

 LMABook.h file, 386

 LMABook.m file, 386

 LMAContactsController.h file, 232

 LMAContactsController.m file, 232

 LMAContactsTableConroller.m, 269 - 271

 LMAMapPoint class, 303 - 304

 LMAMapPoint.h file, 303

 LMAMapPoint.m file, 304

 LMASettingsController.m file, 261

 loadDataFromDatabase: method, 271

 LocationListeners, 146 , 156

 Location Manager, 146

 accuracy options, 297

 distance filters, 297

 error handling, 299 - 300

 starting/stopping, 296 - 297

 testing, 300

 updates

 headings, 299

 locations, 298 - 299

 locations (Android)

 contacts map, 164

 contact IDs, passing with intent,
 164

 data retrieval, 165

 markers, placing, 165 - 168

 navigation buttons, 170

 toolbar, adding, 168 - 170

 Scroll View

 content size, 224

 XML, 66

 SensorEventListener, 179

 showOutput: method, 204

 switching between view and edit
modes

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 switch values, storing, 259

 tables

 Alert View, 282 - 283

 data, reloading, 276

 populating, 267

 rows, deleting, 279 , 281

 sorting, 286

 subtitles, displaying, 285

 toggle button initialization, 80

 toolbar XML, 65

 txtPhone field editing modes,
configuring, 327

 UI controls based on stored values,
setting, 258 - 259

 user interface, populating, 275

 lists (Android)

 activity to open if database empty,
 142 - 143

 adapters, 116

 Add button, 138 - 139

 data retrieval method, 116 - 117

 default activity, setting, 141 - 142

 displaying, 118 - 120

 layout population with retrieved
content, 137 - 138

 ListView widgets, 116 , 118 - 119

 responding to item clicks, 120 - 121

97803e21947864_Book 1.indb 42497803e21947864_Book 1.indb 424 11/21/13 2:57 PM11/21/13 2:57 PM

425maps (Android)

 Location View Controller, 291 - 292

 locking relative layouts, 65 - 66

 logging debugging method, 107

 LongClickListener, 181

 long press gestures (phone), 324 - 325

 calling the phone number, 325

 callPhone: method, 324 - 325

 gesture recognizer, 325

 Love, Tom, 371

 M
 magnetometer, 178

 Managed Object Context, 236

 Managed Object Model, 236

 managers (Android)

 BatteryManager, 175 - 177

 overview, 174

 sensor, 178 - 179

 manifest file (Android)

 components, 38 - 39

 overview, 37 - 38

 MapFragment, 161

 MapKit framework

 adding, 301

 overview, 290

 maps (Android), 146

 API key, 149

 debug keys, 149 - 150

 fragments, 146 , 161

 Google

 Maps v2 emulator compatibility,
 152

 Play Services SDK, 147 - 149

 requirements, 163 - 164

 GPS coordinates, retrieving, 161 - 164

 iOS maps, compared, 151 , 290

 locations, finding, 161 - 164

 choosing best, 159 - 160

 geocoding, 152 - 155

 emulator, 157

 finding, 145 - 146

 choosing best locations, 159 - 160

 geocoding, 152 - 155

 GPS, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 iOS locations, compared, 160 , 298

 locations (iOS)

 Android locations, compared, 160 , 298

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 devices, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 geocoding, 291 - 296

 button actions, 293

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 keyboard, dismissing, 293

 outlets, 293

 user interface, creating, 291 - 293

 view controller code file, adding,
 291 - 292

 hardware, 289 - 290

 MapKit framework, 290

 sensors, 289 - 290

 user locations, displaying on map, 301

 annotation, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

97803e21947864_Book 1.indb 42597803e21947864_Book 1.indb 425 11/21/13 2:57 PM11/21/13 2:57 PM

426 maps (Android)

 outlets, 293

 user interface, creating, 291 - 293

 view controller code files,
adding, 291 - 292

 hardware, 289 - 290

 MapKit framework, 290 , 301

 Map View Controller, renaming,
 300 - 301

 outlets, 302

 sensors, 289 - 290 , 298

 types, changing, 307 - 309

 user locations, displaying, 301

 annotation, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

 map screen (MyContactList app), 25 - 26

 mapTypeChanged: method, 308

 Map View Controller, renaming, 300 - 301

 mapView:didUpdateUserLocation:

method, 302

 markers (map), adding, 165 - 168

 markets

 Android, 344

 iOS, 344

 money, making, 9 - 10

 MDM (Mobile Device Management), 354

 memory management (Objective-C), 398

 methods

 addressToCoordinates:, 294

 afterTextChanged(), 100

 alertView:clickedButtonAtIndex:, 283

 application:didFinishLaunching
WithOptions:, 15

 applicationWillResignActive:, 15

 backgroundTap:

 defining, 205

 implementing, 205

 batteryChanged:, 317

 batteryStatus:, 317

 Google code required, 163 - 164

 GPS sensors, 155 - 159

 MapFragment, 161 - 164

 network sensors, 159 - 160

 markers, placing, 165 - 168

 navigation buttons, 170

 permissions, 151 - 152

 sensors

 iOS sensors, compared, 298

 location, 145 - 146

 toolbars, adding, 168 - 170

 zoom levels, 168

 maps (iOS)

 Android maps, compared, 151 , 290

 annotations, 303 - 306

 contacts, plotting, 305 - 307

 LMAMapPoint class, creating,
 303 - 304

 user location, adding, 304 - 306

 contacts, plotting, 305 - 307

 Core Location framework

 adding to projects, 293 - 294

 overview, 290

 device locations, finding, 296 - 300

 accuracy options, 297

 battery conservation, 297

 distance filters, 297

 error handling, 299 - 300

 heading updates, 299

 Location Manager, starting/
stopping, 296 - 297

 location updates, 298 - 299

 testing, 300

 geocoding, 291 - 295

 button actions, 293

 Core Location framework, adding,
 293 - 294

 implementing, 294 - 295

 keyboard, dismissing, 293

97803e21947864_Book 1.indb 42697803e21947864_Book 1.indb 426 11/21/13 2:57 PM11/21/13 2:57 PM

427methods

 numberOfSectionsInTableView:, 267

 Objective-C

 declaring, 396

 parameters, 397

 private/public, 397

 return types, 396

 types, 396

 onActivityResult(), 186

 onClick(), 53

 onCreate(), 14

 Activity class, 52

 ContactDBHelper class, 93

 onCreateOptionsMenu(), 52

 onDestroy(), 15

 onPause(), 15 , 157

 onResume()

 database, checking, 142

 lists, resorting, 140 - 141

 onStart(), 14

 onStop(), 15

 onUpgrade(), 93

 persistentStoreCoordinator:, 323

 prepareForSegue:, 274

 putString(), 113

 saveContact:, 276

 setForView(), 82

 setForViewing(), 82

 setPicture(), 186

 setToEditing(), 81

 showOutput:, 204

 signatures, 53

 startActivityForResult(), 186

 updateContact(), 98

 updateLabel:, 331

 viewDidDisappear:, 297

 viewDidLayoutSubviews:, 225

 viewDidLoad:, 16 , 275

 viewWillAppear:, 276 , 302

 viewWillDisappear:, 17

 beforeTextChanged(), 100

 callContact(), 182

 changeEditMode:, 327

 changePicture:, 319

 commit(), 113

 deviceCoordinates:, 296

 didFailWithError:, 300

 didFinishDatePickerDialog(), 85

 didUpdateHeading:, 299

 didUpdateLocations:, 298

 findViewById(), 53

 geoCodeAddressString:completion
Handler:, 295

 getBaseContext(), 156

 getContactName(), 116 - 117

 getContacts(), 139

 getFromLocationName(), 154

 getLastContactId(), 104

 getMyLocation(), 152

 getPicture(), 186

 getPreferences(), 90 , 111 , 113

 getSharedPreferences(), 90

 getSpecificContact(), 136

 getString(), 111

 getSystemService(), 156

 hideKeyboard(), 103

 initAddContactButton(), 138 - 139

 initChangeDateButton(), 86

 initContact(), 137

 initGetLocationButton(), 153

 initMapButton(), 164

 initSettings(), 111 - 112

 initTextChangedEvents(), 99 - 101

 insertContact(), 98

 isBetterLocation(), 159 - 160

 loadDataFromDatabase:, 271

 mapTypeChanged:, 308

 mapView:didUpdateUserLocation:, 302

 numberOfRowsInSection:, 267

97803e21947864_Book 1.indb 42797803e21947864_Book 1.indb 427 11/21/13 2:57 PM11/21/13 2:57 PM

428 MKMapViewDelegate protocol, implementing

 managers

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 sensors, 177

 MyContactList app (Android)

 activities, adding, 58 - 59

 Add Contact button, 138 - 139

 birthday selection

 dialog box, creating, 75 - 78

 storing, 99

 calling contacts by pressing/holding
phone number, 181 - 183

 ContactActivity. See ContactActivity

 Contact class, creating, 94 - 96

 contact data

 capturing, 99 - 101

 saving, 101 - 105

 ContactDataSource class, creating,
 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 ContactDBHelper class, creating, 91 - 93

 contact locations, displaying on
map, 164

 contact IDs, passing with intent,
 164

 data retrieval, 165

 markers, placing, 165 - 168

 toolbar, adding, 168 - 170

 contact name list

 data retrieval from database,
 116 - 117

 displaying, 118 - 121

 ListView widget, adding, 118 - 119

 responding to item click, 120 - 121

 MKMapViewDelegate protocol,

implementing, 302

 MKUserLocation object, 303

 Mobile Device Management (MDM), 354

 mobile devices. See devices

 monetizing apps, 9 - 10 , 337

 Android versus iOS, 344

 ad supported apps, 338 - 340

 advertising, 338

 app store economics, 341

 Blackberry, 344

 businesses, creating

 business plans, 342 - 343

 LLCs, creating, 342

 business use apps, 338

 corporate app developers, 343

 in-app purchases, 340 - 341

 independent developers/freelancers,
 343

 paid apps, 337 - 338

 selling apps outside an app store, 341

 Windows, 344

 monitoring

 batteries, 175 - 177 , 314 - 317

 changes, handling, 316 - 317

 current level, displaying, 175

 status bar percentage discrepancies,
 317

 status broadcasts, listening/
responding, 176 - 177

 user interface, configuring, 315 - 316

 sensors

 event listener, implementing,
 179 - 180

 registering sensors for monitoring,
 178 - 179

 motion

 detection

 starting, 330

 stopping, 332

97803e21947864_Book 1.indb 42897803e21947864_Book 1.indb 428 11/21/13 2:57 PM11/21/13 2:57 PM

429MyContactList app (iOS)

 locations, finding

 geocoding, 152 - 155

 GPS sensor, 155 - 159

 map object, 161 - 164

 network sensors, 159 - 160

 navigation bar, creating, 60 - 64

 button activities, coding, 78 - 80

 color resources, creating, 61

 copying/pasting, 64

 image buttons, positioning, 61

 images, adding, 60

 XML code, 62 - 64

 project

 creating, 58

 importing, 57

 screens

 contact, 24

 contact list, 24 - 25

 map, 25 - 26

 settings, 26 - 27

 sorting contact list according to user
preferences, 139 - 141

 getContacts() modifications, 139

 list not re-sorting with Back
button, 140 - 141

 sorting preferences, retrieving, 139

 specific contacts, retrieving, 136

 toggle button, 80 - 82

 data entry widgets, enabling/
disabling, 81 - 82

 initializing, 80 - 81

 toolbar, creating, 65 - 66

 MyContactList app (iOS)

 app data values, storing in key-value
list, 256

 contact activity layout, 66

 addresses, 68 - 69

 birthday input, 74 - 75

 city, state, zip code fields, 69 - 71

 contact photos

 camera functionality,
implementing, 185 - 186

 camera permission, 184

 database picture field, adding,
 186 - 187

 database structure change without
losing all user data, handling, 187

 displaying, 188 - 189

 ImageButton initialization, 184

 layout space, creating, 183

 retrieving pictures from
database, 188

 saving pictures to database,
 187 - 188

 ContactSettings activity

 displaying user preferences,
 109 - 112

 layout, creating, 107 - 110

 saving user preferences, 112 - 113

 contacts map

 compass, 177 - 180

 navigation buttons, 170

 currentContact variable association, 99

 DatePicker dialog, 82 - 86

 Change button, 85 - 86

 creating DatePickerDialog class,
 83 - 84

 implementing in activities, 85

 debugging, 105 - 107

 breakpoints, setting, 105 - 106

 log statements, 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 default activity, setting, 141 - 142

 empty database activity default,
setting, 142 - 143

 layout population with retrieved
contacts, 137 - 138

97803e21947864_Book 1.indb 42997803e21947864_Book 1.indb 429 11/21/13 2:57 PM11/21/13 2:57 PM

430 MyContactList app (iOS)

 project, creating, 215 - 216

 records, saving changes, 276 - 277

 retrieving data from Core Data,
 269 - 271

 Settings interface, 252

 actions, configuring, 253

 default settings, saving, 257

 outlets, configuring, 253

 Picker View, 253 - 255

 UI controls based on stored values,
setting, 257 - 258

 user preferences, storing, 257 - 259

 View Controllers, adding, 252 - 253

 switching between view and edit
modes, 231

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 tab bar, creating, 216

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 View Controller code files,
renaming, 220

 tables

 accessory buttons, 280 - 281

 Alert View, 281 - 284

 contact data, adding, 272

 deleting records, 277 - 279

 populating with data, 265 - 268

 retrieving data from Core Data,
 269 - 271

 sorting, 285 - 287

 subtitles, displaying, 285

 views, 216 - 223

 email input, 73 - 74

 input screen structure, 66 - 67

 labels, aligning, 72

 names, 67 - 68

 phone information fields, 70

 contact pictures, adding

 handling the picture, 321 - 322

 lightweight migration of Core
Data, 323 - 324

 outlets, 318

 saving images to database, 321 - 323

 taking the picture, 319 - 320

 user interface, 318

 Contacts screen user interface

 design, 222 - 226

 scrolling, adding, 224 - 225

 Core Data support, adding, 238 - 241

 data structure design

 configuring, 241

 Objective-C class, 242

 Date screen

 Birthdate View Controller
navigation bar title, setting, 228

 date selection, 230

 navigating back to Contacts
screen, 229

 Navigation Controller, adding, 227

 detailed contact data, displaying,
 273 - 275

 passing data between table views
and Contact screens, 274

 Prototype cell segue to Contact
screen, 273

 user interface, populating, 274 - 275

 global constants, 259 - 261

 phone calling contacts, 324 - 328

 plotting contacts on map, 305 - 307

97803e21947864_Book 1.indb 43097803e21947864_Book 1.indb 430 11/21/13 2:57 PM11/21/13 2:57 PM

431objects

 numberOfRowsInSection: method, 267

 numberOfSectionsInTableView:

method, 267

 O
 Objective-C

 C language coding constructs
supported, 384 - 385

 classes

 app delegate availability, 390

 creating, 385 - 387

 Java implementation, 392 - 394

 methods, implementing, 388 - 390

 dot notation, 392

 history, 383 - 384

 inheritance, 397

 memory management, 398

 methods

 declaring, 396

 parameters, 397

 private/public, 397

 return types, 396

 types, 396

 objects, declaring/manipulating,
 390 - 392

 properties, 394 - 396

 attributes, 395

 declaring, 394

 strong/weak references, 395

 protocols, 397 - 398

 Objective-C (Kochan), 398

 Object Library, 199

 objects

 AlertDialog, 168

 ArrayList, 117

 BroadcastReceiver, 176 - 177

 CLHeading, 299

 CLPlacemark, 295

 N
 names

 Android

 projects/packages, 33

 resource files, 36

 contacts, 67 - 68

 devices, retrieving, 313

 methods, 53

 tab bar tabs, 218 - 219

 values, 46

 View Controller code files,
changing, 220

 navigation (Android), 35

 bars, creating, 60 - 64

 background color, 63

 button activities, coding, 78 - 80

 color resources, creating, 61

 image buttons, 60 - 61 , 63

 padding, removing, 63

 positioning, 63

 XML code, 62 - 64

 buttons, 170

 Navigation Controllers

 adding to View Controllers, 228

 navigating back to previous screen, 229

 overview, 215 , 227

 network sensors

 with GPS sensors, 159 - 160

 locations, finding, 159 - 160

 testing, 159

 New Android Application dialog window, 32

 nextFocusDown attribute, 69

 NFC (Near Field Communication), 4

 notifications (battery status), 315

 NSFetchRequest objects, 271

 NSNotificationCenter object, 314

 NSSortDescriptor class, 286

 NSUserDefaults object, 236 , 256

97803e21947864_Book 1.indb 43197803e21947864_Book 1.indb 431 11/21/13 2:57 PM11/21/13 2:57 PM

432 objects

 operating systems

 life cycles, 14

 Android, 14 - 15

 iOS, 15 - 17

 publishing apps, 356

 orientation (screens), 18

 outlets

 camera, 318

 creating, 203

 geocoding, 293

 maps, 302 , 308

 Settings interface, configuring, 253

 P
 Package Explorer (Eclipse), 36

 padding attributes, 44

 paid apps, 337 - 338

 payment industry, 6

 permissions

 camera, 184

 maps, 151 - 152

 phone, 181

 persistent data (Android)

 files, 90

 iOS, compared, 91

 SharedPreferences

 displaying upon page access
behavior, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 SQLite databases

 capturing user-entered data, 99 - 101

 database helper class, creating,
 91 - 93

 data source class, creating, 93 - 98

 debugging, 105 - 107

 overview, 90 - 91

 CMMotionManager

 creating, 328 - 329

 retrieving from app delegate,
 329 - 330

 gesture recognizer, 325

 GoogleMap, 146 , 162 - 163

 LocationManager, 146

 map. See maps

 MKUserLocation, 303

 NSFetchRequest, 271

 NSNotificationCenter, 314

 NSUserDefaults, 236 , 256

 Objective-C, declaring/manipulating,
 390 - 392

 PhoneNumberFormattingTextWatcher,
 101

 SensorManager, 178 - 179

 TextWatcher, 100

 Toast, 157

 onAccuracyChanged event, 180

 onActivityResult() method, 186

 onClickListener() method, 53

 onClick() method, 53

 onCreate() method, 14

 Activity class, 52

 ContactDBHelper class, 93

 onCreateOptionsMenu() method, 52

 onDestroy() method, 15

 onPause() method, 15 , 157

 onResume() method

 database, checking, 142

 lists, resorting, 140 - 141

 onSensorEvent event, 180

 onStart() method, 14

 onStop() method, 15

 onUpgrade() method, 93

97803e21947864_Book 1.indb 43297803e21947864_Book 1.indb 432 11/21/13 2:57 PM11/21/13 2:57 PM

433projects (Xcode)

 saving to database, 187 - 188

 taking, 185 - 186

 pictures (iOS). See also images

 handling, 321 - 322

 saving to database, 321 - 323

 taking, 319 - 320

 populating tables, 265 - 269

 position sensors, 177

 power. See batteries

 preferences (user), storing, 257 - 259

 prepareForSegue: method, 274

 pricing apps, 348

 productivity paradox, 7

 projects (Eclipse)

 activities

 adding, 58 - 59

 choosing, 34

 creating, 58

 default settings, 34

 Google Play Services SDK, adding,
 148 - 149

 icon configuration, 34

 importing, 57

 navigation, 35

 new Android application window, 32

 project/package names, 33

 SDK requirements, 33 - 34

 themes, 34

 projects (Xcode)

 class prefixes, 195

 Core Data support, adding, 237 - 241

 Core Location framework, adding,
 293 - 294

 folder, 196

 frameworks, adding, 294

 Main storyboard setting, 238

 MapKit framework, adding, 301

 MyContactList app (iOS), creating,
 215 - 216

 pictures. See SQLite database,
pictures

 retrieving data, 104 - 105

 saving user-entered data, 101 - 105

 structure changes without losing all
user data, handling, 187

 user-entered data. See SQLite database,
user-entered data

 persistent data (iOS)

 Android, compared, 91

 Core Data. See Core Data

 file storage, 235

 user defaults, 236

 Persistent Object Store, 236

 persistentStoreCoordinator: method, 323

 phone (Android), 174

 EditText widget long click event
response, 182

 phone app, starting, 182

 phone number accepting, 182

 press-and-hold user action listener, 181

 user permission, 181

 phone (iOS), 324

 long press gesture, 324 - 325

 calling the phone number, 325

 callPhone: method, 324 - 325

 gesture recognizer, 325

 txtPhone field editing mode, setting,
 327 - 328

 PhoneNumberFormattingTextWatcher

object, 101

 Picker View control, 253 - 255

 data sources, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 pictures (Android). See also images

 displaying with contacts, 188 - 189

 retrieving from database, 188

97803e21947864_Book 1.indb 43397803e21947864_Book 1.indb 433 11/21/13 2:57 PM11/21/13 2:57 PM

434 projects (Xcode

 R
 RadioGroup widget, 107 - 109

 displaying current preference activity,
 111 - 112

 user preferences for each option,
storing, 112 - 113

 records (tables)

 deleting, 277 - 279

 insert new objects when editing,
avoiding, 276 - 277

 saving changes, 276 - 277

 refactoring (Xcode), 220

 reference books , xvi

 RelativeLayout element, 42 - 44

 relative layouts, locking, 66

 relative positioning, 48 , 205

 requirements

 Android , 33 - 34

 iPhone/iPad, xv-xvi

 res folder (Eclipse), 36

 resolutions (iOS)

 app icons, 209 - 210

 iPhone screens, 211

 launch images, 210

 resource files (Android), 36

 resources

 Core Data for iOS: Developing
Data-Driven Applications for the
iPad, iPhone, and iPod touch (Isted/
Harrington), 237

 Objective-C (Kochan), 398

 reference books , xvi

 StackOverflow.com , xvi

 retrieving data (databases), 104 - 105

 getContactName() method, 116 - 117

 specific criteria, 135 - 136

 run configurations, 42

 Run Configurations window, 42

 new, creating, 58

 saving, 195

 settings, 197 - 199

 target device, choosing, 195

 templates, 193

 properties (Objective-C), 394 - 396

 attributes, 395

 declaring, 394

 strong/weak references, 395

 protocols (Objective-C), 397 - 398

 publishing apps

 audiences, 347

 enterprise distribution

 Android, 353 - 354

 iOS, 354

 Google Play Store, 348 - 351

 accounts, setting up, 350

 Android application package (APK)
files, creating, 349 - 350

 licensing, 348

 iTunes Store, 351 - 352

 market requirements, 347

 operating system updates, 356

 preparations

 app descriptions, 348

 pricing, 348

 resources, 348

 screenshots, 348

 testing, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 putString() method, 113

97803e21947864_Book 1.indb 43497803e21947864_Book 1.indb 434 11/21/13 2:57 PM11/21/13 2:57 PM

435sensors (Android)

 Google Play Services

 adding, 148 - 149

 downloading, 147 - 148

 Java SE, installing, 362

 Segmented Controls

 map types, changing, 307 - 309

 moving, 227

 multiple segments, 222

 switching between view and edit
modes, 230 - 233

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 segues, 228

 Sensor class, 174

 SensorEventListeners, 174 , 179 - 180

 SensorEvents, 174

 SensorManager class, 174

 SensorManager object, 178 - 179

 sensors (Android), 3 , 173 - 174

 accelerometer/magnetometer, 178

 compass, creating, 177 - 180

 event listener, implementing,
 179 - 180

 heading widget, 177 - 178

 iOS, compared, 180

 registering sensors for monitoring,
 178 - 179

 location, 145 - 146

 Android versus iOS, 160 , 298

 best locations, choosing, 159 - 160

 GPS. See GPS sensors

 monitoring

 event listeners, implementing,
 179 - 180

 registering, 178 - 179

 network, 159 - 160

 S
 Save button

 hiding keyboards when pressed, 103

 initializing, 101 - 103

 saveContact: method, 276

 saving

 default settings, 257

 pictures to database

 Android, 187 - 188

 iOS, 321 - 323

 records, 276 - 277

 user-entered data, 101 - 105

 hiding keyboards upon Save
button press, 103

 Save button, initializing, 101 - 103

 screen focus in viewing mode, 103

 update errors, handling, 104 - 105

 Xcode projects, 195

 scheduling business process change, 7

 screens

 iPhones, 211

 orientation, 18

 size, 17

 Scroll View control

 adding, 224 - 225

 content size, 224 - 225

 data entry form, configuring, 66 - 67

 keyboards, dismissing, 226

 moving, 227

 Segmented Control, overlapping, 226

 top of screen focus, 103

 SDKs (Software Development Kits)

 AdMob Ads, downloading, 338

 Android

 app requirements, 33 - 34

 installing, 369

 Eclipse, adding, 147

97803e21947864_Book 1.indb 43597803e21947864_Book 1.indb 435 11/21/13 2:57 PM11/21/13 2:57 PM

436 sensors (iOS)

 data retrieval method, 116 - 117

 ListView widget, adding, 118 - 119

 simulator

 apps, running, 200 - 201

 device information, retrieving, 313

 limitations, 373

 location services, 300

 size

 layouts, 44

 screens, 17 , 211

 Small Business Administration website,

 343

 Software Development Kit. See SDKs

 sorting tables, 285 - 287

 source code website, xix

 SQLite databases

 database helper class, creating, 91 - 93

 data source class, creating, 93 - 98

 insert/update methods, adding,
 96 - 98

 required code, 94

 debugging, 105 - 107

 breakpoints, setting, 105 - 106

 logging, 107

 stepping through code, 106

 stopping, 107

 toolbar control buttons, 105 - 106

 variable inspection, 106 - 107

 iOS support, 236

 overview, 90 - 91

 pictures

 field, adding, 186 - 187

 retrieving, 188

 saving, 187 - 188

 retrieving data, 104 - 105 , 116 - 117

 structure changes without losing all
user data, handling, 187

 user-entered data

 capturing, 99 - 101

 savivng, 101 - 105

 sensors (iOS), 3

 accelerometer. See accelerometer

 location, 289 - 290

 setForView() method, 82

 setForViewing() method, 82

 setPicture() method, 186

 setters (picture variable), 186

 Settings interface

 creating, 253 - 255

 actions, configuring, 253

 outlets, configuring, 253

 View Controllers, adding, 252 - 253

 default settings, saving, 257

 Picker View, 253 - 255

 data source, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 UI controls based on stored values,
setting, 257 - 258

 user preferences, storing, 257 - 259

 settings screen (MyContactsList app),

 26 - 27

 setToEditing() method, 81

 SHA1 fingerprint, 149 , 151

 SharedPreferences

 class, 89

 displaying, 109 - 112

 layout, creating, 107 - 110

 overview, 89 - 90

 saving, 112 - 113

 showOutput: method, 204

 signatures (methods), 53

 SimpleAdapter class, 116

 simple lists

 activities

 displaying, 118 - 120

 responding to item clicks, 120 - 121

97803e21947864_Book 1.indb 43697803e21947864_Book 1.indb 436 11/21/13 2:57 PM11/21/13 2:57 PM

437TextView widgets

 Prototype cell segue to Contact
screen, 273

 user interface, populating, 274 - 275

 overview, 263 - 264

 populating with data, 265 - 269

 records

 deleting, 277 - 279

 saving changes, 276 - 277

 retrieving data from Core Data,
 269 - 271

 sorting, 285 - 287

 subtitles, displaying, 285

 user interface, populating, 275

 templates (Xcode), 193

 testing

 apps, 354 - 355

 boundary value analysis, 355

 cause-effect graphing, 355

 equivalence partitioning, 354

 usability, 355

 variety of devices, 355

 devices

 GPS sensors, 158 - 159

 information retrieval, 313

 locations, finding, 300

 network sensors, 159

 text, displaying, 44

 TextChangedListener, 100 - 101

 TextView widgets, 44

 adding, 46 - 47

 attributes, 45

 battery level, 175

 contacts

 addresses, 68 - 69

 birthdays, 75 - 74

 email, 73 - 74

 phone information fields, 70

 settings layout, 107 - 109

 heading, 177 - 178

 Square, 6

 StackOverflow.com , xvi

 startActivityForResult() method, 186

 Start Android Emulator window, 41

 starting phone apps, 182

 State Farm Pocket Agent App, 9

 stepping through code, 106

 stopping

 debugger, 107

 GPS sensors, 157

 storyboard, 198 , 268

 strings.xml file, 37

 structs (iOS), 296

 subtitles (tables), displaying, 285

 switches, 259

 T
 Tab Bar Controller, 214 , 217

 tab bars, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 Table Controller, 265

 TableLayout, 76

 tables (Android), 285

 tables (iOS)

 accessory buttons, 280 - 281

 Alert View, 281 - 284

 Android tables, compared, 285

 cells

 accessories, 264

 styles, 264

 contact data, adding, 272

 creating, 265 - 266

 detailed data, displaying, 273 - 275

 passing data between table views
and Contact screens, 274

97803e21947864_Book 1.indb 43797803e21947864_Book 1.indb 437 11/21/13 2:57 PM11/21/13 2:57 PM

438 TextWatcher objects

 user-entered data

 capturing, 99 - 101

 saving, 101 - 105

 hiding keyboards upon Save
button press, 103

 Save button, initializing, 101 - 103

 screen focus in viewing mode, 103

 update errors, handling, 104 - 105

 user interfaces (Android)

 associating code with button on
layout, 53

 attributes, 43 - 44

 code, connecting, 54

 EditText widgets. See EditText widgets

 form widgets, 45

 properties, 45

 relative positioning, 48 , 205

 root element, 42

 structure, 45

 TextView widget. See TextView widgets

 user interfaces (iOS)

 absolute positioning, 48 , 205

 app data values, storing in key-value
list, 256

 battery monitoring, configuring,
 315 - 316

 classes, 213

 code connectivity, 54 , 204

 code files, renaming, 220

 Contacts screen, 222 - 226

 control-dragging, 217

 creating, 199 - 200

 Date Pickers, 230

 default settings, saving, 257

 design, 205

 geocoding, creating, 291 - 293

 global constants, 259 - 261

 labels, dragging on canvas, 200

 TextWatcher objects, 100

 tilting devices. See accelerometer

 time delays (hardware), 20

 time objects, 84

 Toast messages, 157

 toggle buttons, 80 - 82

 data entry widgets, enabling/disabling,
 81 - 82

 initializing, 80 - 81

 toolbars

 creating, 65 - 66

 maps, adding, 168 - 170

 txtPhone field editing mode, 327 - 328

 U
 UIDevice class, 312

 UIImagePickerController, 321

 UIKit framework, 213

 UIResponder class, 326

 UITextField class, 326

 UIView class, 213

 UIViewController class, 214

 UIWindow class, 213

 unit tests, 198

 updateContact() method, 98

 updateLabel: method, 331

 updates

 database entries, error handling,
 104 - 105

 label movements (accelerometer),
 331 - 332

 Location Manager

 heading, 299

 location, 298 - 299

 operating systems, 356

 URI (Uniform Resource Identifier), 182

 usability testing (apps), 355

97803e21947864_Book 1.indb 43897803e21947864_Book 1.indb 438 11/21/13 2:57 PM11/21/13 2:57 PM

439View Controllers

 users

 defaults (iOS), 236

 interaction buttons

 Android, 22 - 23

 iOS, 23

 locations, displaying on map, 301

 annotations, adding, 304 - 306

 user tracking, 302

 zooming in, 302 - 303

 permissions

 camera, 184

 phone, 181

 preferences, storing, 257 - 259

 tracking, 302

 V
 values folders (Eclipse), 37

 variables

 CAMER_REQUEST, 186

 currentContact, 99

 Geocode, 154

 gpsListener, 156

 inspecting, 106 - 107

 IntentFilter, 177

 View (iOS)

 changing to UIControl, 206

 connecting actions to methods, 207

 View Controllers, 213 - 214

 adding, 217

 code files, renaming, 220

 displaying at launch, configuring, 238

 keyboards, dismissing, 205 - 208

 Location, adding, 291 - 292

 Map, renaming, 300 - 301

 navigation bar, adding, 228

 overview, 198

 Navigation Controllers

 adding to View Controllers, 228

 navigating back to previous
screen, 229

 overview, 215 , 227

 outlets, creating, 203

 Picker View, 253 - 255

 data source, 255

 displaying data, 255 - 256

 implementing, 253 - 255

 protocols, adding, 253

 user selections, responding, 256

 populating, 275

 scroll view

 adding, 224 - 225

 content size, 224 - 225

 keyboards, dismissing, 226

 Segmented Control, overlapping,
 226

 Settings interface, 252 - 255

 switching between view and edit
modes, 230 - 233

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 tab bars, creating, 216

 files, renaming, 220

 images, 221 - 222

 tab names, changing, 218 - 219

 View Controller, adding, 217

 UI controls based on stored values,
setting, 257 - 258

 View Controllers

 adding, 217

 code files, renaming, 220

 titles, changing, 218 - 219

97803e21947864_Book 1.indb 43997803e21947864_Book 1.indb 439 11/21/13 2:57 PM11/21/13 2:57 PM

440 View Controllers

 widgets

 DatePickers, 75 , 78

 Change button, 85 - 86

 DatePickerDialog class, creating,
 83 - 84

 displaying, 78

 implementing in activities, 85

 EditText, 49

 addresses, 69

 autoformatting as typed, 101

 birthdays, 75 - 74

 city, state, zip code, 69 - 71

 contact names, 68

 email, 73 - 74

 hiding keyboards upon button
press, 103

 listeners, adding, 100 - 101

 long click event response, 182

 phone information, 70

 focus, clearing, 82

 form, 45

 labels, aligning, 72

 ListView, 116

 overview, 56

 RadioGroup, 107 - 109

 displaying current preference
activity, 111 - 112

 user preferences for each option,
storing, 112 - 113

 TextView

 adding, 46 - 47

 attributes, 45

 battery level, 175

 birthday input, 75 - 74

 contact addresses, 68 - 69

 Contact settings layout, 107 - 109

 email input, 73 - 74

 heading, 177 - 178

 phone information, 70

 settings layout, 107 - 109

 segues, 228

 Settings interface, adding, 252 - 253

 switching between view and edit
modes, 231

 changeEditMode: method,
implementing, 232

 text fields/buttons, referencing,
 232

 title names, changing, 218 - 219

 viewDidDisappear: method, 297

 viewDidLayoutSubviews: method, 225

 viewDidLoad: method, 16 , 275

 view life cycle (iOS), 16 - 17

 viewWill Appear: method, 276 , 302

 viewWillDisappear: method, 17

 virtual buttons (Android), 22 - 23

 W
 websites

 AdMob, 339 - 340

 ADT plug-in troubleshooting, 369

 Android

 in-app purchases, 341

 SDK download , xiv

 Apple University Program, xv

 Developer Console, 350

 Eclipse download, 361 , 363

 freelance jobs, 343

 Glyphish, 221

 Google Developer Console website, 150

 iOS in-app purchases, 341

 iTunes Connect, 351

 Java SE SDK download, 362

 publishing apps, 348

 SHA1 fingerprint, 151

 Small Business Administration, 343

 source code website , xix

 StackOverflow.com, xvi

 Xcode download , xv, 371

97803e21947864_Book 1.indb 44097803e21947864_Book 1.indb 440 11/21/13 2:57 PM11/21/13 2:57 PM

441Xcode

 saving, 195

 settings, 197 - 199

 target device, choosing, 195

 templates, 193

 refactoring, 220

 simulator, 200 - 201

 storyboard, 198

 supporting files, 198

 unit tests, 198

 user interfaces, creating, 199 - 200

 View

 changing to UIControl, 206

 connecting actions to methods,
 207

 View Controllers. See View Controllers

 welcome screen, 194

 workspace, 196 - 197

 Windows Eclipse installation, 363 - 365

 Workspace Launcher dialog, 32

 workspaces

 Xcode , 196 - 197

 Eclipse, configuring, 32

 X
 Xcode

 app behaviors, adding, 202 - 204

 AppDelegate files, 198

 app icons, 208 - 210

 asset catalog, 209

 placement, 208

 resolutions, 209 - 210

 classrooms, configuring, 373

 development environment, checking,
 379 - 381

 Dock, 206

 downloading, 371

 frameworks, 199

 Images.xcassets folder, 198

 installing, 371

 keyboards, dismissing, 205 - 208

 actions, connecting to methods,
 207

 backgroundTap: method, 205

 process overview, 208

 View, changing to UIControl, 206

 launch images, 210

 Object Library, 199

 projects

 class prefixes, 195

 Core Data support, adding,
 237 - 241

 folder, 196

 Main storyboard setting, 238

 MyContactList app, creating,
 215 - 216

97803e21947864_Book 1.indb 44197803e21947864_Book 1.indb 441 11/21/13 2:57 PM11/21/13 2:57 PM

	Contents
	Preface
	Chapter 3: Using Eclipse for Android Development
	Chapter 9 Using Xcode for iOS Development
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

