
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321940261
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321940261
https://plusone.google.com/share?url=http://www.informit.com/title/9780321940261
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321940261
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321940261/Free-Sample-Chapter

Praise for Introduction to Android™ Application Development,
Fourth Edition

“Introduction to Android™ Application Development, Fourth Edition, is a phenomenal read and
allows those interested in Android development to be brought up to speed and develop-
ing apps with minimal fuss. Everything from an introduction to the Android ecosystem
and setting up a development environment to creating and publishing Android applica-
tions is covered in depth and with technical expertise. Those who crave even more from
the book will be treated to a feast of useful links at the end of each chapter to help guide
them on and expand their new-found knowledge base.”
—Philip Dutson, UX and mobile developer for ICON Health & Fitness

“With this edition, you won’t find a more solid and comprehensive introduction to An-
droid programming. Even if you already have another Android book, Introduction to An-
droid™ Application Development makes a good second reference.”
—Douglas Jones, senior software engineer, Fullpower Technologies

“Introduction to Android™ Application Development, Fourth Edition, is an important update
to this invaluable reference for new and seasoned Android developers. It brings the latest
up-to-date information about the newest releases of Android, showing you how to keep
your application fresh on yesterday’s, today’s, and tomorrow’s Android devices.”
—Ray Rischpater, senior software engineer, Microsoft

This page intentionally left blank

Introduction
to Android™
Application

Development
Fourth Edition

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Introduction
to Android™
Application

Development

Android Essentials

Fourth Edition

Joseph Annuzzi, Jr.
Lauren Darcey
Shane Conder

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Annuzzi, Joseph, Jr.
 Introduction to Android application development : Android essentials / Joseph Annuzzi,
Jr., Lauren Darcey, Shane Conder.—Fourth edition.
 pages cm
 Revised edition of first part of: Android wireless application development / Shane
Conder, Lauren Darcey. c2010.
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-94026-1 (alk. paper)
 ISBN-10: 0-321-94026-1 (alk. paper)
 1. Application software—Development. 2. Android (Electronic resource) 3. Mobile
computing. 4. Wireless communication systems. I. Darcey, Lauren, 1977- II. Conder,
Shane, 1975- III. Darcey, Lauren, 1977- Android wireless application development. IV.
Title.
 QA76.76.A65A56 2014
 005.3—dc23
 2013035917

Copyright © 2014 Joseph Annuzzi, Jr., Lauren Darcey, and Shane Conder

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

Some figures that appear in this book have been reproduced from or are modifications
based on work created and shared by Google and used according to terms described
in the Creative Commons 3.0 Attribution License. See https://developers.google.com/
site-policies.

Screenshots of Google products follow these guidelines:
http://www.google.com/permissions/using-product-graphics.html

The following are registered trademarks of Google:

Android™, Chromecast™, Google Play™, Google Wallet™, Glass™, Google+™, Nexus™,
Google, and the Google logo are registered trademarks of Google Inc.

ISBN-13: 978-0-321-94026-1
ISBN-10: 0-321-94026-1

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan.
First printing: November, 2013

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Caroline Senay

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Christine Clark

Technical Reviews
Douglas Jones
Ray Rischpater

Publishing Coordinator
Olivia Basegio

Compositor
Shepherd, Inc.

http://www.google.com/permissions/using-product-graphics.html
https://developers.google.com/site.policies
https://developers.google.com/site.policies

❖

This book is dedicated to Cleopatra (Cleo).
—Joseph Annuzzi, Jr.

This book is dedicated to ESC.
—Lauren Darcey and Shane Conder

❖

This page intentionally left blank

Contents at a Glance
 Acknowledgments xxxi

 About the Authors xxxiii

 Introduction 1

I: An Overview of the Android Platform

 1 Introducing Android 11

 2 Setting Up Your Android Development
Environment 37

 3 Writing Your First Android Application 55

II: Android Application Basics

 4 Understanding the Anatomy of an Android
Application 97

 5 Defining Your Application Using the Android
Manifest File 115

 6 Managing Application Resources 137

III: Android User Interface Design Essentials

 7 Exploring User Interface Building Blocks 177

 8 Designing with Layouts 209

 9 Partitioning the User Interface with Fragments 243

 10 Displaying Dialogs 265

IV: Android Application Design Essentials

 11 Using Android Preferences 281

 12 Working with Files and Directories 301

 13 Leveraging Content Providers 315

 14 Designing Compatible Applications 331

V: Publishing and Distributing Android Applications

 15 Learning the Android Software Development
Process 355

 16 Designing and Developing Bulletproof Android
Applications 379

 17 Planning the Android Application Experience 395

 18 Testing Android Applications 423

 19 Publishing Your Android Application 459

VI: Appendixes

 A Mastering the Android Development Tools 485

 B Quick-Start Guide: The Android Emulator 505

 C Quick-Start Guide: Android DDMS 529

 D Android IDE and Eclipse Tips and Tricks 547

 E Answers to Quiz Questions 559

 Index 567

x Contents at a Glance

Contents
 Acknowledgments xxxi

 About the Authors xxxiii

 Introduction 1
Who Should Read This Book 1

Key Questions Answered in This Book 2

How This Book Is Structured 2

An Overview of Changes in This Edition 3

Development Environments Used in This Book 5

Supplementary Materials Available 6

Where to Find More Information 6

Conventions Used in This Book 7

Contacting the Authors 7

I: An Overview of the Android Platform

 1 Introducing Android 11

A Brief History of Mobile Software Development 11

Way Back When 11

“The Brick” 13

Wireless Application Protocol (WAP) 15

Proprietary Mobile Platforms 17

The Open Handset Alliance 18

Google Goes Wireless 18

Forming the Open Handset Alliance 19

Manufacturers: Designing Android Devices 19

Mobile Operators: Delivering the Android
Experience 20

Apps Drive Device Sales: Developing Android
Applications 21

Taking Advantage of All Android Has to Offer 22

The Android Marketplace: Where We Are Now 22

Android Platform Differences 23

Android: A Next-Generation Platform 23

Free and Open Source 25

Familiar and Inexpensive Development Tools 25

xii Contents

Reasonable Learning Curve for Developers 26

Enabling Development of Powerful Applications 26

Rich, Secure Application Integration 26

No Costly Obstacles for Development 27

A “Free Market” for Applications 27

A Growing Platform 28

The Android Platform 29

Android’s Underlying Architecture 29

Security and Permissions 31

Exploring Android Applications 32

Summary 36

Quiz Questions 36

Exercises 36

References and More Information 36

 2 Setting Up Your Android Development
Environment 37

Configuring Your Development Environment 37

Configuring Your Operating System for Device
Debugging 39

Configuring Your Android Hardware
for Debugging 39

Upgrading the Android SDK 42

Problems with the Android Software
Development Kit 42

Exploring the Android SDK 43

Understanding the Android SDK License
Agreement 43

Reading the Android SDK Documentation 44

Exploring the Core Android Application
Framework 45

Exploring the Core Android Tools 47

Exploring the Android Sample Applications 51

Summary 52

Quiz Questions 52

Exercises 53

References and More Information 53

 Contents xiii

 3 Writing Your First Android Application 55

Testing Your Development Environment 55

Adding the Android Samples Using the SDK
Manager 56

Adding the Snake Project to Your Android IDE
Workspace 57

Creating an AVD for Your Snake Project 61

Creating a Launch Configuration for Your Snake
Project 62

Running the Snake Application in the Android
Emulator 66

Building Your First Android Application 68

Creating and Configuring a New Android Project 69

Core Files and Directories of the Android
Application 73

Creating an AVD for Your Project 75

Creating a Launch Configuration for Your Project 75

Running Your Android Application in the Emulator 76

Debugging Your Android Application in the
Emulator 80

Adding Logging Support to Your Android Application 83

Adding Some Media Support to Your Application 84

Adding Location-Based Services to Your Application 88

Debugging Your Application on Hardware 90

Summary 92

Quiz Questions 93

Exercises 94

References and More Information 94

II: Android Application Basics

 4 Understanding the Anatomy of an Android
Application 97

Mastering Important Android Terminology 97

The Application Context 98

Retrieving the Application Context 98

Using the Application Context 98

Performing Application Tasks with Activities 99

The Lifecycle of an Android Activity 100

xiv Contents

Organizing Activity Components with
Fragments 105

Managing Activity Transitions with Intents 106

Transitioning between Activities with Intents 106

Organizing Application Navigation with Activities and
Intents 110

Working with Services 110

Receiving and Broadcasting Intents 111

Summary 112

Quiz Questions 112

Exercises 112

References and More Information 113

 5 Defining Your Application Using the Android
Manifest File 115

Configuring Android Applications Using
the Android Manifest File 115

Editing the Android Manifest File 116

Managing Your Application’s Identity 122

Versioning Your Application 122

Setting the Application Name and Icon 122

Enforcing Application System Requirements 123

Targeting Specific SDK Versions 123

Enforcing Application Platform Requirements 126

Working with External Libraries 128

Other Application Configuration Settings and
Filters 129

Registering Activities in the Android Manifest 129

Designating a Primary Entry Point Activity for Your
Application Using an Intent Filter 130

Configuring Other Intent Filters 130

Registering Other Application Components 131

Working with Permissions 131

Registering Permissions Your Application
Requires 131

Registering Permissions Your Application
Enforces 132

 Contents xv

Exploring Other Manifest File Settings 133

Summary 133

Quiz Questions 134

Exercises 134

References and More Information 135

 6 Managing Application Resources 137

What Are Resources? 137

Storing Application Resources 137

Resource Value Types 138

Accessing Resources Programmatically 142

Setting Simple Resource Values
Using the Android IDE 143

Working with Different Types of Resources 146

Working with String Resources 147

Using String Resources as Format Strings 148

Working with Quantity Strings 149

Working with String Arrays 150

Working with Boolean Resources 151

Working with Integer Resources 152

Working with Colors 152

Working with Dimensions 153

Drawable Resources 154

Working with Images 156

Working with Color State Lists 158

Working with Animation 159

Working with Menus 162

Working with XML Files 163

Working with Raw Files 164

References to Resources 165

Working with Layouts 166

Referencing System Resources 171

Summary 172

Quiz Questions 173

Exercises 173

References and More Information 173

xvi Contents

III: Android User Interface Design Essentials

 7 Exploring User Interface Building Blocks 177

Introducing Android Views and Layouts 177

The Android View 177

The Android Controls 177

The Android Layout 178

Displaying Text to Users with TextView 179

Configuring Layout and Sizing 179

Creating Contextual Links in Text 180

Retrieving Data from Users with Text Fields 183

Retrieving Text Input Using EditText Controls 183

Constraining User Input with Input Filters 184

Helping the User with Autocompletion 186

Giving Users Choices Using Spinner Controls 188

Allowing Simple User Selections with Buttons and
Switches 190

Using Basic Buttons 190

Using CheckBox and ToggleButton
Controls 193

Using RadioGroup and RadioButton 194

Retrieving Dates, Times, and Numbers from Users
with Pickers 197

Using Indicators to Display Progress and Activity
to Users 199

Indicating Progress with ProgressBar 199

Indicating Activity with Activity Bars and Activity
Circles 202

Adjusting Progress with Seek Bars 202

Other Valuable User Interface Controls 203

Displaying Rating Data with RatingBar 204

Showing Time Passage with the
Chronometer 205

Displaying the Time 206

Summary 207

Quiz Questions 207

Exercises 207

References and More Information 208

 Contents xvii

 8 Designing with Layouts 209

Creating User Interfaces in Android 209

Creating Layouts Using XML Resources 209

Creating Layouts Programmatically 211

Organizing Your User Interface 214

Using ViewGroup Subclasses for Layout
Design 214

Using ViewGroup Subclasses as View
Containers 214

Using Built-in Layout Classes 215

Using LinearLayout 217

Using RelativeLayout 219

Using FrameLayout 222

Using TableLayout 224

Using GridLayout 228

Using Multiple Layouts on a Screen 230

Using Container Control Classes 232

Using Data-Driven Containers 233

Adding Scrolling Support 238

Exploring Other View Containers 239

Summary 239

Quiz Questions 239

Exercises 240

References and More Information 240

 9 Partitioning the User Interface with Fragments 243

Understanding Fragments 243

Understanding the Fragment Lifecycle 244

Working with Special Types of Fragments 247

Designing Fragment-Based Applications 248

Using the Android Support Package 258

Adding Fragment Support to Legacy
Applications 259

Using Fragments in New Applications Targeting Older
Platforms 259

Linking the Android Support Package to Your
Project 260

Exploring Nested Fragments 261

xviii Contents

Summary 261

Quiz Questions 262

Exercises 262

References and More Information 263

 10 Displaying Dialogs 265

Choosing Your Dialog Implementation 265

Exploring the Different Types of Dialogs 266

Working with Dialogs and Dialog Fragments 267

Tracing the Lifecycle of a Dialog and
DialogFragment 268

Working with Custom Dialogs 270

Working with Support Package Dialog Fragments 271

Summary 275

Quiz Questions 276

Exercises 276

References and More Information 276

IV: Android Application Design Essentials

 11 Using Android Preferences 281

Working with Application Preferences 281

Determining When Preferences Are Appropriate 281

Storing Different Types of Preference Values 282

Creating Private Preferences for Use by a Single
Activity 282

Creating Shared Preferences for Use by Multiple
Activities 282

Searching and Reading Preferences 283

Adding, Updating, and Deleting Preferences 284

Reacting to Preference Changes 285

Finding Preferences Data
on the Android File System 285

Creating Manageable User Preferences 286

Creating a Preference Resource File 287

Using the PreferenceActivity Class 289

Organizing Preferences with Headers 291

Learning about Cloud Save
for Android Applications 296

 Contents xix

Summary 298

Quiz Questions 298

Exercises 299

References and More Information 299

 12 Working with Files and Directories 301

Working with Application Data on a Device 301

Practicing Good File Management 302

Understanding Android File Permissions 303

Working with Files and Directories 303

Exploring with the Android Application
Directories 304

Working with Other Directories and Files
on the Android File System 309

Summary 312

Quiz Questions 312

Exercises 313

References and More Information 313

 13 Leveraging Content Providers 315

Exploring Android’s Content Providers 315

Using the MediaStore Content Provider 316

Using the CallLog Content Provider 318

Using the Browser Content Provider 319

Using the CalendarContract Content
Provider 321

Using the UserDictionary Content Provider 321

Using the VoicemailContract Content
Provider 322

Using the Settings Content Provider 322

Introducing the ContactsContract Content
Providers 322

Modifying Content Provider Data 324

Adding Records 325

Updating Records 326

Deleting Records 327

Using Third-Party Content Providers 328

Summary 328

Quiz Questions 328

xx Contents

Exercises 329

References and More Information 329

 14 Designing Compatible Applications 331

Maximizing Application Compatibility 331

Designing User Interfaces for Compatibility 333

Working with Fragments 335

Leveraging the Android Support Library 335

Supporting Specific Screen Types 335

Working with Nine-Patch Stretchable Graphics 336

Using the “Working Square” Principle 336

Providing Alternative Application Resources 338

Understanding How Resources Are Resolved 338

Organizing Alternative Resources with Qualifiers 339

Providing Resources for Different Orientations 345

Using Alternative Resources Programmatically 345

Organizing Application Resources Efficiently 345

Targeting Tablets, TVs, and Other New Devices 347

Targeting Tablet Devices 347

Targeting Google TV Devices 348

Targeting Google Chromecast Devices 350

Summary 350

Quiz Questions 350

Exercises 351

References and More Information 351

V: Publishing and Distributing Android Applications

 15 Learning the Android Software Development
Process 355

An Overview of the Mobile Development Process 355

Choosing a Software Methodology 356

Understanding the Dangers of Waterfall
Approaches 356

Understanding the Value of Iteration 357

Gathering Application Requirements 357

Determining Project Requirements 357

Developing Use Cases for Mobile Applications 360

 Contents xxi

Incorporating Third-Party Requirements and
Recommendations 360

Managing a Device Database 361

Assessing Project Risks 364

Identifying Target Devices 364

Acquiring Target Devices 366

Determining the Feasibility of Application
Requirements 366

Understanding Quality Assurance Risks 367

Writing Essential Project Documentation 368

Developing Test Plans for Quality Assurance
Purposes 368

Providing Documentation Required by Third
Parties 369

Providing Documentation for Maintenance and
Porting 369

Leveraging Configuration Management Systems 369

Choosing a Source Control System 369

Implementing an Application Version System That
Works 370

Designing Mobile Applications 370

Understanding Mobile Device Limitations 370

Exploring Common Mobile Application
Architectures 371

Designing for Extensibility and Maintenance 371

Designing for Application Interoperability 372

Developing Mobile Applications 373

Testing Mobile Applications 373

Controlling the Test Release 374

Deploying Mobile Applications 374

Determining Target Markets 375

Supporting and Maintaining Mobile Applications 375

Track and Address Crashes Reported by Users 376

Testing Firmware Upgrades 376

Maintaining Adequate Application
Documentation 376

Managing Live Server Changes 376

Identifying Low-Risk Porting Opportunities 376

Application Feature Selection 377

xxii Contents

Summary 377

Quiz Questions 377

Exercises 377

References and More Information 378

 16 Designing and Developing Bulletproof Android
Applications 379

Best Practices in Designing Bulletproof
Mobile Applications 379

Meeting Mobile Users’ Demands 380

Designing User Interfaces for Mobile Devices 380

Designing Stable and Responsive Mobile
Applications 381

Designing Secure Mobile Applications 383

Designing Mobile Applications for Maximum
Profit 383

Following the Android Application Quality
Guidelines 384

Leveraging Third-Party Quality Standards 385

Designing Mobile Applications for Ease
of Maintenance and Upgrades 385

Leveraging Android Tools for Application Design 387

Avoiding Silly Mistakes in Android
Application Design 388

Best Practices in Developing
Bulletproof Mobile Applications 388

Designing a Development Process That Works
for Mobile Development 389

Testing the Feasibility of Your Application Early and
Often 389

Using Coding Standards, Reviews, and Unit Tests
to Improve Code Quality 390

Handling Defects Occurring on a Single Device 392

Leveraging Android Tools for Development 393

Avoiding Silly Mistakes in Android Application
Development 393

Summary 393

Quiz Questions 394

Exercises 394

References and More Information 394

 Contents xxiii

 17 Planning the Android Application Experience 395

Thinking about Objectives 395

User Objectives 396

Team Objectives 396

Objectives of Other Stakeholders 396

Techniques for Focusing Your Product Efforts 397

Personas 397

Entity Discovery and Organization 398

Use Cases and Use Case Diagrams 398

Charting Your Application’s Navigation 400

Android Application Navigation Scenarios 400

Launching Tasks and Navigating the Back
Stack 404

Navigating with Fragments 404

Planning Application Navigation 404

Android Navigation Design Patterns 405

Encouraging Action 408

Menus 410

Action Bars 411

Dialogs 415

Actions Originating from Your Application’s
Content 416

Communicating Your Application’s Identity 416

Designing Screen Layouts 417

Sketches 417

Wireframes 417

Design Comps 417

Reacting Properly with Visual Feedback 418

Observing Target Users for Usability 418

Mocking Up the Application 418

Testing the Release Build 419

Summary 419

Quiz Questions 420

Exercises 420

References and More Information 420

 18 Testing Android Applications 423

Best Practices in Testing Mobile Applications 423

Designing a Mobile Application Defect-Tracking
System 423

Managing the Testing Environment 425

Maximizing Testing Coverage 427

Leveraging Android SDK Tools for Android Application
Testing 434

Avoiding Silly Mistakes in Android Application
Testing 435

Android Application Testing Essentials 435

Unit Testing with JUnit 436

Introducing the PasswordMatcher
Application 437

Determining What Our Tests Should Prove 441

Creating an Android Test Project 441

Writing the Tests 447

Running Your First Test Using the Android IDE 450

Analyzing the Test Results 450

Adding Additional Tests 453

More Android Automated Testing Programs
and APIs 455

Summary 457

Quiz Questions 457

Exercises 457

References and More Information 458

 19 Publishing Your Android Application 459

Choosing the Right Distribution Model 459

Protecting Your Intellectual Property 460

Following the Policies of Google Play 461

Billing the User 461

Packaging Your Application for Publication 462

Preparing Your Code for Packaging 463

Packing and Signing Your Application 465

Testing the Release Version of Your Application
Package 467

Including All Required Resources 467

xxiv Contents

 Contents xxv

Readying Your Servers or Services 467

Distributing Your Application 467

Publishing to Google Play 468

Signing Up for Publishing to Google Play 468

Uploading Your Application to Google Play 471

Uploading Application Marketing Assets 473

Configuring Pricing and Distribution Details 474

Configuring Additional Application Options 475

Managing Other Developer Console Options 476

Publishing Your Application to Google Play 476

Managing Your Application on Google Play 476

Google Play Staged Rollouts 478

Publishing to the Google Play Private Channel 478

Translating Your Application 478

Publishing Using Other Alternatives 479

Self-Publishing Your Application 479

Summary 480

Quiz Questions 481

Exercises 481

References and More Information 481

VI: Appendixes

 A Mastering the Android Development Tools 485

Using the Android Documentation 485

Leveraging the Android Emulator 489

Viewing Application Log Data with LogCat 490

Debugging Applications with DDMS 490

Using Android Debug Bridge (ADB) 490

Using the Resource Editors and UI Designer 491

Using the Android Hierarchy Viewer 493

Launching the Hierarchy Viewer 494

Working in Layout View Mode 495

Optimizing Your User Interface 496

Working in Pixel Perfect Mode 497

Working with Nine-Patch Stretchable Graphics 497

Working with Other Android Tools 500

Summary 502

Quiz Questions 503

Exercises 503

References and More Information 503

 B Quick-Start Guide: The Android Emulator 505

Simulating Reality: The Emulator’s Purpose 505

Working with Android Virtual Devices 507

Using the Android Virtual Device Manager 508

Creating an AVD 509

Creating AVDs with Custom Hardware Settings 510

Launching the Emulator with a Specific AVD 512

Maintaining Emulator Performance 512

Configuring Emulator Startup Options 513

Launching an Emulator to Run an Application 513

Launching an Emulator from the Android Virtual
Device Manager 515

Configuring the GPS Location of the Emulator 516

Calling between Two Emulator Instances 517

Messaging between Two Emulator Instances 518

Interacting with the Emulator
through the Console 520

Using the Console to Simulate Incoming Calls 521

Using the Console to Simulate SMS Messages 522

Using the Console to Send GPS Coordinates 523

Using the Console to Monitor Network Status 523

Using the Console to Manipulate Power
Settings 523

Using Other Console Commands 524

Enjoying the Emulator 524

Understanding Emulator Limitations 525

Summary 526

Quiz Questions 526

Exercises 527

References and More Information 527

 C Quick-Start Guide: Android DDMS 529

Using DDMS with the Android IDE
and as a Standalone Application 529

xxvi Contents

 Contents xxvii

Getting Up to Speed Using Key Features of DDMS 530

Working with Processes, Threads, and the Heap 531

Attaching a Debugger to an Android Application 531

Stopping a Process 532

Monitoring Thread Activity of an Android
Application 532

Monitoring Heap Activity 532

Prompting Garbage Collection 534

Creating and Using an HPROF File 534

Using the Allocation Tracker 534

Viewing Network Statistics 535

Working with the File Explorer 536

Browsing the File System of an Emulator or
Device 536

Copying Files from the Emulator or Device 538

Copying Files to the Emulator or Device 539

Deleting Files on the Emulator or Device 539

Working with the Emulator Control 539

Change Telephony Status 540

Simulating Incoming Voice Calls 540

Simulating Incoming SMS Messages 540

Sending a Location Fix 541

Working with the System Information Pane 541

Taking Screen Captures of the Emulator
and Device Screens 542

Working with Application Logging 543

Summary 544

Quiz Questions 545

Exercises 545

References and More Information 545

 D Android IDE and Eclipse Tips and Tricks 547

Organizing Your Android IDE Workspace 547

Integrating with Source Control Services 547

Repositioning Tabs within Perspectives 548

Maximizing Windows 548

Minimizing Windows 548

Viewing Windows Side by Side 548

xxviii Contents

Viewing Two Sections of the Same File 550

Closing Unwanted Tabs 550

Keeping Windows under Control 550

Creating Custom Log Filters 551

Searching Your Project 551

Organizing Android IDE Tasks 551

Writing Code in Java 552

Using Autocomplete 552

Creating New Classes and Methods 552

Organizing Imports 553

Formatting Code 553

Renaming Almost Anything 553

Refactoring Code 554

Reorganizing Code 555

Using QuickFix 555

Providing Javadoc-Style Documentation 556

Resolving Mysterious Build Errors 556

Summary 557

Quiz Questions 557

Exercises 557

References and More Information 557

 E Answers to Quiz Questions 559

Chapter 1: Introducing Android 559

Chapter 2: Setting Up Your Android
Development Environment 559

Chapter 3: Writing Your First Android Application 559

Chapter 4: Android Application Basics 560

Chapter 5: Defining Your Application Using the Android
Manifest File 560

Chapter 6: Managing Application Resources 560

Chapter 7: Exploring User Interface Building Blocks 561

Chapter 8: Designing with Layouts 561

Chapter 9: Partitioning the User Interface with
Fragments 561

Chapter 10: Displaying Dialogs 562

Chapter 11: Using Android Preferences 562

Chapter 12: Working with Files and Directories 562

 Contents xxix

Chapter 13: Leveraging Content Providers 562

Chapter 14: Designing Compatible Applications 563

Chapter 15: Learning the Android Software Development
Process 563

Chapter 16: Designing and Developing Bulletproof
Android Applications 563

Chapter 17: Planning the Android Application
Experience 564

Chapter 18: Testing Android Applications 564

Chapter 19: Publishing Your Android Application 564

Appendix A: Mastering the Android Development
Tools 565

Appendix B: Quick-Start Guide: The Android
Emulator 565

Appendix C: Quick-Start Guide: Android DDMS 565

Appendix D: Android IDE and Eclipse Tips
and Tricks 566

 Index 567

This page intentionally left blank

Acknowledgments

This book is the result of collaboration among a great group, from the efforts of the team
at Pearson Education (Addison-Wesley Professional); from the suggestions made by the
technical reviewers; and from the support of family, friends, coworkers, and acquaintances
alike. We’d like to thank the Android developer community, Google, and the Open
Handset Alliance for their vision and expertise. Special thanks go to Mark Taub for be-
lieving in the vision for this edition; Laura Lewin, who was the driving force behind the
book and without whom it would not have become a reality; Olivia Basegio, who was
instrumental in orchestrating the efforts of everyone involved; Songlin Qiu for perform-
ing countless iterations through the manuscript to make this book ready for production;
and the technical reviewers: Ray Rischpater, who made many beneficial recommenda-
tions, and Doug Jones, who suggested improvements of the fine details (as well as Mike
Wallace, Mark Gjoel, Dan Galpin, Tony Hillerson, Ronan Schwarz, and Charles Stearns,
who reviewed previous editions). Dan Galpin also graciously provided the clever Android
graphics used for Tips, Notes, and Warnings. Amy Badger must be commended for her
wonderful waterfall illustration, and we also thank Hans Bodlaender for letting us use the
nifty chess font he developed as a hobby project.

This page intentionally left blank

About the Authors

Joseph Annuzzi, Jr., is a freelance software architect, graphic artist, writer, and techni-
cal reviewer. He usually can be found mastering the Android platform, implementing
cutting-edge HTML5 capabilities, leveraging various cloud technologies, speaking in dif-
ferent programming languages, working with diverse frameworks, integrating with various
social APIs, tinkering with peer-to-peer, cryptography, and computer vision algorithms, or
creating stunningly realistic 3D renders. He is always on the lookout for disruptive Inter-
net and mobile technologies and has multiple patent applications in process. He graduated
from the University of California, Davis, with a BS in managerial economics and a minor
in computer science and lives where much of the action is, Silicon Valley.

When he is not working with technology, he has been known to lounge in the sun
on the beaches of the Black Sea with international movie stars; he has trekked through
the Bavarian forest in winter, has immersed himself in the culture of the Italian Mediter-
ranean, and has narrowly escaped the wrath of an organized crime ring in Eastern Europe
after his taxi dropped him off in front of the bank ATM they were liquidating. He also
lives an active and healthy lifestyle, designs and performs custom fitness training routines
to stay in shape, and adores his loyal beagle, Cleopatra.

Lauren Darcey is responsible for the technical leadership and direction of a small soft-
ware company specializing in mobile technologies, including Android, iOS, BlackBerry,
Palm Pre, BREW, and J2ME, and consulting services. With more than two decades of
experience in professional software production, Lauren is a recognized authority in appli-
cation architecture and the development of commercial-grade mobile applications. Lau-
ren received a BS in computer science from the University of California, Santa Cruz.

She spends her copious free time traveling the world with her geeky mobile-minded
husband and is an avid nature photographer. Her work has been published in books and
newspapers around the world. In South Africa, she dove with 4-meter-long great white
sharks and got stuck between a herd of rampaging hippopotami and an irritated bull
 elephant. She’s been attacked by monkeys in Japan, gotten stuck in a ravine with two
hungry lions in Kenya, gotten thirsty in Egypt, narrowly avoided a coup d état in Thailand,
geocached her way through the Swiss Alps, drank her way through the beer halls of Ger-
many, slept in the crumbling castles of Europe, and gotten her tongue stuck to an iceberg
in Iceland (while being watched by a herd of suspicious wild reindeer).

Shane Conder has extensive development experience and has focused his attention on
mobile and embedded development for the past decade. He has designed and developed
many commercial applications for Android, iOS, BREW, BlackBerry, J2ME, Palm, and

xxxiv About the Authors

Windows Mobile—some of which have been installed on millions of phones worldwide.
Shane has written extensively about the mobile industry and evaluated mobile develop-
ment platforms on his tech blogs and is well known within the blogosphere. Shane re-
ceived a BS in computer science from the University of California.

A self-admitted gadget freak, Shane always has the latest smartphone, tablet, or other
mobile device. He can often be found fiddling with the latest technologies, such as cloud
services and mobile platforms, and other exciting, state-of-the-art technologies that acti-
vate the creative part of his brain. He also enjoys traveling the world with his geeky wife,
even if she did make him dive with 4-meter-long great white sharks and almost get eaten
by a lion in Kenya. He admits that he has to take at least two phones with him when
backpacking—even though there is no coverage—and that he snickered and whipped out
his Android phone to take a picture when Laurie got her tongue stuck to that iceberg in
Iceland, and that he is catching on that he should be writing his own bio.

Introduction

Android is a popular, free, open-source mobile platform that has taken the wireless
world by storm. This book provides guidance for software development teams on design-
ing, developing, testing, debugging, and distributing professional Android applications. If
you’re a veteran mobile developer, you can find tips and tricks to streamline the develop-
ment process and take advantage of Android’s unique features. If you’re new to mobile
development, this book provides everything you need to make a smooth transition from
traditional software development to mobile development—specifically, its most promising
platform: Android.

Who Should Read This Book
This book includes tips for successful mobile development based upon our years in the
mobile industry and covers everything you need to know in order to run a successful
Android project from concept to completion. We cover how the mobile software process
differs from traditional software development, including tricks to save valuable time and
pitfalls to avoid. Regardless of the size of your project, this book is for you.

This book was written for several audiences:

 ■ Software developers who want to learn to develop professional Android ap-
plications. The bulk of this book is targeted at software developers with Java experi-
ence who do not necessarily have mobile development experience. More-seasoned
developers of mobile applications can learn how to take advantage of Android and
how it differs from the other technologies on the mobile development market today.

 ■ Quality assurance personnel tasked with testing Android applications.
Whether they are black-box or white-box testing, quality assurance engineers can
find this book invaluable. We devote several chapters to mobile QA concerns, in-
cluding topics such as developing solid test plans and defect-tracking systems for
mobile applications, how to manage handsets, and how to test applications thor-
oughly using all the Android tools available.

 ■ Project managers planning and managing Android development teams.
Managers can use this book to help plan, hire for, and execute Android projects
from start to finish. We cover project risk management and how to keep Android
projects running smoothly.

 ■ Other audiences. This book is useful not only to the software developer, but also
to the corporation looking at potential vertical market applications, the entrepre-
neur thinking about a cool phone application, and the hobbyist looking for some

2 Introduction

fun with his or her new phone. Businesses seeking to evaluate Android for their
specific needs (including feasibility analysis) can also find the information provided
valuable. Anyone with an Android handset and a good idea for a mobile application
can put the information in this book to use for fun and profit.

Key Questions Answered in This Book
This book answers the following questions:

1. What is Android? How do the SDK versions differ?

2. How is Android different from other mobile technologies, and how can develop-
ers take advantage of these differences?

3. How do developers use the Android SDK and ADT Bundle to develop and debug
Android applications on the emulator and handsets?

4. How are Android applications structured?

5. How do developers design robust user interfaces for mobile—specifically, for
Android?

6. What capabilities does the Android SDK have and how can developers use them?

7. How does the mobile development process differ from traditional desktop
development?

8. What strategies work best for Android development?

9. What do managers, developers, and testers need to look for when planning, devel-
oping, and testing a mobile application?

10. How do mobile teams design bulletproof Android applications for publication?

11. How do mobile teams package Android applications for deployment?

12. How do mobile teams make money from Android applications?

13. And, finally, what is new in this edition of the book?

How This Book Is Structured
Introduction to Android Application Development, Fourth Edition focuses on Android essen-
tials, including setting up the development environment, understanding the application
lifecycle, user interface design, developing for different types of devices, and the mobile
software process from design and development to testing and publication of commercial-
grade applications.

The book is divided into six parts. Here is an overview of the various parts:

 ■ Part I: An Overview of the Android Platform
Part I provides an introduction to Android, explaining how it differs from other
mobile platforms. You become familiar with the Android SDK and tools, install
the development tools, and write and run your first Android application—on the

 An Overview of Changes in This Edition 3

emulator and on a handset. This section is of primary interest to developers and
testers, especially white-box testers.

 ■ Part II: Android Application Basics
Part II introduces the design principles necessary to write Android applications. You
learn how Android applications are structured and how to include resources, such as
strings, graphics, and user interface components, in your projects. This section is of
primary interest to developers.

 ■ Part III: Android User Interface Design Essentials
Part III dives deeper into how user interfaces are designed in Android. You learn
about the core user interface element in Android: the View. You also learn about the
most common user interface controls and layouts provided in the Android SDK.
This section is of primary interest to developers.

 ■ Part IV: Android Application Design Essentials
Part IV covers the features used by most Android applications, including storing
persistent application data using preferences and working with files, directories, and
content providers. You also learn how to design applications that will run smoothly
on many different Android devices. This section is of primary interest to developers.

 ■ Part V: Publishing and Distributing Android Applications
Part V covers the software development process for mobile, from start to finish, with
tips and tricks for project management, software developers, user experience design-
ers, and quality assurance personnel.

 ■ Part VI: Appendixes
Part VI includes several helpful appendixes to help you get up and running with the
most important Android tools. This section consists of an overview of the Android
development tools, two helpful quick-start guides for the Android development
tools—the emulator and DDMS—an appendix of Android IDE tips and tricks, as well
as answers to the end-of-chapter quiz questions.

An Overview of Changes in This Edition
When we began writing the first edition of this book, there were no Android devices on
the market. Today there are hundreds of devices shipping all over the world—smartphones,
tablets, e-book readers, smart watches, and specialty devices such as gaming consoles,
Google TV, and Google Glass. Other devices such as Google Chromecast provide screen
sharing between Android devices and TVs.

The Android platform has gone through extensive changes since the first edition of
this book was published. The Android SDK has many new features, and the development
tools have received many much-needed upgrades. Android, as a technology, is now the
leader within the mobile marketplace.

In this new edition, we took the opportunity to add a wealth of information about
how to plan the Android application experience for users. In addition, we have in-
cluded valuable and ready-to-use techniques for automating the testing of your Android

4 Introduction

applications, to ensure that you deliver high-quality code. We have also updated many
chapters and accompanying content for making use of Fragment-based implementation
approaches. But don’t worry, it’s still the book readers loved the first, second, and third
time around; it’s just much bigger, better, and more comprehensive, following many best
practices. In addition to adding new content, we’ve retested and upgraded all existing
content (text and sample code) for use with the latest Android SDKs available while still
remaining backward compatible. We created quiz questions to help readers ensure they
understand each chapter’s content, and we added end-of-chapter exercises for readers to
perform to dig deeper into all that Android has to offer. The Android development com-
munity is diverse, and we aim to support all developers, regardless of which devices they
are developing for. This includes developers who need to target nearly all platforms, so
coverage in some key areas of older SDKs continues to be included because it’s often the
most reasonable option for compatibility.

Here are some of the highlights of the additions and enhancements we’ve made to this
edition:

 ■ Coverage of the latest and greatest Android tools and utilities is included.
 ■ The topic of planning the Android application experience now has its own chap-
ter, which includes a discussion of different navigation patterns with a new code
sample and presents techniques that you can use to improve the quality of the user
experience.

 ■ The chapter on testing has brand-new content to include topics such as unit testing
and provides a practical code sample showing how to leverage the automated testing
techniques used by the experts for testing their Android applications.

 ■ A new code sample and a discussion of how to add an ActionBar to your applica-
tions have been included.

 ■ The chapter on dialogs has been completely updated to make use of DialogFragments.
 ■ The chapter on Android preferences now includes an additional code sample with
a brand-new discussion of how to add preference fragments that display accordingly
within single-pane and multipane layouts.

 ■ The publishing chapter has been completely redesigned to discuss using the new
Google Play Developer Console for publishing your applications, in addition to
outlining new features provided within the console.

 ■ All chapters and appendixes now include quiz questions and exercises for readers to
test their knowledge of the subject matter presented.

 ■ All existing chapters have been updated, often with some entirely new sections.
 ■ All sample code and accompanying applications have been updated to work with
the latest SDK.

As you can see, we cover many of the hottest and most exciting features that An-
droid has to offer. We didn’t take this review lightly; we touched every existing chapter,

 Development Environments Used in This Book 5

updated content, and added new chapters as well. Finally, we included many additions,
clarifications, and, yes, even a few fixes based on the feedback from our fantastic (and
meticulous) readers. Thank you!

Development Environments Used in This Book
The Android code in this book was written using the following development
environments:

 ■ Windows 7
 ■ Android ADT Bundle (the adt-bundle-windows-x86-20130729.zip file was used)
 ■ Android SDK Version 4.3, API Level 18 (Jelly Bean)
 ■ Android SDK Tools Revision 22.0.5
 ■ Android SDK Platform Tools 18.0.1
 ■ Android SDK Build Tools 18.0.1
 ■ Android Support Library Revision 18 (where applicable)
 ■ Java SE Development Kit (JDK) 6 Update 45
 ■ Android devices: Nexus 4 (phone), Nexus 7 (small tablet), and Nexus 10 (large tablet)

The Android platform continues to grow aggressively in market share against com-
peting mobile platforms, such as Apple iOS and BlackBerry. New and exciting types of
Android devices reach consumers’ hands at a furious pace. Developers have embraced
Android as a target platform to reach the device users of today and tomorrow.

Android’s latest major platform update, Android 4.3—frequently called by its code
name, Jelly Bean, or just JB—brings many new features that help differentiate Android
from the competition. This book features the latest SDK and tools available, but it does
not focus on them to the detriment of popular legacy versions of the platform. The book
is meant to be an overall reference to help developers support all popular devices on the
market today. As of the writing of this book, approximately 37.9% of users’ devices are
running a version of Android Jelly Bean, 4.1 or 4.2. Of course, some devices will receive
upgrades, and users will purchase new Jelly Bean devices as they become available, but for
now, developers need to straddle this gap and support numerous versions of Android to
reach the majority of users in the field. In addition, the next version of the Android oper-
ating system is likely to be released in the near future.

So what does this mean for this book? It means we provide legacy API support and
discuss some of the newer APIs available in later versions of the Android SDK. We dis-
cuss strategies for supporting all (or at least most) users in terms of compatibility. And we
provide screenshots that highlight different versions of the Android SDK, because each
major revision has brought with it a change in the look and feel of the overall platform.
That said, we are assuming that you are downloading the latest Android tools, so we pro-
vide screenshots and steps that support the latest tools available at the time of writing, not

6 Introduction

legacy tools. Those are the boundaries we set when trying to determine what to include
and leave out of this book.

Supplementary Materials Available
The source code that accompanies this book is available for download from our book’s
website: http://introductiontoandroid.blogspot.com/2013/05/book-code-samples.html. You’ll
also find other Android topics discussed at our book website (http://introductiontoandroid
.blogspot.com).

Where to Find More Information
There is a vibrant, helpful Android developer community on the Web. Here are a num-
ber of useful websites for Android developers and followers of the wireless industry:

 ■ Android Developer website: the Android SDK and developer reference site:
http://d.android.com/index.html or http://d.android.com

 ■ Google Plus: Android Developers Group
https://plus.google.com/+AndroidDevelopers/posts

 ■ Stack Overflow: the Android website with great technical information (complete
with tags) and an official support forum for developers:
http://stackoverflow.com/questions/tagged/android

 ■ Open Handset Alliance: Android manufacturers, operators, and developers:
http://openhandsetalliance.com

 ■ Google Play: buy and sell Android applications:
https://play.google.com/store

 ■ Mobiletuts+: mobile development tutorials, including Android:
http://mobile.tutsplus.com/category/tutorials/android

 ■ anddev.org: an Android developer forum:
http://anddev.org

 ■ Google Team Android Apps: open-source Android applications:
http://apps-for-android.googlecode.com

 ■ Android Tools Project Site: the tools team discusses updates and changes:
https://sites.google.com/a/android.com/tools/recent

 ■ FierceDeveloper: a weekly newsletter for wireless developers:
http://fiercedeveloper.com

 ■ Wireless Developer Network: daily news on the wireless industry:
http://wirelessdevnet.com

http://introductiontoandroid.blogspot.com/2013/05/book-code-samples.html
http://introductiontoandroid.blogspot.com
http://introductiontoandroid.blogspot.com
http://d.android.com/index.html
http://d.android.com
http://stackoverflow.com/questions/tagged/android
http://openhandsetalliance.com
http://mobile.tutsplus.com/category/tutorials/android
http://anddev.org
http://apps-for-android.googlecode.com
http://fiercedeveloper.com
http://wirelessdevnet.com
https://plus.google.com/+AndroidDevelopers/posts
https://play.google.com/store
https://sites.google.com/a/android.com/tools/recent

 Contacting the Authors 7

 ■ XDA-Developers Android Forum: from general development to ROMs:
http://forum.xda-developers.com/forumdisplay.php?f=564

 ■ Developer.com: a developer-oriented site with mobile articles:
http://developer.com

Conventions Used in This Book
This book uses the following conventions:

 ■ Code and programming terms are set in monospace text.
 ■ Java import statements, exception handling, and error checking are often removed
from printed code examples for clarity and to keep the book a reasonable length.

This book also presents information in the following sidebars:

Tip
Tips provide useful information or hints related to the current text.

Note
Notes provide additional information that might be interesting or relevant.

Warning
Warnings provide hints or tips about pitfalls that may be encountered and how to avoid
them.

Contacting the Authors
We welcome your comments, questions, and feedback. We invite you to visit our blog at

 ■ http://introductiontoandroid.blogspot.com

Or email us at

 ■ introtoandroid4e@gmail.com

Circle us on Google+:

 ■ Joseph Annuzzi, Jr.: http://goo.gl/FBQeL
 ■ Lauren Darcey: http://goo.gl/P3RGo
 ■ Shane Conder: http://goo.gl/BpVJh

http://forum.xda-developers.com/forumdisplay.php?f=564
http://developer.com
http://introductiontoandroid.blogspot.com
http://goo.gl/FBQeL
http://goo.gl/P3RGo
http://goo.gl/BpVJh

This page intentionally left blank

3
Writing Your First

Android Application

You should now have a workable Android development environment set up on your
computer. Ideally, you have an Android device as well. Now it’s time for you to start
writing some Android code. In this chapter, you learn how to install the Android sample
applications and to add and create Android projects from within the Android IDE. You
also learn how to verify that your Android development environment is set up correctly.
You then write and debug your first Android application in the software emulator and on
an Android device.

Note
The Android Development Tool Bundles are updated frequently. We have made every attempt
to provide the latest steps for the latest tools. However, these steps and the user interfaces
described in this chapter may change at any time. Please refer to the Android development
website (http://d.android.com/sdk/index.html) and our book website (http://
introductiontoandroid.blogspot.com) for the latest information.

Testing Your Development Environment
The best way to make sure you configured your development environment correctly is
to run an existing Android application. You can do this easily by using one of the sample
applications provided as part of the Android SDK in the samples subdirectory found
where your Android SDK is installed.

Within the Android SDK sample applications, you will find a classic game called Snake
(http://en.wikipedia.org/wiki/Snake_(video_game)). To build and run the Snake application,
you must create a new Android project in your Android IDE workspace based on the
existing Android sample project, create an appropriate Android Virtual Device (AVD)
profile, and configure a launch configuration for that project. After you have everything
set up correctly, you can build the application and run it on the Android emulator and
on an Android device. By testing your development environment with a sample applica-
tion, you can rule out project configuration and coding issues and focus on determining

http://d.android.com/sdk/index.html
http://introductiontoandroid.blogspot.com
http://introductiontoandroid.blogspot.com
http://en.wikipedia.org/wiki/Snake_(video_game)

56 Chapter 3 Writing Your First Android Application

whether the tools are set up properly for Android development. After this fact has been
established, you can move on to writing and compiling your own applications.

Adding the Android Samples Using the SDK Manager
One quick way to learn how to develop Android applications is by reviewing an applica-
tion that has already been created. There are many Android applications available for this
purpose, but first we must download them. Here is how:

1. From within the Android IDE, click the Android SDK Manager icon () to open
the Android SDK Manager. You should see a dialog similar to that in Figure 3.1.

2. You now need to install the Samples for SDK listed under Android 4.3 (API 18),
so go ahead and select this item. You may also want to install a few additional
items along with the samples, so select the following for installation (shown in Fig-
ure 3.1): Documentation for Android SDK and Google APIs. Then click Install
 Packages. Make sure that the proper SDK Tools, Platform-tools, Build-tools,
SDK Platform, and System Image are installed as well; if they are not, you should
select those for installation now, too.

3. A new dialog appears (see Figure 3.2) asking you to accept the license agreement
for the packages that you will be installing. You may accept or reject each license

Figure 3.1 The Android SDK Manager.

 Testing Your Development Environment 57

individually by highlighting a particular package in the left pane and choosing
 Accept or Reject, or you can accept them all at once by highlighting Android SDK
License in the left pane and choosing Accept License. Let’s accept all the licenses
together by selecting Android SDK License in the left pane, choosing Accept
 License, and then clicking Install. This will initiate the installation of the se-
lected packages. Wait until the installation is complete.

Tip
To learn more about how to download the Android SDK sample applications for your particu-
lar development platform, see http://d.android.com/tools/samples/index.html.

Now that the installation is completed, you are ready to begin loading Android sample
projects into your workspace.

Adding the Snake Project to Your Android IDE Workspace
To add the Snake project to your Android IDE workspace, follow these steps:

1. Choose File, New, Other....

2. Choose Android, Android Sample Project (see Figure 3.3). Click Next.

Figure 3.2 Accepting the license agreements.

http://d.android.com/tools/samples/index.html

58 Chapter 3 Writing Your First Android Application

3. Choose your build target (see Figure 3.4). In this case, we’ve picked Android 4.3,
API Level 18, from the Android Open Source Project. Click Next.

4. Select which sample you want to create (see Figure 3.5). Choose Snake.

5. Click Finish. You now see the Snake project files in your workspace (see
Figure 3.6).

Warning
Occasionally the Android IDE shows an error like “Project ‘Snake’ is missing required source
folder: gen” when you’re adding an existing project to the workspace. If this happens, navi-
gate to the /gen directory and delete the files within. These files are automatically regener-
ated and the error should disappear. Performing a Clean operation followed by a Build
operation does not always solve this problem.

Figure 3.3 Creating a new Android sample project.

 Testing Your Development Environment 59

Figure 3.4 Choose an API level for the sample.

Figure 3.5 Picking the Snake sample project.

60 Chapter 3 Writing Your First Android Application

Figure 3.6 The Snake project files.

 Testing Your Development Environment 61

Creating an AVD for Your Snake Project
The next step is to create an AVD that describes what type of device you want to emu-
late when running the Snake application. This AVD profile describes what type of device
you want the emulator to simulate, including which Android platform to support. You
do not need to create new AVDs for each application, only for each device you want
to emulate. You can specify different screen sizes and orientations, and you can specify
whether the emulator has an SD card and, if it does, what capacity the card has.

For the purposes of this example, an AVD for the default installation of Android 4.3
suffices. Here are the steps to create a basic AVD:

1. Launch the Android Virtual Device Manager from within the Android IDE by
clicking the little Android device icon on the toolbar (). If you cannot find the
icon, you can also launch the manager through the Window menu of the Android
IDE. You should now see the Android Virtual Device Manager window (see
Figure 3.7).

2. Click the New button.

3. Choose a name for your AVD. Because we are going to take all the defaults, give
this AVD a name of AndroidVanilla.

Figure 3.7 Android Virtual Device Manager.

62 Chapter 3 Writing Your First Android Application

4. Choose a device. This option controls the different resolutions of the emulator.
We want to choose a typical device size, so in this case, select Nexus 4 (4.7”,
768 � 1280: xhdpi). This option most directly correlates to the popular
Nexus 4 Google-branded device. Feel free to choose the most appropriate device
to match the Android device on which you plan to run the application.

5. Choose a build target. We want a typical Android 4.3 device, so choose Google
APIs (Google Inc.) – API Level 18 from the drop-down menu. In addition
to including the Android APIs, this option will also include the Google APIs and
applications, such as the Maps application, as part of the platform image. Although
we could choose the standard Android 4.3 – APIs Level 18 for this project, it
is important to be aware of the additional options the Google APIs provide.

6. For the Memory Options setting, you may have to try different values for opti-
mal performance depending on the memory configuration of your development
machine. The default RAM value for this virtual device is 1907 and the VM Heap is
64. If your machine is older and does not have a lot of memory, you may need to
lower this value significantly to something like 512. The development machine
used for this book has 8GB of RAM with a fairly powerful quad-core processor,
and the RAM value we decided to use is 768 with the VM Heap set to 64.

7. Choose an SD card capacity, in either kibibytes or mibibytes. (Not familiar with
kibibytes? See this Wikipedia entry: http://en.wikipedia.org/wiki/Kibibyte.) This SD
card image will take up space on your hard drive and may also take a long time to
allocate, so choose something reasonable, such as 1024MiB.

8. Seriously consider enabling the Snapshot feature listed under Emulation Options.
This greatly improves emulator startup performance. See Appendix B, “Quick-
Start Guide: The Android Emulator,” for details.

Your project settings will look like Figure 3.8.

9. Click the OK button to create the AVD, and then wait for the operation to
complete.

10. You should now see the AVD that you just created listed within your Android
Virtual Device Manager (see Figure 3.9).

For more information on creating different types of AVDs, check out Appendix B.

Creating a Launch Configuration for Your Snake Project
Next, you must create a launch configuration in the Android IDE to configure under
what circumstances the Snake application builds and launches. The launch configura-
tion is where you configure the emulator options to use and the entry point for your
application.

You can create Run configurations and Debug configurations separately, each with dif-
ferent options. These configurations are created under the Run menu in the Android IDE

http://en.wikipedia.org/wiki/Kibibyte

 Testing Your Development Environment 63

Figure 3.8 Creating a new AVD.

64 Chapter 3 Writing Your First Android Application

(Run, Run Configurations... and Run, Debug Configurations...). Follow these steps
to create a basic Debug configuration for the Snake application:

1. Choose Run, Debug Configurations....

2. Double-click Android Application to create a new configuration.

3. Name your Debug configuration SnakeDebugConfig.

4. Choose the project by clicking the Browse button and choosing the Snake project
(see Figure 3.10).

5. Switch to the Target tab and, from the preferred AVD list, choose the
 AndroidVanilla AVD created earlier, as shown in Figure 3.11.

6. Choose Apply and then Close.

You can set other emulator and launch options on the Target and Common tabs, but
for now we are leaving the defaults as they are.

Figure 3.9 The new AVD is now listed.

 Testing Your Development Environment 65

Figure 3.10 Naming the Debug configuration in the Android IDE.

Figure 3.11 Target AVD for the Debug configuration in the Android IDE.

66 Chapter 3 Writing Your First Android Application

Running the Snake Application in the Android Emulator
Now you can run the Snake application using the following steps:

1. Choose the Debug As icon drop-down menu on the toolbar ().

2. Pull the drop-down menu and choose the SnakeDebugConfig you created. If you
do not see the SnakeDebugConfig listed, find it in the Debug Configurations...
listing and click the Debug button. Subsequent launches can be initiated from the
little bug drop-down.

3. The Android emulator starts up; this might take a few moments to initialize. Then
the application will be installed or reinstalled onto the emulator.

Tip
It can take a long time for the emulator to start up, even on very fast computers. You might
want to leave it around while you work and reattach to it as needed. The tools in the Android
IDE handle reinstalling the application and relaunching it, so you can more easily keep the
emulator loaded all the time. This is another reason to enable the Snapshot feature for
each AVD. You can also use the Start button on the Android Virtual Device Manager to
load an emulator before you need it. Launching the AVD this way also gives you some ad-
ditional options such as screen scaling (see Figure 3.12), which can be used to either fit the
AVD on your screen if it’s very high resolution or more closely emulate the size it might be
on real hardware.

Figure 3.12 Configuring AVD launch options.

 Testing Your Development Environment 67

4. If necessary, swipe the screen from left to right to unlock the emulator, as shown in
Figure 3.13.

5. The Snake application starts and you can play the game, as shown in Figure 3.14.

Figure 3.13 The Android emulator launching (locked).

68 Chapter 3 Writing Your First Android Application

You can interact with the Snake application through the emulator and play the game.
You can also launch the Snake application from the All Apps screen at any time by
clicking its application icon. There is no need to shut down and restart the emulator ev-
ery time you rebuild and reinstall your application for testing. Simply leave the emulator
running on your computer in the background while you work in the Android IDE and
then redeploy using the Debug configuration again.

Building Your First Android Application
Now it’s time to write your first Android application from scratch. To get your feet wet,
you will start with a simple “Hello World” application and build upon it to explore some
of the features of the Android platform in more detail.

Figure 3.14 The Snake game in the Android emulator.

 Building Your First Android Application 69

Tip
The code examples provided in this chapter are taken from the MyFirstAndroidApp ap-
plication. The source code for the MyFirstAndroidApp application is provided for download
on the book’s website.

Creating and Configuring a New Android Project
You can create a new Android application in much the same way that you added the
Snake application to your Android IDE workspace.

The first thing you need to do is create a new project in your Android IDE work-
space. The Android Application Project creation wizard creates all the required files
for an Android application. Follow these steps within the Android IDE to create a new
project:

1. Choose File, New, Android Application Project on the Android IDE toolbar.

2. Choose an application name as shown in Figure 3.15. The application name is
the “friendly” name of the application and the name shown with the icon on the

Figure 3.15 Configuring a new Android project.

70 Chapter 3 Writing Your First Android Application

application launcher. Name the application My First Android App. This will
automatically create a project name of MyFirstAndroidApp, but you are free to
change this to a name of your choosing.

3. We should also change the package name, using reverse domain name notation
(http://en.wikipedia.org/wiki/Reverse_domain_name_notation), to com.introto
android.myfirstandroidapp. The Minimum Required SDK version should be
the first SDK API level you plan to target. Because our application will be compat-
ible with just about any Android device, you can set this number low (such as to
4 to represent Android 1.6) or at the target API level to avoid any warnings in the
Android IDE. Make sure you set the minimum SDK version to encompass any test
devices you have available so you can successfully install the application on them.
The default options are just fine for our example. Click Next.

4. Keep the rest of the New Android Application settings at their defaults, unless you
want to change the directory of where the source files will be stored. Click Next
(see Figure 3.16).

Figure 3.16 Configuring Android project options.

http://en.wikipedia.org/wiki/Reverse_domain_name_notation

 Building Your First Android Application 71

5. Leave the Configure Launcher Icon settings at their defaults. This option screen
would allow us to define how our application launcher icon appears, but for
this example, we will use the standard icon set included with the Android SDK.
Choose Next (see Figure 3.17).

6. The Create Activity wizard allows us to include a default launch activity by type.
We will leave the settings as is and choose Next (see Figure 3.18).

7. Choose an Activity Name. Call this Activity class MyFirstAndroidApp
Activity. The Layout Name should automatically change to a name resembling
what you just entered. Finally, click the Finish button (see Figure 3.19) to create
the application.

8. The Android IDE should now display our first application created using the wizard
with our layout file open and ready for editing (see Figure 3.20).

Figure 3.17 Configuring the launcher icon for our Android project.

72 Chapter 3 Writing Your First Android Application

Figure 3.18 Creating an Activity for our Android project.

Figure 3.19 Choosing an Activity Name.

 Building Your First Android Application 73

Core Files and Directories of the Android Application
Every Android application has a set of core files that are created and used to define the
functionality of the application. The following files are created by default with a new
Android application:

 ■ AndroidManifest.xml—the central configuration file for the application. It defines
your application’s capabilities and permissions as well as how it runs.

 ■ ic_launcher-web.png—This is a high-resolution 32-bit 512 � 512 PNG applica-
tion icon that is required and used for your application listing in the Google Play
store. The size of this icon should not exceed 1024KB.

 ■ proguard-project.txt—a generated build file used by the Android IDE and Pro-
Guard. Edit this file to configure your code optimization and obfuscation settings
for release builds.

 ■ project.properties—a generated build file used by the Android IDE. It defines
your application’s build target and other build system options, as required. Do not
edit this file.

Figure 3.20 Our first application created with the wizard.

74 Chapter 3 Writing Your First Android Application

 ■ /src—required folder for all source code.
 ■ /src/com/introtoandroid/myfirstandroidapp/MyFirstAndroidAppActivity

.java—main entry point to this application, named MyFirstAndroidAppActivity.
This activity has been defined as the default launch activity in the Android
manifest file.

 ■ /gen—required folder for all autogenerated files.
 ■ /gen/com/introtoandroid/myfirstandroidapp/BuildConfig.java—a generated
source file used when debugging your applications. Do not edit this file.

 ■ /gen/com/introtoandroid/myfirstandroidapp/R.java—a generated resource
management source file. Do not edit this file.

 ■ /assets—required folder where uncompiled file resources can be included in the
project. Application assets are pieces of application data (files, directories) that you
do not want managed as application resources.

 ■ /bin—folder for creating autogenerated files for producing your application’s
APK file.

 ■ /libs—folder for including any .jar library projects.
 ■ /libs/android-support-v4.jar—This support library can be added to your
projects to bring newer Android APIs to older devices running older versions of
Android.

 ■ /res—required folder where all application resources are managed. Application
resources include animations, drawable graphics, layout files, datalike strings and
numbers, and raw files.

 ■ /res/drawable-*—Application icon graphics resources are included in several sizes
for different device screen resolutions.

 ■ /res/layout—required folder that comprises one or more layout resource files,
each file managing a different UI or App Widget layout for your application.

 ■ /res/layout/activity_my_first_android_app.xml—layout resource file used by
MyFirstAndroidAppActivity to organize controls on the main application screen.

 ■ /res/menu—folder for including XML files for defining Android application menus.
 ■ /res/menu/my_first_android_app.xml—menu resource file used by MyFirst
AndroidAppActivity defining a menu item for Settings.

 ■ /res/values*—folders for including XML files for defining Android application
dimensions, strings, and styles.

 ■ /res/values/dimens.xml—dimension resource file used by MyFirstAndroid
AppActivity defining default screen margins.

 ■ /res/values/strings.xml—string resource file used by MyFirstAndroidApp
Activity defining string variables that may be reused throughout the application.

 Building Your First Android Application 75

 ■ /res/values/styles.xml—style resource file used by MyFirstAndroidAppActivity
to define the application theme.

 ■ /res/values-sw600dp/dimens.xml—dimension resource file for overriding the
res/values/dimens.xml for defining dimensions for 7-inch tablets.

 ■ /res/values-sw720dp-land/dimens.xml—dimension resource file for overriding
the res/values/dimens.xml for defining dimensions for 10-inch tablets in land-
scape mode.

 ■ /res/values-v11/styles.xml—style resource file for overriding the res/values/
styles.xml for devices running Android with an API greater than or equal to 11.

 ■ /res/values-v14/styles.xml—style resource file for overriding the res/values/
styles.xml for devices running Android with an API greater than or equal to 14.

A number of other files are saved on disk as part of the Android IDE project in the
workspace. However, the files and resource directories included in the list here are the
important project files you will use on a regular basis.

Creating an AVD for Your Project
The next step is to create an AVD that describes what type of device you want to emu-
late when running the application. For this example, we can use the AVD we created for
the Snake application. An AVD describes a device, not an application. Therefore, you
can use the same AVD for multiple applications. You can also create similar AVDs with
the same configuration but different data (such as different applications installed and dif-
ferent SD card contents).

Creating a Launch Configuration for Your Project
Next, you must create a Run and Debug launch configuration in the Android IDE to
configure the circumstances under which the MyFirstAndroidApp application builds and
launches. The launch configuration is where you configure the emulator options to use
and the entry point for your application.

You can create Run configurations and Debug configurations separately, with different
options for each. Begin by creating a Run configuration for the application. Follow these
steps to create a basic Run configuration for the MyFirstAndroidApp application:

1. Choose Run, Run Configurations... (or right-click the project and choose
Run As).

2. Double-click Android Application.

3. Name your configuration MyFirstAndroidAppRunConfig.

4. Choose the project by clicking the Browse button and choosing the
MyFirstAndroidApp project.

76 Chapter 3 Writing Your First Android Application

5. Switch to the Target tab and set the Deployment Target Selection Mode to
Always prompt to pick device.

6. Click Apply and then click Close.

Tip
If you leave the Deployment Target Selection Mode set to Automatic when you
choose Run or Debug in the Android IDE, your application is automatically installed and run
on the device if the device is plugged in. Otherwise, the application starts in the emulator
with the specified AVD. By choosing Always prompt to pick device, you are always
prompted for whether (a) you want your application to be launched in an existing emulator;
(b) you want your application to be launched in a new emulator instance and are allowed to
specify an AVD; or (c) you want your application to be launched on the device (if it’s plugged
in). If any emulator is already running, the device is then plugged in, and the mode is set to
Automatic, you see this same prompt, too.

Now create a Debug configuration for the application. This process is similar to creat-
ing a Run configuration. Follow these steps to create a basic Debug configuration for the
MyFirstAndroidApp application:

1. Choose Run, Debug Configurations... (or right-click the project and choose
Debug As).

2. Double-click Android Application.

3. Name your configuration MyFirstAndroidAppDebugConfig.

4. Choose the project by clicking the Browse button and choosing the
MyFirstAndroidApp project.

5. Switch to the Target tab and set the Deployment Target Selection Mode to
Always prompt to pick device.

6. Click Apply and then click Close.

You now have a Debug configuration for your application.

Running Your Android Application in the Emulator
Now you can run the MyFirstAndroidApp application using the following steps:

1. Choose the Run As icon drop-down menu on the toolbar ().

2. Pull the drop-down menu and choose the Run configuration you created. (If you
do not see it listed, choose the Run Configurations... item and select the ap-
propriate configuration. The Run configuration shows up on this drop-down list the
next time you run the configuration.)

 Building Your First Android Application 77

3. Because you chose the Always prompt to pick device selection mode, you are
now prompted for your emulator instance. Change the selection to Launch a New
Android Virtual Device and then select the AVD you created. Here, you can
choose from an already-running emulator or launch a new instance with an AVD
that is compatible with the application settings, as shown in Figure 3.21.

4. The Android emulator starts up, which might take a moment.

5. Click the Menu button or push the slider to the right to unlock the emulator.

6. The application starts, as shown in Figure 3.22.

7. Click the Back button in the emulator to end the application, or click Home to
suspend it.

8. Click the All Apps button (see Figure 3.23) found in the Favorites tray to
browse all installed applications from the All Apps screen.

9. Your screen should now look something like Figure 3.24. Click the My First
 Android App icon to launch the application again.

Figure 3.21 Manually choosing a deployment target selection mode.

78 Chapter 3 Writing Your First Android Application

Figure 3.22 My First Android App running in the emulator.

 Building Your First Android Application 79

Figure 3.23 The All Apps button.

Figure 3.24 The My First Android App icon
shown in the All Apps screen.

80 Chapter 3 Writing Your First Android Application

Debugging Your Android Application in the Emulator
Before going any further, you need to become familiar with debugging in the emula-
tor. To illustrate some useful debugging tools, let’s manufacture an error in the My First
Android App.

In your project, edit the source file called MyFirstAndroidAppActivity.java. Create
a new method called forceError() in your class and make a call to this method in your
Activity class’s onCreate() method. The forceError() method forces a new unhan-
dled error in your application.

The forceError() method should look something like this:

public void forceError() {

 if(true) {

 throw new Error(“Whoops”);

 }

}

It’s probably helpful at this point to run the application and watch what happens. Do
this using the Run configuration first. In the emulator, you see that the application has
stopped unexpectedly. You are prompted by a dialog that enables you to force the appli-
cation to close, as shown in Figure 3.25.

Shut down the application but keep the emulator running. Now it’s time to debug.
You can debug the MyFirstAndroidApp application using the following steps:

1. Choose the Debug As icon drop-down menu on the toolbar.

2. Pull the drop-down menu and choose the Debug configuration you created. (If you
do not see it listed, choose the Debug Configurations... item and select the ap-
propriate configuration. The Debug configuration shows up on this drop-down list
the next time you run the configuration.)

3. Continue as you did with the Run configuration and choose the appropriate AVD,
and then launch the emulator again, unlocking it if needed.

It takes a moment for the debugger to attach. If this is the first time you’ve debugged
an Android application, you may need to click through some dialogs, such as the one
shown in Figure 3.26, the first time your application attaches to the debugger.

In the Android IDE, use the Debug perspective to set breakpoints, step through code,
and watch the LogCat logging information about your application. This time, when the
application fails, you can determine the cause using the debugger. You might need to
click through several dialogs as you set up to debug within the Android IDE. If you al-
low the application to continue after throwing the exception, you can examine the results
in the Debug perspective of the Android IDE. If you examine the LogCat logging pane,
you see that your application was forced to exit due to an unhandled exception (see
Figure 3.27).

 Building Your First Android Application 81

Figure 3.25 My First Android App crashing gracefully.

82 Chapter 3 Writing Your First Android Application

Figure 3.26 Switching to Debug perspective
for Android emulator debugging.

Figure 3.27 Debugging MyFirstAndroidApp in the Android IDE.

 Building Your First Android Application 83

Specifically, there’s a red AndroidRuntime error: java.lang.Error: whoops. Back in
the emulator, click the Force Close button. Now set a breakpoint on the forceError()
method by right-clicking the left side of the line of code and choosing Toggle
 Breakpoint (or double-clicking).

Tip
In the Android IDE, you can step through code using Step Into (F5), Step Over (F6),
Step Return (F7), or Resume (F8). On Mac OS X, you might find that the F8 key is
mapped globally. If you want to use the keyboard convenience command, you might want
to change the keyboard mapping in the Android IDE by choosing Window, Preferences,
 General, Keys and then finding the entry for Resume and changing it to something
else. Alternatively, you can change the Mac OS X global mapping by going to System
 Preferences, Keyboard & Mouse, Keyboard Shortcuts and then changing the map-
ping for F8 to something else.

In the emulator, restart your application and step through your code. You see that
your application has thrown the exception, and then the exception shows up in the
Variable Browser pane of the Debug perspective. Expanding its contents shows that it is
the “Whoops” error.

This is a great time to crash your application repeatedly and get used to the controls.
While you’re at it, switch over to the DDMS perspective. Note that the emulator has a list
of processes running on the device, such as system_process and com.android.phone.
If you launch MyFirstAndroidApp, you see com.introtoandroid.myfirstandroidapp
show up as a process on the emulator listing. Force the app to close because it crashes,
and note that it disappears from the process list. You can use DDMS to kill processes, in-
spect threads and the heap, and access the phone file system.

Adding Logging Support to Your Android Application
Before you start diving into the various features of the Android SDK, you should famil-
iarize yourself with logging, a valuable resource for debugging and learning Android.
Android logging features are in the Log class of the android.util package. See Table 3.1
for some helpful methods in the android.util.Log class.

Table 3.1 Commonly Used Logging Methods

Method Purpose

Log.e() Log errors

Log.w() Log warnings

Log.i() Log informational messages

Log.d() Log debug messages

Log.v() Log verbose messages

84 Chapter 3 Writing Your First Android Application

To add logging support to MyFirstAndroidApp, edit the file MyFirstAndroidApp
.java. First, you must add the appropriate import statement for the Log class:

import android.util.Log;

Tip
To save time in the Android IDE, you can use the imported classes in your code and add the
imports needed by hovering over the imported class name and choosing the Add Imported
Class QuickFix option.

You can also use the Organize Imports command (Ctrl+Shift+O in Windows or
Command+Shift+O on a Mac) to have the Android IDE automatically organize your imports.
This removes unused imports and adds new ones for packages used but not imported. If a
naming conflict arises, as it often does with the Log class, you can choose the package you
intended to use.

Next, within the MyFirstAndroidApp class, declare a constant string that you use to
tag all logging messages from this class. You can use the LogCat utility within the An-
droid IDE to filter your logging messages to this DEBUG_TAG tag string:

private static final String DEBUG_TAG= “MyFirstAppLogging”;

Now, within the onCreate() method, you can log something informational:

Log.i(DEBUG_TAG,

 “In the onCreate() method of the MyFirstAndroidAppActivity Class”);

While you’re here, you must comment out your previous forceError() call so that
your application doesn’t fail. Now you’re ready to run MyFirstAndroidApp. Save your
work and debug it in the emulator. Notice that your logging messages appear in the
 LogCat listing, with the Tag field MyFirstAppLogging (see Figure 3.28).

Adding Some Media Support to Your Application
Next, let’s add some pizzazz to MyFirstAndroidApp by having the application play an
MP3 music file. Android media player features are found in the MediaPlayer class of the
android.media package.

You can create MediaPlayer objects from existing application resources or by specify-
ing a target file using a URI. For simplicity, we begin by accessing an MP3 using the Uri
class from the android.net package.

Table 3.2 shows some methods used in the android.media.MediaPlayer and
 android.net.Uri classes.

To add MP3 playback support to MyFirstAndroidApp, edit the file MyFirst
AndroidApp.java. First, you must add the appropriate import statements for the
MediaPlayer class:

import android.media.MediaPlayer;

import android.net.Uri;

 Building Your First Android Application 85

Figure 3.28 A LogCat log for MyFirstAndroidApp.

Table 3.2 Commonly Used MediaPlayer and Uri Parsing Methods

Method Purpose

MediaPlayer.create() Creates a new media player with a given target to play

MediaPlayer.start() Starts media playback

MediaPlayer.stop() Stops media playback

MediaPlayer.release() Releases the media player resources

Uri.parse() Instantiates a Uri object from an appropriately formatted URI
address

Next, within the MyFirstAndroidApp class, declare a member variable for your
 MediaPlayer object:

private MediaPlayer mp;

Now, create a new method called playMusicFromWeb() in your class and make a call
to this method in your onCreate() method. The playMusicFromWeb() method creates a

86 Chapter 3 Writing Your First Android Application

valid Uri object, creates a MediaPlayer object, and starts the MP3 playing. If the opera-
tion should fail for some reason, the method logs a custom error with your logging tag.
The playMusicFromWeb() method should look something like this:

public void playMusicFromWeb() {

 try {

 Uri file = Uri.parse(“http://www.perlgurl.org/podcast/archives”

 + “/podcasts/PerlgurlPromo.mp3”);

 mp = MediaPlayer.create(this, file);

 mp.start();

 }

 catch (Exception e) {

 Log.e(DEBUG_TAG, “Player failed”, e);

 }

}

As of Android 4.2.2 (API Level 17), using the MediaPlayer class to access media con-
tent on the Web requires the INTERNET permission to be registered in the application’s
Android manifest file. Finally, your application requires special permissions to access loca-
tion-based functionality. You must register this permission in your AndroidManifest
.xml file. To add permissions to your application, perform the following steps:

1. Double-click the AndroidManifest.xml file.

2. Switch to the Permissions tab.

3. Click the Add button and choose Uses Permission.

4. In the right pane, select android.permission.INTERNET (see Figure 3.29).

5. Save the file.

Later on, you’ll learn all about the various Activity states and callbacks that could
contain portions of the playMusicFromWeb() method. For now, know that the
 onCreate() method is called every time the user navigates to the Activity (forward or
backward) and whenever he or she rotates the screen or causes other device configuration
changes. This doesn’t cover all cases but will work well enough for this example.

And finally, you want to cleanly exit when the application shuts down. To do
this, you need to override the onStop() method of your Activity class and stop the
 MediaPlayer object and release its resources. The onStop() method should look some-
thing like this:

protected void onStop() {

 if (mp != null) {

 mp.stop();

 Building Your First Android Application 87

 mp.release();

 }

 super.onStop();

}

Tip
In the Android IDE, you can right-click within the class and choose Source (or press
Alt+Shift+S). Choose the option Override/Implement Methods and select the
 onStop() method.

Now, if you run MyFirstAndroidApp in the emulator (and you have an Internet
connection to grab the data found at the URI location), your application plays the
MP3. When you shut down the application, the MediaPlayer is stopped and released
appropriately.

Figure 3.29 Adding the INTERNET permission in the manifest.

88 Chapter 3 Writing Your First Android Application

Adding Location-Based Services to Your Application
Your application knows how to say “Hello” and play some music, but it doesn’t know
where it’s located. Now is a good time to become familiar with some simple location-
based calls to get the GPS coordinates. To have some fun with location-based services
and map integration, you will use some of the Google applications available on typical
Android devices—specifically, the Maps application. You do not need to create another
AVD, because you included the Google APIs as part of the target for the AVD you al-
ready created.

Configuring the Location of the Emulator
The emulator does not have location sensors, so the first thing you need to do is seed
your emulator with some GPS coordinates. You can find the exact steps for how to do
this in Appendix B, “Quick-Start Guide: The Android Emulator,” in the section “Con-
figuring the GPS Location of the Emulator.” After you have configured the location of
your emulator, the Maps application should display your simulated location, as shown in
Figure 3.30. Make sure that the location icon () is showing, which is indicative that the
location settings have been enabled on the AVD.

Warning
If you do not see the location icon presented in the status bar, this means that the
location is not yet activated and requires configuring within the AVD.

Your emulator now has a simulated location: Yosemite Valley!

Finding the Last Known Location
To add location support to MyFirstAndroidApp, edit the file MyFirstAndroidApp.java.
First, you must add the appropriate import statements:

import android.location.Location;

import android.location.LocationManager;

Now, create a new method called getLocation() in your class and make a call to this
method in your onCreate() method. The getLocation() method gets the last known
location on the device and logs it as an informational message. If the operation fails for
some reason, the method logs an error.

The getLocation() method should look something like this:

public void getLocation() {

 try {

 LocationManager locMgr = (LocationManager)

 this.getSystemService(LOCATION_SERVICE);

 Location recentLoc = locMgr.

 getLastKnownLocation(LocationManager.GPS_PROVIDER);

 Log.i(DEBUG_TAG, “loc: “ + recentLoc.toString());

 Building Your First Android Application 89

 }

 catch (Exception e) {

 Log.e(DEBUG_TAG, “Location failed”, e);

 }

}

Finally, your application requires special permission to access location-based func-
tionality. You must register this permission in your AndroidManifest.xml file. To add
location-based service permissions to your application, perform the following steps:

1. Double-click the AndroidManifest.xml file.

2. Switch to the Permissions tab.

Figure 3.30 Setting the location of the emulator to Yosemite Valley.

90 Chapter 3 Writing Your First Android Application

3. Click the Add button and choose Uses Permission.

4. In the right pane, select android.permission.ACCESS_FINE_LOCATION.

5. Save the file.

Now, if you run My First Android App in the emulator, your application logs the
GPS coordinates you provided to the emulator as an informational message, viewable in
the LogCat pane of the Android IDE.

Debugging Your Application on Hardware
You have mastered running applications in the emulator. Now let’s put the application
on real hardware. This section discusses how to install the application on a Nexus 4 de-
vice with Android 4.3. To learn how to install on a different device or different Android
version, read http://d.android.com/tools/device.html.

Connect an Android device to your computer via USB and relaunch the Debug con-
figuration of the application. Because you chose the Always prompt to pick device
Deployment Target Selection Mode for the configuration, you should now see a real
Android device listed as an option in the Android Device Chooser (see Figure 3.31).

Figure 3.31 Android Device Chooser
with USB-connected Android device.

http://d.android.com/tools/device.html

 Building Your First Android Application 91

Choose the Android device as your target, and you see that the My First Android
App application gets loaded onto the Android device and launched, just as before. Pro-
vided you have enabled the development debugging options on the device, you can de-
bug the application here as well. To allow USB debugging, go to Settings, Developer
Options, and under Debugging, choose USB debugging. A dialog prompt will appear (see
Figure 3.32) requesting that USB debugging be allowed. Click OK to allow debugging.

Once the USB-connected Android device is recognized, you may be prompted
with another dialog asking you to confirm the development computer’s RSA key fin-
gerprint. If so, select the option Always allow from this computer and click OK (see
Figure 3.33).

Once enabled, you can tell that the device is actively using a USB debugging connec-
tion because a little Android bug-like icon appears in the status bar (). Figure 3.34
shows a screenshot of the application running on a real device (in this case, a smartphone
running Android 4.3).

Figure 3.32 Allowing USB debugging.

92 Chapter 3 Writing Your First Android Application

Debugging on the device is much the same as debugging on the emulator, but with a
couple of exceptions. You cannot use the emulator controls to do things such as send an
SMS or configure the location to the device, but you can perform real actions (true SMS,
actual location data) instead.

Summary
This chapter showed you how to add, build, run, and debug Android projects using the
Android IDE. You started by installing the sample applications from within the Android
IDE. You then began testing your development environment using a sample application
from the Android SDK, and then you created a new Android application from scratch
using the Android IDE. You also learned how to make some quick modifications to the
application, demonstrating some exciting Android features you will learn about in future
chapters.

Figure 3.33 Remembering the computer’s RSA key fingerprint.

 Quiz Questions 93

Figure 3.34 My First Android App running
on Android device hardware.

In the next few chapters, you will learn about the tools available for use in develop-
ing Android applications and then focus on the finer points about defining your Android
application using the application manifest file. You will also learn how to organize your
application resources, such as images and strings, for use within your application.

Quiz Questions
1. What are the benefits of choosing the Snapshot feature listed under the Emulation

Options section of the AVD creation wizard?

2. What do the e, w, i, v, d letters stand for in relation to the android.util.Log class,
for example, Log.e()?

3. What are the Debug breakpoint keyboard shortcuts for Step Into, Step Over,
Step Return, and Resume?

94 Chapter 3 Writing Your First Android Application

4. What is the keyboard shortcut for organizing imports?

5. What is the keyboard shortcut for toggling a breakpoint in the Android IDE?

6. What is the keyboard shortcut for Override/Implement Methods in the
Android IDE?

Exercises
1. Create a Nexus 7 AVD using the preconfigured device definitions.

2. Describe the purpose of the Minimum Required SDK, Target SDK, and Compile
With options listed in the Android Application Project creation wizard.

3. Found in the Android Application Project creation wizard, describe the differ-
ence between a Blank Activity and a Fullscreen Activity.

4. Perform the steps for configuring the Run or Debug configurations of the
 MyFirstAndroidApp to launch the application on all compatible devices/AVDs
when running or debugging. Write down each of the steps taken in order.

5. Create a new Android Application Project with a new Launcher Icon. For the
Launcher Icon, increase the padding to 50%, change the Foreground Scaling to
Center, give it a shape of Circle, and change the icon’s background color to blue.
Perform any other necessary steps required in order to create the application.

6. There are three Navigation Types available when creating a Blank Activity.
Create a new Android Application Project for each Navigation Type available
to see what each option provides. Perform any other necessary steps required in
order to create the application.

References and More Information
Android SDK Reference regarding the application Activity class:

http://d.android.com/reference/android/app/Activity.html
Android SDK Reference regarding the application Log class:

http://d.android.com/reference/android/util/Log.html
Android SDK Reference regarding the application MediaPlayer class:

http://d.android.com/reference/android/media/MediaPlayer.html
Android SDK Reference regarding the application Uri class:

http://d.android.com/reference/android/net/Uri.html
Android SDK Reference regarding the application LocationManager class:

http://d.android.com/reference/android/location/LocationManager.html
Android Tools: “Using Hardware Devices”:

http://d.android.com/tools/device.html
Android Resources: “Common Tasks and How to Do Them in Android”:

http://d.android.com/guide/faq/commontasks.html
Android sample code:

http://d.android.com/tools/samples/index.html

http://d.android.com/reference/android/app/Activity.html
http://d.android.com/reference/android/util/Log.html
http://d.android.com/reference/android/media/MediaPlayer.html
http://d.android.com/reference/android/net/Uri.html
http://d.android.com/reference/android/location/LocationManager.html
http://d.android.com/tools/device.html
http://d.android.com/guide/faq/commontasks.html
http://d.android.com/tools/samples/index.html

Index

A
About screen, 100, 380

AbsoluteLayout class, 334

AccessibilityManager, 35

AccessibilityService APIs, 457

Accounts

Developer Console, 461, 468
Google Wallet Merchant, 461
publishing to Google Play, 468–471
third-party APIs, 45–46

Action, intent, 108

Action bars, 411–415

Action buttons, 411–413

Action overflow menu, 412–415

ACTION_BATTERY_LOW, broadcast
intent, 111

ActionBar class, 248

Actions

action bars
action buttons, 411–412
action overflow, 412–415
ActionBar compatibility, 415
application icon, 411
contextual action mode, 415
overview of, 411
View control, 411

from within application’s content, 416
dialogs, 415
menus, 410–411

Activities

avoiding killing, 103–104
callbacks

destroying static data, 104–105
initializing static activity, 102
initializing/retrieving data, 103
saving state into bundle, 104
state/resource management, 101
stopping/saving/releasing data, 103

creating, 71–72
creating layout using XML

resources, 210
creating layouts programmatically,

211–213
customizing behavior in back

stack, 404
definition of, 97
editing manifest file, 117
fragments

attaching/detaching, 246–247
defined, 105
MP3 music player example,

105–106
organizing components, 98,

105–106
indicators

activity bar and circles, 202
ProgressBar, 199–202
SeekBar, 202–203

intents
with action/data, 108
activity transitions with, 106–107
application navigation, 110
broadcasting, 111–112
defined, 108
Google application, 109
launching activities by class name,

107–108

launching external activities,
108–109

overview of, 106
passing additional

information, 109
receiving, 111–112
transitioning between, 106–107

lateral navigation for, 400–401
life cycle of, 100–102
naming, 71–72
navigation. see Navigation

overview of, 99–100
testing mimicking real-world,

426–427
Activity bars, 202

Activity circles, 202

Activity class

callbacks
method stubs for, 101
onCreate(), 102
onDestroy(), 104–105
onPause(), 103
onResume(), 103
onSaveInstanceState(), 104

fragments
within components, 105–106
defining, 257–258
design, 249–250

overview of, 99–100
preferences

private, 282
shared, 282–283

screen workflow, 244–245
Activity_main.xml layout, 210

ActivityInstrumentationTestCase2<T>
class, 455

Ad revenue, 462

568 Activities

Adapters

AdapterView controls, 233
in autocompletion, 187–188
binding data to AdapterView,

235–236
creating, 233
handling selection events, 236–237
in spinner controls, 188
using ArrayAdapter, 234
using CursorAdapter, 234–235
using ListActivity, 237

AdapterView class, 233, 235–237

ADB (Android Debug Bridge) tool

defined, 434
mobile development, 393
overview of, 491

Add Imported Class QuickFix option, 84

AddOnBackStack ChangedListener()
method, 254

AddToBackStack() method, 401

AddView() method, 214

AddWord() method, 322

Adobe AIR, 33

ADT (Android Developer Tools)

as Android Eclipse plug-in, 25
as Android IDE, 25
defined, 25
developing applications faster

with, 485
resource editors, 491–493
running first test using Android

IDE, 450
upgrading Android SDK, 42

ADT Bundle

Android IDE and, 38, 47, 485, 547
Android SDK in, 37–38, 43
as development environment in this

book, 5

editing manifest file, 116
emulator in, 505
functions, 47
installation of, 39
updates, 37, 55

Alert messages, 418

AlertDialog class, 266–267, 270–271

Aliases, 166

All Apps screen

customizing emulator with widgets,
524–525

entry navigation in, 400
launching applications in emulator, 68
running application in emulator, 76, 79

Allocation Tracker

memory use and, 532
monitoring memory with DDMS,

534–536
Allow mock locations, 42

Alternative resources

advantages of, 338
caution when using for layout, 170
for compatibility

for different orientations, 345–346
organizing efficiently, 345–347
organizing with qualifiers, 339–344
resolving, 338–339
smoothing differences between

devices, 333
using programmatically, 345

default vs., 141–142
designing tablets, 348
naming, 338–339

Amazon Appstore for Android

distributing applications through, 27
as distribution channel, 375
publishing to, 479

569Amazon Appstore for Android

Ancestral navigation, 401, 403

Anddev.org, 6

Android

costs, 23, 27
Developer website

ADT Bundle updates, 55
as resource, 6
SDK updates, 37, 55
Support Package updates, 260

manifest file. see Manifest file

mobile software development history
“The Brick,” 13–15
proprietary mobile platforms,

17–18
WAP, 15–17
way back when, 11–13

Open Handset Alliance
advantages of, 22
application development, 21–22
forming, 19
Google goes wireless, 18–19
manufacturers designing devices,

19–20
marketplace, 22–23
mobile operators, 20–21

platform
application framework, 34–35
Google services, 45–46
native and third-party applications,

33–34
packages, 34
programming language choices,

32–33
security and permissions, 31–33
services, 45
underlying architecture, 29–31

platform differences
costs, 26–27

developing powerful
applications, 26

familiar tools, 25–26
free and open source, 25
free market, 27–28
growing platform, 28–29
next-generation, 23–25
overview of, 23
secure application integration,

26–27
third-party APIs, 45
WAP, 15–17

Android Application Project creation wizard,
69–73

Android command-line tool

Android Virtual Device Manager, 508
creating AndroidManifest.xml

file, 116
defined, 501

Android Debug Bridge (ADB) tool

defined, 434
mobile development, 393
overview of, 491

Android Developer Tools. see ADT (Android
Developer Tools)

Android Developers Blog, 382

Android Device Chooser, 90–92

Android IDE

building first application
core files/directories, 73–75
creating AVD, 75
creating new project, 69–73
debugging in emulator, 80–83
debugging on hardware, 90–92
keyboard mapping, 83
launch configuration, 75–76
launching AVD Manager, 61
location-based services, 88–90

570 Ancestral navigation

logging, 83–84
media, 84–87
running in emulator, 76–79
stepping through code, 83

choosing source control system,
360–370

defined, 25
development environment set up

ADT, 47
configuring, 37–38
installation process, 38–39
other IDEs, 38
SDK samples, downloading,

51–52
SDK upgrades, 42

emulator
integration with, 489
launching with specific AVD,

512–515
exporting/signing package files,

465–467
as focus of this book, 38, 485
fragments, 335
layouts

default file for, 210
designing, 168–170
testing on emulator, 211

manifest file
creating in, 116
editing, 116–121

organizing workspace, tips
closing unwanted tabs, 550
customizing log filters, 551
repositioning tabs, 548
searching your project, 551
source control services, 547
tasks, 551–552

viewing two sections of same
file, 550

windows, 548–551
overview of, 25–26
resolving build errors, 556
resources

accessing programmatically, 142
adding to project, 138
creating menus, 162–163
designing layouts, 168–170
different types of, 147
setting simple values, 143–146

testing applications
creating test project, 441–447
running first test, 450–453, 456
standalone tools, 435, 529–530
white-box testing, 429

testing development environment
adding project to workspace,

57–60
adding samples with SDK

Manager, 56–57
creating AVD, 61–62
launch configuration, 62–65
overview of, 55–56
running application in emulator,

66–68
writing code in Java, tips

autocomplete, 552
formatting, 553
Javadoc style documentation,

556
new classes and methods, 552
organizing imports, 553
refactoring, 554
renaming, 553–554
reorganizing, 555

571Android IDE

Android IDE, writing code in Java, tips
(continued)

using Extract Local Variable tool,
554–555

using Extract Method tool, 555
using QuickFix, 555–556

Android manifest file editor, 492

Android Market. see Google Play

Android Project Wizard, 116

Android Studio, 26, 38, 491

Android Tools Project Site, 6

Android Virtual Device. see AVD (Android
Virtual Device)

Android Virtual Device Manager

creating AVD within IDE, 509–510
creating new AVD, 61–63
functions of, 48–49
launching emulator from, 515–516
loading emulator, 66
using, 508–509

AndroidManifest.xml. see also Manifest file

defined, 73
location-based service permissions, 89–90
overview of, 115

Android.util package, 83–84

Android.widget package

App Widgets vs., 178
Button class, 190
layout

FrameLayout control, 222
GridLayout control, 228–230
LinearLayout control, 218
overview of, 178
RelativeLayout control, 219
Space view, 230
TableLayout control, 226

NumberPicker, 199
Switch control, 194

TextView control, 179
Toast message, 192
user interface controls, 177

Animation

providing visual feedback, 418
resources

frame-by-frame, 160–161
overview of, 159–160
tweened, 161–162

Apache Software License (ASL/Apache 2), 25

API Guides, 486

ApiDemos utility, 52

APIs (application programming interfaces)

billing, 384
in documentation, 488
in emulator console, 525
legacy support, 5
level for AVD, 51
SDK license agreement for, 44
third-party, 45–46
undocumented, 34

.apk file, 465

App Widgets, 178, 524–525

Appending data, 303

Apple iPhone OS, 17, 21

Application tab, IDE manifest file resource
editor, 117–118

Applications. see also Testing

adding shortcut to emulator, 524
anatomy of

activities, 99–105
context, 98–99
fragments, 105–106
intents, 106–112
overview of, 97
review, 112–113
services, 110–111
terminology, 97–98

572 Android IDE

benefits of, 22
building first

core files and directories, 73–75
creating AVD, 75
creating new project, 69–73
debugging in emulator, 80–83
debugging on hardware, 90–92
launch configuration, 75–76
location-based services, 88–90
logging support, 83–84
media support, 84–87
overview of, 68–69
running in emulator, 76–79

compatibility
alternative resources for. see
Alternative resources

targeting devices, 347–350
user interface design for, 333–338

configuring using manifest file. see
Manifest file

designing
architectures, 371
avoiding mistakes, 388, 393
best practices, 379–380, 388–389
billing/revenue generation,

383–384
code diagnostics, 391–392
code reviews, 391
coding standards, 390
deploying, 374–375
development phase, 373
extensibility, 371–372
feasibility testing, 389
interoperability, 372–373
limitations of, 370–371
maintenance/extensibility, 371–372
maintenance/support, 375–377
quality quidelines, 384–385

security, 383
single device bugs, 392
software development process, 389
stability/responsiveness, 381–382
target markets, 375
testing applications, 373–374
third-party standards, 385
tools, 387–388, 393
updates/upgrades, 385–387
user demands, meeting, 380
user interfaces, 380–381

developing, 21–22, 26–27
files

creating on file system, 310–311
creating/writing in default

directory to, 304–306
creating/writing to external

storage, 311–312
overview of, 303–304
reading from in default

directory, 306
reading raw, 306–308
reading XML, 308–309

frameworks, 34–35
free markets for, 27
marketplace, 22–23
mobile development

device database management,
361–364

requirements, 357–360
risks, quality assurance, 367–368
risks. project assessment, 364–367
third-party requirements, 360
use case development, 360

planning user experience. see User
experience

resources. see Resources

sample, 51–52

573Applications

Applications (continued)
secure integration of, 26–27
security and permissions, 31–32
writing first

adding Android samples, 56–57
adding Snake project, 57–60
creating AVD, 61–63
launch configuration, 62
overview of, 55–56
running in emulator, 66–68

ApplicationTestCase, 392

Apply() batch method, 326

Apply() method, 285

Architectures

mobile application design, 371
platform, 29–30

ArrayAdapter, 233–234

Arrays

integer, 139, 152
mixed-type, 139
resource, 165–166, 188–189
string, 139, 146, 150–151

ASL/Apache 2 (Apache Software
License), 25

AssertEquals() method, 450

Assertions, 450

AssetManager, 99

Assets

folder, 74
retrieving application, 99

Asynchronous messaging mechanism, 98

AT&T Apps, 479

Attributes

<uses-sdk> tag, 124
color state list <item>, 158
dialog, 268–269
<fragment tag>, 246

FrameLayout view, 222–223
layout, 215
LinearLayout view, 217–218
preferences, 287–289
RelativeLayout view, 219–221
TableLayout, 225–227
TableRow, 227
TextView, 180
ViewGroup subtypes, 215–216

Audience

distribution model for, 459
responsive mobile applications

for, 382
for this book, 1–2

AudioManager, 35

Authors, contacting, 7

Autocomplete, in Java, 552

AutoCompleteTextView, 186–187

AutoLinks, TextView, 180–182

Automated testing, 391–392, 428

Availability, 380

AVD (Android Virtual Device)

building first application, 75–76,
77–79

calling between two emulator
instances, 517–518

configuring GPS location of emulator,
516–517

targeting for debugging, 64–65
working with

creating with custom hardware,
510–511

creating within IDE, 509–510
overview of, 507–508
using Android Virtual Device

Manager, 508–509
writing first application, 61–63,

66–68

574 Applications

B
Back button

back navigation, 401–402
navigating back stack, 404

Back stack, 404

Backup Service, 383, 386

Backup testing, 432

Backups, enabling, 383

Best practices

Android Marketplace, 22
design

avoiding silly mistakes, 388
leveraging diagnostics, 386
maintenance and upgrade, 385–387
for maximum profit, 383–384
meeting users’ demands, 380
quality quidelines, 384–385
rules, 379–380
security, 383
stability and responsiveness,

381–382
third-party quality standards, 385
tools for, 387–388
user interface, 380–381

development
avoiding silly mistakes, 393
code diagnostics, 391–392
code reviews, 391
coding standards, 390
feasibility testing early and

often, 389
handling defects on single

device, 392
overview of, 388–389
software development process

for, 389
tools, 393

file management, 302
fragment-based design as, 105
layouts, 209–210
testing mobile applications

avoiding silly mistakes, 435
defect-tracking system, 423–424
managing testing environment,

425–427
maximizing coverage, 427–430
SDK tools for, 434–435
specialized test scenarios, 431–434
third-party standards, 430–431

using support libraries for, 358
XML filenames, 140

Beta

distribution model for, 459
feedback when self-publishing, 479

Billing

mobile application design, 383–384
self-publishing and, 480
user, 461

/bin folder, 74

BitmapDrawable object, 157–158

Black-box testing, 373, 429

Blog, Android Developers, 382

Bmgr tool, 435, 501

Bold, strings, 147

Boolean

resources, 139, 151
using preferences, 282–284, 286

Borderless buttons, 191

Borders, 157

Breakpoints, 83

The Brick, 13–15

Broadcast receivers, 131

Broadcasting intents, 111–112

Browser content provider, 319–321

575Browser content provider

Browsing file system, File Explorer, 536–538

Bugs. see also Debugging

handling on single device, 392
leveraging application diagnostics

for, 386
tracking user reports, 376

Build

acceptance testing, 427, 428
errors, 556
first application

core files and directories, 73–75
creating AVD, 75
creating new project, 69–73
debugging in emulator, 80–83
debugging on hardware, 90–92
launch configuration, 75–76
location-based services, 88–90
logging support, 83–84
media support, 84–87
overview of, 68–69
running in emulator, 76–79

validations, 427
Build targets, choosing, 441, 443

Built-in content providers, 316

Built-in layout classes

FrameLayout, 222–223
GridLayout, 228–230
LinearLayout, 217–219
overview of, 215–217
RelativeLayout, 219–222
TableLayout, 224–227

Bundles activity state, saving, 104

Button class, 190–192

Buttons

action, 411–413
basic, 190–192
check boxes, 193

defined, 190
image, 192
radio, 194–197
styles of, 183
switches, 190
toggles, 193–194
using emulator, 505

C
Cache directory

accessing, 304
managing size of, 311
methods, 305
retrieving external cache, 312
retrieving subdirectory, 305
storing files, 302, 310

CalendarContact content provider, 321

Callbacks

attaching/detaching fragments,
246–247

destroying static data, 104–105
initializing static activity, 102
initializing/retrieving data, 103
saving state into bundle, 104
state/resource management, 101
stopping/saving/releasing data, 103

CallLog content provider, 318–319

Cameras, in emulator, 526

Candy bar mobile phone, 15

Certificates, application signing, 32

CharacterPickerDialog class, 266–267

CheckBox control, 190, 192

CheckBoxPreference class, 287

Child View controls

adding to ViewGroup
programmatically, 214

defined, 214

576 Browsing file system, File Explorer

FrameLayout, 222–224
GridLayout, 228–230
layout attributes of, 215–216
LinearLayout, 210, 217–219
RelativeLayout, 219–221
TableLayout, 225–227
ViewSwitcher, 239

Chromecast, 29, 350

Chronometer control, 205–206

Clamshell mobile phone, 15

Classes

AbsoluteLayout, 334
AccessibilityManager, 35
Activity. see Activity class

AdapterView, 233, 235–237
AlertDialog, 266–267, 270–271
AnalogClock, 206–207
AnimationDrawable, 160–161
ApplicationTestCase, 392
ArrayAdapter, 233–234
AudioManager, 35
AutoCompleteTextView, 186–187
Button, 190–192
CharacterPickerDialog, 266–267
CheckBox, 190, 193
CheckBoxPreference, 287
Chronometer, 205–206
ClipboardManager, 35
ContactsContract, 322–324
ContentProviderOperation, 325, 327
Context

accessing device file system, 304
application directories, 305–309
defined, 97
using, 99

creating new, 552
creating test within IDE, 445–447

CursorAdapter, 233–235
CursorLoader, 235, 315, 317–318,

320–321
DatePicker, 197–199
DatePickerDialog, 266
Debug, 433, 534
Dialog, 266–267
DialogFragment, 248, 268–275
DigitalClock, 206
DisplayMetrics, 334
DownloadManager, 35
EditText, 183–185
EditTextPreference, 287
Environment, 311
FieldNoteListFragment, 246
FieldNoteViewActivity, 250
FieldNoteWebViewFragment, 250
File, 305, 309
Fragment

Activity focus on managing, 245
organizing Activity

components, 105
overview of, 98
referencing in application

package, 246
specialty, 248

FragmentManager, 35
FrameLayout

designing compatibility, 334
parent layout, 217
using, 222–224

GridView
binding data to AdapterView,

235–236
defined, 233
monitoring for click events,

236–237
ImageButton, 158, 192

577Classes

Classes (continued)
imported, 84
Intent

action types in, 108
defined, 98
passing additional information, 109

LayoutParams
FrameLayout, 222
LinearLayout, 218
RelativeLayout, 219

LinearLayout
creating layouts programmatically,

211–213
creating using XML resources, 210
as parent layout, 217
set to size of screen, 216–217
using, 217–219
working with, 167–171

ListActivity, 237, 247
ListFragment

defined, 248
designing fragments, 249–250
implementing, 250–253
implementing ListFragment, 250–253

ListPreference, 287
ListView

data-driven containers, 233,
235–237

designing fragments, 249
implementing ListFragment,

250–253
managing with ListActivity, 247

LocationManager, 35
Log

naming conflicts in, 83, 553
viewing application log data, 490

MarginLayoutParams, 215

MediaPlayer, 84–87
MediaStore, 316–317, 319
modeling, 398
MoreAsserts, 455
MultiAutoCompleteTextView,

186–188
MultiSelectListPreference, 287
OnItemClickListener, 236
PerformanceTestCase, 392
Preference class, 287
PreferenceActivity class

defined, 247–248
managing user preferences, 286
using, 289–291

PreferenceCategory class, 287–289
PreferenceFragment

defined, 248
displaying, 289–291
preference headers, 291–296

ProgressBar
activity bar and circles, 202
indicating progress, 199–202
RatingBar, 204–205
responsive mobile applications, 382

ProgressDialog, 266
RatingBar, 204–205
RelativeLayout, 219–222, 348
reorganizing code in Java, 555
SeekBar, 202–203
Service, 98, 111
ServiceTestCase, 392
Settings, 322
ShapeDrawable, 155
SharedPreferences

adding, updating, deleting
preferences, 284–285

defined, 99

578 Classes

for multiple activities, 282–283
overview of, 282
reacting to preference changes, 285
searching and reading

preferences, 283
for single activity, 282

SimpleFragDialogActivity, 269, 273
SlidingDrawer, 240
Spinner

defined, 51
editing preferences, 291
filtering user choices, 188–190
styles, 183

StrictMode, 302
Switch, 190, 194
TabActivity, 248
TabHost control, 248
TableLayout

defined, 178
user interface design, 334
using, 224–227

TableRow, 224–227
TextClock, 206
TextView, 180
TimePicker, 190
TimePickerDialog, 267
ToggleButton, 190, 193–194
TouchUtils, 392
View, 177, 209–210, 214
ViewAsserts, 455
ViewGroup, 209–210, 214–215
ViewManager, 35
WebView

implementing
WebViewFragment, 254

loading with ListView, 249
organizing into fragments, 244
WebViewFragment hosting, 248

WebViewFragment
defined, 248
designing fragments, 249–250
implementing, 254–255

WindowManager, 35
Clean states, devices, 426

Cleaning project, for build errors, 556

ClearCheck() method, 196–197

Clients

quality assurance testing on, 368
testing against new remote

servers, 430
ClipboardManager, 35

Clocks

analog, 206–207
digital, 206
text, 206

Cloud Save, 296–297

Cloud services

change management, 376
network-driven applications for, 371
quality assurance testing on, 368
transmitting private data, 383

Code

accessing resources, 142
Boolean resources in, 151
color resources in, 153
dimension resources in, 154
image resources in, 157–158
integer resources in, 152
layout resources in, 170
layouts in, 211–213
menu resources in, 163
mobile application development

diagnostics, 391–392
reviews, 391
standards, 390

579Code

Code (continued)
obfuscation tools, 460
simple drawable resources in, 156
string resources in, 148–149
system resources in, 172
tweened animation sequence in,

164–165
writing in Java. see Java

Code coverage testing, unit tests, 391–392

Color, for visual feedback, 418

Color resources

defining in XML, 152–153
defining with color state lists, 158–159
overview of, 152
using programmatically, 153

Columns, ContactContract data, 323

Comments

avoiding obfuscation, 390
creating new classes, 552
customizing tags for, 552
in Javadoc style, 556
renaming, 554

Commercializing, WAP applications,
16–17

Commit() method, 289

Compatibility

ActionBar, 415
alternative resources

organizing efficiently, 345–347
organizing with qualifiers,

339–344
for orientations, 345
overview of, 338
resolving, 338–339
using programmatically, 345

best practices, 331–333
SDK license agreement, 43
strategies, 5

targeting
Google Chromecast devices, 350
Google TV devices, 348–350
tablet devices, 347–348

testing mobile applications, 373
user interface design

fragments, 335
nine-patch stretchable

graphics, 336
specific screen types, 335–336
Support Library, 335
tools, 333–334
working squares, 336–338

<compatible-screens> tag, manifest
file, 129

Complex application content, 301–302

Compression, GL texture settings, 129

Configuration changes, 347

Configuration management systems,
369–370

Conformance testing, 432

Console, emulator

manipulating power settings, 523–524
monitoring network status, 523
other commands, 524
overview of, 520–521
sending GPS coordinates, 523
simulating incoming calls, 521
simulating SMS messages, 522

ContactsContract content provider,
322–324

Containers

ArrayAdapter, 234
binding data to AdapterView,

235–236
CursorAdapter, 234–235
data-driven, 233
designing compatibility, 334
DrawerLayout, 239

580 Code

ListActivity, 237–238
overview of, 232–233
scrolling, 238
selection event handling, 236–237
switchers, 239
ViewPager, 239

Content providers

accessing with special permissions, 319
Browser, 319–321
CalendarContact, 321
CallLog, 318–319
ContactsContract, 322–324
MediaStore, 316–318
modifying data

adding records, 325–326
deleting records, 327–328
overview of, 324
updating records, 326–327

overview of, 315–316
registering, 131
Settings, 322
third-party, 328
UserDictionary, 321–322
VoiceMail, 322

ContentProviderOperation class,
325, 327

Context

files and directories, 99
overview of, 97
preferences, 99
retrieving, 98
retrieving assets, 99
retrieving resources, 99
terminology, 97
using, 98–99

Context class

accessing device file system, 304
application directories, 305–309

defined, 97
using, 99

Contextual links, 180–182

Controls

Hierarchy Viewer indicators, 496
identifying unnecessary layout, with

lint, 496
user interface, 177–178

Conventions used in this book, 7

Copying files

from emulator/device, 538
to emulator/device, 539

Copyright infringement, 460

Core app quality guidelines, 384

Core files and directories, 73–75

Costs, 23, 27

Coverage, testing, 426–427

Crash reports

tracking user, 376
viewing in Developer Console after

publishing, 476–477
Crashes, device defects in, 424

Create Activity wizard, 71–72

CRM (customer relationship management)
applications, 318

CursorAdapter class, 233–235

CursorLoader class

adding to application, 235
content providers

Browser, 320–321
CallLog, 318
overview of, 315

MediaStore, 317–318
Customer relationship management (CRM)

applications, 318

Customization method, 358–359

Customizing

defect-tracking systems, 423–424
dialogs, 270–271

581Customizing

Customizing (continued)
hardware settings for AVD, 510–511
log filters, 551

D
Dalvik Debug Monitor Server. see DDMS

(Dalvik Debug Monitor Server)

Dalvik VM, 31

Data

binding to AdapterView, 235–236
handling configuration changes, 347
intents, 108
managing device databases, 361–364
minimizing calls, 382
retaining across configuration

changes, 347
testing transmissions to/from remote

server, 430
transmission of private, 430

Database, mobile device, 360–364, 426

Data-driven containers

adapters, 234–235
arrays, 233–234
binding data, 235–236
click events, handling, 236–237
headers/footers, 237
lists of items, 237
overview of, 233

DatePicker control, 197–199

DatePickerDialog class, 266

DDMS (Dalvik Debug Monitor Server)

Allocation Tracker, 534–536
Android IDE toolbar, 47
application logging, 543–544
attaching debugger to

applications, 531
configuring GPS location of emulator,

516–517

copying files to and from device, 302
debugging with, 490–491
Emulator Control pane

change telephony status, 540
overview of, 539
sending location fix, 541
simulate incoming SMS messages,

540–541
simulate incoming voice calls,

540–541
File Explorer

accessing preferences file, 285–286
browsing file system of emulator/

device, 536–538
copying files from emulator/

device, 538
copying files to emulator/

device, 539
deleting files on emulator/

device, 539
forcing crash, 83
garbage collection, 534
HPROF files, 534–535
key features, 530–531
memory profiling, 387
mobile application debugging

tool, 393
monitoring heap activity, 532–533
monitoring thread activity, 532
overview of, 529
screen captures of emulator/devices,

542–543
as standalone application with IDE,

529–530
stopping process, 532
System Information pane, 541–542
as testing tool, 434
viewing network statistics, 535–537

Debug As icon, 80

582 Customizing

Debug class, 433, 534

Debug configuration

debugging application on hardware,
90–92

launch configuration for project, 62,
64, 76

launching emulator to run application,
66–68, 513–515

naming and targeting AVD for, 64–65
Debug key, 465

Debug perspective, 47, 80–83

Debug thread, 433

Debugging. see also DDMS (Dalvik Debug
Monitor Server)

with ADB tool, 393, 434, 490–491
disabling when packaging code, 464
in emulator, 80–83
on hardware, 39–42, 90–92
with Hierarchy Viewer, 393, 496
with LogCat. see LogCat utility

resolution process, 42
with Toast messages, 192

Default application directory, 305–306

Default resources

alternative vs., 141–142
including with alternative

resources, 339
naming alternative resources exactly

as, 338–339
Defects, mobile application, 424

Defect-tracking systems, 423–424

Deleting

content provider records, 327–328
files on emulator/device, 539
preferences, 284–285

Deployment, mobile application, 374–375

Deployment Target Selection Mode, 76

Deprecated methods, 266

Descendant navigation, 401–402

Design comps, screen layouts, 417

Design patterns, navigation

defined, 405
documentation for, 486
drop-down, 406–407
master detail flow, 405, 408–409
navigation drawer, 406, 408–409
tabs, 406–407
targets, 408, 410

Design tab, Android documentation,
486–488

Detaching fragments, 246–247

Dev Tools application, emulator, 506

Develop tab, Android documentation,
486–488

Developer Console account, 461

Developer Console, Google Play

additional options, 475
Android documentation, 487
Google Play Game Services APIs, 476
pricing/distribution details, 474–475
sign up for publisher account, 468
translating applications, 478
upgrading application, 477
uploading application, 471–473
uploading assets, 473–474
viewing statistics, 476–477

Developer Distribution Agreement, Google
Play, 461

Developer Options, 40

Developer Program Policies, Google
Play, 461

Developer website

ADT Bundle updates, 55
emulator, 489
as resource, 6
SDK updates, 37, 55

583Developer website

Developer website (continued)
signing, 467
Support Package updates, 260
supporting different types of

screens, 336
Developers

access to underlying hardware, 26
Android as free and open source for,

23, 25
familiar/inexpensive tools for, 25–26
Google Play store registration, 32
learning curve for, 26
mobile, 18
proprietary mobile platforms with

programs for, 17
SDK License Agreement for, 43
this book for software, 1
WAP solution for mobile and, 16
websites for software, 6

Developers Blog, StrictMode, 433

Development environment

set up
application framework, 44–45
basic installation process, 38–39
configuring, 39–42
core framework, 45–46
device debugging, 39–40
emulator, 48–50
IDE and ADT, 47–48
overview of, 37
sample applications, 51–52
SDK and AVD Managers, 48
SDK documentation, 44
SDK license agreement, 42–44
SDK problems, 42
SDK upgrades, 42

testing
adding project to workspace, 57–60

adding samples with SDK
Manager, 56–57

creating AVD, 61–62
launch configuration, 62–65
overview of, 55–56
running application in emulator,

66–68
in this book, 5–6

Device databases

configuration management, 426
overview of, 361–362
storing device data, 361–363
third-party, 364
using device data, 363–364
which devices to track, 361

Devices

accessing settings, 322
apps driving sale of, 21–22
bugs on single, 392
choosing for AVD, 509
clean state determination on, 426
compatibility, 331–332
configurations, 425–426
creating AVD, 62–64
debugging, 39–40, 514
delivering experience, 20–21
file system interaction on, 536–539
getting information about screen, 334
logging defect information, 423–424
manufacturers designing, 19–20
mobile

limitations, 370
project risks, 364–367
user interface design for, 380–381

quality assurance testing, 367
rooted, 426
specifying features, 127–128

584 Developer website

specifying supported screen sizes, 128
testing

content provider code, 315
on emulator vs., 428
glossary of terms for, 424
in preproduction, 428
on real, 302–303
on upgrades of, 432

Devices pane, DDMS, 530

Diagnostics

developing code, 391–392
leveraging application, 386

Dialer application, 517–518

Dialog class, 266–267

DialogFragments class

custom, 270–271
defined, 248
lifecycle of, 268–270
overview of, 267–268
working with support package,

271–275
Dialogs

alert, 266–267
attributes, 268–269
basic, 266–267
character pickers, 266–267
customizing, 270–271
date pickers, 266–267
dismissing, 269–270
fragment method, 267–270
fragments, Support Package, 270–275
legacy method, 265
lifecycle, 268–270
presentation, 267
presenting actions to users, 415
progress, 266–267
providing visual feedback, 418

showing, 269
time pickers, 267

Digital signatures

for application updates, 477
packaging/signing application,

465–467
Dimension resources, 153–154

Dimensions, for compatibility, 334

Directional pad (D-pad), Google TV, 349

Directories

accessing, 99
application, 304
cache

accessing, 304
defined, 302
management of, 310–311
methods, 305

core, 73–75
default application

reading from files in, 306
writing to files in, 304–306

external storage, 312
File Explorer

browsing file system of emulator/
device, 536–538

copying files from emulator/
device, 538

copying files to emulator/
device, 539

deleting files on emulator/
device, 539

monitoring, 311
resources, 138
setting up, 309–311
subdirectories

applications, 304, 310
resources, 137–138

working with, 303–304

585Directories

Directory qualifiers

organizing alternative resources,
339–344

storing alternative resources, 344
Disk space use, device defects in, 424

Dismiss() method, dialogs, 268–269

Displaying

characteristics of device at
runtime, 334

data to users
adjusting progress, 202–203
clocks, 206–207
progress bars, 199–202
ratings, 204–205
time passage, 205

text, 179–182
DisplayMetrics, 334

Distribute tab, Android documentation,
486–488

Distribution

choosing application version, 370
documentation for open, 487
infrastructure for published

applications, 467
methods, 459–460

Distribution tab, Developer Console, 475

Dmtracedump tool, 502

Documentation

Android help, 486
AVD testing of device

configuration, 429
custom action, 131
handling bugs on single device, 392
Javadoc style, 556
lacking in early development, 28
mobile application

maintenance, 369, 376
overview of, 368–369

porting, 369
test plans for quality assurance,

368–369
third party requirements, 369

reading, 44
reference for, 36
SDK, 56–57
updated features of, 22

Documents, coding standards, 390

Domain modeling, 398

Downloaded content, 301–302

DownloadManager, 35

Downloads, design documentation, 486

Downtimes, minimizing, 429

Dp units, 154

D-pad (directional pad), Google TV, 349

draw9patch tool, 387, 497–501

Drawable resources

defining in XML, 155–156
defining with color state lists,

158–159
image resources as, 156–157
simple, 154–155
using programmatically, 156

DrawerLayout pattern, 238

Drop-down navigation, 406–407

E
Eclipse IDE. see also Android IDE

as alternative to Android IDE, 38
Android Studio alternative to, 26
designing Android apps, 25–26
development system requirements, 38
installation process, 38–39
using sample applications, 52

Editing

manifest file manually, 119–121

586 Directory qualifiers

manifest file with Android IDE
application/activity settings,

117–118
overview of, 115–116
package-wide settings, 117
permissions, 117–118
test instrumentation, 119

preferences, 284–285
EditText controls, 183–185

EditTextPreference class, 287

ElapsedRealTime() method,
Chronometer, 205

Ellipsize attribute, TextView, 180

Ems attribute, TextView, 180

Emulation options, AVD, 51

Emulator

accessing, 505
as application design tool, 373–374, 386
calling between two instances, 517–518
configuring GPS location of, 88–89,

516–517
configuring startup, 513
console

network status, 523
other commands, 524
overview of, 520–521
power settings, 523–524
sending GPS coordinates, 523
simulating incoming calls, 521
simulating SMS messages, 522

debugging in, 80–83
enjoying, 524–525
functions of, 48, 50
interacting with file system, 536–539
launching

from Android Virtual Device
Manager, 515–516

overview of, 513–515

to run application, 62–68, 76–79
with specific AVD, 512

limitations of, 525–526
messaging between two instances,

518–520
overview of, 505–506
performance, 512–513
power of, 489
startup options, 513
testing

layout, 211
mobile applications, 373–374
on real device vs., 428–429, 507
with, 393, 434

tips for using, 506–507
working with AVDs

creating AVD, 509–510
creating AVD with custom

hardware, 510–511
launching with specific AVD,

512–515
overview of, 507–508
using Android Virtual Device

Manager, 508–509
Emulator Control pane, DDMS

change telephony status, 540
features, 531
overview of, 539
sending location fix, 541
simulate incoming voice calls,

540–541
Encouraging action. see Actions

End User License Agreement (EULA),
mobile, 383

Enforcing

permissions
overview of, 132–133
using Permissions tab, 117–118

587Enforcing

Enforcing (continued)
platform requirements

device features, 127–128
input methods, 126–127
screen sizes, 128

system requirements
maximum SDK version, 126
minimum SDK version, 124–125
overview of, 123
target SDK version, 125–126
targeting specific SDK versions,

123–124
Entities, project, 398

Entity relationship modeling, 398

Entry navigation, 400

Environment

development. see Development
environment

for testing
clean start state, 426
managing device configurations,

425–426
overview of, 55–56, 425–427
real-world, mimicking, 426–427

Environment class, 311–312

Error handling

coding standards for, 390
debugging your Android application

in emulator, 80–83
resolving mysterious build errors, 556

Escaping, XML, 148

etc1tool command-line tool, 502

EULA (End User License Agreement),
mobile, 383

Exerciser Monkey (monkey)

defined, 434
testing for unexpected, 433
testing with, 456

ExpandableListActivity, 237

ExpandableListAdapter, 237

Experience. see User experience

Exporting, and signing package file, 465–467

Extensibility, mobile design for, 371

External cache directory, retrieving, 312

External libraries, 128–129

External navigation, 404

External storage

accessing, 303, 311–312
creating/writing files to, 311–312
file management practices, 302

Extract Local Variable tool, Java, 554–555

Extract Method tool, Java, 555

Extras, Intent object, 109

F
F6 key, 507

F8 key, 505

Facebook App Center, 375

FC (force close) issues, avoiding, 433

Feasibility testing, 389–390

Feature support

Google TV devices, 349
mobile application, 377
tablets, 348

Features, device defects in, 424

Feedback

application diagnostics from, 386
on device defects, 424
providing visual, 418
usability studies for mobile, 430

Fierce Developer newsletter, 6

File Explorer

accessing preferences file, 285–286
browsing file system of emulator/

device, 536–538

588 Enforcing

copying files from emulator/
device, 538

copying files to emulator/device, 539
deleting files on emulator/device, 539

Files

accessing, 304
AndroidManifest.xml, 73, 89–90,

115
application data on device, 301–302
application directories, 304
copying, 302
creating and writing

in default application directory,
304–306

to external storage, 311–312
creating on file system, 310–311
directories

creating and writing files to default,
304–306

overview of, 304
reading from files in, 306
setting up structure, 309–311

managing, 302–303
manifest

application/activity settings,
117–118

defined, 115
editing manually, 119–121
editing with Android IDE,

116–117
enforcing platform requirements,

126–128
enforcing system requirements,

123–126
external libraries, 128–129
Google TV settings, 349
identity management, 122–123
lesser-used settings, 129

maximizing device
compatibility, 333

other settings, 133
overview of, 115–116
package-wide settings, 117
permissions, 117–118, 131–133
registering activities in, 129–131
test instrumentation, 119

monitoring, 311
permissions

accessing content providers, 319
overview of, 303

reading from, 306
reading raw, 306–308
reading XML, 308–309
searching project, 551
viewing two sections of same, 550
working with, 303–304

FileStreamOfConsciousness application,
304

Filter() method, InputFilter interface,
184–185

Filters

creating LogCat, 543–544
customizing log, 551
Google Play, 121, 463–464
input, 184–185
intent, 130–131
other application configuration

settings, 129
FindViewById() method, 178

Finish() method, 106

Firmware upgrades, testing, 376

First-generation mobile phones, 13–14

Footers, in ListView, 237

Force close (FC) issues, avoiding, 433

ForceError() method, 80–83

Form factors, mobile phone, 15

589Form factors, mobile phone

Format strings, 148

Formats

Google TV supported, 349
image, 156
media, 164
resource references, 165
string resources, 147
writing code in Java, 553

Forums

Android developer, 6
XDA-Developers Android Forum, 7

Fragment classes

organizing Activity components,
105–106

overview of, 98
specialty, 247–248

Fragment subclasses, 247–248

<fragment tag>, 245–246

Fragmentation, 331–332

FragmentManager

defined, 35, 245
dialog implementation, 265–266
implementing ListFragment, 254
support package dialog fragments,

272–275
Fragments

in Android application terminology, 98
attaching, 246–247
back navigation, 401–402
compatibility, 334–335
defining, 245–246
designing applications

Activity classes, 257–258
layout resource files, 255–257
ListFragment, 250–253
overview of, 248–249
WebViewFragment, 254–255

detaching, 246–247
dialog

custom, 270–271
defined, 248
implementation, 265–266
lifecycle of, 268–270
overview of, 267–268
support package, 271–275

lifecycle, 244–245, 268–270
managing modifications, 246
navigating with, 404
nested, 261
overview of, 105–106, 243
paging data with ViewPager, 239
special types, 247–248
support

legacy, 259
linking to your project, 260–261
new applications targeting older

platforms, 259–260
overview of, 259

tablets, 348
understanding, 243–245
user interface design tips for

mobile, 380
FragmentTransaction operation, 246

Frame-by-frame animation, 159–161

FrameLayout

designing compatibility, 334
as parent layout, 217
using, 222–224

Frames, Nine-Patch graphics for, 157

Framework, application

exploring, 45–46
JUnit testing for, 391–392
overview of, 34–35

Free applications, 23, 383

590 Format strings

Free market, 27

Free trial version, distribution, 460

G
Game Services APIs, Google Play, 476

Games

emergence of, 17
first-generation “time-waster,” 14

GC (garbage collection)

prompting DDMS to force, 534
updating heap statistics after, 532

/gen folder, 58, 74

GetActionBar() method, 414

GetApplication Context() method, 98

GetAssets() method, 99

GetBoolean() method, 151

GetContentResolver(), 326

GetDimension() method, 154

GetExternalCacheDir() method, 312

GetExternalFilesDir() method, 312

GetExternalStoragePublicDirectory()
method, 312

GetExternalStorageState() method,
311–312

GetFragmentManager() method, 245

GetJar, publishing to, 479

GetLocation() method, 88

GetQuantityString() method, 149–150

GetResources() method, 99

GetSharedPreferences() method, 99

GetSupportActionBar() method, 415

GetSupportFragmentManager() method, 273

GetText() method

EditText, 184
test MatchingPasswords() method, 454
TextView, 179
unit testing APIs/assertions, 450

Getting started, design documentation
for, 486

GL texture compression settings, 129

Glossary, logging device defects, 424

GNU General Public License Version 2
(GPLv2), 25

Google

APIs, 56–57
Apps domain, 478
Chromecast devices, 350
design comp tools, 417
Experience device, 367
Glass, 29
going wireless, 18–19
Nexus Android devices, 21
OHA. see OHA (Open Handset
Alliance)

SDK license agreement for APIs, 44
third-party Android APIs, 45–46
TV devices, 348–349

Google Analytics

App Tracking SDK, 462
leveraging application diagnostics

from, 386
Google Play

Android documentation for, 487
application diagnostics from, 386
buying and selling Android

applications, 6
crash and bug reports, 376
customization method for project

requirements, 358–359
developer registration, 32
developer registration fee, 23
developing Google TV devices, 349
as distribution channel

billing user, 461
following policies, 461

591Google Play

Google Play, as distribution channel
(continued)

License Verification Library, 460
as marketing channel, 375
overview of, 27–28
sharing profits with, 459

downloading apps, 21
filtering

with <uses-feature> tag, 121
with <uses-sdk> tag, 124

Game Services SDK, 21–22
international laws for selling on, 468
packaged application

digital signature validity period, 465
preparing, 463–464

publishing to
additional options, 475
Developer Distribution Agreement,

468–469
Game Services API, 476
overview of, 468, 476
pricing/distribution details, 474–475
private channel, 478
removing, 477–478
return policy, 476–477
sign up for publisher account,

468–471
sign-in page, 468–469
Staged Rollouts, 478
translation, 478
upgrades, 477
uploading, 471–473
uploading marketing assets, 473–474

redesign of, 21–22
services, 35
Staged Rollouts, 374

Google Plus website, 6

Google Services, 487

Google Team Android Apps website, 6

Google Wallet Merchant account, 461,
468, 470

GPLv2 (GNU General Public License
Version 2), 25

GPS coordinates

configuring location of emulator,
516–517

emulator console sending, 523
sending location fix in Emulator

Control pane, 541
Graphical Layout Editor, 386

Graphical Layout mode, UI designer, 492

Graphics. see also Nine-Patch Stretchable
Graphics

alternative resources for different
orientations, 345–346

designing compatibility, 334
drawable resources for, 154–155
sizing appropriately for mobile

devices, 381
storing, 141

GridLayout, 228–230

GridView, 233, 235–237

Groups, permission, 133

H
Handango, publishing to, 479

Hardware

access to underlying, 26
application debugging, 90–92
creating AVD with, 51
creating AVD with custom, 510–511
device compatibility, 331–332
device debugging, 39
testing applications, 426
upgrades, 22

592 Google Play

Headers

in ListView, 237
organizing preferences with, 322
preference, 291–298

Heap

inspecting with HPROF files, 534
memory use and, 532
monitoring with DDMS, 532–533

Height, TextView, 180

Help documentation, 486

Help screen, 100, 380

Hiding ActionBar, 413–414

Hierarchy View perspective, IDE toolbar, 47

Hierarchy Viewer

accurate interface design tool, 387
inspecting application layouts, 230
mobile development tool, 393
as testing tool, 434
white-box testing, 429

Home screen, emulator

customizing, 524
stopping application, 507

HorizontalScrollView control, 238

HPROF files, creating with DDMS, 534–535

Hprof-conv tool, 502

HTTP (HyperText Transfer Protocol), 15–17

I
Iautomator testing framework

defined, 434, 502
functions of, 456
user interface, 392
white-box testing, 429

Icons

customizing emulator, 524
Google Play, 464

packaging application, 463
placing application and, 411
setting application and, 122–123

Id attribute, fragments, 246

Id fields, CursorAdapter, 235

Identity

communicating for application,
416–417

managing application
name and icon setting, 122–123
overview of, 122
versioning, 122

Image buttons, 192

Images

formats, 156
Nine-Patch Stretchable Graphics, 157
using programmatically, 157–158

ImageView layout, 170–171

Imports, organizing in Java, 553

Improving app quality, 385

In-app billing, testing, 433

<include> tags, layout, 232

Incoming calls

simulating in emulator console, 521
simulating in Emulator Control

pane, 540
Indicators

activity bar and circles, 202
adjusting progress, 202–203
clocks, 206–207
customizing, 203
Hierarchy Viewer performance, 496
progress bars, 199–202
ratings, 204–205
time passage, 205–206

Infringements, intellectual property
protection, 460

593Infringements, intellectual property protection

Init() method, 198–199

Input

filters, constraining user, 184–185
methods

enforcing platform requirements,
126–127

user interface design for mobile, 381
mode of

designing Google TV devices, 349
designing tablets, 348

providing validation for user, 418
validation, 424

InputFilter interface, 184–185

Install Packages, 56–57

Installation, testing application, 432

Instrumentation tab, IDE manifest file
resource editor, 119

Integer resources, 152

Integration

device defects in, 424
points, 430
testing application for points of, 431

Intellectual property protection, 460

Intent class

action types in, 108
defined, 98
passing additional information, 109

Intent filters, 108

Intents

with action/data, 108
activity transitions with, 106–107
application navigation, 110
ContactsContract content

provider, 322
definition of, 98, 108
filters, 130–131
Google application, 109

launching activities
by class name, 107–108
external, 108–109

overview of, 106
passing additional information, 109
receiving/broadcasting, 111–112

International laws, Google Play, 468

Internationalization

alternative resources for, 141–142
testing application, 432
testing applications, 432

Internet

not scaling well for mobile, 15
WAP solution for mobile, 15–17

INTERNET permission, adding media to
application, 86–87

Interoperability, mobile design for, 372–373

Introduction to this book

changes in this edition, 3–5
contacting authors, 7
conventions used, 7
development environment used, 5–6
questions answered, 2
structure of, 2–3
supplementary materials available, 6
where to find more information, 6–7
who should read it, 1–2

INVITE_CONTACT Intent type, 322

IsFinishing() method, 105

Issue Tracker website, 42

Italic strings, 147

<item> attributes, color state list, 158

Iterative approach, mobile development, 357

J
Jarsigner command-line tool, 467

594 Init() method

Java

Android apps written in, 26
as only choice for Android SDK, 32
writing code in

autocomplete, 552
formatting code, 553
Javadoc style documentation, 556
new classes and methods, 552
organizing imports, 553
refactoring code, 554
renaming almost anything,

553–554
reorganizing code, 555
using Extract Local Variable tool,

554–555
using Extract Method tool, 555
using QuickFix, 555–556

Java ME (Java Micro Edition), 17

Java perspective, 47

JDK (Java Development Kit), Version 6,
37, 38

JUnit testing framework

analyzing results, 450–453
assertions, 450
running first test, 450
unit testing with, 391–392,

436–437

K
Keyboard

commands in emulator, 505
mapping in IDE/Mac OS X, 83
type/availability, alternative resource

qualifiers, 343
Keystore selection screen, 466

Keytool command-line tool, 467

Killer apps, testing for, 433–434

L
Labels, Google Play, 464

Landscape mode

for 10-inch tablets, 75
alternative resources for, 339,

345–346
displaying fragments in, 249–250, 253
flexible layout controls for, 334
for Google TV devices, 349
layout files for, 255–258
resolving resources, 141–142
screen size/density for, 332
switching emulator to, 507
as tablet default, 348
using layout resources

programmatically, 170
working square in, 336–337

Language code, alternative resource
qualifiers, 341

Languages

testing internationalization, 432
translating applications, 478

Last-in-first-out ordering, back stack, 404

Lateral navigation, 400–401

Launch configuration

configuring new Android
application, 71

creating for Snake project, 62
creating for your project, 75–76

Layout designer, 168–170

Layout direction, alternative resource
qualifiers, 341

Layout View mode, Hierarchy Viewer, 494

Layout_height attribute

fragments, 246
ViewGroup, 216–217

Layout_margin attribute, ViewGroup, 216–217

595Layout_margin attribute, ViewGroup

Layout_width attribute

fragments, 246
ViewGroup, 216

LayoutParams class

FrameLayout, 222
LinearLayout, 218
RelativeLayout, 219
ViewGroup, 215

Layouts

built-in classes
frames, 222–223
grids, 228–230
linear, 217–219
overview of, 215–217
relative, 219–222
tables, 224–227

compatibility
different-size screens, 336
tools for, 334

configuring in TextView, 180–181
containers

ArrayAdapter, 234
binding data to AdapterView,

235–236
CursorAdapter, 234–235
data-driven, 233
DrawerLayout, 239
ListActivity, 237–238
overview of, 232–233
scrolling support, 238
selection event handling,

236–237
switchers, 239
ViewPager, 239

creating
programmatically, 211–213
using XML resources, 209–211

fragments, 255–257
multiple, 230–232
organizing, 214–215
purposes of, 209
repositioning tabs within

perspectives, 548
resource files

controls as dimension resources,
153–154

designing in IDE, 168–170
overview of, 166–168
resource references in, 165
using programmatically, 170–171

screen design, 417
tablet design, 348
user interface controls, 178
using Graphical Layout Editor, 386
using Hierarchy Viewer. see
Hierarchy Viewer

using QuickFix, 556
Legacy API support, 5

Legacy applications

adding ActionBar to, 415
fragment support for, 259
screen compatibility mode of, 336

Legacy method, dialogs, 265

Legal issues, 23

/libs folders, 74

Licensing

Android apps free of, 23
Google Play License Verification

Library, 460
OS of Android, 25
SDK agreement, 43–44

Lifecycle

activity, 100–102
Dialog and DialogFragment,

268–270

596 Layout_width attribute

fragments
attaching/detaching with activities,

246–247
defining, 245–246
managing modifications, 246
overview of, 244–245

invoking on emulator, 507
performance issues, 433

LIMIT statement, CursorLoader, 321

Limitations, mobile device design, 370

LinearLayout

creating layouts programmatically,
211–213

creating using XML resources, 210
as parent layout, 217
set to size of screen, 216–217
using, 217–219
working with, 167–171

Lines attribute, height of TextView, 180

Links

creating contextual text, 180–182
Support Package to project, 260–261
test project to application in IDE, 443

Lint command-line tool

identifying unnecessary layout
controls, 496

optimizing layouts, 230, 232
testing with, 434–435

ListActivity class, 237, 247

ListFragment class

defined, 248
designing fragments, 249–250
implementing, 250–253
implementing ListFragment, 250–253

ListPreference class, 287

ListView

as data-driven containers, 233, 235–237
designing fragments, 249

implementing ListFragment, 250–253
managing with ListActivity class, 247

LoadInBackground() method, content
providers, 315, 317–318

Local storage, minimizing, 382

Localization

alternative resources for, 141–142
testing application

internationalization, 432
translating applications, 478
user interface design tips for

mobile, 381
Location-based services

adding to application, 88–89
configuring GPS for emulator,

516–517
sending fix in Emulator Control

pane, 541
testing applications, 427

LocationManager, 35

Logcat tool, 502

LogCat utility

customizing log filters, 551
in DDMS, 543–544
debugging in emulator, 80
as testing tool, 434
viewing application log data,

84–85, 490
LogCat window, DDMS, 531

Logging

adding to application, 83–84
defect information, 423–424
diagnostic, 391
disabling when packaging code, 464

Loupe/zoom pane, Hierarchy Viewer, 496

Lowest common denominator method

determining project requirements,
357–358

hybrid approach, 359

597Lowest common denominator method

LunarLander game, 52

LVL (License Verification Library), Google
Play, 460

M
Mac OS X, stepping through code in, 83

Main UI thread

avoiding lengthy operations on, 381,
432–433

coding standards for, 390
file management practices, 302
pausing/resizing in mobile

applications on, 424
performance issues, 432–433

Maintenance

mobile application
design, 371
design for easy, 385–386
documentation, 369
support, 375–377

Malware requirements, SDK license
agreement, 43

Managers

Android platform service, 35
this book for project, 1

Manifest file

accessing application, 99
accessing content providers with

special permissions, 319
configuring applications

application/activity settings,
117–118

editing manually, 119–121
editing with Android IDE, 116–117
overview of, 115–116
package-wide settings, 117
permissions, 117–118
test instrumentation, 119

core, 73–75
defined, 115
editing in IDE, 492
enforcing application requirements

platform, 126–128
system, 123–126

external libraries, 128–129
Google Play filters, 463–464
Google TV settings, 349
identity management

overview of, 122
setting name and icon, 122–123
versioning, 122

lesser-used settings, 129
maximizing device compatibility, 333
other settings, 133
permissions

registering application enforced,
132–133

registering required, 131–132
registering activities

intent filters, 130–131
other application components, 131
overview of, 129–130
primary entry points, 130

viewing test project, 444–445
Manifest tab, IDE manifest file resource

editor, 117

Manual editing, manifest file, 119–121

Manufacturers

first-generation mobile phones,
13–14

growth of Android, 21
mobile project risk assessment,

365–366
OHA device, 19–20
proprietary platforms for handsets, 17

598 LunarLander game

Maps application, 88–89

MarginLayoutParams class, 215

Marketplace

choosing distribution model, 459–460
free market, 27
mobile, 374–375
mobile operators, 20–21
no one platform has emerged

victorious, 18
uploading assets to Google Play,

473–474
where we are now, 22–23

Mascot, 23–24

Master detail flow navigation, 405, 408–409

The Matrix Phone, Nokia 8110, 15

MaxEms attribute, width of TextView, 180

Maximizing windows, in workspace, 548

Maximum SDK version, 126

MaxLines attribute, height of TextView, 180

MaxSdkVersion attribute, API level, 124

Media formats, 164

Media support, 84–87

MediaPlayer class, 84–87

MediaRouter APIs, Chromecast, 350

MediaStore content provider, 316–318

Membership supplementation, mobile
design, 384

Memory

avoiding leaks, 99
coding standards, 390
creating AVD, 62–64
device defects in, 424
monitoring with Allocation Tracker,

532, 534–536
monitoring with heap, 532

Menu resources

defining in XML, 162–163
using programmatically, 163

<merge> tags, layout, 232

Messaging, in emulator, 518–519

Methodologies, mobile development

iteration, 358
waterfall, 356–357

Methods

addOnBackStack
ChangedListener(), 254

addToBackStack(), 401
AddView(), 214
addWord(), 322
application file management, 304–305
apply(), 285
apply() batch, 326
assertEquals(), 450
clearCheck(), 196–197
commit(), 289
customization, 358–359
deprecated, 266
dismiss(), 268–269
elapsedRealTime(), 205
Extract Method tool, 555
filter(), 184–185
findViewById(), 178
finish(), 106
forceError(), 80–83
getActionBar(), 414
getApplication Context(), 98
getAssets(), 99
getBoolean(), 151
getDimension(), 154
getExternalCacheDir(), 312
getExternalFilesDir(), 312
getExternalStoragePublicDirectory(), 312
getExternalStorageState(), 311–312
getFragmentManager(), 245
getLocation(), 88

599Methods

Methods (continued)
getQuantityString(), 149–150
getResources(), 99
getSharedPreferences(), 99
getSupportActionBar(), 415
getSupportFragmentManager(), 273
getText()

EditText, 184
test MatchingPasswords()

method, 454
TextView, 179
unit testing APIs/assertions, 450

init() method, 198–199
isFinishing(), 105
loadInBackground(), 315, 317–318
Lowest common denominator

determining project requirements,
357–358

hybrid approach, 359
newDelete(), 327–328
newInsert(), 326
newUpdate(), 327
onActivityCreated()

fragments, 247
implementing ListFragment, 250–253
implementing

WebViewFragment, 255
onAttach(), 247
onBackPressed(), 401
onBackStackChanged(), 254
OnCheckedChangeListener, 196–197
onClick(), 192, 441
onConfigurationChanged(), 347
onCreate()

ancestral navigation, 403
fragments, 247
initializing static activity data, 102
intents, 109

layouts, 212
logging support, 84
media, 85
PreferenceActivity class, 289

onCreateOptionsMenu(), 163
onCreateView(), 247
onDateChanged(), 197–198
onDestroy()

avoiding killing activities, 103
destroying static activity data, 104
fragments, 247

onDestroyView(), 247
onDetach(), 247
onItemClick(), 237
onListItemClick(), 237
onOptionsItemSelected(), 414–415
onPause()

avoiding killing activities,
103–104

emulator, 507
fragments, 247
stopping/saving/releasing activity

data in, 103
onRatingChanged(), 204–205
onResume() method

fragments, 247
initializing/retrieving activity data

in, 103
onRetain

NonConfigurationInstance(), 347
onSaveInstanceState(), 104
onStart() callback, 247
onStop()

adding media, 86–87
avoiding killing activities, 103
emulator, 507
fragments, 247

openFileInput(), 306–307, 309

600 Methods

openFileOutput(), 305–306, 309
playMusicFromWeb(), 85–86
registerOnSharedPreference

ChangeListener(), 285
reorganizing code in Java, 555
selectAll(), 184
sendKeys(), 454
setBase(), 205
setContentView()

creating layouts, 210
creating layouts

programmatically, 212
fragments, 246
ListActivity, 237
ProgressBar, 202

setFilters(), 185
setMaxDate(), 197
setMinDate(), 197
setOnClickListener(), 192
setSelection(), 184
setText()

creating layouts
programmatically, 212

EditText, 184
TextView, 179

SharedPreferences interface, 283
show()

custom dialog, 271
dialog lifecycle, 268–269
support package dialog

fragments, 273
start(), 205
startActivity()

descendant navigation, 401
lateral navigation, 400–401
launching activities by class name,

107–108
temporary transitions, 106

startActivityForResult(), 404
tapView(), 454
testMatchingPasswords(), 453–455
testPreConditions(), 450–453
text input, 85
unregisterOnSharedPreference

ChangeListener(), 285
uri parsing, 85
writing code in Java, 552

MinEms attribute, width of TextView, 180

Minimizing windows, in workspace, 548

Minimum SDK version, 70, 124–125

MinLines attribute, height of TextView, 180

MinSdkVersion attribute, API level, 124

Mistakes, avoiding

in design, 388
in development, 393
in testing, 435

Mksdcard command-line tool, 502

Mobile applications

design best practices
avoiding silly mistakes, 388
leveraging diagnostics, 386
maintenance and upgrade, 385–387
for maximum profit, 383–384
meeting users’ demands, 380
quality quidelines, 384–385
rules, 379–380
security, 383
stability and responsiveness,

381–382
third-party quality standards, 385
tools for, 387–388
user interface, 380–381

development best practices
avoiding silly mistakes, 393
code diagnostics, 391–392

601Mobile applications

Mobile applications, development best
practices (continued)

code reviews, 391
coding standards, 390
feasibility testing early and often, 389
handling defects on single

device, 392
overview of, 388–389
software development process for, 389
tools, 393

Mobile development

acquiring target devices, 366
application design

architectures, 371
deploying, 374–375
development phase, 373
extensibility and maintenance,

371–372
interoperability, 372–373
limitations of, 370–371
supporting and maintaining, 375–377
target markets, 375
testing applications, 373–374

best practices
avoiding silly mistakes, 393
code diagnostics, 391–392
code reviews, 391
coding standards, 390
feasibility testing early and often, 389
handling defects on single

device, 392
overview of, 388–389
software development process

for, 389
tools, 393

choosing software methodololgy
iteration, 358
waterfall, 356–357

602 Mobile applications

configuration management systems,
369–370

documentation
maintenance and porting, 369
overview of, 368–369
test plans for quality assurance,

368–369
third party requirements, 369

hurdles, 355
managing device database, 361–364
overview of, 355
requirements

determining feasibility of, 366–367
developing use cases, 360
overview of, 357
project, 358–359
third-party recommendations

and, 360
risks

assessing, 366
quality assurance, 367–368

Mobile marketplaces, 375

Mobile network code, alternative resource
qualifiers, 341

Mobile operators, OHA, 20–21

Mobile software development history

The Brick, 13–15
form factors, 14
Google goes wireless, 18–19
proprietary mobile platforms, 17–18
WAP, 15–17
way back when, 11–13

Mobiletuts+ website, development
tutorials, 6

Mockups, application, 418

MODE_APPEND, permissions, 303

MODE_PRIVATE, permissions, 303

MODE_WORLD_READABLE, 303

603Navigation drawer design pattern

MODE_WORLD_WRITEABLE, 303

Modes, permission, 303

Modifications, managing fragments, 246

Monitoring, files and directories, 311

Monkey (Exerciser Monkey)

defined, 434, 502
testing for unexpected, 433
testing with, 456

Monkeyrunner API

automating testing, 428, 456
defined, 434, 502

Monospace text, in this book, 7

MoreAsserts class, 455

Motorola DynaTAC 8000X, 13–14

Mouse, emulating trackball on emulator, 507

MP3 music files, 84–87

MultiAutoCompleteTextView, 186–188

Multimedia content, files for, 301–302

Multiple APK support, 358–359

Multiple user accounts, restricted profiles, 32

MultiSelectListPreference class, 287

MyFirstAndroidApp application. see
Applications, building first

N
Naming conventions

accessing resources
programmatically, 142

activity for Android project,
71–72

alternative resources, 338–339
application, 122–123
AVD, 61
coding standards for, 390
creating AVD, 509
custom log filters, 551
new project, 69–70

packaging application, 463
renaming in Java, 553–554
resource files, 156
storing resource files, 140–141
test project in IDE, 442
XML files, 140

Native application support, 33–34

Native code, 33

Native Development Kit (NDK)

developing Google TV devices, 349
integrating native code, 33

Navigation

action vs., 408
with activities and intents, 110
alternative resource qualifiers, 343–344
ancestral, 401, 403
back, 401
back stack, 404
descendant, 401
design patterns

defined, 405
DrawerLayout, 239
drop-down, 406–407
master detail flow, 405, 408–409
navigation drawer, 406, 408–409
tabs, 406–407
targets, 408, 410

designing tablet, 348
entry, 400
external, 404
with fragments, 404
Google TV devices, 349
lateral, 400–401
launching tasks, 404
planning, 404–405

Navigation drawer design pattern, 406,
408–409

NDK (Native Development Kit)

developing Google TV devices, 349
integrating native code, 33

Nested fragments, 261

Network statistics, viewing with DDMS,
535–537

Network status, in emulator console, 523

Network-driven applications, 371–372

Networking, toggling in emulator, 505

New Android Application settings, 70–71

New applications, fragment support,
259–260

NewDelete() method, 327–328

NewInsert() method, 326

Newsletter, Fierce Developer, 6

NewUpdate() method, 327

Next-generation platform, Android as, 23–25

Nexus devices, 21

Night mode, alternative resource
qualifiers, 342

Nine-Patch Stretchable Graphics

creating, 157
device compatibility, 334, 336
image format, 156
mobile use, 388
tablet design, 348
working with, 157–158, 498–500

Nokia

8110 “The Matrix Phone,” 15
Snake video game on, 14

NotePad demo, 52

NumberPicker control, 199

O
Obfuscation

coding standards avoiding, 390
tools for code, 460

OEM/ODM relationships, 26

OHA (Open Handset Alliance)

developing applications, 21–22
device manufacturers, 19–20
forming, 19
Google goes wireless, 18–19
marketplace, 22–23
mobile operators, 20–21
taking advantage of, 22

OnActivityCreated() callback method

fragments, 247
implementing ListFragment, 250–253
implementing WebViewFragment, 255

OnAttach() callback method, 247

OnBackPressed() method, 401

OnBackStackChanged() method, 254

OnCheckedChangeListener() method, 196–197

OnClick() method

Button controls, 192
PasswordMatcher, 441

OnConfigurationChanged() method, 347

OnCreate() method

ancestral navigation, 403
fragments, 247
initializing static activity data, 102
intents, 109
layouts, 212
logging support, 84
media, 85
PreferenceActivity class, 289

OnCreateOptionsMenu() method, 163

OnCreateView() callback method, 247

OnDateChanged() method, 197–198

OnDestroy() method

avoiding killing activities, 103
destroying static activity data, 104
fragments, 247

604 NDK (Native Development Kit)

OnDestroyView() callback method, 247

OnDetach() callback method, 247

OnItemClick() method, 237

OnItemClickListener class, 236

OnListItemClick() method, 237

OnOptionsItemSelected() method, 414–415

OnPause() method

avoiding killing activities, 103–104
emulator, 507
fragments, 247
stopping/saving/releasing activity data

in, 103
OnRatingChanged() method, 204–205

OnResume() method

fragments, 247
initializing/retrieving activity data

in, 103
OnRetain NonConfigurationInstance()

method, 347

OnSaveInstanceState() method, 104

OnStart() callback method, 247

OnStop() method

adding media, 86–87
avoiding killing activities, 103
emulator, 507
fragments, 247

Open Handset Alliance. see OHA (Open
Handset Alliance)

Open Handset Alliance website, 6

Open platform, 22

OpenFileInput() method, 306–307, 309

OpenFileOutput() method, 305–306, 309

OpenGL, 331–332

OpenGL ES, 127

OpenIntents, 131

Open-source platform, 23, 25

Operators, mobile project risks, 365

Organize Imports command, 84

Orientation. see Landscape mode; Portrait
mode

OS (operating system)

for Android development, 26
applications as users of, 31
configuring for device debugging,

39–40
Linux, 31
underlying Android architecture, 29–30

Outside billing, mobile applications, 384

Overriding back navigation, 401–402

P
Packages

changing name for project, 70
commonly used, 34
editing manifest file, 119
publishing applications

preparing, 463–464
readying servers/services, 467
required resources, 467
signing, 465–467
steps for, 462–463
testing release version, 467

in SDK, 45
PagerAdapter, ViewPager control, 239

Palm OS (WebOS), 17

Parent view, 214

Partitioning, user interface. see Fragments

PasswordMatcher application

additional tests, 453–455
analyzing results, 450–453
creating, 441–447
overview of, 437–441
running using IDE, 450
what tests should prove, 441
writing tests, 447–450

605PasswordMatcher application

Passwords, package file, 466

Patterns. see Design patterns, navigation

Payment, Google Play, 461

Performance

emulator, 512–513
emulator limitations, 526
testing, 432–433

PerformanceTestCase class, 392

Permissions

adding media, 86
application-enforced, 117–119
architecture r, 31–32
content provider

modifying data, 325–328
requiring special, 319, 322

file, 303
groups, 133
location-based, 89–90
packaged application, 465–467
registering, 131–133
user interface tips for mobile, 381

Permissions tab, IDE manifest file resource
editor, 117–119

Persistent storage, 281

Personas, targeting users with,
397–398

Perspectives

Android IDE toolbar, 47
repositioning tabs within, 548

Pixel density

Google TV devices, 349
supported screen sizes, 128

Pixel Perfect mode, Hierarchy Viewer,
494, 497

Planning application

navigation, 404–405
objectives, 396–397

Platforms

applications, 32–35
architecture, 29–31
differences in Android

costs, 27
developer learning curve, 26
development environment, 5–6,

25–26
familiar language, 25–26
free and open source, 25
free market, 27–28
freely available SDK, 25
growing platform, 28–29
maximizing device compatibility,

331–332
next-generation, 23–25
overview of, 23
powerful apps, 26
secure application integration,

26–27
downloading SDK sample

apps, 57
emulator and versions of, 506
father of, 19
improvements, 28–29
proprietary mobile, 17–18
security and permissions,

31–32
services, 35
verifying target, 463

PlayMusicFromWeb() method, 85–86

<plurals>, quantity strings, 149–150

PNG files. see Nine-Patch Stretchable
Graphics

Policies

device support, 365
documentation for, 487
Google Play, 461

606 Passwords, package file

Port numbers

calling between two emulator
instances, 517–518

messaging between two emulator
instances, 518–520

Porting

identifying opportunities for, 376
mobile application documentation

for, 369
Portrait mode

alternative resources for, 339, 345–346
flexible layout controls for, 334
layout files for, 255–257
resolving resources, 141–142
screen size/density for, 332
switching emulator to, 507
as tablet default, 348
using layout resources

programmatically, 170
Positions, compatibility, 334

Power button, emulator, 507

Power settings. emulator console, 523–524

Preference class, 287

PreferenceActivity class

defined, 247–248
managing user preferences, 286
using, 289–291

PreferenceCategory class, 287–289

PreferenceFragment class

defined, 248
displaying, 289–291
preference headers, 291–296

PreferenceManager, 289

Preferences

accessing, 99
adding, 284–285
Cloud Save, 296–298
deleting, 284–285

determining appropriateness, 281
editing, 284–285
finding data, 285–286
functionality, 282
keeping windows under control,

550–551
private, 282
reacting to changes, 285
reading, 283
remote, 297
searching, 283
shared, 282–283
storing values, 282
updating, 284–285
user

creating resource file, 287
headers, 291–296
overview of, 286
PreferenceActivity class, 289–291

PreferenceScreen class, 287, 289

Preproduction devices, testing on, 428

Presentation class, 267

Pricing application, 459

Pricing tab, Developer Console, 475

Primary entry points, intent filter, 130

Primitive resources, storing, 140–141

Privacy

mobile application security, 383
mobile user demands, 380
SDK license agreement, 43

Private channel, publishing to Google
Play, 478

Private controlled testing, 374

Private group testing, 374

Private keys

digital signatures and, 465
exporting/signing package file, 465–467
signing application updates, 477

607Private keys

Private permissions, 303

Processes, DDMS, 531–532

Profiles, restricted, 32

Profit

ad revenue, 462
billing user, 461
choosing distribution model for, 459
mobile application design for, 383–384
objectives, 396–397

Programming language choices, 32–33

ProgressBar

activity bar and circles, 202
indicating progress, 199–202
RatingBar, 204–205
responsive mobile applications, 382
SeekBar, 202–203

ProgressDialog, 266

ProGuard tool, 460, 502

Proguard-project.txt file, 73

Project files, searching, 551

Project requirements, 357–358

Project.properties file, 73

Promoting applications, 487

Property pane, Hierarchy Viewer, 496

Proprietary mobile platforms, 17–18

Prototypes, 419

Publishing application

alternative marketplaces, 479
Android documentation, 487
billing user, 461–462
collecting statistics, 462
distribution method, choosing,

459–460
to Google Play

additional options, 475
Game Services API, 476
overview of, 468, 476

pricing/distribution details, 474–475
private channel, 478
removing, 477–478
return policy, 476–477
sign up, 468–471
Staged Rollouts, 478
translation, 478
upgrades, 477
uploading, 471–473
uploading marketing assets,

473–474
intellectual property protection, 460
packaging

including all required resources, 467
overview of, 462–463
preparing code, 463–464
readying servers/services, 467
signing and, 465–467
testing release version, 467

policies of Google Play, 461
self-publishing, 479–480

Python, 33

Q
Qualifiers, alternative resources, 339–344

Quality

assurance
engineers, 1
mobile project risks, 367–368

documentation for application, 487
guidelines

core applications, 384
improving applications, 385
tablet apps, 384–385

third-party standards, 385
Quantity strings, 149–150

608 Private permissions

Questions, answered in this book, 2

QuickFix feature, 84, 555–556

Quiz questions & answers

Android IDE and Eclipse tips, 557, 566
application basics, 112, 560
application resource management,

173, 560
bulletproof design and development,

394, 563–564
compatible application design, 350, 563
content providers, 328, 562
DDMS, 545, 565
development environment set up,

52, 559
development tools, 503
dialogs, displaying, 276, 562
emulator, 526, 565
files and directories, 312, 562
fragments, 262, 561
introducing Android, 36, 559
layouts, designing with, 239–240, 561
manifest file, 134, 560
preferences, 298–299, 562
publishing, 481, 564
software development process,

377, 563
testing, 564
testing applications, 457
tools, 565
user experience, planning, 420, 564
user interface building blocks, 207, 561
writing first application, 93–94, 559

R
RadioButton, 190, 194–196

RadioGroup, 190, 194–196

RatingBar, 204–205

Raw file resources

storing, 141
using programmatically, 165

Raw files

defining resources, 164–165
defining XML resources, 164
read byte by byte, 306–308
working with, 164

Reacting to preference change, 285

READ_CONTACTS permission, 322

Reading

files
in default application directory, 306
management practices, 302
raw, 306–308

preferences, 283
XML files, 308–309

Real devices

application design tools, 387
mitigating risk of testing on, 367
testing applications on, 40
testing feasibility early and often, 389

Real-world activities. mimicking in testing,
426–427

Receiving intents, 111–112

Records

adding content provider data, 325–326
deleting content provider data,

327–328
updating content provider data,

326–327
Recursion, 382

Refactoring code, in Java, 554

Reference tab, documentation, 486–488

References

activity bars and activity circles, 202
ADB, 491

609References

References (continued)
Android Developers Blog, 382
Android IDE and Eclipse tips, 557
Android introduction, 36
Android topics on book website, 6
application anatomy, 113
CalendarContract app, 321
Cloud Save, 297
contacting authors, 7
content providers, 329
custom indicators, 203
DDMS, 545
designing/developing applications,

393–394
developing Google TV devices, 350
development environment, 53
development tools, 503
dialogs, 276
emulator, 527
files and directories, 313
Google design comp tools, 417
Google Experience device, 367
Google Play, 460
Google Play international laws, 468
help documentation, 486
layout design, 239–240
LinearLayout, 219
lint command-line tool, 496
manifest file, 135
media formats, 164
MediaRouter APIs, 350
memory analysis, 535
multiple APK support, 359
NumberPicker, 199
OpenIntents, 131
permissions, 133
planning application navigation, 405

preferences, 299
ProGuard support, 460
publishing alternatives, 479
publishing application, 481–482
RelativeLayout, 222
resources, 173
retrieving application, 99
screen maps, 405
signing, 467
software development process, 378
source code for this book, 6
StrictMode, 433
Support Package, 123–124
third-party content providers, 328
useful websites, 6
user interface, 208
VoiceMailContract app, 322
writing applications, 94

Referencing resources, 165–166, 171–172

Refresh, for build errors, 556

Region code, alternative resource qualifiers, 341

RegisterOnSharedPreferenceChange
Listener() method, 285

Registration

activities
broadcast receivers, 131
content providers, 131
intent filters, 130–131
overview of, 129–130
primary entry points, 130
services, 131

permissions
enforced by application, 132–133
required by application, 131–132

publisher account to Google Play, 468
Relative positions, compatibility, 334

RelativeLayout, 219–222, 348

610 References

Release version, testing, 419, 467

Remote preferences, 297

Remote storage, 383

Removing application, from Google Play,
477–478

Renaming in Java, 553–554

Reorganizing code, in Java, 555

Reports

infringement, 460
tracking crash and bug, 376
viewing statistics, 476–477

Requirements

mobile development, 357–360
platform, 126–128
project, 357–358
SDK license agreement for malware, 43
software development, 37–38
system, 123–126

/res project directory, 74, 137

/res/drawable-*, 74

/res/layout directory, 74, 209

/res/menu directory, 74

Resolution, Google TV, 348–349

Resolving

mysterious build errors, 556
resources, 141–142

Resource editors, 491–492

Resources

accessing programmatically, 142
alternative

caution using layouts, 170
for compatibility, 338
default vs., 141–142
designing tablets, 348
for different orientations, 345–346
maximizing device

compatibility, 333

naming, 338–339
organizing efficiently, 345–347
organizing with qualifiers, 339–344
resolving, 338–339
targeting devices, 347–350
using programmatically, 345

animations
frame-by-frame, 160–161
overview of, 159–160
tweened, 161–162

Boolean
defining in XML, 151
overview of, 151
using programmatically, 151

coding standards, 390
color

defining in XML, 152–153
overview of, 152
using programmatically, 153

color state lists, 158–159
default, 141–142
definition of, 137
dimension

defining in XML, 153–154
using programmatically, 154

drawables
defining in XML, 155–156
simple, 154–155
using programmatically, 156

filename conventions, 156
Google Play filters, 464
images

Nine-Patch Stretchable
Graphics, 157

overview of, 156
using programmatically,

157–158

611Resources

Resources (continued)
integer

defining in XML, 152
using programmatically, 152

layouts
designing in IDE, 168–170
overview of, 166–168
using programmatically, 170–171

menus
defining in XML, 162–163
using programmatically, 163

raw files
defining, 164–165
overview of, 164
using programmatically, 165

referencing
overview of, 165–166
system, 171–172

screen compatibility mode, 336
setting with IDE, 143–146
storing, 137–138
strings

arrays, 150–151
bold, italic, and underlined, 147
format, 148
formatting examples, 147
overview of, 147
quantity, 149–150
using programmatically, 148–149

task management, 404
testing availability for application

release, 467
value types

overview of, 138–140
storing graphics and files, 141
storing other, 141
storing primitive, 140–141

XML files
defining raw, 164
overview of, 163
storing most resources in, 492
using programmatically, 164

Resources class, 152

Resources tab, IDE resource editor, 143–146

Responsiveness

device defects in, 424
mobile design, 381–382

Restores, testing application, 432

Restricted profiles, 32

/res/values* directory, 74–75

Return policy

choosing distribution model, 460
Google Play, 476–477

Revenues, stakeholder objectives, 396–397

Reverse domain name notation, 70

Reverse engineering, trade secrets, 460

Reviews, code, 391

RGB color values, storing, 152–153

Rights, SDK license agreement, 43–44

RIM Blackberry OS, 17

Ringtones

emergence of, 16
as network-driven applications, 371

Risk

mobile project
acquiring target devices, 366
feasibility of application

requirements, 366–367
identifying target devices, 364–366
quality assurance, 367–368

SDK license agreement for, 44
Rollbacks, 430

Rooted devices, 426

RSA key fingerprint, 91–92

612 Resources

Rs:ResEnum application, 172

Rubin, Andy, 19

Rules, mobile application, 379–380, 388–389

Run As icon, 76

Run configuration

creating in IDE, 514–515
debugging in emulator, 80
launch configuration, 62, 64–65,

75–76
running application in emulator, 76–79

Running first test, 450

Runtime environment, 31

S
Sample applications, SDK

adding project to workspace, 57–60
downloading, 57–58
error, 58
overview of, 51–52
testing with, 55–56

Samsung

growth of Galaxy S line, 21
publishing to, 479

Sanity testing, validating, 426

Scalability

containers, 334
of Nine-Patch graphics, 497–501
remote servers/services, 430

Screen size

alternative resource qualifiers, 341
compatibility

maximizing device, 331–333
Nine-Patch Stretchable

Graphics, 336
supporting types, 335–336
tools for, 334
working square principle, 336–338

customization and, 359
Google Play restrictions, 129
information about device, 334
preference headers and, 296
specifying supported, 128

Screens

aspect ratio, 342
capturing emulator/device, 542–543
compatibility for legacy

applications, 336
maps, planning navigation, 405
orientation

alternative resource qualifiers, 342
Google TV devices, 349
tablets, 348

pixel density
alternative resource qualifiers,

341–342
Google TV devices, 348–349

resolution, Google TV devices,
348–349

sharing devices/applications, 29
Screenshots, 5

Scripting languages, 33

ScrollView, 238, 334

SD cards

choosing capacity for AVD, 51, 62–64
external storage using, 311–312
removable storage, 381

SDK (software development kit)

basic installation process, 38
code names for Android, 24–25
configuring development

environment with, 37
core framework, 45–46
core tools, 47–50
deprecated methods in, 266
documentation, 44

613SDK (software development kit)

SDK (software development kit) (continued)
documentation for, 487
enforcing system requirements

maximum version, 124–125, 126
target version, 125–126
targeting specific SDK versions,

123–124
latest version, 25
launching Hierarchy Viewer, 494–495
layout, 178–179
License Agreement, 43–44
license agreement, 56–57
Manager

launching, 38–39, 47–48
overview of, 48–49
upgrading SDK, 42
viewing documentation, 44

packages in, 45
problems with, 42
sample applications, 51–52
targeting multiple platform versions

within single application, 358
testing mobile applications, 373
third-party Android APIs, 45–46
upgrading, 37, 42
version 4.3 (Jelly Bean)

freely available, 25
used in this book, 5–6

views, 177
Search menu, project files, 551

Security

defects in device, 424
mobile application design, 383
testing remote server, 430
underlying architecture, 31–32

SeekBar, 202–203

SelectAll() method, 184

Selection event handling, 236–237

<selector> resource type, 158–159

Self-publishing applications, 479–480

Self-signing applications, 465

SendKeys() method, 454

Servers

managing changes for live, 376
quality assurance testing, 368
readying for application release, 467
testing applications, 429–430
testing remote, 429

Service class, 98, 111

Services

Android platform, 35
definition of, 98
Google, 35, 487
location-based, 88–89
overview of, 110–111
purposes of, 111
readying for application release, 467
registering, 131
testing applications, 429–430
testing remote, 429

ServiceTestCase class, 392

SetBase() method, Chronometer, 205

SetContentView() method

creating layouts, 210
creating layouts programmatically, 212
fragments, 246
ListActivity, 237
ProgressBar, 202

SetFilters() method, input filters, 185

SetMaxDate() method, DatePicker, 197

SetMinDate() method, DatePicker, 197

SetOnClickListener() method,
Buttons, 192

SetSelection() method, 184

614 SDK (software development kit)

SetText() method

creating layouts programmatically, 212
EditText, 184
TextView, 179

Settings application, emulator, 506

Settings class, 322

Settings content provider, 322

ShapeDrawable class, 155

SharedPreferences class

adding, updating, deleting preferences,
284–285

defined, 99
for multiple activities, 282–283
overview of, 282
reacting to preference changes, 285
searching and reading preferences, 283
for single activity, 282

Short Message Service. see SMS (Short
Message Service)

Show() method

custom dialog, 271
dialog lifecycle, 268–269
support package dialog fragments, 273

Signing applications

with debug key, 465
digitally with private key for

publishing, 465
for trust relationships, 32

Simple_fragments_ layout.xml resource file,
255–257

SimpleActionBar application, 411

SimpleAltResources application, 345–346

SimpleFiles application, 304

SimpleFragDialogActivity class, 269, 273

SimpleFragments application, 248

SimpleFragmentsActivity class, 257–258

SimpleLayout application, 215

SimpleNavigation application, 400

SimplePreferences application, 281

SimpleScrolling application, 238

Single payment, mobile application
design, 383

SkeletonApp/SkeletonAppTest, 52

Sketches, screen layouts, 417

Slider mobile phones, 15

SlidingDrawer class, 240

Smart watches, 29

Smoke tests, 427

SMS (Short Message Service)

in emulator console, 522
in Emulator Control pane, 540–541
payments through, 16
between two emulator instances,

518–520
Snake game

demo application, 52
Nokia, 14
project. see Applications, writing first

SnakeDebugConfig, 64–68

Snapshot feature, Emulation Options,
62, 66

Soc.io.Mall, publishing to, 479

Software development kit. see SDK
(software development kit)

Software development process

acquiring target devices, 366
configuration management systems,

369–370
device database management, 361–364
documentation

maintenance and porting, 369
overview of, 368–369
test plans for quality assurance,

368–369
third party requirements, 369

methodologies, 356–358

615Software development process

Software develoment process (continued)
mobile applications

architectures, 371
deploying, 374–375
development phase, 373
development team hurdles, 355
extensibility and maintenance,

371–372
interoperability, 372–373
limitations of, 370–371
supporting and maintaining,

375–377
target markets, 375
testing applications, 373–374

overview of, 355
requirements

configuring development
environment, 37–38

determining feasibility of, 366–367
overview of, 358–360

risks
assessing, 366
quality assurance, 367–368

upgrades, 22
Software methodololgy

iteration, 356
waterfall, 356–357

Solitaire game, 371

Source code

test project within IDE, 445–446
for this book, 6

Source control

IDE integration with, 547
mobile development, 369–370
resolving build errors, 556

Sp units, layouts/graphics, 154

Space view, layout, 230

Spinner control

defined, 51
editing preferences, 291
filtering user choices, 188–190
packages supporting, 34
styles of, 183

SpinnerTest, 51

Split ActionBar, 413

Spotlight, documentation, 487

sqlite3 command-line tool

defined, 502
mobile development tool, 393
as testing tool, 434

/src folders, 74

Stable applications, mobile design,
381–382

Stack Overflow website, Android, 6

Staged Rollouts, Google Play, 374, 478

Stakeholder objectives, planning application,
396–397

Standalone applications

DDMS, 529–530
extensibility/maintenance of, 371–372
mobile design, 371

Standards

mobile application
coding, 390
design, 384–385

third-party testing, 430–431
Start() method, Chronometer, 205

StartActivity() method

descendant navigation, 401
lateral navigation, 400–401
launching activities by class name,

107–108
temporary transitions, 106

StartActivityForResult() method, 404

616 Software development process

Startup

emulator options, 513
responsive mobile applications, 382

State

CheckBox control, 193
defects in devices, 424
device clean start, 426
responsive mobile applications, 382
Switch control, 194
ToggleButton control, 193–194

Static activity data, 104

Statistics-gathering

application diagnostics, 386
Google Play Developer console,

476–477
before publishing application, 462

Stencils, design comp tool, 417

Stopping processes, DDMS, 532

Storage

device database, 360–363
file management practices, 302,

311–312
files and directories. see Directories;
Files

minimizing local, 382
of preferences, 281
removable user, 381
resources, 137–138

Storyboards, UI, 418–419

Stretchable graphics. see Nine-Patch
Stretchable Graphics

StrictMode, 302, 433

String resource editor, 492

String resources

arrays, 150–151
bold, italic, and underlined, 147
as format strings, 148
formatting examples, 147

overview of, 147
quantity, 149–150
setting values in IDE, 143–146
using programmatically, 148–149

Strings.xml tab , IDE resource editor,
143–146

Styles

communicating identity, 416–417
documentation for

Android design, 486
Javadoc, 556

providing visual feedback, 418
screen layouts, 417
user interface

Button controls, 183, 191
EditText controls, 183
Spinner controls, 183

Subscription billing, mobile design, 384

Supplementary materials, 6

Support, mobile application, 375

Support Library

ActionBar compatibility, 415
designing compatibility, 335–336
increasing market size, 358

Support Package

fragments
legacy applications, 259
overview of, 258
targeting older platforms in new

applications, 259–260
increasing market size, 357–358
linking to project, 260–261
as mobile development tool, 393
targeting specific SDKs, 123–124

Support4Demos application, 52

Support7Demos application, 52

Support13Demos application, 53

617Support13Demos application

SupportAppNavigation, 53

SupportFragDialog application, 272–275

SupportFragDialogActivity, 273

<supports-gl-texture> tag, manifest file, 129

<supports-screens> tag

designing compatibility, 335–336
packaging application, 463

Switch control, 190, 194

Symbian OS, 17

Sync, testing application, 432

System Information pane, DDMS, 541–542

System requirements

enforcing, 123
targeting SDK versions

expanding range, 123–124
maximum, 126
minimum, 124–125
specific, 123–124
specifying, 125–126

System resources

caution when using, 172
referencing, 171–172

Systrace performance analysis tool, 435, 502

T
Tab navigation, 406–407

TabActivity class, 248

TabHost control, 248

TableLayout

defined, 178
user interface design, 334
using, 224–227

TableRow, 224–227

Tablet devices

action bar display, 413
app quality guidelines, 384–385

designing, developing and publishing,
347–348

Jelly Bean, 22
Tabs, closing unwanted, 550

Tags

adding customized comment, 552
creating custom log filters, 551

TapView() method, 454

Targets

compatibility
Google Chromecast devices, 350
Google TV devices, 348–350
tablet devices, 347–348

devices, 364–367
navigation, 408, 410
platforms, 463
SDK versions

maximum, 126
minimum, 124–125
specific, 123–124
specifying, 125–126

users
entity discovery and

organization, 398
mocking up application, 418
overview of, 418
personas, 397–398
prototypes, 419
UI storyboards, 418–419
use cases/use case diagrams,

398–399
TargetSdkVersion attribute, API level, 124

Tasks

activities within, 97
launching, 404
organizing IDE, 551–552

TDD (Test Driven Development), 437

618 SupportAppNavigation

Team objectives, planning application, 396

Technical specifications, devices, 387

Telephony status, Emulator Control
pane, 540

Terminology, actions on devices, 424

Test instrumentation, 119

Test MatchingPasswords() method, 453–455

Test release, 374

Test servers, 430

Testing

adding additional tests, 453–455
analyzing results, 450–453
in-app billing, 433
applications, 373–374
automated, 428
avoiding mistakes, 435
backups, 432
black-box, 429
for compatibility, 333, 336
conformance, 432
content provider code, 315
creating test project, 441–447
defect-tracking systems, 423–424
development environment

adding project to workspace, 57–60
adding samples with SDK

Manager, 56–57
creating AVD, 61–62
launch configuration, 62–65
overview of, 55–56
running application in emulator,

66–68
device upgrades, 432
on emulator vs. device, 428–429
environment

clean start state, 426
managing device configurations,

425–426

overview of, 55–56, 425–427
real-world, mimicking, 426–427

firmware upgrades, 376
installations, 432
integration points, 430
internationalization, 432
killer apps, 433–434
PasswordMatcher

adding additional tests, 453–455
analyzing test results, 450–453
creating, 441–447
overview of, 437–441
running first test using IDE, 450
writing tests, 447–450

performance, 432–433
with personal devices, 360–361
physical hardware for, 426
quality assurance risks, 367–368
on real devices, 302–303
release build, 419
release version of package file, 467
running using IDE, 450
servers/services, 429–430
that use external storage, 312
third-party standards, 430
this book for, 1
tools

Android, 433–434
other automated, 455–457

translations, 478
unexpected, 433
unit

analyzing results, 450–453
APIs/assertions, 450
developing, 391–392
with JUnit, 436–437
running first test, 450

619Testing

Testing (continued)
upgrades, 431
validating builds/designing smoke

tests, 427
visual appeal/usability, 430
white-box, 429
writing programs for, 435–436
writing test program, 435–436

TestMatchingPasswords() method, 453

TestPreConditions() method, 450–453

Text

autocompletion, 186–188
displaying with TextView

contextual links, 180–182
displaying text, 178
layout and sizing, 179–180

retrieving data with text fields
constraining input, 184–185
EditText controls, 183–184

Text input method, alternative resource
qualifiers, 343

TextOff attribute, ToggleButton, 193

TextOn attribute, ToggleButton, 193

TextView class, 180

TextView control

accessing, 178
autocomplete, 186–187
contextual links, 180–182
creating layout using XML

resources, 210
creating layouts programmatically,

211–213
displaying, 178
layout, 168–171
layout and sizing, 179–180
retrieving text input with EditText,

183–184
Themes, ActionBar compatibility, 415

Third parties

Android SDKs, 45–46
billing methods, 384
content providers, 328
device databases, 364
device defects in

noncomformance, 424
distribution model, 460
documentation done by, 369
documentation requested by, 369
mobile requirements, 360
private keys for, 465
quality standards, 385
stores, 28
support, 33–34
testing standards, 430–431

Threads. see also Main UI thread

Debug, 433
monitoring activity with DDMS,

532–533
Thumbing, 381

TicTacToeLib demo, 52

TicTacToeMain demo, 52

Time

displaying
AnalogClock control, 206–207
DigitalClock control, 206
TextClock control, 206

passing of, with Chronometer,
205–206

retrieving, with TimePicker,
199

TimePicker control, 190

TimePickerDialog class, 267

“Time-waster” games, 14

Title bar, ProgressBar in, 201

T-Mobile G1, 20

Toast messages, 192, 418

620 Testing

Toggle Breakpoint, 83

ToggleButton control, 190, 193–194

Tokenizer, AutoCompleteTextView, 186–188

Tools

ADB, 434, 490
ADT plugin for Eclipse, 25
android command-line tool, 501
Android documentation, 487–489
Android Hierarchy Viewer

application design, 434
launching, 494–495
Layout View mode, 495–496
overview of, 493–494
Pixel Perfect mode, 497
user interface optimization,

496–497
Android IDE, 25–26
Android Studio, 26
application design, 386–387
AVD Manager, 48
bmgr, 435, 501
calling between two instances,

517–518
compatibility, 333–334
configuring GPS location of, 516–517
configuring startup options, 513
console

monitoring network status, 523
other commands, 524
overview of, 520–521
power settings, 523–524
sending GPS coordinates, 523
simulating incoming calls, 521
simulating SMS messages, 522

DDMS
Android IDE toolbar, 47
copying files to and from

device, 302

debugging with, 434, 490–491
File Explorer and, 285–286
forcing app to crash, 83
memory profiling with, 387
mobile application debugging

tool, 393
as testing tool, 434

dmtracedump, 502
draw9patch, 497–501
Eclipse ADT plug-in, 47
Eclipse IDE plug-in, 25
emulator

application design, 373–374, 386
calling between two instances,

517–518
configuring GPS location of,

88–89, 516–517
configuring startup, 513
console, 520–524
creating AVD, 509–510
creating AVD with custom

hardware settings, 510–511
debugging in, 80–83
enjoying, 524–525
launching from Android Virtual

Device Manager, 515–516
launching to run application,

76–79, 513–515
launching with specific AVD, 512
limitations of, 525–526
maintaining performance,

512–513
messaging between two instances,

518–520
overview of, 48, 50, 505–506
power of, 489
simulating real device, 506–507
testing on, 434
testing on device vs., 428–429

621Tools

Tools, emulator (continued)
using Android Virtual Device

Manager, 508–509
working with AVDs, 507–508

enjoying, 524–525
etc1tool, 502
Exerciser Monkey, 434
hprof-conv, 502
launching from Android Virtual

Device Manager, 515–516
launching to run application, 513–515
launching with specific AVD, 512
limitations of, 525–526
lint, 434
logcat, 502
LogCat, viewing log data, 490
LogCat utility, 434
maintaining performance, 512–513
messaging between two instances,

518–520
mksdcard, 502
mobile applications, 393
monkey, 502
monkeyrunner API, 434, 502
Nine-Patch Stretchable Graphics, 497–500
overview of, 485, 505–506
ProGuard tool, 502
references

complete list of, 500
latest information, 485
Tools Project Site, 6

resource editors, 490
SDK, 25
SDK Manager, 48
simulating real device environment,

506–507
sqlite3, 434, 502
systrace, 435, 502

testing, 433–434
traceview, 433–434, 502
UI designer, 490–493
UiAutomation class, 434, 457
uiautomator, 434, 456, 502
working with AVDs

creating AVD, 509–510
creating AVD with custom

hardware settings, 510–511
overview of, 507–508
using Android Virtual Device

Manager, 508–509
zipalign, 467, 502

Tools tab, Android documentation, 487

Top-level directories, 304

Touchscreen

alternative resource qualifiers, 343
tablets, 348
user interface for mobile, 380

TouchUtils class, 392, 454, 455

Trace logs, 433

Traceview tool, 502

Trackball, emulating on emulator, 507

TrafficStats class, 535–537

Training, documentation for, 486

Transitions

activity. see Intents

providing visual feedback, 418
Translation applications, 478

Transmissions

of private data, 383
testing remote servers, 430

Trust relationships

application signing for, 32
private keys for, 465

TV devices, developing Google, 348–349

Tweened animation sequences, 161

622 Tools

U
UI designer, 492–493

UI mode, alternative resource qualifiers, 342

UI storyboards, 418–419

UI threads. see Main UI thread

UiAutomation class, 434, 457

Uiautomator testing framework

defined, 434, 502
overview of, 456

Underlined strings, 147

Undo pattern, visual feedback, 418

Undocumented APIs, 34

Unexpected, testing application for, 433

Uniform Resource Identifiers (URIs), 32

Unit tests

assertions and, 450
code diagnostics, 391–392
with JUnit, 436–437
running using IDE, 450

Unlocking emulator, 67

Unpublish action, Google Play, 477–478

UnregisterOnSharedPreference
ChangeListener() method, 285

Updates

ADT Bundle, 37, 55
application, on Google Play, 477
content provider records, 326–327
to fragments, 246
mobile application design for easy,

385–386
preferences, 284–285
SDK, 37
upgrades vs., 386

Upgrades

Android marketplace, 22
choosing application version

system, 370

Google Play application, 477
mobile application design for easy,

385–386
SDK, 42
testing application, 431, 432
testing firmware, 376
testing remote server, 430
updates vs., 386
version code managing, 122

Uploading

application to Google Play, 471–473
marketing assets to Google Play,

473–474
Uri parsing methods, 85

URIs (Uniform Resource Identifiers), 32

Usability

defects in device, 424
testing mobile application, 430
upgrades, 22

USB debugging

allowing, 91–92
configuring hardware for devices, 42

USB driver, debugging, 39–40

Use case diagrams, 398–399

Use cases, 360, 398–399

User experience

communicating identity,
416–417

designing screen layouts, 417
emulator, on platform versions, 506
encouraging action

action bars, 411–415
from within application’s

content, 416
dialogs, 415
menus, 410–411
overview of, 408–410

623User experience

User experience (continued)
navigation

ancestral, 401, 403
back, 401
back stack, 404
descendant, 401
design patterns, 405–408
entry, 400
external, 404
with fragments, 404
lateral, 400–401
launching tasks, 404
planning application, 404–405
reference for learning about, 400

objectives
stakeholder, 396–397
team, 396
user, 396

observing target users for usability,
418–419

planning application for, 395
providing visual feedback, 418
targeting users

entity discovery and
organization, 398

personas, 397–398
use cases/use case diagrams,

398–399
User flows, navigation, 405

User interface

actions originating from, 415
buttons

action, 411–413
basic, 190–192
check boxes, 193
CheckBox and ToggleButton,

193–194
defined, 190

image, 192
overview of, 190
radio, 194–197
RadioGroup and RadioButton,

194–197
styles of, 183
switches, 190
toggles, 193–194
using basic, 190–192

coding standards, 390
compatibility

fragments, 335
nine-patch stretchable

graphics, 336
specific screen types, 335–336
Support Library, 335
tools, 333–334
working squares, 336–338

controls, 177–178
data-driven containers

adapters, 234–235
arrays, 233–234
binding data, 235–236
click events, handling, 236–237
headers/footers, 237
lists of items, 237
overview of, 233

dates/times/numbers, retrieving,
197–199

dialogs
alert, 266–267
attributes, 268–269
basic, 266–267
character pickers, 266–267
customizing, 270–271
date pickers, 266–267
dismissing, 269–270

624 User experience

fragment method, 267–270
fragments, Support Package,

270–275
legacy method, 265
lifecycle, 268–270
presentation, 267
presenting actions to users, 415
progress, 266–267
providing visual feedback, 418
showing, 269
time pickers, 267

documentation, 368–369
fragments

Activity classes, 257–258
attaching, 246–247
back navigation, 401–402
defining, 245–246
designing applications, 248–249
designing compatibility, 334–335
designing tablets, 348
detaching, 246–247
dialog, 248, 267–270
dialog, support package, 271–275
layout resource files, 255–257
legacy support, 259
lifecycle, 244–245
linking support to your project,

260–261
ListFragment implementation,

250–253
managing modifications, 246
navigating with, 404
nested, 261
overview of, 243
special types, 247–248
support, 259–261
understanding, 243–245

WebViewFragment
implementation, 254–255

indicators
activity bars and activity

circles, 202
adjusting progress, 202–203
clocks, 206–207
customizing, 203
Hierarchy Viewer

performance, 496
progress bars, 199–202
ratings, 204–205
time passage, 205–206

layouts
built-in classes, 215–217
containers. see Containers

creating programmatically,
211–214

creating using XML resources,
209–211

frames, 222–224
grids, 228–230
linear, 217–219
multiple, 230–232
organizing, 214–215
overview of, 178
relative, 219–222
tables, 224–227

mobile
design tips for devices,

380–381
meeeting user demands, 380
walking-and-chewing gum

analogy, 430
navigation

designing tablets, 348
developing Google TV

devices, 349

625User interface

User interface (continued)
Nine-Patch Stretchable Graphics

creating, 157
device compatibility, 336
image format, 156
mobile use, 388
tablet design, 348
working with, 498–500

optimizing contents with Hierarchy
Viewer, 496

preferences
accessing, 99
adding, 284–285
Cloud Save, 296–298
creating resource file, 287
deleting, 284–285
determining appropriateness, 281
editing, 284–285
finding data, 285–286
functionality, 282
headers, 291–296
PreferenceActivity class, 289–291
private, 282
reacting to changes, 285
reading, 283
remote, 297
searching, 283
shared, 282–283
storing values, 282
updating, 284–285
user, 286

Spinner controls, 188–190
switches, 190
tablets, 348
text display

contextual links, 180–182
layout and sizing, 179–180
with TextView, 179

text input
with autocompletion, 186–188
constraining with input filters, 184–185
retrieving, 183–184

time
displaying, 206–207
displaying passage of, 205

view, 177
User objectives, applications, 396–397

User preferences

creating resource file, 287
headers, 291–296
overview of, 286
PreferenceActivity class, 289–291

UserDictionary content provider, 321–322

<uses-configuration> tag, manifest file

overview of, 126–127
packaging application, 463

<uses-feature> tag, manifest file

filtering Google Play store, 121
packaging application, 463
specifying required device features,

127–128
<uses-library> tag, manifest file

defined, 129
packaging application, 463

<uses-permission> tag, manifest file

accessing content providers, 319, 322
packaging application, 463

<uses-sdk> tag, manifest file

defined, 124
packaging application, 463

V
Validation

device defects in input, 424
with visual feedback, 418

Value types, resources, 138–141

626 User interface

Values

setting with IDE, 143–146
storing preferences as, 281–282

Variables, 554–555

Version code, application identity, 122

Version name, application identity, 122

VersionCode attribute, 370, 464, 477

Versioning

for application identity, 122
enforcing system requirements

maximum SDK version, 126
minimum SDK version, 124–125
overview of, 123
target SDK version, 125–126
targeting specific SDK versions,

123–124
packaging application, 463
scheme for, 370
testing remote servers, 430

VersionName attribute, <manifest>
tag, 464

Videos, design documentation, 486

View class

controls, 177
defined, 177
layouts using XML resources,

209–210
ViewGroup vs., 214

View containers

defined, 214
DrawerLayout, 238
GridView, 233–237
ListView, 233–237
Scroll View and

HorizontalScrollView, 238
using ViewGroup subclasses as,

214–215
ViewPager, 238
ViewSwitcher, 238

View control

designing compatibility, 334
multiple layouts on screen, 230–231
placing on action bar, 411
TableLayout, 225–227

ViewAsserts class, 455

ViewGroup, 209–210, 214–215. see also
Containers

ViewManager, 35

ViewPager container, 238

Views

controls, 177–178
layout control, 178–179
user interface, 177

ViewSamples application, 178

ViewStub, 232

ViewSwitcher control, 238

Visibility, ProgressBar indicators, 202

Visual appeal/usability, testing, 430

Visual feedback, 418

W
Walking-and-chewing gum analogy, 430

Walled garden approach, WAP portal, 17

Wallpaper

customizing emulator, 524
designing, 371–372
emergence of, 16
as network-driven application, 371

WAP (Wireless Application Protocol), 15–17

Waterfall approach, 356

Web applications, for Android devices, 33

Web cameras, in emulator, 526

WebOS (Palm OS), 17

WebView control

implementing WebViewFragment,
254

loading with ListView, 249

627WebView control

WebView control (continued)
organizing into fragments, 244
WebViewFragment hosting, 248

WebViewFragment class

defined, 248
designing fragments, 249–250
implementing, 254–255

White-box testing, 373, 429

Widgets, 177, 524

Width, TextView, 180

WindowManager, 35

Windows, in workspace

configuring for device debugging,
39–40

keeping under control, 550–551
maximizing/minimizing, 548
viewing side by side, 548–550

Wireframe model display, Hierarchy
Viewer, 496

Wireframes, screen layouts, 417

Wireless Application Protocol (WAP), 15–17

Wireless Developer Network website, 6

WML (Wireless Markup Language), 16

Working square principle, 336–338

Workspace

Android IDE tips
closing unwanted tabs, 550
controlling windows, 550–551
customizing log filters, 551
maximizing/minimizing

windows, 548
repositioning tabs, 548
searching project, 551
source control services, 547
tasks, 551–552
viewing two sections of same

file, 550

viewing windows side by side,
548–550

creating/configuring new project,
69–73

organizing into perspectives, 47
writing first project to Android IDE,

57–60
WRITE_CONTACTS permission, 322

Writing

applications. see Applications,
writing first

files
in default application directory,

305–306
to external storage, 311–312
management practices, 302

software documentation, 368–369
test programs, 435–436
tests

creating project, 441–447
standard steps for, 447–449
unit, 437

X
XDA-Developers Android Forum, 7

XML

escaping, 148
filenames, 140
reading files, 308–309
resources

Boolean files in, 151
color files in, 152–153
defining raw, 164
dimension files in, 153–154
drawable files in, 155–156
integer files in, 152
layout files in, 255–257

628 WebView control

menu files in, 162–163
overview of, 163
preference files in, 287–289
stored in, 492
using programmatically, 164

SAX support package, 34

storing, 141
tweened animation sequence in, 161

Z
Zipalign command-line tool

defined, 502
signing package files, 467

629Zipalign command-line tool

	Contents
	Acknowledgments
	About the Authors
	Introduction
	Who Should Read This Book
	Key Questions Answered in This Book
	How This Book Is Structured
	An Overview of Changes in This Edition
	Development Environments Used in This Book
	Supplementary Materials Available
	Where to Find More Information
	Conventions Used in This Book
	Contacting the Authors

	3 Writing Your First Android Application
	Testing Your Development Environment
	Building Your First Android Application
	Summary
	Quiz Questions
	Exercises
	References and More Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

