Whether you're compositing a single shot or working on an entire film, your visual effects will be better and your productions smoother when you incorporate proven methods from the pros. Adobe After Effects CC Visual Effects and Compositing Studio Techniques inspires you to take your work to the next level with real-world examples and insider techniques. You'll get the most focused approach on the market to using After Effects for visual effects, with expert insight from a leading-edge visual effects supervisor and creative director. You'll receive complete coverage of color correction and keying, selection methods, and motion tracking, and get tips on simplifying your workflow and increasing your productivity using expressions and scripting. You'll learn how to take advantage of the latest advancements in After Effects, including integration of Cinema 4D and Refine Edge tools. This book includes:

• Real solutions from real professionals: Master the fundamentals with Mark Christiansen, effects artist on Pirates of the Caribbean: At World's End, Avatar, and The Day After Tomorrow, and VFX supervisor on independent features, including Beasts of the Southern Wild.

• Compositing essentials: Learn the essentials of color and light matching, keying, motion tracking, rotoscoping, working with film and other high-end formats. You'll learn to bring your shots to life and enhance scenes without anyone ever knowing what they're seeing isn't 100% real.

• Companion files and book updates: Purchasing this book gives you access to downloadable sample clips and projects including HD footage from independent producers and Artbeats, as well as demos of plug-ins. To access these files as well as updates to this book, go to www.peachpit.com/redeem and use the code provided inside this book.

"If you're doing visual effects with After Effects, you need this book. Mark Christiansen's combination of clarity and experience will help you gain the skills to work faster and produce top-notch visual effects."
David Simons, principal scientist and former Adobe Effects Engineering Manager (versions 1–7), Adobe Systems

"No other book combines real production experience with a deep understanding of the fundamentals, aimed at the most popular compositing package on the planet."
From the Foreword by Stu Maschwitz, writer, director, and creator of the Magic Bullet Suite from Red Giant Software

Mark Christiansen is a visual effects supervisor and creative director at Studio Christiansen (christiansen.com) in San Francisco. He has worked with visual effects companies, including The Orphanage, Spy Post, and Evil Eye Pictures, on Hollywood feature and independent films, and has served as director, producer, on-set supervisor, designer, and compositor/animator on a wide variety of productions. Mark works directly with Adobe, is a founder at provideocoalition.com, and teaches courses in person and online. His company, New Scribbler, created Cinexef for iPad.
Contents

Foreword xi
Introduction xix

Section I Working Foundations

Chapter 1 Composite in After Effects 1
A Basic Composite 2
Compositing Is A Over B and Just a Teeny Bit More 8
Get Settings Right 15
The User Interface: Use It Like a Pro 22
Effects in After Effects: Plug-ins and Animation Presets 29
Output: Render Queue and Alternatives 30
Assemble Any Shot Logically 33

Chapter 2 The Timeline 35
Dreaming of a Clutter-Free Workflow 36
Timing: Keyframes and the Graph Editor 42
Shortcuts Are a Professional Necessity 52
Animation: It’s All About Relationships 55
Accurate Motion Blur 58
Timing and Retiming 62
What a Bouncing Ball Can Teach You About Yourself 69

Chapter 3 Selections: The Key to Compositing 71
Beyond A Over B: How to Combine Layers 72
Edges on Camera (and in the Real World) 78
Transparency and How to Work with It 81
Mask Options and Variable Mask Feather 84
Mask Modes and Combinations 88
Animated Masks 90
Composite With or Without Selections:
 Blending Modes 92
Share a Selection with Track Mattes 97
Right Tool for the Job 99

Chapter 4 Optimize Projects 101
Work with Multiple Comps and Projects 102
Special Case: Adjustment and Guide Layers 110
Image Pipeline, Global Performance Cache, and Render Speed 113
Optimize a Project 124
These Are the Fundamentals 126
Section II Effects Compositing Essentials

Chapter 5 Color Correction 127
 Color Correction and Image Optimization 129
 Levels: Histograms and Channels 136
 Curves: Gamma and Contrast 139
 Hue/Saturation: Color and Intensity 145
 Compositors Match Colors 146
 Beyond the Ordinary, Even Beyond After Effects 161

Chapter 6 Color Keying 163
 Procedural Mattes for the Lazy (and Diligent) 164
 Linear Keyers and Hi-Con Mattes 166
 Color Keying: Greenscreen and Bluescreen 171
 Keylight: The After Effects Keying Tool 180
 Fine-tuning and Problem Solving 185
 Fix It on Set 196
 More Alternatives for an Impossible Key 200

Chapter 7 Rotoscoping and Paint 203
 Roto Brush and Refine Edge 205
 Articulated Mattes 214
 Refined Mattes: Feathered, Tracked 218
 Paint and Cloning 221
 Avoid Roto and Paint 227

Chapter 8 Effective Motion Tracking 229
 Track a Scene with the 3D Camera Tracker 231
 Warp Stabilizer VFX: Smooth Move 236
 The Point Tracker: Still Useful 249
 Mocha AE Planar Tracker: Also Still Quite Useful 256
 Camera Integration 263

Chapter 9 The Camera and Optics 267
 The Unreal After Effects Camera 269
 3D and CINEMA 4D 279
 The Camera Tells the Story 290
 Don’t Forget Grain 307
 Real Cameras Distort Reality 312
 Train Your Eye 320

Chapter 10 Expressions 321
 What Expressions Are 322
 Creating Expressions 324
 The Language of Expressions 326
 Linking an Effect Parameter to a Property 326
 Using a Layer’s Index 328
About the Author

Mark Christiansen is a San Francisco–based visual effects supervisor and creative director. Some of his Hollywood feature and independent film credits include *Avatar*, *All About Evil*, *Beasts of the Southern Wild*, *The Day After Tomorrow*, and *Pirates of the Caribbean 3: At World’s End*. He has worked as a producer and designer for Adobe. As a director, producer, designer, and compositor/ animator, he has also worked on a diverse slate of commercial, music video, live event, and television documentary projects for a diverse set of Hollywood and Silicon Valley clients. His experience on the set of *Beasts of the Southern Wild* sparked the concept for Cinefex for iPad and foundation of the company that produced it—New Scribbler.

Mark has used After Effects since the version 2.0 beta (codename: Teriyaki) and has consulted directly with the After Effects development team. He has written four previous editions of this book and has contributed to other published efforts, including the *Adobe After Effects Classroom in a Book* and *After Effects 5.5 Magic* (with Nathan Moody).

Mark is a founder of Pro Video Coalition (provideocoalition.com). He has created video training for Digieffects, lynda.com, and fxphd.com, and has taught courses based on this book at Academy of Art University. You can hear him on popular podcasts such as The VFX Show podcast at fxguide.com, and you can find him at christiansen.com, or email him at aestudiotecniques@gmail.com.
About the Contributors

Jeff Almasol (Appendix: “Scripting”) is a senior quality engineer on the Adobe After Effects team by day and crafter of After Effects scripts at his redefinery.com site by night. His site provides numerous free scripts, reference material, and links to other scripting resources. Prior to Adobe, Jeff worked at Elastic Reality Inc. and Avid Technology on Elastic Reality, Marquee, AvidProNet, and other products; and at Profound Effects on Useful Things and Useful Assistants. You might find him talking in the third person on Twitter (redefinery) and other sites.

Dan Ebberts (Chapter 10, “Expressions” and the “After Effects JavaScript Guide”) is a freelance After Effects script author and animation consultant. His scripting services have been commissioned for a wide range of projects, including workflow automation and complex animation rigging. He is a frequent contributor to the various After Effects forums and has a special interest in expressions and complex algorithms. Dan is an electrical engineer by training, with a BSEE degree from the University of California, but has spent most of his career writing software. He can be reached via http://motionscript.com.

Stu Maschwitz (Foreword) is a writer and director, and the creator of the Magic Bullet Suite from Red Giant Software. Maschwitz spent four years as a visual effects artist at George Lucas’s Industrial Light & Magic (ILM), working on such films as Twister and Men in Black. He cofounded and was CTO of The Orphanage, a San Francisco-based visual effects and film production company. Maschwitz has directed numerous commercials and supervised effects work on films including Sin City and The Spirit. Maschwitz is a guerilla filmmaker at heart and combined this spirit and his effects knowledge into a book titled The DV Rebel’s Guide: An All-Digital Approach to Making Killer Action Movies on the Cheap (Peachpit Press).
Acknowledgments

To deadlines that make the unfinishable complete.

This book wouldn’t exist without the dedication of the After Effects team at Adobe to make the best software they can for more than two decades, which is nearly how long I’ve been working with it. I started with CoSA After Effects 2.0 at LucasArts, one of the few proud beta sites—compositing back before I knew the term “compositor” existed—and quickly got to work blowing minds on my beige Mac.

In this edition, I also thank Adobe specifically in a couple of ways. I’ve said it before, but it bears repeating that there couldn’t be a better technical editor than Todd Kopriva, who made time in his more-than-full schedule to review this book. The whole After Effects team has to be thanked as well, because their personalities, from Dave Simons and Dan Wilk to Steve Forde and Troy Church (and a few dozen others), are truly the “secret sauce” in After Effects. I was honored to be there for the 20th anniversary celebration in Seattle earlier this year. I’m also indebted to many individuals throughout Adobe for working with me, who make Adobe what it is today.

And, of course, I remain grateful to this book’s godfather, filmmaker Stu Maschwitz, co-founder and CTO of the late, great, Orphanage, without whom the first edition of the book wouldn’t have been what it was. Working with Stu directly on A-list feature films not only blew my own mind as to how far you could go with After Effects, it gave me the confidence that the techniques in this book were valid and worth sharing.

This time I also get to give a shout out to the great people at Maxon, and in particular Paul Babb and Rick Barrett for always being willing to help. Cinema 4D integration has justifiably been big news in this release, and I’m proud to have been an early champion of the functionality you see with the addition of Cineware.

Maintaining that standard has been possible only with the collaboration of others. Thanks to Dan Ebberts for his
work on Chapter 10, “Expressions,” and his counterpart on the scripting side, Jeff Almasol. Jeff even contributed several useful scripts that he and I cooked up specifically for readers of this book.

Thanks a bunch to Chris Griffin for all the help revising and wrangling figures, a job I have never successfully shared or delegated in the past, and for helping make sure the examples are up to date and in working order. Nice work Chris!

I’m proud of the way this edition looks, and that’s thanks in no small part to Red Giant Films and Aharon Rabinowitz, who gave us the green light to use several fantastic stills from the hilarious Spy vs. Guy and Plot Device, as well as the amazing Seth Worley who worked with Aharon to craft these images (not to mention the hilarity).

I learn from teaching and thank past students and collaborators at Academy of Art and fxphd.com for reminding me of the need for clear, patient, lucid descriptions of fundamentals.

Extended thanks to Sébastien Perier, Jim Geduldick and Tyler Ginter, Vincent LaForet, Bob Donlon and Adam Shaening-Pokrasso, Tyler McPherron, Chris Meyer, Eric Escobar, and Brendan Bolles for contributions retained from previous editions. In addition, I thank Mike Chance and Jesse Boots (of Project Arbiter), Pixel Corps, Artbeats, fxphd, Case Films, Creative COW, Kenwood Group, Enhance, Sony, ABC, Red Bull USA, and individuals such as Pete O’Connell, Benjamin Morgan, Matt Ward, Ross Webb, Luis Bustamente, Micah Parker, Fred Lewis, Jorge L. Peschiera, Shuets Udono, Eric E. Yang, Charlie Styr, Mike Sussman, Marco Abis, Håkan Dahlström, and Kevin Miller. Thanks to Flickr for the Creative Commons tag that allows incorporation of fantastic images from willing contributors around the world.

Alicia Buelow designed this book’s cover—definitely a success this time, one of my favorites—with guidance from Charlene Charles-Will. Thanks to Peachpit for commissioning original artwork for the cover, and for making sure we made page count with the re-composite. It was worth the trouble.
This book relies on the commitment of Peachpit Press to manage the highest-quality publications possible in a world of increasing costs and continual shifts in the marketplace. Thanks to Nancy Peterson for stepping in as editor and carefully choosing the path of least resistance, helping to get this book done on time, and to senior editor Karyn Johnson, who probably doesn’t miss having to be in Nancy’s shoes keeping everything on track, but who made that possible this time. A hat tip goes out to Anne Marie Walker who revealed some very bad writing habits.

Finally, thank you to you, the people who read, teach, and bring the material in this book to life to collaborate on your own stories. Please let me know what you think at aestudiotechniques@gmail.com.
Foreword

I can’t see the point in the theatre. All that sex and violence. I get enough of that at home. Apart from the sex, of course.

—Tony Robinson as Baldrick, Blackadder

Who Brings the Sex?

“Make it look real.” That would seem to be the mandate of the visual effects artist. Spielberg called and he wants the world to believe, if only for 90 minutes, that dinosaurs are alive and breathing on an island off the coast of South America. Your job: Make them look real. Right?

Wrong.

I am about to tell you, the visual effects artist, the most important thing you’ll ever learn in this business: Making those velociraptors (or vampires or alien robots or bursting dams) “look real” is absolutely not what you should be concerned with when creating a visual effects shot.

Movies are not reality. The reason we love them is that they present us with a heightened, idealized version of reality. Familiar ideas—say, a couple having an argument—but turned up to 11: The argument takes place on the observation deck of the Empire State Building, both he and she are perfectly backlit by the sun (even though they’re facing each other), which is at the exact same just-about-to-set golden-hour position for the entire 10-minute conversation. The couple is really, really charming and impossibly good looking—in fact, one of them is Meg Ryan. Before the surgery. Oh, and music is playing.

What’s real about that? Nothing at all—and we love it.

Do you think director Alejandro Amenábar took Javier Aguirresarobe, cinematographer on The Others, aside and said, “Whatever you do, be sure to make Nicole Kidman look real?” Heck no. Directors say this kind of stuff to their DPs: “Make her look like a statue.” “Make him look bullet-proof.” “Make her look like she’s sculpted out of ice.”
Did It Feel Just Like It Should?

Let’s roll back to Jurassic Park. Remember how terrific the T-rex looked when she stepped out of the paddock? Man, she looked good.

She looked good.

The realism of that moment certainly did come in part from the hard work of Industrial Light and Magic’s fledgling computer graphics department, which developed groundbreaking technologies to bring that T-rex to life. But mostly, that T-rex felt real because she looked good. She was wet. It was dark. She had a big old Dean Cundey blue rim light on her coming from nowhere. In truth, you could barely see her.

But you sure could hear her. Do you think a T-rex approaching on muddy earth would really sound like the first notes of a new THX trailer? Do you think Spielberg ever sat with sound designer Gary Rydstrom and said, “Let’s go out of our way to make sure the footstep sounds are authentic?” No, he said, “Make that mofo sound like the Titanic just rear-ended the Hollywood Bowl” (may or may not be a direct quote).

It’s the sound designer’s job to create a soundscape for a movie that’s emotionally true. They make things feel right even if they skip over the facts in the process. Move a gun half an inch and it sounds like a shotgun being cocked. Get hung up on? Instant dial tone. Modern computer displaying something on the screen? Of course there should be the sound of an IBM dot-matrix printer from 1978.

Sound designers don’t bring facts. They bring the sex. So do cinematographers, makeup artists, wardrobe stylists, composers, set designers, casting directors, and even the practical effects department.

And yet somehow, we in the visual effects industry are often forbidden from bringing the sex. Our clients pigeonhole us into the role of the prop maker: Build me a T-rex, and it better look real. But when it comes time to put that T-rex on screen, we are also the cinematographer (with our CG lights), the makeup artist (with our “wet look”
shader), and the practical effects crew (with our rain). And although he may forget to speak with us in the same flowery terms that he used with Dean on set, Steven wants us to make sure that T-rex looks like a T-rex should in a movie. Not just good—impossibly good. Unrealistically blue-rim-light-outa-nowhere good. Sexy good.

Have you ever argued with a client over aspects of an effects shot that were immutable facts? For example, you may have a client who inexplicably requested a little less motion blur on a shot, or who told you “just a little slower” for an object after you calculated its exact rate of fall? Do you ever get frustrated with clients who try to art-direct reality in this way?

Well, stop it.

Your client is a director, and it’s their job to art-direct reality. It’s not their job to know (or suggest) the various ways that it may or may not be possible to selectively reduce motion blur, but it is their job to feel it in their gut that somehow this particular moment should feel “crisper” than normal film reality. And you know what else? It’s your job to predict that they might want this and even propose it. In fact, you’d better have this conversation early, so you can shoot the plate with a 45-degree shutter that both the actors and the T-rex might have a quarter the normal motion blur.

Was It Good for You?

The sad reality is that we, the visual effects industry, pigeonhole ourselves by being overly preoccupied with reality. We have no one to blame but ourselves. No one else on the film set does this. If you keep coming back to your client with defenses such as “That’s how it would really look” or “That’s how fast it would really fall,” then not only are you going to get in some arguments that you will lose, but you’re actually setting back our entire industry by perpetuating the image of visual effects artists as blind to the importance of the sex. On the set, after take one of the spent brass shell falling to the ground, the DP would turn to the director and say, “That felt a bit fast. Want me to
do one at 48 frames?” And the director would say yes, and they’d shoot it, and then months later the editor would choose take three, which they shot at 72 frames per second “just in case.” That’s the filmmaking process, and when you take on the task of creating that same shot in CG, you need to represent, emulate, and embody that entire process. You’re the DP, both lighting the shot and determining that it might look better overcranked. You’re the editor, confirming that choice in the context of the cut. And until you show it to your client, you’re the director, making sure this moment feels right in all of its glorious unreality.

The problem is that the damage is already done. The client has worked with enough effects people who have willingly resigned themselves to not bringing the sex that they now view all of us as geeks with computers rather than fellow filmmakers. So when you attempt to break our self-imposed mold and bring the sex to your client, you will face an uphill battle. But here’s some advice to ease the process: Do it without asking. I once had a client who would pick apart every little detail of a matte painting, laying down accusations of “This doesn’t look real!”—until we color corrected the shot cool, steely blue with warm highlights. Then all the talk of realism went away, and the shot got oohs and aahs.

Your client reacts to your work emotionally, but they critique technically. When they see your shot, they react with their gut. It’s great, it’s getting better, but there’s still something not right. What they should do is stop there and let you figure out what’s not right, but instead, they somehow feel the need to analyze their gut reaction and turn it into action items: “That highlight is too hot” or “The shadows under that left foot look too dark.” In fact, it would be better if they focused on vocalizing their gut reactions: “The shot feels a bit lifeless,” or “The animation feels too heavy somehow.” Leave the technical details to the pros.

You may think that those are the worst kind of comments, but they are the best. I’ve seen crews whine on about “vague” client comments like “give the shot more oomf.” But trust me, this is exactly the comment you want.
Because clients are like customers at a restaurant, and you are the chef. The client probably wants to believe that “more oomf” translates into something really sophisticated, like volumetric renderings or level-set fluid dynamics, in the same way that a patron at a restaurant would hope that a critique like “this dish needs more flavor” would send the chef into a tailspin of exotic ingredients and techniques. Your client would never admit (or suggest on their own) that “oomf” is usually some combination of “cheap tricks” such as camera shake, a lens flare or two, and possibly some God rays—just like the diner would rather not know that their request for “more flavor” will probably be addressed with butter, salt, and possibly MSG.

The MSG analogy is the best: Deep down, you want to go to a Chinese restaurant that uses a little MSG but doesn’t admit it. You want the cheap tricks because they work, but you’d rather not think about it. Your client wants you to use camera shake and lens flares, but without telling them. They’d never admit that those cheap tricks “make” a shot, so let them off the hook and do those things without being asked. They’ll silently thank you for it. Bringing the sex is all about cheap tricks.

Lights On or Off?

There are some visual effects supervisors who pride themselves on being sticklers for detail. This is like being an architect whose specialty is nails. I have bad news for the “Pixel F*ckers,” as this type are known: Every shot will always have something wrong with it. There will forever be something more you could add, some shortcoming that could be addressed. What makes a visual effects supervisor good at their job is knowing which of the infinitely possible tweaks are important. Anyone can nitpick. A good supe focuses the crew’s efforts on the parts of the shot that impact the audience most. And this is always the sex. Audiences don’t care about matte lines or mismatched black levels, soft elements or variations in grain. If they did, they wouldn’t have been able to enjoy Blade Runner or Back to the Future or that one Star Wars movie—what was it called? Oh yeah: Star Wars. Audiences only care about the sex.
On a recent film I was struggling with a shot that was just kind of sitting there. It had been shot as a pickup, and it needed some help fitting into the sequence that had been shot months earlier. I added a layer of smoke to technically match the surrounding shots. Still, the shot died on the screen. Finally, I asked my compositor to softly darken down the right half of the shot by a full stop, placing half the plate along with our CG element in a subtle shadow. Boom, the shot sang.

What I did was, strictly speaking, the job of the cinematographer, or perhaps the colorist. The colorist, the person who designs the color grading for a film, is the ultimate bringer of the sex. And color correction is the ultimate cheap trick. There’s nothing fancy about what a Da Vinci 2K or an Autodesk Lustre does with color. But what a good colorist does with those basic controls is bring heaping, dripping loads of sex to the party. The problem is—and I mean the single biggest problem facing our industry today—the colorist gets their hands on a visual effects shot only after it has already been approved. In other words, the film industry is currently shooting itself in the foot (we, the visual effects artists, being that foot) by insisting that our work be approved in a sexless environment. This is about the stupidest thing ever, and until the industry works this out, you need to fight back by taking on some of the role of the colorist as you finalize your shots, just like we did when we made those matte paintings darker and bluer with warm highlights.

Filmmaking is a battleground between those who bring the sex and those who don’t. The non-sex-bringing engineers at Panavision struggle to keep their lenses from flaring, while ever-sexy cinematographers fight over a limited stock of 30-year-old anamorphic lenses because they love the flares. I’ve seen DPs extol the unflinching sharpness of a priceless Panavision lens right before adding a smear of nose grease (yes, the stuff on your nose) to the rear element to soften up the image to taste. Right now this battle is being waged on every film in production between the visual effects department and the colorists of the world. I’ve heard effects artists lament that after all their hard
work making something look real, a colorist then comes along and “wonks out the color.” In truth, all that colorist did was bring the sex that the visual effects should have been starting to provide on their own. If what the colorist did to your shot surprised you, then you weren’t thinking enough about what makes a movie a movie.

In Your Hands

You’re holding a book on visual effects compositing in Adobe After Effects. There are those who question the validity of such a thing. Some perpetuate a stigma that After Effects is for low-end TV work and graphics only. To do “real” effects work, you should use a program such as Nuke or Shake. Those techy, powerful applications are good for getting shots to look technically correct, but they do not do much to help you sex them up. After Effects may not be on par with Nuke and Shake in the tech department, but it beats them handily in providing a creative environment to experiment, create, and reinvent a shot. In that way it’s much more akin to the highly respected Autodesk Flame and Inferno systems—it gives you a broad set of tools to design a shot, and has enough horsepower for you to finish it, too.

After Effects is the best tool to master if you want to focus on the creative aspects of visual effects compositing. That’s why this book is unique. Mark’s given you the good stuff here, both the nitty-gritty details as well as the aerial view of extracting professional results from an application that’s as maligned as it is loved. No other book combines real production experience with a deep understanding of the fundamentals, aimed at the most popular compositing package on the planet.

Bring It

One of the great matte painters of our day once told me that he spent only the first few years of his career struggling to make his work look real, but that he’ll spend the rest of his life learning new ways of making his work look good. It’s taken me years of effects supervising, commercial directing, photography, wandering the halls of
museums, and waking up with hangovers after too much really good wine to fully comprehend the importance of those words. I can tell you that it was only after this particular matte painter made this conscious choice to focus on making things look good, instead of simply real, that he skyrocketed from a new hire at ILM to one of their top talents. Personally, it’s only after I learned to bring the sex that I graduated from visual effects supervising to become a professional director.

So who brings the sex? The answer is simple: The people who care about it. Those who understand the glorious unreality of film and their place in the process of creating it. Be the effects artist who breaks the mold and thinks about the story more than the bit depth. Help turn the tide of self-inflicted prejudice that keeps us relegated to creating boring reality instead of glorious cinema. Secretly slip your client a cocktail of dirty tricks and fry it in more butter than they’d ever use at home.

Bring the sex.

Stu Maschwitz
San Francisco, October 2008
Introduction
If you aren’t fired with enthusiasm, you will be fired—with enthusiasm.

—Vince Lombardi

Why This Book?

This book is about creating visual effects. Specifically, it dives into the art and science of assembling disparate elements so that they appear as part of a single, believable scene. When people ask me what exactly the book is about, I tell them that it shows artists how to use a computer to assemble a shot that doesn’t look as if it was assembled, just photographed. It also hints at how to make an ordinary shot extraordinary without destroying the viewer’s willing suspension of disbelief.

The subject matter in this book focuses beyond the obvious—and what is well documented elsewhere—and deep into core visual effects topics. We look closely at features such as color correction, keying, tracking, and roto that are only touched on by other books about After Effects while leaving tools more dedicated to motion graphics (such as Text and Shape layers) largely alone. It’s not that those tools aren’t a powerful part of After Effects; it’s just that they literally don’t fit in this book.

As author, I do not shy away from opinions, even those that deviate from the official line. These opinions and techniques—which have been refined through actual work in production at a few of the finest visual effects facilities in the world—are valid not only for such high-end productions, but really anywhere you are compositing a visual effect. Where applicable, the reasoning behind using one technique over another is provided. I aim to make you not a better button-pusher, but a more effective artist and technician.

Visual effects companies are typically protective of trade secrets, reflexively treating all production information as proprietary. Once you work on a major project, however, you will soon discover that even the most complex shot is
made up largely of repeatable techniques and practices. The art is in how the results are applied, combined, and customized, and what is added (or taken away). Visual effects artists, meanwhile, can be downright open and friendly about sharing discoveries, knowing that it’s about the artistry, not a clever bag of tricks.

Each shot is unique, and yet each relies on techniques that are tried and true. This book offers you as many of the techniques as possible so that you can focus on the unique properties of each shot. There’s not much here in the way of step-by-step instructions—it’s more important for you to grasp how things work so that you can repurpose insights for your individual shot.

This is not a book for beginners. Although the first section is designed to make sure that you are making optimal use of the software, it’s not an effective primer on After Effects in particular or digital video in general. If you’re new to After Effects, first spend some time with its excellent documentation or check out one of the many books available to help beginners learn the application.

On the other hand, if you’re comfortable with Photoshop and familiar with the visual effects process—which is likely if you’ve picked up this book—try diving into the redesigned Chapter 1 and let me know how it goes.

Organization of This Book and What’s New

Although each chapter has been refined and updated, After Effects Studio Techniques is organized into three sections, like each previous edition.

- Section I, “Working Foundations,” is about After Effects and how to make the most of its user interface. This is not a list of each menu and button but a shortcut to being a power user.

 If you’re an advanced user, don’t skip this section. It’s virtually guaranteed to contain valuable information that you don’t already know, and it has been freshened up with new data and figures pertaining to new features.
Section II, “Effects Compositing Essentials,” is about the fundamentals of effects compositing. Color matching, keying, rotoscoping, and motion tracking are the essentials, plus there’s a chapter on the camera and 3D along with another on the expressions used to generate animated data with connections, logic, and math. The final chapter in this section introduces you to 32-bpc linear compositing and high dynamic range imaging pipelines.

This section is the true heart of the book. This edition contains dramatic rewrites of Chapters 7 through 9 due to new rotoscoping, tracking, and 3D features added to the application.

Section III, “Creative Explorations,” is about actual shots you are likely to re-create—the bread-and-butter techniques every effects artist needs to know. Some of these examples are timeless, but you will also find information about color grading with Adobe SpeedGrade, a powerful tool in every complete Creative Cloud installation.

In all cases, instead of leading you step-by-step through a single example, the goal is to explain the fundamentals of how things work. You will then be able to put these techniques to use on your own shot rather than relying on a paint-by-numbers approach. Although each shot is unique, all of them can be grouped together as effectively the same in fundamental ways.

Artistry

While working on the first edition of this book I would ride my bicycle home up the hill out of the Presidio where the beautiful Orphanage facility was located. As I rode, I thought about what people really needed to know in order to move their work to the level of a visual-effects pro. Sometimes it was very late at night, when raccoons and skunks would cross my path. When I wasn’t worrying about them, here’s what I came up with:
Break it down. Talented but inexperienced students learn how the software works but are not used to analyzing a shot or sequence and breaking it down into manageable, comprehensible steps. This is a book filled with those steps.

Get reference. You can’t re-create what you can’t clearly see. Too many of us skip this step and end up making boring, generic choices. Nature is never boring, and if it appears that way, you’re not looking at it closely enough.

Simplify. To paraphrase Einstein, the optimum solution is as simple as possible, but no simpler.

Learn to take criticism rather than expect perfection. My former colleague Paul Topolos, now in the art department at Pixar, used to say, “Recognizing flaws in your work doesn’t mean you’re a bad artist. It only means you have taste.” To err is human, to cut yourself a break and keep going, divine.

This book reflects what I learned working at the best studios, and even if you’re not currently working at one of them, this is how collaboration, criticism, and perseverance will be your teachers.

Compositing in After Effects

There’s a good reason that Nuke, a node-based compositing application from The Foundry, has almost uniformly become the compositing application of choice at feature film visual effects studios around the world. Nuke is designed for exactly what those artists need—and only what they need. In some areas, mostly the native handling of 3D effects such as camera projection, stereo, and deep compositing, Nuke is clearly ahead of After Effects. In other areas, such as animation and type handling, After Effects has the edge. For compositing fundamentals, the two applications are equally valid, but operations that are simple in Nuke can be complicated in After Effects, and vice versa. Despite the impression that Nuke has taken over, when you move beyond feature films, After Effects is
the ubiquitous champion. They’re both awesome tools, but the important takeaway is that Nuke is specialized, whereas After Effects targets a broader set of users.

The following are some of the features that streamline After Effects for the generalist and animator (and which, paradoxically, can complicate workflows that are more straightforward for video-effects compositing in Nuke):

- Render order is established in the Timeline and via nested compositions that consist of layers, not nodes. After Effects has Flowchart view, but you don’t create your composition there the way you would with a tree/node interface.

- Transforms, effects, and masks are embedded in every layer. They render in a fixed order.

- After Effects has a persistent concept of an alpha channel in addition to the three color channels. The alpha channel is always treated as if it is straight (never premultiplied) once an image has been imported and “interpreted,” as the application terms it.

- An After Effects project is not a “script,” although there are add-ons, in particular the script pt_OpenSesame, that leverage script-like capabilities for After Effects.

- Temporal and spatial settings tend to be fixed and absolute in After Effects because it is composition- and Timeline-based. This is a boon to projects that involve complex timing and animation, but it can snare users who aren’t used to it and suddenly find pre-comps that end prematurely, are cropped, or don’t scale gracefully. Best practices to avoid this are detailed in Chapter 4.

This book attempts to shed light on these and other areas of After Effects that are not explicitly dealt with in its user interface or documentation. After Effects spares you details that a casual user might never need to know about but that, as a professional user, you must understand thoroughly. This book is here to help.
Example Files

The example files that can be downloaded to use with this book provide a variety of helpful resources for the After Effects artist; many are provided by friends and colleagues (thanks!).

Scripting Chapter: Jeff Almasol’s scripting chapter is now an appendix and is found on your Account page on Peachpit.com. This highly accessible resource on this complicated and much-feared topic walks you through three scripts, each of which builds upon the complexity of the previous. Scripting provides the ability to create incredibly useful extensions to After Effects to eliminate tedious tasks. Several of these are included in the scripts folder online as exclusives to this book.

A few useful and free third-party scripts mentioned throughout the book are included as well. For more of these, see the script links PDF in the scripts folder online.

JavaScript Guide: To focus on more advanced and applied topics in the print edition, Dan Ebberts kicked JavaScript fundamentals to a special JavaScript addendum, also included as a PDF. This is, in many ways, the missing manual for the After Effects implementation of JavaScript. It omits all the useless Web-only scripting commands found in the best available books and extends beyond the material in After Effects help.

Special-Purpose Topics: Certain sections that appeared in the print version of previous editions have been moved online as PDF files. The tools and techniques are still valid, but the material on topics such as ray-tracing, stereo tools, morphing, warping, and color management is able to stand on its own to make way for new features that had to be integrated more directly into the rest of the book.

Footage: You’ll also find HD footage you can use to experiment on and practice your techniques. There are dozens of example files to help you deconstruct the techniques described.
How to Download the Files

You can download all of the files at once or pick and choose among them. To access them, follow these steps:

1. Go to www.peachpit.com/redeem and enter the code found at the back of your book.

2. If you do not have a Peachpit.com account, you will be prompted to create one.

3. The downloadable files will be listed under the Lesson & Update Files tab on your Account page.

4. Click the links for the files you want to download to your computer.

The Bottom Line

It’s not about the tools. They are merely the means for the skilled talented artist—you—to apply the hard work required to inspire an audience—them—with results. By thoroughly understanding the tools, you can learn to think with them, and in so doing, forget about them as they become second nature. This book will help.

If you have comments or questions you’d like to share with the author, please email them to aestudiotechniques@gmail.com.
This page intentionally left blank
CHAPTER 4

Optimize Projects
Build a system that even a fool can use and only a fool will want to use it.

—George Bernard Shaw

Optimize Projects

This chapter examines in close detail how image data flows through an After Effects project. It’s full of the information you need to help you make the most of After Effects.

Sometimes, like a master chef—you can prep items and consider them “done” before the guests are in the restaurant and it’s time to cook the meal. At other times, like a programmer, you must isolate and debug elements of a project, creating controlled tests when necessary to understand how things are working. This chapter provides the technical knowledge to allow the artistry to shine.

Work with Multiple Comps and Projects

A modestly complicated shot can entail thousands of individual edits and decisions, and it’s easy to lose track of assets when projects get complicated. This section demonstrates

- how and why to work with a project template
- how to organize a complex, multiple-composition pipeline
- shortcuts to help maintain orientation within the project as a whole

These tips are especially useful if you’re someone who understands compositing but sometimes finds After Effects disorienting.

Precomposing and Composition Nesting

Precomposing is the action of selecting a set of layers in a master composition and assigning it to a new subcomp, which becomes a layer in the master comp. Closely related to this is composition nesting, the act of placing one already created composition inside of another.
let a composition become unwieldy, with dozens of layers, rather than bite the bullet and send a set of those layers into a precomp. Yet precomping is both an effective way to organize the timeline and a key to problem solving and optimization in After Effects. Motion graphics comps can involve the animation and coordination of hundreds of animated elements. In a visual effects context, however, if your VFX composition has more than 20 or so layers, you’re doing precomping wrong, making your work way less efficient overall.

Typically, precomping is done by selecting layers of a composition to group together, and choosing Precompose from the Layer menu (Ctrl+Shift+C/Cmd+Shift+C). Two options appear (the second option is grayed out if multiple layers have been selected): to leave attributes (effects, transforms, masks, paint, blending modes) in place, or transfer them into the new composition.

Why Precomp?

Precomping prevents a composition from containing too many layers to manage in one timeline, and it also adds a few other advantages. You can

- Reuse a set of elements.
- Fix render order problems. For example, masks are always applied before effects in a given layer, but a precomp can contain an effect so that the mask in the master comp follows that effect in the render order.
- Organize a project by grouping interrelated elements.
- Specify an element or set of layers as completed (and even pre-render them, as discussed later in this chapter).

Many After Effects artists are already comfortable with the idea of precomping but miss that last point. As you read through this, think about the advantages of considering an element finished, even if only for the time being.

The Project Panel: Think of It as a File System

How do you like to organize your system—tidy folders for everything or files strewn across the desktop? Personally, I’m most content with a project that is well organized, even
Chapter 4 Optimize Projects

if I’m the only one likely to work on it. When sharing with others, however, good organization becomes essential. The Project panel mirrors your file system (whether it’s Explorer or Finder), and keeping it well organized and tidy can clarify your thought process regarding the project.

I know, I know, eat your vegetables, and clean your room. Imagine that the person next opening your project is you, but with a case of amnesia—actually, that basically is you after a sufficient period of time.

Figure 4.1 shows a couple of typical project templates containing multiple compositions to create one final shot, although these could certainly be adapted for a group of similar shots or a sequence. When you need to return to a project over the course of days or weeks, this level of organization can be a lifesaver.

Here are some ideas to help you create your own comp template:

- **Create folders**, such as Source, Precomps, and Reference, to group specific types of elements.
- **Use numbering to reflect comp and sequence order** so that it’s easy to see the order in the Project panel.
- **Create a unique Final Output comp** that has the format and length of the final shot, particularly if the format is at all different from what you’re using for work (because it’s scaled, cropped, or uses a different frame rate or color profile).
- **Use guide layers and comments** as needed to help artists set up the comp (Figure 4.2).
- **Organize Source folders** for all footage, categorized as is most logical for your project.
Place each source footage clip into a precomp, so that changes to source footage—where it is replaced for some reason—are easier to handle without causing some sort of train wreck.

The basic organization of master comp, source comp, and render comp seems useful on a shot of just about any complexity, but your template can include a lot more than that: custom expressions, camera rigs, color management settings, and recurring effects setups.

Manage Multiple Comps from the Timeline

Ever had that “where am I?” feeling when you’re working with a series of nested comps? That’s where Mini-Flowchart, or Miniflow, comes in. Simply press the Tab key with the Timeline panel displayed to enable it; alternatively, you can click the Miniflow button.

Miniflow (Figure 4.3) shows only the nearest neighbor comps, but click on the flow arrows at either end and you navigate up or down one level in the hierarchy. Click on any arrows or items in between the ends and that level is brought forward. You’re even free to close all compositions (Ctrl+Alt+W/Cmd+Opt+W), and then reopen only the ones you need using this feature.

What about cases where you want to coordinate work in a subcomp while seeing the result in the master comp? The Lock icon at the upper left of the Composition viewer lets you keep that Composition viewer forward while you open another composition’s Timeline panel and close its view panel. Lock the master comp and double-click a nested comp to open its Timeline panel; as you make adjustments, you see the result directly in the master comp.

Ctrl+Alt+Shift+N (Cmd+Opt+Shift+N) creates two Composition viewers side by side, and locks one of them, for any artist with ample screen real estate who wants the best of both worlds.
To locate a comp in the Project panel, you can

- select an item in the Project panel; click the caret to see where the item is used, along with the number of times, if any, the item is used in a comp (Figure 4.4)

![Figure 4.4 Click the caret next to the total number of times an item is used to see a list of where it is used.](image)

- context-click an item in the Project panel and choose Reveal in Composition; choose a composition and that comp is opened with the item selected
- context-click a layer in the timeline and choose Reveal Layer Source in Project to highlight the item in the Project panel
- context-click in the empty area of a timeline and choose Reveal Composition in Project to highlight that comp in the Project panel (Figure 4.5)
- type the name of the comp in the Project panel search field

Ways to Break the Pipeline

Precomping solves problems, but it can also create problems—or at least inconveniences. Here are a few ways that render order can go wrong:

- **Some but not all properties are to be precomped, but others must stay in the master comp:** With precomping it’s all or nothing, leaving you to rearrange properties individually.
- **Un-nesting:** Changed your mind? Restoring precomped layers to a parent composition is a manual (and thus error-prone) process, due to the difficulty of maintaining proper dependencies between the two (for example, if the nested comp has also been scaled, rotated, and retimed).
3D nesting: Do the layers being precomped include blending modes or 3D layers, cameras, or lights? Their behavior changes depending on the Collapse Transformations setting in downstream comps (detailed in the next section).

Comp settings nesting: Is there motion blur, frame blending, or vector artwork in the subcomp? Switches in the master composition affect their behavior, as do settings on each nested layer, and this relationship changes depending on whether Collapse Transformations is toggled on.

Layer timing (duration, In and Out points, frame rate) and dimensions can differ from the master comp: When this is unintentional, mishaps happen: Layers end too soon or are cropped inside the overall frame, or keyframes in the precomp fall between those of the master, wreaking havoc on tracking data, for example.

Duplicating a comp that contains subcomps: The comp is new and completely independent, but the nested comps are not (see Tip on this page).

No wonder people avoid precomping. But there is hope if you recognize any difficulty and know what to do, so that inconveniences don’t turn into deal-breakers.

Boundaries of Time and Space

Each composition in After Effects contains its own fixed timing and pixel dimensions. This adds flexibility for animation but if anything reduces it for compositing. Most other compositing applications (such as Nuke) have no built-in concept of frame dimensions or timing and assume that the elements match the plate, as is often the case in visual effects work.

Therefore it is helpful to take precautions:

- Make source compositions longer than the shot is ever anticipated to be, so that if it changes, timing is not inadvertently truncated.
- Enable Collapse Transformations to allow the nested composition to ignore its boundaries (Figure 4.6).
Add the Grow Bounds effect if Collapse Transformations isn’t an option (see the “Grow Bounds” sidebar on page 109).

Collapse Transformations is the most difficult of these to get your head around, so here is a closer look.

Collapse Transformations

In After Effects, when a comp is nested in another comp, effectively becoming a layer, the ordinary behavior is for the nested comp to be rendered completely before the layer can be adjusted in any form in the master comp.

However, there are exceptions. Keyframe interpolations, frame blending, and motion blur are all affected by the settings of the master comp—they use its frame rate, and thus keyframe timing (which can become tricky; see the next section). 3D position data and blending modes, on the other hand, are not passed through unless Collapse Transformations is enabled. Enable the toggle and it is almost as if the precomposed layers reside in the master comp—except that any 3D camera or lighting in the subcomp is overridden by the camera and lights in the master comp.

Any layer with Collapse Transformations enabled loses access to blending modes—those in the subcomp take precedence (and you can’t set two blending modes to one layer, obviously). Now here comes the trickiest part: Apply any effect to the layer (even Levels with the neutral defaults, which doesn’t affect the look of the layer) and you force After Effects to render the collapsed layer, making blending modes operable. It is now what the Adobe developers call a *parenthesized* comp. Such a nested comp is both collapsed and not: You can apply a blending mode, but 3D data is passed through (Figure 4.7).

So, if you need to collapse transformations but retain 3D data, apply any effect—even one of the Expression Controls effects that don’t by themselves do anything—to parenthesize the comp.

Nested Time

After Effects is not rigid about time, but digital video—whether source or output—definitely is. You can freely
mix and change frame rates among compositions without changing the timing, as has been shown. However, because your source clips always have a very specific rate, pay close attention when you

- import an image sequence
- create a new composition
- mix comps with different frame rates

In the first two cases, watch out for careless errors. But you might actually want to maintain specific frame rates in subcomps, in which case you must set them deliberately on the Advanced tab of the Composition Settings dialog, as follows.

Advanced Composition Settings

In addition to the Motion Blur settings covered in detail in Chapter 8, Composition Settings > Advanced contains two toggles that influence how time and space are handled when one composition is nested into another.

Figure 4.7 You’re not supposed to be able to apply blending modes to ray-traced and other 3D scenes. You can precomp such a scene and enable Collapse Transformations so that all of its ray-traced 3D qualities are passed through, but you still can’t apply a blending mode such as Add (shown here). However, if you add a simple effect, such as Levels, unadjusted, transformations and shading are still passed through—occasionally a handy trick.

Grow Bounds

Sometimes, enabling Collapse Transformations is not desirable—for example, if you set up 3D layers with a camera in a subcomp and don’t want their position to be changed by a camera in the master comp. The Grow Bounds effect overcomes one specific (and fairly rare) problem (in which the embedded layer is too small for an applied effect), but it is also useful in cases where other effects create a comp boundary that leads visual data to appear cropped.
Preserve Frame Rate maintains the frame rate of the composition wherever it goes—into another composition with a different frame rate setting or into the Render Queue with a specific, alternate frame rate set there (as was mentioned in Chapter 1, it can be done). So if a simple animation cycle looks right at 4 frames per second (fps), it won’t be frame blended across the higher frame rate, but will preserve the look of 4 fps.

Preserve Resolution When Nested controls what is called *concatenation*. Typically, if an element is scaled down in a composition that is then nested into another comp and scaled back up, the two operations are treated as one, so that no data loss occurs via quantization. This is usually a good thing. If the data in the subcomp is to appear pixelated, as if it were scaled up from a lower-resolution element, this toggle preserves the chunky pixel look.

Special Case: Adjustment and Guide Layers

Two special types of layers, adjustment and guide layers, offer extra benefits that might not be immediately apparent.

Adjustment Layers

From a nodal point of view, adjustment layers are a way of saying “at this point in the compositing process, I want these effects applied to everything that has already rendered.” Because render order is not readily apparent in After Effects until you learn how it works, adjustment layers can seem trickier than they are.

The *adjustment layer* is invisible, but its effects are applied to all layers below it. It is a fundamentally simple feature with many uses. To create one, context-click in an empty area of the Timeline panel, and choose New > Adjustment Layer (Ctrl+Alt+Y/Cmd+Opt+Y) *(Figure 4.8)*.

Adjustment layers allow you to apply effects to an entire composition without precomping it. That by itself is pretty cool, but there’s more:

- Move the adjustment layer down the stack and any layers above it are unaffected, because the render order in After Effects goes from the lowest layer upward.
Shorten the layer and the effects appear only on frames within the adjustment layer’s In/Out points.

Use Opacity to attenuate (basically, “dial back”) any effect; most of them work naturally this way. Many effects do not include such a direct control, even when it makes perfect sense to “dial it back 50%,” which you can do by setting Opacity to 50%.

Apply a matte to an adjustment layer to hold out the effects to a specific area of the underlying image.

Add a blending mode and the adjustment layer is first applied and then blended back into the result (Figure 4.9).

It’s a good idea 99 percent of the time to make sure that an adjustment layer remains 2D, and you will most often also want it to be the size and length of the comp, as when applied. You may not ever choose to move, rotate, or scale an adjustment layer in 2D or 3D, but it is easily possible to do so accidentally. If you enlarge the composition, resize the adjustment layers as well.

Figure 4.9 Here, the source plate image (a) is shown along with two alternates in which Camera Lens Blur has been applied via an adjustment layer, held out by a mask. With the adjustment layer blending mode set to Normal (b), there is a subtle bloom of the background highlights, but changing it to Add (c) causes the effect to be applied as in (b) and then added over source image (a).
Guide Layers

Like adjustment layers, guide layers are standard layers with special status. A guide layer’s content appears in the current composition but not in any subsequent compositions or the final render (unless it is specifically overridden in Render Settings). You can use a guide layer for:

- foreground reference clips (picture-in-picture timing reference, aspect ratio crop reference)
- temporary backgrounds to check edges when creating a matte
- text notes to yourself
- adjustment layers that are used only to check images (described further in the next chapter); a layer can be both an adjustment and a guide layer
- View LUTs (Figure 4.10)

Any image layer can be converted to a guide layer either by context-clicking it or by choosing Guide Layer from the Layer menu.

Figure 4.10 There are many uses for a guide layer; one simple one that is common to most color and compositing applications is a View LUT in which you apply an adjustment layer with a LUT adjustment that is for previewing only. When it comes time to render or nest this clip, the guide layer provides a guarantee that this layer and its effect doesn’t show up.
Image Pipeline, Global Performance Cache, and Render Speed

The render pipeline is the order in which operations happen; by controlling it, you can solve problems and overcome bottlenecks. For the most part, render order is plainly displayed in the timeline and follows consistent rules:

- 2D layers are calculated from the bottom to the top of the layer stack—aka those numbered layers in the timeline.
- Layer properties (masks, effects, transforms, paint, and type) are calculated in strict top-to-bottom order within each layer (twirl down the layer to see it).
- 3D layers are calculated based on distance from the camera; coplanar 3D layers respect stacking order and should behave like 2D layers relative to one another.

So to review: In a 2D composition, After Effects starts at the bottom layer and calculates any adjustments to it in the order that properties are shown, top to bottom. Then, it calculates adjustments to the layer above it, composites the two of them together, and moves up the stack in this manner (Figure 4.11). Although effects within a given layer are generally calculated prior to transforms, an adjustment layer guarantees that its effects are rendered after the transforms of all layers below it.

Track mattes and blending modes are applied last, after all other layer properties (masks, effects, and transforms) have been calculated, and after their own mask, effect, and transform data are applied. Therefore, you don’t generally need to pre-render a track matte simply because you’ve added masks and effects to it.

Global Performance Cache: Way Faster!

The feature name Global Performance Cache is a generic term for what is, in fact, a set of interrelated technologies:

- a global RAM cache that is smarter about dividing your work to save as many individual processes as possible
- a persistent disk cache that saves those precalculated processes for continual reuse
- 3D calculations are precise well below the decimal level but do round at some point. To avoid render errors, precomp them in a nested 2D layer.
Chapter 4 Optimize Projects

- a graphics pipeline that makes greater use of OpenGL to present and stream images onscreen

Global Performance Cache is the result of looking at what modern hardware can deliver that simply was not possible a few years ago, and figuring out how to make use of that hardware:

- **cheap and plentiful RAM**, and the ability of a 64-bit operating system to access far more of it (up to 192 GB on Windows 7, and well in excess of the 2 GB per processor core recommended for After Effects)

- **fast attached storage**, including SSD drives that routinely double the access speed of even the fastest HDD drive or array

- **high-end graphics cards** with GPUs that accelerate performance year after year at rates that way, way outstrip Moore’s Law

Best of all, you don’t really have to do anything special, beyond keeping your hardware up to date.

Memory Acceleration: Global RAM Cache

By slicing a clip with its many selections and effects into discrete chunks and storing each of those render steps individually, After Effects greatly reduces the need to re-render cached footage. You can change a given effect setting or range of keyframes without disrupting other parts of the image and clip that are unrelated to that change.

Reusable frames are recognized anywhere on the timeline: when you use loop expressions (Chapters 8 and 10), remap time, or copy and paste keyframes. Duplicated layers or whole duplicated comps are also recognized.

The net result is that you can commit an edit, preview the result without rendering from scratch, and undo the change without penalty. Since this, in essence, is how you spend your working day as an After Effects artist, the resulting 5–15x speed increase ripples throughout the process, allowing you not only to get to a result more quickly but to try more options without worrying about the time cost.

Although After Effects doesn’t prohibit you from doing so, don’t apply a track matte to another track matte and expect consistent results. Sometimes it works, but it’s not really supposed to work, and most often it simply doesn’t.
This tends to work a lot better with 2D layers since in 3D, light, reflection, shadows, refraction, and translucency are all influenced by the adjustment of a single element, such as a light or the position of a layer.

Continuous Access: Persistent Disk Cache

Data in the RAM cache is now much less fragile because it is constantly backed up in a *persistent disk cache*. If you run out of RAM, increment and save to a new version of the project or even quit the application and reopen the project. Its cache is available for instant playback and immediate rendering (**Figure 4.12b**).

![Figure 4.12](image)

Persistent disk cache is also the most tweakable of the Global Performance Cache options, and the one for which your choice of hardware may make the greatest difference. Here’s a list of the most effective tweaks, followed by a breakdown:

- dedicate **fast** attached storage to the After Effects cache
- use the **Cache Work Area in Background** command as you work
- incorporate **Dynamic Link** with Adobe Premiere Pro
- render locally

Want to see how caching behaves on individual layers? Under the Timeline panel menu, hold down **Ctrl/Cmd** and click Show Cache Indicators, even if it’s already checked. Now each layer has its own blue or green bar if it’s cached (**Figure 4.12a**). Turn it off when you have a good sense of how it works, because it will slow down your renders.

Figure 4.12 With Layer Cache Indicators on, you begin to see how After Effects breaks down the RAM cache into individual layers and even effects (**a**). With fast attached storage, you will see those green lines turn blue as they move from RAM to the disk (**b**).
Before drawing out the first three points in more detail, note that the persistent disk cache is not at all sharable or portable. Place the cache on a shared drive and point two systems to it, and all you do is introduce instability: The two systems don’t recognize those cached files in the same way, thus introducing conflicts and instability, and will simply continue to generate their own cache data. The data is designed to be accessed instantly and is cleverly designed to track a given comp and layers even as project versions change on a given system (Figure 4.13).

Disk Cache Boost 1: Get Fast Attached Storage

The persistent disk cache can be a little like a gigantic RAM extension, providing much longer memory and far greater capacity. As such, it’s in your interest to maximize its performance and, if possible, capacity. Why? Not only because faster is better; After Effects actively evaluates whether it’s in the application’s best interests to commit a given process to disk. The greater the difference between processor and cache speed, the more likely a frame gets the blue cache indicator, ready to turn green at any time (and the faster it turns green, the faster it is ready for real time).

If you’re working in After Effects on a laptop, the ideal setup is to install an SSD as your boot disk and main cache. This has the added benefits of rebooting and launching all applications more quickly, but means you probably want two internal drives, so that a larger, cheaper one can be used for longer-term storage.

In a desktop system, an SSD boot drive is equally valid, but you also have higher-performing options, such as the Fusion ioFX, which at this writing has just been raised to 1.6 TB of capacity via a PCI Express slot. It’s sort of like having an SSD RAID, and if you have the cash, it may well be a component in the highest-performing After Effects computer you can build today (Figure 4.14).

Even that striped RAID array you have attached to your system can help you a bunch. Any drive other than the internal boot drive will work better, and if you edit footage professionally, you almost certainly already have just such a dedicated drive available.

How Do I Make More Frames Cache?

Not seeing as much of the blue line atop your Timeline as you’d like? You basically have three options: load more layers and effects, cheat, or get faster storage.

Add enough render-heavy effects to a given 2D layer, and at some point it will cache. Similarly, you can hack the preferences file (using instructions later in this chapter) and change the “proclivity” preference, the basic metric for caching.

The real, practical solution is to get more and faster attached storage. The faster the physical disk you have available for the hard-disk cache, the more likely that it will pass the speed threshold to be used instead of simple re-rendering elements.
Disk Cache Boost 2: Commit a Comp

If you really hate waiting for a comp to preview and have a half-decent system and something better to do with your time, you can select a whole set of comps in the Project panel and cache them. Yes, if you’re on a non-CUDA-enabled MacBook Pro and those comps are all full of HD ray-traced 3D animations, your system is going to sound like a jet preparing for takeoff and your laptop will scorch your lap. On the other hand, if you’re on one of those systems that has more processor cores than you can count when you open up their little capacity meters in the system, well, you are finally going to get your money’s worth.

Caveats? Downsides? You gotta pay to play. This is where gobs of low-latency storage is going to be your new best friend, other than the actual best friend that you get to spend time with when you are done for the day and not already burning the midnight oil. But there’s always that CBB.

Disk Cache Boost 3: Rethink Dynamic Link

Adobe Premiere Pro has a unique ability to link directly to an After Effects comp. Dynamic Link is a feature that allows Adobe Premiere Pro to actually look inside an After Effects project for an existing comp that it can import (Figure 4.15), or designate a clip in a sequence as the basis for a new After Effects comp.

![Figure 4.14](image) Sure, this may be the geekiest image in the book, but the results of this system addition are pretty sexy.

![Figure 4.15](image) If you’ve never witnessed the power of Dynamic Link to peer inside an After Effects project from Adobe Premiere Pro or Adobe Media Encoder, it may seem like magic.
With either approach, there is an actual, live After Effects comp sitting in an Adobe Premiere Pro sequence. After Effects invisibly provides the ability to render it in the background. As any change is made to the comp on the After Effects side, it remains up to date in the Adobe Premiere Pro edit.

One drawback to embedding an After Effects composition into the Adobe Premiere Pro timeline in this manner is that the latter application lacks all of the means immediately at your disposal in After Effects to speed up a preview by lowering settings. It’s all or nothing to cache a clip in the Adobe Premiere Pro timeline, without much certainty how long such a preview will even take.

If you’re thinking that Global Performance Cache helps in such a case, you are correct. Suppose you have a heavy comp that requires 10 seconds to render each frame at full resolution. If you cache the comp at full, Adobe Premiere Pro has access to those cached frames even if After Effects isn’t open. Render the sequence and that clip is ready for real-time playback in seconds, not minutes or hours.

Note that you do, however, still have to render to get rid of the red line above that clip, even if it’s completely cached at full resolution. And, when you do so, it doesn’t add to the After Effects cache. The way to make this work is to generate a preview in After Effects. This still requires you to perform an edit, but once you do so, it helps speed up the Adobe Premiere Pro timeline just as it does in After Effects.

Proxies, Previews, and Network Renders

Previous editions of this book advocated the use of proxies and previews as ways to accelerate the previewing and rendering process. This is exactly where Global Performance Cache changes the game, but only as long as you work on the “one artist, one project, one system” model, given that the cache is neither portable nor sharable.

For this reason, the old ways are still valid in any case where a project needs to be moved or shared, even if only for rendering purposes. The good news is that the cached data helps even this process to happen much more efficiently, because it is also used to render on the system that generated it.
Post-Render Options

Tucked away in the Render Queue panel, but easily visible if you twirl down the arrow next to Output Module, is a menu of three post-render actions to incorporate a render into a project. After the render is complete, you can use:

- **Import** simply to bring the result back into the project
- **Import & Replace Usage** to replace the usage of the source comp in the project without blowing it away
- **Set Proxy** to add a proxy to the source (the most elegant solution, but the most high maintenance)

The latter two options even let you use the pick whip icon adjacent to the menu to connect whatever item in the Project panel needs replacement. If you’ve already created a pre-render or proxy, you can target that (Figure 4.16).

File Name Templates

Want to get super-swanky and elegant with your Render Queue output? Right next to each specified filename is a little pull-down menu that lets you choose from a set of name templates. A few different properties such as project or output module name can be automatically added to the name string, and if you click Custom, that’s where the real magic begins. Here you can customize your own from a couple of dozen different criteria under the Add Property menu, and check the Default box for the one you want to use instead of using a simple comp name for all future renders.

Figure 4.16 Virtually any project item can be the target for replacement or a proxy. Click and drag the pick whip icon to choose the item to be replaced by the render.

Proxies and Pre-Renders

Let’s face it, dutifully rendering proxies is boring and will seem completely unnecessary with all of the new cache features—right up until the moment when you’re in a rush and no longer have access to that cache, either when rendering remotely or handing off the project. Are you willing to buy some insurance on that cache? If so, this section is for you.
Chapter 4 Optimize Projects

Any image or clip in your Project panel can be set with a proxy, which is an imported image or sequence that stands in for that item. Its pixel dimensions, color space, compression, even its length and frame rate, can differ from the item it replaces. You can have a quick-and-dirty still or low-res, compressed, low-frame-rate clip stand in for a render-heavy comp.

To create a proxy, context-click an item in the Project panel and choose Create Proxy > Movie (or Still). A Render Queue item is created and, by default, renders at Draft quality and half-resolution; the Output Module settings create a video file with alpha, so that transparency is preserved and Post-Render Action uses the Set Proxy setting.

Figure 4.17 shows how a proxy appears in the Project panel. Although the scale of the proxy differs from that of the source item, it is scaled automatically so that transform settings remain consistent. This is what proxies seem to have been designed to do: allow a low-resolution file to stand in, temporarily and nondestructively, for the high-resolution final.

There’s another use for proxies. Instead of creating low-res temp versions, you can instead generate final quality pre-rendered elements. With a composition selected, choose Composition > Pre-render and change the settings to Best for Quality and Full for Resolution, making certain that Import and Replace Usage is set for Output Module.

Here’s the key: By default, the source file or composition is used to render unless specifically set otherwise in Render Settings > Proxy Use. Choose Use Comp Proxies Only, Use All Proxies, or Current Settings (**Figure 4.18**) and proxies can be used in the final render. Thus the speed and quality

TIP

To remove a proxy from a project, select the item or items with proxies, context-click (or go to the File menu), and choose Set Proxy > None.

Figure 4.17 The black square icon to the left of an item in the Project panel indicates that a proxy is enabled; a hollow square indicates that a proxy is assigned but not currently active. Both items are listed atop the Project panel, the active one in bold.

Figure 4.18 I typically set Proxy Use to Current Settings, but Use Comp Proxies Only lets you set low-res stand-ins for footage and full-resolution pre-renders for comps, saving gobs of time.
boost that the proxy provided as you worked can now also contribute to your render, even if the project (with its source) travels to another system.

Background Renders

Rendering from the Render Queue ties up the application and much of the machine’s processing power, which used to mean that renders were left until lunchtime or off-hours. On a modern system with multiple processors, you can do much better than that (but take breaks anyway, they’re good for you).

Adobe Media Encoder

It is too often overlooked that Adobe provides a background rendering application. Adobe Media Encoder (AME) is in many ways a superior alternative to the Render Queue. It can write formats such as DNxHD that After Effects can’t, and it can optimize other formats that benefit from multi-pass rendering, in particular H.264. H.264 is a “long GOP” format, which means that it relies on keyframes with lots of image data surrounded by in-between frames that rely on them, and all of the frames must be rendered before it can work its magic. Only Adobe Media Encoder collects frames to compress them instead of writing each frame as it is rendered, and only it includes presets for many common web video services and mobile devices.

Choose Composition > Add To Adobe Media Encoder Queue to send a comp directly, or you can drag and drop an After Effects project into Adobe Media Encoder and look inside the project for renderable comps (Figure 4.19). You then choose render settings either by selecting them from the Preset Browser or customizing the settings (by clicking on the Preset for the render item and specifying your own, which you can then save as a custom preset of your own).

If you can get used to an unfamiliar user interface that doesn’t match the Render Queue, you begin to reap the greatest reward of AME: background rendering. And once you have created the presets you use most often, you may even find that the UI mismatch isn’t such a big deal.

SCRIPT

Render, Email, Save, and Shutdown by Lloyd Alvarez (http://aescripts.com/render-email-incremental-save-and-shutdown/) does just what it says; just queue up your render and when it’s completed, your system can notify you, save the project and shut down.
Chapter 4 Optimize Projects

Figure 4.19 Dynamic Link allows other Adobe applications to see your Project panel; Adobe Media Encoder uses this to let you render comps for heavily compressed video formats directly from the project.

Background rendering allows a render to occur without the user interface, allowing you to continue working with it. The aerender application is found alongside the After Effects application on your system but runs via a command line (in Terminal Unix shell on Mac OS or the command shell in Windows). You can drag it into the shell window to run it, or press Enter (Return) to reveal its Unix manual pages. This lists the arguments that can be added in quotes to the command aerender and the location string of the project file.

But that’s all such geeky gobbledygook when you have the BG Renderer script, which gives you access to all of these options via a panel in the After Effects UIs, with no need to type any code.

Figure 4.20 BG Renderer uses ScriptUI, which means that it looks like it’s part of the interface and can remain in an open panel as you work. When you’re ready to render, you can specify priority and number of processors. Click the button and a terminal window opens that shows the render progress, line by line. You may miss the progress bar of the Render Queue, but if you can live without that, the benefit is that you can keep working while your machine renders.

aerender

Background rendering allows a render to occur without the user interface, allowing you to continue working with it. The aerender application is found alongside the After Effects application on your system but runs via a command line (in Terminal Unix shell on Mac OS or the command shell in Windows). You can drag it into the shell window to run it, or press Enter (Return) to reveal its Unix manual pages. This lists the arguments that can be added in quotes to the command aerender and the location string of the project file.

But that’s all such geeky gobbledygook when you have the BG Renderer script, which gives you access to all of these options via a panel in the After Effects UIs, with no need to type any code.

Network Rendering

The aerender command is also used by third-party rendering solutions that work a lot like BG Renderer but are distributed across multiple machines on a network. These programs can manage renders on multiple machines and perform
tricky operations like pause a render until an updated element from 3D is done or automatically re-queue failed renders. Because these third-party rendering options—Rush Render Queue, Pipeline’s Qube!, Überware’s Smedge, or Muster by Virtual Vertex, to name a few—also support other terminal-friendly applications, such as Maya and Nuke, it’s an investment facilities that are large enough to have a render farm don’t have to think twice about making.

These are not one-click installs, and they’re generally justified only by dedicated machines and a dedicated nerd to manage it all. If that’s beyond your facility at this point, you can still take advantage of all of this technology via the Cloud or via a service such as Render Rocket. You upload your source files and get back rendered output. The downside for compositors is that we generally require a lot of source data to produce final shots, compared with 3D artists who can sometimes create a final cinematic image with virtually no source.

Watch Folder

The slightly dotty granddaddy of network rendering on After Effects is Watch Folder (File > Watch Folder). Watch Folder looks in a given folder for projects ready to be rendered; these are set up using the Collect Files option. The Adobe Help topic “Network rendering with watch folders and render engines” includes everything you need to know.

Watch Folder is kind of okay on small, intimate networks, but it requires much more hands-on effort than dedicated render management software, and it breaks easily, at which point it requires human intervention. Since individual systems have become so powerful, it’s easy to become lazy about taking the trouble required to set up a Watch Folder render, but if you’re up against a deadline, don’t have the dedicated software, and want to maximize multiple machines, it will do the trick.

Multiple After Effects Versions

When you’re desperate, you can open more than one After Effects on Mac OS or Windows. This is memory intensive and not ideal for rendering (for which BG Renderer is much preferred), but it lets you work with two projects at once.

On Mac OS, locate the Adobe After Effects application and duplicate it (Cmd+D); both will run after you clear the warning that the application has moved. On Windows, go to the Start menu, choose Run, type `cmd`, and click OK. In the DOS shell that opens, drag in AfterFX.exe from your Programs folder and then add —m (that’s a space, a dash, and m as in “multiple”). Voilà, a second version initializes.

If you’re merely trying to speed up rendering, it’s recommended that you instead enable the Render Multiple Frames Simultaneously option under Preferences > Memory and Multiprocessing, leaving “Only for Render Queue, not for RAM Preview” checked—or go with BG Renderer.

Use Dropbox to Remotely Monitor Renders

Add an output module that writes low-resolution JPEG stills to a Dropbox folder, and you can check that folder for render progress and review the actual frames anywhere if you have a device such as an iPhone that can include a Dropbox app.
Optimize a Project

Here are a few more workflow tweaks to get the best performance out of After Effects.

Hack Shortcuts, Text Preferences, or Projects

Some people are comfortable sorting through lines of code gibberish to find editable tidbits. If you’re one of those people, After Effects Shortcuts and Preferences are saved as text files that are fully editable and relatively easy to understand. Unless you’re comfortable with basic hacking (learning how code works by looking at other bits of code), however, I don’t recommend it. The files are located as follows:

- **Windows**: [drive]\Users\[user name]\AppData\Roaming\Adobe\After Effects\12.0
- **Mac**: [drive]/Users/[user profile]/Library/Preferences/Adobe/After Effects/12.0/

Mac OS X started hiding the User/Library folder with the release of 10.7 (Lion). The easiest way to reveal it from the Finder is to select Go > Go to Folder and then type Library. The names of the files are

- Adobe After Effects 12.0-x64 Prefs.txt
- Adobe After Effects 12.0 Shortcuts

These can be opened with any text editor that doesn’t add its own formatting and works with Unicode. Make a backup copy before editing by simply duplicating the file (any variation in the filename causes it not to be recognized by After Effects). Revert to the backup by giving it the original filename should anything start to go haywire after the edit.

The Shortcuts file includes a bunch of comments at the top (each line begins with a # sign). The shortcuts are arranged in a specific order that must be preserved, and if you add anything, it must be substituted in the exact right place.
Be extra careful when editing Preferences; a stray character in this file can make After Effects unstable. Most of the contents should not be touched, but here's one example of a simple and useful edit (for studios where a dot is preferred before the number prefix instead of the underscore): Change

"Sequence number prefix" = "_"

to

"Sequence number prefix" = "."

This is the format often preferred by Maya, for example.

In other cases, a simple and easily comprehensible numerical value can be changed:

"Eye Dropper Sample Size No Modifier" = "1"
"Eye Dropper Sample Size With Modifier" = "5"

In many cases, the value after the = is a binary yes/no value, expressed as 0 for no and 1 for yes, so if you're nostalgic for how the After Effects render chime sounded in its first several versions, find

"Play classic render chime" = "0"

and change the 0 to a 1. Save the file, restart After Effects, and invoke those 20th-century glory days of the beige Mac.

XML and Open Sesame

After Effects projects can be saved as .aepx files. These work the same way but are written in plain Unicode text; you can edit them with an ordinary text editor. Most of what is in these files is untouchable; the main use is to locate and change file paths to swap footage sources without having to do so manually in the UI. If that means nothing to you, you’re probably not the shell scripting nerd for whom a feature like that was created, but you might instead want to take a look at Open Sesame.

SCRIPT

A fantastic script for specifying your own modifier keys called KeyEd Up was developed specifically for After Effects by Jeff Almasol, author of other scripts included with this book. Find it on Adobe After Effects Exchange at http://tinyurl.com/6cu6nq.

NOTES

pt_OpenSesame by Paul Tuersley saves and reads projects in a human-readable, plain-text format in which its relatively straightforward to make all sorts of changes.

CLOSE-UP

On the Mac: Force a Crash

When After Effects does crash, it attempts to do so gracefully, offering the option to save before it exits. The auto-save options, if used properly, further diminish the likelihood of losing project data. On Mac OS X, an extra feature may come in handy when the application becomes unresponsive without crashing.

Open Activity Monitor and look for After Effects to get its PID number. Now open Terminal, and enter `kill -SEGV ###` where "###" is replaced by the After Effects PID value. This should cause the application to crash and auto-save.
Sync Settings

Throughout Section I of this book we’ve looked at options that influence how you set your Preferences. Once you have them the way you like them, After Effects now allows you to sync them to your Creative Cloud account so that you can simply load them wherever you go. Just below the Preferences menu item, if you are logged in you will see your login address as a menu item with the option to Sync Settings Now.

It’s not just preferences that are uploaded to be reused later. Keyboard shortcuts, render settings and even composition settings presets are transferred. To recover these or transfer them to another system, log in and choose Use Settings From A Different Account from the Edit menu (Windows) or After Effects menu (Mac).

Make sure to go to Preferences > Sync Settings and check Output Modules Settings Templates to sync your custom Output Modules as well. This isn’t enabled by default simply to avoid the conflicts between settings with the same name on Mac and Windows, such as Lossless. If it’s a concern not to mess up these settings, make sure to rename the redundant ones.

These Are the Fundamentals

You’ve reached the end of Section I (if you’re reading this book linearly, that is), and we’ve done everything we could think of to raise your game with the After Effects workflow. Now it’s time to focus more specifically on the art of visual effects. Section II, “Effects Compositing Essentials,” will teach you the techniques, and Section III, “Creative Explorations,” will show you how they work in specific effects situations.

So here comes the fun part.
Symbols
(*) asterisk key, in Timeline, 38 & (luminance), 182
(--) decrement operator, in JavaScript, 332
() tilde keyboard shortcut, 7, 9

Numbers
1.0 gamma. See linear blending 1.85 Academy aperture, 316
2D
adjustment layers in, 111, 113 color correction in, 159–160
decoding motion blur in, 59 heat distortion in, 444
for illusion of depth in 3D space, 263
liquid layers in, 421 matting 3D layer with, 99
render pipeline rules for, 113 scaling in, 292–293
shapes in, 87 tracking in mocha AE, 256–257
tracking motion between 2D and, 339–346
Transform controls in, 42
2k displays
crop effect for, 241 lighting for, 192–193
monitor setup for, 9
2.2 gamma value, in Windows, 360
2.35:1 Cinemascope format, 316–317
2.39:1 widescreen format, 317–318, 398
2.4:1 widescreen format, 317
3D
2D as track matte for, 99 Advanced tab of, 50 anchor point in, 56–57
camera animation in, 291–293
camera projection into, 295–298
camera settings in, 269–278
compositing in, 159–160, 299–301
depth maps in, 414–416
emulating 2D data as, 256 explosions in, 451–452
illusion of fire in, 449–450
light falloff in, 384–386
lights in linearized working space, 371 motion blur in, 59, 61–62
multipass compositing in, 404–409
nesting layers in, 107 render frames with placeholder, 10
render pipeline for, 113 render with Fast Draft, 25
replacement sky in, 418 Rotation property in, 42
shadows in, 401–403 smoke trails in, 426–427
tracking data in, 263–265 tracking motion between 2D and, 339–345
3D Camera Tracker
limitations of, 236 mocha AE vs., 261
refining Camera Track in, 233–235 for replacement sky, 418
tracking scene, 231–233 understanding, 231
unsolvable shots in, 235–236
3D LUTs (look-up tables), 377–378, 391
3D Point Control, 343
3D tracking in 3D Camera Tracker, 232 data, 263–264
for fire, 449 workflow, 263
.3DL file, 378
4:1:1 compression, 182
4:2:0 compression, 182
4:3 aspect ratio, 317–318
8-bpc (bits per channel) 16-bpc color vs., 139, 351–352
standard dynamic range of, 354 video gamma space and, 360–361
10-bit Cineon, 358
16-bpc (bits per channel) color matching in ordinary lighting, 150
composites, 351–352 shortcut for switching to, 139
16:9 widescreen format (HDTV standard), 317–318
23.976 fps (frames per second) applying wiggle time, 337
frame rate and, 18
using Roto Brush, 206
24 fps (frames per second) avoiding unwanted motion blur, 244
for Cinema 4D, 280
for composition setup, 6
for explosions, 451–452
for heat distortion, 445
for wispy smoke, mist, or fog, 419
work with, 92–94
Add transfer mode, 365–366
Add with Invert mode, 88–89
Add X-spline, in mocha AE, 262
Additional Edge Radius, Refine Soft Matte, 188
Adjust Tension pointer, 218
adjustment layers
applying grayscale maps as luma mattes for, 407–408
blending modes and, 96
color assignment to, 38
deep maps for, 415
for fire, 447
guide layers used as, 112
for heat distortion, 445
layer locks for, 38
in project optimization, 110–111
for storms, 428–429
Adobe Media Encoder (AME), 26, 121
advanced color options. See color, advanced options
advanced composition settings, 109–110
Advanced Lightning, 443
advanced options, Warp Stabilizer VFX, 243
.aepx files, 125
aerender, 122
All Panels workspace, 4
Allow Keyframes Between Frames, 52
Almosol, Jeff
 automatic camera projection setup script, 296
 KeyedUp by, 125
 light wrap formula by, 395
 Pre-compose by, 103
Alpha Add blending mode, 90
Alpha Bias, 181
Alpha Boundary, Roto Brush, 209
alpha channels
 blending modes, 95
 interpretation, 17, 82–84
 paint for, 221, 222
 in selections, 74
 track mattes vs., 97
Alpha Inverted Matte, 97
Alpha Matte, 97
Alpha Overlap, Roto Brush, 209–210
alpha track mattes
 for animated masks, 90
 removing grain in blue/greenscreens using, 311
 for shadows, 403
Alpha view, Roto Brush, 209
Alvarez, Lloyd
 Arrange Project Items into Folders by, 105
 BG Renderer by, 122
 Immigration by, 10
 Layer Tagger by, 38
 Load Project or Template at Startup by, 105
 Render, Email, Save, and Shutdown by, 121
 Throttle-n-Purge by, 126
ambient motion, 425–427
AME (Adobe Media Encoder), 26, 121
amplitude, 326–328
Analysis Tools panel, SpeedGrade, 390
anamorphic lens flare, 398
anchor points
 keyboard shortcut, 42
 repositioning with Pan Behind, 56
 Stabilize tracks applied to, 251
Angle Control, 343
angle of view
 in 3D Camera Tracker, 234
 for camera, 271–273
animated masks, 90–91
animation
 in-between, 214
 of ambient motion, 425–426
 anchor point in, 56
 in camera, 291–293
copy and paste, 50–51
 in Graph Editor, 44–50
 keyframe, 214
 of masks, 90–91
 parent hierarchy in, 57–58
 presets for composites, 29–30
 relationships in, 55–58
 strobe, 334
 Timeline for. See Timeline panel triggering at markers, 334–335
 of wind, 425–427
Annable, Graham, 69
Aperture, 299–301
aperture blades, lens flare, 314, 398
arithmetic operators, 328
Arrange Project Items into Folders, 105
Arri Alexa cameras, 197
ARRI LogC, 379
articulated mattes, 214–217
ASA settings
 in camera reports for shoot, 273
 excessive grain triggers, 307
 grain removal and, 310
 aspect ratios, in distortion, 313
 assembling shots logically, 33–34
 asterisk key (*), in Timeline, 38
 atmospheric haze. See particulate matter
 attached storage, 114–116
Audio Settings, 15
Auto Bezier, 50
Auto Detect, 3D Camera Tracker, 234
Auto Levels, 137
Auto-Save, 14, 125
Auto-Save, 14, 125
Auto-Scale, Warp Stabilizer VFX
 cropping in, 241
 improving, 240
 Smoothness settings in, 240–241
 for stabilization of shot, 238
 Synthesize Edges in, 241
Auto Select Graph Type, 45
Auto-trace, 76
Avatar, 404
Average Error
 in 3D Camera Tracker, 233–235
 in Cinema 4D Lite, 287
Background rendering, 121–123
backgrounds
 in 3D Camera Tracker, 231–233, 234
 camera zoom in, 292
 in Cinema 4D Lite, 289–290
 customizing in composites, 27–29
 defocusing with bokeh, 306
 depth cues for particulate matter and, 414
 for depth maps, 414–416
 for fabricated smoke, 420
 for fire, 447–448
 Isolating object/plane in, 244–245
 keying out for mattes, 73
 for light wraps, 396
 lighting on sets for, 198–200
 matching foreground colors to. See matching colors
 in point stabilization, 247–248
 in sky replacement, 416–418
 stabilization of shot as process in, 238
 backlighting, 396–397
 backplate, 271
 backwards compatibility, 16
 banding, 139, 352
 barrel distortion, 276–278
 base frame, 208
 Beam (light saber) effect, 440–443
 bell-curve distribution, 336, 339
 Beziers
 handles, 423
 masks, 86
 motion paths, 50
 rotoBezier shapes vs., 217–218
 splines, 258
BG Renderer, 122
Bias settings, in Keylight, 181
billowing smoke, 422–424
Birn, Jeremy, 405
bit-depth identifier, 139
bitmap alpha edges, 78–79
bit-per-channel (bpc). See specific numbers of bpc
black
 in bitmaps, 78
 in Cineon log files, 354–355, 358–359
 in color keying. See color keying contrast adjustments, 130–133
 in depth maps, 303
 in Difference mode, 95
 in edge premultiplication, 81
 in Extract, 167, 447
 hex color values for, 373
 input. See Input Black/Invert
 White
 in Luminescent Premultiply, 96–97
 on monitors, 91, 355
 with no clear reference, 157–158
 in ordinary lighting, 150–152
 pixel values in, 33, 73, 91–92
 in Screen mode, 92
 shooting fires against, 446–447
 as transparency in mattes, 73
Black & White effect, 392–395
black box technology, 186
Blade Runner, 423
Blend Colors Using 1.0 Gamma
 enabling in all color modes, 366
 in fire composites, 447
 for linear blending, 92
Index

linear blending without 32-bpc HDR, 366
in multipass renders, 407
working with, 370–371

blending modes
Add, 92–94
for adjustment layers, 111
for bullet-hit explosions, 437–438
Color, 95
Difference, 95
for fire, 447
HSB, 95
introduction to, 76
in layers with Collapsed Transformations, 108
Light, 94
for light wrap, 396–397
Luminescent Premultiply, 96–97
in multipass renders, 407
Multiply, 94
Overlay, 94
Preserve Underlying Transparency, 95–96
render pipeline rules, 113
Screen, 94
Silhouette, 95
Stencil, 95
for wispy smoke, mist, or fog, 419

Block Size, 67
blue channel. See also RGB (red, green, blue)
for chromatic aberration, 316
in color keying, 168
in Extract, 167
in noise suppression, 183
refining grain settings, 308

bluescreens
applying instance of Keylight to, 173
cameras for shooting, 196–197
in color keying, 171–179, 201
in cyclorama, 198
fine-tuning image quality, 185
garbage matte mask added to, 75
improving with Remove Grain, 311
mattes resulting from, 73
overview of, 171
Screen Balance for, 181
sky as, 417, 419, 426
suppressing color spill, 195
blur
adding grain with, 311
bokeh. See bokeh blur
Box Blur, 402
Camera Lens. See Camera Lens Blur
Compound Blur, 447
Fast Blur. See Fast Blur
Gaussian Blur, 402
in light saber methodology,

focal depth and 3D compositing, 299–301
focal depth and bokeh blur, 296–298
formats and, 317–318
frame rates and, 316–317

grain, 307–312
lens artifacts by, 312
lens data, 273–275
lens distortion, 275–278
lens flare, 313–314
lens settings, 270–271
less color is more, 318–320
panoramas in, 317–318
projection, 294–298
push and zoom, 292–293
real camera emulation of,
real camera settings of, 271–272
seeing with, 269
tracking motion of.

Camera Lens Blur

adding blur map, 303–305
bokeh and, 306–307
fixing blur map edges, 305–306
understanding, 301–303
camera projection (mapping), 294–296

camera, real-world
After Effects camera vs., 271–273
chromatic aberration by, 315–316
color choices of, 318–319
formats in, 317–318
frame rates in, 316–317
lens artifacts by, 313
lens flare by, 313–314
lens length numbers on motion picture, 271
panoramas in, 317–318
recording lens data, 273–275
shooting for stabilization, 237–239, 244
training your eye with, 320
vignettes and, 312, 315

Camera Tracker. See 3D Camera Tracker
Caps Lock, 24–25
caret sliders, Levels, 129
CC
Lens effect, 326, 431
Light Burst 2.5, 342
Light Rays effect, 401
Simple Wire Removal tool, 226

Channel Blur, 183
Index

Channel Combiner effect
 in chroma subsampling, 182
 in edge fringing, 84
 in noise suppression, 183
Channel Control menu,
 Hue/Saturation, 146
Channel menus, 135–136
Channel selector, Curves, 140
channels. See color channels
Chapman, Brennan, 107
Chatter Reduction
 in Refine Edge brush, 213
 in Refine Soft Matte, 188
 in Roto Brush, 210
Checkbox Control, 343
chewy mattes, 166, 185–190
Choke Matte value, 168, 178
choking mattes, 184, 193
chroma subsampling, 182
chromatic aberration, 313, 315–316
Chromakey for. See keying
Chromakey applied, 171–179
Chromakeying for. See keying
Chroma 4D
 Cineware in, 279–280
 Lite, 285–290
 preparing comps for, 280
 render and layer settings in, 283–285
 sharing in, 281–283
 understanding, 279
 working with any current version of, 280–281
Cineware
 color space, 361
 digital film in, 357–359
 dynamic range in, 353
 Log space in, 356–359
 output, 372
 overview of, 353–354
Cineware
 individual render passes in, 405
 overview of, 279–280
 sharing camera data with, 281–284
 versions of Cinema 4D for, 280–281
circles of confusion, 302
Cinerama
 dark plates, defined, 129
climate. See environment
Clip Black control
 in Keylight, 175, 177, 179, 182
 in Refine Soft Matte, 188
Clip Rollback control, 183
Clip White control
 in Keylight, 175, 177, 182
 in Refine Soft Matte, 188
Clone Stamp, 221, 422
cloning, 223–226
clouds
 for billowing smoke, 422–424
 contrails for, 426–427
 moving through wispy, 421–422
 wispy, 419–421
CMOS sensor cameras, 244
Collapse Transformations, 107–109
Collect Source Files, 13–14
color
 adjusting in Levels, 129
 advanced options for. See color, advanced options
 backgrounds in composites, 27–29
 blending modes for, 95
 in Camera Lens Blur, 304–305
 in chromatic aberration effect, 313, 315–316
 commentary, in Timeline, 37–38
 Comander and, 369
 correcting. See color correction
 default expressions changing property, 324
 depths. See color depths
 distortion in cameras, 312–316
 layer management with, 38
 and light. See light
 in linear interpolation, 343–345
 in linearized working space, 363, 366–367
 look of. See color looks
 management, 373–379
 matching. See color matching
 in multipass rendering, 405–409
 nonlinear response to, 360–361
 Project Settings for, 15
 sampling and conversion of, 346–347
 spaces, encoding, 358–359
 spill, 184–185, 196
 timing, 148
 color, advanced options
 16-bpc composites and, 351–352
 Cineon Log space and, 356–359
 digital film and, 357–359
 dynamic range and, 354–356
 film and Cineon files in, 353–354
 linear compositing and. See linear
 HDR compositing
 linear LDR compositing in, 373–379
 linearized working space in, 361–363
 understanding, 350–351
 video gamma space in, 360–361
Color Balance, 443
color blending
 with 1.0 gamma. See linear blending
 modes for, 95
 for tint effect, 135, 393
 color channels
 3D LUTs and, 377–379
 adjusting in Levels, 129
 color correction. See also color looks
 Auto Levels for, 137
 brightness adjustments, 133–134
 channels for, 136–138
 contrast adjustments, 130–133
 gamma exposure slamming, 160–161
 histograms for, 136–139
 Hue/Saturation for. See
 Hue/Saturation
 image optimization and, 129–136
 importance of, 128–129
 individual channels for, 135–136
 Levels for. See Levels
 matching foreground/background. See matching
color looks
 Photoshop’s Curves control for, 138–145
 summary of, 161
color depths
 in color management, 374
 Color Settings for, 15
 composition setup and, 6
 raising for project, 352
 toggling between, 139, 368
color keying
 adding grain when, 311
 bluescreen for, 171–179
 cameras for, 196–197
 closing holes in, 193
 color spill in, 195–196
 core mattes in, 168, 177–178
 costume contamination and, 196
 edge mattes in, 177–179, 188, 192
 edge selection in, 193–194
 evaluating shot in full motion, 179
 Extract effect for, 167–168
 greenscreen for, 171–179
 hi-con mattes for, 166–170
 holdout mattes in, 190
 Keylight for. See Keylight
 lighting and, 198–200
 Linear Color key for, 169–170
 linear keyers for, 166–170
 problem solving, 184–196
 procedural mattes for, 164–166, 190–192
Index

refining mattes in, 174, 186–190
separating plates for multiple passes in, 177–178
set contact and, 196–200
side-by-side layout in, 173–174
spill suppression in, 184–185
understanding, 164
color looks
backlighting for, 396–397
flares for, 397–398
light scattering for, 399–401
light volume for, 399–401
light wrap for, 396–397
reflected light for, 399
shadows for, 401–403
with SpeedGrade. See SpeedGrade understanding, 386
color matching. See also color correction
basic technique, 148–149
direction and position for, 159
in dramatic lighting, 153–155
for fire, 447
importance of, 128–129
individual channels for, 135–136
with no clear reference, 155–158
in ordinary lighting, 149–153
overview of, 146–148
Color Picker, 362–363
color pots, SpeedGrade, 389
color tab, SpeedGrade, 387–388
Colorista plug-in, 162, 386
column views, in Timeline, 36–37
combining projects, 13–14
colorspace, in comp template, 104
comp space
coordinate system for, 340
to layer surface, 345–346
Componder effect, 369–370
composites. See also linear HDR
compositing
alpha channel interpretation in, 17
animation presets for, 29–30
assembling shots logically, 33–34
basic, 2–5
caching, 27–29
for Cinema 4D, 280
combining projects, 13–14
composition settings for, 21–22
composition setup for, 6–8
consolidating projects, 13–14
context-clicks for, 11
depth image, 415–416
fields in, 18–19
Find Missing Footage in, 11–13
frame rates in, 18
importing sources of, 8–10
Interpret Footage for, 15–16
introduction to, 2
keyboard shortcuts for, 11
moving projects, 13–14
multiprocessing of, 25–26
nesting, 102–103
organizing sources, 8–10
output of, 30–33
pixel aspect ratio in, 6, 15, 18–19
plug-ins for, 29–30
precipitation in, 430–431
previewing of, 27–29
Project Settings for, 15
pulldowns in, 19
quality of, 22–24
Render Queue settings for, 30–33
resolution of, 22–24
responsiveness of, 24–26
save options, advanced, 14–15
selections for. See selections settings for, 15–22
shadows in. See shadows
source formats in, 20–21
user interface for, 22–29
workspace setup for, 3–5
Composition area, Render Settings, 30
composition markers, Timeline, 38
Composition Settings
Advanced tab of, 59, 109–110
for composites, 22
for motion blur, 59
numbering frames in, 15
Composition viewer, 11, 84–85
compositions. See composites
Compound Blur
for diffraction effect, 421
features of, 447
for fire, 447
for smoke trails and plumes, 426–427
compression artifacts, 214, 312
chromatic, 182
delays, time, 329
Defocus layer, Camera Lens Blur, 301
delta, defined, 182
depths
by altering light direction, 384
depths for clarity in mattes, 165
depths in color-to-grayscale conversion, 394
depths in Curves, 139–145
depths in daylit scene, 437
depths in depth cues for particulate matter, 413
depths in hi-con mattes, 166–170
depths in Levels, 130–134
depths in ordinary lighting, 150–151
depths reallity distortion with, 313
depths in Refine Edge brush, 212–213
depths in Roto Brush, 210
depths for wispy smoke, mist, or fog, 419
Convert Vertex, 217–218
copy and paste
animation, 50–51
masks, 91
core mattes
closing holes in, 193
depths in color keying, 177–178
defined, 162
refining, 192
rescuing chewy matte, 188
Corner Pin tracking, 251, 256, 259, 262
costume contamination, 185
crashing of After Effects, 125
Create Camera, 231, 287
Create Orbit Null, camera, 279
Create Stereo 3D Rig, camera, 279
cropping
4:3 image for widescreen format, 317
in Warp Stabilizer VFX, 241
CRW file format, 21
.cube format, 378, 379
current time, in RAM preview, 27
curves control, 139–145, 428–429
Custom Look layers, 389, 391
Cycle Mask Colors, 88–89, 215
cycloramas, 198
D
darkening
with Add or Multiply mode, 94
masks, 89
in multipass renders, 407
date column, in Project panel, 13
DaVinci Resolve, 162
debis
animating bullet, 438
for chunky explosions, 452
in light saber methodology, 442
Decontamination, 188–189
decrement method, for values, 39
decrement operator (−), in JavaScript, 332
deep images, 415–416
defocus layer, Camera Lens Blur, 301
delay, time, 329
deleting expressions, 325
delta, defined, 182
Index

density, 88, 132, 357
depth cues, 414–416
depth maps, 414–416, 452
depth of field
 in 3D compositing, 299–301
 for bokeh blur, 296–298
 in cameras, 272
 deep compositing and, 415–416
 in multipass 3D compositing, 408
 optics and edges of objects, 79
Despill Bias, 181
Despot cleanup tools, 183
Detailed Analysis, Warp Stabilizer
VFX, 243
Difference
 blending mode, 95
 mattes, 170
diffraction. See Compound Blur
Diffraction Fringe, 303
Diffuse layer, 407
diffuse lights, on sets, 198–199
diffuse (soft) light, 383
digital cameras, 354–355
digital film, color options, 357–359
Digital Video and HDTV Algorithms and Interfaces, 360
dimensionality, 449–450
direction of light, 384
Directional Blur, 61
disk caching
 attached storage for, 114–116
 Cache Work Area in Background
 in, 103, 115
 as Global Performance Cache, 113
 in persistent disk cache, 115–118
Disney Animation, 69, 214
displacement
 for fire, 447
 for heat distortion, 443–446
distance
 depth cues for particulate matter, 414
 depth maps for planes of, 414–416
 falloff, 385
distortion
 after stabilization of shot, 239, 243
 for billowing smoke, 422–424
 with chromatic aberration, 315–316
 emulating real camera, 273
 heat, 443–446
 lens, 273, 275–278
 with lens artifacts, 313
 with lens flare, 313–314
 understanding, 312–313
 with vignette, 315
 Distortion Mesh property, 423
dot notation hierarchy, of expressions, 327
DPX file format
 Cineon Log in, 356
 output, 372–373
 as source format, 20–21
 drop shadows, 402–403
 Dropbox, 123
 dynamic range of, 356
 Keylight and, 196–197
 recording reference data, 273
 shooting for stabilization, 244
duplicate layer, 98
duration
 Paint menu setting, 222–223
 in Project panel, 18
 setting up composition, 6
 dust busting, 226
Dynamic Link
 Cineware comparison to, 279–280
 optimizing projects with, 117–118, 122
 dynamic range. See also HDR (high dynamic range)
 advanced color and, 354–356
 in Beam effect, 440
 digital image limitations and, 350
 high. See HDR (high dynamic range)
E
Ease Curves, 293
ease() method, 342–343, 345
Easy Ease, 45–46, 50
Easy Rider, 313, 397
Ebberts, Dan, 106
effect
 for bluescreens, 177–179
 for bluescreen matte, 95
 edge selection with, 193–194
 refining, 183
 rescuing chewy matte, 188
 edge multiplication, 81–84, 96–97
 edges of bitmap alpha, 78
 blurring of frame, 302
 color correction in Keylight, 178
 feathered alpha for, 78–79
 fixing banding in, 352
 fixing blur map for, 305–306
 fringing of, 82–83
 Guess option for, 82
 importing correctly, 82–83
 Interpret Footage for, 81–83
 introduction to, 78
 opacity of, 80
 premultiplication of, 81
 protecting on mattes, 166
 Refine Edge for, 210–214
 Remove Color Matting for, 83–84
 of selections, 78–84, 193–194
 Synthesize Edges for, 241–242
 transparency of, 81–84
 troubleshooting, 83–84
editing
 expressions, 325
 mask shapes, 85
effects
 in 3D Camera Tracker, 231–233
 Beam, 440–443
 Black & White, 392–395
 blur, 402
 CC Lens, 326, 431
 CC Light Rays, 401
 Channel Combiner, 84, 182–183
 Comander, 369–370
 in composites, 29–30
 energy, 439–443
 Exposure, 273, 447
 Extract, 166–168
 fine-tuning Refine Edge brush, 212
 Fractal Noise, 427, 448
 Grow Bounds, 108–109
 Lens, 326, 431
 light saber, 439–443
 muzzle flash, 435–436
 Noise, 308
 Optics Compensation, 276–278
 Ramp effect, 304, 308
 Red Giant Corner Pin, 262
 Refine Soft Matte, 185–190
 Remove Color Matting, 83–84
 resetting, 132, 135–136
 for selections, 77
 Separate RGB, 316
 Shatter, 452
 Simple Choker, 168, 178
 Spill Suppressor, 178–179
 Star Wars light saber, 440–443
 support for 16-bpc, 351
 tilt-shift lens, 304–305
 Timecode, 16
 Trapcode Lux, 397, 399, 401
 Turbulence Displace, 427
 Turbulent Noise, 419–421
 Effects & Presets panel, 5, 29–30
 Ellipse tool, 315
 embedded timecodes, 16
 Emitter, 429
 encoding
 log, 358–359
 video gamma, 360–361
 energy effects, 439–443
 environment
 ambient motion in, 425–427
 billowing smoke in, 422–424
 depth cues for, 414
depth maps for, 414–416
fog, smoke, and mist in, 419–422
infinite depth in, 418
Liquify effect for, 424
Mesh Warp for, 423
overview of, 412
particulate matter in, 412–416
plumes in, 426–427
precipitation in, 427–431
sky replacement in, 416–418
smoke trails in, 426–427
wet look in, 428–429
wind in, 425–427
Eoin, Marcus, 322
EPIC cameras, 369
Eraser, 221
Erodilation, 193
Error Threshold, 67
Evolution animation, 419, 421
Excel spreadsheet, 50
Expansion settings, Mask Feather, 220
explosions
bullet-hit, 438
creating effect of, 425–426
muzzle, 436
in pyrotechnics, 450–452
exporting, camera data, 282–283
Exposure effect
creating fire, 447
emulating real camera for, 273
for storms, 429
exposures, for HDR images, 355–356
Expression Language menu, 324
expressions
additional information for, 348
color sampling in, 346–347
from comp space to layer surface with, 345–346
conditional events in, 332–333
controls for, 343
conversion in, 346–347
copying, 325
creating, 324–325
deleting, 325
disabling, 325
editing, 325
effect tracks parented layer, 341–342
exposing, 325
interpolation methods in, 343–345
language of, 326
layer’s index for, 328–330
limitations of, 323
linking effect parameters to properties with, 326–328
linking mask shapes with, 221
looping keyframes with, 330–332
playing only frames with markers, 335–336
random distribution and, 339–340
random time in, 338–339
for randomness, 335–340
reducing opacity with, 345
reducing saturation away from camera with, 342–345
time delay and, 329–330
tracking data with, 252
tracking motion between 2D/3D, 339–346
triggering animation at markers, 334–335
understanding, 322–323
wiggling time in, 337–338
wiggle time in, 337–338
EXR (EXtended Range) file format
32-bpc color output, 373
defined, 21
multipass rendering via, 407
OpenEXR format, 370
Extract effect, 166–168
F
f-stop settings
in 3D compositing and focal depth, 300–301
in color keying, 200
emulating real camera for, 273
matching existing footage, 300
recording camera lens data, 273–274
F9 keys, 45
fabricated explosions, 449–450
fades, 345
falloff, light, 384–386
Fast Blur
in Beam effect, 440
in edge selection, 194
in heat distortion, 445–446
for light wrap, 396
in native video space vs. linear space, 365
for storms, 429
working with, 402
Fast Draft, 25
feather
in Mask Feather. See Mask Feather
in Refine Edge brush, 212–213
in Refine Soft Matte, 188–189
in Roto Brush, 210
in Synthesis Edge Feather, 242
feathered alpha edges, 78–79
feathered masks, 392, 420–421
feature regions, in point tracker, 249–251, 253–254
Field of View (FOV) value, 276–278
fields, 18–19
file formats
Cineon, 353
source, 20–21
widescreen, 316–317
file name templates, 119
film
and Cineon files, 353–354
density, 357
dynamic range of, 354–356
Film Size, 271
filtering, in Timewarp, 69
Final Result, 175–176, 178, 184
Find Edges, 193
Find Missing Footage, 12
fire. See also pyrotechnics; smoke
blending modes for, 447–448
dimensionality in, 449–450
elements for, 446–447
explosions of, 450–452
heat distortion for, 443–446
light interactions for, 448
understanding, 446
firearms
creating shots with, 434–435
hits and squibs from, 438–439
muzzle flash and smoke from, 436–437
shells and interactive light from, 437
the shoot for, 435–436
First Vertex, 91, 217–218
fish-eye lens shots, 276–278
fixed (prime) lens, 272, 398
flares, 314–315, 397–398
flashes, 442–443
Fleischer, Max, 121
floating point files
decimal numbers, 355–356
formats, 370
HDR compositing and, 366–367
Flowchart view, 53–54
focal depth
3D compositing and, 299–301
and bokeh blur, 296–298
Focal Length, 272–275
fog, 419–422
folders, for project items, 104
foot room, 138
Force Alphabetical Order, 10
foregrounds
in 3D Camera Tracker, 234–235
altering light direction in, 384
in depth cues, 414
in depth maps, 412–416
effect of camera zoom on, 292
isolating object/plane in, 244–245
in light wraps, 396
for lighting on sets, 198–200
matching background color to. See matching colors
in point stabilization, 247–248
refining grain settings for, 308–310
in sky replacement, 416–418
smoky or misty, 420
Index

Fractal Noise effect
 for dissipating contrails, 427
 for smoke, 448
 for wispy smoke, mist, or fog, 419–421
Frame Blend, 63
Frame Mix, 63–66
frame rates
 in Cinema 4D, 280
 in composites, 6, 18
 distorting reality with, 313
 preserving, 110
 and realism, 316–317
 for soap operas/reality TV, 316
 timing and retiming, 62–64
framing layers, in Timeline, 56
free-transform box, 217
Free Transform mode, 85
Freeze Frame, 63, 65
fringing, 82–83, 184
FromCompToSurface(), 345–346
ft-Cubic Lens Distortion, 315
Full Range preset, Cineon files, 359
full resolution, 207
Furnace User Guide, 67
Fusion ioFX, 116

G
 gamma adjustments
 with Curves Control, 139–145
 in dramatic lighting, 154–157
 in Hue/Saturation, 146
 in Levels, 133–134
 in QuickTime, 375
 gamma encoding, 360
 gamma exposure slamming, 160–161
 garbage mattes (gmatte)
 in closing holes, 193
 in color keying, 172
 for holdout mattes, 190
 in Keylight, 177
 procedural, 190–192
 in sky replacement, 418
 Gaussian Blur, 402
 Gaussian random expressions, 336, 339
 glass elements, in lens flare, 314–315
 glass, shattering effect for, 452
 glints, from reflected light, 399
 Global Performance Cache
 attached storage in, 116
 Global RAM Cache in, 113–115
 memory acceleration in, 114–115
 optimizing projects with, 113–114
 persistent disk cache in, 115–118
 Premiere Pro’s Dynamic Link in, 117–118
 Global RAM Cache, 113–115
 glows, 448
 gmatte. See garbage mattes (gmattes)
 God rays (volumetric light), 399–400
 GPU, for SpeedGrade, 387
 gradient backgrounds, 28
 grading shots. See SpeedGrade
 grain
 Bias settings increasing, 181
 bokeh blur and. See bokeh blur introduction to, 307
 low scene light triggering, 307
 management strategies for, 307–310
 removal of, 310–312
 Graph Editor
 basic animation in, 44–45
 Ease Curves in, 45–46
 Easy Ease in, 45–46
 Hold keyframes in, 49–50, 52
 layer bar mode vs., 51–52
 Linear keyframes in, 44
 overview of, 42–43
 separating XYZ in, 46–48
 Show Properties in, 43
 Show Reference Graph in, 44–45
 Snap button in, 48
 summary of, 50
 transform boxes in, 48–49
 view in, 44–45
 Graph Options menu, 44–45, 48
 graphics cards, 114
 gray
 for blur maps, 303–306
 in color correction, 132–133
 in color keying, 164, 174–175, 182, 194
 for compositions in Flowchart, 53
 matching, 148
 in overlay and light modes, 94
 suppressing color spill to, 195
 for transparency in mattes, 73
 grayscale
 in depth maps, 415
 in mattes, 73
 in multipass renders, 409
 green channel. See also RGB (red, green, blue)
 in chromatic aberration, 316
 in color matching, 135–136, 150, 153–158
 in heat distortion, 446
 in noise suppression, 183
 refining grain with, 308
 greenscreens
 bluescreens vs., 171–172
 in color keying, 171–179
 fine-tuning image quality, 185
 fringing and chocking in, 184
 Life of Pi using, 268
 removing grain from, 311
 Screen Balance for, 181
 shooting, 196–197
 suppressing color spill and, 195
 Grid layer, 277–278
 ground planes, in 3D Camera Tracker, 231
 Grow Bounds effect, 108–109
 Guess option, Interpret Footage, 82
 guide layers, 104, 112

H
 hacking shortcuts, 124
 Hand tool, 24
 handles, in Synthesize Edges, 241–242
 hard (direct) light, 94, 383
 HDR (high dynamic range)
 16-bpc composites, 351–352
 Cineon files, 353–354
 Cineon Log space, 356–359
digital film, 357–359
 dynamic range, defined, 354–356
 film, 353–354
 linear compositing in. See linear HDR compositing
 linearized working space and, 361–363, 366–367
 source images, 366–367
 video gamma space, 360–361
 heat distortion, 443–446
 hi-con (high-contrast) mattes
 for bullet-hit explosions, 438
 linear keyers and, 166–170
 for storms, 429
 Hide Layer Controls, 28
 high dynamic range. See HDR (high dynamic range)
 highlights
 for billowing smoke, 422
 Camera Lens Blur for, 302
 light direction for, 384
 for muzzle flash, 437
 histograms
 adjusting Levels with, 129
 channels and, 136–138
 in Extract, 166–168
 for problem solving, 134, 138–139
 hits, bullet, 438
 The Hobbit, 316
 Hold keyframes, 49–50, 52
 holdout mattes
 adding in mocha AE, 262
 in color keying, 190–191
 deep image compositing replacing, 415–416
 in Keylight, 179
 in Liquify, 424
 hot look, 440–443
 hotspots, 384
 HSB (Hue, Saturation, and Brightness). See also
 Hue/Saturation blending modes for, 95
HSLA (hue, saturation, lightness, and alpha) color space, 347
Hue/Saturation
 in edge selection, 194
 ineffective for black and white images, 393
 matching colors with. See matching colors
 reducing saturation in, 394
 for storms, 428–429
 suppressing color spills with, 195–196
 understanding, 145–146

I
ICC color conversion, 357
Identifier, 370
idx variable, 336
If It's Purple, Someone's Gonna Die, 318
if statements, 332–336
Illustrator, 15
image layers, 112, 311
image quality, 353
image sequences, 8–10
Imagineer, 256
Immigration, 10
Import & Replace Usage, 119
importing
 composite sources, 8–10
 Maya scenes, 263–265
 MochaImport for, 259
 as post-render option, 119
 selections, 82–83
 for sharing camera data, 282–283
in-between animation, 214
Incidence passes, 407
The Incredibles, 307
Increment and Save, 14–15
increment method, values, 39
index attribute, 328–330, 332
indirect light, 404
Industrial Light & Magic, 370
infinite depth, 418
Info panel, 4–5, 33
Input Black/Input White
 creating fire, 447–449
 individual channels for color matching, 135
 in Levels, 130–133
 in RGB histograms, 136–139
interactive light
 in Beam effect, 442
 for fire, 447–448
 gunshells and, 437
interlaced footage, 18–19
Intermediate Result, in Keylight, 175–178, 184, 188
interpolation methods, 343–345
Interpret Footage
 in composites, 15–16
 for edges, 81–83
 overriding all settings with, 20
Intersect mode, for masks, 88–89
Inverse Square Clamped lights, 385–386
iPhones, shooting for stabilization, 244
IRIDAS .cube LUT, SpeedGrade, 391
IRIDAS FrameCycler, 9
isolation
 solving light characteristics, 384
 in Warp Stabilizer VFX, 245–246
J
Jacob's Ladder, 337–338
JavaScript, 326–328, 330, 332–336
JPG file format, 21
Keep Colors, Linear Color Key, 170
Key Color eyedropper tool, 169
keyboard shortcuts
 16-bpc color, 150
 Add to Render Queue, 7
 adding images, 6
 Adjust Tension pointer, 218
 adjustment layers, 110
 alpha channels, 136
 Alpha Overlay/Alpha
 Boundary/Alpha view, 209
 animated masks, 90–91
 animation, showing/hiding paths, 47
 background, duplicating/deleting effects in, 428
 background, eliminating within selection, 208
 backgrounds, 28–29, 165
 Bezier masks, 86
 Brush tool, 222–223
 closing multiple compositions, 105
 color channels, 29
 color channels, flipping through, 308
 column views, 37
 composites, 11
 composition markers, 38
 Composition viewers, 105
 Corner Pin tracking, 262
 Deactivate Live Update, 24
 Easy Ease, 45–46
 Effects & Presets panel, 5
 expressions, 324
 Find Missing Footage, 11
 Flowchart view, 53–54
 frames, selecting more than one, 10
 framing layers, 56
 full resolution, 206
 grading shots, 389–390
 Graph Editor, 43
 grids, 28
Hand tool, 24
Hold keyframes, 49
Import Multiple Files, 4
inserting selected items at top layer, 40
Interpret Footage, 81
keyframe navigation/selection, 54
keyframe offsets, 55
keyframes, optimum handling of, 216
layer/composition markers, 38
layer duplication, 98
layer positioning, 6
layers and composition markers, 38
layers, hiding controls, 28–29
layers in Timeline, 39–41
layers, locking, 38
mask keyframe settings, 90
mask shapes, 85
mattes, clarity in, 165
maximizing screen, 9
Miniflow view, 105
in mocha AE, 262
motion blur, 59, 255
noise suppression, 183
Null Objects, 57
parent layers in Timeline, 57–58
Pen tool, 217
precomping, 103
Preferences, resetting, 124
previewing composition, 7
Project Settings, 15
quickly change display resolution, 23
raising project color depth, 352
Refine Edge brush, 211
Reload Footage, 11
Render Queue, 7, 30
responsiveness, 24–25
RGB Straight, 83
Roto Brush, 207, 209
rulers, 28
Shape layers, 87
Shape Path Visibility button, 29
Shape tools/layers for, 87
Shift+RAM Preview, 27
Show Cache Indicators, 115
Show Channel, 29, 135–136
Show Grid, 28
Show Rulers, 28
SpeedGrade, 389
switching to 16 bpc color, 139
time navigation, 39
time Remap, 64
time Stretch, 63
in Timeline, 39–42
Title/Action Safe, 28
Toggle Mask, 29
Tools panel, 4
transform boxes, 48–49
Index

keyboard shortcuts (continued)
 Transform controls, 42
 Trim Comp to Work Area, 40
 undocking panel, 7
 View Options, 29
 zoom, centering, 181
 zoom in and out, 24

KeyedUp, 125
keyyframe assistant, 326

keyframes
 adding points to, 215
 for articulated mattes, 214–218
 copying and pasting data, 50–51
 created by Disney animators, 214
 in layer bar mode vs. Graph Editor, 51–52
 looping, 330–332
 offsetting values of multiple, 55
 optimum handling of, 216
 rotokeying masks, 215–217
 Roving, 51
 in Timeline, 42–50

Keylight
 Bias settings in, 181
 Clip Rollback in, 183
 Clip White/Clip Black in, 182
 evaluating full motion shot in, 179
 first passes in, 173–174
 garbage mattes in, 172–173
 keying footage with, 171–173
 Linear Color Key vs., 169
 matte choke in, 184
 multiple passes in, 177–179
 noise suppression in, 183
 overview of, 180
 refinement in, 181
 refining mattes in, 174–176
 Screen Balance in, 180–181
 Screen Gain in, 180
 Screen Grow/Shrink in, 184
 Screen Softness in, 183
 spill suppression in, 184–185

KeyTweak, 221

Kino Flo lights, 198

Kluge paper feeder, 365

Knoll Lens Flare, 398–399

Knoll Light Factory, 314

Kodak, test image, 353

Kr3d files, RED, 197

Kronos, retiming tool
 in Pixel Motion, 64
 as stand-alone plug-in, 65
 in Timewarp, 65–69

L

la nuit américaine, 394

language, of expressions, 326

laptops, time navigation for, 39

Lawrence of Arabia, 317

Layer Control, 343

Layer panel
 anchor points in, 56
 brush tools only operating in, 222
 color keying in, 173–174
 Freeze button in, 214
 mask feather in, 220
 mask options in, 84
 new mask shape to replace target mask, 91
 paint tools in, 222
 Refine Edge stroke and, 212
 Roto Brush tool in, 207, 209
 timecode/frame display in, 329
 tracker feature in, 249
 tracking with, 249
 View menu in, 225
 Warp Stabilizer in, 247

Layer/Source, in Timeline, 37

layer space transforms, 339–341

layer surface, 340, 345–346

Layer Tagger, 38

Layer viewer, masks, 84–85

layers
 adjustment, 110–111
 anchor points in, 56
 combining, 72–77
 controls in Timeline, 39–41
 creating grain with Noise, 308
 Custom Look, 389, 391
 diffuse, 407
 framing, 56
 guide, 112
 index attribute for, 328–330
 “liquid” 2D, 421
 locking, 37
 markers in Timeline, 38
 Parent hierarchy in Timeline, 57–58
 precomping to optimize number of, 103
 Shape, 87–88
 sharing data in Cinema 4D, 283–284

Layers panel, SpeedGrade, 391–392

LDR compositing, linear, 373–379

Lens
 settings, 270–272
 tilt-shift effect, 304
 lens artifacts, 273, 312–313
 lens data, 273–275
 lens distortion, 273, 275–278
 Lens effect, 326, 431
 lens flare
 chromatic aberration in, 316
 from comp space to layer surface, 345–346

Levels
 brightness controls in, 133–134
 channels for color matching in, 135–136
 color-matching in, 150–151, 153–157
 contrast adjustments, 130–133
 Curves control vs., 194
 in edge selection, 194
 histograms and channels in, 136–139
 Input Black/Input White in, 130–133
 integrating foreground/background elements with, 148
 Output Black/Input White in, 130–133
 resetting, 132
 for storms, 429
 understanding, 129–130
 viewing color percentages in, 153

Life of Pi, 268

light
 in After Effects, 392–395
 altering direction of, 384
 backlighting, 396–397
 in chromatic aberration, 315–316
 and color. See light
 chromatic aberration in, 315–316
 color-matching in dramatic, 153–157
 color-matching in ordinary, 149–153
 effect on film, 357
 falloff, 384–386
 flares, 397–398
 gunshells and interactive, 437
 in heat distortion, 443–446
 hotspots, 384
 interactive, 448
 in lens flare, 314–315
 location of, 383
 in multipass 3D compositing, 404–409
 for muzzle flash, 437
 overview of, 382
 quality of, 383
 reflected, 399
 scattering of, 399–401
 shadows, 401–404
 sharing camera data and, 283
 solving wrong position/direction with, 159–160
 in SpeedGrade, 387–392
 volume of, 399–401
 wrapping, 396–397

Light blending modes, 94

Light Burst 2.5, 342

Light layer controls, 385

Light Rays effect, 401

light saber (Beam) effect, 440–443

Lighten mode, masks, 89
Index

lighting
color keying and, 185
excessive grain from low scene, 307
on set, 198–200
lightning, 443
linear blending
Add mode with, 92
adding realism with, 367
Blend Colors Using 1.0 Gamma for, 92, 370–371
for fire, 447
for LDR footage, 371
without 32-bpc HDR, 366
Linear Color Key, 166–167, 169–170
linear, defined, 360
linear gradients, 140, 142
linear HDR compositing
32-bpc in, 367–369
blending colors with 1.0 Gamma in, 370–371
Companion in, 369–370
introduction to, 363–366
linearized workspace for, 366–367
mixed bit depths in, 369–370
linear interpolation, 343–345
linear keyframes, 44, 50
linear LDR compositing, 373–379
linearized working space choosing, 374
HDR source and, 366–367
understanding, 361–363
Link Focus options, 279
linking effect parameters to properties, 326–328
"liquid" 2D layers, 421
Liquify effect, 424
Live Update, 24
LME (Local Motion Estimation), 67
Load Project or Template at Startup, 105
location of light, 383
Lock icon, 105
locking
layers, 37
shots, 239, 246, 290, 294
source time, 224
log encoding, 358–361
logarithmic curves, 353, 356–359
.lut files, 379
Look tab, SpeedGrade, 389
look-up tables. See LUTs (look-up tables)
Looks plug-in, for color, 386
Looks, Red Giant software, 162
loopIn(), 330–332
loopInDuration(), 331–332
looping keyframes, 330–332
loopOut(), 330–332
loopOutDuration(), 331–332
loops, Ram preview options, 27
lossless compression, TIFF, 21
Luma Inverted Matte, 97, 415
Luma Key, 167
luma mattes
altering light direction with, 384
applying grayscale maps as, 407–408
applying particle layers as, 420
applying to adjustment layer, 194
defined, 96, 406
depth maps for, 415
in edge selection, 194
for fabricated smoke or mist, 420
in heat distortion, 446
in Luminescent Premultiply, 96–97
for sky, 418
for storms, 428
in Track Matte menu, 97
for wet look, 428
luminance
chroma subsampling and, 182
correcting in Timewarp, 67
Extract effect for, 166–168
in Luminescent Premultiply, 96–98
LUTs (look-up tables)
applying to Cineon logs, 358–359
ARRI LogC and, 379
color management in, 374–375
in edge selection, 194
for fabricated smoke or mist, 420
in heat distortion, 446
in Luminescent Premultiply, 96–97
for sky, 418
for storms, 428
in Track Matte menu, 97
for wet look, 428
M
.mac files (Maya) scenes, 263–265
Mac OS X
 crashing of After Effects on, 125
gamma value in, 360
revealing User/Library folder in, 124
Magic Bullet Colorista, 162
Magic Bullet Looks, 315
mapping, camera, 294–296
Marcie (Kodak test image), 353
markers
for conditional events, 332–333
play only frames with, 335–336
triggering animation at, 334–335
Mask Expansion tool, 85
Mask Feather
refining mattes with, 218–220
selections, 85
for vignettes, 315
Mask Interpolation, 91
Mask Path keyframes, 220
masks
Add mode for, 88–89
Add with Invert mode for, 88–89
animated, 90–91
Auto-trace for, 76
Bezier, 86
combinations of, 87–90

copying, 76, 91
density of, 88–89
for fabricated smoke or mist, 420–421
First Vertex for, 91
for fog, 420–421
linking with expressions, 221
Mask Feather, 85
for mist, 421
mocha shape, 86
modes of, 88–90
moving, 91
moving through mist, 421–422
opacity of, 88
options for, 84
overlapping inverted layers, 90
overlapping issues of, 88–89
overview of, 74–76
pasting, 91
Roto Brush, 74–75
rotoBezier shapes for, 217–218
rotoScoping, 215–217
Shape tools and layers for, 87
in SpeedGrade, 391–392
Subtract mode for, 88–89
tracking and translating, 220–221
Match Grain tool, 307–310
Match Legacy After Effects
QuickTime Gamma Adjustments, 376–377
matching colors. See color matching
matching composition settings, 30–31
Matching Softness, 169
Matching Tolerance eyedropper tool, 169
Material Options, 295
Math.min(), 335–336
matte choke, 184, 191–192
mattes
adding Refine Edge to, 210–214
Alpha/Alpha Inverted, 97
alpha track, 311, 403
articulated, 214–217
avoiding chewy, 166, 185–190
core. See core mattes
creating with Roto Brush, 206–210
defined, 73
Difference, 170
dense. See edge mattes
garbage. See garbage mattes (gmattes)
hi-con, 166–170, 429, 438
holdout. See holdout mattes
luma. See luma mattes
Luma Inverted Matte, 97, 415
overview of, 73
procedural, 164–166
Refine Matte, 179, 306
Refine Soft Matte effect, 185–190
refined, 218–221
Index

mattes (continued)
screen, 180
spreading, 193
track. See track mattes
Maxon Cinema 4D, 280–282, 289
Maya (.ma) files
3D tracking data for, 263–265
camera integration for, 263
editing preferences, 124–125
Pixel Cloud for, 384
rendering tips, 10
Media tab, SpeedGrade, 387–388
Mediacore, 20
memory
acceleration, 114–115
adjusting in multiprocessing, 26
Throttle-n-Purge controlling, 126
Merge command, 282–283
Merge Projects script, 14
Merge to HDR Pro, Photoshop, 355–356
mesh distortion tool, Liquify as, 424
Mesh Warp, 422, 423
methods, dot notation hierarchy for, 328
midtones. See gamma adjustments
Midtones tab, SpeedGrade, 388–390
miniatures, exploding, 449–450
Miniflow view, 53
Minimal workspace, for composites, 4–5
Minimax, 191, 193
Mirror Blend control, 226
Missing Effects, finding, 12
Missing Footage, finding, 11–12
mist, 419–422
mocha AE planar tracker
basics, 257–260
Copy/Paste selection tool, 76
nitty-gritty of, 260–262
tracking matte selection, 221
understanding, 256–257
mocha shape, 76
Mochaimport, 259
mochaPro, 256
Mode setting, paint strokes, 222
monitor color, 351
monitor-referred values, 361
Monitor tab, SpeedGrade, 387–388
monitors
converting Cineon files to color space of, 353
as nonlinear, 360
Ram preview options, 27
setting up workspace, 9
SpeedGrade requirements, 387
moon shots, 397
motion blur
in 3D Camera Tracker, 236
accurate, 58–59
avoiding unwanted, 244
decoding, 59–61
emulating real camera for, 272
enhancement, 61–62
HDR images in linearized workspace and, 366–367
in light saber methodology, 440–442
in mocha AE, 259
in motion tracking, 254–256
in native video space vs. linear space, 363–365
for precipitation, 430
Refine Edge brush with, 213
refining mattes with, 220
in Timewarp, 66
Warp Stabilizer and, 239, 243
motion path, in camera animation, 292
motion tracking
between 2D and 3D, 339–346
3D Camera Tracker for, 231–236
camera integration for, 263–265
for composite precipitation, 430–431
introduction to, 230
mocha AE planar tracker for, 256–262
point tracker for. See point tracker
Warp Stabilizer for. See Warp Stabilizer VFX
moving projects, composites, 13–14
multipass 3D compositing, 404–409
multipasses, in Keylight, 177–179
Multiply blending mode
Add mode vs., 419
creating wispy smoke, mist, or fog, 419
defined, 94
in multipass renders, 407
multiprocessing, 25–26
multithreading, 25
muzzle flash effect, 435–437
N
name templates, files, 119
naming conventions
brush strokes, 223
brushes in Brush Tips panel, 223
projects and renders, 34
source files, 7
navigation, in Timeline, 39–41
nearest tKey(), 332
Neat Video, 310
negatives, film, 357–359
nested compositions, 64, 103, 105–108
nested time, 108–110
network rendering, 122–123
No Motion, in Warp Stabilizer VFX, 239
nodal pans, 418
noise
grain and, 307–311
Perlin, 337
suppressing in Keylight, 183
None mode, for masks, 89
nonlinear response to color, 360–361
Normal passes, 384
Normality, 407
normalized pixel values, 91
Nudge controls, mocha AE, 259
null objects
applying track data to, 253
in Cinema 4D Lite, 288–290
in Maya scene, 264–265
sharing camera data, 283
numbering
color values, 352
for comp template, 104
in composition, 15
fields for Camera Settings, 271–272
lens length, 270–271
sliders for Levels, 129
O
occlusion, in multipass setup, 407–408
on set, shooting, 196–200
opacity
of adjustment layers, 111
of colors in expressions, 346–347
of edges, 80
for fades, 345
for HSB blending modes, 95
in light wraps, 397
of masks, 88, 220
of mattes, 73
in multipass renders, 407
of vignettes, 315
OpenEXR, 370
OpenSesame, 16, 125
Optical Flares, 398–399
Optics Compensation effect, 276–278
optics, in AE camera. See camera optics, mimicking natural behavior of, 78–80
optimizing projects
adjustment layers for, 110–111
Adobe Media Encoder for, 121
advanced composition settings for, 109–110
aerender for, 122
attached storage for, 114
background renders for, 121–123
Cache Work Area in Background for, 103, 115
Collapse Transformations for, 108
composition nesting for, 102–103
continuous access for, 115–118
Dynamic Link for, 117–118, 122
parallax
 in fire composites, 449–450
 pan in 3D tracker lacking, 234
 in sky replacement, 418
 in smoke, fog, or mist, 420–422
 in tracking rotation and scale, 252
 Warp Stabilizer and, 237
parent hierarchy
 in animation, 57–58
 in Timeline panel, 37
parented layer, effect tracks, 341–342
parenthesized comps, 108
Particle Playground, 428, 445
Particle
 for composite precipitation, 430–431
 for precipitation, 427, 429–430
 for smoke trails or contrails, 426–427
pariculate matter
 creating heat distortion, 443–446
 depth cues for, 414–416
 depth maps for, 414–416
 in environment, 414–416
 for smoke trails or contrails, 426–427
 for smoky or misty foreground, 420
 for wispy smoke, mist, or fog, 419
Pen tool
 for Bezier masks, 86
 for Bezier motion path, 50
 for rotobezier shapes, 217
Perlin noise, 337
persistent disk cache, 115–118
Position keyframes
 in 3D Camera Tracker, 231–232
 repositioning anchor point
 without changing, 56
 in Timeline, 43–44, 46–48
Position Pass, with Pixel Cloud, 384
preserve frame rate, 110
Preserve Resolution When Nested, 110
presets
 keyframe transition types, 50
 Paint brushes, 222
 in SpeedGrade, 391
Index

Preview panel
combining with Info panel, 5
composites, 27–29
maximizing screen in, 9
RAM Preview settings in, 23, 27
previews, in project optimization, 118–119
primary animation, 425
Primary controls, SpeedGrade, 389–391
Primatte keyer, 201
prime (or fixed) lens, 272, 398
procedural garbage mattes, 190–193
procedural mattes, 164–166
project naming conventions, 34
Project panel
accessing items in, 11
bit-depth identifier in, 139
caching set of comps in, 117
composition setup in, 6
as file system, 103–105
locating comp in, 106
proxy appearance in, 120
revealing date column in, 13
workspace setup, 3–4
Project script, 296
Project Settings, 15
Projection, 294–296, 315–316
Propagation settings, Roto Brush, 211
proxies, 119–121
PSD file format, 21–22, 374
pt_EffectSearch, 29
pulldowns, 19
Puppet tool, 424
Purview, 210
push functions, 272, 292–293
pyrotechnicians, 447
pyrotechnics
energy effects, 439–443
explosions, 450–452
fire, 446–450
firearms, 434–439
heat distortion, 443–446
light sabers, 439–443
understanding, 434
Q
quality
of composites, 22–24
of image, 353
of light, 383
quantization, 139
QuickTime
color management in, 375
embedded timecode in, 16
working with, 11
R
Radial Blur, 61, 316
radioactive isotopes, 357
radiometrically linear color data, 366
Radius, light falloff setting, 385
rain. See precipitation
RAM Preview, 7–8, 27, 332
RAM requirements, 113–115
Ramp effect
creating blur map with, 303–305
for gradient backgrounds, 27
Gradient Ramp effect, 414
in grain management, 308
Ramp gradient, 135–136, 414
random distribution, 339
random(function, 338–339
random time, 338–339
randomness
expressions for, 335–336
random distribution, 339
random time, 338–339
wiggle time, 337–338
raster images, 75–76, 79
Raw tracks, 252
ray-traced 3D animations
blending modes and, 109
caching set of comps and, 116
information on extruded, 279
projecting image onto extruded shape, 296
Reconstruction brush, in Liquify, 424
red, blue, green. See RGB (red, green, blue)
red, blue, green, alpha. See RGBA (red, blue, green, and alpha)
RED Camera, 197, 244, 353
red channel. See also RGB (red, green, blue)
for color matching, 135–136
color-matching in dramatic lighting, 154–157
color-matching in ordinary lighting, 151–153
color-matching with no clear reference, 157–158
Red Giant Software
color finishing with, 386
Colorista by, 162
Corner Pin effect by, 262
Looks by, 162
Primatte keyer by, 201
Warp by, 403
Redifinery’s Merge Projects, 14
Reel Smart Motion Blur, 62
Refine Edge
in Keylight, 186
in Roto Brush, 205–206, 210–214
Refine Edge Matte effect, 212
Refine Matte, 179, 306
Refine Soft Matte effect, 185–190
refining mattes
in color keying, 174–176
in Keylight, 181
in rotoscoping, 218–221
reflected light, 399
Region of Interest (ROI), 23–24, 181, 308
relative time, vs. absolute, 62–63
Reload Footage, 11
RE:Map plug-in, 405
Remove Color Matting effect, 83–84
Remove Grain tool, 310–311
Remove Unused Footage, 12, 14
Render, Email, Save, and Shutdown, 121
render pipelines, 113
Render Queue
creating proxies, 120
keyboard shortcuts for, 30
nested compositions in, 64
post-render options in, 119
processing power used in, 121
rendering multiple frames simultaneously in, 35–36
settings for, 30–33
Straight vs. Multiplied Alpha in, 82
tear away and toggling, 7
renders
with adjustment layers, 110
background, 121–123
composition in Media Encoder, 26
Freeze button for completed mattes, 214
multipass, 404–409
of multiple frames
simultaneously, 25–26, 123
naming conventions for, 34
optimizing speed of, 118
post-render options, 119
proxies and pre-renders, 119–121
sharing data in Cinema 4D, 283–284
speeding up, 113–118
tuning in multiprocessing, 25–26
Repeat Edge Pixels, 396
Repeat values, 87
Replace Footage, 11
Reset Levels, 132
resetting effects, 132, 135–136
resolution
accuracy of Roto Brush with full, 207
advanced composition settings for, 110
lowest in widescreen images, 317
maximizing screen, 9
preserving when nested, 110
of shadow maps, 295
responsiveness, 24–26
Result tab, SpeedGrade, 387
retiming
absolute vs. relative time in, 62
Freeze Frame for, 65
Result tab, SpeedGrade, 387
retiming
absolute vs. relative time in, 62
Freeze Frame for, 65
nested compositions for, 64
Time Remap for, 64–65
Time Stretch for, 63–64
Timewarp for, 65–69
Return of the Jedi, 160
Reverse Lens Distortion, 276
reverse stabilization, 246–247
ReverseMaskPath, 90
RE:Vision Effects, 161
reverse stabilization, 246–247
Reverse Lens Distortion, 276
rgbToHsl
Rotoscoping
Roto Brush
rotation, 252
Rosco colors, 181
Rolling Shutter Ripple, 243
Rolling Shutter Removal, 313
Rolling Shutter Repair, 243
Rolling Shutter Removal, 313
rolling shutter artifacts, 243–244
ROI (Region of Interest) tool, 23–24,
right-clicking, 11
rig removal, 226
ROI (Region of Interest) tool, 23–24,
right-clicking, 11
rig removal, 226
Roto Brush
3D Camera Tracker and, 234–235
add Refine Edge in, 210–214
depth maps with, 415
fixing blur map edges with, 306
foreground mattes with, 66
guidelines for, 205–206
Linear Color Key vs., 166
overview of, 75
working with, 206–210
RPG (red, green, blue)
color management and, 373–377
in Curves, 139–145
in dramatic lighting, 153–157
histograms, 138–139
Hue/Saturation in, 146
in Keylight color values, 179–180
in Levels, 136–139
in ordinary lighting, 151–153
of video images on computers,
RGB (red, green, blue)
color management and, 373–377
in Curves, 139–145
in dramatic lighting, 153–157
histograms, 138–139
Hue/Saturation in, 146
in Keylight color values, 179–180
in Levels, 136–139
in ordinary lighting, 151–153
of video images on computers,
S-curve adjustments, 144–145
SampleImage (), 347
Samples Per Frame, Motion Blur, 59
sampling, color, 346–347
Sandison, Michael, 322
SanityCheck, 375
saturation. See Hue/Saturation
saving options, advanced, 14–15
scale
in cloning, 225
in grain, 311
limitations of fire, 446
in Roto Edge brush, 211
in Roto Brush, 207
tracking of, 252
in Warp Stabilizer VFX, 238–241
in wispy smoke, mist, or fog, 419
SCARLET cameras, 369
scattering of light, 399–401
scene-referred values, 361
Scott, Michael (Dorkman), 440
Screen Balance setting, 180–181
Screen Gain, 180
Screen Color, 173–174, 177
Screen blending mode, 94–95
Screen Color, 173–174, 177
Screen Gain, 180
screen mattes. See masks for.
screws
maximizing, 9
Ram preview options, 27
Second Amendment, 435
secondary animation, 425
secondary layers, in SpeedGrade, 392
seedRandom() function, 338–339
segmentation boundaries, 207–208
selections
Add blending mode for, 92–94
alpha channels in, 74
Bezier masks, 86
bitmap alpha, 78–79
blending modes for, 76, 92–97
Color blending modes for, 95
combined techniques for, 77
combining layers of, 72–77
compositing with, 72
Difference blending mode for, 95
effects for, 77
feathered alpha edges in, 78–79
HSB bending modes for, 95
Light blending modes for, 94
Luminescent Premultiply for, 96–97
masks for. See masks
mattes, 73
Multiply blending mode for, 94
opacity of, 80
Overlay blending mode for, 94
premultiplication of, 81–84
Preserve Underlying
Transparency for, 95–96
Screen blending mode for, 94
Shape tools/layers for, 87
Silhouette blending mode for, 95
Stencil blending mode for, 95
summary of, 99
track mattes for, 97–99
transparency of, 81–84
sensor sizes, 274
Separate RGB effect, 316
separating XYZ, 185
Set Focus Distance to Layer, 279
Set Matte, 98
Set Proxy, 119
Shadow Catcher, 232, 403
shadows
banding in, 352
in billowing smoke, 422
in color keying, 185
light in, 199, 383–384, 401–404
Shape layers, 84, 87–88
Shape tools, 87–88
shape tracking, 262
sharing selections with track mattes,
97–99
sharpening, for increased grain, 312
Shatter effect, 452
shells, gunshot, 435, 437
Shift Channels, 193, 308, 316
Shift+RAM Preview, 23, 27
Shortcuts file, 124
Show Cache Indicators, 115
Show Channel, 29, 135–136
Show Grid, 28
Show Properties, 43
Show Reference Graph, 44–45
Show Rulers, 28
Show Transform Box, 48–49
Shutter Angle, 59–61, 272
Shutter Phase, 59–60
shutter speed, 244, 254–255
shy layers, 38
Silhouette
Alpha blending mode, 396
blending modes, 95
rotozeuging with, 226
silver halide crystals, 357
Simple Choker, 168, 178, 191–192
Simple Wire Removal tool, 226
Single Frame Duration setting, Paint,
227
single-node camera, 291
Index
Skip Existing Files, 31
sky replacement
bluescreens vs., 417
infinite depth in, 417
overview of, 416–417
for storms, 428–429
slamming gamma, 161–162
Slider Control, 343
slippage, solving track, 261–262
Slope and Mirror Blend controls, 226
Slope control, 226
smoke. See also fire
billowing, 422–424
from bullet-hits, 437–438
creating, 419–421
distorting, 423
for fire, 448
from firearms, 436–437
moving through wispy, 421–422
showing color of, 413
swirling with Liquify, 424
trails, 426–427
Smoky Flyover features, 421–422
Smooth Falloff, 385
smoothing
in Refine Edge brush, 212
in Timewarp, 67
in Warp Stabilizer VFX, 240–241
Snap button, 48
snow. See precipitation
The Social Network, 304
soft (diffuse) light, 383
solo layers, 37–38
source elements, 3–4
source formats, 20–21
source layer, 237–239
source of composites, 8–11
space management, 107–108
SpeedGrade
black and white, 393–394
color management with, 374–375
day for night, 394–395
getting into, 387
grading shots in, 389–391
LUTs and, 377–379
masks in, 391–392
popular grades of, 392–395
presets in, 391
for primary color correction, 319
requirements, 387
secondaries in, 391–392
UI for, 387–388
spill suppression, 184–185, 196
Spill Suppressor effect, 178–179
Spline tool, 419
spot light meter, 198
spreading mattes, 193
Spy Kids 3-D, 94
squibs, bullet, 438
sRGB, 374, 376–377
SSD boot drive, 116

stabilization
point, 247–248
reverse, 246–247
shooting for, 244
of shots, 237–238
when result is worse, 242–243
Stabilize Motion, in Tracker panel, 250
Stabilize Motion, Warp Stabilizer VFX, 237–238
Stabilize tracks, in Tracker panel, 251
Standard workspace, 4
Star Wars, 440–443
Status view, 173–175
Stencil Alpha blending mode, 192, 396
Stencil blending mode, 95
stock footage, for fires, Compound Blur
storms. See precipitation
Stretch value, Time Stretch, 63–64
strobe animation, 334
Subspace Warp, 242–243, 248, 286
Subtract mode, 88–89
swiping, with Roto Brush, 207
Sync Settings, 32, 125–126
Synthesis Edges, 241–242
SynthEyes, 315

T

Television
29.97 fps for reality, 316–317
color and, 386
HID formats for, 317–318
PAL, 183
using Cinema 4D for commercials, 285
templates, 103–104, 119
text, default expressions
highlighting, 324–325
threeway color correctors, 319–320
Throttle-n-Purge, 126
TIFF file format, 4, 20–21, 374
tilde (~) keyboard shortcut, 7, 9
tilt-shift lens effect, 304–305
time
absolute vs. relative, 62
delays in, 329–330
management of, 107–108
navigation of, in Timeline, 39
random, 338–339
Time Remap, 64–65, 335–336
Time Sampling, 30–31
Time Stretch, 37, 63–64
timecodes, 16
Timeline panel
absolute vs. relative time in, 62
anchor point in, 56–57
color commentary in, 37–38
column views in, 36–37
composition setup in, 6
copy and clicks on layer in, 11
copy and paste animations in, 50–51
deactivating Live Update in, 24
frame blend in, 63–64
Graph Editor in, 42–50
keyboard shortcuts in, 39–42, 52–56
keyframes in, 42–50, 55
layer bar mode vs. Graph Editor, 51–52
Layer menu in, 11
layers in, 39–41
managing multiple comps from, 105–106
motion blur in, 58–62
navigation in, 39–41, 54
nested compositions in, 64
parent hierarchy in, 57–58
summary of, 69–70
time display in, 329
time navigation in, 39
Time Remap in, 64–69
time stretch in, 63–64
Timewarp in, 65–69
understanding, 36
views in, 41
working with Roto Brush in, 209

ToComp(), 38
Timewarp, 65–69
Tinderbox, 399
tint, 135, 393, 428–429
Title/Action Safe, 28
toComp() expression, 341–342
Toggle Mask, 29
Toy Story 3, 404
Track Camera, 231
Track in mocha AE, 257, 260
track mattes
render pipeline rules for, 113
for sharing selections, 97–99
for undoing strong keylight, 384
track points
in 3D Camera Tracker, 232–233
in Cinema 4D Lite, 287
in isolation of object/plane, 244–245
in reverse stabilization, 246–247
in Warp Stabilizer VFX, 244–245
Tracker panel, 249–251
Tracker2Mask, 256
TrackerViz, 220, 255
tracking
masks, 220–221
motion. See motion tracking
Trajectory script, 314
transform boxes, 48–49
Transform controls, in Timeline, 42, 56
Transform effect, 308
Transform tracks, in Tracker panel, 251
transforms, layer space, 340–346
translating masks, 220–221
transparency
with blending modes, 92–97
with compositing formula, 78
with layers, 72–77
with mask modes/combinations, 88–91
with masks, 84–88
with opacity, 80
optics and, 78–80
with premultiplication, 81–84
sharing selections with track mattes, 97–99
working with, 81

Trapping
Lumakey, 397, 399, 401
Particular. See Particular
Shine, 400–401

Tripod Pan Shots, 234
True Comp Duplicator, 107
Truffaut, François, 394
Tuning section, in Timewarp, 67
Turbulence brush, 424
Turbulence Displace effect, 427
Turbulent Noise effect, 419–421, 436–437
Tweaking controls, Match Grain, 308–309
Twilight Zone, 316
two-node camera, 291, 299–301

U
überkey, defined, 53
Unified Camera tool, 291
unsolvable shots, in 3D Camera Tracker, 235–236
Used spyglass, 12
user interfaces (UIs)
for composites, 4, 22–29
in Curves control, 140
in SpeedGrade, 387–388

V
Vanilla Sky, 416
variables, JavaScript, 330
Vector Detail, 67
vector shapes
brushes based on, 222
masks as hand-drawn, 74–76, 84
versions, of Cinema 4D, 280–281
vibrance, 302
video
adjustments in linear space vs.
native, 363–366
gamma space of, 360–361
HDR images in, 367
not sharing between Photoshop/
After Effects, 21
View Edge Region, Refine Soft
Matte, 188
View LUT, 112
View menu, 56–57, 225
View Options, 29
views
column, 36–37
Flowchart, 53
of LUTs, 378–379
in Preview panel, 27
in Timeline panel, 41
vignettes, 313, 315
Vivid Light blending mode, 94
volumetric light, 399–401
Warp brush, 424
Warp Layer, in Timewarp, 67
Warp Stabilizer VFX
advanced options in, 243
Auto-Scale in, 240–242
Crop in, 241
eliminate warping in, 242
inability to fix motion blur in, 243
isolating object or plane in, 245–246
locking shot in, 239
new features in, 236–237
point stabilization in, 247–248
reverse stabilization in, 246–247
shooting for stabilization in, 244
Smoothness adjustments in, 240–241
stabilizing shot in, 237–239
Synthesize Edges in, 241–242
warping, eliminating in Warp Stabilizer VFX, 242
Watch Folder, 123
weighting, 69, 393–394
Welles, Orson, 297
wet look, 427–428
What Dreams May Come movie, 231
white
in bitmaps, 78
contrast adjustments, 130–133
in depth maps, 303
in dramatic lighting, 153–157
in Extract, 167
hex color values for, 373
on monitors, 91, 355
with no clear reference, 157–158
as opacity in mattes, 73
in ordinary lighting, 150, 152–153
output. See Output Black/Output White
pixel values in, 73, 91–92
in Screen mode, 92
using SpeedGrade for, 393–394
widescreen formats, 317–318
wiggLe() expressions, 337–338
wind, 425–427
Wing menu, 153
wire removal, 226
Working Space setting, 376
workspaces
resetting to customized version, 8
setting linearized, 361–363
setting up, 3–5
world space, coordinate system
for, 340
wrapping, light, 395, 396–397
Write On setting, Paint menu, 223

X
X Position keyframes, 46–48
X Rotation, 278, 292
X-spline tool, 258, 262

Y
Y axis, in 3D, 292
Y Position keyframes, 46–48
YCrCb, video images in, 182
YUV, 182–183
Z
Z Position keyframes, 46–48
ZBornToy, 407
Zeno’s paradox, 80
zoom functions
in 3D Camera Tracker, 232, 264
in cameras, 272, 292–296
flares, 398
keyboard shortcut for, 24
Zorro, 38
Unlimited online access to all Peachpit, Adobe Press, Apple Training and New Riders videos and books, as well as content from other leading publishers including: O’Reilly Media, Focal Press, Sams, Que, Total Training, John Wiley & Sons, Course Technology PTR, Class on Demand, VTC and more.

No time commitment or contract required! Sign up for one month or a year. All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge