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Foreword by Raymie Stata

William Gibson was fond of saying: “The future is already here—it’s just not very 
evenly distributed.” Those of us who have been in the web search industry have had 
the privilege—and the curse—of living in the future of Big Data when it wasn’t dis-
tributed at all. What did we learn? We learned to measure everything. We learned 
to experiment. We learned to mine signals out of unstructured data. We learned to 
drive business value through data science. And we learned that, to do these things, 
we needed a new data-processing platform fundamentally different from the business 
intelligence systems being developed at the time.

The future of Big Data is rapidly arriving for almost all industries. This is driven 
in part by widespread instrumentation of the physical world—vehicles, buildings, and 
even people are spitting out log streams not unlike the weblogs we know and love 
in cyberspace. Less obviously, digital records—such as digitized government records, 
digitized insurance policies, and digital medical records—are creating a trove of infor-
mation not unlike the webpages crawled and parsed by search engines. It’s no surprise, 
then, that the tools and techniques pioneered first in the world of web search are find-
ing currency in more and more industries. And the leading such tool, of course, is 
Apache Hadoop.

But Hadoop is close to ten years old. Computing infrastructure has advanced 
significantly in this decade. If Hadoop was to maintain its relevance in the modern 
Big Data world, it needed to advance as well. YARN represents just the advancement 
needed to keep Hadoop relevant.

As described in the historical overview provided in this book, for the majority of 
Hadoop’s existence, it supported a single computing paradigm: MapReduce. On the 
compute servers we had at the time, horizontal scaling—throwing more server nodes 
at a problem—was the only way the web search industry could hope to keep pace with 
the growth of the web. The MapReduce paradigm is particularly well suited for hori-
zontal scaling, so it was the natural paradigm to keep investing in.

With faster networks, higher core counts, solid-state storage, and (especially) 
larger memories, new paradigms of parallel computing are becoming practical at large 
scales. YARN will allow Hadoop users to move beyond MapReduce and adopt these 
emerging paradigms. MapReduce will not go away—it’s a good fit for many prob-
lems, and it still scales better than anything else currently developed. But, increasingly, 
MapReduce will be just one tool in a much larger tool chest—a tool chest named 
“YARN.”



xiv Foreword by Raymie Stata

In short, the era of Big Data is just starting. Thanks to YARN, Hadoop will 
continue to play a pivotal role in Big Data processing across all industries. Given this, 
I was pleased to learn that YARN project founder Arun Murthy and project lead 
Vinod Kumar Vavilapalli have teamed up with Doug Eadline, Joseph Niemiec, and 
Jeff Markham to write a volume sharing the history and goals of the YARN project, 
describing how to deploy and operate YARN, and providing a tutorial on how to get 
the most out of it at the application level. 

This book is a critically needed resource for the newly released Apache Hadoop 2.0, 
highlighting YARN as the significant breakthrough that broadens Hadoop beyond the 
MapReduce paradigm.

—Raymie Stata, CEO of Altiscale



Foreword by Paul Dix

No series on data and analytics would be complete without coverage of Hadoop and 
the different parts of the Hadoop ecosystem. Hadoop 2 introduced YARN, or “Yet 
Another Resource Negotiator,” which represents a major change in the internals of 
how data processing works in Hadoop. With YARN, Hadoop has moved beyond the 
MapReduce paradigm to expose a framework for building applications for data proc-
essing at scale. MapReduce has become just an application implemented on the YARN 
framework. This book provides detailed coverage of how YARN works and explains 
how you can take advantage of it to work with data at scale in Hadoop outside of 
MapReduce.

No one is more qualified to bring this material to you than the authors of this 
book. They’re the team at Hortonworks responsible for the creation and development 
of YARN. Arun, a co-founder of Hortonworks, has been working on Hadoop since 
its creation in 2006. Vinod has been contributing to the Apache Hadoop project full-
time since mid-2007. Jeff and Joseph are solutions engineers with Hortonworks. Doug 
is the trainer for the popular Hadoop Fundamentals LiveLessons and has years of expe-
rience building Hadoop and clustered systems. Together, these authors bring a breadth 
of knowledge and experience with Hadoop and YARN that can’t be found elsewhere.

This book provides you with a brief history of Hadoop and MapReduce to set the 
stage for why YARN was a necessary next step in the evolution of the platform. You 
get a walk-through on installation and administration and then dive into the internals 
of YARN and the Capacity scheduler. You see how existing MapReduce applications 
now run as an applications framework on top of YARN. Finally, you learn how to 
implement your own YARN applications and look at some of the new YARN-based 
frameworks. This book gives you a comprehensive dive into the next generation 
Hadoop platform.

— Paul Dix, Series Editor
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Preface

Apache Hadoop has a rich and long history. It’s come a long way since its birth in 
the middle of the first decade of this millennium—from being merely an infrastruc-
ture component for a niche use-case (web search), it’s now morphed into a compelling 
part of a modern data architecture for a very wide spectrum of the industry. Apache 
Hadoop owes its success to many factors: the community housed at the Apache Soft-
ware Foundation; the timing (solving an important problem at the right time); the 
extensive early investment done by Yahoo! in funding its development, hardening, and 
large-scale production deployments; and the current state where it’s been adopted by a 
broad ecosystem. In hindsight, its success is easy to rationalize.

On a personal level, Vinod and I have been privileged to be part of this journey 
from the very beginning. It’s very rare to get an opportunity to make such a wide 
impact on the industry, and even rarer to do so in the slipstream of a great wave of a 
community developing software in the open—a community that allowed us to share 
our efforts, encouraged our good ideas, and weeded out the questionable ones. We are 
very proud to be part of an effort that is helping the industry understand, and unlock, 
a significant value from data.

YARN is an effort to usher Apache Hadoop into a new era—an era in which its 
initial impact is no longer a novelty and expectations are significantly higher, and 
growing. At Hortonworks, we strongly believe that at least half the world’s data will 
be touched by Apache Hadoop. To those in the engine room, it has been evident, 
for at least half a decade now, that Apache Hadoop had to evolve beyond supporting 
MapReduce alone. As the industry pours all its data into Apache Hadoop HDFS, there 
is a real need to process that data in multiple ways: real-time event processing, human-
interactive SQL queries, batch processing, machine learning, and many others. Apache 
Hadoop 1.0 was severely limiting; one could store data in many forms in HDFS, but 
MapReduce was the only algorithm you could use to natively process that data. 

YARN was our way to begin to solve that multidimensional requirement natively 
in Apache Hadoop, thereby transforming the core of Apache Hadoop from a one-trick 
“batch store/process” system into a true multiuse platform. The crux was the recogni-
tion that Apache Hadoop MapReduce had two facets: (1) a core resource manager, 
which included scheduling, workload management, and fault tolerance; and (2) a user-
facing MapReduce framework that provided a simplified interface to the end-user that 
hid the complexity of dealing with a scalable, distributed system. In particular, the 
MapReduce framework freed the user from having to deal with gritty details of fault 
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tolerance, scalability, and other issues. YARN is just realization of this simple idea. 
With YARN, we have successfully relegated MapReduce to the role of merely one 
of the options to process data in Hadoop, and it now sits side-by-side by other frame-
works such as Apache Storm (real-time event processing), Apache Tez (interactive 
query backed), Apache Spark (in-memory machine learning), and many more.

Distributed systems are hard; in particular, dealing with their failures is hard. YARN 
enables programmers to design and implement distributed frameworks while sharing a 
common set of resources and data. While YARN lets application developers focus on 
their business logic by automatically taking care of thorny problems like resource arbitra-
tion, isolation, cluster health, and fault monitoring, it also needs applications to act on 
the corresponding signals from YARN as they see fit. YARN makes the effort of build-
ing such systems significantly simpler by dealing with many issues with which a frame-
work developer would be confronted; the framework developer, at the same time, still 
has to deal with the consequences on the framework in a framework-specific manner. 

While the power of YARN is easily comprehensible, the ability to exploit that 
power requires the user to understand the intricacies of building such a system in con-
junction with YARN. This book aims to reconcile that dichotomy.

The YARN project and the Apache YARN community have come a long way 
since their beginning. Increasingly more applications are moving to run natively under 
YARN and, therefore, are helping users process data in myriad ways. We hope that 
with the knowledge gleaned from this book, the reader can help feed that cycle of 
enablement so that individuals and organizations alike can take full advantage of the 
data revolution with the applications of their choice.

—Arun C. Murthy

Focus of the Book
This book is intended to provide detailed coverage of Apache Hadoop YARN’s goals, 
its design and architecture and how it expands the Apache Hadoop ecosystem to take 
advantage of data at scale beyond MapReduce. It primarily focuses on installation and 
administration of YARN clusters, on helping users with YARN application develop-
ment and new frameworks that run on top of YARN beyond MapReduce.

Please note that this book is not intended to be an introduction to Apache Hadoop 
itself. We assume that the reader has a working knowledge of Hadoop version 1, writ-
ing applications on top of the Hadoop MapReduce framework, and the architecture 
and usage of the Hadoop Distributed FileSystem. Please see the book webpage (http://
yarn-book.com) for a list of introductory resources. In future editions of this book, we 
hope to expand our material related to the MapReduce application framework itself 
and how users can design and code their own MapReduce applications. 

http://yarn-book.com
http://yarn-book.com


xixPreface

Book Structure
In Chapter 1, “Apache Hadoop YARN: A Brief History and Rationale,” we provide 
a historical account of why and how Apache Hadoop YARN came about. Chapter 2, 
“Apache Hadoop YARN Install Quick Start,” gives you a quick-start guide for install-
ing and exploring Apache Hadoop YARN on a single node. Chapter 3, “Apache 
Hadoop YARN Core Concepts,” introduces YARN and explains how it expands 
Hadoop ecosystem. A functional overview of YARN components then appears in 
Chapter 4, “Functional Overview of YARN Components,” to get the reader started.

Chapter 5, “Installing Apache Hadoop YARN,” describes methods of install-
ing YARN. It covers both a script-based manual installation as well as a GUI-based 
installation using Apache Ambari. We then cover information about administration of 
YARN clusters in Chapter 6, “Apache Hadoop YARN Administration.”

A deep dive into YARN’s architecture occurs in Chapter 7, “Apache Hadoop 
YARN Architecture Guide,” which should give the reader an idea of the inner work-
ings of YARN. We follow this discussion with an exposition of the Capacity scheduler 
in Chapter 8, “Capacity Scheduler in YARN.”

Chapter 9, “MapReduce with Apache Hadoop YARN,” describes how existing 
MapReduce-based applications can work on and take advantage of YARN. Chapter 10, 
“Apache Hadoop YARN Application Example,” provides a detailed walk-through of 
how to build a YARN application by way of illustrating a working YARN applica-
tion that creates a JBoss Application Server cluster. Chapter 11, “Using Apache Hadoop 
YARN Distributed-Shell,” describes the usage and innards of distributed shell, the 
canonical example application that is built on top of and ships with YARN. 

One of the most exciting aspects of YARN is its ability to support multiple pro-
gramming models and application frameworks. We conclude with Chapter 12, 
“Apache Hadoop YARN Frameworks,” a brief survey of emerging open-source 
frameworks that are being developed to run under YARN.

Appendices include Appendix A, “Supplemental Content and Code Downloads”; 
Appendix B, “YARN Installation Scripts”; Appendix C, “YARN Administration 
Scripts”; Appendix D, “Nagios Modules”; Appendix E, “Resources and Additional 
Information”; and Appendix F, “HDFS Quick Reference.” 

Book Conventions
Code is displayed in a monospaced font. Code lines that wrap because they are too 
long to fit on one line in this book are denoted with this symbol: ➥.

Additional Content and Accompanying Code
Please see Appendix A, “ Supplemental Content and Code Downloads,” for the loca-
tion of the book webpage (http://yarn-book.com). All code and configuration files 
used in this book can be downloaded from this site. Check the website for new and 
updated content including “Description of Apache Hadoop YARN Configuration 
Properties” and “Apache Hadoop YARN Troubleshooting Tips.”

http://yarn-book.com


This page intentionally left blank 



Acknowledgments

We are very grateful for the following individuals who provided feedback and valu-
able assistance in crafting this book.

nn Ron Lee, Platform Engineering Architect at Hortonworks Inc, for making this 
book happen, and without whose involvement this book wouldn’t be where it 
is now.

nn Jian He, Apache Hadoop YARN Committer and a member of the Hortonworks 
engineering team, for helping with reviews.

nn Zhijie Shen, Apache Hadoop YARN Committer and a member of the Horton-
works engineering team, for helping with reviews.

nn Omkar Vinit Joshi, Apache Hadoop YARN Committer, for some very thorough 
reviews of a number of chapters.

nn Xuan Gong, a member of the Hortonworks engineering team, for helping with 
reviews.

nn Christopher Gambino, for the target audience testing.
nn David Hoyle at Hortonworks, for reading the draft.
nn Ellis H. Wilson III, storage scientist, Department of Computer Science and 

Engineering, the Pennsylvania State University, for reading and reviewing the 
entire draft.

Arun C. Murthy
Apache Hadoop is a product of the fruits of the community at the Apache Software 
Foundation (ASF). The mantra of the ASF is “Community Over Code,” based on 
the insight that successful communities are built to last, much more so than successful 
projects or code bases. Apache Hadoop is a shining example of this. Since its incep-
tion, many hundreds of people have contributed their time, interest and expertise—
many are still around while others have moved on; the constant is the community. I’d 
like to take this opportunity to thank every one of the contributors; Hadoop wouldn’t 
be what it is without your contributions. Contribution is not merely code; it’s a bug 
report, an email on the user mailing list helping a journeywoman with a query, an edit 
of the Hadoop wiki, and so on.



xxii Acknowledgments

I’d like to thank everyone at Yahoo! who supported Apache Hadoop from the 
beginning—there really isn’t a need to elaborate further; it’s crystal clear to everyone 
who understands the history and context of the project.

Apache Hadoop YARN began as a mere idea. Ideas are plentiful and transient, and 
have questionable value. YARN wouldn’t be real but for the countless hours put in by 
hundreds of contributors; nor would it be real but for the initial team who believed in 
the idea, weeded out the bad parts, chiseled out the reasonable parts, and took owner-
ship of it. Thank you, you know who you are.

Special thanks to the team behind the curtains at Hortonworks who were so instru-
mental in the production of this book; folks like Ron and Jim are the key architects of 
this effort. Also to my co-authors: Vinod, Joe, Doug, and Jeff; you guys are an amaz-
ing bunch. Vinod, in particular, is someone the world should pay even more attention 
to—he is a very special young man for a variety of reasons.

Everything in my life germinates from the support, patience, and love emanating 
from my family: mom, grandparents, my best friend and amazing wife, Manasa, and 
the three-year-old twinkle of my eye, Arjun. Thank you. Gratitude in particular to 
my granddad, the best man I have ever known and the moral yardstick I use to mea-
sure myself with—I miss you terribly now.

Cliché alert: last, not least, many thanks to you, the reader. Your time invested in 
reading this book and learning about Apache Hadoop and YARN is a very big com-
pliment. Please do not hesitate to point out how we could have provided better return 
for your time.

Vinod Kumar Vavilapalli
Apache Hadoop YARN, and at a bigger level, Apache Hadoop itself, continues to be a 
healthy, community-driven, open-source project. It owes much of its success and adop-
tion to the Apache Hadoop YARN and MapReduce communities. Many individuals 
and organizations spent a lot of time developing, testing, deploying and administering, 
supporting, documenting, evangelizing, and most of all, using Apache Hadoop YARN 
over the years. Here’s a big thanks to all the volunteer contributors, users, testers, com-
mitters, and PMC members who have helped YARN to progress in every way pos-
sible. Without them, YARN wouldn’t be where it is today, let alone this book. My 
involvement with the project is entirely accidental, and I pay my gratitude to lady luck 
for bestowing upon me the incredible opportunity of being able to contribute to such a 
once-in-a-decade project.

This book wouldn’t have been possible without the herding efforts of Ron Lee, 
who pushed and prodded me and the other co-writers of this book at every stage. 
Thanks to Jeff Markham for getting the book off the ground and for his efforts in 
demonstrating the power of YARN in building a non-trivial YARN application and 
making it usable as a guide for instruction. Thanks to Doug Eadline for his persistent 
thrust toward a timely and usable release of the content. And thanks to Joseph Nie-
miec for jumping in late in the game but contributing with significant efforts.

Special thanks to my mentor, Hemanth Yamijala, for patiently helping me when 
my career had just started and for such great guidance. Thanks to my co-author, 



xxiiiAcknowledgments

mentor, team lead and friend, Arun C. Murthy, for taking me along on the ride that is 
Hadoop. Thanks to my beautiful and wonderful wife, Bhavana, for all her love, sup-
port, and not the least for patiently bearing with my single-threaded span of attention 
while I was writing the book. And finally, to my parents, who brought me into this 
beautiful world and for giving me such a wonderful life.

Doug Eadline
There are many people who have worked behind the scenes to make this book possi-
ble. First, I want to thank Ron Lee of Hortonworks: Without your hand on the tiller, 
this book would have surely sailed into some rough seas. Also, Joe Niemiec of Hor-
tonworks, thanks for all the help and the 11th-hour efforts. To Debra Williams Cauley 
of Addison-Wesley, you are a good friend who makes the voyage easier; Namaste. 
Thanks to the other authors, particularly Vinod for helping me understand the big 
and little ideas behind YARN. I also cannot forget my support crew, Emily, Marlee, 
Carla, and Taylor—thanks for reminding me when I raise my eyebrows. And, finally, 
the biggest thank you to my wonderful wife, Maddy, for her support. Yes, it is done. 
Really.

Joseph Niemiec
A big thanks to my father, Jeffery Niemiec, for without him I would have
never developed my passion for computers.

Jeff Markham
From my first introduction to YARN at Hortonworks in 2012 to now, I’ve come to 
realize that the only way organizations worldwide can use this game-changing software 
is because of the open-source community effort led by Arun Murthy and Vinod 
Vavilapalli. To lead the world-class Hortonworks engineers along with corporate and 
individual contributors means a lot of sausage making, cat herding, and a heavy dose of 
vision. Without all that, there wouldn’t even be YARN. Thanks to both of you for lead-
ing a truly great engineering effort. Special thanks to Ron Lee for shepherding us all 
through this process, all outside of his day job. Most importantly, though, I owe a huge 
debt of gratitude to my wife, Yong, who wound up doing a lot of the heavy lifting for 
our relocation to Seoul while I fulfilled my obligations for this project. 사랑해요!  



This page intentionally left blank 



About the Authors

Arun C. Murthy has contributed to Apache Hadoop full time since the inception of 
the project in early 2006. He is a long-term Hadoop committer and a member of the 
Apache Hadoop Project Management Committee. Previously, he was the architect and 
lead of the Yahoo! Hadoop MapReduce development team and was ultimately respon-
sible, on a technical level, for providing Hadoop MapReduce as a service for all of 
Yahoo!—currently running on nearly 50,000 machines! Arun is the founder and archi-
tect of Hortonworks Inc., a software company that is helping to accelerate the develop-
ment and adoption of Apache Hadoop. Hortonworks was formed by the key architects 
and core Hadoop committers from the Yahoo! Hadoop software engineering team in 
June 2011. Funded by Yahoo! and Benchmark Capital, one of the preeminent technol-
ogy investors, Hortonworks has as its goal ensuring that Apache Hadoop becomes the 
standard platform for storing, processing, managing, and analyzing Big Data. Arun lives 
in Silicon Valley.

Vinod Kumar Vavilapalli has been contributing to Apache Hadoop project full 
time since mid-2007. At Apache Software Foundation, he is a long-term Hadoop 
contributor, Hadoop committer, member of the Apache Hadoop Project Management 
Committee, and a Foundation member. Vinod is a MapReduce and YARN go-to guy 
at Hortonworks Inc. For more than five years, he has been working on Hadoop and 
still has fun doing it. He was involved in Hadoop on Demand, Hadoop 0.20, Capac-
ity scheduler, Hadoop security, and MapReduce, and now is a lead developer and 
the project lead for Apache Hadoop YARN. Before joining Hortonworks, he was at 
Yahoo! working in the Grid team that made Hadoop what it is today, running at large 
scale—up to tens of thousands of nodes. Vinod loves reading books of all kinds, and 
is passionate about using computers to change the world for better, bit by bit. He has 
a bachelor’s degree in computer science and engineering from the Indian Institute of 
Technology Roorkee. He lives in Silicon Valley and is reachable at twitter handle  
@tshooter.

Doug Eadline, PhD, began his career as a practitioner and a chronicler of the Linux 
cluster HPC revolution and now documents Big Data analytics. Starting with the first 
Beowulf how-to document, Doug has written hundreds of articles, white papers, and 
instructional documents covering virtually all aspects of HPC. Prior to starting and 
editing the popular ClusterMonkey.net website in 2005, he served as editor -in -chief for 
ClusterWorld magazine, and was senior HPC editor for Linux Magazine. He has practical 



xxvi About the Authors

hands-on experience in many aspects of HPC, including hardware and software design, 
benchmarking, storage, GPU, cloud computing, and parallel computing. Currently, he 
is a writer and consultant to the HPC industry and leader of the Limulus Personal Clus-
ter Project (http://limulus.basement-supercomputing.com). He is also author of Hadoop 
Fundamentals LiveLessons and Apache Hadoop YARN Fundamentals LiveLessons videos from 
Addison-Wesley.

Joseph Niemiec is a Big Data solutions engineer whose focus is on designing Hadoop 
solutions for many Fortune 1000 companies. In this position, Joseph has worked with 
customers to build multiple YARN applications, providing a unique perspective on 
moving customers beyond batch processing, and has worked on YARN development 
directly. An avid technologist, Joseph has been focused on technology innovations 
since 2001. His interest in data analytics originally started in game score optimization 
as a teenager and has shifted to helping customers uptake new technology innovations 
such as Hadoop and, most recently, building new data applications using YARN.

Jeff Markham is a solution engineer at Hortonworks Inc., the company promoting 
open-source Hadoop. Previously, he was with VMware, Red Hat, and IBM, helping 
companies build distributed applications with distributed data. He has written articles 
on Java application development and has spoken at several conferences and to Hadoop 
user groups. Jeff is a contributor to Apache Pig and Apache HDFS.

http://limulus.basement-supercomputing.com


1
Apache Hadoop YARN:  

A Brief History and Rationale

 In this chapter we provide a historical account of why and how Apache Hadoop 
YARN came about. YARN’s requirements emerged and evolved from the practical 
needs of long-existing cluster deployments of Hadoop, both small and large, and we 
discuss how each of these requirements ultimately shaped YARN.

YARN’s architecture addresses many of these long-standing requirements, based on 
experience evolving the MapReduce platform. By understanding this historical con-
text, readers can appreciate most of the design decisions that were made with YARN. 
These design decisions will repeatedly appear in Chapter 4, “Functional Overview of 
YARN Components,” and Chapter 7, “Apache Hadoop YARN Architecture Guide.” 

Introduction
Several different problems need to be tackled when building a shared compute plat-
form. Scalability is the foremost concern, to avoid rewriting software again and again 
whenever existing demands can no longer be satisfied with the current version. The 
desire to share physical resources brings up issues of multitenancy, isolation, and secu-
rity. Users interacting with a Hadoop cluster serving as a long-running service inside 
an organization will come to depend on its reliable and highly available operation. To 
continue to manage user workloads in the least disruptive manner, serviceability of the 
platform is a principal concern for operators and administrators. Abstracting the intri-
cacies of a distributed system and exposing clean but varied application-level paradigms 
are growing necessities for any compute platform.

Hadoop’s compute layer has seen all of this and much more during its continuous 
and long progress. It went through multiple evolutionary phases in its architecture. We 
highlight the “Big Four” of these phases in the reminder of this chapter. 
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nn “Phase 0: The Era of Ad Hoc Clusters” signaled the beginning of Hadoop clus-
ters that were set up in an ad hoc, per-user manner. 

nn “Phase 1: Hadoop on Demand” was the next step in the evolution in the form of 
a common system for provisioning and managing private Hadoop MapReduce 
and HDFS instances on a shared cluster of commodity hardware. 

nn “Phase 2: Dawn of the Shared Compute Clusters” began when the majority of 
Hadoop installations moved to a model of a shared MapReduce cluster together 
with shared HDFS instances.

nn “Phase 3: Emergence of YARN”—the main subject of this book—arose to 
address the demands and shortcomings of the previous architectures.

As the reader follows the journey through these various phases, it will be apparent 
how the requirements of YARN unfolded over time. As the architecture continued to 
evolve, existing problems would be solved and new use-cases would emerge, pushing 
forward further stages of advancements.

We’ll now tour through the various stages of evolution one after another, in chron-
ological order. For each phase, we first describe what the architecture looked like and 
what its advancements were from its previous generation, and then wind things up 
with its limitations—setting the stage for the next phase. 

Apache Hadoop
To really comprehend the history of YARN, you have to start by taking a close look 
at the evolution of Hadoop itself. Yahoo! adopted Apache Hadoop in 2006 to replace 
the existing infrastructure that was then driving its WebMap application—the technol-
ogy that builds a graph of the known web to power its search engine. At that time, the 
web-graph contained more than 100 billion nodes with roughly 1 trillion edges. The 
previous infrastructure, named “Dreadnaught,” successfully served its purpose and grew 
well—starting from a size of just 20 nodes and expanding to 600 cluster nodes—but had 
reached the limits of its scalability. The software also didn’t perform perfectly in many 
scenarios, including handling of failures in the clusters’ commodity hardware. A signifi-
cant shift in its architecture was required to scale out further to match the ever-growing 
size of the web. The distributed applications running under Dreadnought were very sim-
ilar to MapReduce programs and needed to span clusters of machines and work at a large 
scale. This highlights the first requirement that would survive throughout early versions 
of Hadoop MapReduce, all the way to YARN—[Requirement 1] Scalability.

nn [Requirement 1] Scalability

The next-generation compute platform should scale horizontally to tens of thou-
sands of nodes and concurrent applications.

For Yahoo!, by adopting a more scalable MapReduce framework, significant parts 
of the search pipeline could be migrated easily without major refactoring—which, in 
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turn, ignited the initial investment in Apache Hadoop. However, although the origi-
nal push for Hadoop was for the sake of search infrastructure, other use-cases started 
taking advantage of Hadoop much faster, even before the migration of the web-graph 
to Hadoop could be completed. The process of setting up research grids for research 
teams, data scientists, and the like had hastened the deployment of larger and larger 
Hadoop clusters. Yahoo! scientists who were optimizing advertising analytics, spam 
filtering, personalization, and content initially drove Hadoop’s evolution and many of 
its early requirements. In line with that evolution, the engineering priorities evolved 
over time, and Hadoop went through many intermediate stages of the compute plat-
form, including ad hoc clusters.

Phase 0: The Era of Ad Hoc Clusters
Before the advent of ad hoc clusters, many of Hadoop’s earliest users would use 
Hadoop as if it were similar to a desktop application but running on a host of 
machines. They would manually bring up a cluster on a handful of nodes, load their 
data into the Hadoop Distributed File System (HDFS), obtain the result they were 
interested in by writing MapReduce jobs, and then tear down that cluster. This was 
partly because there wasn’t an urgent need for persistent data in Hadoop HDFS, and 
partly because there was no incentive for sharing common data sets and the results of 
the computations. As usage of these private clusters increased and Hadoop’s fault toler-
ance improved, persistent HDFS clusters came into being. Yahoo! Hadoop administra-
tors would install and manage a shared HDFS instance, and load commonly used and 
interesting data sets into the shared cluster, attracting scientists interested in deriving 
insights from them. HDFS also acquired a POSIX-like permissions model for support-
ing multiuser environments, file and namespace quotas, and other features to improve 
its multitenant operation. Tracing the evolution of HDFS is in itself an interesting 
endeavor, but we will focus on the compute platform in the remainder of this chapter.

Once shared HDFS instances came into being, issues with the not-yet-shared com-
pute instances came into sharp focus. Unlike with HDFS, simply setting up a shared 
MapReduce cluster for multiple users potentially from multiple organizations wasn’t 
a trivial step forward. Private compute cluster instances continued to thrive, but con-
tinuous sharing of the common underlying physical resources wasn’t ideal. To address 
some of the multitenancy issues with manually deploying and tearing down private 
clusters, Yahoo! developed and deployed a platform called Hadoop on Demand.

Phase 1: Hadoop on Demand
The Hadoop on Demand (HOD) project was a system for provisioning and managing 
Hadoop MapReduce and HDFS instances on a shared cluster of commodity hardware. 
The Hadoop on Demand project predated and directly inf luenced how the developers 
eventually arrived at YARN’s architecture. Understanding the HOD architecture and 
its eventual limitations is a first step toward comprehending YARN’s motivations.
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To address the multitenancy woes with the manually shared clusters from the previ-
ous incarnation (Phase 0), HOD used a traditional resource manager—Torque—together 
with a cluster scheduler—Maui—to allocate Hadoop clusters on a shared pool of nodes. 
Traditional resource managers were already being used elsewhere in high-performance 
computing environments to enable effective sharing of pooled cluster resources. By mak-
ing use of such existing systems, HOD handed off the problem of cluster management 
to systems outside of Hadoop. On the allocated nodes, HOD would start MapReduce 
and HDFS daemons, which in turn would serve the user’s data and application requests. 
Thus, the basic system architecture of HOD included these layers:

nn A ResourceManager (RM) together with a scheduler
nn Various HOD components to interact with the RM/scheduler and manage 

Hadoop
nn Hadoop MapReduce and HDFS daemons
nn A HOD shell and Hadoop clients

A typical session of HOD involved three major steps: allocate a cluster, run Hadoop 
jobs on the allocated cluster, and finally deallocate the cluster. Here is a brief descrip-
tion of a typical HOD-user session:

nn Users would invoke a HOD shell and submit their needs by supplying a descrip-
tion of an appropriately sized compute cluster to Torque. This description 
included:

nn The number of nodes needed 
nn A description of a special head-process called the RingMaster to be started by 

the ResourceManager
nn A specification of the Hadoop deployment desired

nn Torque would enqueue the request until enough nodes become available. Once 
the nodes were available, Torque started the head-process called RingMaster on 
one of the compute nodes.

nn The RingMaster was a HOD component and used another ResourceManager 
interface to run the second HOD component, HODRing—with one HODRing 
being present on each of the allocated compute nodes.

nn The HODRings booted up, communicated with the RingMaster to obtain 
Hadoop commands, and ran them accordingly. Once the Hadoop daemons were 
started, HODRings registered with the RingMaster, giving information about 
the daemons.

nn The HOD client kept communicating with the RingMaster to find out the loca-
tion of the JobTracker and HDFS daemons.

nn Once everything was set up and the users learned the JobTracker and HDFS 
locations, HOD simply got out the way and allowed the user to perform his or 
her data crunching on the corresponding clusters.
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nn The user released a cluster once he or she was done running the data analysis jobs.

Figure 1.1 provides an overview of the HOD architecture.

HDFS in the HOD World
While HOD could also deploy HDFS clusters, most users chose to deploy the com-
pute nodes across a shared HDFS instance. In a typical Hadoop cluster provisioned by 
HOD, cluster administrators would set up HDFS statically (without using HOD). This 
allowed data to be persisted in HDFS even after the HOD-provisioned clusters were 
deallocated. To use a statically configured HDFS, a user simply needed to point to 
an external HDFS instance. As HDFS scaled further, more compute clusters could be 
allocated through HOD, creating a cycle of increased experimentation by users over 
more data sets, leading to a greater return on investment. Because most user-specific 
MapReduce clusters were smaller than the largest HOD jobs possible, the JobTracker 
running for any single HOD cluster was rarely a bottleneck.

JobTracker

TaskTracker

Map Reduce Map Reduce

TaskTracker

JobTracker

TaskTracker

Map Reduce Map Reduce

TaskTracker

RingMaster
HOD Layer

HOD Cluster

HODRing HODRing

Shared HDFS

Traditional Resource Management Layer

HOD Cluster

Figure 1.1 Hadoop on Demand architecture
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Features and Advantages of HOD
Because HOD sets up a new cluster for every job, users could run older and stable ver-
sions of Hadoop software while developers continued to test new features in isolation. 
Since the Hadoop community typically released a major revision every three months, 
the f lexibility of HOD was critical to maintaining that software release schedule—we 
refer to this decoupling of upgrade dependencies as [Requirement 2] Serviceability.

nn [Requirement 2] Serviceability

The next-generation compute platform should enable evolution of cluster soft-
ware to be completely decoupled from users’ applications.

In addition, HOD made it easy for administrators and users to quickly set up and 
use Hadoop on an existing cluster under a traditional resource management system. 
Beyond Yahoo!, universities and high-performance computing environments could 
run Hadoop on their existing clusters with ease by making use of HOD. It was also 
a very useful tool for Hadoop developers and testers who needed to share a physical 
cluster for testing their own Hadoop versions.

Log Management
HOD could also be configured to upload users’ job logs and the Hadoop daemon logs 
to a configured HDFS location when a cluster was deallocated. The number of log 
files uploaded to and retained on HDFS could increase over time in an unbounded 
manner. To address this issue, HOD shipped with tools that helped administrators 
manage the log retention by removing old log files uploaded to HDFS after a specified 
amount of time had elapsed.

Multiple Users and Multiple Clusters per User
As long as nodes were available and organizational policies were not violated, a user 
could use HOD to allocate multiple MapReduce clusters simultaneously. HOD pro-
vided the list and the info operations to facilitate the management of multiple concur-
rent clusters. The list operation listed all the clusters allocated so far by a user, and the 
info operation showed information about a given cluster—Torque job ID, locations of 
the important daemons like the HOD RingMaster process, and the RPC addresses of 
the Hadoop JobTracker and NameNode daemons.

The resource management layer had some ways of limiting users from abusing clus-
ter resources, but the user interface for exposing those limits was poor. HOD shipped 
with scripts that took care of this integration so that, for instance, if some user limits 
were violated, HOD would update a public job attribute that the user could query 
against.

HOD also had scripts that integrated with the resource manager to allow a user to 
identify the account under which the user’s Hadoop clusters ran. This was necessary 
because production systems on traditional resource managers used to manage accounts 
separately so that they could charge users for using shared compute resources.
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Ultimately, each node in the cluster could belong to only one user’s Hadoop cluster 
at any point of time—a major limitation of HOD. As usage of HOD grew along with 
its success, requirements around [Requirement 3] Multitenancy started to take shape.

nn [Requirement 3] Multitenancy

The next-generation compute platform should support multiple tenants to 
co exist on the same cluster and enable fine-grained sharing of individual nodes 
among different tenants.

Distribution of Hadoop Software
When provisioning Hadoop, HOD could either use a preinstalled Hadoop instance on 
the cluster nodes or request HOD to distribute and install a Hadoop tarball as part of 
the provisioning operation. This was especially useful in a development environment 
where individual developers might have different versions of Hadoop to test on the 
same shared cluster.

Configuration
HOD provided a very convenient mechanism to configure both the boot-up HOD 
software itself and the Hadoop daemons that it provisioned. It also helped manage the 
configuration files that it generated on the client side.

Auto-deallocation of Idle Clusters
HOD used to automatically deallocate clusters that were not running Hadoop jobs for 
a predefined period of time. Each HOD allocation included a monitoring facility that 
constantly checked for any running Hadoop jobs. If it detected no running Hadoop 
jobs for an extended interval, it automatically deallocated its own cluster, freeing up 
those nodes for future use.

Shortcomings of Hadoop on Demand
Hadoop on Demand proved itself to be a powerful and very useful platform, but 
Yahoo! ultimately had to retire it in favor of directly shared MapReduce clusters due 
to many of its shortcomings.

Data Locality
For any given MapReduce job, during the map phase the JobTracker makes every effort 
to place tasks close to their input data in HDFS—ideally on a node storing a replica of 
that data. Because Torque doesn’t know how blocks are distributed on HDFS, it allocates 
nodes without accounting for locality. The subset of nodes granted to a user’s JobTracker 
will likely contain only a handful of relevant replicas and, if the user is unlucky, none. 
Many Hadoop clusters are characterized by a small number of very big jobs and a large 
number of small jobs. For most of the small jobs, most reads will emanate from remote 
hosts because of the insufficient information available from Torque. 

Efforts were undertaken to mitigate this situation but achieved mixed results. One 
solution was to spread TaskTrackers across racks by modifying Torque/Maui itself and 
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making them rack-aware. Once this was done, any user’s HOD compute cluster would 
be allocated nodes that were spread across racks. This made intra-rack reads of shared 
data sets more likely, but introduced other problems. The transfer of records between 
map and reduce tasks as part of MapReduce’s shuff le phase would necessarily cross 
racks, causing a significant slowdown of users’ workloads.

While such short-term solutions were implemented, ultimately none of them 
proved ideal. In addition, they all pointed to the fundamental limitation of the tradi-
tional resource management software—that is, the ability to understand data locality 
as a first-class dimension. This aspect of [Requirement 4] Locality Awareness is a key 
requirement for YARN.

nn [Requirement 4] Locality Awareness

The next-generation compute platform should support locality awareness— 
moving computation to the data is a major win for many applications.

Cluster Utilization
MapReduce jobs consist of multiple stages: a map stage followed by a shuff le and a 
reduce stage. Further, high-level frameworks like Apache Pig and Apache Hive often 
organize a workf low of MapReduce jobs in a directed-acyclic graph (DAG) of com-
putations. Because clusters were not resizable between stages of a single job or between 
jobs when using HOD, most of the time the major share of the capacity in a cluster 
would be barren, waiting for the subsequent slimmer stages to be completed. In an 
extreme but very common scenario, a single reduce task running on one node could 
prevent a cluster of hundreds of nodes from being reclaimed. When all jobs in a colo-
cation were considered, this approach could result in hundreds of nodes being idle in 
this state.

In addition, private MapReduce clusters for each user implied that even after a user 
was done with his or her workf lows, a HOD cluster could potentially be idle for a 
while before being automatically detected and shut down.

While users were fond of many features in HOD, the economics of cluster utiliza-
tion ultimately forced Yahoo! to pack its users’ jobs into shared clusters. [Require-
ment 5] High Cluster Utilization is a top priority for YARN.

nn [Requirement 5] High Cluster Utilization

The next-generation compute platform should enable high utilization of the 
underlying physical resources.

Elasticity
In a typical Hadoop workf low, MapReduce jobs have lots of maps with a much 
smaller number of reduces, with map tasks being short and quick and reduce tasks 
being I/O heavy and longer running. With HOD, users relied on few heuristics when 
estimating how many nodes their jobs required—typically allocating their private 
HOD clusters based on the required number of map tasks (which in turn depends 
on the input size). In the past, this was the best strategy for users because more often 
than not, job latency was dominated by the time spent in the queues waiting for the 
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allocation of the cluster. This strategy, although the best option for individual users, 
leads to bad scenarios from the overall cluster utilization point of view. Specifically, 
sometimes all of the map tasks are finished (resulting in idle nodes in the cluster) while 
a few reduce tasks simply chug along for a long while.

Hadoop on Demand did not have the ability to grow and shrink the MapReduce 
clusters on demand for a variety of reasons. Most importantly, elasticity wasn’t a first-
class feature in the underlying ResourceManager itself. Even beyond that, as jobs were 
run under a Hadoop cluster, growing a cluster on demand by starting TaskTrackers 
wasn’t cheap. Shrinking the cluster by shutting down nodes wasn’t straightforward, 
either, without potentially massive movement of existing intermediate outputs of map 
tasks that had already run and finished on those nodes.

Further, whenever cluster allocation latency was very high, users would often share 
long-awaited clusters with colleagues, holding on to nodes for longer than anticipated, 
and increasing latencies even further.

Phase 2: Dawn of the Shared Compute Clusters
Ultimately, HOD architecture had too little information to make intelligent decisions 
about its allocations, its resource granularity was too coarse, and its API forced users to 
provide misleading constraints to the resource management layer. This forced the next 
step of evolution—the majority of installations, including Yahoo!, moved to a model 
of a shared MapReduce cluster together with shared HDFS instances. The main com-
ponents of this shared compute architecture were as follows:

nn A JobTracker: A central daemon responsible for running all the jobs in the 
cluster. This is the same daemon that used to run jobs for a single user in the 
HOD world, but with additional functionality.

nn TaskTrackers: The slave in the system, which executes one task at a time under 
directions from the JobTracker. This again is the same daemon as in HOD, but 
now runs the tasks of jobs from all users.

What follows is an exposition of shared MapReduce compute clusters. Shared 
MapReduce clusters working in tandem with shared HDFS instances is the dominant 
architecture of Apache Hadoop 1.x release lines. At the point of this writing, many 
organizations have moved beyond 1.x to the next-generation architecture, but at the 
same time multitudes of Hadoop deployments continue to the JobTracker/TaskTracker 
architecture and are looking forward to the migration to YARN-based Apache 
Hadoop 2.x release lines. Because of this, in what follows, note that we’ll refer to the 
age of shared MapReduce-only shared clusters as both the past and the present.

Evolution of Shared Clusters
Moving to shared clusters from HOD-based architecture was nontrivial, and replace-
ment of HOD was easier said than done. HOD, for all its problems, was originally 
designed to specifically address (and thus masked) many of the multitenancy issues 
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occurring in shared MapReduce clusters. Adding to that, HOD silently took advan-
tage of some core features of the underlying traditional resource manager, which even-
tually became missing features when the clusters evolved to being native MapReduce 
shared clusters. In the remainder of this section, we’ll describe salient characteristics of 
shared MapReduce deployments and indicate how the architecture gradually evolved 
away from HOD.

HDFS Instances
In line with how a shared HDFS architecture was established during the days of HOD, 
shared instances of HDFS continue to advance. During Phase 2, HDFS improved its 
scalability, acquired more features such as file-append, the new File Context API for 
applications, Kerberos-based security features, high availability, and other performance 
features such as local short-circuit to data-node files directly.

Central JobTracker Daemon
The first step in the evolution of the MapReduce subsystem was to start running the 
JobTracker daemon as a shared resource across jobs, across users. This started with 
putting an abstraction for a cluster scheduler right inside the JobTracker, the details 
of which we explore in the next subsection. In addition, and unlike in the phase 
in which HOD was the norm, both developer testing and user validation revealed 
numerous deadlocks and race conditions in the JobTracker that were earlier neatly 
shielded by HOD.

JobTracker Memory Management
Running jobs from multiple users also drew attention to the issue of memory manage-
ment of the JobTracker heap. At large clusters in Yahoo!, we had seen many instances 
in which a user, just as he or she used to allocate large clusters in the HOD world, 
would submit a job with many thousands of mappers or reducers. The configured 
heap of the JobTracker at that time hadn’t yet reached the multiple tens of gigabytes 
observed with HDFS’s NameNode. Many times, the JobTracker would expand these 
very large jobs in its memory to start scheduling them, only to run into heap issues 
and memory thrash and pauses due to Java garbage collection. The only solution at 
that time once such a scenario occurred was to restart the JobTracker daemon, effec-
tively causing a downtime for the whole cluster. Thus, the JobTracker heap itself 
became a shared resource that needed features to support multitenancy, but smart 
scheduling of this scarce resource was hard. The JobTracker heap would store in-mem-
ory representations of jobs and tasks—some of them static and easily accountable, but 
other parts dynamic (e.g., job counters, job configuration) and hence not bounded. 

To avoid the risks associated with a complex solution, the simplest proposal of lim-
iting the maximum number of tasks per job was first put in place. This simple solution 
eventually had to evolve to support more limits—on the number of jobs submitted 
per user, on the number of jobs that are initialized and expanded in the JobTracker’s 
memory at any time, on the number of tasks that any job might legally request, and on 
the number of concurrent tasks that any job can run.
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Management of Completed Jobs
The JobTracker would also remember completed jobs so that users could learn about 
their status once the jobs finished. Initially, completed jobs would have a memory 
footprint similar to that of any other running job. Completed jobs are, by definition, 
unbounded as time progresses. To address this issue, the JobTracker was modified to 
start remembering only partial but critical information about completed jobs, such 
as job status and counters, thereby minimizing the heap footprint per completed job. 
Even after this, with ever-increasing completed jobs, the JobTracker couldn’t cope after 
sufficient time elapsed. To address this issue, the straightforward solution of remem-
bering only the last N jobs per user was deployed. This created still more challenges: 
Users with a very high job-churn rate would eventually run into situations where they 
could not get information about recently submitted jobs. Further, the solution was 
a per-user limit, so given enough users; the JobTracker would eventually exhaust its 
heap anyway.

The ultimate state-of-the-art solution for managing this issue was to change the Job-
Tracker to not remember any completed jobs at all, but instead redirect requests about 
completed jobs to a special server called the JobHistoryServer. This server off loaded 
the responsibility of serving web requests about completed jobs away from the Job-
Tracker. To handle RPC requests in f light about completed jobs, the JobTracker would 
also persist some of the completed job information on the local or a remote file system; 
this responsibility of RPCs would also eventually transition to the JobHistoryServer in 
Hadoop 2.x releases.

Central Scheduler
When HOD was abandoned, the central scheduler that worked in unison with a tradi-
tional resource manager also went away. Trying to integrate existing schedulers with the 
newly proposed JobTracker-based architecture was a nonstarter due to the engineering 
challenges involved. It was proposed to extend the JobTracker itself to support queues of 
jobs. Users would interact with the queues, which are configured appropriately. In the 
HOD setting, nodes would be statically assigned to a queue—but that led to utilization 
issues across queues. In the newer architecture, nodes are no longer assigned statically. 
Instead, slots available on a node are dynamically allocated to jobs in queues, thereby 
also increasing the granularity of the scheduling from nodes to slots. 

To facilitate innovations in the scheduling algorithm, an abstraction was put in 
place. Soon, several implementations came about. Yahoo! implemented and deployed 
the Capacity scheduler, which focused on throughput, while an alternative called the 
Fair scheduler also emerged, focusing on fairness.

Scheduling was done on every node’s heartbeat: The scheduler would look at the 
free capacity on this node, look at the jobs that need resources, and schedule a task 
accordingly. Several dimensions were taken into account while making this scheduling 
decision—scheduler-specific policies such as capacity, fairness, and, more importantly, 
per-job locality preferences. Eventually, this “one task per heartbeat” approach was 
changed to start allocating multiple tasks per heartbeat to improve scheduling latencies 
and utilization.
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The Capacity scheduler is based on allocating capacities to a f lat list of queues and 
to users within those queues. Queues are defined following the internal organizational 
structure, and each queue is configured with a guaranteed capacity. Excess capaci-
ties from idle queues are distributed to queues that are in demand, even if they have 
already made use of their guaranteed capacity. Inside a queue, users can share resources 
but there is an overarching emphasis on job throughput, based on a FIFO algorithm. 
Limits are put in place to avoid single users taking over entire queues or the cluster.

Moving to centralized scheduling and granular resources resulted in massive utiliza-
tion improvements. This brought more users, more growth to the so-called research 
clusters, and, in turn, more requirements. The ability to refresh queues at run time to 
affect capacity changes or to modify queue Access Control Lists (ACLs) was desired 
and subsequently implemented. With node-level isolation (described later), jobs were 
required to specify their memory requirements upfront, which warranted intelligent 
scheduling of high-memory jobs together with regular jobs; the scheduler accordingly 
acquired such functionality. This was done through reservation of slots on nodes for 
high-RAM jobs so that they do not become starved while regular jobs come in and 
take over capacity.

Recovery and Upgrades
The JobTracker was clearly a single point of failure for the whole cluster. Whenever a 
software bug surfaced or a planned upgrade needed to be done, the JobTracker would 
bring down the whole cluster. Anytime it needed to be restarted, even though the sub-
mitted job definitions were persistent in HDFS from the clients themselves, the state 
of running jobs would be completely lost. A feature was needed to let jobs survive Job-
Tracker restarts. If a job was running at the time when the JobTracker restarted, along 
with the ability to not lose running work, the user would expect to get all information 
about previously completed tasks of this job transparently. To address this requirement, 
the JobTracker had to record and create persistent information about every completed 
task for every job onto highly available storage.

This feature was eventually implemented, but proved to be fraught with so many 
race conditions and corner cases that it eventually couldn’t be pushed to production 
because of its instability. The complexity of the feature partly arose from the fact that 
JobTracker had to track and store too much information—first about the cluster state, 
and second about the scheduling state of each and every job. Referring to [Require-
ment 2] Serviceability, the shared MapReduce clusters in a way had regressed com-
pared to HOD with respect to serviceability.

Isolation on Individual Nodes
Many times, tasks of user Map/Reduce applications would get extremely memory 
intensive. This could occur due to many reasons—for example, due to inadvertent 
bugs in the users’ map or reduce code, because of incorrectly configured jobs that 
would unnecessarily process huge amounts of data, or because of mappers/reducers 
spawning children processes whose memory/CPU utilization couldn’t be controlled by 
the task JVM. The last issue was very possible with the Hadoop streaming framework, 
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which enabled users to write their MapReduce code in an arbitrary language that was 
then run under separate children processes of task JVMs. When this happened, the 
user tasks would start to interfere with the proper execution of other processes on the 
node, including tasks of other jobs, even Hadoop daemons like the DataNode and 
the TaskTracker. In some instances, runaway user jobs would bring down multiple 
DataNodes on the cluster and cause HDFS downtime. Such uncontrolled tasks would 
cause nodes to become unusable for all purposes, leading to a need for a way to pre-
vent such tasks from bringing down the node.

Such a situation wouldn’t happen with HOD, as every user would essentially bring 
up his or her own Hadoop MapReduce cluster and each node belonged to only one 
user at any single point of time. Further, HOD would work with the underlying 
resource manager to set resource limits prior to the TaskTracker getting launched. 
This made the entire TaskTracker process chain—the daemon itself together, with the 
task JVMs and any processes further spawned by the tasks themselves—to be bounded. 
Whatever system needed to be designed to throttle runaway tasks had to mimic this 
exact functionality.

We considered multiple solutions—for example, the host operating system facilitat-
ing user limits that are both static and dynamic, putting caps on individual tasks, and 
setting a cumulative limit on the overall usage across all tasks. We eventually settled 
on the ability to control individual tasks by killing any process trees that surpass pre-
determined memory limits. The TaskTracker uses a default admin configuration or a 
per-job user-specified configuration, continuously monitors tasks’ memory usage in 
regular cycles, and shoots down any process tree that has overrun the memory limits.

Distributed Cache was another feature that was neatly isolated by HOD. With 
HOD, any user’s TaskTrackers would download remote files and maintain a local 
cache only for that user. With shared clusters, TaskTrackers were forced to maintain 
this cache across users. To help manage this distribution, the concepts of a public 
cache, private cache, and application cache were introduced. A public cache would 
include public files from all users, whereas a private cache would restrict itself to be 
per user. An application-level cache included resources that had to be deleted once a 
job finished. Further, with the TaskTracker concurrently managing several caches at 
once, several locking problems with regard to the Distributed Cache emerged, which 
required a minor redesign/reimplementation of this part of the TaskTracker.

Security
Along with enhancing resource isolation on individual nodes, HOD shielded security 
issues with multiple users by avoiding sharing of individual nodes altogether. Even for 
a single user, HOD would start the TaskTracker, which would then spawn the map 
and reduce tasks, resulting in all of them running as the user who had submitted the 
HOD job. With shared clusters, however, the tasks needed to be run as the job owner 
for security and accounting purposes, rather than as the user running the TaskTracker 
daemon itself.

We tried to avoid running the TaskTracker daemon as a privileged user (such as 
root) to solve this requirement. The TaskTracker would perform several operations 
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on behalf of users, and running it as a privileged user would leak a lot of surface area 
that was vulnerable to attacks. Ultimately, we solved this problem by creating a setuid 
executable called taskcontroller that would be owned by root but runnable only by 
the TaskTracker. The TaskTracker would launch this executable with appropriate com-
mands when needed. It would first run as root, do some very basic operations, and 
then immediately drop privileges by using setuid POSIX call to run the remaining 
operations as the user. Because this was very platform-specific code, we implemented 
a TaskController Java abstraction and shipped an implementation for Linux called 
LinuxTaskController with all the platform-specific code written in C.

The directories and files used by the task also needed to have appropriate permis-
sions. Many of these directories and files were created by the TaskTracker, but were 
used by the task. A few were written by the user code but then used or accessed by 
the daemon. For security reasons, the permissions needed to be very strict and read-
able/writable by only the user or the TaskTracker. This step was done by making the 
taskcontroller first change the permissions from the TaskTracker to the user, and then 
letting the task run. Any files that needed to be read by the TaskTracker after the task 
finished had to have been created with appropriate permissions by the tasks.

Authentication and Access Control
As Hadoop managed more tenants, diverse use-cases, and raw data, its requirements 
for isolation became more stringent. Unfortunately, the system lacked strong, scalable 
authentication and an authorization model—a critical feature for multitenant clusters. 
This capability was added and backported to multiple versions of Hadoop.

A user can submit jobs to one or more MapReduce clusters, but he or she should 
be authenticated by Kerberos or a delegation mechanism before job submission. A user 
can disconnect after job submission and then reconnect to get the job status by using 
the same authentication mechanism. Once such an authenticated user sends requests to 
the JobTracker, it records all such accesses in an audit log that can be postprocessed for 
analyzing over time—thereby creating a kind of audit trail.

Tasks run as the user need credentials to securely talk to HDFS, too. For this to 
happen, the user needs to specify the list of HDFS clusters for a job at job submission 
either implicitly by input/output paths or explicitly. The job client then uses this list to 
reach HDFS and obtain credentials on users’ behalf. Beyond HDFS, communication 
with the TaskTracker for both task heartbeats and shuff le by the reduce tasks is also 
secured through a JobToken-based authentication mechanism.

A mechanism was needed to control who can submit jobs to a specified queue. Jobs 
can be submitted to only those queues the user is authorized to use. For this purpose, 
administrators set up Queue ACLs before the cluster is initialized. Administrators can 
dynamically change a queue’s ACL to allow a specific user or group to access it at run 
time. Specific users and groups, called the cluster administrators and queue administra-
tors, are able to manage the ACL on the queue as well to access or modify any job in 
the queue.

On top of queue-level ACLs, users are allowed to access or modify only their own 
MapReduce jobs or jobs to which others have given them access via Job ACLs. A Job 



Phase 2: Dawn of the Shared Compute Clusters 15

ACL governs two types of job operations: viewing a job and modifying a job. The 
web UI also shows information only about jobs run by the current user or about those 
jobs that are explicitly given access to via Job ACLs.

As one can see, MapReduce clusters acquired a lot of security features over time to 
manage more tenants on the same shared hardware. This [Requirement 6] Secure and 
Auditable Operation must be preserved in YARN.

nn [Requirement 6] Secure and Auditable Operation

The next-generation compute platform should continue to enable secure and 
auditable usage of cluster resources.

Miscellaneous Cluster Management Features
So far, we have described in great detail the evolution of the central JobTracker dae-
mon and the individual nodes. In addition to those, HOD made use of a few other 
useful features in the underlying resource manager such as addition and decommis-
sioning of nodes that needed to be reimplemented in the JobTracker to facilitate cluster 
management. Torque also exposed a functionality to run an arbitrary program that 
could dynamically recognize any issues with specific nodes. To replace this functional-
ity, TaskTrackers would run a similar health-check script every so often and figure 
out if a node had turned bad. This information would eventually reach the JobTracker, 
which would in turn remove this node from scheduling. In addition to taking nodes 
off line after observing their (poor) health status, heuristics were implemented to track 
task failures on each node over time and to blacklist any nodes that failed to complete 
a greater-than-mean number of tasks across jobs.

Evolution of the MapReduce Framework
In addition to the changes in the underlying resource management, the MapReduce 
framework itself went through many changes. New MapReduce APIs were introduced 
in an attempt to fill some gaps in the old APIs, the algorithm for running specula-
tive duplicate JVMs to work around slow tasks went through several iterations, and 
new features like reusing JVMs across tasks for performance were introduced. As the 
MapReduce framework was tied to the cluster management layer, this evolution would 
eventually prove to be difficult.

Issues with Shared MapReduce Clusters
Issues with the shared MapReduce clusters developed over time.

Scalability Bottlenecks
As mentioned earlier, while HDFS had scaled gradually over years, the JobTracker 
had been insulated from those forces by HOD. When that guard was removed, Map-
Reduce clusters suddenly became significantly larger and job throughput increased 
dramatically, but issues with memory management and coarse-grained locking to 
support many of the features added to the JobTracker became sources of significant 
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scalability bottlenecks. Scaling the JobTracker to clusters containing more than about 
4000 nodes would prove to be extremely difficult.

Part of the problem arose from the fact that the JobTracker was keeping in memory 
data from user jobs that could potentially be unbounded. Despite the innumerable 
limits that were put in place, the JobTracker would eventually run into some other 
part of the data structure that wasn’t limited. For example, a user job might generate 
so many counters (which were then not limited) that TaskTrackers would spend all 
their time uploading those counters. The JobTracker’s RPCs would then slow down 
to a grinding halt, TaskTrackers would get lost, resulting in a vicious circle that ended 
only with a downtime and a long wild goose chase for the offending application.

This problem would eventually lead to one of the bigger design points of YARN—
to not load any user data in the system daemons to the greatest extent possible.

The JobTracker could logically be extended to support larger clusters and heteroge-
neous frameworks, if only with significant engineering investments. Heartbeat latency 
could be as high as 200 ms in large clusters, leading to node heartbeat intervals of as 
much as 40 seconds due to coarse-grained locking of its internal data structures. This 
problem could be improved with carefully designed fine-grained locking. The internal 
data structures in the JobTracker were often inefficient but they could be redesigned to 
occupy less memory. Many of the functions of the JobTracker could also be off loaded 
to separate, multitenant daemons. For example, serving the status of historical jobs 
could be—and eventually was—off loaded to the separate service JobHistoryServer. In 
other words, evolution could ideally continue by iterating on the existing code.

Although logical in theory, this scheme proved infeasible in practice. Changes to 
the JobTracker had become extremely difficult to validate. The continuous push for 
ill-thought-out features had produced a working, scalable, but very fragile system. It 
was time to go back to the drawing board for a complete overhaul. Scalability targets 
also anticipated clusters of 6000 machines running 100,000 concurrent tasks from 
10,000 concurrent jobs, and there was no way the JobTracker could support such a 
massive scale without a major rewrite.

Reliability and Availability
While the move to shared clusters improved utilization and locality compared to 
HOD, it also brought concerns for serviceability and availability into sharp focus. 
Instead of losing a single workf low, a JobTracker failure caused an outage that would 
lose all of the running jobs in a cluster and require users to manually resubmit and 
recover their workf lows. Upgrading a cluster by deploying a new version of Hadoop 
in a shared cluster was a rather common event and demanded very careful planning. 
To fix a bug in the MapReduce implementation, operators would necessarily sched-
ule a cluster downtime, shut down the cluster, deploy the new binaries, validate the 
upgrade, and then admit new jobs. Any downtime created a backlog in the processing 
pipelines; when the jobs were eventually resubmitted, they would put a significant 
strain on the JobTracker. Restarts sometimes involved manually killing users’ jobs 
until the cluster recovered.
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Operating a large, multitenant Hadoop cluster is hard. While fault tolerance is a 
core design principle, the surface exposed to user applications is vast. Given the various 
availability issues exposed by the single point of failure, it was critical to continuously 
monitor workloads in the cluster for offending jobs. All of these concerns may be 
grouped under the need for [Requirement 7] Reliability and Availability.

nn [Requirement 7] Reliability and Availability

The next-generation compute platform should have a very reliable user interac-
tion and support high availability.

Abuse of the MapReduce Programming Model
While MapReduce supports a wide range of use-cases, it is not the ideal model for 
all large-scale computations. For example, many machine learning programs require 
multiple iterations over a data set to converge to a result. If one composes this f low as 
a sequence of MapReduce jobs, the scheduling overhead will significantly delay the 
result. Similarly, many graph algorithms are better expressed using a bulk-synchronous 
parallel model (BSP) with message passing to communicate between vertices, rather 
than the heavy, all-to-all communication barrier in a fault-tolerant, large-scale Map-
Reduce job. This mismatch became an impediment to users’ productivity, but the 
MapReduce-centricity in Hadoop allowed no other alternative programming model.

The evolution of the software wired the intricacies of MapReduce so deeply into the 
platform that it took a multiple months’ effort to introduce job-level setup and cleanup 
tasks, let alone an alternative programming model. Users who were in dire need of such 
alternative models would write MapReduce programs that would spawn their custom 
implementations—for example, for a farm of web servers. To the central scheduler, they 
appeared as a collection of map-only jobs with radically different resource curves, caus-
ing poor utilization, potentially resource deadlocks, and instability. If YARN were to be 
the next-generation platform, it must declare a truce with its users and provide explicit 
[Requirement 8] Support for Programming Model Diversity.

nn [Requirement 8] Support for Programming Model Diversity

The next-generation compute platform should enable diverse programming 
models and evolve beyond just being MapReduce-centric.

Resource Model
Beyond their mismatch with emerging framework requirements, the typed slots on the 
TaskTrackers harmed utilization. While the separation between map and reduce capac-
ity on individual nodes (and hence the cluster) prevented cross-task-type deadlocks, it 
also caused bottleneck resources.

The overlap between the map and reduce stages is configured by the user for each 
submitted job. Starting reduce tasks later increases cluster throughput, while starting 
them earlier in a job’s execution reduces its latency. The number of map and reduce 
slots are fixed by the cluster administrators, so unused map capacity can’t be used to 
spawn reduce tasks, and vice versa. Because the two task types can potentially (and 
more often than not do) complete at different rates, no configuration will ever be 
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perfectly ideal. When either slot type becomes completely utilized, the JobTracker is 
forced to apply back-pressure to job initialization despite the presence of available slots 
of the other type. Nonstatic definition of resources on individual nodes complicates 
scheduling, but it also empowers the scheduler to pack the cluster more tightly.

Further, the definition of slots was purely based on jobs’ memory requirements, 
as memory was the scarcest resource for much of this time. Hardware keeps evolv-
ing, however, and there are now many sites where CPU has become the most scarce 
resource, with memory being available in abundance, and the concept of slots doesn’t 
easily accommodate this conundrum of scheduling multiple resources. This highlights 
the need for a [Requirement 9] Flexible Resource Model.

nn [Requirement 9] Flexible Resource Model

The next-generation compute platform should enable dynamic resource configu-
rations on individual nodes and a f lexible resource model.

Management of User Logs
The handling of user logs generated by applications had been one of the biggest sell-
ing points of HOD, but it turned into a pain point for shared MapReduce installations. 
User logs were typically left on individual nodes by the TaskTracker daemon after 
they were truncated, but only for a specific amount of time. If individual nodes died 
or were taken off line, their logs wouldn’t be available at all. Runaway tasks could also 
fill up disks with useless logs, and there was no way to shield other tasks or the system 
daemons from such bad tasks.

Agility
By conf lating the platform responsible for arbitrating resource usage with the frame-
work expressing that program, one is forced to evolve both structures simultaneously. 
While cluster administrators try to improve the allocation efficiency of the platform, it 
is the users’ responsibility to help incorporate framework changes into the new struc-
ture. Thus, upgrading a cluster should not require users to halt, validate, and restore 
their pipelines. But the exact opposite thing happened with shared MapReduce clus-
ters: While updates typically required no more than recompilation, users’ assumptions 
about internal framework details or developers’ assumptions about users’ programs 
occasionally created incompatibilities, wasting more software development cycles.

As stated earlier, HOD was much better at supporting this agility of user applica-
tions. [Requirement 2] Serviceability covered this need for the next-generation com-
pute platform to enable evolution of cluster software completely decoupled from users’ 
applications. 

Phase 3: Emergence of YARN
The JobTracker would ideally require a complete rewrite to fix the majority of the 
scaling issues. Even if it were successful, however, this rewrite would not necessarily 
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resolve the coupling between platform and user code, nor would it address users’ 
appetite for non-MapReduce programming models or the dependency between care-
ful admission control and JobTracker scalability. Absent a significant redesign, cluster 
availability would continue to be tied to the stability of the whole system.

Building on lessons learned by evolving Apache Hadoop MapReduce, YARN was 
designed to address the specific requirements stated so far (i.e., Requirement 1 through 
Requirement 9). However, the massive installed base of MapReduce applications, the 
ecosystem of related projects, the well-worn deployment practice, and a tight schedule 
could not tolerate a radical new user interface. Consequently, the new architecture 
and the corresponding implementation reused as much code from the existing frame-
work as possible, behaved in familiar patterns, and exposed the same interfaces for the 
existing MapReduce users. This led to the final requirement for the YARN redesign: 
[Requirement 10] Backward Compatibility.

nn [Requirement 10] Backward Compatibility

The next-generation compute platform should maintain complete backward 
compatibility of existing MapReduce applications.

To summarize the requirements for YARN, we need the following features:

nn [Requirement 1] Scalability: The next-generation compute platform should 
scale horizontally to tens of thousands of nodes and concurrent applications.

nn [Requirement 2] Serviceability: The next-generation compute platform 
should enable evolution of cluster software to be completely decoupled from 
users’ applications.

nn [Requirement 3] Multitenancy: The next-generation compute platform 
should support multiple tenants to coexist on the same cluster and enable fine-
grained sharing of individual nodes among different tenants.

nn [Requirement 4] Locality Awareness: The next-generation compute plat-
form should support locality awareness—moving computation to the data is a 
major win for many applications.

nn [Requirement 5] High Cluster Utilization: The next-generation compute 
platform should enable high utilization of the underlying physical resources.

nn [Requirement 6] Secure and Auditable Operation: The next-generation 
compute platform should continue to enable secure and auditable usage of cluster 
resources.

nn [Requirement 7] Reliability and Availability: The next-generation com-
pute platform should have a very reliable user interaction and support high 
availability.

nn [Requirement 8] Support for Programming Model Diversity: The next-
generation compute platform should enable diverse programming models and 
evolve beyond just being MapReduce-centric.
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nn [Requirement 9] Flexible Resource Model: The next-generation compute 
platform should enable dynamic resource configurations on individual nodes and 
a f lexible resource model.

nn [Requirement 10] Backward Compatibility: The next-generation compute 
platform should maintain completely backward compatibility of existing Map-
Reduce applications.

Conclusion
That concludes our coverage of the history and rationale for YARN. We hope that it 
gives readers a perspective on the various design and architectural decisions that will 
appear and reappear in the remainder of this book. It should also give an insight into 
the evolutionary process of YARN; every major decision in YARN is backed up by a 
sound, if sometimes gory history.



2
Apache Hadoop YARN Install 

Quick Start

Apache Hadoop presents the user with a vast ecosystem of tools and applications. For 
those familiar with Hadoop version 1, there are two core components; the Hadoop 
Distributed File System and the integrated MapReduce distributed processing engine. 
Hadoop YARN is the new replacement for the monolithic MapReduce component 
found in version 1. The scheduling and resource management have been separated 
from the management of MapReduce pipelines. While Hadoop version 2 with YARN 
still provides full MapReduce capability and backwards compatibility with version 1, 
it also opens the door to many other “application frameworks” that are not based on 
MapReduce processing. 

The acronym YARN is short for “Yet Another Resource Negotiator,” which is a 
good description of what YARN actually does. Fundamentally, YARN is a resource 
scheduler designed to work on existing and new Hadoop clusters. The seemingly 
trivial split of resource scheduling from the MapReduce data f low opens up a whole 
new range of possibilities for Hadoop and Big Data processing. A separate scheduler 
allows for better utilization and scalability of the cluster, while simultaneously provid-
ing a platform for other non-MapReduce applications to take advantage of the Hadoop 
Distributed File System and run-time environment. A more detailed discussion of the 
new Hadoop YARN capabilities can be found in Chapter 3, “Apache Hadoop YARN 
Core Concepts.”

From a larger vantage point, YARN can be viewed as a cluster-wide Operating 
System that provides the essential services for applications to take advantage of a large 
dynamic and parallel resource infrastructure. Applications written in any language can 
now take advantage of the combined Hadoop compute and storage assets within any 
size cluster.

Although motivated by the needs of large clusters, YARN is capable of running on 
a single cluster node or desktop machine. The instructions in this chapter will allow 
you to install and explore Apache Hadoop version 2 with YARN on a single machine.
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Getting Started
A production Apache Hadoop system can take time to set up properly and is not nec-
essary to start experimenting with many of the YARN concepts and attributes. This 
chapter provides a quick start guide to installing Hadoop version Hadoop 2.2.0 on a 
single machine (workstation, server, or a laptop). 

A more complete description of other installation options, such as those required by 
a production cluster setup, is given in Chapter 5, “Installing Apache Hadoop YARN.” 
Before we begin with the quick start, we will mention a few background details that 
will help with installation. These items include rudimentary knowledge of Linux, 
package installation, and basic system administration commands. 

A basic Apache Hadoop version 2 system has two core components:

nn The Hadoop Distributed File System (HDFS) for storing data
nn Hadoop YARN for implementing applications to process data

Other Apache Hadoop components, such as Pig and Hive, can be added after the 
two core components are installed and operating properly. 

Steps to Configure a Single-Node YARN Cluster
The following type of installation is often referred to as “pseudo-distributed” because 
it mimics some of the functionality of a distributed Hadoop cluster. A single machine 
is, of course, not practical for any production use, nor is it parallel. A small-scale 
Hadoop installation can provide a simple method for learning Hadoop basics, however. 

The recommended minimal installation hardware is a dual-core processor with 2 GB 
of RAM and 2 GB of available hard drive space. The system will need a recent Linux 
distribution with Java installed (e.g., Red Hat Enterprise Linux or rebuilds, Fedora, 
Suse Linux Enterprise, OpenSuse, Ubuntu). Red Hat Enterprise Linux 6.3 is used for 
this installation example. A bash shell environment is also assumed. The first step is to 
download Apache Hadoop.

Note that the following commands and files are available for download from the 
book repository; see Appendix A for details.

Step 1: Download Apache Hadoop 
Download the latest distribution from the Hadoop website (http://hadoop.apache.
org/). For example, as root do the following:

# cd /root

# wget http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.2.0/hadoop-

➥2.2.0.tar.gz

Next create and extract the package in /opt/yarn:

http://hadoop.apache.org/
http://hadoop.apache.org/
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# mkdir –p /opt/yarn

# cd /opt/yarn

# tar xvzf /root/hadoop-2.2.0.tar.gz 

Step 2: Set JAVA_HOME
For Hadoop 2, the recommended version of Java can be found at http://wiki.apache.
org/hadoop/HadoopJavaVersions. In general, a Java Development Kit 1.6 (or greater) 
should work. For this install, we will use Open Java 1.6.0_24, which is part of Red 
Hat Enterprise Linux 6.3. Make sure you have a working Java JDK installed; in this 
case, it is the Java-1.6.0-openjdk RPM. To include JAVA_HOME for all bash users (other 
shells must be set in a similar fashion), make an entry in /etc/profile.d as follows:

# echo "export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/" > /etc/ 
➥profile.d/java.sh

To make sure JAVA_HOME is defined for this session, source the new script:

# source /etc/profile.d/java.sh

Step 3: Create Users and Groups
It is best to run the various daemons with separate accounts. Three accounts (yarn, 
hdfs, mapred) in the group hadoop can be created as follows:

# groupadd hadoop

# useradd -g hadoop yarn

# useradd -g hadoop hdfs

# useradd -g hadoop mapred

Step 4: Make Data and Log Directories
Hadoop needs various data and log directories with various permissions. Enter the fol-
lowing lines to create these directories:

# mkdir -p /var/data/hadoop/hdfs/nn

# mkdir -p /var/data/hadoop/hdfs/snn

# mkdir -p /var/data/hadoop/hdfs/dn

# chown hdfs:hadoop /var/data/hadoop/hdfs –R

# mkdir -p /var/log/hadoop/yarn

# chown yarn:hadoop /var/log/hadoop/yarn -R

Next, move to the YARN installation root and create the log directory and set the 
owner and group as follows:

# cd /opt/yarn/hadoop-2.2.0 

# mkdir logs

# chmod g+w logs

# chown yarn:hadoop . -R

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://wiki.apache.org/hadoop/HadoopJavaVersions
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Step 5: Configure core-site.xml 
From the base of the Hadoop installation path (e.g., /opt/yarn/hadoop-2.2.0), 
edit the etc/hadoop/core-site.xml file. The original installed file will have no 
entries other than the <configuration> </configuration> tags. Two properties 
need to be set. The first is the fs.default.name property, which sets the host and 
request port name for the NameNode (metadata server for HDFS). The second is 
hadoop.http.staticuser.user, which will set the default user name to hdfs. Copy 
the following lines to the Hadoop etc/hadoop/core-site.xml file and remove the 
original empty <configuration> </configuration> tags. 

<configuration>

       <property>

               <name>fs.default.name</name>

               <value>hdfs://localhost:9000</value>

       </property>

       <property>

               <name>hadoop.http.staticuser.user</name>

               <value>hdfs</value>

       </property>

</configuration>

Step 6: Configure hdfs-site.xml
From the base of the Hadoop installation path, edit the etc/hadoop/hdfs-site.xml 
file. In the single-node pseudo-distributed mode, we don’t need or want the HDFS to 
replicate file blocks. By default, HDFS keeps three copies of each file in the file system 
for redundancy. There is no need for replication on a single machine; thus the value of 
dfs.replication will be set to 1. 

In hdfs-site.xml, we specify the NameNode, Secondary NameNode, and Data-
Node data directories that we created in Step 4. These are the directories used by the 
various components of HDFS to store data. Copy the following lines into Hadoop 
etc/hadoop/hdfs-site.xml and remove the original empty <configuration> 
</configuration> tags. 

<configuration>

 <property>

   <name>dfs.replication</name>

   <value>1</value>

 </property>

 <property>

   <name>dfs.namenode.name.dir</name>

   <value>file:/var/data/hadoop/hdfs/nn</value>

 </property>

 <property>

   <name>fs.checkpoint.dir</name>

   <value>file:/var/data/hadoop/hdfs/snn</value>

 </property>
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 <property>

   <name>fs.checkpoint.edits.dir</name>

   <value>file:/var/data/hadoop/hdfs/snn</value>

 </property>

 <property>

   <name>dfs.datanode.data.dir</name>

   <value>file:/var/data/hadoop/hdfs/dn</value>

 </property>

</configuration>

Step 7: Configure mapred-site.xml
From the base of the Hadoop installation, edit the etc/hadoop/mapred-site.xml file. 
A new configuration option for Hadoop 2 is the capability to specify a framework 
name for MapReduce, setting the mapreduce.framework.name property. In this install, 
we will use the value of “yarn” to tell MapReduce that it will run as a YARN appli-
cation. First, copy the template file to the mapred-site.xml. 

# cp mapred-site.xml.template mapred-site.xml

Next, copy the following lines into Hadoop etc/hadoop/mapred-site.xml file and 
remove the original empty <configuration> </configuration> tags. 

<configuration>

<property>

   <name>mapreduce.framework.name</name>

   <value>yarn</value>

 </property>

</configuration>

Step 8: Configure yarn-site.xml
From the base of the Hadoop installation, edit the etc/hadoop/yarn-site.xml file. 
The yarn.nodemanager.aux-services property tells NodeManagers that there will 
be an auxiliary service called mapreduce.shuffle that they need to implement. After 
we tell the NodeManagers to implement that service, we give it a class name as the 
means to implement that service. This particular configuration tells MapReduce how 
to do its shuff le. Because NodeManagers won’t shuff le data for a non-MapReduce job 
by default, we need to configure such a service for MapReduce. Copy the following 
lines to the Hadoop etc/hadoop/yarn-site.xml file and remove the original empty 
<configuration> </configuration> tags. 

<configuration>

<property>

   <name>yarn.nodemanager.aux-services</name>

   <value>mapreduce_shuffle</value>

 </property>

 <property>

   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
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   <value>org.apache.hadoop.mapred.ShuffleHandler</value>

 </property>

</configuration>

Step 9: Modify Java Heap Sizes
The Hadoop installation uses several environment variables that determine the heap 
sizes for each Hadoop process. These are defined in the etc/hadoop/*-env.sh files 
used by Hadoop. The default for most of the processes is a 1 GB heap size; because 
we’re running on a workstation that will probably have limited resources compared to 
a standard server, however, we need to adjust the heap size settings. The values that 
follow are adequate for a small workstation or server. 

Edit the etc/hadoop/hadoop-env.sh file to ref lect the following (don’t forget to 
remove the “#” at the beginning of the line):

HADOOP_HEAPSIZE="500"

HADOOP_NAMENODE_INIT_HEAPSIZE="500"

Next, edit mapred-env.sh to ref lect the following:

HADOOP_JOB_HISTORYSERVER_HEAPSIZE=250

Finally, edit yarn-env.sh to ref lect the following:

JAVA_HEAP_MAX=-Xmx500m 

The following line will need to be added to yarn-env.sh:

YARN_HEAPSIZE=500

Step 10: Format HDFS
For the HDFS NameNode to start, it needs to initialize the directory where it 
will hold its data. The NameNode service tracks all the metadata for the file sys-
tem. The format process will use the value assigned to dfs.namenode.name.dir in 
etc/hadoop/hdfs-site.xml earlier (i.e., /var/data/hadoop/hdfs/nn). Format-
ting destroys everything in the directory and sets up a new file system. Format the 
NameNode directory as the HDFS superuser, which is typically the “hdfs” user 
account.

From the base of the Hadoop distribution, change directories to the “bin” direc-
tory and execute the following commands:

# su - hdfs

$ cd /opt/yarn/hadoop-2.2.0/bin

$ ./hdfs namenode -format

If the command worked, you should see the following near the end of a long list of 
messages:

INFO common.Storage: Storage directory /var/data/hadoop/hdfs/nn has been  

➥successfully formatted.
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Step 11: Start the HDFS Services
Once formatting is successful, the HDFS services must be started. There is one ser-
vice for the NameNode (metadata server), a single DataNode (where the actual data 
is stored), and the SecondaryNameNode (checkpoint data for the NameNode). The 
Hadoop distribution includes scripts that set up these commands as well as name other 
values such as PID directories, log directories, and other standard process configura-
tions. From the bin directory in Step 10, execute the following as user hdfs:

$ cd ../sbin

$ ./hadoop-daemon.sh start namenode 

The command should show the following:

starting namenode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-namenode-

➥limulus.out

The secondarynamenode and datanode services can be started in the same way:

$ ./hadoop-daemon.sh start secondarynamenode

starting secondarynamenode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs- 

➥secondarynamenode-limulus.out 

$ ./hadoop-daemon.sh start datanode

starting datanode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-datanode- 

➥limulus.out 

If the daemon started successfully, you should see responses that will point to the 
log file. (Note that the actual log file is appended with “.log,” not “.out.”). As a sanity 
check, issue a jps command to confirm that all the services are running. The actual 
PID ( Java Process ID) values will be different than shown in this listing:

$ jps

15140 SecondaryNameNode

15015 NameNode

15335 Jps

15214 DataNode

If the process did not start, it may be helpful to inspect the log files. For instance, 
examine the log file for the NameNode. (Note that the path is taken from the preced-
ing command.)

vi /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-namenode-limulus.log

All Hadoop services can be stopped using the hadoop-daemon.sh script. For 
example, to stop the datanode service, enter the following (as user hdfs in the 
/opt/yarn/hadoop-2.2.0/sbin directory):

$ ./hadoop-daemon.sh stop datanode

The same can be done for the NameNode and SecondaryNameNode.
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Step 12: Start YARN Services
As with HDFS services, the YARN services need to be started. One Resource Manager 
and one NodeManager must be started as user yarn (exiting from user hdfs first):

$ exit

logout

# su - yarn

$ cd /opt/yarn/hadoop-2.2.0/sbin

$ ./yarn-daemon.sh start resourcemanager

starting resourcemanager, logging to /opt/yarn/hadoop-2.2.0/logs/yarn-yarn-

➥resourcemanager-limulus.out 

$ ./yarn-daemon.sh start nodemanager

starting nodemanager, logging to /opt/yarn/hadoop-2.2.0/logs/yarn-yarn-

➥nodemanager-limulus.out 

As when the HDFS daemons were started in Step 1, the status of the running dae-
mons is sent to their respective log files. To check whether the services are running, 
issue a jps command. The following shows all the services necessary to run YARN 
on a single server: 

$ jps

15933 Jps

15567 ResourceManager

15785 NodeManager

If there are missing services, check the log file for the specific service. Similar to 
the case with HDFS services, the services can be stopped by issuing a stop argument to 
the daemon script:

./yarn-daemon.sh stop nodemanager

Step 13: Verify the Running Services Using the Web Interface
Both HDFS and the YARN ResourceManager have a web interface. These interfaces 
are a convenient way to browse many of the aspects of your Hadoop installation. To 
monitor HDFS, enter the following (or use your favorite web browser):

$ firefox  http://localhost:50070

Connecting to port 50070 will bring up a web interface similar to Figure 2.1.
A web interface for the ResourceManager can be viewed by entering the following:

$ firefox http://localhost:8088

A webpage similar to that shown in Figure 2.2 will be displayed. 
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Figure 2.2 Webpage for YARN ResourceManager

Figure 2.1 Webpage for HDFS file system 
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Run Sample MapReduce Examples
To test your installation, run the sample “pi” program that calculates the value of pi 
using a quasi-Monte Carlo method and MapReduce. Change to user hdfs and run the 
following:

# su - hdfs

$ cd /opt/yarn/hadoop-2.2.0/bin

$ export YARN_EXAMPLES=/opt/yarn/hadoop-2.2.0/share/hadoop/mapreduce

$ ./yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar pi 16 1000

If the program worked correctly, the following should be displayed at the end of the 
program output stream:

Estimated value of Pi is 3.14250000000000000000

This example submits a MapReduce job to YARN from the included samples in 
the share/hadoop/mapreduce directory. The master JAR file contains several sample 
applications to test your YARN installation. After you submit the job, its progress can 
be viewed by updating the ResourceManager webpage shown in Figure 2.2. 

You can get a full list of examples by entering the following:

./yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar

To see a list of options for each example, add the example name to this command. The 
following is a list of the included jobs in the examples JAR file.

nn aggregatewordcount: An Aggregate-based map/reduce program that counts 
the words in the input files.

nn aggregatewordhist: An Aggregate-based map/reduce program that computes 
the histogram of the words in the input files.

nn bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute the 
exact digits of pi.

nn dbcount: An example job that counts the pageview counts from a database.
nn distbbp: A map/reduce program that uses a BBP-type formula to compute the 

exact bits of pi.
nn grep: A map/reduce program that counts the matches to a regex in the input.
nn join: A job that effects a join over sorted, equally partitioned data sets.
nn multifilewc: A job that counts words from several files.
nn pentomino: A map/reduce tile laying program to find solutions to pentomino 

problems.
nn pi: A map/reduce program that estimates pi using a quasi-Monte Carlo method.
nn randomtextwriter: A map/reduce program that writes 10 GB of random tex-

tual data per node.
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nn randomwriter: A map/reduce program that writes 10 GB of random data per 
node.

nn secondarysort: An example defining a secondary sort to the reduce.
nn sort: A map/reduce program that sorts the data written by the random writer.
nn sudoku: A Sudoku solver.
nn teragen: Generate data for the terasort.
nn terasort: Run the terasort.
nn teravalidate: Check the results of the terasort.
nn wordcount: A map/reduce program that counts the words in the input files.
nn wordmean: A map/reduce program that counts the average length of the words 

in the input files.
nn wordmedian: A map/reduce program that counts the median length of the 

words in the input files.
nn wordstandarddeviation: A map/reduce program that counts the standard 

deviation of the length of the words in the input files.

Some of the examples require files to be copied to or from HDFS. For those unfa-
miliar with basic HDFS operation, an HDFS quick start is provided in Appendix F. If 
you were able to complete the preceding steps, you should now have a fully function-
ing Apache Hadoop YARN system running in pseudo-distributed mode. 

Wrap-up
With a working installation of YARN, the concepts, examples, and applications found 
in this book can be explored further without the need for a large production cluster. 
Keep in mind that many aspects of the configuration were simplified for this single-
machine installation. In particular, a single workstation/server install does not have a 
true parallel HDFS or parallel MapReduce environment. Additional production instal-
lation scenarios are provided in Chapter 5, “Installing Apache Hadoop YARN.”
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Environment variables, 204
Environment.JAVA_HOME.$(), 204
EPEL (Extra Packages for Enterprise Linux)

Nagios installation, 90
scripted Hadoop 2 install, 60–61

Expiry time, ContainerAllocation- 
Expirer, 123

Expiry timestamp field, ContainerTokens, 125
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F
Failures

ApplicationMaster, 146, 182
container, 146

Fair scheduler
under development, 48
evolution of shared clusters, 11–12
overview of, 47–48

Fault tolerance, of MapReduce with  
YARN, 181

FIFO (first in, first out) scheduler, 46–47, 155
File-based mode, scripted Hadoop 2 install, 64
File-system URLs, container environment, 148
FILE type, 55–56
Files, listing in HDFS quick reference, 

282–283
Finish API, ApplicationMaster, 147
FinishApplicationMasterRequest, 240
FinishApplicationRequest, Application-

Master, 147
Flexible Resource Model, requirements for 

YARN, 18–19
FQDN

Ambari Hadoop 2 install issues, 83
configuring Ambari-Agent ini file, 74
scripted Hadoop 2 install, 61–62
starting Ambari server, 74

Frameworks, YARN
Apache Giraph, 242–243
Apache Spark, 244
Apache Storm, 244–245
Apache Tez, 242
distributed shell, 241
Dryad on YARN, 243–244
end-user interactions with, 116
Hadoop MapReduce, 241–242
Hamster, 245
Hoya: HBase on YARN, 243
REEF, 245

FSCK, performing in HDFS quick refer-
ence, 281

G
Ganglia

managed by Ambari, 72, 99
real-time monitoring with, 97–98

Generations, JVM processes, 103–104
GetNewApplicationResponse, 198–201
Giraph framework, 242–243
gmetad daemon, Ganglia, 97–98
gmond daemon, Ganglia, 97–98
Google’s Pregel, Giraph based on, 242
Granular scheduling, Capacity scheduler sup-

porting, 154–155
Groups, quick-start YARN install, 23

H
HA (high availability), NameNode, 60
Hadoop. See also Scripted Hadoop 2 

uninstallation
core components of version 1, 21
download from website, 22–23
evolution of, 2–3
installation. See Installation, YARN
introduction to. See http://yarn-book.com 
Phase 0, era of ad hoc clusters, 3
Phase 1, Hadoop on Demand. See 

Hadoop on Demand (HOD)
Phase 2, shared clusters. See Shared 

clusters
Phase 3, emergence of YARN, 18–20
review summary, 20
scripted Hadoop 2 uninstallation, 68
YARN. See YARN

hadoop-cluster.cfg f ile, monitoring, 93–95
Hadoop on Demand (HOD)

development of, 3
evolution of shared clusters vs., 9–14
features and advantages of, 6–7
HDFS in, 5
overview of, 3–5
shortcomings of, 7–9

hadoop-xml-conf.sh script
code, 258–261
XML file processing, 68, 86

HADOOP_HOME variable, scripted Hadoop 2 
install, 63–64

hadoop.http.staticuser.user property, 
quick-start YARN install, 24

HADOOP_VERSION variable, scripted Hadoop 2 
install, 63–64

Hamster, 245

http://yarn-book.com
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Hard drive space, YARN installation, 22
Hardware, YARN installation, 22
hdfs-default.xml f ile, 106
HDFS (Hadoop Distributed File System)

ad hoc clusters and, 3
advancements in Phase 2, 10
as core component, 21–22
format during YARN install, 26
in HOD, 5
improvements to, 60
quick reference, 279
scripted Hadoop 2 install, 65, 67
security credentials, 14
shared, 4–5
starting services during YARN install, 27
uploading container libraries to, 234

HDFS (Hadoop Distributed File System) 
quick reference

copy files from, 284
copy files to, 283–284
copy files within, 285
decommissioning nodes, 285–286
delete directory in, 285
delete file within, 285
general commands, 281–282
getting status report, 280
list f iles, 282–283
make directory, 283
performing FSCK, 281
quick command reference, 279–280
starting HDFS web GUI and, 280

hdfs-site.xml f ile
quick-start YARN install, 24–25
scripted Hadoop 2 install, 69

HDP 2.0 (Hortonworks Data Platform), 
Ambari Automated Install, 73, 75–84

Heap dumps, analyzing JVM, 104–105
Heap sizes, modifying JAVA for YARN 

install, 26
Heartbeats to ResourceManager

ApplicationMaster container allocation, 52
ApplicationMaster liveliness monitor, 121, 

139–140
ApplicationMaster scheduling, 140–141
ApplicationMaster sending, 50
NodeManager sending, 50
with Resource Tracker Service, 121–122

Heatmaps window, Ambari dashboard, 
99–100

Hierarchical queues
Capacity scheduler, 156–159
Fair scheduler, 49

High availability (HA), NameNode, 60
High Cluster Utilization, 8, 19
High-performance computing (HPC), 

Hamster, 245
Hive, 60, 187
HOD (Hadoop on Demand)

advantages of, 6–7
HDFS and, 5
moving to shared clusters from, 10–15
overview of, 3–5
shortcomings and retirement of, 7–9

HODRings, 4
Hosts

Ambari dashboard, 101–102
Ambari Hadoop 2 install, 77, 79
Nagios group definition, 90–91
scripted Hadoop 2 install, 64

Hoya: HBase on YARN framework, 243
Httpd services, configuring Nagios, 90

I
Info operation, multiple concurrent clusters, 6
init method

ApplicationMaster initialization,  
211–212, 237

developing ApplicationMaster, 210
running ApplicationMaster, 213–215
YARN client initialization, 196–198

init scripts
monitoring Hadoop services, 92
starting Hadoop, 71, 87

Initialization
writing ApplicationMaster script, 211–213
writing YARN client script, 196–198

Input/output paths, containers, 148
install-hadoop2.sh script

code for, 249–256
scripted Hadoop 2 install, 63

Install quick start, YARN
configuring core-site.xml, 24
configuring hdfs-site.xml, 24–25
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Install quick start, YARN (continued)
configuring mapred-site.xml, 25
configuring yarn-site.xml, 25–26
creating users and groups, 23
downloading Apache Hadoop, 22–23
formatting HDFS, 26
getting started, 22
HDFS services, 27
making data and log directories, 23
minimal requirements, 22
modifying Java heap sizes, 26
overview of, 21
setting JAVA_HOME, 23
testing with sample MapReduce 

examples, 30–31
verify running services using web inter-

face, 28–29
wrap-up, 31
YARN services, 28

Installation scripts
code download page for, 247
hadoop-xml-conf.sh, 258–261
install-hadoop2.sh, 249–256
uninstall-hadoop2.sh, 256–258

Installation, YARN
with Ambari. See Ambari installation
basics, 59–60
by downloading from ASF site, 59
improvements other than YARN, 60
overview of, 59
from scratch. See Install quick start, YARN
scripted. See Scripted Hadoop 2 installation
scripted uninstallation, 68
system preparation, 60–62
troubleshooting. See http://yarn-book.com

Instances, HDFS, 3
Interactive mode, scripted Hadoop 2 install, 64
Interface, Capacity scheduler, 169
IPC address, ApplicationMaster and, 139
Iptables, configuring Nagios, 90
Isolation on individual nodes, and shared 

clusters, 12–13

J
JAR file

testing YARN installation, 30–31

writing ApplicationMaster, 221–223
writing YARN client, 202–203

Java for YARN install, 22, 26
Java Virtual Machine ( JVM)

analysis, 103–105
evolution of MapReduce framework, 15
monitoring, 95–97

JAVA_HOME

quick start YARN install, 23
scripted Hadoop 2 install, 63, 64

JBoss AS ( JBoss application server) cluster. 
See Application development example, 
YARN

JDK ( Java Development Kit)
installing Ambari server, 73
quick-start YARN install, 23
scripted Hadoop 2 install, 59, 62, 64

jhat utility, analyzing JVM heat dumps, 
104–105

jmap tool, analyzing memory usage, 104
Job ACLs, 14–15
JobHistoryServer

managing completed jobs, 11
in MapReduce version 2, 182
storing MapReduce history, 108

Jobs
authentication and access control, 14–15
Capacity scheduler for, 11–12
isolation on individual nodes, 12–13
JobTracker memory management for, 10
management of completed, 11
managing MapReduce, 109
managing YARN, 109–110
recovery and upgrades, 12
scripted Hadoop 2 install, 65, 67
user log management, 111

JobToken-based authentication, 14
JobTracker

ApplicationMaster replacing in ver- 
sion 2, 182

Hadoop on Demand and, 4–5, 7
MapReduce shared clusters using, 9–13, 

15–18
reworking in YARN, 18–19
YARN process f low, 36–38

JVM ( Java Virtual Machine)
analysis, 103–105

http://yarn-book.com


295Index

evolution of MapReduce framework, 15
monitoring, 95–97

K
Kerberos, 14, 119
Kill events, client application life cycle, 53
-kill, yarn application command, 

109–110

L
launch_container.sh f ile

in Distributed-Shell application, 230–231
writing ApplicationMaster, 224–225

Launching containers
ApplicationMaster, 145–146
NodeManager, 137

Leaf queues
defined, 157
enforcing fairness with user limits, 

163–166
naming queues in Capacity scheduler, 159
scheduling, 157–158
stopping/restarting, 167–168

Libraries, uploading container libraries to 
HDFS, 234

Life cycle
client application, 50–53
LocalResources, 57
NodeManager overseeing container, 49
YARN service, 214–215

Limits, Capacity scheduler, 168–169
Linux file system, Hadoop 2 installation, 59
linux-server template, Nagios, 90
LinuxTaskController, 14
List files, HDFS quick start, 282–283
List operation, HOD, 6
-list, yarn application command, 

109–110
Liveliness monitor

ApplicationMaster, 121, 139–140
NodeManager, 122

LocalCache, LocalResources, 55–56
Locality

Hadoop on Demand issues, 7–8
ResourceRequest constraints, 144

Locality Awareness
of Capacity scheduler, 155
as key requirement for YARN, 8, 19

Localization
LocalResources, 54
NodeManager, 131–133
resource localization service, 130–131

Localizer, LocalResources, 55
LocalResources

adding to AM container, 235 
definitions, 54–55
initializing metadata for, 237
lifetime of, 57
localization of PRIVATE/APPLICATION 

resources, 132–133
localization of PUBLIC resources, 

131–132
managing application dependencies, 

53–54
modifying ApplicationMaster code, 

235–237
managing with Client class, 233–234
resource localization service, 131
submitting application to YARN, 

202–204
target locations of, 133
timestamps, 55
types, 55–56
visibilities, 56–57
writing ApplicationMaster, 221–222

LogHandler, ContainerManager, 136
Logs

administration and configuration, 
112–113

aggregated output, 89–90
aggregation in YARN, 111
command-line utility interacting  

with, 112
container environment, 148
in Hadoop on Demand, 6
NodeManager overseeing, 49, 137
permissions, 113
quick-start YARN install, 23, 27
scripted Hadoop 2 install, 65
web user interface and, 112

Loss of information issue, ResourceRequests, 
142–143
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M
Macros, Nagios, 94–95
Main method, writing YARN client, 

193–194
Map, Hadoop on Demand, 4–5
Map slots

in earlier Hadoop versions, 50
Fair scheduler departure from, 48
YARN departure from, 45

mapred-default.xml f ile, 106
mapred job command, 109
mapred-site.xml f ile

calculating node capacity, 182–183
quick-start YARN install, 25
scripted Hadoop 2 install, 69
setting MapReduce properties, 110–111

MapReduce
Apache Tez framework and, 60
evolution of shared clusters. See Shared 

clusters, evolution of MapReduce
MapReduce (MRv1)

abuse of, 17
basic structure of, 33–34
compatibility of MRv2 applications with, 

184–186
death of JobTracker in, 182
evolution of, 15
Hadoop on Demand issues, 7–9
process f low, 35–37
running existing code, 187–188
shared cluster issues, 15–18

MapReduce with YARN (MRv2)
ApplicationMaster failures and recov- 

ery, 182
basic structure, 34–35
calculating node capacity, 182–184
compatibility, 181–182
configuration file, 69–70
debugging with user logs, 111
defined, 21
features, 241–242
JobHistoryServer, 108
LocalResource timestamps, 55
managing jobs, 109
need for non-MapReduce workloads, 37
overview of, 171
paradigm, 35

setting properties, 110–111
shuff le service, 137, 184
untested features, 188–189
user agility, 38

MapReduce with YARN (MRv2), running 
existing examples

monitoring examples with web GUI, 
174–179

overview of, 171–172
pi example, 172–174
terasort benchmark, 180
TestDFSIO benchmark, 180–181
testing quick start installation, 30–31
version 1 applications, 184–186
version 1 existing code, 187–188

mapreduce.framework.name property, quick-
start YARN install, 25

Master key identifier field, Container-
Tokens, 125

master_memory, submitting application to 
YARN, 202

Maui, 4, 7–8
Memory

analyzing usage on running application, 104
Capacity scheduler for applications with 

high, 47
isolation on individual nodes and, 12–13
issues of MapReduce shared clusters, 18
managing JobTracker, 10
setting for containers, 110
submitting application to YARN, 202, 206

Message Passing Interface (MPI), 245
Metadata
code for storing shell script metadata in 

containers, 235
for DSConstants class, 232
initializing for local resources, 237
Metrics dashboard, Ambari, 72
minimum-user-limit-percent property, 

capacity management, 164–165
Monitoring

Ambari server, 72
basic Hadoop services, 92–95
cluster health with Nagios, 90–92
JVM, 95–97
MapReduce examples with web GUI, 

174–179
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real-time with Ganglia, 97–98
YARN applications, 206–208

MPI (Message Passing Interface), 245
MPICH2, 245
Multitenancy

Capacity scheduler support for, 154
Hadoop on Demand and, 3–4, 7
requirements for YARN, 19

N
Nagios

Ganglia monitoring versus, 97–98
managed by Ambari, 99
monitoring cluster health, 90–92
monitoring Hadoop services, 92–95

Nagios modules
check_data_node.sh, 271–272
check_resource_manager_old_space_ 

pct.sh, 272–275
check_resource_manager.sh, 269–271
code download, 247

Nagios Remote Plugin Executor (NRPE), 
93–95

NameNode
federation, 60
HA (high availability), 60
quick-start YARN install, 24, 26–27
scripted Hadoop 2 install, 64–65

Naming conventions
hierarchical queues, 158–159
scripted Hadoop 2 install, 64

Network partitions, application coordination 
issues, 147

New generation, JVM processes, 103–104
NMToken SecretManager, 126–127, 136
Node Health CheckerService component, 136
Node-level isolation, 12–13
NodeManager

Ambari Hadoop 2 install with, 80
ApplicationMaster communication path-

way with, 208–210
client application life cycle and, 51–52
interaction of containers with, 149–150
interaction of nodes with Resource 

Manager, 121–122
launching containers, 38, 145, 220–221

liveliness monitor, 122
LocalResources, 55–56
monitoring, 94
overview of, 49–50
as per-machine slave, 38
quick-start YARN install with, 25–26
ResourceManager working with, 117
ResourceRequests and, 46
responsibilities of, 43–44
SecretManager ContainerTokens and, 

124–126
user log management, 111
YARN control elements, 38–39

NodeManager architecture
Container Executor component, 136
ContainerManager component, 130–136
important functions of, 137
Node Health CheckerService compon-

ent, 136
NodeStatusUpdater component, 129–130
overview, 117
overview of components, 128–129
responsibilities of, 127–128
security components, 136

Nodes
adding/decommissioning, 15, 107–108
Administration Service refreshing, 119
Ambari Hadoop 2 install, 76
calculating capacity of, 182–184
Capacity scheduler reservations on, 166–167
integrating scripts with services manage-

ment, 71
interaction with Resource Manager, 121–122
scripted Hadoop 2 install, 62, 64

Nodes-list manager, 122
Nodes status window, Hadoop, 175
NodeStatusUpdater component, 129–130
Non-MapReduce workf lows, 33–35, 37
NRPE (Nagios Remote Plugin Executor), 

93–95
number of containers, ResourceRequest, 41

O
Old generation, JVM processes, 103–104
Online resources

and additional information, 277–278
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Online resources (continued)
Apache Giraph, 243
Apache Spark framework, 244
Apache Storm framework, 245
Apache Tez, 242
available code downloads, 247
Capacity scheduler configuration, 108
currently running scheduler, 46
Dryad on YARN, 243–244
Hadoop website, 22
HDFS options in Hadoop 2, 60
HDFS quick reference, 279
Hoya: HBase on YARN framework, 243
Java for YARN install, 23
most recent version of Hadoop, 62
MPICH2, 245
Nagios, 90
Parallel Distributed Shell, 60
REEF framework, 245

OpenJDK path, scripted Hadoop 2 install, 63
OpenSSH package, scripted Hadoop 2 

install, 61–62
Options class, command-line options, 196
org.apache.hadoop.mapred APIs, 184–185
org.apache.hadoop.mapreduce APIs, 183
Output commit, ApplicationMaster, 146–147

P
Parallel Distributed Shell, 60–62
Parallel map phase. See also Map slots, 35
Parent queues

defined, 157
naming in Capacity scheduler, 159
scheduling, 157–158
stopping/restarting, 167–168

Passwords
Ambari user database, 81
configuring secure shell without, 61, 73–74
developing YARN ApplicationMaster, 

209, 211–212
setting Nagios, 91
submitting application to YARN, 200, 205
YARN client initialization, 198
YARN client main method, 193, 195–196

Path name, Capacity scheduler queues, 156

PATTERN type, LocalResource as, 56
pdcp tool

defined, 60
installing Ambari agents, 74
script-based configuration, 86

pdsh tool
defined, 60
installing Ambari agents, 74
installing Ganglia, 97
script-based configuration, 87
scripted Hadoop 2 install, 60–62

Performance, Hadoop, 35
Permanent generation, JVM processes, 103–104
Permissions

HDFS, 3
log, 113
shared cluster, 14
writing ApplicationMaster, 223

Phases. See YARN, history of
pi example, 172–174
pid directories, scripted Hadoop 2 install, 65
Pig, 60, 187
Platform, YARN, 115–116
Plug-ins, Nagios, 90
Pluggable scheduler, ResourceManager, 40
Pluggable shuff le and sort, 188–189
Policies

Capacity scheduler scheduling, 155
reloading service-level authorization, 109

Ports, writing ApplicationMaster, 222–223
Pregel, 242
Priorities, MapReduce with YARN applica-

tion, 181
Priority, ResourceRequests

defined, 41, 142
example, 144
submitting application to YARN, 206

PRIVATE LocalResources, 56, 132–133
Programming Model Diversity, 17
Properties

adding/decommissioning YARN nodes, 
107–108

ApplicationMaster, 222
Capacity scheduler, 108
log administration and configuration, 

112–113
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MapReduce, 110–111
queues in Capacity scheduler, 156
quick-start YARN install, 24, 25
refreshing ACLs for ResourceManager 

administration, 109
refreshing superuser proxy groups map-

pings, 109
refreshing user-to-groups mappings, 108
scripted Hadoop 2 install for MapReduce, 

69–70
YARN WebProxy, 108

Proxy groups mappings, refreshing super-
user, 109

Proxy servers, Web Application Proxy, 108
Pseudo-distributed installation, 22
PUBLIC LocalResources, 56, 131–133

Q
QJM (Quorum Journal Manager), 60
Queue access control, Capacity scheduler, 

159–160
Queue ACLs, 14
Queue paths, Capacity scheduler, 158
Queues

Administration Service refreshing, 119
Capacity scheduler. See Capacity 

scheduler
controlling who can submit jobs to spe-

cific, 14
defined, 156
Fair scheduler, 48–49
FIFO scheduler, 46–47
scheduling jobs with, 11–12
submitting application to YARN, 206

Quick command reference, HDFS quick ref-
erence, 279–280

R
radmin utility

adding new queues at runtime, 159
warning messages when executing, 185

RAM, YARN installation requirements, 22
Recovery

ApplicationMaster, 146, 182

enabling for completed tasks, 182
evolution of shared clusters, 12

Red Hat (RPM-based installation)
defined, 60
Nagios, 90
scripted Hadoop 2, 60–62
single-node YARN server configuration, 

22–23
Reduce slots

MapReduce, 35
static allocation in earlier Hadoop ver-

sions, 50
REEF (Retainable Evaluator Execution 

Framework), 245
RegionServers, Ambari Hadoop 2 install, 80
Registration, ApplicationMaster, 139
relaxLocality f lag, ResourceRequests, 142
Reliability and Availability, YARN require-

ments, 17, 19
Reliability, MapReduce shared cluster issues, 

16–17
Remote procedure calls. See RPCs (remote 

procedure calls)
Reservations, Capacity scheduler, 166–167
Reserved container, Fair scheduler, 48–49
Resource allocation model, 50
Resource capability, ResourceRequests, 142
Resource container, scheduler, 38–39
Resource field, ContainerTokens, 124
Resource localization service

configuring, 133–135
ContainerManager, 130–131
process of, 131–133

Resource location, ResourceRequests, 142
Resource management

client application life cycle, 50–53
Hadoop on Demand, 4–7
moving to shared clusters from, 9
YARN providing, 35–39

Resource Manager, Hadoop on Demand, 
4–5, 9

resource-name, ResourceRequest, 41
resource-requirement, ResourceRequest, 41
Resource requirements, ApplicationMaster, 140
Resource scheduler, YARN as, 21
Resource Tracker Service, 121–122
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Resource usage, NodeManager overseeing, 49
ResourceLocalizationService, Local-

Resources, 55
ResourceManager

adding/decommissioning YARN nodes, 
107–108

ApplicationMaster’s communication path-
way with, 208–210

client application life cycle, 51–53
failures affecting cluster availability, 46
features of, 39–40
granting ResourceRequest, 41
overview of, 45–46
refreshing ACLs, 109
registering ApplicationMaster with,  

215, 237
responsibilities of, 43–44
scheduling containers, 49
tasks not responsible for, 46
YARN control elements, 38–39

ResourceManager architecture
application interaction with, 120–121
architectural overview, 117
client interaction with, 118–120
components, 117–118
core components, 122–123
defined, 117
node interaction with, 121–122
overview of components, 117–118
security-related components, 123–127

ResourceManagerAdministrationProtocol, 
Administration Service, 119

ResourceRequests
issued by ApplicationMaster, 44, 141–143
locality constraints, 144
loss of information issue, 142–143
scheduling example, 143–144
as strict or negotiable, 46

Resources
Capacity scheduler limits/overriding 

limits on, 168–169
Capacity scheduler support for, 154
features of YARN model, 41
issues of MapReduce shared clusters, 17–18
submitting application to YARN, 206

Retainable Evaluator Execution Framework 
(REEF), 245

Review window, Ambari, 82
RingMaster, HOD architecture, 4
RMDelegationToken SecretManager, 127
ROOT queue, hierarchical

defined, 157
naming in Capacity scheduler, 158–159
scheduling among queues, 157–158
stopping/restarting, 167–168

RPC server, ContainerManager, 130
RPCs (remote procedure calls)

ApplicationMasters service, 120
Client Service, 119
management of completed jobs, 11

RPM-based installation. See Red Hat 
(RPM-based installation)

RUNNING state, queues, 167–168

S
Scalability

with ApplicationMaster, 40
authentication and access control, 14–15
building share compute platform with, 1
evolution of Apache Hadoop, 2–3
Hadoop 2 installation addressing, 37
requirements for YARN, 19
ResourceManager addressing, 45
shared MapReduce cluster issues, 15–16

Scheduling
abuse of MapReduce, 17
among hierarchical queues, 157–158
ApplicationMaster and, 140–144
with Capacity scheduler. See Capacity 

scheduler
with Fair scheduler, 47–49
with FIFO scheduler, 46–47
overview of, 46
ResourceManager limited to, 38–39, 

45–46
shared clusters and, 11–12
with YarnScheduler, 123

Script-based configuration, YARN adminis-
tration, 85–90

Scripted Hadoop 2 installation
configuration file processing, 68
configuration file settings, 68–70
downloading/extracting scripts, 63
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of Hadoop 2, 62
JDK options, 62
providing node names, 64
running script, 64–65
setting script variables, 63
start-up scripts, 71
system preparation for, 60–62
verifying installation, 65–68

Scripted Hadoop 2 uninstallation, 68
Scripts

creating service monitoring, 92–95
downloading/installing install, 63
integrating with services management, 71
YARN installation. See Installation scripts

Secondary NameNode service, quick-start 
YARN install, 24–25, 27

SecretManager
AMRMTokens, 126
ContainerTokens, 124–126
NMTokens, 126–127
ResourceManager and, 124–126
RMDelegationToken, 127

Secure and Auditable Operation, YARN 
requirements, 15, 19

Security
ApplicationMaster, 147
authentication and access control, 14–15
Capacity scheduler, 154
Client Service authentication, 119
container environment, 149
evolution of shared clusters, 13–14
NodeManager, 136
ResourceManager, 124–127
Web Application Proxy in YARN 

addressing, 108
Service-level authorization policy file, 

reloading, 109
Services

Ambari Hadoop 2 install, 78, 81
evolution of shared clusters, 12
functionality in YARN, 196
of Hadoop on Demand, 6
managed by Ambari, 99
MapReduce shared cluster issues, 16–17
monitoring basic, 92–95
in quick-start YARN install, 27–28
ResourceManager web, 120

verifying with web interface, 28–29
YARN requirements for, 19

Services window, Ambari dashboard, 100–102
Shared clusters

Capacity scheduler for large, 47
Fair scheduler for large, 47–48
overview of, 9–10

Shared clusters, evolution of MapReduce
authentication and access control, 14–15
central JobTracker daemon, 10
central scheduler, 11–12
HDFS instances, 10
isolation on individual nodes, 12–13
issues of, 15–18
JobTracker memory management, 10
management of completed jobs, 11
MapReduce framework, 15
miscellaneous management features, 15
overview of, 9
recovery and upgrades, 12
security, 13–14

-shell_args option, adding arguments to 
Distributed-Shell application, 230 

Shuff le service
as MapReduce auxiliary service, 137
MapReduce version 2 changes, 184
pluggable, 188–189

Single point of failure, JobTracker, 12
Slaves, Ambari Hadoop 2 install, 80
Software, distribution of Hadoop, 7
Software stack, Ambari Hadoop 2 install, 75
Source compatibility, org.apache.hadoop. 

mapreduce APIs, 183
ssh keys, scripted Hadoop 2 install, 61–62
start() method, submitting application to 

YARN, 198–201
Start-up scripts, 71
StartContainerRequest, 145
StartContainerResponse, 145
States, queue, 167–168
Static allocation issues, earlier Hadoop 

versions, 50
Static resource requirements, Application-

Master, 140
Status report, HDFS quick reference, 280
stderr directory, in Distributed-Shell 

application, 229
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stdout directory, in Distributed-Shell 
application, 229

Stinger Initiative Phase 3 release, 242
StopContainersResponse, 145
STOPPED state, queues, 167–168
Submitting application to YARN, 198–205
Summary window, Ambari, 83
Superuser proxy groups mappings, refresh-

ing, 109
Survivor Space I subsegment, new generation 

JVM, 104
System requirements

Ambari Hadoop 2 install, 73
preparation for YARN Installation, 60–62
scripted YARN installation, 59–60
YARN install quick start, 22
YARN redesign, 18–20

T
TaskController, 14
TaskTrackers

Hadoop on Demand architecture, 4–5
Hadoop on Demand data locality issues, 

7–8
health-check script in, 15
JobTracker managing, 37
MapReduce version 2, 36
responsibilities of, 37
shared MapReduce clusters, 9, 13–14, 18

Templates
configuring Nagios, 90
monitoring basic services, 93–95

Tenured generation, JVM processes, 103
Terasort benchmark, 180
TestDFSIO benchmark, 180–181
Testing

scripted Hadoop 2 install, 65–66
YARN installation, 30–31

Tez framework, 242
Timeout, killing long-running appli- 

cations, 236 
Timestamps, LocalResource, 55, 203
Tokens

container environment, 149
ContainerToken SecretManager,  

124–126, 136

DelegationToken Renewer, 127
NMToken SecretManager, 126–127, 136
RMDelegationToken SecretManager, 127

Tools, administrative, 106–107
Torque, 4, 7–8, 15

U
Uber Jobs, 188–189
uninstall-hadoop2.sh script, code, 256–258
Upgrades, shared clusters, 12
URL, LocalResources, 54, 56–57
Use-cases, evolution of Apache Hadoop, 3
User-limit-factor, capacity management, 166
User logs

authentication and access control, 14
management of, 111–113
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Web application, ResourceManager, 120
Web interface
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HDFS quick reference, 280
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MapReduce. See MapReduce

YARN and Hadoop ecosystem
beyond MapReduce, 33–35
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managing application dependencies, 53–57
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resource model, 41
ResourceManager, 39–40, 45–46
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review summary, 57–58
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Phase 0, era of ad hoc clusters, 3
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adding new queues at runtime, 159
configuring Capacity scheduler, 108, 156
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ResourceManager, 109
refreshing superuser proxy groups map-

pings, 109
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configuring YARN install, 25–26
in Distributed-Shell application, 230
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setting container memory, 110
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Yet Another Resource Negotiator (YARN). 
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