
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321933942
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321933942
https://plusone.google.com/share?url=http://www.informit.com/title/9780321933942
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321933942
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321933942/Free-Sample-Chapter

Practical
Cassandra

Practical
Cassandra

A Developer’s Approach

Russell Bradberry
Eric Lubow

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-93394-2
ISBN-10: 0-321-93394-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2013

❖

This book is for the community. We have been a part of the
Cassandra community for a few years now, and they have

been fantastic every step of the way. This book is our way of
giving back to the people who have helped us and have

allowed us to help pave the way for the future of
Cassandra.

❖

This page intentionally left blank

Contents

		 Foreword by Jonathon Ellis  xiii

		 Foreword by Paul Dix  xv

		 Preface  xvii

		 Acknowledgments  xxi

		 About the Authors  xxiii

1	 Introduction to Cassandra  1
A Greek Story  1

What Is NoSQL?  2

There’s No Such Thing as “Web Scale”  2

ACID, CAP, and BASE  2

ACID  3

CAP  3

BASE  4

Where Cassandra Fits In  5

What Is Cassandra?  5

History of Cassandra  6

Schema-less (If You Want)  7

Who Uses Cassandra?  7

Is Cassandra Right for Me?  7

Cassandra Terminology  8

Cluster  8

Homogeneous Environment  8

Node  8

Replication Factor  8

Tunable Consistency  8

Our Hope  9

2	 Installation  11
Prerequisites  11

Installation  11

Debian  12

RedHat/CentOS/Oracle  12

From Binaries  12

Configuration  13

Cluster Setup  15

Summary  16

3	 Data Modeling  17
The Cassandra Data Model  17

Model Queries—Not Data  19

Collections  22

Sets  22

Lists  23

Maps  24

Summary  25

4	 CQL  27
A Familiar Way of Doing Things  27

CQL 1  27

CQL 2  28

CQL 3  28

Data Types  28

Commands  30

Example Schemas  37

Summary  39

5	 Deployment and Provisioning   41
Keyspace Creation  41

Replication Factor  41

Replication Strategies  42

SimpleStrategy  42

NetworkTopologyStrategy  42

Snitches  43

Simple  43

Dynamic  43

Rack Inferring  44

EC2  44

Ec2MultiRegion  45

Property File  45

PropertyFileSnitch Configuration  46

Partitioners  46

viii Contents

Byte Ordered  47

Random Partitioners  47

Node Layout  48

Virtual Nodes  48

Balanced Clusters  49

Firewalls  49

Platforms  49

Amazon Web Services  50

Other Platforms  50

Summary  50

6	 Performance Tuning  51
Methodology  51

Testing in Production  52

Tuning  52

Timeouts  52

CommitLog  53

MemTables  54

Concurrency  55

Durability and Consistency  55

Compression  56

SnappyCompressor  58

DeflateCompressor  58

File System  58

Caching  59

How Cassandra Caching Works  59

General Caching Tips  59

Global Cache Tuning  60

ColumnFamily Cache Tuning  61

Bloom Filters  61

System Tuning  62

Testing I/O Concurrency  62

Virtual Memory and Swap  63

sysctl Network Settings   64

File Limit Settings  64

Solid-State Drives  64

JVM Tuning  65

ixContents

Multiple JVM Options  65

Maximum Heap Size  65

Garbage Collection  66

Summary  67

7	 Maintenance  69
Understanding nodetool  69

General Usage  71

Node Information  72

Ring Information  72

ColumnFamily Statistics  73

Thread Pool Statistics  74

Flushing and Draining  75

Cleaning  75

upgradesstables and scrub   76

Compactions  76

What, Where, Why, and How  76

Compaction Strategies  77

Impact  77

Backup and Restore  79

Are Backups Necessary?  79

Snapshots  79

CommitLog Archiving  81

archive_command  81

restore_command  81

restore_directories  81

restore_point_in_time  82

CommitLog Archiving Notes  82

Summary  82

8	 Monitoring  83
Logging  83

Changing Log Levels  84

Example Error  84

JMX and MBeans  85

JConsole  86

Health Checks  91

x Contents

Nagios  91

Cassandra-Specific Health Checks  94

Cassandra Interactions  96

Summary  96

9	 Drivers and Sample Code  99
Java  100

C#  104

Python  108

Ruby  112

Summary  117

10	 Troubleshooting  119
Toolkit  119

iostat  119

dstat  120

nodetool  121

Common Problems  121

Slow Reads, Fast Writes  122

Freezing Nodes  123

Tracking Down OOM Errors  124

Ring View Differs between Nodes  124

Insufficient User Resources  124

Summary  126

11	 Architecture  127
Meta Keyspaces  127

System Keyspace  127

Authentication  128

Gossip Protocol  129

Failure Detection  130

CommitLogs and MemTables  130

SSTables  130

HintedHandoffs  131

Bloom Filters  131

Compaction Types  132

Tombstones  132

Staged Event-Driven Architecture  133

Summary  134

xiContents

12	 Case Studies  135
Ooyala  135

Hailo  137

Taking the Leap  138

Proof Is in the Pudding  139

Lessons Learned  140

Summary  141

eBay  141

eBay’s Transactional Data Platform  141

Why Cassandra?  142

Cassandra Growth  143

Many Use Cases  143

Cassandra Deployment  146

Challenges Faced and Lessons Learned  147

Summary  147

A Getting Help  149
Preparing Information  149

IRC  149

Mailing Lists  149

B Enterprise Cassandra  151
DataStax  151

Acunu  152

Titan by Aurelius  153

Pentaho  154

Instaclustr  154

Index  157

xii Contents

Foreword by Jonathon Ellis

I was excited to learn that Practical Cassandra would be released right at my five-year
anniversary of working on Cassandra. During that time, Cassandra has achieved its goal of
offering the world’s most reliable and performant scalable database. Along the way,
Cassandra has changed significantly, and a modern book is, at this point, overdue. Eric
and Russell were early adopters of Cassandra at SimpleReach; in Practical Cassandra, you
benefit from their experience in the trenches administering Cassandra, developing against
it, and building one of the first CQL drivers.

If you are deploying Cassandra soon, or you inherited a Cassandra cluster to tend,
spend some time with the deployment, performance tuning, and maintenance chapters.
Some complexity is inherent in a distributed system, particularly one designed to push
performance limits and scale without compromise; forewarned is, as they say, forearmed.
If you are new to Cassandra, I highly recommend the chapters on data modeling and
CQL. The Cassandra Query Language represents a major shift in developing against
Cassandra and dramatically lowers the learning curve from what you may expect or fear.

Here’s to the next five years of progress!

—Jonathon Ellis, Apache Cassandra Chair

This page intentionally left blank

Foreword by Paul Dix

Cassandra is quickly becoming one of the backbone components for anyone working
with large datasets and real-time analytics. Its ability to scale horizontally to handle
hundreds of thousands (or millions) of writes per second makes it a great choice for
high-volume systems that must also be highly available. That’s why I’m very pleased that
this book is the first in the series to cover a key infrastructural component for the
Addison-Wesley Data & Analytics Series: the data storage layer.

In 2011, I was making my second foray into working with Cassandra to create a high-
volume, scalable time series data store. At the time, Cassandra 0.8 had been released, and
the path to 1.0 was fairly clear, but the available literature was lagging sorely behind. This
book is exactly what I could have used at the time. It provides a great introduction to
setting up and modeling your data in Cassandra. It has coverage of the most recent features,
including CQL, sets, maps, and lists. However, it doesn’t stop with the introductory stuff.
There’s great material on how to run a cluster in production, how to tune performance,
and on general operational concerns.

I can’t think of more qualified users of Cassandra to bring this material to you. Eric
and Russell are Datastax Cassandra MVPs and have been working extensively with
Cassandra and running it in production for years. Thankfully, they’ve done a great job of
distilling their experience into this book so you won’t have to search for insight into how
to develop against and run the most current release of Cassandra.

—Paul Dix, Series Editor

This page intentionally left blank

Preface

Apache Cassandra is a massively scalable, open-source, NoSQL database. Cassandra is
best suited to applications that need to store large amounts of structured, semistructured,
and unstructured data. Cassandra offers asynchronous masterless replication to nodes in
many data centers. This gives it the capability to have no single point of failure while still
offering low latency operations.

When we first embarked on the journey of writing a book, we had one goal in mind:
We wanted to keep the book easily digestible by someone just getting started with
Cassandra, but also make it a useful reference guide for day-to-day maintenance, tuning,
and troubleshooting. We know the pain of scouring the Internet only to find outdated
and contrived examples of how to get started with a new technology. We hope that
Practical Cassandra will be the go-to guide for developers—both new and at an interme-
diate level—to get up and running with as little friction as possible.

This book describes, in detail, how to go from nothing to a fully functional Cassandra
cluster. It shows how to bring up a cluster of Cassandra servers, choose the appropriate
configuration options for the cluster, model your data, and monitor and troubleshoot any
issues. Toward the end of the book, we provide sample code, in-depth detail as to how
Cassandra works under the covers, and real-world case studies from prominent users.

What’s in This Book?
This book is intended to guide a developer in getting started with Cassandra, from instal-
lation to common maintenance tasks to writing an application. If you are just starting
with Cassandra, this book will be most helpful when read from start to finish. If you are
familiar with Cassandra, you can skip around the chapters to easily find what you need.

nn Chapter 1, Introduction to Cassandra: This chapter gives an introduction to
Cassandra and the philosophies and history of the project. It provides an overview
of terminology, what Cassandra is best suited for, and, most important what we
hope to accomplish with this book.

nn Chapter 2, Installation: Chapter 2 is the start-to-finish guide to getting Cassandra
up and running. Whether the installation is on a single node or a large cluster, this
chapter guides you through the process. In addition to cluster setup, the most
important configuration options are outlined.

nn Chapter 3, Data Modeling: Data modeling is one of the most important aspects of
using Cassandra. Chapter 3 discusses the primary differences between Cassandra

xviii Preface

and traditional RDBMSs, as well as going in depth into different design patterns,
philosophies, and special features that make Cassandra the data store of tomorrow.

nn Chapter 4, CQL: CQL is Cassandra’s answer to SQL. While not a full implementa-
tion of SQL, CQL helps to bridge the gap when transitioning from an RDBMS.
This chapter explores in depth the features of CQL and provides several real-world
examples of how to use it.

nn Chapter 5, Deployment and Provisioning: After you’ve gotten an overview of instal-
lation and querying, this chapter guides you through real-world deployment and
resource provisioning. Whether you plan on deploying to the cloud or on bare-
metal hardware, this chapter is for you. In addition to outlining provisioning in
various types of configurations, it discusses the impact of the different configuration
options and what is best for different types of workloads.

nn Chapter 6, Performance Tuning: Now that you have a live production cluster
deployed, this chapter guides you through tweaking the Cassandra dials to get the
most out of your hardware, operating system, and the Java Virtual Machine (JVM).

nn Chapter 7, Maintenance: Just as with everything in life, the key to having a perfor-
mant and, more important, working Cassandra cluster is to maintain it properly.
Chapter 7 describes all the different tools that take the headache out of maintaining
the components of your system.

nn Chapter 8, Monitoring: Any systems administrator will tell you that a healthy sys-
tem is a monitored system. Chapter 8 outlines the different types of monitoring
options, tools, and what to look out for when administering a Cassandra cluster.

nn Chapter 9, Drivers and Sample Code: Now that you have a firm grasp on how to
manage and maintain your Cassandra cluster, it is time to get your feet wet. In
Chapter 9, we discuss the different drivers and driver features offered in various
languages. We then go for the deep dive by presenting a working example applica-
tion in not only one, but four of the most commonly used languages: Java, C#,
Ruby, and Python.

nn Chapter 10, Troubleshooting: Now that you have written your sample application,
what happens when something doesn’t quite work right? Chapter 10 outlines the
tools and techniques that can be used to get your application back on the fast track.

nn Chapter 11, Architecture: Ever wonder what goes on under the Cassandra “hood”?
In this chapter, we discuss how Cassandra works, how it keeps your data safe and
accurate, and how it achieves such blazingly fast performance.

nn Chapter 12, Case Studies: So who uses Cassandra, and how? Chapter 12 presents
three case studies from forward-thinking companies that use Cassandra in unique
ways. You will get the perspective straight from the mouths of the developers at
Ooyala, Hailo, and eBay.

xixPreface

nn Appendix A, Getting Help: Whether you’re stuck on a confusing problem or just
have a theoretical question, having a place to go for help is paramount. This appen-
dix tells you about the best places to get that help.

nn Appendix B, Enterprise Cassandra: There are many reasons to use Cassandra, but
sometimes it may be better for you to focus on your organization’s core competencies.
This appendix describes a few companies that can help you leverage Cassandra
efficiently and effectively while letting you focus on what you do best.

Code Samples
All code samples and more in-depth examples can be found on GitHub at
http://devdazed.github.io/practical-cassandra/.

http://devdazed.github.io/practical-cassandra/

This page intentionally left blank

Acknowledgments

We would like to acknowledge everyone involved with Cassandra and the Cassandra
community—everyone from the core contributors of Cassandra all the way down to the
end users who have made it such a popular platform to work with. Without the commu-
nity, Cassandra wouldn’t be where it is today. Special thanks go to

nn Jay Patel for putting together the eBay case study
nn Al Tobey and Evan Chan for putting together the case study on Ooyala
nn Dominic Wong for putting together the Hailo case study
nn All the technical reviewers, including Adam Chalemian, Mark Herschberg, Joe

Stein, and Bryan Smith, who helped give excellent feedback and ensured technical
accuracy where possible

nn Paul Dix for setting us up and getting us on the right track with writing

This page intentionally left blank

About the Authors

Russell Bradberry (Twitter: @devdazed) is the principal architect at SimpleReach,
where he is responsible for designing and building out highly scalable, high-volume,
distributed data solutions. He has brought to market a wide range of products, including
a real-time bidding ad server, a rich media ad management tool, a content recommenda-
tion system, and, most recently, a real-time social intelligence platform. He is a U.S. Navy
veteran, a DataStax MVP for Apache Cassandra, and the author of the NodeJS Cassandra
driver Helenus.

Eric Lubow (Twitter: @elubow) is currently chief technology officer of SimpleReach,
where he builds highly scalable, distributed systems for processing social data. He began
his career building secure Linux systems. Since then he has worked on building and
administering various types of ad systems, maintaining and deploying large-scale Web
applications, and building email delivery and analytics systems. He is also a U.S. Army
combat veteran and a DataStax MVP for Apache Cassandra.

Eric and Russ are regular speakers about Cassandra and distributed systems, and both live
in New York City.

This page intentionally left blank

8
Monitoring

As the old systems adage goes, a service doesn’t exist unless it’s monitored. In this chap-
ter, we will cover the basics of monitoring Cassandra. These include file-based logging,
inspection of the JVM, and monitoring of Cassandra itself.

Logging
Under the covers, Cassandra uses the standard Java log library Log4j. Log4j is another
Apache project that enables the capability to control the granularity of log statements
using a configuration file. If you want to find out more about what is happening on
a particular node than what nodetool and JMX MBeans (which we will cover in
more detail later in the chapter) are telling you, you can change the logging levels.

As a front end to the Log4j back end, Cassandra uses Simple Logging Façade for Java
(SLF4J). The logging levels from least verbose to most verbose are

nn TRACE

nn DEBUG

nn INFO

nn WARN

nn ERROR
nn FATAL

Understanding these logging levels is important not only to help monitor what is
going on in the system or on a particular node but also to help troubleshoot problems.
In troubleshooting complex systems such as Cassandra, Cassandra’s nodetool, logging,
and even the JMX MBeans can lead to red herrings. So it is necessary to compile as
much information pertinent to the problem as possible to help diagnose what might be
going on.

Taking a look at a normal healthy Cassandra node’s system.log, you will see INFO lines
that refer to various stages of the system executing their tasks. These include MemTable
flushes, HintedHandoffs, and compactions, just to name a few.

84 Chapter 8  Monitoring

Changing Log Levels
If you want to make any changes to the logging schema, you will need to find the log4j-
server.properties file. The default logging level for Cassandra and the rootLogger is INFO.
This level provides a standard amount of information that is sufficient for understanding
the general health of your system. It is definitely helpful to see what your system looks
like, so you should do so while logging at the DEBUG level. Be sure not to leave Cassandra
in DEBUG mode for production as the entire system will act noticeably slower. To change
the standard logging level in Cassandra from INFO to DEBUG, change the line that looks
like this:

log4j.rootLogger5INFO,stdout,R

to this:

log4j.rootLogger5DEBUG,stdout,R

Now your Cassandra node will be running in DEBUG mode. To change it back, just
swap the INFO and DEBUG again. To show less logging, you can change the logging level
to WARN, ERROR, or FATAL.

Example Error
It is worth noting that not all problem messages enter the logs as WARNING or higher
(higher meaning toward FATAL). Listing 8.1 presents an example of when things start to
go south. This is a common set of log messages that you may see with your system set at
INFO level. Even with the logging level set to INFO, there is a lot of useful information in
the logs. Don’t be afraid to keep a regular eye on the logs so you know what patterns of
log messages are normal for your system. For example, if things are starting to slow down,
you may see something like Listing 8.1.

Listing 8.1  INFO Messages That Show Mutation and READ Messages Dropped

INFO [ScheduledTasks:1]	 2012-07-09 20:48:57,290	 MessagingService.java (line 607)
3476 MUTATION messages dropped in last5000ms

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,290	 MessagingService.java (line 607)
677 READ messages dropped in last 5000ms

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 50)
Pool Name	 Active	 Pending	 Blocked

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 65)
ReadStage	 32	 621	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 65)
RequestResponseStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 65)
ReadRepairStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 65)
MutationStage	 32	 4105	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,291	StatusLogger.java (line 65)
ReplicateOnWriteStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
GossipStage	 0	 0	 0

85JMX and MBeans

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
AntiEntropyStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
MigrationStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
StreamStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
MemtablePostFlusher	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
FlushWriter	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
MiscStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,292	StatusLogger.java (line 65)
InternalResponseStage	 0	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,293	StatusLogger.java (line 65)
HintedHandoff	 1	 8	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,293	StatusLogger.java (line 70)
CompactionManager	 0	 0

 INFO [ScheduledTasks:1]	2012-07-09 20:48:57,293	StatusLogger.java (line 82)

MessagingService	 n/a	 0,0

When you see messages being dropped, as in the first two lines of the listing, that’s a
sign that your system is under stress. Depending on your application requirements, some
level of dropped messages may be acceptable. But regardless of whether or not your
application can tolerate running in a degraded state, the overall health of your cluster
(or at the very least this node) is in question. Most applications are capable of handling
dropped READ requests, but dropped MUTATION messages mean that data that should have
been written isn’t getting written. Depending on the consistency level of the write in
question, this could mean the write didn’t happen at all, or it could mean the write
didn’t happen on this node. Also notice that the ReadStage and MutationStage lines
have multiple Active and Pending messages left to work on. The reason these messages
are dropped is that Cassandra wants to do its best to keep up with the volume of work
that it is being given.

There are other such common log lines to watch for, which can be done via a log
monitor. One method for monitoring the logs programmatically using Nagios will be
discussed later in this chapter.

JMX and MBeans
Built into Cassandra and the JVM is the capability to use the JMX, or Java Management
Extensions. In other words, using JMX gives you the capability to manage your
servers remotely or check into settings programmatically, including the memory,
CPU, threads, Gossip, or any other part of the system that has been instrumented in
JMX. Instrumentation is what enables the application to provide application-specific

86 Chapter 8  Monitoring

information to be collected by external tools. JMX also gives you the ability to control
certain aspects of this information.

JConsole
MBeans, or Managed Beans, are a special type of JavaBean that makes a resource inside
the application or the JVM available externally. The standard tool that ships with Java for
managing the MBeans is JConsole.

The most common use case for accessing a Cassandra server is that the server will be
remote and you probably won’t have console access to it. It is also highly recommended
that you run JConsole remotely as it is a heavy user of resources on a machine and can
steal those resources away from the Cassandra node. If this is the case, you can use SSH
tunneling to bring up JConsole. When you SSH, be sure to use the –X switch to ensure
that X11 forwarding is on. This is what enables you to use JConsole over the network.
After SSHing into the machine running Cassandra and finding the JConsole binary, just
execute it as you would any normal binary. Assuming everything is configured correctly,
you will get a JConsole login window as shown in Figure 8.1.

Figure 8.1  JConsole login window when logging in via localhost

87JMX and MBeans

Click on the radio button labeled Remote Process and type localhost:7199. If you
have Cassandra set up with authentication, you will need to put in the username and
password as well. Port 7199 is the default JMX port for Cassandra. The first thing you
will notice once a connection has been established is that there are multiple tabs that
contain information for you to look through. These tabs are Overview, Memory, Threads,
Classes, VM Summary, and MBeans.

The Overview, Memory, and Threads tabs are sets of graphs that provide insight
into the current state of the system. The Classes graph is simply a graph of how many
classes are loaded into the JVM at the current time (or a different time range that
you choose). The VM Summary is an overview of what the current view of the Java
Virtual Machine is.

Memory
The Memory tab consists of graphs about the current state of the memory (see Figure
8.2). One of the most important memory stats that you want to be aware of is your cur-
rent heap usage. It is also the default graph that comes up on the Memory tab. As with
everything else in your system, it is helpful to know what a good baseline is for heap
usage during normal system operations. If you have a 10GB heap set and you find during
most of your operations that you are using only 3GB, you can likely reduce your JVM
maximum heap size. This will enable you to reduce your memory footprint on the
system and possibly even speed up your GCs.

Cassandra also does a lot of work off-heap. Things like bloom filters in version 1.2 and
forward are off-heap now. Keeping tabs on what the off-heap memory usage looks like is
also very important.

Garbage collection is also one of the metrics that can be viewed from the Memory
tab. If needed (though typically not recommended unless you know what you are doing),
you can even force a GC from the Memory tab in JConsole. In Cassandra 1.1 and later,
there are even helpful bars that display the total memory used versus memory available
both on-heap and off-heap.

Threads
The Threads tab in JConsole is dedicated to showing the current and peak usage patterns
of various thread stages in Cassandra (see Figure 8.3). These include everything that you
would normally see in the logs from things like the CommitLog handler and compaction
scheduler all the way to garbage collection, Gossip, and streaming. It is also helpful here
to see how many threads your system uses normally as well as under load.

MBeans
The final tab in JConsole is the tab for MBeans (see Figure 8.4). There are a lot of
MBeans that are useful for assessing the state of your Cassandra node and your
Cassandra cluster. You will notice that there are a few groupings here that can be
expanded. Other than the standard Java MBeans that are available to every agent, there
are several groupings specific to Cassandra. All of their class paths start with org
.apache.cassandra.

88 Chapter 8 Monitoring

Figure 8.2 JConsole Memory tab displaying heap usage graphs

89JMX and MBeans

Figure 8.3 JConsole Threads tab displaying the number of threads
Cassandra is currently using and general information on the main

Cassandra thread

90 Chapter 8 Monitoring

Figure 8.4 JConsole MBeans tab view with the Cassandra DB and
Internal trees opened

91Health Checks

There are a lot of MBeans provided by an application as complex as Cassandra. There
is no need to cover all of them as you can easily explore them on your own using the
JConsole interface.

As a high-level overview, they are broken down into the following categories:

nn DB. The MBeans stored in the DB section cover everything about the actual data
storage part of Cassandra. You can view information about the cache and
CommitLogs, or even information about the individual ColumnFamilys that you
have created in each of the keyspaces. HintedHandoffManager, EndPointSnitchInfo,
and CompactionManager information can also be found here.

nn Internal. In the Internal section, there are MBeans that cover the state and statis-
tics around the staged architecture. More specifically, you can find information
about the state of Gossip and HintedHandoff as opposed to just finding informa-
tion about the managers as in the DB section.

nn Metrics. The metrics available in this section are ClientRequestMetrics. These are
things like read and write timeouts and Unavailable errors.

nn Net. The network section houses information about internode communication.
This includes information about the FailureDetector, Gossiper, MessagingService,
and StreamingService.

nn Request. The MBeans in the Request section are about tasks related to read,
write, and replication.

When you select any MBean in the tree, its MBeanInfo and MBean descriptor are
displayed on the right-hand side of the window. If any additional attributes, operations, or
notifications are available, they will appear in the tree as well, below the selected MBean.

Each one of these sections of MBeans provides access to a large amount of information,
giving you insight into both the system as a whole and the individual nodes. Familiarizing
yourself with what is available to you as an admin will help you when it comes time to
instrument JMX-level checks from within your monitoring system.

Health Checks
Using JConsole to monitor your system is tedious and good as a monitoring system only
if you are actively staring at the graphs and information all the time. Since that is unreal-
istic and time-consuming, we recommend that you use other systems for monitoring the
general health of your system such as Nagios.

Nagios
Nagios is open-source software dedicated to monitoring computers, networks, hosts, and ser-
vices and can alert you when things are going wrong or have been resolved. It is extremely
versatile and has the capability to monitor many types of services, applications, or parts of an
application. Let’s start at the bottom of the monitoring chain and work our way up. In order
to avoid a complete lesson on monitoring, we will only cover the basics along with what the
most common checks should be as they relate to Cassandra and its operation.

92 Chapter 8  Monitoring

There are three primary alerts in Nagios: WARNING, CRITICAL, and OK. They mean
exactly what they sound like. A WARNING alert is sent if the service in question is starting
to show signs of a problem, such as a hard drive nearing capacity. A CRITICAL alert is
sent if the service in question is down or in a catastrophic state, such as a hard drive that
is completely out of space and preventing the applications using that drive from running.
An OK alert is sent when the service has recovered or become available again, such as
when the total space used on the hard drive has dropped below the threshold set to alert
for CRITICAL or WARNING.

OS and Hardware Checks
When monitoring any machine, it’s best to start out with the checks at the OS and hard-
ware layer. Even if you are running Cassandra in a virtualized environment such as Amazon
or Rackspace, there are still hardware(ish) checks that should be instituted.

Disks and Partitions
The first thing you are going to want to check is the amount of free disk space on data
partitions and the CommitLog partitions (assuming they are on separate partitions).
Remember that if you are using SizeTieredCompaction, you shouldn’t have the alert set
for WARNING at 80% disk utilization and CRITICAL set at 90% disk utilization. The safer
approach is to set the WARNING threshold to be roughly 35% disk utilization and the
CRITICAL threshold at 45% disk utilization. SizeTieredCompaction is capable of taking
up two times the size of the largest SSTable on disk. And while it is unlikely that a single
SSTable would be 50% of the data on disk, it is better to be safe than sorry. Recovering
from having too much data on disk is extremely difficult.

This concept of monitoring partitions and drives is also important because of JBoD
support in Cassandra 1.2 and later. This means that Cassandra can have a single data
directory on multiple disks. You will need to know if one or more of those disks are
having an issue or require replacement. By monitoring the utilization and health of all
the disks in your system, you will know their state and whether they need replacing or
maintenance.

Last, you want to ensure that the drive that contains the log files doesn’t fill up.
Depending on your log settings, Cassandra has the potential to be very verbose in the log
files. If the log files become too large, they can prevent the rest of your system from
working if the drive(s) runs out of space.

Swap
Linux divides its physical memory into smaller chunks called pages. Swapping is the process
whereby a page of memory is copied from memory to a dedicated space on the hard disk
called swap space to free up that page of memory. Although there are cases where it is OK,
it is normally not recommended for systems to be in a state where they are swapping
memory. Typically, anything more than 5% to 10% of your swap space being used is cause
for investigation.

On a Cassandra node, swapping is usually a bad sign, so you will want to monitor the
swap partition for usage of nearly any kind. Since you should be able to hold the entire
JVM’s heap space in memory with at least a little room to spare for the operating system,

93Health Checks

getting to the point of swapping out pages of memory means it might be a little too late
to recover. One of the reasons Cassandra is able to function so well with regard to writes
is the fact that many of the writes occur to the memory-mapped MemTables. Having
these MemTables swap to disk would drastically impair the performance of Cassandra
and should therefore be avoided when possible.

Clock Drift
Clock drift refers to the phenomenon where one clock does not run at the exact same
speed as another clock. It is especially important to be aware of this if you are running in
a virtualized environment as drift from the hypervisor can be much more prevalent than
on regular iron. The system clock is incredibly important to Cassandra’s write and recon-
ciliation architecture. Most writes are serialized by timestamp. In other words, if two
writes come in for the same column at almost the same time, the determining factor for
which value wins is which timestamp is higher. If the system clocks in the ring are not
all in sync, you are probably going to see some really strange behavior.

One of the ways to deal with that is to monitor the clock drift using NTP. NTP, or
Network Time Protocol, is the most commonly used time synchronization system on the
Internet. It also comes with a binary for telling you the offset (drift) from its synchroniz-
ing time server. You obviously want to minimize the amount of drift your system experi-
ences. But there will invariably be some that you have to deal with. Monitoring is the
way you know if the NTP daemon isn’t doing the job it is supposed to be doing and
keeping your clocks in sync. Being alerted to a problem with the clocks in a distributed
environment that relies heavily on time for decision making could save a lot of time
tracking down weird problems later on.

Ping Times
It is also a good idea to check the ping time responses from each of the Cassandra nodes
being monitored. There are any number of reasons that these responses can begin to
come back slowly. A few examples include the following:

nn A machine that is doing too much work and running short of CPU cycles to
respond quickly

nn I/O saturation, too high an await (average wait) time, and the machine cannot
respond quickly to the request

nn Network saturation due to unthrottled streaming on a high-speed network link

Whatever the reason is, it is good to know if there is network congestion of which
you should be aware. When a node is slow to receive packets (which is the case with
nodes with high ping times), writes can be slow to come in and register, reads and writes
will be dropped to keep up with the demand being put on the system, or any number of
other weird behaviors may appear. What constitutes a high ping time from your monitor-
ing server depends to a great extent on your network paths. Run a few ping tests from
your monitoring server to your Cassandra nodes during regular usage periods to get a
feel for what a normal threshold is.

94 Chapter 8  Monitoring

CPU Usage
Cassandra is usually an I/O-bound system. You usually run into problems with disk
writes or reads slowing down long before you run into CPU-related slowdown. But just
to be safe, as different workloads call for different tools to be used at different times, you
should monitor CPU usage. While there are many things you could look for when
monitoring CPU usage, such as context switches or interrupt requests, a good place to
start is usually watching the system load average. The system load average is an average of
the number of processes waiting to get into the system’s run queue over a period of time.
In the case of the uptime command, it’s over one, five, and 15 minutes. Keep in mind
that in the case of multiprocessor systems, the load is relative to the number of processors
and cores on the system.

The common rule for utilization is that you want to have a machine working hard
but not overworking. This means that you typically want to have the machine running at
about 70% utilization. That leaves you headroom for spikes in work and doesn’t leave the
machine underutilized during slower periods. So if you have four cores, having the load
sit at around 3.00 is usually a safe bet. If you have four cores and the load is 3.5 or higher,
you should try to find out what’s wrong and fix it before things go from bad to worse.

Cassandra-Specific Health Checks
Once you have the basic system checks in place, it’s time to add monitoring that is specific
to Cassandra. There are various checks that interact with Cassandra at different levels of
the system. Some are superficial such as checking to see if ports are alive and being lis-
tened on. Some checks require using a slightly more in-depth toolset to programmatically
check the MBeans described earlier.

Ports
There are three primary ports of interest to Cassandra: 7000 (or 7001 if SSL/TLS is
enabled), 7199, and 9160. Port 7000/7001 is used by Cassandra for cluster communica-
tion. This includes things such as the Gossip protocol and failure detection. Port 7199 is
used by JMX. Port 9160 is the Thrift port and is used for client communication. In order
for your cluster to function properly, all of these ports should be accessible.

While it is not necessary to specifically monitor these ports, it is a good idea to test
them out one way or another. Testing the Thrift port (9160) is just testing whether you
can connect to an instance using a Cassandra driver. In terms of monitoring, if you can
connect, the check passes. If you can’t connect to the server, the check should send off an
alert. You can also use a simple TCP check here even though it is less comprehensive.

JMX Checks
Using some of the knowledge we gained from looking at the normal behavior of our
system with JConsole, we are going to add some checks using JMX. There are plug-ins
for Nagios that enable you to run JMX queries and compare the results against a set of
predetermined thresholds. While there are many values that can be monitored through
JMX, there are a few that stand out.

95Health Checks

The first set of JMX checks to create is for read and write request latency. These
values are given in microseconds because they should be that small. These latencies can
be measured at the Cassandra application level and/or at the ColumnFamily level.
Measuring them at the application level is important as a general health metric. High
request latencies can be indicative of a bad disk or that your current read pattern is
starting to slow down. If there is a ColumnFamily for which it is particularly important
to have extremely low-latency reads and/or writes, it would be a good decision to moni-
tor the performance for that ColumnFamily as well. It is important to note that read
latency and write latency are two separate metrics provided by Cassandra, and both are
important in their own right depending on your workload.

The next set of JMX metrics to keep tabs on is garbage collection timing. Cassandra
will not only tell you how long its last garbage collection took but also how long that last
ParNew GC took. A good way to think of ParNew garbage collection is that it is a stop-
the-world garbage collection that uses multiple GC threads to complete its job. If you are
monitoring the amount of time these take, you can easily set up an alert for when they
start to take too long. Cassandra is unavailable during a stop-the-world garbage collection
pause. The longer these pauses take, the longer Cassandra will be unavailable.

Another metric that is useful in helping to determine whether or not you need to add
capacity to your cluster is PendingTasks under the CompactionManagerMBean. Depending
on the speed and volume with which you ingest data, you will need to find a comfort-
able set of thresholds for your system. Typically, the number of PendingTasks should be
relatively low, as in fewer than 50 at any given time. There are certainly acceptable reasons
for things to back up, such as forced compactions or cleanup, but it is advisable to watch
this metric carefully. If you have an alert set for PendingTasks and find this alert firing
regularly, you may need to add more capacity (either more or faster disks or more nodes)
to your cluster to keep up with the workload.

The last JMX metrics that should make it onto your first round of monitoring are the
amount of on-heap and the amount of off-heap memory used at a time. The amount of
on-heap memory used should always be less than the amount of heap that you have
allowed the JVM to allocate. Since you know what this value is at start time, you should
be able to easily monitor whether or not you are approaching that value. Off-heap mem-
ory tracking is a little harder to monitor for sane values. This is a metric where you will
once again have to take a look at JConsole and see what regular and peak values are for
the system under normal and peak operational loads so you don’t send off useless alerts.

Log Monitoring
There is a lot of useful information in the Cassandra logs that can be indicative of a
problem. As mentioned earlier in the chapter, you can find READ and WRITE dropped
message counts within the INFO log level. There is a Nagios plug-in that can monitor
logs and check for specific log messages. Using this plug-in, you can have Nagios alert
you not just when there are READ and/or WRITE messages dropped, but you also can have
it alert you when this happens more than n times per period. For instance, your applica-
tion may be tolerant of missing READs and much less tolerant of missing WRITEs. So the
log monitoring check can alert you with a CRITICAL alert if more than 1,000 mutations

96 Chapter 8  Monitoring

have been dropped over a five-minute period and with a WARNING alert if more than
1,000 mutations have been dropped over a 15-minute period.

This is just in the case of bad things happening in the INFO level. You can also have
the log monitoring system alert you if any FATAL, ERROR, or WARNING log messages are
put into the logs. Many of these plug-ins are configurable enough to send the log
messages (or at least the one that caused the notification) along with the alert.

Cassandra Interactions
Now that we have the OS and system layer monitored and we know Cassandra is up and
at least responding, it’s time to check a little deeper. The further into the application you
monitor, the better you will be able to sleep at night knowing things are functioning the
way you want them to. Although it is useful and necessary to have superficial checks like
load average and memory, the real value of monitoring systems is realized as you get
deeper into the application.

What this means is that you should be checking things that are specific to your appli-
cation in addition to the Cassandra server. If your application writes to a new
ColumnFamily at the beginning of every month, you should have your monitoring sys-
tem check before the month turnover that the new ColumnFamily exists (and optionally
create it if it doesn’t).

Another good use of monitoring resources is to check the response time of certain
queries. If you are regularly running queries that roll up all the events for an hour, moni-
tor how long that query takes to run and set up an alert if it’s outside the normal thresh-
old. In other words, if the query runs too fast, you want to know because it’s possible you
aren’t collecting all the data you expect to be there. If the query takes too long to run,
your system could be under heavy load or you may have just hit a point where you need
to rethink your query patterns. Either way, that type of instrumentation is useful to mea-
sure how your system actually performs compared to how you expect it to perform.

If you run an application at the top of every hour—an extract, transform, load (ETL)
process, for example—it might be a good idea to have the application put a “run com-
plete” column somewhere when it’s done. At the beginning of every hour, the monitor-
ing system can run a query to check for the existence of the column for the last hour. If
the “run complete” column doesn’t exist for the last hour, it would be good to know so
you can look into why.

Summary
There are many tools available for building monitoring systems. Nagios is just one of the
common general-purpose monitoring tools. As long as some application is checking on
the health and availability of your system and letting you know when an issue is present,
or about to present itself, you will be in good shape. There are also some good examples
of how your main application and other parts of your application interact with Cassandra
and can be instrumented to give you a feeling of total information awareness and poten-
tially the ability to get a good night’s sleep when it is all in production.

97Summary

In this example, Nagios can act as an early-warning tool. It can give you a heads-up to
look at the machine in question and dig deeper into a potential problem before it turns
into something more serious such as a full-fledged outage or a completely downed
node. Ensuring an intelligently set-up monitoring infrastructure is essential to having a
well-designed and architected system.

This page intentionally left blank

Index

A
access.properties file, for authentication/

authorization, 128–129

ACID (Atomicity, Consistency, Isolation,
Durability) database properties, 3

active-active data centers, 142

Acunu Analytics, 152–153

ad hoc queries, 140, 147

ALL option, for ColumnFamily tuning, 61

ALLOW FILTERING option, in CQL 3, 37

ALTER KEYSPACE command, in CQL 3, 31

Amazon Web Services, for running
Cassandra, 50, 138

analytics

integrated, 154
low-latency, 152–153
real-time, 142

Apache Cassandra. see Cassandra

Apache Hadoop. see Hadoop

approximate aggregates, with Acunu, 152

architecture

peer-to-peer, 142
staged event-driven, 133–134

archive_command parameter, for
CommitLog segments, 81

asymmetrical replication, 42–43

atomicity property, 3

Atomicity, Consistency, Isolation, Durability
(ACID) database properties, 3

authentication, meta keyspaces and,
128–129

158 Index

caching

in Cassandra, 59
ColumnFamily tuning, 61
general tips for, 59–60
global tuning, 60–61
OOM errors and, 124

CAP (Consistency, Availability, Partition
tolerance) theorem, 3–4

Cassandra

applications, monitoring, 96
C# driver for, 104–108
caching in, 59
current drivers for, 99
data model, 17–19
features of, 5–6
for global data storage, 137–141
health checks specific to, 94–96
for high-volume real-time data,

141–147
history of, 6
Instaclustr managed hosting of,

154–155
Java driver for, 100–104
Python driver for, 108–112
Ruby driver for, 112–116
terminology, 8
utilization of/choosing, 7
for video analytics, 135–137

Cassandra Query Language. see CQL 1
(Cassandra Query Language 1); CQL 2
(Cassandra Query Language 2); CQL 3
(Cassandra Query Language 3)

cassandra.yaml file

commitlog_directory in, 53

for configuring Cassandra, 13
snitches configured in, 43

CentOS, Cassandra installation from, 12

central processing unit. see CPU (central
processing unit) usage

authorizer property, for Cassandra
configuration, 13

availability

with Cassandra, 142
of transactions, 4

B
backups

in Cassandra, 79
using snapshots, 79–80

barriers=0 setting option, 58

BASE (Basically Available, Soft state, Eventual
consistency) database properties, 4–5

Bash script, 82

basically available, as database property, 4–5

BATCH statement

in CQL 3, 35–36
updating counters using, 22

big-data techniques, with Pentaho, 154

BigTable data model, 135

binaries, installation from, 12

bloom filters

for data structure accuracy, 61–62
purpose/function of, 131–132
SSTables and, 130–131

Brewer’s theorem, 3–4

business intelligence solutions, with Pentaho,
154

ByteOrderedPartitioner, advantage of, 47

C
C# driver for Cassandra

connecting to/disconnecting from
cluster, 104–105

creating sample class with, 104
creating schema/writing data with,

105–106
full C# sample class, 106–108

159Index

nodetool statistics on, 73–74
schema-less, 7
static/dynamic, 28
taking snapshots of, 79–80
wide-row, 17, 28, 136, 139–140

ColumnFamilyStatistics file, for data storage,
131

columns

CQL 2 and, 28
tombstones for deleted, 133

CommitLog directory(ies)

archiving/restoring, 81–82
Cassandra installation and, 11
mutation operations and, 130
optimizing, 53–54
snapshots and, 79

commitlog_directory property, 14

commitlog_segment_size_in_mb
property, 14

commitlog_sync property, 14

commitlog_sync_period_in_ms property,
14

compaction(s)

large write workload and, 142, 147
strategies for, 77
types of, 76–77, 132
unthrottling using nodetool, 77–78

CompactionManager, information in MBeans,
91

COMPOUND KEYS, data storage with, 17–19

compression

benefits of, 141
at ColumnFamily level, 57
at network level, 56–57
SnappyCompressor/DeflateCompressor

for, 58
concurrency

control of, 55
SEDA model for, 133–134

CL (consistency level)

in ACID property, 3
in CAP theorem, 4
with Cassandra, 6
choosing setting for, 147
with reads/writes, 55–56
specifying, 8–9
tunable nature of, 147

cleanup, with nodetool, 75–76

ClientRequestMetrics, in MBeans, 91

clock drift, monitoring of, 93

cloud platforms, for running Cassandra, 49–50

cloud storage services, with Instaclustr,
154–155

cluster(s)

balanced, 49
as Cassandra term, 8
connecting to, 100, 104–105, 112
disconnecting from, 101, 105, 113
Hadoop, 135
multitenant/single-use, 138
nodetool management of. see
nodetool

setup for single/multiple, 15–16
cluster_name property, in Cassandra

configuration, 13

CLUSTERING KEYS, in data storage, 17–18

collections, in data modeling, 22–24

ColumnFamilys. see also specific
ColumnFamilys

adjusting bloom filters for, 62
caching within, 61, 124
in Cassandra, 6
compaction strategies for, 77
compression settings for, 57
counter, 22
for customer records, 139
information in System Keyspace,

127–128

160 Index

data files, SSTables and, 131

data modeling, in Cassandra

challenges with, 147
collections in, 22–24
overview of, 17–19
query patterns for, 19–22
sorting raw event data with, 144, 145

data partitions, Nagios monitoring, 92

data reading

in C#, 106
in Java, 102
in Python, 110
in Ruby, 114

data types, supported by CQL 3, 28–30

data visualization techniques, 152–153

data writing

in C#, 105–106
in Java, 101–102
in Python, 110
in Ruby, 113–114

data_property_directories property,
in Cassandra configuration, 14

data=journal, commit=15 setting
option, 58

data=writeback, nobh setting option,
58–59

DataStax Enterprise Cassandra, 151–152

date type, in CQL 3, 29–30

dateOf()function, in CQL 3, 30

DB (database)

graph, 153
NoSQL, 2, 142
section of MBeans, 91
transactions, ACID properties of, 3

DBMS (database management systems)

Cassandra features as, 5–6
distributed vs. relational, 2

Debian, installation from, 12

concurrent_reads property, 15

concurrent_writes property, 15

ConcurrentLinkedHashCacheProvider

for efficient cache usage, 124
global cache tuning and, 60–61

ConcurrentMarkSweep collector, 123

configuration, of Cassandra, 13–15

consistency. see CL (consistency level)

Consistency, Availability, Partition tolerance
(CAP) theorem, 3–4

counter ColumnFamilys, creation of, 22

counter type, in CQL 3, 30

CPU (central processing unit) usage

compression and, 141
monitoring of, 94

CQL 1 (Cassandra Query Language 1), 27

CQL 2 (Cassandra Query Language 2), 28

CQL 3 (Cassandra Query Language 3)

commands supported by, 30–37
data types supported by, 28–29
example schemas using, 37–39
features of, 28

CREATE INDEX command, in CQL 3, 34

CREATE KEYSPACE command, in CQL 3, 31

CREATE TABLE/COLUMNFAMILY command,
options for, 31–33

CRITICAL alert, with Nagios, 92

cross_node_timeout option, setting, 53

customer records, ColumnFamilys for, 139

D
dashboards, analytics, 152–153

data center(s)

Cassandra clusters with multiple, 146
number of replicas per, 42–43

data directories

affecting CommitLog performance, 53
Cassandra installation and, 11

161Index

F
FailureDetector information, in MBeans, 91

false positives, with bloom filters, 61–62,
131–132

file limit settings, performance tuning and, 64

file system, for Cassandra deployment, 58–59

firewall ports, 49

flush, with nodetool, 75, 79

fraud detection, with Cassandra, 143–144

G
GC (garbage collection)

JVM performance and, 66
monitoring long-running, 123
monitoring timing of, 95
pauses in, 147
viewing from Memory tab, 87, 88

GCGraceSeconds, for tombstones, 133

GCInspector, 123

global cache tuning, 60–61

Gossip protocol

in cluster setup, 15
detecting failure of nodes, 130
information, in MBeans, 91
purpose/utilization of, 129–130

Gossiper information, in MBeans, 91

graph database, Titan, 153

graph-based recommendation system, for
taste profiles, 144–146

Gremlin graph traversal language, 153

H
Hadoop

analytics with, 146, 151
scalability of, 135, 136

Hailo taxi app, utilizing Cassandra, 137–141

health checks. see system health checks

DEBUG logging level, 84

DeflateCompressor, 57, 58

DELETE command, in CQL 3, 35

deleting snapshots, 80–81

disk health, Nagios monitoring, 92

disk_failure_policy property, in
Cassandra configuration, 14

drain, with nodetool, 75

DROP INDEX command, 34

DROP KEYSPACE command, 31

DROP TABLE command, 33

dstat tool, 120–121

durability

performance tuning for, 55–56
of transactions, 3

DynamicSnitch, keyspace creation and,
43–44

E
eBay, utilizing Cassandra, 141–147

EBS (Elastic Block Store) volumes, 50

EC2 (Elastic Computer Cloud), 50

Ec2MultiRegionSnitch, in keyspace creation,
44–45

Ec2Snitch, in keyspace creation, 44–45

edges, in distributed graph databases,
153

e-hail app, utilizing Cassandra, 137–141

EndPointSnitchInfo, in DB section of MBeans,
91

/etc/security/limits.conf settings, in
performance tuning, 64

event attribute data, storing of, 136

event_metric value, creating tables for,
22

event_type value, storage of, 20

eventual consistency in database system, 5

ext4 file system, formatting devices for,
58–59

162 Index

internode_compression controls, 56–57

iostat tool

showing normal wait time for I/O,
119–120

showing overly active system, 120
isolation property, affecting CommitLog

performance, 3

J
Java driver for Cassandra

connecting to/disconnecting from
cluster with, 100–101

creating sample class with, 100
creating schema/writing data with,

101–102
full Java sample class, 102–104
reading data with, 102

JConsole

logging in, 86–87
MBeans tab in, 87, 90–91
Memory/Threads tabs in, 87, 88–89

JMX (Java Management Extensions)

features of, 85–86
handshake, 49
health checks, 94–95
JConsole and, 86–91
Port 7199 for, 49, 94

JVM (Java Virtual Machine)

garbage collection and, 66, 123
options for, 65
for running Cassandra, 49
setting maximum heap size for, 65–66

K
key cache

global cache tuning and, 60
size, OOM errors and, 124

key/value stores, 5–6, 7

high-volume real-time data, Cassandra
capabilities for, 143–144

HintedHandoffManager, in DB section of
MBeans, 91

HintedHandoffs, purpose/function of,
131

homogenous environment, as Cassandra
term, 8

horizontal scalability, Cassandra for, 138

hot spots

clustering order to remove, 21
heavy read/write load leading to, 19

I
I/O (input/output)

concurrency, testing of, 62–63
increasing capacity, 122
iostat monitoring, 119–120

idempotent operations, 140–141

index files, SSTables and, 130–131

IndexInfo ColumnFamily, 127

INFO logging level, 84

initial_token property

in cluster setup, 15
for configuring Cassandra, 13

INSERT command, in CQL 3, 34

Instaclustr, managed Cassandra hosting with,
154–155

installation process

from Debian, RedHat/CentOS/Oracle,
binaries, 11–12

directories for, 11
insufficient resource errors, 124–126

integrated analytics platform, with Pentaho,
154

Internal section of MBeans, 91

internode communication

information, in MBeans, 91
Port 7000/7001 for, 49, 94

163Index

monitoring swapping of, 92–93
on-heap/off-heap usage, 95, 147
swap setting and, 63

Memory tab, with JConsole, 87, 88

memtable_total_space_in_mb property,
for configuring Cassandra, 15

MemTables

caching affect on, 60
flushing data from memory, 75
mutation operations and, 130
OOM errors and, 124
performance tuning of, 54–55

MessagingService information, in MBeans, 91

meta keyspaces

for authentication, 128–129
overview of, 127
System Keyspace, 127–128

Metrics section of MBeans, 91

Migrations ColumnFamily, 127–128

minor compactions, 76–77

minTimeuuid function, in CQL 3, 30

mobile notification tracking, with Cassandra,
143

multitenant clusters, 138, 146

Murmur3Partitioners, 48

mutation operations, CommitLogs/
MemTables and, 130

N
Nagios

clock drift/ping times and, 93
CPU usage and, 94
monitoring disks/partitions/drives,

92
monitoring swap partition, 92–93
primary alerts in, 91–92

naming conventions, for snapshots, 80

Net section of MBeans, 91

KEYS_ONLY option, for ColumnFamily tuning, 61

keyspace creation

firewalls in, 49
node layout in, 48–49
overview of, 41
partitioners and, 46–48
platforms in, 49–50
replication strategies in, 41–43
snitches and, 43–46

keyspaces, meta, 127–129

L
LeveledCompactionStrategy, 77, 132, 137

LIMIT option, in CQL 3, 37

limits.conf file, 125

linear scalability, with Cassandra, 142

listen_address property, in Cassandra
configuration, 15

lists, for data model collections, 23–24

log monitoring, 95–96

logging levels

changing, 84
mutation/dropped READ messages in,

84–85
overview of, 83

low-volume application, data model for log
storage in, 20–21

M
major compactions, 76–77

maps, for data model collections, 24

MAX_HEAP_SIZE value, JVM performance
and, 65–66

maxTimeuuid function, in CQL 3, 30

MBeans (Managed Beans) tab, with JConsole,
86, 87, 90–91

memory

heap usage of, 87, 88

164 Index

NoSQL databases

active-active data centers in, 142
overview of, 2

now() function, in CQL 3, 30

NTP (Network Time Protocol), monitoring
clock drift, 93

num_tokens property, for configuring
Cassandra, 13

O
OOM (out-of-memory) errors, tracking of, 124

Ooyala online video analytics, utilizing
Cassandra, 135–137

OpsCenter, DataStax, 141, 151–152

Oracle, Cassandra installation from, 12

order and shipment tracking, with Cassandra,
143–144

ORDER BY option, in CQL 3, 36

P
ParNew collector, 123

partition tolerance, of transactions, 4

partitioner property, in Cassandra
configuration, 14

partitioners

ByteOrderedPartitioners, 47
function of, 46–47
Random/Murmur3Partitioners, 47–48

password.properties file, for authentication/
authorization, 128–129

peer-to-peer architecture, 142

PendingTasks, monitoring performance of, 95

Pentaho integrated analytics platform, 154

performance tuning

adjusting MemTables, 54–55
bloom filters for, 61–62
caching in, 59–61
compression and, 56–58

network compression, 56–57

Network Time Protocol (NTP), monitoring
clock drift, 93

NetworkTopologyStrategy, for replication,
42–43

noatime setting option, 58

node(s)

as Cassandra term, 8
communication between, 49
detecting failure of, 130
freezing, troubleshooting for, 123
information about, 72
ring view differing between, 124
seed, 15
virtual, 48–49

nodetool

cleaning with, 75–76
in cluster setup, 16
ColumnFamily statistics with, 73–74
common commands, 121
flushing/draining with, 75
function of, 69
general usage of, 71–72
node information with, 72
options for, 69–71
taking snapshots with, 80–81
thread pool statistics with, 74–75
three-node cluster information,

72–73
unthrottling compactions with, 77–78

nodetool cfstats, 122

nodetool info output, 72

nodetool repair, 76

nodetool ring command, 72–73

nodetool scrub, 76

nodetool upgradesstables, 76

nodetool version output, 72

NONE option, for ColumnFamily tuning, 61

165Index

query patterns

counter ColumnFamilys and, 22
for low-volume application, 20–21
optimized, 21
for relational database, 19–20

quorum read/writes, defining consistency
and, 8

R
RackInferringSnitch, in keyspace creation, 44

RAID0, for running Cassandra, 49–50

RandomPartitioners, types of, 47–48

Raw Event Data ColumnFamily, 144, 145

raw event data, storage of, 136

RDBMSs (relational database management
systems)

data model for log storage in, 19–20
as differing from Cassandra, 6, 7

read latency

LeveledCompaction and, 132
monitoring of, 95
strict requirements for, 142
troubleshooting, 122

real-time analytics, with Cassandra, 142,
143–144

RedHat, Cassandra installation from, 12

relational database management systems.
see RDBMSs (relational database
management systems)

remote procedure call (RPC) framework, 27

replica(s)

counts, 42–43
partitioner placement of, 46–48

replication factor. see RF (replication factor)

replication strategies

multi-data-center, 6
NetworkTopologyStrategy, 42–43
SimpleStrategy, 42

concurrency in, 55
for durability/consistency, 55–56
file system for, 58–59
JVM tuning for, 65–66
memory/swap setting in, 63
methodology for, 51–52
optimizing CommitLog, 53–54
setting timeouts, 52–53
solid-state drives in, 64–65
sysctl network/file limit settings in, 63
testing I/O concurrency, 62–63
testing in production, 52

permissions_validity_in_ms property,
in Cassandra configuration, 14

ping time responses, monitoring of, 93

platforms, for running Cassandra, 49–50

plug-and-play capabilities, of Acunu, 152

port(s)

default JMX, 86–87
for internode communication, 49
monitoring health of, 94

PRIMARY KEY operator

CQL 3 and, 28
CREATE TABLE command and, 31–32
data storage with, 17–18

PropertyFileSnitch, keyspace creation and,
45–46

Python driver for Cassandra

connecting to/disconnecting from
cluster/creating schema with, 109

creating sample class with, 108
full Python sample class, 110–112
writing data/reading data with, 110

Q
queries

pre-aggregating/grouping of, 152
prior identification of, 140, 147

166 Index

SEDA (staged event-driven architecture), for
concurrency, 133–134

seed_provider property, in Cassandra
configuration, 14–15

SELECT statement, in CQL 3, 36

SerializingCacheProvider, 60–61, 124

sets, for data model collections, 22–23

sharding, built-in, 142

SimpleAuthenticator setting, 128

SimpleSnitch, keyspace creation and, 43

SimpleStrategy, for replication, 42

single-use clusters, 138

SizeTieredCompactionStrategy, 77, 132

SnappyCompressor, 57, 58

snapshots

function of, 79
removing, 80–81
taking/naming, 79–80

snitches

definition of/SimpleSnitch, 43
DynamicSnitch, 43–44
Ec2MultiRegionSnitch, 44–45
Ec2Snitch, 44–45
PropertyFileSnitch, 45–46
RackInferringSnitch, 44

soft state database system, 5

Solr search platform, 151

Spark computing framework, 136

SQL (Structured Query Language), Cassandra
and, 27, 140

SSDs (solid-state drives), tuning of,
64–65

SSH port (22), 49

SSTable(s)

count, monitoring, 122
function of files in, 130
nodetool rebuilding, 76

sstablescrub tool, 76

Request section of MBeans, 91

restore_command, for CommitLog
archiving, 81

restore_directories parameter, for
archived CommitLogs, 81

restore_point_in_time parameter, for
archived CommitLogs, 82

RF (replication factor), 8

choice of setting for, 147
definition of/setting, 41
for resilient data storage, 138

ring view, differing between nodes, 124

row cache, global cache tuning and,
60–61

row stores, Cassandra features of, 6

rows

caching and, 59
CQL 2 and, 28

ROWS_ONLY option, for ColumnFamily tuning,
61

RPC (remote procedure call) framework, 27

Ruby driver for Cassandra

connecting to/disconnecting from
cluster with, 112–113

creating sample class with, 112
creating schema with, 113
full Ruby sample class, 115–116
writing data/reading data with,

113–114

S
saved_caches_directory property, in

Cassandra configuration, 14

scalability factor, with Cassandra, 138, 142

schema

creation of, 101, 105, 109, 113
migrations of, 127–128
option for creating, 7
time-series wide row, 136

167Index

Thrift port (9160), 49, 94

Thrift RPC framework, 27

timeouts, configuration of, 52–53

time-series data

Cassandra handling, 5
eBay and, 143–144
Hailo and, 139–140
Ooyala and, 136

TimeUUID types, in CQL 3, 30

Titan distributed graph database, 153

token(s)

in cluster setup, 15–16
nodetool cleanup and, 76
ranges, vnodes and, 48–49

tombstones, function of, 132–133

tools, troubleshooting

dstat/nodetool, 120–121
iostat, 119–120

traversing, in distributed graph databases,
153

troubleshooting

insufficient resource errors,
124–126

long-running GCs, 123
OOM errors/differing ring view, 124
slow reads/fast writes, 122
tools for, 119–121

TRUNCATE command, in CQL 3, 33–34

tunable consistency

advantage of, 147
as Cassandra term, 8–9

U
ulimit -a command, 125

unixTimestampOf()function, in CQL 3,
30

UPDATE command, 35

USE command, 31

staged event-driven architecture (SEDA), for
concurrency, 133–134

streaming_socket_timeout_in_ms
value, 53

StreamingService information, in MBeans, 91

Structured Query Language (SQL), Cassandra
and, 27, 140

swap setting, virtual memory and, 63

swapping memory

long-running GCs and, 123
monitoring, 92–93

sysctl network settings

performance tuning and, 64
updating for max_map_count, 126

system health checks

Cassandra-specific, 94–96
with Nagios, 91–94

System Keyspace, 127–128

T
tables

changing cache setting on, 61
creating static/dynamic, 32
options for creating, 32–33
PRIMARY KEY and, 31–32

Taste Graph modeled in Cassandra,
144–146

taxi app, utilizing Cassandra, 137–141

terminology, Cassandra, 8

text search capability, with Cassandra, 151

thread pools

for SEDA stages, 133–134
statistics on with nodetool, 74–75

thread stack size, JVM performance and, 65

Threads tab, with JConsole, 87, 89

three-node ring

compaction and, 77
nodetool information on, 72–73

168 Index

data storage with, 17
for time-series data, 136, 139–140

write latency, monitoring of, 95

X
XFS file system, 137

-XX:+CMSParallelRemarkEnabled
setting, 66

-XX:+UseCMSInitiatingOccupancyOnly
setting, 66

-XX:+UseConcMarkSweepGC setting, 66

-XX:+UserParNewGC setting, 66

-XX:CMSInitiatingOccupancy
Fraction=75 setting, 66

V
Versions ColumnFamily, 128

vertices, in distributed graph databases, 153

video analytics aggregates, Cassandra
handling, 135–137

virtual memory, swap setting and, 63

vnodes (virtual nodes), data distribution and,
48–49

W
WARNING alert, with Nagios, 92

Web scale technologies, 2

WHERE clause, in CQL 3, 36

wide rows

CQL 2 for, 28

	Contents
	Foreword by Jonathon Ellis
	Foreword by Paul Dix
	Preface
	Acknowledgments
	About the Authors
	8 Monitoring
	Logging
	Changing Log Levels
	Example Error

	JMX and MBeans
	JConsole

	Health Checks
	Nagios
	Cassandra-Specific Health Checks
	Cassandra Interactions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

