
Chapter

79

Defensive Programming

Defensive programming is carefully guarded programming that helps you to construct
reliable software by designing each component to protect itself as much as possible:
for example, by checking that undocumented assumptions remain valid [Goodliffe
2007]. The guidelines in this chapter address areas of the Java language that can help
to constrain the effect of an error or help to recover from an error.

Java language mechanisms should be used to limit the scope, lifetime, and
 accessibility of program resources. Also, Java annotations can be used to document
the program, aiding readability and maintenance. Java programmers should be
aware of implicit behaviors and avoid unwarranted assumptions about how the
s ystem behaves.

A good overall principle for defensive programming is simplicity. A complicated
system is difficult to understand, difficult to maintain, and difficult to get right in the
first place. If a construct turns out to be complicated to implement, consider rede-
signing or refactoring it to reduce the complexity.

Finally, the program should be designed to be as robust as possible. Wherever
possible, the program should help the Java runtime system by limiting the resources
it uses and by releasing acquired resources when they are no longer needed. Again,
this can often be achieved by limiting the lifetime and accessibility of objects and
other programming constructs. Not all eventualities can be anticipated, so a strategy
should be developed to provide a graceful exit of last resort.

2

Long_Ch02.indd 79 30/07/13 8:29 PM

80 Chapter 2 n Defensive Programming

n  22. Minimize the scope of variables

Scope minimization helps developers avoid common programming errors, improves
code readability by connecting the declaration and actual use of a variable, and
improves maintainability because unused variables are more easily detected and
removed. It may also allow objects to be recovered by the garbage collector more
quickly, and it prevents violations of Guideline 37, “Do not shadow or obscure iden-
tifiers in subscopes.”

Noncompliant Code Example
This noncompliant code example shows a variable that is declared outside the
for loop.

public class Scope {
 public static void main(String[] args) {
 int i = 0;
 for (i = 0; i < 10; i++) {

 // Do operations
 }
 }
}

public class Scope {
 public static void main(String[] args) {
 for (int i = 0; i < 10; i++) { // Contains declaration

 // Do operations
 }
 }
}

This code is noncompliant because, even though variable i is not intention-
ally used outside the for loop, it is declared in method scope. One of the few sce-
narios where variable i needs to be declared in method scope is when the loop
contains a break statement, and the value of i must be inspected after conclusion
of the loop.

Compliant Solution
Minimize the scope of variables where possible. For example, declare loop indices
within the for statement:

Long_Ch02.indd 80 30/07/13 8:29 PM

22. Minimize the scope of variables 81

Noncompliant Code Example
This noncompliant code example shows a variable count that is declared outside the
counter() method, although the variable is not used outside the counter() method.

public class Foo {
 private int count;
 private static final int MAX_COUNT = 10;

 public void counter() {
 count = 0;
 while (condition()) {
 /* ... */
 if (count++ > MAX_COUNT) {
 return;
 }
 }
 }

 private boolean condition() {/* ... */}
 // No other method references count
 // but several other methods reference MAX_COUNT
}

The reusability of the method is reduced because if the method were copied to
another class, then the count variable would also need to be redefined in the new con-
text. Furthermore, the analyzability of the counter method would be reduced, as whole
program data flow analysis would be necessary to determine possible values for count.

Compliant Solution
In this compliant solution, the count field is declared local to the counter() method:

public class Foo {
 private static final int MAX_COUNT = 10;

 public void counter() {
 int count = 0;
 while (condition()) {
 /* ... */
 if (count++ > MAX_COUNT) {
 return;
 }
 }
 }

Long_Ch02.indd 81 30/07/13 8:29 PM

82 Chapter 2 n Defensive Programming

Applicability
Detecting local variables that are declared in a larger scope than is required by the
code as written is straightforward and can eliminate the possibility of false
positives.

Detecting multiple for statements that use the same index variable is straight-
forward; it produces false positives only in the unusual case where the value of the
index variable is intended to persist between loops.

Bibliography
[Bloch 2001] Item 29, “Minimize the Scope of Local Variables”

[JLS 2013] §14.4, “Local Variable Declaration Statements”

n  23. Minimize the scope of the @SuppressWarnings
annotation

When the compiler detects potential type-safety issues arising from mixing raw
types with generic code, it issues unchecked warnings, including unchecked cast
warnings, unchecked method invocation warnings, unchecked generic array creation
warnings, and unchecked conversion warnings [Bloch 2008]. It is permissible to use
the @SuppressWarnings("unchecked") annotation to suppress unchecked warn-
ings when, and only when, the warning-emitting code is guaranteed to be type safe.
A common use case is mixing legacy code with new client code. The perils of ignor-
ing unchecked warnings are discussed extensively in The CERT® Oracle® Secure
Coding Standard for Java™ [Long 2012], “OBJ03-J. Do not mix generic with non-
generic raw types in new code.”

According to the Java API Annotation Type SuppressWarnings documentation
[API 2013],

As a matter of style, programmers should always use this annotation on the most
deeply nested element where it is effective. If you want to suppress a warning in a
particular method, you should annotate that method rather than its class.

The @SuppressWarnings annotation can be used in the declaration of variables
and methods as well as an entire class. It is, however, important to narrow its scope
so that only those warnings that occur in the narrower scope are suppressed.

 private boolean condition() {/* ... */}
 // No other method references count
 // but several other methods reference MAX_COUNT
}

Long_Ch02.indd 82 30/07/13 8:29 PM

23. Minimize the scope of the @SuppressWarnings annotation 83

Noncompliant Code Example
In this noncompliant code example, the @SuppressWarnings annotation’s scope
encompasses the whole class:

@SuppressWarnings("unchecked")
class Legacy {
 Set s = new HashSet();
 public final void doLogic(int a, char c) {
 s.add(a);
 s.add(c); // Type-unsafe operation, ignored
 }
}

class Legacy {
 @SuppressWarnings("unchecked")
 Set s = new HashSet();
 public final void doLogic(int a, char c) {
 s.add(a); // Produces unchecked warning
 s.add(c); // Produces unchecked warning
 }
}

This code is dangerous because all unchecked warnings within the class are sup-
pressed. Oversights of this nature can result in a ClassCastException at runtime.

Compliant Solution
Limit the scope of the @SuppressWarnings annotation to the nearest code that gener-
ates a warning. In this case, it may be used in the declaration for the Set:

Noncompliant Code Example (ArrayList)
This noncompliant code example is from an old implementation of java.util
.ArrayList:

@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
 if (a.length < size) {
 // Produces unchecked warning
 return (T[]) Arrays.copyOf(elements, size, a.getClass());
 }
 // ...
}

Long_Ch02.indd 83 30/07/13 8:29 PM

84 Chapter 2 n Defensive Programming

n  24. Minimize the accessibility of classes and their members

Classes and class members (classes, interfaces, fields, and methods) are access-
controlled in Java. Access is indicated by an access modifier (public, protected, or
private) or by the absence of an access modifier (the default access, also called
package-private access).

When the class is compiled, it emits an unchecked cast warning:

// Unchecked cast warning
ArrayList.java:305: warning: [unchecked] unchecked cast found :
 Object[], required: T[]
return (T[]) Arrays.copyOf(elements, size, a.getClass());

// ...
@SuppressWarnings("unchecked")
T[] result = (T[]) Arrays.copyOf(elements, size, a.getClass());
return result;
// ...

This warning cannot be suppressed for just the return statement because it is
not a declaration [JLS 2013]. As a result, the programmer suppresses warnings for
the entire method. This can cause issues when functionality that performs type-
unsafe operations is added to the method at a later date [Bloch 2008].

Compliant Solution (ArrayList)
When it is impossible to use the @SuppressWarnings annotation in an appropriate
scope, as in the preceding noncompliant code example, declare a new variable to
hold the return value and adorn it with the @SuppressWarnings annotation.

Applicability
Failure to reduce the scope of the @SuppressWarnings annotation can lead to run-
time exceptions and break type-safety guarantees.

This rule cannot be statically enforced in full generality; however, static analysis
can be used for some special cases.

Bibliography
[API 2013] Annotation Type SuppressWarnings

[Bloch 2008] Item 24, “Eliminate Unchecked Warnings”

[Long 2012] OBJ03-J. Do not mix generic with nongeneric raw types in new code

Long_Ch02.indd 84 30/07/13 8:29 PM

24. Minimize the accessibility of classes and their members 85

Access Specifier Class Package Subclass World

private x

None x x x*

protected x x x**

public x x x x

Table 2–1. Access control rules

*Subclasses within the same package can also access members that lack access specifiers (default or package-private
visibility). An additional requirement for access is that the subclasses must be loaded by the class loader that loaded
the class containing the package-private members. Subclasses in a different package cannot access such package-
private members.
**To reference a protected member, the accessing code must be contained in either the class that defines the protected
member or in a subclass of that defining class. Subclass access is permitted without regard to the package location of
the subclass.

Table 2–1 presents a simplified view of the access control rules. An x indicates
that the particular access is permitted from within that domain. For example, an x in
the class column means that the class member is accessible to code present within the
same class in which it is declared. Similarly, the package column indicates that the
member is accessible from any class (or subclass) defined in the same package,
 provided that the class (or subclass) is loaded by the class loader that loaded the
class containing the member. The same class loader condition applies only to
 package-private member access.

Classes and class members must be given the minimum possible access so
that malicious code has the least opportunity to compromise security. As far as
possible, classes should avoid exposing methods that contain (or invoke)
 sensitive code through interfaces; interfaces allow only publicly accessible
 methods, and such methods are part of the public application programming
i nterface (API) of the class. (Note that this is the opposite of Joshua Bloch’s
r ecommendation to prefer interfaces for APIs [Bloch 2008, Item 16].) One
e xception to this is implementing an unmodifiable interface that exposes a public
immutable view of a mutable object. (See The CERT® Oracle® Secure Coding
Standard for Java™ [Long 2012], “OBJ04-J. Provide mutable classes with copy
f unctionality to safely allow passing instances to untrusted code.”) Note that even
if a nonfinal class’s visibility is default, it can be susceptible to misuse if it contains
public methods. Methods that perform all necessary security checks and sanitize
all inputs may be exposed through interfaces.

Protected accessibility is invalid for non-nested classes, but nested classes may
be declared protected. Fields of nonfinal public classes should rarely be declared

Long_Ch02.indd 85 30/07/13 8:29 PM

86 Chapter 2 n Defensive Programming

Even though this example complies with “OBJ01-J. Declare data members as pri-
vate and provide accessible wrapper methods” [Long 2012], untrusted code could
instantiate Point and invoke the public getPoint() method to obtain the
coordinates.

Compliant Solution (Final Classes with Public Methods)
This compliant solution declares the Point class as package-private in accordance
with its status as not part of any public API:

public final class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

protected; untrusted code in another package can subclass the class, and access the
member. Furthermore, protected members are part of the API of the class, and
consequently require continued support. When this rule is followed, declaring
fields as protected is unnecessary. “OBJ01-J. Declare data members as private and
provide accessible wrapper methods” [Long 2012] recommends declaring fields as
private.

If a class, interface, method, or field is part of a published API, such as a web
 service endpoint, it may be declared public. Other classes and members should be
declared either package-private or private. For example, non-security-critical classes
are encouraged to provide public static factories to implement instance control with
a private constructor.

Noncompliant Code Example (Public Class)
This noncompliant code example defines a class that is internal to a system and not
part of any public API. Nonetheless, this class is declared public.

Long_Ch02.indd 86 30/07/13 8:29 PM

24. Minimize the accessibility of classes and their members 87

final class Point {
 private final int x;
 private final int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

class Point {
 private final int x;
 private final int y;

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

A top-level class, such as Point, cannot be declared private. Package-private
 accessibility is acceptable, provided package insertion attacks are avoided.
(See “ENV01-J. Place all security-sensitive code in a single JAR and sign and seal it”
[Long 2012].) A package insertion attack occurs when, at runtime, any protected or
package-private members of a class can be called directly by a class that is maliciously
inserted into the same package. However, this attack is difficult to carry out in practice
because, in addition to the requirement of infiltrating the package, the target and the
untrusted class must be loaded by the same class loader. Untrusted code is typically
deprived of such levels of access.

Because the class is final, the getPoint() method can be declared public. A pub-
lic subclass that violates this rule cannot override the method and expose it to
untrusted code, so its accessibility is irrelevant. For nonfinal classes, reducing the
accessibility of methods to private or package-private eliminates this threat.

Compliant Solution (Nonfinal Classes with Nonpublic Methods)
This compliant solution declares the Point class and its getPoint() method as
package-private, which allows the Point class to be nonfinal and allows getPoint()
to be invoked by classes present within the same package and loaded by a common
class loader:

Long_Ch02.indd 87 30/07/13 8:29 PM

88 Chapter 2 n Defensive Programming

This example also complies with “OBJ01-J. Declare data members as private and
provide accessible wrapper methods” [Long 2012], untrusted code could access
Point and invoke the public static getPoint() to obtain the default coordinates. The
attempt to implement instance control using a private constructor is futile because
the public static method exposes internal class contents.

Compliant Solution (Package-Private Class)
This compliant solution reduces the accessibility of the class to package-private.

public final class Point {
 private static final int x = 1;
 private static final int y = 2;

 private Point(int x, int y) {}

 public static void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

 void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

Noncompliant Code Example (Public Class with Public
Static Method)
This noncompliant code example again defines a class that is internal to a system
and not part of any public API. Nonetheless, this class is declared public.

final class Point {
 private static final int x = 1;
 private static final int y = 2;

 private Point(int x, int y) {}

 public static void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
}

Long_Ch02.indd 88 30/07/13 8:29 PM

25. Document thread-safety and use annotations where applicable 89

Access to the getPoint() method is restricted to classes located within the same
package. Untrusted code is prevented from invoking getPoint() and obtaining the
coordinates.

Applicability
Granting excessive access breaks encapsulation and weakens the security of Java
applications.

A system with an API designed for use (and possibly extended) by third-party
code must expose the API through a public interface. The demands of such an API
override this guideline.

For any given piece of code, the minimum accessibility for each class and
 member can be computed so as to avoid introducing compilation errors. A limitation
is that the result of this computation may lack any resemblance to what the program-
mer intended when the code was written. For example, unused members can obvi-
ously be declared private. However, such members could be unused only because
the particular body of code examined coincidentally lacks references to the mem-
bers. Nevertheless, this computation can provide a useful starting point for a
 programmer who wishes to minimize the accessibility of classes and their members.

Bibliography
[Bloch 2008] Item 13, “Minimize the Accessibility of Classes and Members”

Item 16, “Prefer Interfaces to Abstract Classes”

[Campione 1996] Access Control

[JLS 2013] §6.6, “Access Control”

[Long 2012] ENV01-J. Place all security-sensitive code in a single JAR and sign
and seal it

OBJ01-J. Declare data members as private and provide accessible
wrapper methods

OBJ04-J. Provide mutable classes with copy functionality to safely
allow passing instances to untrusted code

[McGraw 1999] Chapter 3, “Java Language Security Constructs”

n  25. Document thread-safety and use annotations where
applicable

The Java language annotation facility is useful for documenting design intent. Source
code annotation is a mechanism for associating metadata with a program element
and making it available to the compiler, analyzers, debuggers, or Java Virtual

Long_Ch02.indd 89 30/07/13 8:29 PM

90 Chapter 2 n Defensive Programming

Machine (JVM) for examination. Several annotations are available for documenting
thread-safety or the lack thereof.

Obtaining Concurrency Annotations
Two sets of concurrency annotations are freely available and licensed for use in any
code. The first set consists of four annotations described in Java Concurrency in
Practice (JCIP) [Goetz 2006], which can be downloaded from http://jcip.net. The
JCIP annotations are released under the Creative Commons Attribution License.

The second, larger set of concurrency annotations is available from and supported
by SureLogic. These annotations are released under the Apache Software License,
Version 2.0, and can be downloaded at www.surelogic.com. The annotations can be veri-
fied by the SureLogic JSure tool, and they remain useful for documenting code even
when the tool is unavailable. These annotations include the JCIP annotations because
they are supported by the JSure tool. (JSure also supports use of the JCIP JAR file.)

To use the annotations, download and add one or both of the aforementioned
JAR files to the code’s build path. The use of these annotations to document thread-
safety is described in the following sections.

Documenting Intended Thread-Safety
JCIP provides three class-level annotations to describe the programmer’s design
intent with respect to thread-safety.

The @ThreadSafe annotation is applied to a class to indicate that it is thread-safe.
This means that no sequences of accesses (reads and writes to public fields, calls to
public methods) can leave the object in an inconsistent state, regardless of the inter-
leaving of these accesses by the runtime or any external synchronization or coordi-
nation on the part of the caller.

For example, the following Aircraft class specifies that it is thread-safe as part
of its locking policy documentation. This class protects the x and y fields using a
reentrant lock.

@ThreadSafe
@Region("private AircraftState")
@RegionLock("StateLock is stateLock protects AircraftState")
public final class Aircraft {
 private final Lock stateLock = new ReentrantLock();
 // ...
 @InRegion("AircraftState")
 private long x, y;
 // ...

Long_Ch02.indd 90 30/07/13 8:29 PM

25. Document thread-safety and use annotations where applicable 91

 public void setPosition(long x, long y) {
 stateLock.lock();
 try {
 this.x = x;
 this.y = y;
 } finally {
 stateLock.unlock();
 }
 }
 // ...
}

@Immutable
public final class Point {
 private final int f_x;
 private final int f_y;

 public Point(int x, int y) {
 f_x = x;
 f_y = y;
 }

 public int getX() {
 return f_x;
 }

 public int getY() {
 return f_y;
 }
}

The @Region and @RegionLock annotations document the locking policy upon
which the promise of thread-safety is predicated.

Even when one or more @RegionLock or @GuardedBy annotations have been
used to document the locking policy of a class, the @ThreadSafe annotation provides
an intuitive way for reviewers to learn that the class is thread-safe.

The @Immutable annotation is applied to immutable classes. Immutable objects
are inherently thread-safe; once they are fully constructed, they may be published
via a reference and shared safely among multiple threads.

The following example shows an immutable Point class:

Long_Ch02.indd 91 30/07/13 8:29 PM

92 Chapter 2 n Defensive Programming

According to Joshua Bloch [Bloch 2008],

It is not necessary to document the immutability of enum types. Unless it is obvious
from the return type, static factories must document the thread safety of the returned
object, as demonstrated by Collections.synchronizedMap.

The @NotThreadSafe annotation is applied to classes that are not thread-safe. Many
classes fail to document whether they are safe for multithreaded use. Consequently, a
programmer has no easy way to determine whether the class is thread-safe. This
 annotation provides clear indication of the class’s lack of thread-safety.

For example, most of the collection implementations provided in java.util are
not thread-safe. The class java.util.ArrayList could document this as follows:

Documenting Locking Policies
It is important to document all the locks that are being used to protect shared state.
According to Brian Goetz and colleagues [Goetz 2006],

For each mutable state variable that may be accessed by more than one thread, all
accesses to that variable must be performed with the same lock held. In this case, we
say that the variable is guarded by that lock. (p. 28)

JCIP provides the @GuardedBy annotation for this purpose, and SureLogic pro-
vides the @RegionLock annotation. The field or method to which the @GuardedBy
annotation is applied can be accessed only when holding a particular lock. It may be
an intrinsic lock or a dynamic lock such as java.util.c oncurrent.Lock.

For example, the following MovablePoint class implements a movable point
that can remember its past locations using the memo array list:

package java.util.ArrayList;

@NotThreadSafe
public class ArrayList<E> extends ... {
 // ...
}

@ThreadSafe
public final class MovablePoint {

 @GuardedBy("this")
 double xPos = 1.0;

Long_Ch02.indd 92 30/07/13 8:29 PM

25. Document thread-safety and use annotations where applicable 93

 @GuardedBy("this")
 double yPos = 1.0;
 @GuardedBy("itself")
 static final List<MovablePoint> memo
 = new ArrayList<MovablePoint>();

 public void move(double slope, double distance) {
 synchronized (this) {
 rememberPoint(this);
 xPos += (1 / slope) * distance;
 yPos += slope * distance;
 }
 }

 public static void rememberPoint(MovablePoint value) {
 synchronized (memo) {
 memo.add(value);
 }
 }
}

@RegionLock("SimpleLock is this protects Instance")
class Simple { ... }

The @GuardedBy annotations on the xPos and yPos fields indicate that access
to these fields is protected by holding a lock on this. The move() method also syn-
chronizes on this, which modifies these fields. The @GuardedBy annotation on the
memo list indicates that a lock on the ArrayList object protects its contents. The
rememberPoint() method also synchronizes on the memo list.

One issue with the @GuardedBy annotation is that it fails to indicate when there
is a relationship between the fields of a class. This limitation can be overcome by
using the SureLogic @RegionLock annotation, which declares a new region lock for
the class to which this annotation is applied. This declaration creates a new named
lock that associates a particular lock object with a region of the class. The region may
be accessed only when the lock is held. For example, the SimpleLock locking policy
indicates that synchronizing on the instance protects all of its state:

Unlike @GuardedBy, the @RegionLock annotation allows the programmer to give
an explicit, and hopefully meaningful, name to the locking policy.

Long_Ch02.indd 93 30/07/13 8:29 PM

94 Chapter 2 n Defensive Programming

In addition to naming the locking policy, the @Region annotation allows a name
to be given to the region of the state that is being protected. That name makes it clear
that the state and locking policy belong together, as demonstrated in the following
example:

In this example, a locking policy named StateLock is used to indicate that lock-
ing on stateLock protects the named AircraftPosition region, which includes the
mutable state used to represent the position of the aircraft.

Construction of Mutable Objects
Typically, object construction is considered an exception to the locking policy
because objects are thread-confined when they are first created. An object is confined
to the thread that uses the new operator to create its instance. After creation, the object
can be published to other threads safely. However, the object is not shared until the
thread that created the instance allows it to be shared. Safe publication approaches
discussed in The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012],
“TSM01-J. Do not let the this reference escape during object construction,” can be
expressed succinctly with the @Unique("return") annotation.

@Region("private AircraftPosition")
@RegionLock("StateLock is stateLock protects AircraftPosition")
public final class Aircraft {
 private final Lock stateLock = new ReentrantLock();

 @InRegion("AircraftPosition")
 private long x, y;

 @InRegion("AircraftPosition")
 private long altitude;
 // ...
 public void setPosition(long x, long y) {
 stateLock.lock();
 try {
 this.x = x;
 this.y = y;
 } finally {
 stateLock.unlock();
 }
 }
 // ...
}

Long_Ch02.indd 94 30/07/13 8:29 PM

25. Document thread-safety and use annotations where applicable 95

@RegionLock("Lock is this protects Instance")
public final class Example {
 private int x = 1;
 private int y;

 @Unique("return")
 public Example(int y) {
 this.y = y;
 }
 // ...
}

@ThreadRole AWT, Compute
@IncompatibleThreadRoles AWT, Compute
@MaxRoleCount AWT 1

For example, in the following code, the @Unique("return") annotation
 documents that the object returned from the constructor is a unique reference:

Documenting Thread-Confinement Policies
Dean Sutherland and William Scherlis propose annotations that can document
thread-confinement policies. Their approach allows verification of the annotations
against as-written code [Sutherland 2010].

For example, the following annotations express the design intent that a program
has, at most, one Abstract Window Toolkit (AWT) event dispatch thread and several
compute threads, and that the compute threads are forbidden to handle AWT data
structures or events:

Documenting Wait–Notify Protocols
According to Goetz and colleagues [Goetz 2006],

A state-dependent class should either fully expose (and document) its waiting and
notification protocols to subclasses, or prevent subclasses from participating in them
at all. (This is an extension of “design and document for inheritance, or else prohibit
it” [EJ Item 15].) At the very least, designing a state-dependent class for inheritance
requires exposing the condition queues and locks and documenting the condition
predicates and synchronization policy; it may also require exposing the underlying
state variables. (The worst thing a state-dependent class can do is expose its state to
subclasses but not document its protocols for waiting and notification; this is like a
class exposing its state variables but not documenting its invariants.) (p. 395)

Long_Ch02.indd 95 30/07/13 8:29 PM

96 Chapter 2 n Defensive Programming

Wait–notify protocols should be documented adequately. Currently, we are not
aware of any annotations for this purpose.

Applicability
Annotating concurrent code helps document the design intent and can be used to
automate the detection and prevention of race conditions and data races.

Bibliography
[Bloch 2008] Item 70, “Document Thread Safety”

[Goetz 2006] Java Concurrency in Practice

[Long 2012] TSM01-J. Do not let the this reference escape during object construction

[Sutherland 2010] “Composable Thread Coloring”

n  26. Always provide feedback about the resulting value
of a method

Methods should be designed to return a value that allows the developer to learn
about the current state of the object and/or the result of an operation. This advice is
consistent with The CERT® Oracle® Secure Coding Standard for Java™ [Long 2012],
“EXP00-J. Do not ignore values returned by methods.” The returned value should be
representative of the last known state and should be chosen keeping in mind the per-
ceptions and mental model of the developer.

Feedback can also be provided by throwing either standard or custom exception
objects derived from the Exception class. With this approach, the developer can still
get precise information about the outcome of the method and proceed to take the
necessary actions. To do so, the exception should provide a detailed account of the
abnormal condition at the appropriate abstraction level.

APIs should use a combination of these approaches, both to help clients distin-
guish correct results from incorrect ones and to encourage careful handling of any
incorrect results. In cases where there is a commonly accepted error value that can-
not be misinterpreted as a valid return value for the method, that error value should
be returned; and in other cases an exception should be thrown. A method must not
return a value that can hold both valid return data and an error code; see Guideline 52,
“Avoid in-band error indicators,” for more details.

Alternatively, an object can provide a state-testing method [Bloch 2008] that
checks whether the object is in a consistent state. This approach is useful only in cases
where the object’s state cannot be modified by external threads. This prevents a

Long_Ch02.indd 96 30/07/13 8:29 PM

26. Always provide feedback about the resulting value of a method 97

public void updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {

 current.setValue(newValue);
 break;

 }
 current = current.next;
 }
}

public boolean updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {

 current.setValue(newValue);
 return true; // Node successfully updated

 }
 current = current.next;
 }
 return false;
}

time-of-check, time-of-use (TOCTOU) race condition between invocation of the
object’s state-testing method and the call to a method that depends on the object’s state.
During this interval, the object’s state could change unexpectedly or even maliciously.

Method return values and/or error codes must accurately specify the object’s
state at an appropriate level of abstraction. Clients must be able to rely on the value
for performing critical actions.

Noncompliant Code Example
The updateNode() method in this noncompliant code example modifies a node if it
can find it in a linked list and does nothing if the node is not found.

This method fails to indicate whether it modified any node. Consequently, a
caller cannot determine that the method succeeded or failed silently.

Compliant Solution (Boolean)
This compliant solution returns the result of the operation as true if it modified a
node and false if it did not.

Long_Ch02.indd 97 30/07/13 8:29 PM

98 Chapter 2 n Defensive Programming

Compliant Solution (Exception)
This compliant solution returns the modified Node when one is found and throws a
NodeNotFoundException when the node is not available in the list.

public Node updateNode(int id, int newValue)
 throws NodeNotFoundException {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {

 current.setValue(newValue);
 return current;

 }
 current = current.next;
 }
 throw new NodeNotFoundException();
}

Using exceptions to indicate failure can be a good design choice, but throwing
exceptions is not always appropriate. In general, a method should throw an excep-
tion only when it is expected to succeed but an unrecoverable situation occurs or
when it expects a method higher up in the call hierarchy to initiate recovery.

Compliant Solution (Null Return Value)
This compliant solution returns the updated Node so that the developer can simply
check for a null return value if the operation fails.

public Node updateNode(int id, int newValue) {
 Node current = root;
 while (current != null) {
 if (current.getId() == id) {

 current.setValue(newValue);
 return current;

 }
 current = current.next;
 }
 return null;
}

A return value that might be null is an in-band error indicator, which is discussed
more thoroughly in Guideline 52, “Avoid in-band error indicators.” This design is

Long_Ch02.indd 98 30/07/13 8:29 PM

26. Always provide feedback about the resulting value of a method 99

permitted but is considered inferior to other designs, such as those shown in the
other compliant solutions in this guideline.

Applicability
Failure to provide appropriate feedback through a combination of return values,
error codes, and exceptions can lead to inconsistent object state and unexpected
program behavior.

Bibliography
[Bloch 2008] Item 59. Avoid unnecessary use of checked exceptions

[Long 2012] EXP00-J. Do not ignore values returned by methods

[Ware 2008] Writing Secure Java Code

Long_Ch02.indd 99 30/07/13 8:29 PM

