
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321928429
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321928429
https://plusone.google.com/share?url=http://www.informit.com/title/9780321928429
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321928429
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321928429/Free-Sample-Chapter

C Primer Plus

 Sixth Edition

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-321-83387-7

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0-321-77640-2

Developer’s Library books are available in print and in electronic formats at most retail
and online bookstores, as well as by subscription from Safari Books Online at safari.

informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

C Primer Plus

Sixth Edition

Stephen Prata

 Acquisitions Editor

Mark Taber

 Managing Editor

Sandra Schroeder

 Project Editor

Mandie Frank

 Copy Editor

Geneil Breeze

 Indexer

Johnna VanHoose
Dinse

 Proofreader

Jess DeGabriele

 Technical Editor

Danny Kalev

 Publishing
Coordinator

Vanessa Evans

 Designer

Chuti Prasertsith

 Page Layout

Jake McFarland

 C Primer Plus

 Sixth Edition
 Copyright © 2014 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

 ISBN-13: 978-0-321-92842-9
 ISBN-10: 0-321-92842-3

 Library of Congress Control Number: 2013953007

 Printed in the United States of America

 First Printing: December 2013

 Trademarks

 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

 Warning and Disclaimer

 Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.

 Bulk Sales

 Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

 U.S. Corporate and Government Sales

 1-800-382-3419

 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales

 international@pearsoned.com

 Contents at a Glance

 Preface xxvii

 1 Getting Ready 1

 2 Introducing C 27

 3 Data and C 55

 4 Character Strings and Formatted Input/Output 99

 5 Operators, Expressions, and Statements 143

 6 C Control Statements: Looping 189

 7 C Control Statements: Branching and Jumps 245

 8 Character Input/Output and Input Validation 299

 9 Functions 335

 10 Arrays and Pointers 383

 11 Character Strings and String Functions 441

 12 Storage Classes, Linkage, and Memory Management 511

 13 File Input/Output 565

 14 Structures and Other Data Forms 601

 15 Bit Fiddling 673

 16 The C Preprocessor and the C Library 711

 17 Advanced Data Representation 773

 Appendixes

 A Answers to the Review Questions 861

 B Reference Section 905

 Index 1005

 Table of Contents

 Preface xxvii

 1 Getting Ready 1

Whence C? 1

Why C? 2

Design Features 2

Efficiency 3

Portability 3

Power and Flexibility 3

Programmer Oriented 3

Shortcomings 4

Whither C? 4

What Computers Do 5

High-level Computer Languages and Compilers 6

Language Standards 7

The First ANSI/ISO C Standard 8

The C99 Standard 8

The C11 Standard 9

Using C: Seven Steps 9

Step 1: Define the Program Objectives 10

Step 2: Design the Program 10

Step 3: Write the Code 11

Step 4: Compile 11

Step 5: Run the Program 12

Step 6: Test and Debug the Program 12

Step 7: Maintain and Modify the Program 13

Commentary 13

Programming Mechanics 13

Object Code Files, Executable Files, and Libraries 14

Unix System 16

The GNU Compiler Collection and the LLVM Project 18

Linux Systems 18

Command-Line Compilers for the PC 19

Integrated Development Environments (Windows) 19

The Windows/Linux Option 21

C on the Macintosh 21

How This Book Is Organized 22

Conventions Used in This Book 22

Typeface 22

Program Output 23

Special Elements 24

Summary 24

Review Questions 25

Programming Exercise 25

 2 Introducing C 27

A Simple Example of C 27

The Example Explained 28

Pass 1: Quick Synopsis 30

Pass 2: Program Details 31

The Structure of a Simple Program 40

Tips on Making Your Programs Readable 41

Taking Another Step in Using C 42

Documentation 43

Multiple Declarations 43

Multiplication 43

Printing Multiple Values 43

While You’re at It—Multiple Functions 44

Introducing Debugging 46

Syntax Errors 46

Semantic Errors 47

Program State 49

Keywords and Reserved Identifiers 49

Key Concepts 50

Summary 51

Review Questions 51

Programming Exercises 53

 3 Data and C 55

A Sample Program 55

What’s New in This Program? 57

Data Variables and Constants 59

Data: Data-Type Keywords 59

Integer Versus Floating-Point Types 60

viii Contents

The Integer 61

The Floating-Point Number 61

Basic C Data Types 62

The int Type 62

Other Integer Types 66

Using Characters: Type char 71

The _Bool Type 77

Portable Types: stdint.h and inttypes.h 77

Types float, double, and long double 79

Complex and Imaginary Types 85

Beyond the Basic Types 85

Type Sizes 87

Using Data Types 88

Arguments and Pitfalls 89

One More Example: Escape Sequences 91

What Happens When the Program Runs 91

Flushing the Output 92

Key Concepts 93

Summary 93

Review Questions 94

Programming Exercises 97

 4 Character Strings and Formatted Input/Output 99

Introductory Program 99

Character Strings: An Introduction 101

Type char Arrays and the Null Character 101

Using Strings 102

The strlen() Function 103

Constants and the C Preprocessor 106

The const Modifier 109

Manifest Constants on the Job 109

Exploring and Exploiting printf() and scanf() 112

The printf() Function 112

Using printf() 113

Conversion Specification Modifiers for printf() 115

What Does a Conversion Specification Convert? 122

Using scanf() 128

ixContents

The * Modifier with printf() and scanf() 133

Usage Tips for printf() 135

Key Concepts 136

Summary 137

Review Questions 138

Programming Exercises 140

 5 Operators, Expressions, and Statements 143

Introducing Loops 144

Fundamental Operators 146

Assignment Operator: = 146

Addition Operator: + 149

Subtraction Operator: – 149

Sign Operators: – and + 150

Multiplication Operator: * 151

Division Operator: / 153

Operator Precedence 154

Precedence and the Order of Evaluation 156

Some Additional Operators 157

The sizeof Operator and the size_t Type 158

Modulus Operator: % 159

Increment and Decrement Operators: ++ and -- 160

Decrementing: -- 164

Precedence 165

Don’t Be Too Clever 166

Expressions and Statements 167

Expressions 167

Statements 168

Compound Statements (Blocks) 171

Type Conversions 174

The Cast Operator 176

Function with Arguments 177

A Sample Program 180

Key Concepts 182

Summary 182

Review Questions 183

Programming Exercises 187

x Contents

 6 C Control Statements: Looping 189

Revisiting the while Loop 190

Program Comments 191

C-Style Reading Loop 192

The while Statement 193

Terminating a while Loop 194

When a Loop Terminates 194

while: An Entry-Condition Loop 195

Syntax Points 195

Which Is Bigger: Using Relational Operators and Expressions 197

What Is Truth? 199

What Else Is True? 200

Troubles with Truth 201

The New _Bool Type 203

Precedence of Relational Operators 205

Indefinite Loops and Counting Loops 207

The for Loop 208

Using for for Flexibility 210

More Assignment Operators: +=, -=, *=, /=, %= 215

The Comma Operator 215

Zeno Meets the for Loop 218

An Exit-Condition Loop: do while 220

Which Loop? 223

Nested Loops 224

Program Discussion 225

A Nested Variation 225

Introducing Arrays 226

Using a for Loop with an Array 228

A Loop Example Using a Function Return Value 230

Program Discussion 232

Using Functions with Return Values 233

Key Concepts 234

Summary 235

Review Questions 236

Programming Exercises 241

xiContents

 7 C Control Statements: Branching and Jumps 245

The if Statement 246

Adding else to the if Statement 248

Another Example: Introducing getchar() and putchar() 250

The ctype.h Family of Character Functions 252

Multiple Choice else if 254

Pairing else with if 257

More Nested ifs 259

Let’s Get Logical 263

Alternate Spellings: The iso646.h Header File 265

Precedence 265

Order of Evaluation 266

Ranges 267

A Word-Count Program 268

The Conditional Operator: ?: 271

Loop Aids: continue and break 274

The continue Statement 274

The break Statement 277

Multiple Choice: switch and break 280

Using the switch Statement 281

Reading Only the First Character of a Line 283

Multiple Labels 284

switch and if else 286

The goto Statement 287

Avoiding goto 287

Key Concepts 291

Summary 291

Review Questions 292

Programming Exercises 296

 8 Character Input/Output and Input Validation 299

Single-Character I/O: getchar() and putchar() 300

Buffers 301

Terminating Keyboard Input 302

Files, Streams, and Keyboard Input 303

The End of File 304

Redirection and Files 307

xii Contents

Unix, Linux, and Windows Command Prompt Redirection 307

Creating a Friendlier User Interface 312

Working with Buffered Input 312

Mixing Numeric and Character Input 314

Input Validation 317

Analyzing the Program 322

The Input Stream and Numbers 323

Menu Browsing 324

Tasks 324

Toward a Smoother Execution 325

Mixing Character and Numeric Input 327

Key Concepts 330

Summary 331

Review Questions 331

Programming Exercises 332

 9 Functions 335

Reviewing Functions 335

Creating and Using a Simple Function 337

Analyzing the Program 338

Function Arguments 340

Defining a Function with an Argument: Formal Parameters 342

Prototyping a Function with Arguments 343

Calling a Function with an Argument: Actual Arguments 343

The Black-Box Viewpoint 345

Returning a Value from a Function with return 345

Function Types 348

ANSI C Function Prototyping 349

The Problem 350

The ANSI C Solution 351

No Arguments and Unspecified Arguments 352

Hooray for Prototypes 353

Recursion 353

Recursion Revealed 354

Recursion Fundamentals 355

Tail Recursion 356

Recursion and Reversal 358

xiiiContents

Recursion Pros and Cons 360

Compiling Programs with Two or More Source Code Files 361

Unix 362

Linux 362

DOS Command-Line Compilers 362

Windows and Apple IDE Compilers 362

Using Header Files 363

Finding Addresses: The & Operator 367

Altering Variables in the Calling Function 369

Pointers: A First Look 371

The Indirection Operator: * 371

Declaring Pointers 372

Using Pointers to Communicate Between Functions 373

Key Concepts 378

Summary 378

Review Questions 379

Programming Exercises 380

 10 Arrays and Pointers 383

Arrays 383

Initialization 384

Designated Initializers (C99) 388

Assigning Array Values 390

Array Bounds 390

Specifying an Array Size 392

Multidimensional Arrays 393

Initializing a Two-Dimensional Array 397

More Dimensions 398

Pointers and Arrays 398

Functions, Arrays, and Pointers 401

Using Pointer Parameters 404

Comment: Pointers and Arrays 407

Pointer Operations 407

Protecting Array Contents 412

Using const with Formal Parameters 413

More About const 415

xiv Contents

Pointers and Multidimensional Arrays 417

Pointers to Multidimensional Arrays 420

Pointer Compatibility 421

Functions and Multidimensional Arrays 423

Variable-Length Arrays (VLAs) 427

Compound Literals 431

Key Concepts 434

Summary 435

Review Questions 436

Programming Exercises 439

 11 Character Strings and String Functions 441

Representing Strings and String I/O 441

Defining Strings Within a Program 442

Pointers and Strings 451

String Input 453

Creating Space 453

The Unfortunate gets() Function 453

The Alternatives to gets() 455

The scanf() Function 462

String Output 464

The puts() Function 464

The fputs() Function 465

The printf() Function 466

The Do-It-Yourself Option 466

String Functions 469

The strlen() Function 469

The strcat() Function 471

The strncat() Function 473

The strcmp() Function 475

The strcpy() and strncpy() Functions 482

The sprintf() Function 487

Other String Functions 489

A String Example: Sorting Strings 491

Sorting Pointers Instead of Strings 493

The Selection Sort Algorithm 494

xvContents

The ctype.h Character Functions and Strings 495

Command-Line Arguments 497

Command-Line Arguments in Integrated Environments 500

Command-Line Arguments with the Macintosh 500

String-to-Number Conversions 500

Key Concepts 504

Summary 504

Review Questions 505

Programming Exercises 508

 12 Storage Classes, Linkage, and Memory Management 511

Storage Classes 511

Scope 513

Linkage 515

Storage Duration 516

Automatic Variables 518

Register Variables 522

Static Variables with Block Scope 522

Static Variables with External Linkage 524

Static Variables with Internal Linkage 529

Multiple Files 530

Storage-Class Specifier Roundup 530

Storage Classes and Functions 533

Which Storage Class? 534

A Random-Number Function and a Static Variable 534

Roll ’Em 538

Allocated Memory: malloc() and free() 543

The Importance of free() 547

The calloc() Function 548

Dynamic Memory Allocation and Variable-Length Arrays 548

Storage Classes and Dynamic Memory Allocation 549

ANSI C Type Qualifiers 551

The const Type Qualifier 552

The volatile Type Qualifier 554

The restrict Type Qualifier 555

The _Atomic Type Qualifier (C11) 556

New Places for Old Keywords 557

xvi Contents

Key Concepts 558

Summary 558

Review Questions 559

Programming Exercises 561

 13 File Input/Output 565

Communicating with Files 565

What Is a File? 566

The Text Mode and the Binary Mode 566

Levels of I/O 568

Standard Files 568

Standard I/O 568

Checking for Command-Line Arguments 569

The fopen() Function 570

The getc() and putc() Functions 572

End-of-File 572

The fclose() Function 574

Pointers to the Standard Files 574

A Simple-Minded File-Condensing Program 574

File I/O: fprintf(), fscanf(), fgets(), and fputs() 576

The fprintf() and fscanf() Functions 576

The fgets() and fputs() Functions 578

Adventures in Random Access: fseek() and ftell() 579

How fseek() and ftell() Work 580

Binary Versus Text Mode 582

Portability 582

The fgetpos() and fsetpos() Functions 583

Behind the Scenes with Standard I/O 583

Other Standard I/O Functions 584

The int ungetc(int c, FILE *fp) Function 585

The int fflush() Function 585

The int setvbuf() Function 585

Binary I/O: fread() and fwrite() 586

The size_t fwrite() Function 588

The size_t fread() Function 588

The int feof(FILE *fp) and int ferror(FILE *fp) Functions 589

An fread() and fwrite() Example 589

xviiContents

Random Access with Binary I/O 593

Key Concepts 594

Summary 595

Review Questions 596

Programming Exercises 598

 14 Structures and Other Data Forms 601

Sample Problem: Creating an Inventory of Books 601

Setting Up the Structure Declaration 604

Defining a Structure Variable 604

Initializing a Structure 606

Gaining Access to Structure Members 607

Initializers for Structures 607

Arrays of Structures 608

Declaring an Array of Structures 611

Identifying Members of an Array of Structures 612

Program Discussion 612

Nested Structures 613

Pointers to Structures 615

Declaring and Initializing a Structure Pointer 617

Member Access by Pointer 617

Telling Functions About Structures 618

Passing Structure Members 618

Using the Structure Address 619

Passing a Structure as an Argument 621

More on Structure Features 622

Structures or Pointer to Structures? 626

Character Arrays or Character Pointers in a Structure 627

Structure, Pointers, and malloc() 628

Compound Literals and Structures (C99) 631

Flexible Array Members (C99) 633

Anonymous Structures (C11) 636

Functions Using an Array of Structures 637

Saving the Structure Contents in a File 639

A Structure-Saving Example 640

Program Points 643

Structures: What Next? 644

xviii Contents

Unions: A Quick Look 645

Using Unions 646

Anonymous Unions (C11) 647

Enumerated Types 649

enum Constants 649

Default Values 650

Assigned Values 650

enum Usage 650

Shared Namespaces 652

typedef: A Quick Look 653

Fancy Declarations 655

Functions and Pointers 657

Key Concepts 665

Summary 665

Review Questions 666

Programming Exercises 669

 15 Bit Fiddling 673

Binary Numbers, Bits, and Bytes 674

Binary Integers 674

Signed Integers 675

Binary Floating Point 676

Other Number Bases 676

Octal 677

Hexadecimal 677

C’s Bitwise Operators 678

Bitwise Logical Operators 678

Usage: Masks 680

Usage: Turning Bits On (Setting Bits) 681

Usage: Turning Bits Off (Clearing Bits) 682

Usage: Toggling Bits 683

Usage: Checking the Value of a Bit 683

Bitwise Shift Operators 684

Programming Example 685

Another Example 688

Bit Fields 690

Bit-Field Example 692

xixContents

Bit Fields and Bitwise Operators 696

Alignment Features (C11) 703

Key Concepts 705

Summary 706

Review Questions 706

Programming Exercises 708

 16 The C Preprocessor and the C Library 711

First Steps in Translating a Program 712

Manifest Constants: #define 713

Tokens 717

Redefining Constants 717

Using Arguments with #define 718

Creating Strings from Macro Arguments: The # Operator 721

Preprocessor Glue: The ## Operator 722

Variadic Macros: ... and __VA_ARGS__ 723

Macro or Function? 725

File Inclusion: #include 726

Header Files: An Example 727

Uses for Header Files 729

Other Directives 730

The #undef Directive 731

Being Defined—The C Preprocessor Perspective 731

Conditional Compilation 731

Predefined Macros 737

#line and #error 738

#pragma 739

Generic Selection (C11) 740

Inline Functions (C99) 741

_Noreturn Functions (C11) 744

The C Library 744

Gaining Access to the C Library 745

Using the Library Descriptions 746

The Math Library 747

A Little Trigonometry 748

Type Variants 750

The tgmath.h Library (C99) 752

xx Contents

The General Utilities Library 753

The exit() and atexit() Functions 753

The qsort() Function 755

The Assert Library 760

Using assert 760

_Static_assert (C11) 762

memcpy() and memmove() from the string.h Library 763

Variable Arguments: stdarg.h 765

Key Concepts 768

Summary 768

Review Questions 768

Programming Exercises 770

 17 Advanced Data Representation 773

Exploring Data Representation 774

Beyond the Array to the Linked List 777

Using a Linked List 781

Afterthoughts 786

Abstract Data Types (ADTs) 786

Getting Abstract 788

Building an Interface 789

Using the Interface 793

Implementing the Interface 796

Getting Queued with an ADT 804

Defining the Queue Abstract Data Type 804

Defining an Interface 805

Implementing the Interface Data Representation 806

Testing the Queue 815

Simulating with a Queue 818

The Linked List Versus the Array 824

Binary Search Trees 828

A Binary Tree ADT 829

The Binary Search Tree Interface 830

The Binary Tree Implementation 833

Trying the Tree 849

Tree Thoughts 854

xxiContents

Other Directions 856

Key Concepts 856

Summary 857

Review Questions 857

Programming Exercises 858

 A Answers to the Review Questions 861

Answers to Review Questions for Chapter 1 861

Answers to Review Questions for Chapter 2 862

Answers to Review Questions for Chapter 3 863

Answers to Review Questions for Chapter 4 866

Answers to Review Questions for Chapter 5 869

Answers to Review Questions for Chapter 6 872

Answers to Review Questions for Chapter 7 876

Answers to Review Questions for Chapter 8 879

Answers to Review Questions for Chapter 9 881

Answers to Review Questions for Chapter 10 883

Answers to Review Questions for Chapter 11 886

Answers to Review Questions for Chapter 12 890

Answers to Review Questions for Chapter 13 891

Answers to Review Questions for Chapter 14 894

Answers to Review Questions for Chapter 15 898

Answers to Review Questions for Chapter 16 899

Answers to Review Questions for Chapter 17 901

 B Reference Section 905

Section I: Additional Reading 905

Online Resources 905

C Language Books 907

Programming Books 907

Reference Books 908

C++ Books 908

Section II: C Operators 908

Arithmetic Operators 909

Relational Operators 910

Assignment Operators 910

Logical Operators 911

xxii Contents

The Conditional Operator 911

Pointer-Related Operators 912

Sign Operators 912

Structure and Union Operators 912

Bitwise Operators 913

Miscellaneous Operators 914

Section III: Basic Types and Storage Classes 915

Summary: The Basic Data Types 915

Summary: How to Declare a Simple Variable 917

Summary: Qualifiers 919

Section IV: Expressions, Statements, and Program Flow 920

Summary: Expressions and Statements 920

Summary: The while Statement 921

Summary: The for Statement 921

Summary: The do while Statement 922

Summary: Using if Statements for Making Choices 923

Summary: Multiple Choice with switch 924

Summary: Program Jumps 925

Section V: The Standard ANSI C Library with C99 and C11 Additions 926

Diagnostics: assert.h 926

Complex Numbers: complex.h (C99) 927

Character Handling: ctype.h 929

Error Reporting: errno.h 930

Floating-Point Environment: fenv.h (C99) 930

Floating-point Characteristics: float.h 933

Format Conversion of Integer Types: inttypes.h (C99) 935

Alternative Spellings: iso646.h 936

Localization: locale.h 936

Math Library: math.h 939

Non-Local Jumps: setjmp.h 945

Signal Handling: signal.h 945

Alignment: stdalign.h (C11) 946

Variable Arguments: stdarg.h 947

Atomics Support: stdatomic.h (C11) 948

Boolean Support: stdbool.h (C99) 948

Common Definitions: stddef.h 948

Integer Types: stdint.h 949

xxiiiContents

Standard I/O Library: stdio.h 953

General Utilities: stdlib.h 956

_Noreturn: stdnoreturn.h 962

String Handling: string.h 962

Type-Generic Math: tgmath.h (C99) 965

Threads: threads.h (C11) 967

Date and Time: time.h 967

Unicode Utilities: uchar.h (C11) 971

Extended Multibyte and Wide-Character Utilities: wchar.h (C99) 972

Wide Character Classification and Mapping Utilities: wctype.h (C99) 978

Section VI: Extended Integer Types 980

Exact-Width Types 981

Minimum-Width Types 982

Fastest Minimum-Width Types 983

Maximum-Width Types 983

Integers That Can Hold Pointer Values 984

Extended Integer Constants 984

Section VII: Expanded Character Support 984

Trigraph Sequences 984

Digraphs 985

Alternative Spellings: iso646.h 986

Multibyte Characters 986

Universal Character Names (UCNs) 987

Wide Characters 988

Wide Characters and Multibyte Characters 989

Section VIII: C99/C11 Numeric Computational Enhancements 990

The IEC Floating-Point Standard 990

The fenv.h Header File 994

The STDC FP_CONTRACT Pragma 995

Additions to the math.h Library 995

Support for Complex Numbers 996

Section IX: Differences Between C and C++ 998

Function Prototypes 999

char Constants 1000

The const Modifier 1000

Structures and Unions 1001

Enumerations 1002

xxiv Contents

Pointer-to-void 1002

Boolean Types 1003

Alternative Spellings 1003

Wide-Character Support 1003

Complex Types 1003

Inline Functions 1003

C99/11 Features Not Found in C++11 1004

Index 1005

 Dedication

 To the memory of my father, William Prata.

 About the Author

 Stephen Prata , now retired, taught astronomy, physics, and programming at the College of
Marin in Kentfield, California. He received his B.S. from the California Institute of Technology
and his Ph.D. from the University of California, Berkeley. His association with computers began
with the computer modeling of star clusters. Stephen has authored or coauthored over a dozen
books, including C++ Primer Plus and Unix Primer Plus.

 Acknowledgments

 I wish to thank Mark Taber at Pearson for getting this project underway and for seeing it
through. And I’d like to thank Danny Kalev for his technical help and for suggesting the term
“program scope.”

 We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book and that
due to the high volume of mail we receive, we might not be able to reply to every message.

 When you write, please be sure to include this book’s title, edition number, and author as well
as your name and contact information.

 Email: feedback@developers-library.info

 Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services

 Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

 Preface

 C was a relatively little-known language when the first edition of C Primer Plus appeared in
1984. Since then, the language has boomed, and many people have learned C with the help of
this book. In fact, C Primer Plus throughout its various editions has sold over 550,000 copies.

 As the language has grown from the early informal K&R standard through the 1990 ISO/ANSI
standard through the 1999 ISO/ANSI standard to the 2011 ISO/IEC standard, so has this book
matured through this, the sixth edition. As with all the editions, my aim has been to create an
introduction to C that is instructive, clear, and helpful.

 Approach and Goals

 My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that
objective, C Primer Plus employs the following strategies:

 ■ Programming concepts are explained, along with details of the C language; the book does
 not assume that you are a professional programmer.

 ■ Many short, easily typed examples illustrate just one or two concepts at a time, because
learning by doing is one of the most effective ways to master new information.

 ■ Figures and illustrations clarify concepts that are difficult to grasp in words alone.

 ■ Highlight boxes summarize the main features of C for easy reference and review.

 ■ Review questions and programming exercises at the end of each chapter allow you to test
and improve your understanding of C.

 To gain the greatest benefit, you should take as active a role as possible in studying the topics
in this book. Don’t just read the examples, enter them into your system, and try them. C is a
very portable language, but you may find differences between how a program works on your
system and how it works on ours. Experiment with changing part of a program to see what
the effect is. Modify a program to do something slightly different. See if you can develop an
alternative approach. Ignore the occasional warnings and see what happens when you do the
wrong thing. Try the questions and exercises. The more you do yourself, the more you will
learn and remember.

 I hope that you’ll find this newest edition an enjoyable and effective introduction to the C
language.

This page intentionally left blank

 3
 Data and C

 You will learn about the following in this chapter:

 ■ Keywords:

 int , short , long , unsigned , char , float , double , _Bool , _Complex , _Imaginary

 ■ Operator:

 sizeof

 ■ Function:

 scanf()

 ■ The basic data types that C uses

 ■ The distinctions between integer types and floating-point types

 ■ Writing constants and declaring variables of those types

 ■ How to use the printf() and scanf() functions to read and write values of different
types

 Programs work with data. You feed numbers, letters, and words to the computer, and you
expect it to do something with the data. For example, you might want the computer to calcu-
late an interest payment or display a sorted list of vintners. In this chapter, you do more than
just read about data; you practice manipulating data, which is much more fun.

 This chapter explores the two great families of data types: integer and floating point. C offers
several varieties of these types. This chapter tells you what the types are, how to declare them,
and how and when to use them. Also, you discover the differences between constants and vari-
ables, and as a bonus, your first interactive program is coming up shortly.

 A Sample Program

 Once again, we begin with a sample program. As before, you’ll find some unfamiliar wrinkles
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling

56 Chapter 3 Data and C

and running the source code shown in Listing 3.1 . To save time, you can omit typing the
comments.

 Listing 3.1 The platinum.c Program

 /* platinum.c -- your weight in platinum */

 #include <stdio.h>

 int main(void)

 {

 float weight; /* user weight */

 float value; /* platinum equivalent */

 printf("Are you worth your weight in platinum?\n");

 printf("Let's check it out.\n");

 printf("Please enter your weight in pounds: ");

 /* get input from the user */

 scanf("%f", &weight);

 /* assume platinum is $1700 per ounce */

 /* 14.5833 converts pounds avd. to ounces troy */

 value = 1700.0 * weight * 14.5833;

 printf("Your weight in platinum is worth $%.2f.\n", value);

 printf("You are easily worth that! If platinum prices drop,\n");

 printf("eat more to maintain your value.\n");

 return 0;

 }

 Tip Errors and Warnings

 If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax
error message. Even if you type it correctly, however, the compiler may give you a warning simi-
lar to “Warning—conversion from ‘double’ to ‘float,’ possible loss of data.” An error message
means you did something wrong and prevents the program from being compiled. A warning ,
however, means you’ve done something that is valid code but possibly is not what you meant
to do. A warning does not stop compilation. This particular warning pertains to how C handles
values such as 1700.0. It’s not a problem for this example, and the chapter explains the warn-
ing later.

 When you type this program, you might want to change the 1700.0 to the current price of
the precious metal platinum. Don’t, however, fiddle with the 14.5833 , which represents the
number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoir-
dupois, used for people—precious and otherwise.)

 Note that “entering” your weight means to type your weight and then press the Enter or Return
key. (Don’t just type your weight and wait.) Pressing Enter informs the computer that you have

57A Sample Program

finished typing your response. The program expects you to enter a number, such as 156 , not
words, such as too much . Entering letters rather than digits causes problems that require an if
statement (Chapter 7 , “C Control Statements: Branching and Jumps”) to defeat, so please be
polite and enter a number. Here is some sample output:

 Are you worth your weight in platinum?

 Let's check it out.

 Please enter your weight in pounds: 156
 Your weight in platinum is worth $3867491.25.

 You are easily worth that! If platinum prices drop,

 eat more to maintain your value.

 Program Adjustments

 Did the output for this program briefly flash onscreen and then disappear even though you
added the following line to the program, as described in Chapter 2 , “Introducing C”?

 getchar();

 For this example, you need to use that function call twice:

 getchar();

 getchar();

 The getchar() function reads the next input character, so the program has to wait for input.
In this case, we provided input by typing 156 and then pressing the Enter (or Return) key, which
transmits a newline character. So scanf() reads the number, the first getchar() reads the
newline character, and the second getchar() causes the program to pause, awaiting further
input.

 What’s New in This Program?

 There are several new elements of C in this program:

 ■ Notice that the code uses a new kind of variable declaration. The previous examples
just used an integer variable type (int), but this one adds a floating-point variable
type (float) so that you can handle a wider variety of data. The float type can hold
numbers with decimal points.

 ■ The program demonstrates some new ways of writing constants. You now have numbers
with decimal points.

 ■ To print this new kind of variable, use the %f specifier in the printf() code to handle a
floating-point value. The .2 modifier to the %f specifier fine-tunes the appearance of the
output so that it displays two places to the right of the decimal.

 ■ The scanf() function provides keyboard input to the program. The %f instructs scanf()
to read a floating-point number from the keyboard, and the &weight tells scanf() to

58 Chapter 3 Data and C

assign the input value to the variable named weight . The scanf() function uses the &
notation to indicate where it can find the weight variable. The next chapter discusses &
further; meanwhile, trust us that you need it here.

 ■ Perhaps the most outstanding new feature is that this program is interactive. The
computer asks you for information and then uses the number you enter. An interactive
program is more interesting to use than the noninteractive types. More important, the
interactive approach makes programs more flexible. For example, the sample program
can be used for any reasonable weight, not just for 156 pounds. You don’t have to
rewrite the program every time you want to try it on a new person. The scanf() and
 printf() functions make this interactivity possible. The scanf() function reads data
from the keyboard and delivers that data to the program, and printf() reads data from
a program and delivers that data to your screen. Together, these two functions enable
you to establish a two-way communication with your computer (see Figure 3.1), and that
makes using a computer much more fun.

 This chapter explains the first two items in this list of new features: variables and constants of
various data types. Chapter 4 , “Character Strings and Formatted Input/Output,” covers the last
three items, but this chapter will continue to make limited use of scanf() and printf() .

/*platinum.c*/

•

•

int main(void)

{

•

•

•

scanf("-----)

•

•

•

printf("Are you--)

printf(-----)

•

•

return 0;

}

Body

getting keyboard input

displaying program output Are you

 Figure 3.1 The scanf() and printf() functions at work.

59Data: Data-Type Keywords

 Data Variables and Constants

 A computer, under the guidance of a program, can do many things. It can add numbers, sort
names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare
a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your
imagination can create. To do these tasks, the program needs to work with data , the numbers
and characters that bear the information you use. Some types of data are preset before a
program is used and keep their values unchanged throughout the life of the program. These are
 constants . Other types of data may change or be assigned values as the program runs; these are
 variables . In the sample program, weight is a variable and 14.5833 is a constant. What about
 1700.0 ? True, the price of platinum isn’t a constant in real life, but this program treats it as a
constant. The difference between a variable and a constant is that a variable can have its value
assigned or changed while the program is running, and a constant can’t.

 Data: Data-Type Keywords

 Beyond the distinction between variable and constant is the distinction between different types
of data. Some types of data are numbers. Some are letters or, more generally, characters. The
computer needs a way to identify and use these different kinds. C does this by recognizing
several fundamental data types . If a datum is a constant, the compiler can usually tell its type
just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however,
needs to have its type announced in a declaration statement. You’ll learn the details of declar-
ing variables as you move along. First, though, take a look at the fundamental type keywords
recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added
two to the list. The C99 standard adds yet another three (see Table 3.1).

 Table 3.1 C Data Keywords

 Original K&R Keywords C90 K&R Keywords C99 Keywords

 int signed _Bool

 long void _Complex

 short _Imaginary

 unsigned

 char

 float

 double

 The int keyword provides the basic class of integers used in C. The next three keywords (long ,
 short , and unsigned) and the C90 addition signed are used to provide variations of the
basic type, for example, unsigned short int and long long int . Next, the char keyword

60 Chapter 3 Data and C

designates the type used for letters of the alphabet and for other characters, such as # , $, % , and
 * . The char type also can be used to represent small integers. Next, float , double , and the
combination long double are used to represent numbers with decimal points. The _Bool type
is for Boolean values (true and false), and _Complex and _Imaginary represent complex and
imaginary numbers, respectively.

 The types created with these keywords can be divided into two families on the basis of how
they are stored in the computer: integer types and floating-point types.

 Bits, Bytes, and Words

 The terms bit , byte , and word can be used to describe units of computer data or to describe
units of computer memory. We’ll concentrate on the second usage here.

 The smallest unit of memory is called a bit . It can hold one of two values: 0 or 1 . (Or you can
say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a com-
puter has a tremendous stock of them. The bit is the basic building block of computer memory.

 The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and
that is the standard definition, at least when used to measure storage. (The C language, how-
ever, has a different definition, as discussed in the “Using Characters: Type char" section
later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that’s 2 times
itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns
can be used, for example, to represent the integers from 0 to 255 or to represent a set of
characters. Representation can be accomplished with binary code, which uses (conveniently
enough) just 0s and 1s to represent numbers. (Chapter 15 , “Bit Fiddling,” discusses binary
code, but you can read through the introductory material of that chapter now if you like.)

 A word is the natural unit of memory for a given computer design. For 8-bit microcomputers,
such as the original Apples, a word is just 8 bits. Since then, personal computers moved up to
16-bit words, 32-bit words, and, at the present, 64-bit words. Larger word sizes enable faster
transfer of data and allow more memory to be accessed.

 Integer Versus Floating-Point Types

 Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax.
We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits,
bytes, and words, you might want to read the nearby sidebar about them first. Do you have to
learn all the details? Not really, not any more than you have to learn the principles of internal
combustion engines to drive a car, but knowing a little about what goes on inside a computer
or engine can help you occasionally.

 For a human, the difference between integers and floating-point numbers is reflected in the
way they can be written. For a computer, the difference is reflected in the way they are stored.
Let’s look at each of the two classes in turn.

61Data: Data-Type Keywords

 The Integer

 An integer is a number with no fractional part. In C, an integer is never written with a decimal
point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers.
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary.
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits
to 1 (see Figure 3.2).

8-bit word

2
2

2
1

2
0

4 + + = 72 1

0 0 0 0 0 1 1 1

integer 7

 Figure 3.2 Storing the integer 7 using a binary code.

 The Floating-Point Number

 A floating-point number more or less corresponds to what mathematicians call a real number .
Real numbers include the numbers between the integers. Some floating-point numbers are
2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point
value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than
one way to write a floating-point number. We will discuss the e-notation more fully later,
but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1
followed by 7 zeros. The 7 would be termed the exponent of 10.

 The key point here is that the scheme used to store a floating-point number is different from
the one used to store an integer. Floating-point representation involves breaking up a number
into a fractional part and an exponent part and storing the parts separately. Therefore, the
7.00 in this list would not be stored in the same manner as the integer 7, even though both
have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the frac-
tional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point
storage. A computer, of course, would use binary numbers and powers of two instead of powers
of 10 for internal storage. You’ll find more on this topic in Chapter 15 . Now, let’s concentrate
on the practical differences:

 ■ An integer has no fractional part; a floating-point number can have a fractional part.

 ■ Floating-point numbers can represent a much larger range of values than integers can.
See Table 3.3 near the end of this chapter.

 ■ For some arithmetic operations, such as subtracting one large number from another,
floating-point numbers are subject to greater loss of precision.

62 Chapter 3 Data and C

 ■ Because there is an infinite number of real numbers in any range—for example, in the
range between 1.0 and 2.0—computer floating-point numbers can’t represent all the
values in the range. Instead, floating-point values are often approximations of a true
value. For example, 7.0 might be stored as a 6.99999 float value—more about precision
later.

 ■ Floating-point operations were once much slower than integer operations. However,
today many CPUs incorporate floating-point processors that close the gap.

sign

+

+ .314159 1

exponent

x 101

fraction

.314159 3.14159

 Figure 3.3 Storing the number pi in floating-point format (decimal version).

 Basic C Data Types

 Now let’s look at the specifics of the basic data types used by C. For each type, we describe how
to declare a variable, how to represent a constant with a literal value, such as 5 or 2.78 , and
what a typical use would be. Some older C compilers do not support all these types, so check
your documentation to see which ones you have available.

 The int Type

 C offers many integer types, and you might wonder why one type isn’t enough. The answer is
that C gives the programmer the option of matching a type to a particular use. In particular,
the C integer types vary in the range of values offered and in whether negative numbers can be
used. The int type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.

 The int type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an int
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit
word, use 16 bits to store an int . This allows a range in values from –32768 to 32767 . Current
personal computers typically have 32-bit integers and fit an int to that size. Now the personal
computer industry is moving toward 64-bit processors that naturally will use even larger inte-
gers. ISO C specifies that the minimum range for type int should be from –32767 to 32767 .
Typically, systems represent signed integers by using the value of a particular bit to indicate the
sign. Chapter 15 discusses common methods.

63Basic C Data Types

 Declaring an int Variable

 As you saw in Chapter 2 , “Introducing C,” the keyword int is used to declare the basic integer
variable. First comes int , and then the chosen name of the variable, and then a semicolon.
To declare more than one variable, you can declare each variable separately, or you can follow
the int with a list of names in which each name is separated from the next by a comma. The
following are valid declarations:

 int erns;

 int hogs, cows, goats;

 You could have used a separate declaration for each variable, or you could have declared all
four variables in the same statement. The effect is the same: Associate names and arrange
storage space for four int -sized variables.

 These declarations create variables but don’t supply values for them. How do variables get
values? You’ve seen two ways that they can pick up values in the program. First, there is
assignment:

 cows = 112;

 Second, a variable can pick up a value from a function—from scanf() , for example. Now let’s
look at a third way.

 Initializing a Variable

 To initialize a variable means to assign it a starting, or initial , value. In C, this can be done as
part of the declaration. Just follow the variable name with the assignment operator (=) and the
value you want the variable to have. Here are some examples:

 int hogs = 21;

 int cows = 32, goats = 14;

 int dogs, cats = 94; /* valid, but poor, form */

 In the last line, only cats is initialized. A quick reading might lead you to think that dogs is
also initialized to 94 , so it is best to avoid putting initialized and noninitialized variables in the
same declaration statement.

 In short, these declarations create and label the storage for the variables and assign starting
values to each (see Figure 3.4).

64 Chapter 3 Data and C

2

Boars

create storage and give it value

int sows;

int boars=2;

create storage

 Figure 3.4 Defining and initializing a variable.

 Type int Constants

 The various integers (21 , 32 , 14 , and 94) in the last example are integer constants , also called
 integer literals . When you write a number without a decimal point and without an exponent, C
recognizes it as an integer. Therefore, 22 and –44 are integer constants, but 22.0 and 2.2E1 are
not. C treats most integer constants as type int . Very large integers can be treated differently;
see the later discussion of the long int type in the section "long Constants and long long
Constants.”

 Printing int Values

 You can use the printf() function to print int types. As you saw in Chapter 2 , the %d nota-
tion is used to indicate just where in a line the integer is to be printed. The %d is called a format
specifier because it indicates the form that printf() uses to display a value. Each %d in the
format string must be matched by a corresponding int value in the list of items to be printed.
That value can be an int variable, an int constant, or any other expression having an int
value. It’s your job to make sure the number of format specifiers matches the number of values;
the compiler won’t catch mistakes of that kind. Listing 3.2 presents a simple program that
initializes a variable and prints the value of the variable, the value of a constant, and the value
of a simple expression. It also shows what can happen if you are not careful.

 Listing 3.2 The print1.c Program

 /* print1.c-displays some properties of printf() */

 #include <stdio.h>

 int main(void)

 {

 int ten = 10;

 int two = 2;

 printf("Doing it right: ");

 printf("%d minus %d is %d\n", ten, 2, ten - two);

65Basic C Data Types

 printf("Doing it wrong: ");

 printf("%d minus %d is %d\n", ten); // forgot 2 arguments

 return 0;

 }

 Compiling and running the program produced this output on one system:

 Doing it right: 10 minus 2 is 8

 Doing it wrong: 10 minus 16 is 1650287143

 For the first line of output, the first %d represents the int variable ten , the second %d repre-
sents the int constant 2 , and the third %d represents the value of the int expression ten -
two . The second time, however, the program used ten to provide a value for the first %d and
used whatever values happened to be lying around in memory for the next two! (The numbers
you get could very well be different from those shown here. Not only might the memory
contents be different, but different compilers will manage memory locations differently.)

 You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the
unusual design of printf() . Most functions take a specific number of arguments, and the
compiler can check to see whether you’ve used the correct number. However, printf() can
have one, two, three, or more arguments, and that keeps the compiler from using its usual
methods for error checking. Some compilers, however, will use unusual methods of checking
and warn you that you might be doing something wrong. Still, it’s best to remember to always
check to see that the number of format specifiers you give to printf() matches the number of
values to be displayed.

 Octal and Hexadecimal

 Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which often
pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal
number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the
hexadecimal digit 5 is 0101. So the hexadecimal value 35 is the bit pattern 0011 0101, and the
hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth
between hexadecimal and binary (base 2) notation. But how can the computer tell whether
10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate
which number base you are using. A prefix of 0x or 0X (zero-ex) means that you are specifying
a hexadecimal value, so 16 is written as 0x10 , or 0X10 , in hexadecimal. Similarly, a 0 (zero)
prefix means that you are writing in octal. For example, the decimal value 16 is written as 020
in octal. Chapter 15 discusses these alternative number bases more fully.

 Be aware that this option of using different number systems is provided as a service for your
convenience. It doesn’t affect how the number is stored. That is, you can write 16 or 020 or

66 Chapter 3 Data and C

 0x10 , and the number is stored exactly the same way in each case—in the binary code used
internally by computers.

 Displaying Octal and Hexadecimal

 Just as C enables you write a number in any one of three number systems, it also enables you
to display a number in any of these three systems. To display an integer in octal notation
instead of decimal, use %o instead of %d . To display an integer in hexadecimal, use %x . If you
want to display the C prefixes, you can use specifiers %#o , %#x , and %#X to generate the 0 , 0x ,
and 0X prefixes respectively. Listing 3.3 shows a short example. (Recall that you may have
to insert a getchar(); statement in the code for some IDEs to keep the program execution
window from closing immediately.)

 Listing 3.3 The bases.c Program

 /* bases.c--prints 100 in decimal, octal, and hex */

 #include <stdio.h>

 int main(void)

 {

 int x = 100;

 printf("dec = %d; octal = %o; hex = %x\n", x, x, x);

 printf("dec = %d; octal = %#o; hex = %#x\n", x, x, x);

 return 0;

 }

 Compiling and running this program produces this output:

 dec = 100; octal = 144; hex = 64

 dec = 100; octal = 0144; hex = 0x64

 You see the same value displayed in three different number systems. The printf() function
makes the conversions. Note that the 0 and the 0x prefixes are not displayed in the output
unless you include the # as part of the specifier.

 Other Integer Types

 When you are just learning the language, the int type will probably meet most of your integer
needs. To be complete, however, we’ll cover the other forms now. If you like, you can skim
this section and jump to the discussion of the char type in the “Using Characters: Type char"
section, returning here when you have a need.

 C offers three adjective keywords to modify the basic integer type: short , long , and unsigned .
Here are some points to keep in mind:

67Basic C Data Types

 ■ The type short int or, more briefly, short may use less storage than int , thus saving
space when only small numbers are needed. Like int , short is a signed type.

 ■ The type long int , or long , may use more storage than int , thus enabling you to
express larger integer values. Like int , long is a signed type.

 ■ The type long long int , or long long (introduced in the C99 standard), may use
more storage than long . At the minimum, it must use at least 64 bits. Like int , long
long is a signed type.

 ■ The type unsigned int , or unsigned , is used for variables that have only nonnegative
values. This type shifts the range of numbers that can be stored. For example, a 16-bit
 unsigned int allows a range from 0 to 65535 in value instead of from –32768 to 32767 .
The bit used to indicate the sign of signed numbers now becomes another binary digit,
allowing the larger number.

 ■ The types unsigned long int , or unsigned long , and unsigned short int , or
 unsigned short , are recognized as valid by the C90 standard. To this list, C99 adds
 unsigned long long int , or unsigned long long .

 ■ The keyword signed can be used with any of the signed types to make your intent
explicit. For example, short , short int , signed short , and signed short int are all
names for the same type.

 Declaring Other Integer Types

 Other integer types are declared in the same manner as the int type. The following list shows
several examples. Not all older C compilers recognize the last three, and the final example is
new with the C99 standard.

 long int estine;

 long johns;

 short int erns;

 short ribs;

 unsigned int s_count;

 unsigned players;

 unsigned long headcount;

 unsigned short yesvotes;

 long long ago;

 Why Multiple Integer Types?

 Why do we say that long and short types “may” use more or less storage than int ? Because
C guarantees only that short is no longer than int and that long is no shorter than int . The
idea is to fit the types to the machine. For example, in the days of Windows 3, an int and a
 short were both 16 bits, and a long was 32 bits. Later, Windows and Apple systems moved to
using 16 bits for short and 32 bits for int and long . Using 32 bits allows integers in excess of
2 billion. Now that 64-bit processors are common, there’s a need for 64-bit integers, and that’s
the motivation for the long long type.

68 Chapter 3 Data and C

 The most common practice today on personal computers is to set up long long as 64 bits,
 long as 32 bits, short as 16 bits, and int as either 16 bits or 32 bits, depending on the
machine’s natural word size. In principle, these four types could represent four distinct sizes,
but in practice at least some of the types normally overlap.

 The C standard provides guidelines specifying the minimum allowable size for each basic data
type. The minimum range for both short and int is –32,767 to 32,767, corresponding to a
16-bit unit, and the minimum range for long is –2,147,483,647 to 2,147,483,647, correspond-
ing to a 32-bit unit. (Note: For legibility, we’ve used commas, but C code doesn’t allow that
option.) For unsigned short and unsigned int , the minimum range is 0 to 65,535, and for
 unsigned long , the minimum range is 0 to 4,294,967,295. The long long type is intended
to support 64-bit needs. Its minimum range is a substantial –9,223,372,036,854,775,807
to 9,223,372,036,854,775,807, and the minimum range for unsigned long long is 0 to
18,446,744,073,709,551,615. For those of you writing checks, that’s eighteen quintillion, four
hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen using U.S.
nomenclature (the short scale or échelle courte system), but who’s counting?

 When do you use the various int types? First, consider unsigned types. It is natural to use
them for counting because you don’t need negative numbers, and the unsigned types enable
you to reach higher positive numbers than the signed types.

 Use the long type if you need to use numbers that long can handle and that int cannot.
However, on systems for which long is bigger than int , using long can slow down calcula-
tions, so don’t use long if it is not essential. One further point: If you are writing code on
a machine for which int and long are the same size, and you do need 32-bit integers, you
should use long instead of int so that the program will function correctly if transferred to a
16-bit machine. Similarly, use long long if you need 64-bit integer values.

 Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-bit.
Usually, saving storage space is important only if your program uses arrays of integers that are
large in relation to a system’s available memory. Another reason to use short is that it may
correspond in size to hardware registers used by particular components in a computer.

 Integer Overflow

 What happens if an integer tries to get too big for its type? Let’s set an integer to its largest
possible value, add to it, and see what happens. Try both signed and unsigned types. (The
 printf() function uses the %u specifier to display unsigned int values .)

 /* toobig.c-exceeds maximum int size on our system */

 #include <stdio.h>

 int main(void)

 {

 int i = 2147483647;

 unsigned int j = 4294967295;

 printf("%d %d %d\n", i, i+1, i+2);

69Basic C Data Types

 printf("%u %u %u\n", j, j+1, j+2);

 return 0;

 }

 Here is the result for our system:

 2147483647 -2147483648 -2147483647

 4294967295 0 1

 The unsigned integer j is acting like a car’s odometer. When it reaches its maximum value,
it starts over at the beginning. The integer i acts similarly. The main difference is that the
 unsigned int variable j , like an odometer, begins at 0, but the int variable i begins at
–2147483648. Notice that you are not informed that i has exceeded (overflowed) its maximum
value. You would have to include your own programming to keep tabs on that.

 The behavior described here is mandated by the rules of C for unsigned types. The standard
doesn’t define how signed types should behave. The behavior shown here is typical, but you
could encounter something different

 long Constants and long long Constants

 Normally, when you use a number such as 2345 in your program code, it is stored as an int
type. What if you use a number such as 1000000 on a system in which int will not hold such
a large number? Then the compiler treats it as a long int , assuming that type is large enough.
If the number is larger than the long maximum, C treats it as unsigned long . If that is still
insufficient, C treats the value as long long or unsigned long long , if those types are
available.

 Octal and hexadecimal constants are treated as type int unless the value is too large. Then the
compiler tries unsigned int . If that doesn’t work, it tries, in order, long , unsigned long ,
 long long , and unsigned long long .

 Sometimes you might want the compiler to store a small number as a long integer.
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can
create such a need. Also, some standard C functions require type long values. To cause a small
constant to be treated as type long , you can append an l (lowercase L) or L as a suffix. The
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit
 int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The l and L
suffixes can also be used with octal and hex integers, as in 020L and 0x10L .

 Similarly, on those systems supporting the long long type, you can use an ll or LL suffix to
indicate a long long value, as in 3LL . Add a u or U to the suffix for unsigned long long , as
in 5ull or 10LLU or 6LLU or 9Ull .

70 Chapter 3 Data and C

 Printing short , long , long long , and unsigned Types

 To print an unsigned int number, use the %u notation. To print a long value, use the %ld
format specifier. If int and long are the same size on your system, just %d will suffice, but your
program will not work properly when transferred to a system on which the two types are differ-
ent, so use the %ld specifier for long . You can use the l prefix for x and o , too. So you would
use %lx to print a long integer in hexadecimal format and %lo to print in octal format. Note
that although C allows both uppercase and lowercase letters for constant suffixes, these format
specifiers use just lowercase.

 C has several additional printf() formats. First, you can use an h prefix for short types.
Therefore, %hd displays a short integer in decimal form, and %ho displays a short integer
in octal form. Both the h and l prefixes can be used with u for unsigned types. For instance,
you would use the %lu notation for printing unsigned long types. Listing 3.4 provides an
example. Systems supporting the long long types use %lld and %llu for the signed and
unsigned versions. Chapter 4 provides a fuller discussion of format specifiers.

 Listing 3.4 The print2.c Program

 /* print2.c-more printf() properties */

 #include <stdio.h>

 int main(void)

 {

 unsigned int un = 3000000000; /* system with 32-bit int */

 short end = 200; /* and 16-bit short */

 long big = 65537;

 long long verybig = 12345678908642;

 printf("un = %u and not %d\n", un, un);

 printf("end = %hd and %d\n", end, end);

 printf("big = %ld and not %hd\n", big, big);

 printf("verybig= %lld and not %ld\n", verybig, verybig);

 return 0;

 }

 Here is the output on one system (results can vary):

 un = 3000000000 and not -1294967296

 end = 200 and 200

 big = 65537 and not 1

 verybig= 12345678908642 and not 1942899938

 This example points out that using the wrong specification can produce unexpected results.
First, note that using the %d specifier for the unsigned variable un produces a negative number!
The reason for this is that the unsigned value 3000000000 and the signed value –129496296
have exactly the same internal representation in memory on our system. (Chapter 15 explains

71Basic C Data Types

this property in more detail.) So if you tell printf() that the number is unsigned, it prints one
value, and if you tell it that the same number is signed, it prints the other value. This behavior
shows up with values larger than the maximum signed value. Smaller positive values, such as
96, are stored and displayed the same for both signed and unsigned types.

 Next, note that the short variable end is displayed the same whether you tell printf() that
 end is a short (the %hd specifier) or an int (the %d specifier). That’s because C automatically
expands a type short value to a type int value when it’s passed as an argument to a function.
This may raise two questions in your mind: Why does this conversion take place, and what’s
the use of the h modifier? The answer to the first question is that the int type is intended to be
the integer size that the computer handles most efficiently. So, on a computer for which short
and int are different sizes, it may be faster to pass the value as an int . The answer to the
second question is that you can use the h modifier to show how a longer integer would look if
truncated to the size of short . The third line of output illustrates this point. The value 65537
expressed in binary format as a 32-bit number is 00000000000000010000000000000001. Using
the %hd specifier persuaded printf() to look at just the last 16 bits; therefore, it displayed the
value as 1. Similarly, the final output line shows the full value of verybig and then the value
stored in the last 32 bits, as viewed through the %ld specifier.

 Earlier you saw that it is your responsibility to make sure the number of specifiers matches
the number of values to be displayed. Here you see that it is also your responsibility to use the
correct specifier for the type of value to be displayed.

 Tip Match the Type printf() Specifiers

 Remember to check to see that you have one format specifier for each value being displayed in
a printf() statement. And also check that the type of each format specifier matches the type
of the corresponding display value.

 Using Characters: Type char

 The char type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the char type actually stores integers, not characters.
To handle characters, the computer uses a numerical code in which certain integers represent
certain characters. The most commonly used code in the U.S. is the ASCII code given in the
table on the inside front cover. It is the code this book assumes. In it, for example, the integer
value 65 represents an uppercase A . So to store the letter A , you actually need to store the
integer 65 . (Many IBM mainframes use a different code, called EBCDIC, but the principle is the
same. Computer systems outside the U.S. may use entirely different codes.)

 The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7 bits
can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more than
large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and
the Apple Macs, offer extended ASCII codes (different for the two systems) that still stay within
an 8-bit limit. More generally, C guarantees that the char type is large enough to store the
basic character set for the system on which C is implemented.

72 Chapter 3 Data and C

 Many character sets have many more than 127 or even 255 values. For example, there is the
Japanese kanji character set. The commercial Unicode initiative has created a system to repre-
sent a variety of characters sets worldwide and currently has over 110,000 characters. The
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) have developed a standard called ISO/IEC 10646 for character sets.
Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC
10646 standard.

 The C language defines a byte to be the number of bits used by type char , so one can have a
system with a 16-bit or 32-bit byte and char type.

 Declaring Type char Variables

 As you might expect, char variables are declared in the same manner as other variables. Here
are some examples:

 char response;

 char itable, latan;

 This code would create three char variables: response , itable , and latan .

 Character Constants and Initialization

 Suppose you want to initialize a character constant to the letter A . Computer languages are
supposed to make things easy, so you shouldn’t have to memorize the ASCII code, and you
don’t. You can assign the character A to grade with the following initialization:

 char grade = 'A';

 A single character contained between single quotes is a C character constant . When the compiler
sees 'A' , it converts the 'A' to the proper code value. The single quotes are essential. Here’s
another example:

 char broiled; /* declare a char variable */

 broiled = 'T'; /* OK */

 broiled = T; /* NO! Thinks T is a variable */

 broiled = "T"; /* NO! Thinks "T" is a string */

 If you omit the quotes, the compiler thinks that T is the name of a variable. If you use double
quotes, it thinks you are using a string. We’ll discuss strings in Chapter 4 .

 Because characters are really stored as numeric values, you can also use the numerical code to
assign values:

 char grade = 65; /* ok for ASCII, but poor style */

 In this example, 65 is type int , but, because the value is smaller than the maximum char size,
it can be assigned to grade without any problems. Because 65 is the ASCII code for the letter A ,
this example assigns the value A to grade . Note, however, that this example assumes that the

73Basic C Data Types

system is using ASCII code. Using 'A' instead of 65 produces code that works on any system.
Therefore, it’s much better to use character constants than numeric code values.

 Somewhat oddly, C treats character constants as type int rather than type char . For example,
on an ASCII system with a 32-bit int and an 8-bit char , the code

 char grade = 'B';

 represents 'B' as the numerical value 66 stored in a 32-bit unit, but grade winds up with 66
stored in an 8-bit unit. This characteristic of character constants makes it possible to define a
character constant such as 'FATE' , with four separate 8-bit ASCII codes stored in a 32-bit unit.
However, attempting to assign such a character constant to a char variable results in only the
last 8 bits being used, so the variable gets the value 'E' .

 Nonprinting Characters

 The single-quote technique is fine for characters, digits, and punctuation marks, but if you look
through the table on the inside front cover of this book, you’ll see that some of the ASCII char-
acters are nonprinting. For example, some represent actions such as backspacing or going to the
next line or making the terminal bell ring (or speaker beep). How can these be represented? C
offers three ways.

 The first way we have already mentioned—just use the ASCII code. For example, the ASCII
value for the beep character is 7, so you can do this:

 char beep = 7;

 The second way to represent certain awkward characters in C is to use special symbol
sequences. These are called escape sequences . Table 3.2 shows the escape sequences and their
meanings.

 Table 3.2 Escape Sequences

 Sequence Meaning

 \a Alert (ANSI C).

 \b Backspace.

 \f Form feed.

 \n Newline.

 \r Carriage return.

 \t Horizontal tab.

 \v Vertical tab.

 \\ Backslash (\).

 \' Single quote (').

74 Chapter 3 Data and C

 Sequence Meaning

 \" Double quote (").

 \? Question mark (?).

 \0oo Octal value. (o represents an octal digit.)

 \xhh Hexadecimal value. (h represents a hexadecimal digit.)

 Escape sequences must be enclosed in single quotes when assigned to a character variable. For
example, you could make the statement

 char nerf = '\n';

 and then print the variable nerf to advance the printer or screen one line.

 Now take a closer look at what each escape sequence does. The alert character (\a), added by
C90, produces an audible or visible alert. The nature of the alert depends on the hardware, with
the beep being the most common. (With some systems, the alert character has no effect.) The
C standard states that the alert character shall not change the active position. By active position ,
the standard means the location on the display device (screen, teletype, printer, and so on) at
which the next character would otherwise appear. In short, the active position is a generaliza-
tion of the screen cursor with which you are probably accustomed. Using the alert character in
a program displayed on a screen should produce a beep without moving the screen cursor.

 Next, the \b , \f , \n , \r , \t , and \v escape sequences are common output device control char-
acters. They are best described in terms of how they affect the active position. A backspace
(\b) moves the active position back one space on the current line. A form feed character (\f)
advances the active position to the start of the next page. A newline character (\n) sets the
active position to the beginning of the next line. A carriage return (\r) moves the active posi-
tion to the beginning of the current line. A horizontal tab character (\t) moves the active posi-
tion to the next horizontal tab stop (typically, these are found at character positions 1, 9, 17,
25, and so on). A vertical tab (\v) moves the active position to the next vertical tab position.

 These escape sequence characters do not necessarily work with all display devices. For example,
the form feed and vertical tab characters produce odd symbols on a PC screen instead of any
cursor movement, but they work as described if sent to a printer instead of to the screen.

 The next three escape sequences (\\ , \' , and \") enable you to use \ , ' , and " as character
constants. (Because these symbols are used to define character constants as part of a printf()
command, the situation could get confusing if you use them literally.) Suppose you want to
print the following line:

 Gramps sez, "a \ is a backslash."

 Then use this code:

 printf("Gramps sez, \"a \\ is a backslash.\"\n");

75Basic C Data Types

 The final two forms (\0oo and \xhh) are special representations of the ASCII code. To represent
a character by its octal ASCII code, precede it with a backslash (\) and enclose the whole thing
in single quotes. For example, if your compiler doesn’t recognize the alert character (\a), you
could use the ASCII code instead:

 beep = '\007';

 You can omit the leading zeros, so '\07' or even '\7' will do. This notation causes numbers
to be interpreted as octal, even if there is no initial 0 .

 Beginning with C90, C provides a third option—using a hexadecimal form for character
constants. In this case, the backslash is followed by an x or X and one to three hexadecimal
digits. For example, the Ctrl+P character has an ASCII hex code of 10 (16, in decimal), so it can
be expressed as '\x10' or '\X010' . Figure 3.5 shows some representative integer types.

type hexadecimal

Examples of Integer Constants

octal decimal

char \0x41 \0101 N.A.

int 0x41 0101 65

unsigned int 0x41u 0101u 65u

long 0x41L 0101L 65L

unsigned long 0x41UL 0101UL 65UL

long long 0x41LL 0101LL 65LL

unsigned long long 0x41ULL 0101ULL 65ULL

 Figure 3.5 Writing constants with the int family.

 When you use ASCII code, note the difference between numbers and number characters. For
example, the character 4 is represented by ASCII code value 52. The notation '4' represents the
symbol 4, not the numerical value 4.

 At this point, you may have three questions:

 ■ Why aren’t the escape sequences enclosed in single quotes in the last example
(printf("Gramps sez, \"a \\ is a backslash\"\"n");)? When a character,
be it an escape sequence or not, is part of a string of characters enclosed in double
quotes, don’t enclose it in single quotes. Notice that none of the other characters in
this example (G , r , a , m , p , s , and so on) are marked off by single quotes. A string of
characters enclosed in double quotes is called a character string . (Chapter 4 explores
strings.) Similarly, printf("Hello!\007\n"); will print Hello! and beep, but
 printf("Hello!7\n"); will print Hello!7 . Digits that are not part of an escape
sequence are treated as ordinary characters to be printed.

76 Chapter 3 Data and C

 ■ When should I use the ASCII code, and when should I use the escape sequences? If you have
a choice between using one of the special escape sequences, say ' \f' , or an equivalent
ASCII code, say '\014' , use the '\f' . First, the representation is more mnemonic.
Second, it is more portable. If you have a system that doesn’t use ASCII code, the '\f'
will still work.

 ■ If I need to use numeric code, why use, say, '\032' instead of 032 ?— First, using '\032'
instead of 032 makes it clear to someone reading the code that you intend to represent a
character code. Second, an escape sequence such as \032 can be embedded in part of a C
string, the way \007 was in the first point.

 Printing Characters

 The printf() function uses %c to indicate that a character should be printed. Recall that a
character variable is stored as a 1-byte integer value. Therefore, if you print the value of a char
variable with the usual %d specifier, you get an integer. The %c format specifier tells printf()
to display the character that has that integer as its code value. Listing 3.5 shows a char variable
both ways.

 Listing 3.5 The charcode.c Program

 /* charcode.c-displays code number for a character */

 #include <stdio.h>

 int main(void)

 {

 char ch;

 printf("Please enter a character.\n");

 scanf("%c", &ch); /* user inputs character */

 printf("The code for %c is %d.\n", ch, ch);

 return 0;

 }

 Here is a sample run:

 Please enter a character.

 C
 The code for C is 67.

 When you use the program, remember to press the Enter or Return key after typing the char-
acter. The scanf() function then fetches the character you typed, and the ampersand (&)
causes the character to be assigned to the variable ch . The printf() function then prints the
value of ch twice, first as a character (prompted by the %c code) and then as a decimal integer
(prompted by the %d code). Note that the printf() specifiers determine how data is displayed,
not how it is stored (see Figure 3.6).

77Basic C Data Types

storage (ASCII code)

code

display

0ch

"%c" "%d"

1 0 0 0 0 1 1

C 67

 Figure 3.6 Data display versus data storage.

 Signed or Unsigned?

 Some C implementations make char a signed type. This means a char can hold values typi-
cally in the range –128 through 127. Other implementations make char an unsigned type,
which provides a range of 0 through 255. Your compiler manual should tell you which type
your char is, or you can check the limits.h header file, discussed in the next chapter.

 As of C90, C enabled you to use the keywords signed and unsigned with char . Then, regard-
less of what your default char is, signed char would be signed, and unsigned char would
be unsigned. These versions of char are useful if you’re using the type to handle small integers.
For character use, just use the standard char type without modifiers.

 The _Bool Type

 The _Bool type is a C99 addition that’s used to represent Boolean values—that is, the logical
values true and false . Because C uses the value 1 for true and 0 for false , the _Bool type
really is just an integer type, but one that, in principle, only requires 1 bit of memory, because
that is enough to cover the full range from 0 to 1.

 Programs use Boolean values to choose which code to execute next. Code execution is covered
more fully in Chapter 6 , “C Control Statements: Looping,” and Chapter 7 , so let’s defer further
discussion until then.

 Portable Types: stdint.h and inttypes.h

 By now you’ve probably noticed that C offers a wide variety of integer types, which is a good
thing. And you probably also have noticed that the same type name doesn’t necessarily mean
the same thing on different systems, which is not such a good thing. It would be nice if C had
types that had the same meaning regardless of the system. And, as of C99, it does—sort of.

 What C has done is create more names for the existing types. The trick is to define these new
names in a header file called stdint.h . For example, int32_t represents the type for a 32-bit

78 Chapter 3 Data and C

signed integer. The header file on a system that uses a 32-bit int could define int32_t as an
alias for int . A different system, one with a 16-bit int and a 32-bit long , could define the
same name, int32_t , as an alias for int . Then, when you write a program using int32_t as
a type and include the stdint.h header file, the compiler will substitute int or long for the
type in a manner appropriate for your particular system.

 The alternative names we just discussed are examples of exact-width integer types ; int32_t is
exactly 32 bits, no less or no more. It’s possible the underlying system might not support these
choices, so the exact-width integer types are optional.

 What if a system can’t support exact-width types? C99 and C11 provide a second category of
alternative names that are required. This set of names promises the type is at least big enough
to meet the specification and that no other type that can do the job is smaller. These types are
called minimum width types . For example, int_least8_t will be an alias for the smallest avail-
able type that can hold an 8-bit signed integer value. If the smallest type on a particular system
were 16 bits, the int8_t type would not be defined. However, the int_least8_t type would
be available, perhaps implemented as a 16-bit integer.

 Of course, some programmers are more concerned with speed than with space. For them, C99
and C11 define a set of types that will allow the fastest computations. These are called the
 fastest minimum width types. For example, the int_fast8_t will be defined as an alternative
name for the integer type on your system that allows the fastest calculations for 8-bit signed
values.

 Finally, for some programmers, only the biggest possible integer type on a system will do;
 intmax_t stands for that type, a type that can hold any valid signed integer value. Similarly,
 uintmax_t stands for the largest available unsigned type. Incidentally, these types could be
bigger than long long and unsigned long because C implementations are permitted to
define types beyond the required ones. Some compilers, for example, introduced the long
long type before it became part of the standard.

 C99 and C11 not only provide these new, portable type names, they also provide assistance
with input and output. For example, printf() requires specific specifiers for particular types.
So what do you do to display an int32_t value when it might require a %d specifier for one
definition and an %ld for another? The current standard provides some string macros (a
mechanism introduced in Chapter 4) to be used to display the portable types. For example,
the inttypes.h header file will define PRId32 as a string representing the appropriate speci-
fier (d or l , for instance) for a 32-bit signed value. Listing 3.6 shows a brief example illustrating
how to use a portable type and its associated specifier. The inttypes.h header file includes
 stdint.h , so the program only needs to include inttypes.h .

 Listing 3.6 The altnames.c Program

 /* altnames.c -- portable names for integer types */

 #include <stdio.h>

 #include <inttypes.h> // supports portable types

 int main(void)

79Basic C Data Types

 {

 int32_t me32; // me32 a 32-bit signed variable

 me32 = 45933945;

 printf("First, assume int32_t is int: ");

 printf("me32 = %d\n", me32);

 printf("Next, let's not make any assumptions.\n");

 printf("Instead, use a \"macro\" from inttypes.h: ");

 printf("me32 = %" PRId32 "\n", me32);

 return 0;

 }

 In the final printf() argument, the PRId32 is replaced by its inttypes.h definition of "d" ,
making the line this:

 printf("me16 = %" "d" "\n", me16);

 But C combines consecutive quoted strings into a single quoted string, making the line this:

 printf("me16 = %d\n", me16);

 Here’s the output; note that the example also uses the \" escape sequence to display double
quotation marks:

 First, assume int32_t is int: me32 = 45933945

 Next, let's not make any assumptions.

 Instead, use a "macro" from inttypes.h: me32 = 45933945

 It’s not the purpose of this section to teach you all about expanded integer types. Rather, its
main intent is to reassure you that this level of control over types is available if you need it.
Reference Section VI, “Extended Integer Types,” in Appendix B provides a complete rundown
of the inttypes.h and stdint.h header files.

 Note C99/C11 Support

 Even though C has moved to the C11 standard, compiler writers have implemented C99 fea-
tures at different paces and with different priorities. At the time this book was prepared, some
compilers haven’t yet implemented the inttypes.h header file and features.

 Types float , double , and long double

 The various integer types serve well for most software development projects. However, financial
and mathematically oriented programs often make use of floating-point numbers. In C, such
numbers are called type float , double , or long double . They correspond to the real types
of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables you to
represent a much greater range of numbers, including decimal fractions. Floating-point number

80 Chapter 3 Data and C

representation is similar to scientific notation , a system used by scientists to express very large
and very small numbers. Let’s take a look.

 In scientific notation, numbers are represented as decimal numbers times powers of 10. Here
are some examples.

 Number Scientific Notation Exponential Notation

 1,000,000,000 = 1.0×10 9 = 1.0e9

 123,000 = 1.23×10 5 = 1.23e5

 322.56 = 3.2256×10 2 = 3.2256e2

 0.000056 = 5.6×10 –5 = 5.6e–5

 The first column shows the usual notation, the second column scientific notation, and the
third column exponential notation, or e-notation , which is the way scientific notation is usually
written for and by computers, with the e followed by the power of 10. Figure 3.7 shows more
floating-point representations.

 The C standard provides that a float has to be able to represent at least six significant figures
and allow a range of at least 10 –37 to 10 +37 . The first requirement means, for example, that
a float has to represent accurately at least the first six digits in a number such as 33.333333.
The second requirement is handy if you like to use numbers such as the mass of the sun
(2.0e30 kilograms), the charge of a proton (1.6e–19 coulombs), or the national debt. Often,
systems use 32 bits to store a floating-point number. Eight bits are used to give the exponent its
value and sign, and 24 bits are used to represent the nonexponent part, called the mantissa or
 significand , and its sign.

2.58

1.376+7

1.6E-19

12E20

 Figure 3.7 Some floating-point numbers.

81Basic C Data Types

 C also has a double (for double precision) floating-point type. The double type has the same
minimum range requirements as float , but it extends the minimum number of significant
figures that can be represented to 10. Typical double representations use 64 bits instead of 32.
Some systems use all 32 additional bits for the nonexponent part. This increases the number of
significant figures and reduces round-off errors. Other systems use some of the bits to accom-
modate a larger exponent; this increases the range of numbers that can be accommodated.
Either approach leads to at least 13 significant figures, more than meeting the minimum
standard.

 C allows for a third floating-point type: long double . The intent is to provide for even more
precision than double . However, C guarantees only that long double is at least as precise as
 double .

 Declaring Floating-Point Variables

 Floating-point variables are declared and initialized in the same manner as their integer
cousins. Here are some examples:

 float noah, jonah;

 double trouble;

 float planck = 6.63e-34;

 long double gnp;

 Floating-Point Constants (Literals)

 There are many choices open to you when you write a literal floating-point constant. The basic
form of a floating-point literal is a signed series of digits, including a decimal point, followed
by an e or E , followed by a signed exponent indicating the power of 10 used. Here are two valid
floating-point constants:

 -1.56E+12

 2.87e-3

 You can leave out positive signs. You can do without a decimal point (2E5) or an exponential
part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer
part (.45E–6), but not both (that wouldn’t leave much!). Here are some more valid floating-
point constants:

 3.14159

 .2

 4e16

 .8E-5

 100.

 Don’t use spaces in a floating-point constant.

 Wrong: 1.56 E+12

82 Chapter 3 Data and C

 By default, the compiler assumes floating-point constants are double precision. Suppose, for
example, that some is a float variable and that you have the following statement:

 some = 4.0 * 2.0;

 Then 4.0 and 2.0 are stored as double , using (typically) 64 bits for each. The product is calcu-
lated using double precision arithmetic, and only then is the answer trimmed to regular float
size. This ensures greater precision for your calculations, but it can slow down a program.

 C enables you to override this default by using an f or F suffix to make the compiler treat a
floating-point constant as type float ; examples are 2.3f and 9.11E9F . An l or L suffix makes
a number type long double ; examples are 54.3l and 4.32e4L . Note that L is less likely to be
mistaken for 1 (one) than is l . If the floating-point number has no suffix, it is type double .

 Since C99, C has a new format for expressing floating-point constants. It uses a hexadecimal
prefix (0x or 0X) with hexadecimal digits, a p or P instead of e or E , and an exponent that is a
power of 2 instead of a power of 10. Here’s what such a number might look like:

 0xa.1fp10

 The a is 10 in hex, the .1f is 1/16th plus 15/256 th (f is 15 in hex), and the p10 is 2 10 , or
1024, making the complete value (10 + 1/16 + 15/256) x 1024, or 10364.0 in base 10 notation.

 Not all C compilers have added support for this feature.

 Printing Floating-Point Values

 The printf() function uses the %f format specifier to print type float and double numbers
using decimal notation, and it uses %e to print them in exponential notation. If your system
supports the hexadecimal format for floating-point numbers, you can use a or A instead of e
or E . The long double type requires the %Lf , %Le , and %La specifiers to print that type. Note
that both float and double use the %f , %e , or %a specifier for output. That’s because C auto-
matically expands type float values to type double when they are passed as arguments to any
function, such as printf() , that doesn’t explicitly prototype the argument type. Listing 3.7
illustrates these behaviors.

 Listing 3.7 The showf_pt.c Program

 /* showf_pt.c -- displays float value in two ways */

 #include <stdio.h>

 int main(void)

 {

 float aboat = 32000.0;

 double abet = 2.14e9;

 long double dip = 5.32e-5;

 printf("%f can be written %e\n", aboat, aboat);

 // next line requires C99 or later compliance

 printf("And it's %a in hexadecimal, powers of 2 notation\n", aboat);

83Basic C Data Types

 printf("%f can be written %e\n", abet, abet);

 printf("%Lf can be written %Le\n", dip, dip);

 return 0;

 }

 This is the output, provided your compiler is C99/C11 compliant:

 32000.000000 can be written 3.200000e+04

 And it's 0x1.f4p+14 in hexadecimal, powers of 2 notation

 2140000000.000000 can be written 2.140000e+09

 0.000053 can be written 5.320000e-05

 This example illustrates the default output. The next chapter discusses how to control the
appearance of this output by setting field widths and the number of places to the right of the
decimal.

 Floating-Point Overflow and Underflow

 Suppose the biggest possible float value on your system is about 3.4E38 and you do this:

 float toobig = 3.4E38 * 100.0f;

 printf("%e\n", toobig);

 What happens? This is an example of overflow —when a calculation leads to a number too
large to be expressed. The behavior for this case used to be undefined, but now C specifies that
 toobig gets assigned a special value that stands for infinity and that printf() displays either
 inf or infinity (or some variation on that theme) for the value.

 What about dividing very small numbers? Here the situation is more involved. Recall that a
 float number is stored as an exponent and as a value part, or mantissa . There will be a number
that has the smallest possible exponent and also the smallest value that still uses all the bits
available to represent the mantissa. This will be the smallest number that still is represented
to the full precision available to a float value. Now divide it by 2. Normally, this reduces the
exponent, but the exponent already is as small as it can get. So, instead, the computer moves
the bits in the mantissa over, vacating the first position and losing the last binary digit. An
analogy would be taking a base 10 value with four significant digits, such as 0.1234E-10, divid-
ing by 10, and getting 0.0123E-10. You get an answer, but you’ve lost a digit in the process.
This situation is called underflow , and C refers to floating-point values that have lost the full
precision of the type as subnormal . So dividing the smallest positive normal floating-point value
by 2 results in a subnormal value. If you divide by a large enough value, you lose all the digits
and are left with 0. The C library now provides functions that let you check whether your
computations are producing subnormal values.

 There’s another special floating-point value that can show up: NaN , or not-a-number. For
example, you give the asin() function a value, and it returns the angle that has that value as
its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values

84 Chapter 3 Data and C

in excess of 1. In such cases, the function returns the NaN value, which printf() displays as
 nan , NaN , or something similar.

 Floating-Point Round-off Errors

 Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A
floating-point calculation, such as the following, may give another answer:

 /* floaterr.c--demonstrates round-off error */

 #include <stdio.h>

 int main(void)

 {

 float a,b;

 b = 2.0e20 + 1.0;

 a = b - 2.0e20;

 printf("%f \n", a);

 return 0;

 }

 The output is this:

 0.000000 older gcc on Linux

 -13584010575872.000000 Turbo C 1.5

 4008175468544.000000 XCode 4.5, Visual Studio 2012, current gcc

 The reason for these odd results is that the computer doesn’t keep track of enough decimal
places to do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by add-
ing 1, you are trying to change the 21st digit. To do this correctly, the program would need to
be able to store a 21-digit number. A float number is typically just six or seven digits scaled
to bigger or smaller numbers with an exponent. The attempt is doomed. On the other hand, if
you used 2.0e4 instead of 2.0e20, you would get the correct answer because you are trying to
change the fifth digit, and float numbers are precise enough for that.

 Floating-Point Representation

 The preceding sidebar listed different possible outputs for the same program, depending on
the computer system used. The reason is that there are many possible ways to implement
floating-point representation within the broad outlines discussed earlier. To provide greater
uniformity, the Institute of Electrical and Electronics Engineers (IEEE) developed a standard for
floating-point representation and computation, a standard now used by many hardware floating-
point units. In 2011 this standard was adopted as the international ISO/IEC/IEEE 60559:2011
standard. This standard is incorporated as an option in the C99 and C11 standards, with the
intention that it be supported on platforms with conforming hardware. The final example of out-
put for the floaterr.c program comes from systems supporting this floating-point standard. C
support includes tools for catching the problem. See Appendix B , Section V for more details.

85Basic C Data Types

 Complex and Imaginary Types

 Many computations in science and engineering use complex and imaginary numbers. C99
supports these numbers, with some reservations. A free-standing implementation, such as that
used for embedded processors, doesn’t need to have these types. (A VCR chip probably doesn’t
need complex numbers to do its job.) Also, more generally, the imaginary types are optional.
With C11, the entire complex number package is optional.

 In brief, there are three complex types, called float _Complex , double _Complex , and long
double _Complex . A float _Complex variable, for example, would contain two float values,
one representing the real part of a complex number and one representing the imaginary part.
Similarly, there are three imaginary types, called float _Imaginary , double _Imaginary ,
and long double _Imaginary .

 Including the complex.h header file lets you substitute the word complex for _Complex and
the word imaginary for _Imaginary , and it allows you to use the symbol I to represent the
square root of –1.

 You may wonder why the C standard doesn’t simply use complex as the keyword instead
of using _Complex and then adding a header file to define complex as _Complex . The stan-
dards committee is hesitant to introduce a new keyword because that can invalidate existing
code that uses the same word as an identifier. For example, prior to C99, many programmers
had already used, say, struct complex to define a structure to represent complex numbers
or, perhaps, psychological conditions. (The keyword struct , as discussed in Chapter 14 ,
“Structures and Other Data Forms,” is used to define data structures capable of holding more
than one value.) Making complex a keyword would make these previous uses syntax errors. But
it’s much less likely that someone would have used struct _Complex , especially since using
identifiers having an initial underscore is supposed to be reserved. So the committee settled on
 _Complex as the keyword and made complex available as an option for those who don’t have
to worry about conflicts with past usage.

 Beyond the Basic Types

 That finishes the list of fundamental data types. For some of you, the list must seem long.
Others of you might be thinking that more types are needed. What about a character string
type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look
at strings in Chapter 4 .

 C does have other types derived from the basic types. These types include arrays, pointers,
structures, and unions. Although they are subject matter for later chapters, we have already
smuggled some pointers into this chapter’s examples. For instance, a pointer points to the loca-
tion of a variable or other data object. The & prefix used with the scanf() function creates a
pointer telling scanf() where to place information.

86 Chapter 3 Data and C

 Summary: The Basic Data Types

 Keywords:

 The basic data types are set up using 11 keywords: int , long , short , unsigned , char ,
 float , double , signed , _Bool , _Complex , and _Imaginary .

 Signed Integers:

 These can have positive or negative values:

 ■ int — The basic integer type for a given system. C guarantees at least 16 bits for int .

 ■ short or short int — The largest short integer is no larger than the largest int and
may be smaller. C guarantees at least 16 bits for short .

 ■ long or long int — Can hold an integer at least as large as the largest int and possi-
bly larger. C guarantees at least 32 bits for long .

 ■ long long or long long int — This type can hold an integer at least as large as the
largest long and possibly larger. The long long type is least 64 bits.

 Typically, long will be bigger than short , and int will be the same as one of the two. For
example, old DOS-based systems for the PC provided 16-bit short and int and 32-bit long ,
and Windows 95–based systems and later provide 16-bit short and 32-bit int and long .

 You can, if you want, use the keyword signed with any of the signed types, making the fact
that they are signed explicit.

 Unsigned Integers:

 These have zero or positive values only. This extends the range of the largest possible posi-
tive number. Use the keyword unsigned before the desired type: unsigned int , unsigned
long , unsigned short . A lone unsigned is the same as unsigned int .

 Characters:

 These are typographic symbols such as A , & , and + . By definition, the char type uses 1 byte of
memory to represent a character. Historically, this character byte has most often been 8 bits,
but it can be 16 bits or larger, if needed to represent the base character set.

 ■ char — The keyword for this type. Some implementations use a signed char , but others
use an unsigned char . C enables you to use the keywords signed and unsigned to
specify which form you want.

 Boolean:

 Boolean values represent true and false ; C uses 1 for true and 0 for false .

 ■ _Bool — The keyword for this type. It is an unsigned int and need only be large enough
to accommodate the range 0 through 1.

 Real Floating Point:

 These can have positive or negative values:

 ■ float — The basic floating-point type for the system; it can represent at least six signifi-
cant figures accurately.

 ■ double — A (possibly) larger unit for holding floating-point numbers. It may allow more sig-
nificant figures (at least 10, typically more) and perhaps larger exponents than float .

87Basic C Data Types

 ■ long double — A (possibly) even larger unit for holding floating-point numbers. It may
allow more significant figures and perhaps larger exponents than double .

 Complex and Imaginary Floating Point:

 The imaginary types are optional. The real and imaginary components are based on the corre-
sponding real types:

 ■ float _Complex

 ■ double _Complex

 ■ long double _Complex

 ■ float _Imaginary

 ■ double _Imaginary

 ■ long double _Imaginary

 Summary: How to Declare a Simple Variable

 1. Choose the type you need.

 2. Choose a name for the variable using the allowed characters.

 3. Use the following format for a declaration statement:
 type-specifier variable-name ;

 The type-specifier is formed from one or more of the type keywords; here are exam-
ples of declarations:
 int erest;

 unsigned short cash;.

 4. You can declare more than one variable of the same type by separating the variable
names with commas. Here’s an example:
 char ch, init, ans;.

 5. You can initialize a variable in a declaration statement:
 float mass = 6.0E24;

 Type Sizes

 What type sizes does your system use? Try running the program in Listing 3.8 to find out.

 Listing 3.8 The typesize.c Program

 //* typesize.c -- prints out type sizes */

 #include <stdio.h>

 int main(void)

 {

 /* c99 provides a %zd specifier for sizes */

88 Chapter 3 Data and C

 printf("Type int has a size of %zd bytes.\n", sizeof(int));

 printf("Type char has a size of %zd bytes.\n", sizeof(char));

 printf("Type long has a size of %zd bytes.\n", sizeof(long));

 printf("Type long long has a size of %zd bytes.\n",

 sizeof(long long));

 printf("Type double has a size of %zd bytes.\n",

 sizeof(double));

 printf("Type long double has a size of %zd bytes.\n",

 sizeof(long double));

 return 0;

 }

 C has a built-in operator called sizeof that gives sizes in bytes. C99 and C11 provide a %zd
specifier for this type used by sizeof . Noncompliant compilers may require %u or %lu instead.
Here is a sample output:

 Type int has a size of 4 bytes.

 Type char has a size of 1 bytes.

 Type long has a size of 8 bytes.

 Type long long has a size of 8 bytes.

 Type double has a size of 8 bytes.

 Type long double has a size of 16 bytes.

 This program found the size of only six types, but you can easily modify it to find the size of
any other type that interests you. Note that the size of char is necessarily 1 byte because C
defines the size of 1 byte in terms of char . So, on a system with a 16-bit char and a 64-bit
 double , sizeof will report double as having a size of 4 bytes. You can check the limits.h
and float.h header files for more detailed information on type limits. (The next chapter
discusses these two files further.)

 Incidentally, notice in the last few lines how a printf() statement can be spread over two
lines. You can do this as long as the break does not occur in the quoted section or in the
middle of a word.

 Using Data Types

 When you develop a program, note the variables you need and which type they should be.
Most likely, you can use int or possibly float for the numbers and char for the characters.
Declare them at the beginning of the function that uses them. Choose a name for the variable
that suggests its meaning. When you initialize a variable, match the constant type to the vari-
able type. Here’s an example:

 int apples = 3; /* RIGHT */

 int oranges = 3.0; /* POOR FORM */

89Arguments and Pitfalls

 C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second
initialization, but they might complain, particularly if you have activated a higher warning
level. It is best not to develop sloppy habits.

 When you initialize a variable of one numeric type to a value of a different type, C converts
the value to match the variable. This means you may lose some data. For example, consider the
following initializations:

 int cost = 12.99; /* initializing an int to a double */

 float pi = 3.1415926536; /* initializing a float to a double */

 The first declaration assigns 12 to cost ; when converting floating-point values to integers, C
simply throws away the decimal part (truncation) instead of rounding. The second declaration
loses some precision, because a float is guaranteed to represent only the first six digits accu-
rately. Compilers may issue a warning (but don’t have to) if you make such initializations. You
might have run into this when compiling Listing 3.1 .

 Many programmers and organizations have systematic conventions for assigning variable
names in which the name indicates the type of variable. For example, you could use an
 i_ prefix to indicate type int and us_ to indicate unsigned short , so i_smart would be
instantly recognizable as a type int variable and us_verysmart would be an unsigned short
variable.

 Arguments and Pitfalls

 It’s worth repeating and amplifying a caution made earlier in this chapter about using
 printf() . The items of information passed to a function, as you may recall, are termed argu-
ments . For instance, the function call printf("Hello, pal.") has one argument: "Hello,
pal." . A series of characters in quotes, such as "Hello, pal." , is called a string . We’ll discuss
strings in Chapter 4 . For now, the important point is that one string, even one containing
several words and punctuation marks, counts as one argument.

 Similarly, the function call scanf("%d", &weight) has two arguments: "%d" and &weight . C
uses commas to separate arguments to a function. The printf() and scanf() functions are
unusual in that they aren’t limited to a particular number of arguments. For example, we’ve
used calls to printf() with one, two, and even three arguments. For a program to work prop-
erly, it needs to know how many arguments there are. The printf() and scanf() functions
use the first argument to indicate how many additional arguments are coming. The trick is that
each format specification in the initial string indicates an additional argument. For instance,
the following statement has two format specifiers, %d and %d :

 printf("%d cats ate %d cans of tuna\n", cats, cans);

 This tells the program to expect two more arguments, and indeed, there are two more— cats
and cans .

90 Chapter 3 Data and C

 Your responsibility as a programmer is to make sure that the number of format specifications
matches the number of additional arguments and that the specifier type matches the value
type. C now has a function-prototyping mechanism that checks whether a function call has
the correct number and correct kind of arguments, but it doesn’t work with printf() and
 scanf() because they take a variable number of arguments. What happens if you don’t live up
to the programmer’s burden? Suppose, for example, you write a program like that in
Listing 3.9 .

 Listing 3.9 The badcount.c Program

 /* badcount.c -- incorrect argument counts */

 #include <stdio.h>

 int main(void)

 {

 int n = 4;

 int m = 5;

 float f = 7.0f;

 float g = 8.0f;

 printf("%d\n", n, m); /* too many arguments */

 printf("%d %d %d\n", n); /* too few arguments */

 printf("%d %d\n", f, g); /* wrong kind of values */

 return 0;

 }

 Here’s a sample output from XCode 4.6 (OS 10.8):

 4

 4 1 -706337836

 1606414344 1

 Next, here’s a sample output from Microsoft Visual Studio Express 2012 (Windows 7):

 4

 4 0 0

 0 1075576832

 Note that using %d to display a float value doesn’t convert the float value to the nearest int .
Also, the results you get for too few arguments or the wrong kind of argument differ from plat-
form to platform and can from trial to trial.

 None of the compilers we tried refused to compile this code; although most did issue warnings
that something might be wrong. Nor were there any complaints when we ran the program. It
is true that some compilers might catch this sort of error, but the C standard doesn’t require
them to. Therefore, the computer may not catch this kind of error, and because the program
may otherwise run correctly, you might not notice the errors either. If a program doesn’t print

91One More Example: Escape Sequences

the expected number of values or if it prints unexpected values, check to see whether you’ve
used the correct number of printf() arguments.

 One More Example: Escape Sequences

 Let’s run one more printing example, one that makes use of some of C’s special escape
sequences for characters. In particular, the program in Listing 3.10 shows how the backspace
(\b), tab (\t), and carriage return (\r) work. These concepts date from when computers used
teletype machines for output, and they don’t always translate successfully to contemporary
graphical interfaces. For example, Listing 3.10 doesn’t work as described on some Macintosh
implementations.

 Listing 3.10 The escape.c Program

 /* escape.c -- uses escape characters */

 #include <stdio.h>

 int main(void)

 {

 float salary;

 printf("\aEnter your desired monthly salary:");/* 1 */

 printf(" $_______\b\b\b\b\b\b\b"); /* 2 */

 scanf("%f", &salary);

 printf("\n\t$%.2f a month is $%.2f a year.", salary,

 salary * 12.0); /* 3 */

 printf("\rGee!\n"); /* 4 */

 return 0;

 }

 What Happens When the Program Runs

 Let’s walk through this program step by step as it would work under a system in which the
escape characters behave as described. (The actual behavior could be different. For instance,
XCode 4.6 displays the \a , \b , and \r characters as upside down question marks!)

 The first printf() statement (the one numbered 1) sounds the alert signal (prompted by the
 \a) and then prints the following:

 Enter your desired monthly salary:

 Because there is no \n at the end of the string, the cursor is left positioned after the colon.

 The second printf() statement picks up where the first one stops, so after it is finished, the
screen looks as follows:

 Enter your desired monthly salary: $_______

92 Chapter 3 Data and C

 The space between the colon and the dollar sign is there because the string in the second
 printf() statement starts with a space. The effect of the seven backspace characters is to move
the cursor seven positions to the left. This backs the cursor over the seven underscore charac-
ters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the
characters that are backed over, but some implementations may use destructive backspacing,
negating the point of this little exercise.

 At this point, you type your response, say 4000.00 . Now the line looks like this:

 Enter your desired monthly salary: $4000.00

 The characters you type replace the underscore characters, and when you press Enter (or
Return) to enter your response, the cursor moves to the beginning of the next line.

 The third printf() statement output begins with \n\t . The newline character moves the
cursor to the beginning of the next line. The tab character moves the cursor to the next tab
stop on that line, typically, but not necessarily, to column 9. Then the rest of the string is
printed. After this statement, the screen looks like this:

 Enter your desired monthly salary: $4000.00

 $4000.00 a month is $48000.00 a year.

 Because the printf() statement doesn’t use the newline character, the cursor remains just
after the final period.

 The fourth printf() statement begins with \r . This positions the cursor at the beginning of
the current line. Then Gee! is displayed there, and the \n moves the cursor to the next line.
Here is the final appearance of the screen:

 Enter your desired monthly salary: $4000.00

 Gee! $4000.00 a month is $48000.00 a year.

 Flushing the Output

 When does printf() actually send output to the screen? Initially, printf() statements send
output to an intermediate storage area called a buffer . Every now and then, the material in the
buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the
screen are clear: It is sent when the buffer gets full, when a newline character is encountered,
or when there is impending input. (Sending the output from the buffer to the screen or file is
called flushing the buffer .) For instance, the first two printf() statements don’t fill the buffer
and don’t contain a newline, but they are immediately followed by a scanf() statement asking
for input. That forces the printf() output to be sent to the screen.

 You may encounter an older implementation for which scanf() doesn’t force a flush, which
would result in the program looking for your input without having yet displayed the prompt
onscreen. In that case, you can use a newline character to flush the buffer. The code can be
changed to look like this:

 printf("Enter your desired monthly salary:\n");

93Summary

 scanf("%f", &salary);

 This code works whether or not impending input flushes the buffer. However, it also puts the
cursor on the next line, preventing you from entering data on the same line as the prompting
string. Another solution is to use the fflush() function described in Chapter 13 , “File Input/
Output.”

 Key Concepts

 C has an amazing number of numeric types. This reflects the intent of C to avoid putting
obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is
enough, C tries to give the programmer the options of choosing a particular variety (signed or
unsigned) and size that best meet the needs of a particular program.

 Floating-point numbers are fundamentally different from integers on a computer. They are
stored and processed differently. Two 32-bit memory units could hold identical bit patterns,
but if one were interpreted as a float and the other as a long , they would represent totally
different and unrelated values. For example, on a PC, if you take the bit pattern that represents
the float number 256.0 and interpret it as a long value, you get 113246208. C does allow you
to write an expression with mixed data types, but it will make automatic conversions so that
the actual calculation uses just one data type.

 In computer memory, characters are represented by a numeric code. The ASCII code is the
most common in the U.S., but C supports the use of other codes. A character constant is the
symbolic representation for the numeric code used on a computer system—it consists of a char-
acter enclosed in single quotes, such as 'A' .

 Summary

 C has a variety of data types. The basic types fall into two categories: integer types and floating-
point types. The two distinguishing features for integer types are the amount of storage allotted
to a type and whether it is signed or unsigned. The smallest integer type is char , which can
be either signed or unsigned, depending on the implementation. You can use signed char
and unsigned char to explicitly specify which you want, but that’s usually done when you
are using the type to hold small integers rather than character codes. The other integer types
include the short , int , long , and long long type. C guarantees that each of these types
is at least as large as the preceding type. Each of them is a signed type, but you can use the
 unsigned keyword to create the corresponding unsigned types: unsigned short , unsigned
int , unsigned long , and unsigned long long . Or you can add the signed modifier to
explicitly state that the type is signed. Finally, there is the _Bool type, an unsigned type able to
hold the values 0 and 1 , representing false and true .

 The three floating-point types are float , double , and, since C90, long double . Each is at
least as large as the preceding type. Optionally, an implementation can support complex and

94 Chapter 3 Data and C

imaginary types by using the keywords _Complex and _Imaginary in conjunction with the
floating-type keywords. For example, there would be a double _Complex type and a float
_Imaginary type.

 Integers can be expressed in decimal, octal, or hexadecimal form. A leading 0 indicates an octal
number, and a leading 0x or 0X indicates a hexadecimal number. For example, 32 , 040 , and
 0x20 are decimal, octal, and hexadecimal representations of the same value. An l or L suffix
indicates a long value, and an ll or LL indicates a long long value.

 Character constants are represented by placing the character in single quotes: 'Q' , '8' , and
 '$' , for example. C escape sequences, such as '\n' , represent certain nonprinting characters.
You can use the form '\007' to represent a character by its ASCII code.

 Floating-point numbers can be written with a fixed decimal point, as in 9393.912 , or in expo-
nential notation, as in 7.38E10 . C99 and C11 provide a third exponential notation using hexa-
decimal digits and powers of 2, as in 0xa.1fp10 .

 The printf() function enables you to print various types of values by using conversion speci-
fiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as
in %d or %f .

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Which data type would you use for each of the following kinds of data (sometimes more
than one type could be appropriate)?

 a. The population of East Simpleton

 b. The cost of a movie on DVD

 c. The most common letter in this chapter

 d. The number of times that the letter occurs in this chapter

 2. Why would you use a type long variable instead of type int ?

 3. What portable types might you use to get a 32-bit signed integer, and what would the
rationale be for each choice?

 4. Identify the type and meaning, if any, of each of the following constants:

 a. '\b'

 b. 1066

 c. 99.44

95Review Questions

 d. 0XAA

 e. 2.0e30

 5. Dottie Cawm has concocted an error-laden program. Help her find the mistakes.

 include <stdio.h>

 main

 (

 float g; h;

 float tax, rate;

 g = e21;

 tax = rate*g;

)

 6. Identify the data type (as used in declaration statements) and the printf() format
specifier for each of the following constants:

 Constant Type Specifier

 a. 12

 b. 0X3

 c. 'C'

 d. 2.34E07

 e. '\040'

 f. 7.0

 g. 6L

 h. 6.0f

 i. 0x5.b6p12

 7. Identify the data type (as used in declaration statements) and the printf() format
specifier for each of the following constants (assume a 16-bit int):

 Constant Type Specifier

 a. 012

 b. 2.9e05L

 c. 's'

 d. 100000

 e. '\n'

96 Chapter 3 Data and C

 f. 20.0f

 g. 0x44

 h. -40

 8. Suppose a program begins with these declarations:

 int imate = 2;

 long shot = 53456;

 char grade = 'A';

 float log = 2.71828;

 Fill in the proper type specifiers in the following printf() statements:

 printf("The odds against the %__ were %__ to 1.\n", imate, shot);

 printf("A score of %__ is not an %__ grade.\n", log, grade);

 9. Suppose that ch is a type char variable. Show how to assign the carriage-return character
to ch by using an escape sequence, a decimal value, an octal character constant, and a
hex character constant. (Assume ASCII code values.)

 10. Correct this silly program. (The / in C means division.)

 void main(int) / this program is perfect /

 {

 cows, legs integer;

 printf("How many cow legs did you count?\n);

 scanf("%c", legs);

 cows = legs / 4;

 printf("That implies there are %f cows.\n", cows)

 }

 11. Identify what each of the following escape sequences represents:

 a. \n

 b. \\

 c. \"

 d. \t

97Programming Exercises

 Programming Exercises

 1. Find out what your system does with integer overflow, floating-point overflow, and
floating-point underflow by using the experimental approach; that is, write programs
having these problems. (You can check the discussion in Chapter 4 of limits.h and
 float.h to get guidance on the largest and smallest values.)

 2. Write a program that asks you to enter an ASCII code value, such as 66, and then prints
the character having that ASCII code.

 3. Write a program that sounds an alert and then prints the following text:

 Startled by the sudden sound, Sally shouted,

 "By the Great Pumpkin, what was that!"

 4. Write a program that reads in a floating-point number and prints it first in decimal-point
notation, then in exponential notation, and then, if your system supports it, p notation.
Have the output use the following format (the actual number of digits displayed for the
exponent depends on the system):

 Enter a floating-point value: 64.25
 fixed-point notation: 64.250000

 exponential notation: 6.425000e+01

 p notation: 0x1.01p+6

 5. There are approximately 3.156 × 10 7 seconds in a year. Write a program that requests
your age in years and then displays the equivalent number of seconds.

 6. The mass of a single molecule of water is about 3.0×10 -23 grams. A quart of water is
about 950 grams. Write a program that requests an amount of water, in quarts, and
displays the number of water molecules in that amount.

 7. There are 2.54 centimeters to the inch. Write a program that asks you to enter your
height in inches and then displays your height in centimeters. Or, if you prefer, ask for
the height in centimeters and convert that to inches.

 8. In the U.S. system of volume measurements, a pint is 2 cups, a cup is 8 ounces, an
ounce is 2 tablespoons, and a tablespoon is 3 teaspoons. Write a program that requests a
volume in cups and that displays the equivalent volumes in pints, ounces, tablespoons,
and teaspoons. Why does a floating-point type make more sense for this application than
an integer type?

This page intentionally left blank

Index

Symbols
-/+ (sign operators), 149

 [] (brackets), 102

 arrays, 384

 empty, 388 , 424

 %= assignment operator, 214

 *= assignment operator, 214 , 230

 += assignment operator, 214

 -= assignment operator, 214

 /= assignment operator, 214

 ~ bitwise operator, 688

 << (left shift) bitwise operator, 684

 >> (right shift) bitwise operator, 684 - 685

 . (period) character, 262

 * modifier, printf() function, 133 - 135

 ! operator, 264

 # operator, strings from macro arguments,

 721 - 722

 ## operator, 722 - 723

 & operator, 367 - 368

 bitwise, 679

 && operator, 264

 ranges, 267 - 268

 | operator, bitwise, 679 - 680

 || operator, 264

 + (addition) operator, 149

 = (assignment) operator, 146 - 149 , 202

 ?: (conditional) operator, 272 - 273

 -- (decrement) operator, 164 - 166

1006 == (equality) operator

 == (equality) operator, 191

 ++ (increment) operator, 160 - 166

 * (indirection) operator, 371 - 372

 * (multiplication) operator, 151 - 153

 . (membership) operator, 912 - 913

 == (relational) operator, 202

 + (sign) operator, 150

 - (subtraction) operator, 149 - 150

 */ symbol, 30 , 33 - 34

 /* symbol, 30 , 33 - 34

 * unary operator, 406

 ++ unary operator, 406

 / (division) operator, 153 - 154

 < (redirection) operator, 308

 > (redirection) operator, 308

 { } (braces), 34

 while loop, 146

 A
 a+b mode, 643

 actual arguments, 343 - 344

 add_one.c program, 160 - 161

 addaword.c program, 577 - 578

 addemup.c program, 169 - 170

 AddItem() function, 793 , 800 - 801 , 833 - 837

 addition (+) operator, 149

 AddNode() function, 833 - 835

 addresses

 & operator, 367 - 368

 double quotation marks, 465

 function pointers, 657

 inline functions, 743

 pointers, 409

 structures, 619 - 620

 variables, 375

 addresses.c program, 446 - 447

 ADT (abstract data type), 774 , 786 - 787

 binary search trees, 829

 EmptyTree() function, 833

 FullTree() function, 833

 InitializeTree() function, 833

 interface, 830 - 832

 TreeItems() function, 833

 defining, 787

 interfaces

 building, 789 - 793

 defining, 805 - 806

 functions, 810 - 815

 implementing, 796 - 802

 using, 793 - 796

 lists, operations, 788

 queue, 804

 align.c program, 704 - 705

 alignment, C11, 703

 allocated memory, 543

 calloc() function, 548

 dynamic, VLAs and, 548 - 549

 free() function, 545 - 548

 malloc() function, 543 - 544

 storage classes and, 549 - 551

 structures, 605

 altnames.c program, 78 - 79

 AND operator, 679

 animals.c program, 280 - 281

 anonymous structures, 636 - 637

 anonymous unions, 647

 ANSI (American Nation Standards

Institute), 8

 ANSI C, 8 - 9 , 17

 functions, prototyping, 349 - 353

 math functions, 748

 type qualifiers, 551

 _Atomic, 556 - 557

1007arrays

 const, 552 - 554

 formal parameters, 557

 restrict, 555 - 556

 volatile, 554 - 555

 ANSI/ISO C standard, 8 - 9

 a.out file, 17

 append.c program, 590 - 592

 Apple, Xcode, 21

 arguments, 89 - 91

 actual, 343 - 344

 command-line, 497

 integrated environment, 500 , 569 -
 570

 #define, 718 - 722

 ## operator, 722 - 723

 variadic macros, 723 - 724

 float, conversion, 116

 fseek() function, 580 - 581

 functions, 340

 functions with, 177 - 180

 none, 352 - 353

 passing, 124 , 621 - 622

 printf() function, 114

 unspecified, 352 - 353

 arithmetic operators, 908

 array2d.c program, 424 - 426

 arrays, 226 - 227 , 407 . See also VLAs

(variable-length arrays)

 [] (brackets), 102 , 384

 empty, 388

 of arrays, 419

 bounds, 390 - 392

 char, 101 - 102 , 227

 in memory, 228

 character string arrays, 444 - 445 ,
449 - 451

 compound literals, 432

 const keyword, 385

 array size, 431

 contents, protecting, 412 - 417

 creating, 544

 days[], 385

 declaring, 102

 constant expressions, 544

 pointers and, 544

 variable expressions and, 544

 description, 101

 designated initializers, 388 - 390

 elements, inserting, 824

 function pointers, 664

 index, 384

 initialization, 384 - 388 , 444 - 445

 multidimensional, 396

 int, in memory, 228

 linked lists and, 824 - 828

 for loops in, 228 - 230

 members, flexible, 633 - 636

 multidimensional, 393 - 398

 functions and, 423 - 427

 pointers and, 417 - 427

 two-dimensional, 394 - 398

 names, pointer notation, 402

 notation, pointers and, 402

 parameters, declaring, 403

 pointers and, 398

 comparison, 445 - 447

 differences, 447 - 449

 parentheses, 420

 as queue, 806

 ragged, 450

 rectangular, 450

 size, specifying, 392 - 393

 storage classes, 386

1008 arrays

 structures, 607 - 608

 character arrays, 627 - 628

 declaring, 611

 functions, 637 - 638

 members, 612

 of unions, 645

 values, assigning, 390

 VLAs, dynamic memory allocation and,
 548 - 549

 arrchar.c program, 449 - 450

 ASCII code, numbers versus number char-

acters, 75

 assembly languages, 3

 assert library, 760

 assert() function, 760 - 763

 assert() function, 760 - 763

 assert.c program, 761 - 762

 assigned values, enumerated types, 650

 assignment

 pointers, 409

 void function, 658

 assignment operators, 910 - 911

 =, 146-149, 202

 %=, 214

 *=, 214, 230

 +=, 214

 -=, 214

 /=, 214

 assignment statements, 37 - 38

 atan() function, 747

 atexit() function, 753 - 755

 atoi() function, 500 - 502

 _Atomic type qualifier, 556 - 557

 auto keyword, 518

 automatic access to C library, 745

 automatic variables, storage classes,

518 - 522

 B
 B language, 1

 base 2 system, 674

 bases.c program, 66

 BASIC, 3

 Bell Labs, 1

 binary files, 566 , 582

 binary floating points

 floating-point representation, 676

 fractions, 676

 binary integers, 674 - 675

 binary I/O, random access, 593 - 594

 binary numbers

 decimal equivalents, 678

 hexadecimal equivalents, 678

 octal digits, 677

 binary operators, 150

 binary output, 586

 binary searches, 826 - 827

 trees, 828 - 829

 adding items, 833 - 836

 AddItem() function, 833 - 835 ,
836 - 837

 AddNode() function, 833 - 835

 ADTs, 829 - 843

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 ,
 841 - 842

 DeleteNode() function, 841 - 842

 deleting items, 837 - 839 , 841 - 842

 deleting nodes, 840 - 841

 emptying, 843

 EmptyTree() function, 833

 finding items, 836 - 837

 FullTree() function, 833

 InitializeTree() function, 833

1009braces

 book inventory sample, 601 - 602

 arrays of structures, functions, 637 - 638

 book.c program, 602 - 603

 flexible array members, 633 - 636

 manybook.c program, 608 - 613

 structure declaration, 604

 initialization, 606

 initializers, 607 - 608

 member access, 607

 struct keyword, 604

 variables, 605 - 608

 structures

 address, 619 - 620

 anonymous, 636 - 637

 arrays, 608 - 613

 compound literals and, 631 - 633

 passing as argument, 621 - 622

 passing members, 618 - 619

 pointers to, 626 - 627

 saving contents to file, 639 - 644

 book.c program, 602 - 603

 books

 C++, 908

 C language, 907

 programming, 907

 reference, 908

 booksave.c program, 640 - 643

 _Bool type, 77 , 203 - 204

 Borland C, floating-point values and, 608

 Borland C++ Compiler 5.5, 19

 bottles.c program, 164 - 165

 bounds, arrays, 390 - 392

 bounds.c program, 391 - 392

 braces ({ }), 30 , 34

 while loop, 146

 interface, 830 - 832

 InTree() function, 836 - 837

 MakeNode() function, 833 - 835

 SeekItem() function, 833 - 835 , 836 -
 837 , 841 - 842

 tips, 854 - 856

 ToLeft() function, 835

 ToRight() function, 835

 traversing trees, 842

 TreeItems() function, 833

 binary system, 674

 binary tree, 644

 binary view (files), 567

 binary.c program, 359 - 360

 binbit.c program, 686 - 687

 bit fields, 690 - 692

 bitwise operators and, 696 - 703

 example, 692 - 695

 bit numbers, values, 674

 bitmapped images, 774

 bits, 60 , 674

 bitwise operators, 683 , 913 - 914

 ~, 688

 binbit.c program, 686 - 687

 bit fields and, 696 - 703

 clearing bits, 682 - 683

 logical, 678 - 680

 masks, 680 - 681

 setting bits, 681 - 682

 shift operators, 684 - 685

 values, checking, 683 - 684

 black-box viewpoint, 345

 blank lines, 41

 block scope, 514

 blocks (compound statements), 171 - 173

 body, functions, 40

1010 brackets

 brackets ([]), 102

 arrays, 384

 emtpy, 424

 break statement, 282 - 283

 loops, 277 - 279

 break.c program, 277 - 279

 buffers, 300 - 302

 file position indicator and, 584

 input, user interface, 312 - 314

 butler() function, 44 - 45 , 177

 bytes, 60

 C
 C language

 operators, 908 - 909

 reference books, 907

 C library

 access

 automatic, 745

 file inclusion, 745

 library inclusion, 745 - 746

 descriptions, 746 - 747

 C Reference Manual, 8

 C++, 4

 books, 908

 C comparison, const keyword, 423

 enumeration, 649

 C11 standard, 9

 alignment, 703 - 705

 generic selection, 740 - 741

 _Noreturn functions, 744

 C99 standard, 8 - 9

 compound literals, structures and,
631 - 633

 designated initializers, 388 - 390

 flexible array members, 633 - 636

 functions, inline, 741 - 744

 tgmath.h library, 752

 calling functions

 arguments, 343 - 344

 nested calls, 468 - 469

 variables, altering, 369 - 371

 calloc() function, 548

 case labels

 enum variables and, 650

 multiple, 284 - 285

 cast operator, type conversions, 176

 cc compiler, 17

 CDC 6600 computer, 7

 char arrays, 101 - 102 , 227

 in memory, 228

 char keyword, 60

 char type, 71 - 72 , 93 , 136

 nonprinting characters, 73 - 76

 printing characters, 76

 signed, 77

 unsigned, 77

 variables, declaring, 72

 character arrays, structures, 627 - 628

 character constants, 94

 initialization, 72 - 73

 character functions, ctype.h, 252 - 253

 character input, mixing with number, 314 -

 317 , 327 - 330

 character pointers, structures, 627 - 628

 character string arrays, 444 - 445 , 449 - 451

 character string literals, 442 - 443

 character strings, 101 , 227 , 441

 characters

 null, 459

 reading single, 283

 single-character I/O, 300 - 301

 versus strings, 103

1011compiling

 compilers, 19

 redirection, 310

 comments, 13

 first.c program, 33 - 34

 compare.c program, 476 - 477

 comparisons, pointers, 411

 compatibility, pointers, 421 - 423

 compback.c program, 477 - 479

 compflt.c program, 198 - 199

 compilers, 3 , 11 - 12

 Borland C++ Compiler 5.5, 19

 cc, 17

 command-line, 19

 GCC, 18

 languages, 7

 linkers, 15

 system requirements, 24

 translation and, 712

 compiling

 Apple IDE, multiple source code files
and, 362 - 363

 conditional, 731

 #elif directive, 736 - 737

 #else directive, 732 - 733

 #endif directive, 732 - 733

 #error directive, 738 - 740

 #if directive, 736 - 737

 #ifdef directive, 732 - 733

 #line directive, 738 - 740

 predefined macros, 737 - 740

 DOS command-line, multiple source
code files and, 362

 header files, multiple source code files
and, 363 - 367

 Linux systems, multiple source code
files and, 362 - 32

 modules, 14

 charcode.c program, 76

 chcount.c program, 262 - 264

 checking.c program, 320 - 323

 circular queue, 808

 clang command, 18

 classes, storage, 511 - 513

 automatic, 517

 automatic variables, 518 - 522

 dynamic memory allocation and,
549 - 551

 functions and, 533 - 534

 register, 517

 register variables, 522

 scope, 513 - 515

 static variables, 522 - 524

 static with external linkage, 517

 static with internal linkage, 517

 static with no linkage, 517

 Classic C, 8

 clearing bits (bitwise operators), 682 - 683

 code

 executable files, 14 - 18

 libraries, 14 - 18

 object code files, 14 - 18

 source code, 14

 startup, 15

 writing, 11

 colddays.c program, 246 - 248

 combination redirection, 309 - 310

 comma format, 136

 comma operator, 214 - 218

 for loop and, 216

 command-line

 arguments, 497

 integrated environment, 500

 Macintosh, 500

 standard I/O, 569 - 570

1012 compiling

 Unix and, 16 - 18

 Unix systems, multiple source code
files and, 362

 Windows, multiple source code files
and, 362 - 363

 complex types, 85

 complit.c program, 632 - 633

 compound literals, 431

 arrays, 432 - 434

 structures and, 631 - 633

 compound statements (blocks), 171 - 173

 conditional compilation, 731

 #elif directive, 736 - 737

 #else directive, 732 - 733

 #endif directive, 732 - 733

 #error directive, 738 - 740

 #if directive, 736 - 737

 #ifdef directive, 732 - 733

 #line directive, 738 - 740

 macros, predefined, 737 - 740

 conditional operators, 911 - 912

 conditional (?:) operator, 272 - 273

 const keyword, 109 , 148

 arrays, 385

 protecting, 415 - 417

 sizes and, 431

 C++ compared to C, 423

 constants created, 716

 formal parameters, 413 - 415

 const type qualifier, 552

 global data, 553 - 554

 parameter declarations, 552 - 553

 pointers and, 552 - 553

 constants, 57 - 59

 character constants, initialization,
72 - 73

 enum keyword, 649 - 650

 expressions, array declaration, 544

 floating-point, 81 - 82

 int, 64

 long, 68

 long long, 68

 manifest, 109 - 110

 #define directive, 713

 preprocessor and, 106 - 112

 redefining, 717 - 718

 string constants, 442 - 443

 double quotation marks, 465

 symbolic, 106 - 111

 when to use, 716

 contents of arrays, protecting, 412 - 417

 continue statement, loops, 274 - 277

 control strings, 115 - 114

 scanf(), 128

 conversion specifiers, 112 - 113

 mismatched conversions, 122 - 124

 modifiers, 116 - 121 , 129

 conversions . See also type conversions

 string-to-number, 500 - 503

 copy1.c program, 482 - 484

 copy2.c program, 484 - 485

 copy3.c program, 486 - 487

 CopyToNode() function, 799

 count.c program, 569

 counting loops, 207 - 208

 CPU (central processing unit), 5

 ctype.h

 character functions, 252 - 253 , 495

 strings, 495

 Cygwin, 19

 cypher1.c program, 250 - 252

1013directives

 parameters, 403

 pointers, 544

 variable expressions, 544

 pointers, 372 - 373

 declaring variables, 37 , 57 , 102

 char type, 72

 int, 63

 decrement (--) operator, 164 - 166

 decrementing pointers, 410 - 411

 #define statement, 109 , 136

 arguments, 718

 ## operator, 722 - 723

 function-like macros, 718

 mac_arg.c program, 719 - 721

 strings from macro arguments,
 721 - 722

 variadic macros, 723 - 724

 enumerations instead, 701

 manifest constants, 713

 typedef, 654

 defines.c program, 111 - 112

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 , 841 - 842

 DeleteNode() function, 841 - 842

 dereferencing uninitialized pointers, 411

 design features, 2

 designated initializers, 388 - 390

 designing the program, 11

 dice rolling example, 538 - 543

 diceroll.c file, 539 - 540

 diceroll.h file, 540

 differencing between pointers, 411

 directives

 #elif, 736 - 737

 #else, 732 - 733

 #endif, 732 - 733

 first.c program, 31 - 32

 D
 data keywords, 59 - 60

 data objects, 147

 data representation, 773 - 774

 films1.c program, 775 - 777

 interfaces

 building, 789 - 793

 defining, 805 - 806

 implementing, 796 - 802 , 806 - 810

 using, 793 - 796

 data types, 35 . See also ADT (abstract

data type)

 basic, 87

 _Bool, 203 - 204

 int, 62 - 65

 mismatches, 89

 size_t, 158

 day_mon1.c program, 385 - 386

 day_mon2.c program, 387 - 388

 day_mon3.c program, 401

 days[] array, 385

 debugging, 12

 nogood.c, 46 - 49

 program state, 49

 programs for, 49

 semantic errors, 47 - 48

 syntax errors, 46 - 47

 tracing, 48

 decimal system, 674

 binary equivalents, 678

 declarations, 34 - 35

 fathm_ft.c program, 43

 function declarations, 45

 modifiers, 655 - 656

 declaring

 arrays, 102

 constant expressions, 544

1014 directives

 #if, 736 - 737

 #ifdef, 732 - 733

 #ifndef, 733 - 735

 #undef, 731

 disks, 5

 displaying linked lists, 783 - 784

 division (/) operator, 153 - 154

 divisors.c program, 261 - 262

 DLLs (dynamic link libraries), 20

 do while loop, 220 - 223

 documentation

 commenting, 13

 fathm_ft.c program, 43

 doubincl.c program, 735

 double keyword, 60

 double quotation marks, 465

 macros and, 716

 double type, 80 - 81

 do_while.c program, 221

 dualview.c program, 697 - 703

 Dummy() function, 663

 dynamic memory allocation

 storage classes and, 549 - 551

 VLAs and, 431 , 548 - 549

 dyn_arr.c program, 545 - 547

 E
 eatline() function, 664

 echo.c program, 300

 echo_eof.c program, 305 - 306

 editors, Unix systems, 16

 efficiency, 3

 electric.c program, 255 - 257

 elements

 arrays, 824

 linked lists, 824

 #elif directive, 736 - 737

 #else directive, 732 - 733

 else if statement, 253 - 257

 emacs editor, 16

 EmptyTheList() function, 793

 EmptyTree() function, 833

 #endif directive, 732 - 733

 end-of-file. See EOF (end-of-file)

 entity identifier, 512

 entry condition loop, 195

 enum keyword, 649

 constants, 649 - 650

 usage, 650 - 652

 enum.c program, 650 - 652

 enumerated types, 649

 C++, 649

 shared namespaces, 652 - 653

 values

 assigned, 650

 default, 650

 enumeration, #define statement, 701

 EOF (end-of-file), 304 - 306

 standard I/O, 572 - 573

 equality (==) operator, 191

 #error directive, 738 - 740

 errors

 semantic, 47 - 48

 syntax, 46 - 47

 escape sequences, 73 , 91 , 94

 escape.c program, 91

 printf() function, 91 - 92

 escape.c program, 91

 EXCLUSIVE OR operator, 680

 executable files, 14 - 18

 execution, smooth, 325

 exit() function, 570 , 753 - 755

1015first.c program

 file inclusion

 C library, 745

 #include directive, 726 - 730

 file I/O

 fgets() function, 578 - 579

 fprintf() function, 576 - 578

 fputs() function, 578 - 579

 fscanf() function, 576 - 578

 file-condensing program, 574 - 576

 filenames, 14

 files, 303

 binary, 566 , 582

 binary view, 567

 description, 566

 EOF (end-of-file), 304 - 306

 executable, 14 - 18

 object code, 14 - 18

 portability, 582 - 583

 redirection, 307

 size, 566

 source code, 14

 structure contents, saving, 639 - 644

 text, 566

 versus binary, 582

 binary mode, 567

 text mode, 567

 text view, 567

 films1.c program, 775 - 777

 films3.c program, 794 - 796

 first.c program, 28

 { } (braces), 34

 comments, 33 - 34

 data types, 35

 declarations, 34 - 35

 directives, 31 - 32

 header files, 31 - 32

 main() function, 32 - 33

 exit-condition loop, 220 - 223

 EXIT_FAILURE macro, 570

 EXIT_SUCCESS macro, 570

 expressions, 167 - 168

 generic selection, 740 - 741

 logical, 911

 relational, 910

 false, 199 - 203

 true, 199 - 203

 values, 168

 extern keyword, 536

 external linkage, 515

 F
 %f specifier in printf() function, 57

 factor.c program, 356 - 358

 fathm_ft.c program, 42 - 43

 declarations, 43

 documentation, 43

 multiplication, 43

 fclose() function, 574

 feof() function, 589

 ferror() function, 589

 fflush() function, 585

 fgetpos() function, 583

 fgets() function, 495 - 497 , 578 - 579

 string input, 456 - 461

 fgets1.c program, 456 - 457

 fgets2.c program, 457 - 458

 fgets3.c program, 459 - 460

 Fibonnaci numbers, 360

 fields, bit fields, 690 - 692

 bitwise operators and, 696 - 703

 storage, 692 - 695

 fields.c program, 693 - 695

1016 first.c program

 name choices, 36

 return statement, 40

 stdio.h file, 31

 fit() function, 470 - 471

 flags.c program, 120

 flc.c program, 433 - 434

 flexibility of C, 3

 flexible arrays, 633 - 636

 flexmemb.c program, 634 - 636

 float argument, conversion, 116

 float keyword, 60

 float type, 80 - 81

 floating points, binary

 binary fractions, 676

 floating-point representation, 676

 floating-point constants, 81 - 82

 floating-point numbers, 61 - 57 , 93

 overflow, 83 - 84

 round-off errors, 84

 underflow, 83 - 84

 floating-point representation, 84

 floating-point types, 94

 integer comparison, 60

 floating-point values

 Borland C and, 608

 printing, 82 - 83

 floating-point variables, declaring, 81

 flushing output, 92 - 93

 fopen() function, 570 - 572 , 579 , 584

 for keyword, 209

 for loop, 208 - 209

 arrays and, 228 - 230

 comma operator and, 216

 flexibility, 210 - 214

 selecting, 223 - 224

 structure, 209

 for_cube.c program, 209 - 210

 FORTRAN, 7

 fprintf() function, 576 - 578

 fputs() function, 578 - 579

 string input, 456 - 460

 string output, 465 - 466

 fractional parts, 61

 fractions, binary, 676

 fread() function, 586 - 639

 example, 589 - 590

 free() function, 545 - 547 , 802

 importance of, 547 - 548

 friend.c program, 615 - 618

 fscanf() function, 576 - 578

 fseek() function, 579 - 582

 fsetpos() function, 583

 ftell() function, 579 - 582

 ftoa() function, 503

 FullTree() function, 833

 func_ptr.c program, 660 - 664

 function declarations, 45

 function pointers, 657

 addresses, 657

 ToUpper() function, 657 - 658

 function scope, 514

 function-like macros, 718 , 731

 functions, 4

 { } (braces), 34

 AddItem(), 793 , 800 - 801 , 833 - 835

 AddNode(), 833 - 835

 ANSI C, prototyping, 349 - 353

 arguments, 177 - 180 , 340 - 342

 formal parameters, 342 - 343

 none, 352 - 353

 prototyping function with, 343

 unspecified, 352 - 353

1017functions

 fsetpos(), 583

 ftell(), 579 - 582

 ftoa(), 503

 FullTree(), 833

 fwrite(), 586 - 590 , 639

 getc(), 572

 getchar(), 20 , 250 - 252

 get_choice(), 325 - 327

 getinfo(), 624

 get_long(), 322

 getnights(), 366

 gets(), 453 - 455 , 460 - 461

 gets_s(), 460 - 461

 headers, 40

 imax(), 350 - 351

 imin(), 345 - 348

 InitializeList(), 793 , 800

 InitializeTree(), 833

 inline, 725 , 741 - 744

 InOrder(), 842

 input, 584

 isalnum(), 254

 isalpha() function, 254

 isblank(), 254

 iscntrl(), 254

 isdigit(), 254

 isgraph(), 254

 islower(), 254 , 268

 isprint(), 254

 ispunct(), 254

 isspace(), 254 , 269

 isupper(), 254

 isxdigit(), 254

 itoa(), 503

 itobs(), 687

 ListIsEmpty(), 800

 ListIsFull(), 800 - 801

 arrays

 multidimensional, 423 - 427

 of structures, 637 - 638

 assert(), 760 - 763

 atan(), 747

 atoi(), 500

 black-box viewpoint, 345

 body, 34 , 40

 butler(), 44 - 45 , 177

 calling

 altering variables, 369 - 371

 with argument, 343 - 344

 nested calls, 468 - 469

 calloc(), 548

 character, ctype.h, 252 - 253

 creating, 337 - 340

 DeleteAll(), 843

 DeleteItem(), 841 - 842

 DeleteNode(), 841 - 842

 description, 335

 Dummy(), 663

 eatline(), 664

 EmptyTheList(), 793

 EmptyTree(), 833

 exit(), 570 , 753 - 755

 fclose(), 574

 feof(), 589

 ferror(), 589

 fflush(), 585

 fgetpos(), 583

 fgets(), 456 - 461 , 578 - 579

 fit(), 470 - 471

 fopen(), 570 - 572 , 579 , 584

 fputs(), 456 - 460 , 465 - 466 , 578 - 579

 fread(), 586 - 590 , 639

 free(), 545 - 548 , 802

 fseek(), 579 - 582

1018 functions

 ListItemCount(), 800 - 801

 versus macros, 725 - 726

 main(), 30 - 33 , 232 , 337 - 340

 makeinfo(), 624 - 626

 MakeNode(), 833 - 835

 malloc(), 543 - 544 , 628 - 631 , 777

 math library, 748

 memcpy(), 763 - 765

 memmove(), 763 - 765

 menu(), 366

 mult_array(), 415 - 416

 multiple, 44 - 45

 mycomp(), 758 - 760

 names, 336

 uses, 664

 _Noreturn (C11), 744

 pointers

 arrays of, 664

 communication and, 373 - 375

 declaring, 658

 pound(), 179

 pow(), 230

 power(), 233

 printf(), 30 - 31 , 38 - 39

 multiple values, 43 - 44

 print_name(), 352 - 353

 prototyping

 ANSI C, 349 - 353

 arguments and, 343

 scope, 514 - 515

 put1(), 467

 put2(), 468

 putc(), 572

 putchar(), 250 - 252

 puts(), 442 , 453 - 455 , 464 - 465 , 471

 qsort(), 657 , 755 - 758

 rand(), 534 , 819 - 820

 rand0(), 535

 recursive, 353 - 355

 returns, 356

 statements, 356

 variables, 355

 return values, 233 - 234

 rewind(), 577 , 643

 rfact(), 358

 scanf(), 58 , 128 - 129

 SeekItem(), 833 - 835 , 841 - 842

 setvbuf(), 584 - 586

 s_gets(), 461 - 462 , 592

 show(), 659

 show_array(), 416

 show_bstr(), 687

 showmenu(), 663 - 664

 show_n_char(), 340 - 344

 sprintf(), 487 - 489

 sqrt(), 660 , 747

 srand(), 536 - 538 , 542 , 820

 starbar(), 337 - 340

 storage classes, 533 - 534

 strcat(), 471 - 473 , 489

 strchr(), 490 , 664

 strcmp(), 475 - 480 , 489

 strcpy(), 482 - 485 , 489

 strlen(), 101 - 105 , 469 - 471 , 490

 strncat(), 473 - 474 , 489

 strncmp(), 489

 strncpy(), 482 - 489

 strpbrk(), 490

 strstr(), 490

 strtod(), 503

 strtol(), 503

 strtoul(), 503

 structure, 339

 sum(), 402

1019hotel.h

 generic selection, 740 - 741

 getc() function, 572

 getchar(), 28

 end-of-file, 304

 single-character I/O and, 300 - 301

 getchar() function, 20 , 250 - 252

 get_choice() function, 325 - 327

 getinfo() function, 624

 get_long() function, 322

 getnights() function, 366

 gets() function, 453 - 455

 string input, 460 - 461

 getsputs.c program, 453 - 455

 gets_s() function, string input, 460 - 461

 global data, const type qualifier, 553 - 554

 GNU (GNU's Not Unix), 18

 goto statement, 287 , 290

 guess.c program, 312 - 314

 H
 header files

 compiling, multiple source code files
and, 363 - 367

 example, 727

 first.c program, 31 - 32

 IDEs, 726

 #include directive, 726 - 727

 multiple inclusions, 727 - 728

 uses, 729 - 730

 headers, functions, 40

 hello.c program, 500 - 502

 hexadecimal numbers, 65 - 66 , 94 , 677 - 678

 binary equivalents, 678

 hotel.h, 365 - 366

 sump(), 405

 time(), 538 , 654 , 820

 to_binary(), 360

 ToLeft(), 835

 ToLower(), 663

 tolower(), 253

 ToRight(), 835

 ToUpper(), 657 - 659 , 663

 toupper(), 253

 Transpose(), 663

 Traverse(), 793 , 801 , 842

 TreeItems(), 833

 types, 348 - 349

 ungetc(), 585

 up_and_down(), 354 - 355

 uses, 336

 values, return keyword, 345 - 348

 VLAs, two-dimensional argument, 428

 void, 658

 funds1.c program, 618 - 619

 funds2.c program, 620

 funds3.c program, 621 - 622

 funds4.c program, 637 - 638

 fwrite() function, 586 - 588 , 639

 example, 589 - 590

 G
 gcc command, 18

 GCC compiler, 18

 general utilities library

 atexit() function, 753 - 755

 exit() function, 753 - 755

 qsort() function, 755 - 758

 _Generic keyword, 740 - 741

1020 IDE

 I
 IDE (integrated development environ-

ments), header files, 726

 identifiers

 entity, 512

 reserved, 49 - 50

 IDEs (integrated development environ-

ments), 19 - 21

 #if directive, 736 - 737

 if else pairings, 257 - 259

 if else statement, 248 - 249 , 291

 ?: (conditional) operator, 272 - 273

 switch statement comparison, 286 - 287

 if statement, 246 - 248 , 291

 if else comparison, 249

 #ifdef directive, 732 - 733

 ifdef.c program, 732 - 733

 #ifndef directive, 733 - 735

 images, bitmapped, 774

 imaginary types, 85

 imax() function, 350 - 351

 imin() function, 345 - 348

 #include directive

 C library file inclusion, 745 - 746

 file inclusion, 726 - 730

 #include statement, 30 - 31

 increment (++) operator, 160 - 164

 incrementing pointers, 410

 indefinite loops, 207 - 208

 indexes, arrays, 384

 indirect membership operator, 913

 initialization

 arrays, 384 - 388

 multidimensional, 396

 character string arrays, 444 - 445

 structures, 606

 unions, 645

 variables, 63

 InitializeList() function, 793 , 800

 InitializeTree() function, 833

 inline definition, 744

 inline functions, 725 , 741 - 744

 inline keyword, 744

 InOrder() function, 842

 input

 buffered, 301

 character, mixing with numeric,
314 - 317

 functions, 584

 keyboard, 304

 terminating, 302 - 306

 numbers, 323 - 324

 numeric mixed with character input,
 314 - 317 , 327 - 330

 redirection, 307 - 308

 string

 buffer overflow, 455

 fgets() function, 456 - 460

 fputs() function, 456 - 460

 gets() function, 453 - 455

 gets_s() function, 460 - 461

 long, 455

 scanf() function, 462 - 463

 s_gets() function, 461 - 462

 space creation, 453

 user interface, 312 - 314

 numeric mixed with character,
 314 - 317

 validation, 299 - 300 , 317 - 324

 int arrays, in memory, 228

 int constants, 64

 int keyword, 60

1021itobs() function

 inword flag, 269 - 270

 I/O (input/output)

 file I/O

 fprintf() function, 576 - 578

 fscanf() function, 576 - 578

 file-condensing program, 574 - 576

 functions, 299 - 300

 levels, 568

 single character, 300 - 301

 standard, 568 - 569

 command-line arguments, 569 - 570

 end-of-file, 572 - 573

 fclose() function, 574

 fopen() function, 570 - 572

 getc() function, 572

 pointers to files, 574

 putc() function, 572

 I/O package, 32

 isalnum() function, 254

 isalpha() function, 254

 isblank() function, 254

 iscntrl() function, 254

 isdigit() function, 254

 isgraph() function, 254

 islower() function, 254 , 268

 ISO (International Organization for

Standardization), 8

 C keywords, 49

 ISO C, 9

 isprint() function, 254

 ispunct() function, 254 , 495 - 497

 isspace() function, 254 , 269

 isupper() function, 254

 isxdigit() function, 254

 itoa() function, 503

 itobs() function, 687

 int type, 30 , 34 , 62

 constants, 75

 hexadecimal numbers, 65 - 66

 long, 66 - 67

 multiple, 67 - 68

 octal numbers, 65 - 66

 printing int values, 64

 short, 66 - 67

 unsigned, 66 - 67

 variable declaration, 63

 intconv.c program, 122 - 123

 integers, 61

 binary, 674 - 675

 floating-point type comparison, 60

 mixing with floating types, 124

 overflow, 69

 pointers, 410

 subtracting, 410

 properties, 787

 signed, 675 - 676

 union as, 697

 integrated environment, command-line

arguments, 500

 interactive programs, 58

 interchange() function, 369 - 371

 interfaces

 binary search tree, 830 - 832

 building, ADTs and, 789 - 793

 defining, 805 - 806

 functions, implementing, 810 - 815

 implementing, 796 - 802

 using, 793 - 796

 intermediate files, 14

 internal linkage, 515

 InTree() function, 836 - 837

 inttypes.h, 78

1022 jove editor

 J
 jove editor, 16

 K
 keyboard input, 304

 keystrokes, 23

 keywords, 49 - 50

 for, 209

 auto, 518

 char, 60

 const, 109 , 385

 C/C++ comparison, 423

 formal parameters, 413 - 415

 protecting arrays, 415 - 417

 data types, 59 - 60

 double, 60

 enum, 649

 constants, 649 - 650

 usage, 650 - 652

 values, 650

 extern, 536

 float, 60

 _Generic, 740 - 741

 inline, 744

 int, 34 , 60

 long, 60

 return, 230 , 345 - 348

 short, 60

 struct, 604

 typedef, 158 , 653 , 654 - 656

 #define statement and, 654

 location, 653

 variable names, 653 - 654

 unsigned, 60

 void, 178

 K&R C, 8

 L
 labels, case, 284 - 285

 languages

 Classic C, 8

 compilers, 7

 high-level, 6

 K&R C, 8

 standards, 7 - 9

 length of strings, 101

 lesser.c program, 345 - 348

 lethead1.c program, 337 - 340

 libraries, 14 - 18

 assert, 760

 assert() function, 760 - 763

 C library

 automatic access, 745

 descriptions, 746 - 747

 file inclusion, 745

 library inclusion, 745 - 746

 general utilities

 atexit() function, 753 - 755

 exit() function, 753 - 755

 qsort() function, 755 - 758

 math, 747

 ANSI C standard functions, 748

 tgmath.h library, 752

 trigonometry, 747 - 750

 types, 750 - 752

 library inclusion (C library), 745 - 746

 limitations of C, 4

 #line directive, 738 - 740

 linkage, 515 - 516

 external, static variables, 524 - 529

 internal, static variables, 529 - 530

 variable scope and, 515

1023 Macintosh

 logical operators, 264 , 911

 alternative spellings, 265

 bitwise, 678 - 680

 order of evaluation, 266

 precedence, 265 - 266

 relational expressions, 291

 long constants, 68

 long double type, 80 - 81

 long int type, 66 - 67

 printing, 70

 long keyword, 60

 long long constants, 68

 long long int type, printing, 70

 long strings, printing, 126 - 128

 loops

 break statement, 277 - 279

 continue statement, 274 - 277

 counting, 207 - 208

 do while, 220 - 223

 entry condition, 195

 for, 210 - 214

 indefinite, 207 - 208

 introduction, 144 - 146

 nested, 224 - 226

 selecting, 223 - 224

 tail recursion and, 356 - 358

 while, 144 , 190 - 191 , 195

 terminating, 194 - 195

 M
 mac_arg.c program, 719 - 721

 machine language, 6

 Macintosh

 command-line arguments, 500

 Xcode, 21

 linked lists, 779 - 780

 arrays comparison, 824 - 828

 creating, 784 - 785

 displaying lists, 783 - 784

 elements, inserting, 824

 films2.c program, 781 - 785

 list memory, freeing, 785 - 786

 searches, 826

 several items, 781

 two items, 780

 Linux systems, 18 - 19

 compiling, multiple source code files
and, 362 - 32

 redirection, 307 - 311

 Windows/Linux option, 21

 list.c program, 796 - 802

 list.h header file, 791 - 793

 ListIsEmpty() function, 800

 ListIsFull() function, 800 - 801

 ListItemCount() function, 800 - 801

 lists

 ADTS, operations, 788

 linked

 arrays and, 824 - 828

 creating, 784 - 785

 displaying, 783 - 784

 freeing list memory, 785 - 786

 ordered, 826

 literals, 81 - 82

 character string literals, 442 - 443

 compound, 431

 arrays, 432 - 434

 structures and, 631 - 633

 string literals, storage, 512

 LLVM Project, 18

 loccheck.c program, 367 - 368

1024 macros

 macros

 arguments, strings from, 721 - 722

 containing macros, 715

 double quotation marks and, 716

 empty macros, 731

 EXIT_FAILURE, 570

 EXIT_SUCCESS, 570

 function-like macros, 718 , 731

 versus functions, 725 - 726

 object-like macros, 714 , 731

 predefined, 737 - 740

 SQUARE, 719 - 720

 strings, 715

 tokens, 717

 va_arg(), 766

 va_copy(), 767

 va_end(), 766

 variadic, 723 - 724

 va_start(), 766

 mail.c program, 820 - 824

 main() function, 30 , 32 - 33 , 232 , 337 - 340

 makeinfo() function, 624 , 626

 MakeNode() function, 833 - 835

 malloc() function, 543 - 544

 data representation, 777

 new structures, 779

 pointers, 628 - 631

 structures, 628 - 631

 VLAs and, 548 - 549

 manifest constants, 109 - 110

 #define preprocessor directive, 713

 manybook.c program, 608 - 613

 manydice.c file, 541 - 542

 masks, bitwise operators, 680 - 681

 math library, 747

 ANSI C standard functions, 748

 tgmath.h library, 752

 trigonometry, 747 - 750

 types, 750 - 752

 membership operator (.), 912

 memcpy() function, 763 - 765

 memmove() function, 763 - 765

 memory, 5 - 6

 allocated, 543

 calloc() function, 548

 dynamic, VLAs and, 548 - 549

 free() function, 545 - 548

 malloc() function, 543 - 544

 storage classes and, 549 - 551

 for a structure, 605

 dynamic allocation, VLAs, 431

 list, freeing, 785 - 786

 storage classes, 511 - 513

 structures and, 608

 menu() function, 366

 menuette.c program, 328 - 330

 menus, 324

 tasks, 324

 MinGW, 19

 min.sec.c program, 159

 miscellaneous operators, 914

 misuse.c program, 350 - 351

 mode strings, fopen() function, 571

 modifiers, declarations, 655 - 656

 mod_str.c program, 495 - 497

 modules, compiling, 14

 modulus operator, 159 - 160

 mult_array() function, 415 - 416

 multidimensional arrays, 393 - 398

 functions and, 423 - 427

 pointers and, 417 - 427

 two-dimensional, 394 - 396

 initializing, 397 - 398

1025operators

 number input, mixing with character, 314 -

 317 , 327 - 330

 numbers, 6

 binary, octal digits, 677

 bits, values, 674

 decimal points, 57

 decimal system, 674

 floating-point, 57 - 61

 hexadecimal, 65 - 66 , 94 , 677 - 678

 input, 323 - 324

 octal, 65 - 66 , 94

 order number bases, 676 - 678

 O
 object code files, 14 - 18

 object-like macros, 714 , 731

 octal numbers, 65 - 66 , 94 , 677

 one's complement, 679

 online resources, 905 - 906

 operators

 #, 713

 ##, 722

 AND, 679

 + (addition), 149

 = (assignment), 146 - 149 , 202

 ?: (conditional), 272 - 273

 -- (decrement), 164 - 166

 == (equality), 191

 ++ (increment), 166

 * (indirection), 371 - 372

 . (membership), 912

 * (multiplication), 151 - 153

 == (relational), 202

 -/+ (sign operators), 150

 - (subtraction), 149 - 150

 / (division), 153 - 154

 < (redirection), 308

 multiplication (*) operator, 151 - 153

 mycomp() function, 758 - 760

 N
 names1.c program, 622 - 624

 names2.c program, 624 - 626

 names3.c program, 629 - 631

 names.h header file, 735

 namespaces, shared, 652 - 653

 names_st.h header file, 727

 naming, 36

 arrays, pointer notation, 402

 functions, 336

 uses of names, 664

 pointer variables, 371

 pointers, arrays and, 402

 variables, 375

 typedef, 653 - 654

 nested function calls, 468 - 469

 nested if statement, 259 - 262

 nested loops, 224 - 226

 nested structures, 613 - 615

 newline character

 preprocessor directives, 713

 stripping, 603

 no_data.c program, 386

 nogood.c program, 46 - 49

 nono.c program, 465

 nonprinting characters, 73 - 76

 _Noreturn functions (C11), 744

 Notepad, 19

 null character, 101 , 459

 scanf() function, 103

 null pointer, 459

 num variable, 30 , 34

1026 operators

 > (redirection), 308

 arithmetic, 908

 assignment, 910 - 911

 %=, 215

 *=, 215

 +=, 215

 -=, 215

 /=, 215

 binary, 150

 bitwise, 913 - 914

 binbit.c program, 686 - 687

 bit fields and, 696 - 703

 clearing bits, 682 - 683

 logical, 678 - 680

 masks, 680 - 681

 setting bits, 681 - 682

 shift operators, 684 - 685

 toggling bits, 683

 value checking, 683 - 684

 C, 908

 comma operator, 214 - 218

 conditional, 911 - 912

 EXCLUSIVE OR, 680

 indirect membership, 913

 logical, 264 , 911

 alternative spellings, 265

 order of evaluation, 266

 precedence, 265 - 266

 miscellaneous, 914

 modulus, 159 - 160

 OR, 679 - 680

 pointer-related, 912

 precedence, 154 - 155

 increment/decrement, 165 - 166

 logical operators, 265 - 266

 order of evaluation, 155 - 157 , 266

 relational, 197 , 910

 expressions, 910

 precedence, 205

 sign, 912

 sizeof, 158 , 388

 structure, 617 - 618 , 647 , 912 - 913

 structure pointer, 913

 unary, 150

 *, 406

 ++, 406

 union, 912 - 913

 OR operator, 679 - 680

 order number bases, 676 - 678

 order of operator evaluation, 155 - 157

 logical operators, 266

 order.c program, 406 - 407

 ordered lists, 826

 output, 23

 binary, 586

 disappearing, 28 , 57

 printf() function, 92 - 93

 redirection, 308 - 309

 string

 fputs() function, 465 - 466

 printf() function, 466

 puts() function, 464 - 465

 text, 586

 P
 paint.c program, 272 - 273

 parameters

 arrays, declaring, 403

 const type qualifier, 552 - 553

 formal parameters

 const keyword, 413 - 415

 function arguments, 342 - 343

 pointers, 404 - 407

 parentheses, pointers to arrays, 420

1027precedence of operators

 function communication, 373 - 375

 function pointers, 657

 addresses, 657

 ToUpper() function, 657 - 658

 incrementing, 410

 integers, 410

 subtracting, 410

 malloc() function, 628 - 631

 null, 459

 operations, 408 - 412

 parameters, 404 - 407

 passing, 412

 standard files (I/O), 574

 strcpy() function, 485

 strings, sorting, 493

 strings and, 451 - 452

 structures, 626 - 627

 character pointers, 627 - 628

 declaring, 617

 initializing, 617

 member acces, 617 - 618

 uninitialized, dereferencing, 411

 value finding, 409

 variables, names, 371

 portability, 3 , 582 - 583

 postage.c program, 216

 postfix, 163 - 164

 pound() function, 179

 pow() function, 230

 power() function, 233

 power.c program, 231 - 233

 praise1.c program, 102

 praise2.c program, 104 - 105

 precedence of operators, 154 - 155

 increment/decrement, 165 - 166

 logical operators, 265 - 266

 order of evaluation, 155 - 157

 relational operators, 205

 parta.c file, 532

 partb.c file, 532 - 533

 passing

 arguments, 124

 pointers, 412

 structure members, 618 - 619

 structures, as arguments, 621 - 622

 period (.) character, 262

 peripherals, 5

 petclub.c program, 849 - 854

 pizza.c program, 108

 platinum.c program, 56 - 58

 pnt_add.c program, 399 - 400

 pointer-related operators, 912

 pointers, 371 , 407

 * (indirection) operator, 371 - 372

 addresses, 409

 arrays, 398

 comparison, 445 - 447

 declaration, 544

 differences, 447 - 449

 names, 402

 notation and, 402

 multidimensional, 417 - 427

 parentheses, 420

 assignment and, 409

 comparisons, 411

 compatibility, 421 - 423

 const type qualifier, 552 - 553

 constants

 as function parameter, 416

 value changes and, 415

 declaring, 372 - 373

 to functions, 658

 decrementing, 410 - 411

 differencing, 411

 function, arrays of, 664

1028 predefined macros

 predefined macros, 737 - 740

 prefix, 163 - 164

 preproc.c program, 713 - 718

 preprocessor

 constants and, 106 - 112

 directives, newline character, 713

 identifiers and, 731

 print_name() function, 352 - 353

 print1.c program, 64 - 65

 print2.c program, 70 - 71

 printf() function, 30 - 31 , 38 - 39

 * modifier, 133 - 135

 %f specifier, 57

 arguments, 89 - 91 , 114

 conversion specifications, 112 - 113

 mismatched conversions, 122 - 124

 modifiers, 116 - 121

 escape sequences, 91 - 92

 flags, 118

 multiple values, 43 - 44

 output, 92 - 93

 return value, 126

 usage tips, 135 - 136

 printing

 char type and, 76

 floating-point values, 82 - 83

 int values, 64

 long long types, 70

 long types, 70

 short types, 70

 strings, 102 - 103

 long strings, 126 - 128

 unsigned types, 70

 printout.c program, 112 - 114

 prntval.c program, 126

 program jumps, 290

 program state, 49

 programmers, 3

 programming

 books, 907

 code, writing, 11

 commenting, 13

 compiling, 11 - 12

 debugging, 12

 design, 11

 maintenance, 13

 objectives, 10

 running the program, 12

 seven steps,

 testing, 12

 programs

 readability, 41 - 42

 structure, 40

 protecting array contents, 412 - 417

 proto.c program, 351 - 352

 prototyping functions

 ANSI C, 349 - 353

 arguments and, 343

 scope, 514 - 515

 ptr_ops.c program, 408 - 409

 put1() function, 467

 put2() function, 468

 putc() function, 572

 putchar() function, 250 - 252

 single-character I/O and, 300 - 301

 put_out.c program, 464 - 465

 put_put.c program, 468 - 469

 puts() function, 442

 null character and, 471

 string input, 453 - 455

 string output, 464 - 465

1029return values

 reversal and, 358 - 360

 statements, 356

 tail recursion, 356 - 358

 up_and_down() function, 354 - 355

 variables, 355

 redefining constants, 717 - 718

 redirection, 307

 < operator, 308

 > operator, 308

 combination, 309 - 310

 command-line, 310

 input, 307 - 308

 output, 308 - 309

 reducto.c program, 574 - 576

 reference books, 908

 register variables, storage classes, 522

 relational expressions

 false, 199 - 203

 logical operator and, 291

 true, 199 - 203

 relational operators, 197 , 910

 ==, 191

 expressions, 910

 precedence, 205

 repeat.c program, 498 - 499

 reserved identifiers, 49 - 50

 resources

 books

 C++, 907

 C language, 907

 programming, 907

 reference, 908

 online, 905 - 906

 restrict type qualifier, 555 - 556

 return keyword, 230 , 345 - 348

 return statement, 40

 Q
 qsort() function, 657 , 755 - 758

 queue abstract data type, 804

 array as queue, 806

 circular queue, 808

 interface, defining, 805 - 806

 simulations, 818 - 824

 testing queue, 815 - 817

 queue.c implementation file, 813 - 815

 queue.h interface header file, 809 - 810

 quotation marks, double, 465

 R
 ragged arrays, 450

 rain.c program, 395 - 396

 RAM (random access memory), 5

 rand() function, 534 , 819 , 820

 rand0() function, 535

 randbin.c program, 593 - 594

 random access

 binary I/O, 593 - 594

 fgetpos() function, 583

 fopen() function, 579

 fseek() function, 579 - 582

 fsetpos() function, 583

 ftell() function, 579 - 582

 ranges, && operator, 267 - 268

 readability, 41 - 42

 rectangular arrays, 450

 rect_pol.c program, 749 - 750

 recur.c program, 354 - 355

 recursion, 353 - 355

 Fibonacci numbers and, 360

 pros/cons, 360 - 361

 returns, 356

1030 return values

 return values

 functions, 233 - 234

 printf() function, 126

 scanf() function, 133

 reversal, recursion and, 358 - 360

 reverse.c program, 579 - 580

 rewind() function, 577 , 643

 rfact() function, 358

 Ritchie, Dennis, 1

 routines, library routines, 15

 rows1.c program, 224 - 225

 running.c program, 180 - 181

 S
 samples, book inventory, 601 - 602

 scanf() function, 58 , 128 - 129

 arguments, 89 - 91

 conversion specifiers, 129

 format string, regular characters,
132 - 133

 input, 129 - 132

 null character, 103

 return value, 133

 while loop and, 191 - 193

 scope

 block, 514

 function, 514

 function prototypes, 514 - 515

 linkage, 515 - 516

 storage classes, 513 - 515

 scores_in.c program, 228 - 230

 searches

 binary, 826 - 827

 binary search trees, 828 - 829

 adding items, 833 - 836

 AddItem() function, 833 - 837

 AddNode() function, 833 - 835

 ADT, 829 - 843

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 ,
 841 - 842

 DeleteNode() function, 841 - 842

 deleting items, 837 - 842

 deleting nodes, 840 - 841

 emptying, 843

 EmptyTree() function, 833

 finding items, 836 - 837

 FullTree() function, 833

 InitializeTree() function, 833

 interface, 830 - 832

 InTree() function, 836 - 837

 MakeNode() function, 833 - 835

 SeekItem() function, 833 - 837 ,
841 - 842

 tips, 854 - 856

 ToLeft() function, 835

 ToRight() function, 835

 traversing trees, 842

 TreeItems() function, 833

 linked lists, 826

 SeekItem() function, 833 - 837 , 841 - 842

 selection sort algorithm, 494 - 495

 semantic errors, 47 - 48

 sequence points, statements, 170 - 171

 setting bits (bitwise operators), 681 - 682

 setvbuf() function, 584 - 586

 s_gets() function, 592

 string input, 461 - 462

 shared namespaces, 652 - 653

 shift operators (bitwise), 684 - 685

 short int type, 66 - 67

 printing, 70

 short keyword, 60

1031statements

 standard files (I/O), 568

 pointers to, 574

 standard I/O, 568 - 569

 binary, random access and, 593 - 594

 command-line arguments, 569 - 570

 end-of-file, 572 - 573

 fclose() function, 574

 feof() function, 589

 ferror() function, 589

 fflush() function, 585

 fopen() function, 570 - 572 , 584

 fread() function, 586 - 589

 example, 589 - 590

 fwrite() function, 586 - 588

 example, 589 - 590

 getc() function, 572

 putc() function, 572

 setvbuf() function, 584 - 586

 ungetc() function, 585

 starbar() function, 337 - 340

 starsrch.c program, 481

 startup code, 15

 statements, 168 - 170

 assignment, 37 - 38

 break, 277 - 279 , 282 - 283

 compound (blocks), 171 - 173

 continue, 274 - 277

 declarations, 34 - 35

 #define, 109

 else if, 253 - 257

 goto, 287 - 290

 if, 246 - 248 , 291

 if else, 248 - 249 , 272 - 273 , 291

 #include, 30 - 31

 recursive functions, 356

 return, 40

 sequence points, 170 - 171

 show() function, 659

 show_array() function, 416

 show_bstr() function, 687

 showchar2.c program, 316 - 317

 showf_pt.c program, 82 - 83

 showmenu() function, 663 , 664

 show_n_char() function, 340 - 344

 side effects, statements, 170 - 171

 sign operators, 912

 sign operators (-/+), 150

 signed integers, 675 - 676

 signed types, 93

 char, 77

 simulations, queue package, 818 - 824

 single-character I/O, 300 - 301

 single-character reading, 283

 sizeof operator, 158 , 388

 sizeof.c program, 158

 size_t type, 158

 skip2.c program, 134 - 135

 skippart.c program, 274 - 276

 somedata.c program, 387

 sort_str.c program, 491 - 493

 sorting, strings, 491

 pointers, 493

 selection sort algorithm, 494 - 495

 source code

 files, 14

 text files, 19

 two or more files when compiling,
361 - 367

 sprintf() function, 487 - 489

 sqrt() function, 660 , 747

 SQUARE macro, 719 - 720

 srand() function, 536 - 538 , 542 , 820

1032 statements

 side effects, 170 - 171

 switch, 280 - 283 , 291

 terminating semicolon, 40

 while, 145 , 170 , 193

 static class qualifier, 557

 static variables, 534

 storage classes, 522 - 524

 external linkage, 524 - 529

 internal linkage, 529 - 530

 stdarg.h file, variadic macros, 765 - 768

 stdin stream, 307

 stdint.h, 77 - 78

 stdio.h file, 31

 pointers to standard files, 574

 storage, 5

 bit fields, 692 - 695

 numbers, 6

 string literals, 512

 storage classes, 511 - 513

 arrays and, 386

 automatic, 517

 dynamic memory allocation, 549 - 551

 functions and, 533 - 534

 linkage, 515 - 516

 multiple files, 530

 register, 517

 scope, 513 - 515

 selecting, 534

 specifiers, 530 - 531

 static w/ external linkage, 517

 static w/ internal linkage, 517

 static w/ no linkage, 517

 storage duration, 516 - 517

 variables

 automatic, 518 - 522

 register, 522

 static with block scope, 522 - 524

 static with external linkage,
524 - 529

 static with internal linkage,
529 - 530

 storage duration, 516 - 517

 strcat() function, 471 - 473 , 489

 strchr() function, 490 , 495 - 497 , 664

 strcmp() function, 475 - 480 , 489

 strcnvt.c program, 502 - 503

 strcpy() function, 482 - 484 , 489

 pointers, 485

 properties, 484 - 485

 streams, 303

 string functions

 sprintf(), 487 - 489

 strcat(), 471 - 473 , 489

 strchr(), 490

 strcmp(), 475 - 480 , 489

 strcpy(), 482 - 484 , 489

 properties, 484 - 485

 strlen(), 469 - 471 , 490

 strncat(), 473 - 474 , 489

 strncmp(), 489

 strncpy(), 482 - 489

 strpbrk(), 490

 strstr(), 490

 string input

 buffer overflow, 455

 fgets() function, 456 - 460

 fputs() function, 456 - 460

 gets() function, 453 - 455

 gets_s() function, 460 - 461

 long, 455

 scanf() function, 462 - 463

 s_gets() function, 461 - 462

 space creation, 453

1033structures

 strncat() function, 473 - 474 , 489

 strncmp() function, 489

 strncpy() function, 482 - 489

 strpbrk() function, 490

 strptr.c program, 443

 strstr() function, 490

 strtod() function, 503

 strtol() function, 503

 strtoul() function, 503

 struct keyword, 604

 structure declaration

 initialization, 606

 initializers, 607 - 608

 member access, 607

 memory allocation, 605

 struct keyword, 604

 variables, defining, 605 - 608

 structure operators, 912 - 913

 structure pointer operator, 913

 structures

 address, 619 - 620

 allocating in a block, 778

 anonymous, 636 - 637

 arrays, 607

 declaring, 611

 functions, 637 - 638

 members, 612

 arrays of, 608

 binary tree, 644

 character arrays, 627 - 628

 character pointers, 627 - 628

 compound literals and, 631 - 633

 malloc() function, 628 - 631

 members, passing, 618 - 619

 memory and, 608

 nested, 613 - 615

 string literals, storage, 512

 string output

 fputs() function, 465 - 466

 printf() function, 466

 puts() function, 464 - 465

 stringf.c program, 121

 string.h library

 memcpy() function, 763 - 765

 memmove() function, 763 - 765

 strings, 102 - 103

 character string arrays, 444 - 445 ,
449 - 451

 character string literals, 442 - 443

 character strings, 101 , 227 , 441

 versus characters, 103

 constants, 442 - 443

 double quotation marks, 465

 control strings, 115 - 114

 defining, within program, 442 - 452

 displaying, 442

 length, 101

 long strings, printing, 126 - 128

 from macro arguments, 721 - 722

 macros, 715

 mode strings, fopen() function, 571

 pointers and, 451 - 452

 printing, 102 - 103

 long strings, 126 - 128

 puts() function, 442

 regular characters, 132 - 133

 sorting, 491

 pointers, 493

 selection sort algorithm, 494 - 495

 strings1.c program, 442

 string-to-number conversions, 500 - 503

 strlen() function, 101 , 103 - 105 , 469 - 471 ,

 490

1034 structures

 operator, 617 - 618

 operators, 647

 passing as argument, 621 - 622

 pointers to, 615 - 616 , 626 - 627

 declaring, 617

 initializing, 617

 member access, 617 - 618

 saving contents to file, 639 - 644

 union as, 697

 subst.c program, 722

 subtraction (-) operator, 149 - 150

 sum() function, 402

 structure addresses, 619 - 620

 sum_arr1.c program, 403 - 404

 sum_arr2.c program, 405 - 407

 summing.c program, 190 - 191

 sump() function, 405

 swap3.c program, 373 - 375

 sweetie1.c program, 207 - 208

 sweetie2.c program, 208

 switch statement, 280 - 283 , 291

 if else statement comparison, 286 - 287

 symbolic constants, 106 - 111

 when to use, 716

 symbols

 */, 30 , 33 - 34

 /*, 30

 syntax errors, 46 - 47

 syntax points, while loop, 195 - 197

 system requirements, 24

 T
 tail recursion, 356 - 358

 talkback.c program, 100

 tasks, 324

 terminating while loop, 194 - 195

 test_fit.c program, 470 - 471

 testing programs, 12

 text files, 566

 versus binary, 582

 binary mode, 567

 text mode, 567

 versus word process files, 19

 text output, 586

 text view (files), 567

 tgmath.h library, 752

 Thompson, Ken, 1

 time() function, 538 , 654 , 820

 to_binary() function, 360

 toggling bits (bitwise operators), 683

 tokens

 macros, 717

 translation and, 712 - 713

 ToLeft() function, 835

 ToLower() function, 663

 tolower() function, 253

 ToRight() function, 835

 ToUpper() function, 657 - 659 , 663

 toupper() function, 253 , 495 - 497

 tracing, 48

 translation

 compiler and, 712

 newline character and, 712

 tokens, 712 - 713

 whitespace characters, 713

 Transpose() function, 663

 Traverse() function, 793 , 801 , 842

 tree.c implementation file, 843 - 849

 tree.h header file, 830 - 832

 TreeItems() function, 833

 trigonometry, math library and, 747 - 750

 trouble.c program, 201 - 203

1035va_list type variable

 templates, tags and, 645

 uses, 646 - 647

 Unix systems

 compiling, multiple source code files
and, 362

 editors, 16

 file size, 566

 filenaming, 16

 redirection, 307 - 311

 unsigned int type, 66 - 67

 printing, 70

 unsigned keyword, 60

 unsigned types, char, 77

 unspecified arguments, 352 - 353

 up_and_down() function, 354 - 355

 usehotel.c

 control module, 363 - 364

 function support module, 364 - 365

 use_q.c program, 816 - 817

 user interface

 input

 buffered, 312 - 314

 numeric mixed with character,
 314 - 317

 menus, 324

 tasks, 324

 V
 -v option, 18

 va_arg() macro, 766

 va_copy() macro, 767

 va_end() macro, 766

 va_start() macro, 766

 validation, input, 299 - 300 , 317 - 324

 va_list type variable, 765 - 766

 two-dimensional array, 394 - 396

 initializing, 397 - 398

 two_func.c program, 44 - 45

 type conversions, 174 - 176

 cast operator, 176

 type portability, 116

 type qualifiers, ANSI C

 _Atomic, 556 - 557

 const, 552 - 554

 formal parameters, 557

 restrict, 555 - 556

 volatile, 554 - 555

 type sizes, 86 - 88

 typedef keyword, 158 , 655 - 656

 #define statement and, 654

 location, 653

 variables, names, 653 - 654

 typeface in book, 22

 types

 enumerated, 649

 math library, 750 - 752

 U
 unary operators, 150

 &, 354

 *, 406

 ++, 406

 #undef directive, 731

 ungetc() function, 585

 union operators, 912 - 913

 unions

 anonymous, 647

 arrays of, 645

 initializing, 645

 as integer, 697

 as structure, 697

1036 values

 values

 arrays, assigning, 390

 bit numbers, 674

 bitwise operators, 683 - 684

 changing, pointers to constants, 415

 expressions, 168

 pointers and, 409

 return keyword, 345 - 348

 variables, 375

 varargs.c program, 767 - 768

 vararr2d.c program, 429 - 431

 variables, 59

 addresses, 375

 automatic, storage classes, 518 - 522

 calling functions, altering, 369 - 371

 declaring, 37 , 57 , 102

 char type, 72

 floating-point, 81

 int, 63

 expressions, array declaration, 544

 floating-point, declaring, 81

 initialization, 63

 names, 375

 typedef, 653 - 654

 num, 30 , 34

 pointers

 declaring, 372 - 373

 names, 371

 recursion, 355

 register, storage classes, 522

 static, 534

 with block scope, 522 - 524

 with external linkage, 524 - 529

 with internal linkage, 529 - 530

 structure, defining, 605 - 608

 values, 375

 variadic macros, 723 - 724

 stdarg.h file, 765 - 768

 varwid.c program, 133 - 134

 vi editor, 16

 Visual Studio, 20 - 21

 VLAs (variable-length arrays), 427

 dynamic memory allocation, 431 ,
548 - 549

 functions, two-dimensional VLA argu-
ment, 428

 malloc() function, 548

 restrictions, 428

 size, 428

 support for, 428

 void, 17

 void function, assignment statements, 658

 void keyword, 178

 volatile type qualifier, 554 - 555

 vowels.c program, 284 - 285

 W
 when.c program, 194 - 195

 where.c program, 550 - 551

 while loop, 144 , 190 - 191

 compound statement and, 172

 conditions, 146

 entry condition loop, 195

 scanf() function, 191 - 193

 selecting, 223 - 224

 structure, 193

 syntax points, 195 - 197

 terminating, 194 - 195

 while statement, 145 , 170 , 193

 whitespace, 137

 scanf() function, 129

 translation and, 713

1037zippo2.c program

 width.c program, 116 - 119

 Win32 Console Application, 20

 Windows Notepad, 19

 Windows/Linux option, 21

 word processor files versus text files, 19

 wordcnt.c program, 270 - 271

 word-counting program, 268 - 271

 words, 60

 X-Y-Z
 X Window System, text editor, 16

 Xcode, 21

 zippo1.c program, 418 - 419

 zippo2.c program, 420 - 421

	Table of Contents
	Preface
	3 Data and C
	A Sample Program
	What’s New in This Program?

	Data Variables and Constants
	Data: Data-Type Keywords
	Integer Versus Floating-Point Types
	The Integer
	The Floating-Point Number

	Basic C Data Types
	The int Type
	Other Integer Types
	Using Characters: Type char
	The _Bool Type
	Portable Types: stdint.h and inttypes.h
	Types float, double, and long double
	Complex and Imaginary Types
	Beyond the Basic Types
	Type Sizes

	Using Data Types
	Arguments and Pitfalls
	One More Example: Escape Sequences
	What Happens When the Program Runs
	Flushing the Output

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

