
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927972
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927972
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927972
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927972
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927972/Free-Sample-Chapter

 Praise for
Programming the Windows Runtime by Example

 “This is a great from-the-ground-up, very complete book on building Windows
Store Apps. You’ll find it on your desk a year from now all dog-eared and marked
up from use.”

 Dave Campbell , MVP, WindowsDevNews.com

 “ Programming with Windows Runtime by Example is a must-have book for any
professional developer building apps for WinRT/Win8.1, especially in the LOB
space for modern apps on Windows 8.1. For me it is the reference I provide my
team building LOB applications for WinRT. Jeremy and John have done a great
job putting together a great reference and educational book on professional
development for the WinRT platform.”

 David J. Kelley , CTO, Microsoft MVP

 “Jeremy and John are both very much IT masters from the old guard of software
development. With countless years of bending, shaping, and influencing the
world of software development behind them both, they continue to do so as
they push forward into new and emerging technologies.

 “As with everything they do, this book also reflects their ongoing dedication and
passion for their quest to bring the reader not only the information he or she
requires, but far more beyond that, they build knowledge step-by–step, then
deliver it to the reader with cutting-edge, ninja-like precision to deliver exactly
what knowledge is needed, when it’s needed, and where it’s needed.

“ If you want to learn the Windows Runtime, then I can think of no finer book,
and no finer guides to the WinRT landscape. By the end of this book, you’ll have
the knowledge, the power, and a hefty dose of passion to go out into the new
millennium and create some of the best WinRT apps available.”

 Peter “Shawty” Shaw , LinkedIn .NET User Group manager

 “This book is an invaluable resource for budding WinRT developers. It covers the
basics to more advanced topics like MVVM. Readers will find the chapter entitled
‘Connecting to the Cloud’ especially useful in getting up to speed with Azure and
creating cloud connected apps.”

 Daniel Vaughan , President of Outcoder, Microsoft MVP,
Author of Windows Phone 8 Unleashed

 “There are books that provide reference for a development topic, and others that
you will read from cover to end. Programming the Windows Runtime by Example
by Jeremy Likness and John Garland should be your go-to guide for getting up
to speed on WinRT. Jeremy and John wrote this book with the intention of being
easy to follow and hard to forget, and they succeeded in both areas. I recommend
this book for all developers, whether new to WinRT development, or those like
me who just want to fill in the gaps on advanced topics.”

 Chris Woodruff , DeepFriedBytes.com, Microsoft MVP

The Windows Development Series grew out of the award-winning Microsoft .NET Development
Series established in 2002 to provide professional developers with the most comprehensive
and practical coverage of the latest Windows developer technologies. The original series has
been expanded to include not just .NET, but all major Windows platform technologies and tools.
It is supported and developed by the leaders and experts of Microsoft development technologies,
including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources
in this series provide a core resource of information and understanding every developer needs to
write effective applications for Windows and related Microsoft developer technologies.

“ This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert
perspective to reference and how-to. Books in this series are essential reading for those who want to
judiciously expand their knowledge and expertise.”

– JOHN MONTGOMERY, Principal Director of Program Management, Microsoft

“ This series is always where I go f irst for the best way to get up to speed on new technologies. With its
expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting
better and more relevant to the modern Windows developer.”

– CHRIS SELLS, Independent Consultant specializing in Windows, devices, and the cloud

Visit informit.com/mswinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Microsoft Windows Development Series

 Programming
the Windows
Runtime by
Example
A Comprehensive
Guide to WinRT
with Examples in
C# and XAML

 Jeremy Likness
John Garland

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

 Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

 The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013954295

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290

 ISBN-13: 978-0-321-92797-2
 ISBN-10: 0-321-92797-4

 Text printed in the United States on recycled paper at Edwards Brothers Malloy, Lillington, North
Carolina

 First printing, June 2014

 For Doreen and all her arrows, Lizzie and all her travels,

and Gordon and all his paint.

—Jeremy Likness

 To Karen, Callie, Winnie, and Dude,

for the new adventure that is soon to begin.

— John Garland

 Contents at a Glance

 1 The New Windows Runtime 1

 2 Windows Store Apps and WinRT Components 29

 3 Layouts and Controls 81

 4 Data and Content 153

 5 Web Services and Syndication 199

 6 Tiles and Toasts 225

 7 Connecting to the Cloud 261

 8 Security 323

 9 Model-View-ViewModel (MVVM) 349

 10 Networking 379

 11 Windows Charms Integration 415

 12 Additional Windows Integration 451

 13 Devices 479

 14 Printers and Scanners 531

 15 Background Tasks 559

 16 Multimedia 589

 17 Accessibility 615

 18 Globalization and Localization 631

 19 Packaging and Deploying 649

 20 Debugging and Performance Optimization 685

 A Under the Covers 719

 B Glossary 733

 Index 749

vii

 Contents

Foreword xix
Preface xxii

1 The New Windows Runtime 1
Windows Runtime Specifics 1
Windows Store Apps 4

Example: Create a Windows Store App 5
.NET and WinRT 9

Fundamental Types 9

Mapped Types 10

Streams and Buffers 14
Desktop Applications 15

Example: Reference WinRT from a Desktop Application 15
Example: Examine Projections in a WinRT Component 20

Asynchronous Functions 24

Summary 27

2 Windows Store Apps and WinRT Components 29
Fundamentals of a Windows Store App 30

Windows Store App Templates 32

Understanding the App Manifest 45

Finding Your Package on Disk 52

Running Your App 54

 viii Contents

Application Lifecycle 61

The Navigation Helper and Suspension Manager 67
Managed WinRT Components 75

Creating a Managed WinRT Component 76

Calling Managed WinRT Components from Any Language 78
Summary 79

3 Layouts and Controls 81
The Visual Tree 83
Data-Binding 85

Dependency Properties 91

Attached Properties 94

Value Precedence 95

Property Change Notification 95
Animations 97

Example: Dynamically Apply Animations to a Control 97
The Visual State Manager 100

Example: Visual State Manager 101

Groups 103

States 105

Transitions 106
The Visual State Manager Workflow 107
Programmatic Access to Visual States 109
Custom Visual State Managers 109
Styles 111
Templates 112

Example: Using Templates 112
Layouts 115

Panel 115
Border 115
Canvas 116
Grid 116
StackPanel 117
VirtualizingPanel and VirtualizingStackPanel 118

ix Contents

WrapGrid 119
VariableSizedWrapGrid 119
ContentControl 120
ItemsControl 121
ScrollViewer 122
ViewBox 122
GridView 123
ListBox 123
ListView 124
FlipView 124
Example: Using the Viewbox and Various Layouts 125

Controls 130
Flyouts 133

Custom Controls 135
Example: Creating a Custom Control 136

Parsing XAML 140
HTML Pages 143

Example: Working with HTML and JavaScript 144
Summary 150

4 Data and Content 153
Example: Data Manipulation with the Skrape App 154
The Clipboard 154
Application Storage 159

Roaming Data 161
Containers 162
Settings 163
Composite Values 165

Storage Folders and Files 166
Storage Folders 168
Storage Files 170
Buffers and Streams 171
Path and File Helper Classes 174
Storage Query Operations 176
Pickers and Cached Files 180
Compression 187

 x Contents

Data Formats 191
Example: Working with Data Formats 192
XSLT Transformations 195

Document Data 196
Summary 198

5 Web Services and Syndication 199
SOAP 200
REST 209
OData Client 217
Syndication 219
Summary 223

6 Tiles and Toasts 225
Tiles 226

Default Tiles 227
Live Tiles 229
Cycling Tile Notifications 234
Secondary Tiles 236

Badges 239
Periodic Notifications 242
Toasts 242

Toasts in Desktop Applications 248
Push Notifications 249

Registering to Receive Push Notifications 251
Sending Push Notifications 253

Summary 259

7 Connecting to the Cloud 261
Windows Azure Mobile Services 262

Example: Managing a Shared Group of Subscribers 267
Connecting an App to a Mobile Services Instance 267
Authentication 269
Data Storage 274
Custom APIs 289
Integrated Push Notification Support 291

xi Contents

Scheduled Tasks 297
Mobile Services Deployment Tiers 298

Live Connect 301
Getting Started 302
The Example App 304
Authentication 304
Working with Profile Information 308
Working with Contacts 310
Working with Calendars and Events 311
Working with OneDrive 315

Summary 321

8 Security 323
Authentication 324

Multistep Authentication (Google) 330
Unlocking the Password Vault 331

Encryption and Signing 333
The Data Protection Provider 333
Symmetrical Encryption 337
Verification 343
Asymmetric Algorithms 345

Summary 347

9 Model-View-ViewModel (MVVM) 349
UI Design Patterns 350

The Model 351
The View 352
Model-View-Controller (MVC) 353
Model-View-Presenter (MVP) 354
Model-View-ViewModel (MVVM) 355

The ViewModel Decomposed 356
Common MVVM Misperceptions 362
Benefits of MVVM 364
Common MVVM Solutions 367

Design-Time Data 367
Accessing the UI Thread 369

 xii Contents

Commands 371
Handling Dialogs 371
Selection Lists 371
Filtered Lists 373
Validation 375

Summary 377

10 Networking 379
Web and HTTP 379
HomeGroup 382
Connectivity and Data Plans 384
Sockets 389

WebSockets 389
UDP and TCP Sockets 392

Proximity (Near Field Communications) 397
NFC-Only Scenarios 397
Tap-to-Connect Scenarios 403

Background Transfers 408

Summary 412

11 Windows Charms Integration 415
Displaying App Settings 417

The Settings Example 418
Adding Settings Entries 418

Sharing 421
The Share Source Example 423
Creating a Share Source App 424
The Share Target Example 433
Creating a Share Target App 434
Debugging Share Target Apps 441

Using Play To 442
The Play To Example 443
Creating a Play To Source App 444
Creating a Play To Target App 446

Summary 448

xiii Contents

12 Additional Windows Integration 451
Integrating with the File and Contact Pickers 452

The Example App 453
File Open Picker 454
File Save Picker 458
Contact Picker 460

Application Activation Integration 462
The Example App 463
File Activation 463
Protocol Activation 467
Account Picture Provider 470
AutoPlay 471

Working with Contacts and Appointments 473
The Example App 474
Contacts 474
Appointments 476

Summary 478

13 Devices 479
Working with Input Devices 480

The Example App 480
Identifying Connected Input Devices 481
Pointer, Manipulation, and Gesture Events 484
Keyboard Input 495

Sensor Input 498
The Example App 498
Geolocation 502
Geofencing 510
Motion and Orientation Sensors 517

Summary 529

14 Printers and Scanners 531
Working with Printers 532

The Example App 532
Getting Started 533

 xiv Contents

Configuring a Print Task 534
Providing Printing Content 542

Working with Scanners 547
The Example App 547
Determining Scanner Availability 548
Working with Scan Sources 549
Previewing 550
Scanning 551
Scanner Settings 552

Summary 556

15 Background Tasks 559
The Thread Pool 560
Uploads and Downloads 562
Audio 563
Lock Screen Tasks 570

Lock Screen Capabilities 570
The Background Task 573
Listing Background Tasks 576
Timer 578
Conditions 578
Debugging Background Tasks 580

Raw Push Notifications 581
Control Channel 585
System Events 587
Summary 588

16 Multimedia 589
Playing Multimedia Content 590

The Example App 590
Getting Started 591
Controlling Playback 592
Appearance 595
Audio Settings 596
Media Information 597
Markers 597

xv Contents

Acquiring Audio and Video 598
The Example App 599
Declaring Application Capabilities 599
Using CameraCaptureUI 600
Using MediaCapture 604

Text-to-Speech Support 610
The Example App 611
Using the SpeechSynthesizer 611

Summary 613

17 Accessibility 615
Requested Theme 616

High Contrast 618
Keyboard Support 620
Automation Properties 622
Testing with Narrator 623
Automation and Lists 624
Live Settings 625
Automation Peers 626
Accessibility Checker 627
Summary 629

18 Globalization and Localization 631
Design Considerations 632
Default Language 633
Configuring Preferred Languages 635
Resource Qualification and Matching 637
Localizing XAML Elements 639
Formatting Dates, Numbers, and Currencies for Locale 642
MVVM and Localization 643
Multilingual Toolkit 644
Summary 648

 xvi Contents

19 Packaging and Deploying 649
Packaging Your App 650

Creating an App Package 650
App Package and App Bundle Contents 654
Package Identifier 655

Deploying Your App 657
Publishing Your App in the Windows Store 657
Other Deployment Options 665

Making Money with Your App in the Windows Store 667
The Example App 668
Pricing Your App in the Windows Store 669
Trial Mode Apps 670
In-App Purchases 675
Including Advertisements 678

Summary 683

20 Debugging and Performance Optimization 685
Understanding the Debugger 686

Native, Managed, and Script Debuggers 686
Just My Code 688
Edit and Continue 690
Just in Time Debugging 691
How to Launch the Debugger 691
Program Databases 692
Debug Windows 693
Managing Exceptions 694

Logging and Tracing 696
Profiling and Performance Analysis 702

Performance Tips 704
CPU Sampling 706
XAML UI Responsiveness 709
Energy Consumption 710

Code Analysis 712
Summary 717

xvii Contents

A Under the Covers 719
Fundamental WinRT Concepts 719
Namespaces 720
Base Types 720
Primitives 720
Classes and Class Methods 721
Structures 722
Generics 722
Null 723
Enumerations 723
Interfaces 723
Properties 723
Delegates 724
Events 724
Arrays 725
WinRT Internals 725

 B Glossary 733

 Index 749

This page intentionally left blank

xix

Foreword

The concept of an app has changed dramatically over time, and more
increasingly so in the past eight years. The approachability for the masses
to have super computers in their pockets has led to the rapid adoption of
mobile apps at the fi ngertips of every user—not just those in cubicles all
day long. You can’t sit in public transit, walk down a street, or even enjoy
a nice meal without looking around and seeing the glow from a screen
of some sort on someone’s face. Everyone is a part of the app ecosystem
now. Whether it is a mobile phone, music device, e-reader, watch, or even
glasses, apps are a part of our lives. People desire them to make their lives
and jobs more productive or just to have fun. As a software developer, it
is hard to ignore this surge in opportunity and the desire to capitalize on
this ecosystem.

Microsoft technologies present a large opportunity to software develop-
ers to reach a vast ecosystem of traditional users who have used Windows
technologies in their personal, educational, and professional lives. These
users seek out new ways to accomplish tasks and have fun on their technol-
ogy devices. Microsoft has computing devices across the various screens
presented in our lives in our hands, on our desks, and in our living rooms.
All these represent opportunities for you, the developer, to extend your
reach and ideas into the world.

As this evolution of mobility, multiple screens, and wearables has
increased, so has technology. Microsoft technologies have evolved as well

 xx Foreword

on the client app areas. Over time Microsoft has delivered various ways
to write client applications through standard C++, MFC, Windows Forms,
Windows Presentation Foundation (WPF), Silverlight, and HTML. Putting
developers on a better path for development, Microsoft introduced the
Windows Runtime (WinRT). This technology and principles enable devel-
opers to have a single platform to target that extends their potential across
the personal, professional, and entertainment endpoints we have in our
lives. WinRT enables developers to choose how they can be most produc-
tive using their skills in C++, C#, Visual Basic, or JavaScript. Alongside
the language of choice, developers have a native UI framework in XAML
they can use for the best client app experience on Windows. XAML is
everywhere now in Windows, from system shell UI to system apps to
key experiences delivered from Microsoft, such as Microsoft Offi ce. When
developing an app in C# and XAML, you’ll be joining other successful
developers in the world and can tap into that ecosystem of knowledge,
experience, and examples.

Software is an art. Just like any art project, approaching software devel-
opment requires thought into the necessary tools, philosophies, and prin-
ciples you will use to create your app. I still remember one of my earliest
“professional” software development jobs, sitting in a meeting listening to
the customer describe all these (what was at the time) high-tech require-
ments of their app, all needing to be done in Internet Explorer 3. I scribbled
notes as fast as I could while my dev lead at the time, all too quickly I
thought, was busy nodding his head in acceptance of the requirements. As
we walked out of the meeting, I expressed my concern about the require-
ments and available technology at the time. He smiled and shrugged like
it was no problem stating, “No worries Tim, we just need the right tools.”

One of the key tools is a good guide and mentor. In my early days, for
me that was books just like this one you have now. To this day I still prefer
books on my shelf when learning new technology concepts. I’ve had the
pleasure of working with Jeremy Likeness over the years in the XAML
ecosystem, and I can attest to his expertise in building real-world apps
using these technologies. In Programming the Windows Runtime by Example,
Jeremy and John provide these key tools for any software developer to
understand the fundamentals of the Windows Runtime and XAML, and be

xxi Foreword

successful quickly. This book doesn’t try to only focus on singular concepts
but also provides an end-to-end perspective on building an app in WinRT.
Jeremy and John know that your scenarios are connected ones and deal
with web services, data, security, and integration. The book will walk you
through understanding how the pieces fi t together in WinRT while still pro-
viding you the knowledge and tools to be productive at the core concepts
of working with C# and XAML in the Windows Runtime. John and Jeremy
describe philosophies and different approaches to using WinRT, empow-
ering you with knowledge to make the best decisions for your app. This
knowledge will enable you to write the best apps for Windows, Windows
Phone, Xbox, and whatever future Microsoft has in store for WinRT areas.

Like any artist, tools are essential. This book is one of those essential
tools for Windows developers and will help you complete your software
goals sooner than without it! To this day, my bookshelf is fi lled with books
just like this one that I refer to often. Even as your experience grows, you’ll
fi nd yourself referring back to this book for knowledge when developing,
just like I did.

—Tim Heuer, Principal Program Manager Lead, XAML Platform,
Microsoft Corporation

 Preface

 In 2011 I heard the fi rst rumors about Windows 8 and knew immediately
what my next book would be about. Unlike Designing Silverlight Business
Applications that captured years of experience writing Line of Business
(LOB) apps in Silverlight, this book would be an introduction to an entirely
new platform. My goal was to take what I knew and loved about Silverlight,
fi nd its similarities in the new platform, and then highlight what I felt were
some amazing developer experiences. It was important to get to market
fast, so through several iterations of the Windows 8 releases (including
changes to terminology) that required substantial rewrites of content and
a rapid release cycle, I managed to release Building Windows 8 Apps with C#
and XAML as Windows 8 was revealed to the world.

 By necessity, this book introduced developers to the new platform but
didn’t dig into best practices (there were none yet) or get very deep (there
simply wasn’t time). I vowed to release another book that would fi ll in
the missing pieces and provide a comprehensive overview of the entire
Windows Runtime. Because anyone can read the documentation and refer-
ence the API, my intent with this book was to make it example-driven and
provide thousands of lines of code for you to integrate and use to kick-start
your own Windows Store apps.

 I was relieved at the thought of not rewriting most of the book three
times, as I had to do with the fi rst one, but Microsoft once again proved too
fast for me. What sounded at fi rst like a relatively minor release (Windows

xxiii Preface

8.1) managed to integrate enough changes to warrant revisiting every one
of the ten chapters I had completed to date. With an eye on //BUILD in
2014, I reached out to Windows Store expert and Wintellect colleague John
Garland to help me fi nish the remaining chapters. John and I have worked
on several projects together (and incidentally two of them won awards for
their groundbreaking use of XAML for touch and mobile), and he helped
write pilot code for several of our customers who were early Windows 8
adopters, so I knew he was the right person to bring a fresh set of exam-
ple projects and content-rich chapters. As a bonus, he is also well-versed
in cloud technology and brought this fi rsthand knowledge to bear in the
chapters that deal with connecting to Azure.

 In Windows 8.1 and the Windows Runtime, Microsoft has successfully
demonstrated their commitment to the development ecosystem by provid-
ing us with a rich, vast array of APIs, SDKs, and tools for building incred-
ible apps that run on a variety of devices. I was absolutely amazed when
I discovered how easy it was to connect to a web cam, open a web socket,
download fi les in the background, or profi le my app to fi nd “hot spots”
that I could target to improve performance using WinRT. I was delighted
to fi nd that Portable Class Libraries (PCL), something I evangelized heavy
as a solution to target multiple platforms in the Silverlight and WPF days,
was evolving to embrace Windows Store apps. The fi rst-class support for
mature design patterns like MVVM makes it easier than ever to write sta-
ble, reusable code that runs on a variety of target devices.

 In Building Windows 8 Apps with C# and XAML, I shared my intent to
guide you through the process of learning the new territory quickly to
begin building amazing new applications using skills you already had
with C# and XAML. In this book, it is our goal to take you beyond that
initial exposure and help you dive deep into all the various APIs WinRT
makes available. Our goal was to hit virtually any scenario possible using
the Windows Runtime—not just provide code snippets, but full projects
you can use to experiment, learn, and use as a starting point for your own
apps. The most rewarding feedback I received from my fi rst book was
hearing from authors sharing with me their excitement having their fi rst
Windows 8 apps approved for the Store. I hope this book not only helps
take those apps to the next level, nor simply inspires your imagination, but

 xxiv Preface

empowers you to implement solutions you only dreamed possible using
this incredible new platform. I know I speak for both John and myself
when I say we look forward to hearing back from you about what you
were able to achieve with Visual Studio, Windows 8.1, and this reference
on your desk.

 What This Book Is About

 The purpose of this book is to explain how to write applications—mainly
Windows Store apps—that are based on the Windows Runtime. The intent
is to explore every available API, exposing you to possibilities across all
areas and diving deep into major areas that are likely common to most
apps that will be built. Instead of a traditional reference guide that shares
API details and code snippets, this book includes more than 80 sample
projects. These projects provide a “by example” approach to learning the
various APIs; and the text either walks through how they were built, or
breaks apart the code step-by-step to make it easy to understand and use
as a template for your own projects.

 This book is not an introduction to Windows 8.1. We assume you
have some experience working with C# and XAML and are familiar with
Windows Store apps. We also assume that you are at least familiar with the
concept of design patterns and the notion of decoupled code. Both of these
ideas have been core to the success of the applications we’ve helped build
and will be used as foundations for the concepts presented in this book.

 Whether you’re a Windows 8.1 developer looking to improve an exist-
ing app, or an experienced client technologies developer transitioning to
the Windows Runtime for the fi rst time, this book will give you the guid-
ance, proven patterns and practices, and example projects you’ll need to
build functional apps that run well across the myriad Windows 8.1 devices.

 This version of the book specifi cally addresses Windows 8.1 using Visual
Studio 2013. At this writing, the Windows 8.1 Update was announced at
//BUILD, but fortunately the changes did not impact development as
much as use of the OS and deployment options. During the course of this
book, several changes have occurred that may not be refl ected throughout:
Visual Studio 2013 Update 2 was released, the name SkyDrive was changed

xxv Preface

to OneDrive, Windows Azure became Microsoft Azure, and Azure Mobile
Services are constantly being revised.

 Where to Access the Source Code

 The source code for this book is open source and will be maintained and
updated as needed to match any future revisions that may come out. You
can download the code samples from the companion website:
 winrtexamples.codeplex.com .

 How to Use This Book

 The aim of this book is to enable you to discover the appropriate APIs to
build your Windows Store apps. Each chapter is designed to help you dis-
cover what features are available in that area of the framework and how
they are applied through example projects. Code examples are provided
that demonstrate the features for programming them using C# and XAML.
Although different chapters may relate to various parts of a comprehen-
sive project, the individual samples are designed to stand on their own.

 Each chapter is similarly structured. The chapters begin with an intro-
duction to a topic and an inventory of the capabilities that topic provides.
This is followed by explanations of areas of the framework and runtime
and a walkthrough of the target APIs. The code samples are explained in
detail, either as a walkthrough “lab” or by analyzing the existing sample,
and the topic is summarized to highlight the specifi c information that is
most important for you to consider.

 I suggest you start by reading the book from start to fi nish, regardless
of your existing situation. Inexperienced developers will fi nd their under-
standing grows as they read each chapter and concepts are introduced,
reinforced, and tied together. Experienced developers will gain insights
into areas they might not have considered or had to deal with in the past,
or simply didn’t factor into their software lifecycles. Once you’ve read the
book in its entirety, you will then be able to keep it as a reference guide
and refer to specifi c chapters any time you require clarifi cation about a
particular topic.

Acknowledgments

 Jeremy Likness: Although this is my third book through Pearson and
fourth full book I’ve authored, writing a good book still depends on a solid
team. I continue to be grateful for my superhuman Editor, Joan Murray,
who has been patient and understanding, encouraging, and continuously
provided her support and guidance throughout the process. Once again,
Eleanor Bru braved working with me on this very ambitious project and,
like Joan, was very patient and understanding while keeping me honest
and on target. I can’t thank Lori Lyons and the production team (including
Krista Hansing and Debbie Williams) enough for taking my rambling and
helping turn it into coherent prose.

 The content of this book was amazingly enriched by our thorough and
passionate technical editors. Thank you, Harry Pierson and Christophe
Nasarre, for your incredible attention to detail. If anything was missed, I’ll
take the blame because Harry and Christophe ran every example, pored
over every word, and provided me with volumes of suggestions and feed-
back that helped shape the book to its present form. It is always a pleasure
to work with technical editors who bring strong technical insights to the
table and help keep me honest when I want to take a shortcut and leave a
thread spinning where it shouldn’t.

 Many thanks to my boss and friend, Steve Porter, for letting me devote a
large chunk of my time to a project that made me disappear for a few hours
every day. Thanks to Barbara Keihm for her support and encouragement,

xxvii Acknowledgments

to Todd Fine for always recognizing our hard work and being one of the
fi rst to pre-order copies whenever they are available, and Bethany Vananda
and Sara Faatz for working tirelessly to help spread the word and share
what we’re doing.

 A special note goes to Dave Baskin, Dave Black, Josh Carroll, Aaron
Carta, Phil Denoncourt, Dave Frommer, James Katic, Edward Kim, Wes
McCammon, and Dan Sloan. This team worked with me on a major project
that has lasted longer than the writing of this book and always understood
when I had to turn down dinner or other outings so I could get back to my
hotel and write. OK, who am I kidding—sometimes I managed to break
away.

 My wife and daughter have waited patiently through several books
now, so they know the routine. Doreen is always quick to remind me when
I need to push away from the dinner table and get back to writing, but
Lizzie always noticed when I’d been writing too much and was always
ready to have a movie date so I could unwind.

 Finally, last but certainly not least, thank you! I appreciate my readers—
and of course it is for you this was written—so it is my sincere hope you
receive tremendous value from these pages.

 John Garland: Like Jeremy, I’d very much like to thank Joan Murray,
Eleanor Bru, and Lori Lyons, as well as everyone else at Pearson for their
unwavering help and guidance throughout this project. Many thanks go
to Harry Pierson and Christophe Nasarre for their invaluable help and
insight throughout the technical review process—especially for helping to
me fi nd the right mix of code and prose, which invariably was along the
lines of less prose and more code.

 I’d like to very much thank my friends and colleagues at Wintellect. It
is truly a privilege for me to count myself in your company and your pas-
sion for your craft is absolutely contagious. Many thanks to Steve Porter
and Todd Fine for the continued opportunity, and to Bethany Vananda for
all the help in putting my work in the best possible light. Much gratitude
is owed to Jeff Richter, Jeff Prosise, and John Robbins for their insights into
the writing process and for providing the Wintellect stage that I am fortu-
nate to be able to stand on.

 xxviii Acknowledgments

 Families often have to take a back seat when these projects are in high
gear, and mine was no exception. My wife Karen has been more than under-
standing and forgiving of many late nights, lost weekends, and grumpy
mornings. My daughter Callie continues to be a walking smile that forces
me to keep things in perspective, despite our having had to skip a few of
our priceless Daddy-Callie days. Now that the book is done and the snow
has melted, we can get back to bike rides, games of tag, and swing-pushes
in the backyard.

 I owe many thanks to the folks on and involved with the Zumo (Azure
Mobile Services) team, including Kirill Gavrylyuk, Yavor Georgiev,
Merwan Hade, and Heinrich Nielsen, among several others. Your insights
into the Mobile Services inner workings, and prompt and helpful replies
to my inquiries, have been invaluable both for the content included in this
book as well as in my professional endeavors.

 Finally, I’d like to thank Jeremy for asking me to come along not only on
this ride as his co-author, but also as a technical editor on two of his previ-
ous books. The experiences, insights, and most importantly, the friendship,
have been both personally and professionally invaluable.

xxix

About the Authors

 Jeremy Likness is a multi-year Microsoft MVP for XAML technologies. A
Principal Consultant for Wintellect with 20 years of experience developing
enterprise applications, he has worked with software in multiple verticals
ranging from insurance, health and wellness, supply chain management,
and mobility. His primary focus for the past decade has been building
highly scalable web-based solutions using the Microsoft technology stack
with client stacks ranging from WPF, Silverlight, and Windows 8.1 to
HTML5 and JavaScript. Jeremy has been building enterprise line of busi-
ness applications with Silverlight since version 2.0, and he started writing
Windows 8 apps when the Consumer Preview was released in 2011.

 Prior to Wintellect, Jeremy was Director of Information Technology
and served as development manager and architect for AirWatch, where
he helped the company grow and solidify its position as one of the lead-
ing wireless technology solution providers in the United States prior to
their acquisition by VMware. A fl uent Spanish speaker, Jeremy served as
Director of Information Technology for HolaDoctor (formerly Dr. Tango),
where he architected a multilingual content management system for the
company’s Hispanic-focused online diet program. Jeremy accepted his role
there after serving as Development Manager for Manhattan Associates, an
Atlanta-based software company that provides supply chain management
solutions.

 xxx About the Authors

 John Garland is a Principal Consultant for Wintellect with more than 15
years of experience developing software solutions. Prior to consulting, he
spent much of his career working on high-performance video and statisti-
cal analysis tools for premier sports teams, with an emphasis on the NFL,
the NBA, and Division 1 NCAA football and basketball. His consulting cli-
ents range from small businesses to Fortune-500 companies, and his work
has been featured at Microsoft conference keynotes and sessions.

 John is a Microsoft Client Development MVP, as well as a member
of the Windows Azure Insiders and Windows Azure Mobile Services
Advisory Board. He lives in New Hampshire with his wife and daugh-
ter, where he is an active speaker and participant in the New England
software development community. He is a graduate of the University
of Florida with a Bachelor’s degree in Computer Engineering and holds
Microsoft Certifi cations spanning Windows, Silverlight, Windows Phone,
and Windows Azure. John is the author of the ebook Windows Store Apps
Succinctly (Syncfusion, 2013).

This page intentionally left blank

379

 10
 Networking

 Network connectivity is a major feature of most Windows
Store apps, as you learned in previous chapters. Although you have

learned how to connect to services and keep your content fresh, Windows
8.1 devices are capable of connecting to the Internet and other devices
in myriad ways. In this chapter, you learn some of these more advanced
methods and how to integrate them into your own apps.

 In addition to supporting the HTTP protocols, WinRT provides APIs
that make it easy to enumerate resources on your HomeGroup network.
You can enumerate network information and obtain the current data plan
so that your app can modify its behavior to avoid downloading large
amounts of data over a metered connection. The sockets APIs enable low-
level communications using traditional UDP and TCP protocols, as well
as the newer HTML5 WebSockets protocol. The proximity APIs enable
communications between peer devices using Near Field Communications
(NFC) and Wi-Fi Direct. Finally, the background transfer API allows your
app to effectively manage long-running data transfers even when the app
itself is not running.

 Web and HTTP

 In Chapter 5 , “Web Services and Syndication,” you learned how to use
the HttpClient class to connect to an HTTP server and retrieve content

 380 CHAPTER 10: Networking

using the REST architecture. The Windows.Web.Http namespace contains
several classes that you can use to connect with HTTP-based services. The
 HttpClient class represents a simple and easy-to-use interface for sending
HTTP-related requests and retrieving responses. Other classes provide
more advanced features and fi ne-grained control over interactions.

 To provide more control over HTTP requests, use the HttpRequestMessage
class. For example, the following requests content from my blog:

 var client = new HttpClient();
 var httpResponse = await client.GetAsync(new Uri(
 "http://csharperimage.jeremylikness.com/", UriKind.Absolute));

 If you want more control over the type of request and process the
request immediately after the headers have been read (instead of having to
wait for the entire body), you can issue the request like this instead:

 var client = new HttpClient();
 var request = new HttpRequestMessage(
 HttpMethod.Get, new Uri("http://csharperimage.jeremylikness.
 com"));
 var response = await client.SendRequestAsync(request,
 HttpCompletionOption.ResponseHeadersRead);

 Using the latter method also gives you more control over the response.
You can create a cancellation token and convert the response to a Task that
uses the token:

 this.cancellation = new CancellationTokenSource();
 var response = await client.SendRequestAsync(
 request, HttpCompletionOption.ResponseHeadersRead)
 .AsTask(cancellation.Token);

 When the page takes a signifi cant time to load, from either a slow net-
work or a large amount of information, you can cancel the load automati-
cally or through user input by calling the cancel method on the cancellation
token. You see an example of this in the CancelUrl method of the ViewModel
class in the AdvancedHttpExample project:

 cts.Cancel();
 cts.Dispose();

381 Web and HTTP

 The project enables you to enter a URL and then downloads and dis-
plays the content. The initial request ends when the headers are received
so that you can stream the content with progress updates. You can cancel
longer-running downloads and watch the progress. The content is exposed
through the Content property of the HttpResponseMessage that is returned.
The LoadUrl method demonstrates creating a progress handler that takes a
type ulong and asynchronously downloads the content as a string.

 this.progress = new Progress<ulong>(ProgressHandler);
 var stringContent = await response.Content
 .ReadAsStringAsync().AsTask(cancellation.Token, this.progress);

 The progress handler is passed the number of bytes received and uses
the dispatcher to set them as a property on the viewmodel to show the
progress to the user.

 private void ProgressHandler(ulong progressArgs)

 If you use the default URL of my blog, the content loads immediately
and the progress method never gets called. Using a longer URL, such as the
URL to a large book such as Ulysses in HTML format from the Gutenberg
project, results in a longer download and progress updates. The URL,
listed in the source of the viewmodel, to make it easy for you to copy, is
 www.gutenberg.org/fi les/4300/4300-h/4300-h.htm .

 You can also use the request message to post content, including
streams, to the server. The Content property of the HttpRequestMessage can
be assigned any instance that implements IHttpContent . This includes the
following content:

 • HttpBufferContent — Content that uses an IBuffer instance

 • HttpFormUrlEncodedContent — Content that uses name/value pairs for a
form post

 • HttpJsonContent — Content that is represented using the JSON format

 • HttpMultipartContent — Content that uses the multipart MIME type
for uploading multiple attachments

http://www.gutenberg.org/files/4300/4300-h/4300-h.htm

 382 CHAPTER 10: Networking

 • HttpMultipartFormDataContent — A special format for forms encoded
using the multipart/form-data MIME type

 • HttpStreamContent — Content that uses a stream, such as when
uploading fi les to the server

 • HttpStringContent — Content that uses a string

 The HTTP API also provides the HttpProgress class for tracking and
handling the progress of long-running HTTP uploads. Simply create an
instance of the progress handler and pass it to the extension method that
converts the call to a Task :

 var progress = new Progress<HttpProgress>(ProgressHandler);
 HttpResponseMessage response = await httpClient.PostAsync(
 resourceAddress, streamContent).AsTask(cts.Token, progress);

 The signature of the handler is a simple method that takes an instance
of HttpProgress and can query items such as bytes sent versus total bytes
sent, number of retries, and the stage of the process (for example, sending
or receiving content).

 HomeGroup

 Microsoft provides a special service named HomeGroup that is designed
to make it easier to share folders, fi les, and devices on home networks. If
you are not familiar with HomeGroup, Microsoft provides an online tuto-
rial to help you set one up “from start to fi nish.” 1 The Windows shell han-
dles the special network behind the scenes and exposes it as a fi le system
in Explorer .

 Figure 10.1 shows an example folder in the HomeGroup. Notice that
the initial set of “folders” corresponds to users on the network, followed
by the machines they are logged into. These, in turn, expose libraries based
on the user’s preferences for sharing pictures, documents, music, or other
items. You can browse to the folders you have permissions for and access
the items as you normally would.

 1 HomeGroup from start to fi nish, http://bit.ly/1ak28nC

http://bit.ly/1ak28nC

383 HomeGroup

 FIGURE 10.1 The HomeGroup network

 The HomeGroupExample project for Chapter 10 demonstrates access
to the HomeGroup. The fi rst step is to declare your capabilities in the pack-
age manifest. You must have at least one of the available library capabilities
(music, pictures, or videos) checked, or you will receive an access denied
exception when you attempt to access the HomeGroup. Otherwise, you
will have access only to the folder types that you specifi ed capabilities for.

 Use the KnownFolders.HomeGroup enumeration to access the HomeGroup
network. The fi rst set of folders you receive is mapped to the usernames
of users currently participating in the HomeGroup. The following code in
the Initialize method of the ViewModel class fetches the user-level folders:

 var folders = await Windows.Storage.KnownFolders
 .HomeGroup.GetFoldersAsync();

 The example project defi nes the HomeGroupUser class for user information
and maps the DisplayName attribute of the folder to the username displayed.

 384 CHAPTER 10: Networking

 foreach (var user in folders.Select(
 folder => new HomeGroupUser
 {
 UserName = folder.DisplayName,
 IsHomeGroupUser = true
 })) { this.Users.Add(user); }

 When you have a StorageFolder instance for the user, you can use que-
ries to iterate items within the folder. This query sets up a search for pic-
tures with a known set of fi lename extensions and ultimately retrieves any
shared photos that user is sharing across all devices on the HomeGroup.

 var query = new QueryOptions(CommonFileQuery.OrderBySearchRank,
 new[] { ".jpg", ".png", ".bmp", ".gif" })
 { UserSearchFilter = "kind:picture" };
 var files = await targetFolder
 .CreateFileQueryWithOptions(query).GetFilesAsync();

 The app is designer-friendly and shows a sample image and title in the
designer. When you run the app, you see either an error message displayed
on a disabled button if the app cannot access a valid HomeGroup, or a
list of buttons for each user on the HomeGroup. Tap the button to see the
images that user is sharing. You can use similar functionality as covered in
 Chapter 4 , “Data and Content,” to access other folders and content types.

 Connectivity and Data Plans

 Windows Store apps can be connected in a number of ways. Although
traditional wired connections (Ethernet LAN) and Wireless Fidelity (Wi-
Fi) connections (also known as wireless local area connections, or WLAN)
are still popular, many devices offer wireless wide area network (WWAN)
connections over cellular technologies such as Global System for Mobile
Communications (GSM) and Long Term Evolution (LTE). Many of these
data plans have data limits and may charge for bandwidth usage. If users
roam outside their regular coverage area, they could incur additional
charges.

 Windows Store apps should be aware of the type of connection they are
using to access information over the Internet so they can implement spe-
cifi c behaviors that are suitable for the type of connection. An app might
consider implementing this typical set of behaviors:

385 Connectivity and Data Plans

 • Offl ine— The app cannot connect to the Internet and must rely on
local cached data to function.

 • High Cost— The app is connected to the Internet, but the data plan
is either roaming, approaching a fi xed data limit, or over the data
limit and, therefore, might incur additional charges. The app should
limit network activity to only extremely low bandwidth scenarios
(such as loading a set of headers but deferring the details).

 • Conservative— The app is connected to the Internet over a metered
connection. Downloading data is fi ne but should be done only as
needed and based on user-confi gurable preferences (the user must
have a way to disable large downloads when the connection is
metered). Lower-resolution images and lesser-bandwidth movies
should be used when available.

 • Standard— The app is connected to the Internet, and no charges
appear to be associated with data usage; therefore, the application
can download or upload data as needed.

 The Windows.Networking.Connectivity namespace contains the APIs nec-
essary to determine the types of connections that are available and exam-
ine data plans and usage. You interact with the NetworkInformation class to
determine the available connections, the connection your app will use to
access the Internet, and what type of connection is being used. The exam-
ple app that demonstrates this API is called NetworkInfoExample ; you
can fi nd it in the Chapter 10 solution folder.

 Each network that your device either is currently connected to or has
connected to in the past (as long as you did not ask Windows to forget
the connection) has a ConnectionProfile instance associated with it. The
 UpdateNetworkInformation method in the ViewModel class in the Data folder
demonstrates how to access this API. A simple call retrieves the full list of
available profi les:

 var profiles = NetworkInformation.GetConnectionProfiles();

 You can iterate the various profi les and acquire information from each
of them, but the most interesting profi le is the one used to gain access to

 386 CHAPTER 10: Networking

the Internet. You can use the GetInternetConnectionProfile call to get the
profi le associated with the active connection, if one exists. If the result is
null, the user is not currently connected. In the example app, this call is
used to get the identifi er for the network adapter that is being used to
connect and then select that connection from the list. If your connection
is bridged for any reason (for example, you might be running Hyper-V
virtual machines that use virtual adapters to connect to your wireless con-
nection), the bridged connection might show up as the active connection
instead of the connection you were expecting.

 The ConnectionProfile has a name that matches what you see in the
various network dialogs (either the list of available connections from the
 Control Panel or the list of networks in the Networks fl yout accessed from
the Charms bar). It indicates whether the network is a WLAN (wireless)
or a WWAN (wide area network or cellular) connection. If it is neither, it is
likely a wired Ethernet or Bluetooth connection.

 You can quickly access information about the connected network
adapter, as well as the security settings for the connection. For example,
the wireless access point I run in my house uses RSNA-PSK authentica-
tion with CCMP encryption. You might have security settings available for
both wired and wireless networks. The FromConnectionProfile method on
the ConnectionInfo class demonstrates how these values are obtained.

 if (profile.NetworkSecuritySettings != null)
 {
 connectionInfo.AuthenticationType = profile
 .NetworkSecuritySettings.NetworkAuthenticationType.
➥ToString();
 connectionInfo.EncryptionType = profile
 .NetworkSecuritySettings.NetworkEncryptionType.ToString();
 }

 Other information is available through method calls. To get the signal
strength from the connection (a value that ranges from 0 for no signal to
5 for maximum signal strength), you call the GetSignalBars method. The
example app shows only four of fi ve possible bars because it uses the built-
in symbol library, and that provides only four bars.

 connectionInfo.SignalBars = profile.GetSignalBars();

387 Connectivity and Data Plans

 The main reason for examining the connection is likely to understand
whether costs are associated with it. To fi nd out, call the GetConnectionCost
method. This returns a class that contains an enumeration and several
fl ags. The enumeration provides you with details about how the connec-
tion is metered.

 • Unrestricted— No costs are associated with data usage.

 • Fixed— A data limit exists; until that limit is reached, usage is
unrestricted.

 • Variable— Data usage is charged on a per-byte basis.

 • Unknown— No cost information is available for the connection.

 Additional fl ags provide further insights into the current plan:

 • Roaming— This fl ag is set when the user is outside the normal usage
area. You can assume that additional charges will apply.

 • ApproachingDataLimit— The plan has almost reached its limit;
additional costs might be incurred.

 • OverDataLimit— The plan has exceeded the data limit, and the user
is likely being charged for any additional usage.

 Use this information to strategize how you will access the Internet from
your Windows Store app. When the type is fi xed or variable, you should
follow a conservative behavior. When the fl ags indicate that the connec-
tion is roaming or over the data limit, you should implement the high-cost
behavior and allow the user to opt in to any data usage. Other scenarios
can follow the standard or offl ine behavior, depending on the status of the
connection.

 If you need to fi nd out more details about the plan, you can call the
 GetDataPlanStatus method, as shown in the FromProfile method on the
 DataPlanInfo class in the example app. The result gives you more details
when available, including the data limit and how much has been used
against the limit, the available speeds of the connection, and even when
the next billing cycle begins so you know when the usage is reset.

 388 CHAPTER 10: Networking

 You can also query for historical usage of any connection. The
 GetNetworkUsageAsync method enables you to specify a time range and a
sample frequency (increments in minutes, hours, or days, or a total for the
time period). Depending on how you call the method, you can get a list of
 NetworkUsage instances for each data sample. If you requested hourly sam-
ples, each instance represents a sample taken for a given hour. The instance
contains the duration it represents, along with the bytes received and sent
during that period. The ConnectionInfo class in the example app retrieves a
total for the previous day:

 var usage =
 await profile.GetNetworkUsageAsync(
 DateTimeOffset.Now.AddDays(-1),
 DateTimeOffset.Now,
 DataUsageGranularity.Total,
 new NetworkUsageStates { Roaming = TriStates.DoNotCare,
 Shared = TriStates.DoNotCare });

 You might not sample data earlier than 60 days before the current date
(about 2 months), and minute granularity is available for only the previous
2 hours. You can also specify what network states you want to sample. You
can restrict the data to times when the connection was roaming or part of
a shared connection, or indicate that you “do not care,” as in the example
code.

 The advantage of many Windows 8.1 devices is that they are highly
mobile. For this reason, it’s common for the current active connection to
change frequently. The user might be using a cellular connection and might
come into range of a wireless connection that is lower cost, or the user
might travel and switch to different connections. The NetworkInformation
class raises an event when the current connection status changes. The
 ViewModel class in the example app registers for this event:

 NetworkInformation.NetworkStatusChanged +=
 this.NetworkInformationNetworkStatusChanged;

 The event itself does not provide other information. The typical practice
is to query for the current Internet connection again to determine whether
the app behavior should change. You can prompt the user or restrict
data usage when you fi nd that the user has roamed or moved from an

389 Sockets

unrestricted connection to a metered one. By default, Windows 8.1 prefers
unrestricted networks over metered networks and automatically connects
to the fastest available network in its category when multiple choices are
available.

 Sockets

 Windows Store apps have the capability to communicate over lower-level
networking protocols. The Windows Runtime provides built-in support
for User Datagram Protocol (UDP), 2 Transmission Control Protocol (TCP), 3
Bluetooth RFCOMM, 4 and the recent HTML5 WebSocket Protocol. 5
Support for socket-based operations is provided through the types of the
 Windows.Networking.Sockets namespace. Sockets in general provide low-
level network communications and enable real-time network notifi cations.

 WebSockets
 The WebSocket protocol was designed to be implemented in web brows-
ers and web servers, and it is fully supported from Windows Store apps.
Although it is part of the HTML5 group of specifi cations, it is an inde-
pendent TCP protocol. Its main advantage is that it provides a way for
the browser or Windows Store app to maintain a single connection with a
server and send data both ways while keeping that connection open. The
standard port for WebSockets is 80, the same one HTTP uses, which means
it is less likely to be blocked by fi rewalls.

 The WebSocketsExamples project for Chapter 10 demonstrates two
APIs you can use from WinRT to take advantage of the WebSockets pro-
tocol. The example app leverages a server supplied by the WebSocket.org
website that provides an “echo service.” This service, when connected to,

 2 User Datagram Protocol, RFC 768, http://bit.ly/16TkVsS

 3 Transmission Control Protocol, RFC 793, http://bit.ly/HLcHtJ

 4 Bluetooth RFCOMM, http://bit.ly/1fu50ni

 5 WebSocket Protocol, RFC 6455

http://bit.ly/16TkVsS
http://bit.ly/HLcHtJ
http://bit.ly/1fu50ni

 390 CHAPTER 10: Networking

echoes back any data sent to it. WebSockets are accessed using a standard
URI, as declared in MainPage.xaml.cs :

 private readonly Uri echoService =
 new Uri("ws://echo.websocket.org", UriKind.Absolute);

 The MessageWebSocket class is an abstraction of the protocol that focuses
on sending simple messages. A message is either read or written in a single
operation, instead of being streamed continuously. It is also the class you
must use to support UTF8 messages; the stream-based API supports only
binary (although you can encode and decode the binary to and from UTF8,
the MessageWebSocket class provides native support for this). To use any
socket type within a Windows Store app, you must enable a networking
capability such as Internet (Client) .

 The ButtonBase_OnClick method in the MainPage.xaml.cs fi le demon-
strates how to use the MessageWebSocket class. After creating an instance of
the class, set the type of the message (either binary or UTF8):

 this.socket.Control.MessageType = SocketMessageType.Utf8;

 You can also register for events that fi re whenever a message is received
and when the socket is closed. The socket uses underlying unmanaged
resources, and you should dispose of it when you are done using it. The
easiest way to do this is to call Dispose in the Closed event handler.

 Initiate the connection by calling and waiting for ConnectAsync to
complete:

 await this.socket.ConnectAsync(echoService);

 The example app accepts any message you type and sends it to the
echo service. The message must be sent using the OutputStream property
exposed by the socket. The easiest way to do this is to create an instance
of a DataWriter to send the message. The DataWriter enables you to write
various data types that it buffers until you call StoreAsync . This fl ushes the
buffer to the underlying stream.

 var writer = new DataWriter(this.socket.OutputStream);
 writer.WriteString(this.Text.Text);
 await writer.StoreAsync();

391 Sockets

 Not all error messages for the socket are mapped to .NET Exception class
instances. Instead, you must inspect the HResult of the underlying excep-
tion to determine what went wrong. Fortunately, the WebSocketError class
provides a static method that translates the result to the corresponding
 WebErrorStatus enumeration. The ToErrorMessage method returns a string
with the original message and the enumeration value.

 private static string ToErrorMessage(Exception ex)
 {
 var status = WebSocketError.GetStatus(
 ex.GetBaseException().HResult);
 return string.Format("{0} ({1})", ex.Message, status);
 }

 The MessageReceived event is raised whenever a message is sent from
the server to the client through the socket. In the example app, this should
happen any time data is sent because the server echoes back the data. The
event provides the socket that the information was received from with
event arguments: You can inspect the message type (binary or UTF8) and
open a reader or stream to access the message. In this example, the reader
is set to use UFT8 encoding; then it obtains the message and displays it in
the SocketMessageReceived event handler.

 using (var reader = args.GetDataReader())
 {
 reader.UnicodeEncoding = UnicodeEncoding.Utf8;
 var text = reader.ReadString(reader.UnconsumedBufferLength);
 this.Response.Text = text;
 }

 This is the simplest method for dealing with sockets that are designed
to share messages. When you are using the socket to stream real-time infor-
mation and you don’t necessarily have simple messages, you might want
to use the StreamWebSocket implementation instead. It provides a continu-
ous two-way stream for sending and receiving information. The example
app uses the same echo service to stream prime numbers and echo them
back to the display when you click the Start button.

 You create and connect to a StreamWebSocket the same way as with a
 MessageWebSocket . You can also register for the Closed event. Instead of
sending and receiving messages, however, the stream version expects you

 392 CHAPTER 10: Networking

to interface directly with the input and output streams provided by the
socket. The app starts a long-running Task encapsulated in the ComputePrimes
method. It is passed the OutputStream of the socket. It iterates through posi-
tive integers and writes out any that are computed to be primes; then it
delays for 1 second:

 if (IsPrime(x))
 {
 var array = Encoding.UTF8.GetBytes(string.Format(" {0} ", x));
 await outputStream.WriteAsync(array.AsBuffer());
 await Task.Delay(TimeSpan.FromSeconds(1));
 }

 If the integer is not a prime, it delays for a millisecond just to prevent
hogging the CPU. Another long-running task receives the echo. It allocates
a buffer, waits for data to arrive in the stream, and then reads and decodes
the data.

 var bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length);
 if (bytesRead > 0)
 {
 var text = Encoding.UTF8.GetString(buffer, 0, bytesRead);
 this.DispatchTextToPrimes(text);
 }

 This example also demonstrates that you can have multiple sockets
open to the same server and port at once. You can run the example, click
the button to start generating primes, and then use the message-based
version to send and receive messages without interrupting the stream of
prime numbers. Both methods for communicating with the socket simplify
the amount of code you have to write by not worrying about the details
of the underlying transport (TCP). When you need to manage a raw TCP
connection, you can use the traditional sockets components.

 UDP and TCP Sockets
 UDP and TCP protocols have been around for decades. Many modern pro-
tocols, including HTTP, sit on top of these more low-level protocols (TCP is
the transport used by both HTTP and the WebSocket protocol you learned
to use in the previous section). Two main differences exist between UDP
and TCP: UDP does not require a connection, and UDP does not require

393 Sockets

any special ordering of packets or chunks of data. As a result, TCP tends
to be more reliable and useful for bidirectional communication, and UDP
is used when faster transmission rates are required and the application
understands how to deal with unordered data.

 Examples of protocols that sit on top of UDP include Domain Name
Service (DNS) and Simple Network Management Protocol (SNMP).
Protocols that sit on top of TCP include HTTP and Simple Mail Transfer
Protocol (SMTP). The UDP classes are all prefi xed with Datagram and oper-
ate similarly to the TCP classes prefi xed with StreamSocket . The API enables
you to “connect” to either protocol and send or receive messages. This pro-
vides a consistent interface and approach to using each protocol. The main
difference is that no specifi c “listener” service for the UDP implementation
exists because a persistent connection is not needed. Instead, you simply
create a socket, register for the event when a message is received, and then
send data packets or process incoming data as needed.

 The SocketsGame example provides a more comprehensive example
of using a persistent TCP connection. Although the game starts a server to
listen for incoming requests, it should be clear that you cannot use these
types of connections for communication between Windows Store apps on
the same machine. Network isolation prevents the loopback interface from
allowing connections across processes. The only reason this works in the
example project is that the client and server are hosted in the same process.
The example should show how to spin up a server to listen when neces-
sary (for example, the same type of connection can be used to host a service
for a Bluetooth service that allows Bluetooth devices to connect), as well as
act as a client for a server hosted on the Internet.

 The game itself is a text-based adventure game. It creates a 10x10
matrix of rooms for 100 rooms total and randomly connects rooms and
places trophies in the various rooms. The object of the game is to explore
the rooms and collect trophies until all have been found. A rudimentary
parser accepts commands such as “look,” “get,” “north,” and “inventory.”
Instead of playing as a local game, however, the game is hosted on a socket;
the app must connect as a client to issue commands and receive updates.

 Two sockets are defi ned in MainPage.xaml.cs : a StreamSocketListener ,
which is the server that listens for and establishes connections to clients,

 394 CHAPTER 10: Networking

and a StreamSocket , which emulates a client connecting to the server. The
server provides several options to bind to a generic service and listen to
all incoming connections, to bind to a specifi c address, or even to bind to
a specifi c network adapter. The service name can be a local service name
or a port, or it can remain empty to have a port assigned. If you are using
the socket for Bluetooth (RFCOMM), use the Bluetooth service ID. In this
example, the name is set to 21212 as a unique port for the game. Binding
enables your app to use that specifi c port to listen for incoming requests.
If another app has already bound to the specifi ed service, an exception is
thrown.

 this.serverSocket = new StreamSocketListener();
 this.serverSocket.ConnectionReceived +=
 this.ServerSocketConnectionReceived;
 await this.serverSocket.BindServiceNameAsync(ServiceName);

 As with Web Sockets, to understand errors thrown by the sockets API,
use the GetStatus static method of the SocketError class, as shown in the
 GetErrorText method.

 private static string GetErrorText(Exception ex)
 {
 return string.Format("{0} ({1})", ex.Message,
 SocketError.GetStatus(ex.GetBaseException().HResult));
 }

 When a connection is received, the server creates a persistent writer and
reader for the connection (note that this example uses exactly one client, so
only one writer and reader are used—if you are building a server to man-
age multiple connections, you need to spin up a new reader and writer for
each unique connection).

 if (serverWriter == null)
 {
 serverWriter = new DataWriter(args.Socket.OutputStream);
 serverReader = new DataReader(args.Socket.InputStream);
 }

 The listener for the socket goes into an infi nite loop waiting for mes-
sages. As messages are received, they are passed to the parser to inter-
act with the game world, and the result is written back to the client. To

395 Sockets

facilitate communication over the socket, the messages are written with
a special format. The size of the string in bytes is sent ahead of the string
itself so that the reader can allocate the appropriate buffer size to process
the incoming message. The SendString method encodes the text and sends
it over the socket.

 writer.WriteUInt32(writer.MeasureString(text));
 writer.WriteString(text);
 await writer.StoreAsync();

 Listing 10.1 shows the GetStringFromReader method that receives the
incoming data. It loads enough data to constitute an unsigned integer, pro-
cesses the integer, and fi nally loads enough data to create a string based on
the size that was passed in.

 LISTING 10.1 Reading a String from the TCP Socket

 private static async Task<string> GetStringFromReader(
 IDataReader reader)
 {

 var sizeFieldCount = await reader.LoadAsync(sizeof(uint));
 if (sizeFieldCount != sizeof(uint))
 {
 return string.Empty;
 }
 var stringLength = reader.ReadUInt32();
 var actualStringLength = await reader.LoadAsync(stringLength);
 if (stringLength != actualStringLength)
 {
 return string.Empty;
 }
 var data = reader.ReadString(actualStringLength);
 return data;
 }

 Just as the server goes into an infi nite loop after a connection is received,
waits for instructions, and then returns a response, the client also starts a
long-running task. On the UI thread, the Go_OnClick method is called when-
ever the user clicks the button to send the next command. The click han-
dler simply sends the command to the socket and then forgets about it. The
long-running ClientListener method waits to get the data from the server
and then writes it for the end user to see.

 396 CHAPTER 10: Networking

 Figure 10.2 shows a game in progress. At the top, you can see the server
messages that involve receiving the incoming connection, receiving com-
mands, and sending responses. The bottom is the client console for game
play; it shows all the responses from the server and provides an input box
for the user to type and send commands.

 FIGURE 10.2 The example game played over a TCP socket

 The provided example handles both client and server aspects for TCP
connections. The RFCOMM for Bluetooth uses the same classes. Although
UDP uses a different set of classes, the implementation is similar—the only
difference is that you don’t create a persistent listener for managing con-
nections because the protocol is stateless.

397 Proximity (Near Field Communications)

 Proximity (Near Field Communications)

 Near Field Communications (NFC 6) is a set of standards based on Radio-
Frequency Identifi cation (RFID) standards for smartphones, tablets, smart
tags, and other devices to establish communications in extremely close sit-
uations (less than a few inches difference). Two main NFC scenarios exist.
The fi rst is a tap gesture for a short transmission of information, such as
contact information, a URL, or a “smart poster.” The second is a similar
gesture used to create a handshake between two devices so they can estab-
lish a peer-to-peer connection over wireless to exchange large amounts of
information.

 NFC not only operates over extremely short distances, but it also has a
fairly slow transfer rate, with theoretical speeds between 50 and 100 bytes
per second. For this reason, it is useful for exchanging only a small amount
of information, unless you use the NFC tap to establish a more persistent
connection over a longer range and using faster technology, including
Bluetooth, Wi-Fi, and Wi-Fi Direct. The WinRT API fully supports both of
these scenarios.

 NFC-Only Scenarios
 When you exchange information via NFC, you must either send or receive
a message encoded in the NFC Data Exchange Format (NDEF). This is a
lightweight, platform-independent binary format for exchanging mes-
sages. The message allows one or more specifi c payloads (referred to as
NDEF records) to be sent in a single package. Windows provides built-
in support for a set of proprietary NDEF records that Windows 8.1 and
Windows Phone devices can exchange. You can also format and exchange
other types of records that target other platforms or are platform-indepen-
dent by either building your own payload or using an open source library
such as the NDEF Library for Proximity APIs that is available as a NuGet
package. 7

 6 Near Field Communication Technical Specifi cations, http://bit.ly/HQSnXA

 7 NuGet package for NDEF Library for Proximity APIs, http://bit.ly/1avcmFo

http://bit.ly/HQSnXA
http://bit.ly/1avcmFo

 398 CHAPTER 10: Networking

 The ProximityExample project provides some examples of using the
Proximity APIs defi ned in the Windows.Networking.Proximity namespace.
The ProximityDevice class provides the simplest API to use and focuses spe-
cifi cally on short-range, short-duration NFC scenarios. To see whether the
system has a proximity device available, simply call the GetDefault static
method, shown in the constructor of the ViewModel class. Be sure to declare
the Proximity capability in the application’s manifest.

 this.proximityDevice = ProximityDevice.GetDefault();

 The call returns null when a device is not present. If this is the case on
your machine, you will not be able to take advantage of NFC exchanges
and gestures, but you may still be able to create peer-to-peer connections
using Bluetooth, Wi-Fi, or Wi-Fi Direct. You learn more about that in a later
section. The proximity device exposes properties for its unique identifi er,
the maximum number of bytes it can send in a single message, and the bits
per second it is capable of transmitting or receiving. You can also register
for events that fi re when another proximity device comes within range:

 this.proximityDevice.DeviceArrived +=
 this.ProximityDeviceDeviceArrived;
 this.proximityDevice.DeviceDeparted +=
 this.ProximityDeviceDeviceDeparted;

 The events are purely informational and do not provide any specifi c
information. The ProximityDevice parameter of the handler is a reference
back to the device that detected the event, which, in most cases, is the
default device referenced in the constructor. Other classes exist for enu-
merating multiple proximity devices, in the rare case that the machine has
multiple ones installed. This is a rare scenario because one NFC device is
usually suffi cient.

 An easy way to share information with another NFC device is to use
the PublishMessage method on the ProximityDevice class. This method is use-
ful for sharing simple string data with other Windows or Windows Phone
devices. It takes two parameters: the message type and the message itself.
The message type is a unique identifi er that enables other devices to deter-
mine how to handle the message. The message type always starts with a

399 Proximity (Near Field Communications)

protocol, followed by a dot, followed by whatever custom identifi er you
prefer. In this case, the protocol must always be Windows. (The simple
code for publishing and subscribing in this section is shared here for refer-
ence purposes but is not part of a specifi c example project.)

 var publishedMessageId =
 proximityDevice.PublishMessage("Windows.WinRTByExampleMessage",
 "This is a simple message.");

 The publication is not a transient event. The message will be available
until you explicitly stop publishing, so multiple NFC devices over time can
connect and subscribe for that message to receive it. To stop publishing,
you call the StopPublishingMethod on the ProximityDevice .

 proximityDevice.StopPublishingMessage(publishedMessageId);

 If you want to know when the message has been transmitted, you can
pass a MessageTransmittedHandler as a third parameter when you publish.
The handler is called with the proximity device and the identifi er for the
message. You can use this to log that the message was transmitted, or even
unsubscribe in the callback to ensure that the message is sent only once.

 private void MessagePublished(ProximityDevice sender,
 long messageId)
 {
 proximityDevice.StopPublishingMessage(messageId);
 }

 To receive a message, you use the SubscribeForMessage method on the
 ProximityDevice class. You do not have to wait for a device to arrive or
depart before you subscribe, and the subscription is valid for any device
that publishes that particular message type. The subscription includes a
handler that is called whenever the message is received, and it is provided
a unique identifi er that you can use to unsubscribe when you want to stop
receiving the message.

 var subscribedMessageId =
 proximityDevice.SubscribeForMessage("Windows.
➥WinRTByExampleMessage",
 MessageReceived);

 400 CHAPTER 10: Networking

 The method to receive the message is passed the ProximityDevice and
a ProximityMessage . The message includes the data as a buffer, the data
as a string, and the subscription ID, in case you want to use that to stop
subscribing.

 private void MessageReceived(ProximityDevice device,
 ProximityMessage message)
 {
 var messageText = message.DataAsString;
 device.StopSubscribingForMessage(subscribedMessageId);
 }

 The subscription method enables you to subscribe to any type of mes-
sage. For messages that use non-Windows protocols, you need to decode
the message. For example, the message type WindowsUri provides a URI, but
you must fi rst decode it from UTF16LE:

 void messageReceivedHandler(ProximityDevice device,
 ProximityMessage message)
 {
 var buffer = message.Data.ToArray();
 var uri = Encoding.Unicode.GetString(buffer, 0, buffer.Length);
 }

 Note that some devices, such as the Windows Phone, handle URIs at
the operating system level. In other words, you cannot override the default
behavior. The OS itself intercepts the NFC tag and opens the correspond-
ing program. The program depends on the protocol. HTTP launches the
Internet Explorer browser and navigates to the encoded web page, and a
 mailto protocol results in the default mail program being launched.

 You can use the NFC API to write to smart tags, or special tags that
use induction to store and publish information. Smart tags have vary-
ing capacities, depending on the manufacturer. Publishing to a smart tag
always overwrites the data, and most smart tags have a lifetime of several
hundred thousand writes. To get the capacity of a smart tag, you can sub-
scribe to the WriteableTag message. This transmits an Int32 message that
contains the capacity of the tag.

401 Proximity (Near Field Communications)

 private void MessageReceived(ProximityDevice device,
 ProximityMessage message)
 {
 var capacity = System.BitConvert.ToInt32(
 message.Data.ToArray(), 0);
 }

 Table 10.1 lists the various message types you can subscribe to.

 TABLE 10.1 Common NFC Message Protocols

Protocol Description

 Windows Consists of raw binary data.

 Windows.* Provides a custom string type proprietary to Windows,
where * represents a custom type.

 WindowsUri Consists of a UTF-16LE encoded URI string. Note that the
operating system shell intercepts these messages and
marshals them to the appropriate protocol handler.

 WindowsMime Contains a specific MIME type–like image/jpeg for a bit-
map image.

 WriteableTag Published by smart tags when they come within range of
reading or writing. Contains the capacity of the smart tag
in bytes.

 NDEF[:*] Consists of formatted NDEF records. Third-party libraries
are available to easily encode and decode these record
formats.

 You also can publish messages for cross-platform compatibility or
for the purpose of writing to smart tags. Instead of using the proprietary
 PublishMessage method, use the PublishBinaryMessage method. You can use
this method to publish messages to other NFC devices, but it is also useful
for writing messages to smart tags. The following code snippet encodes the
URI to launch Skype and calls the echo service on a Windows or Windows
Phone device.

 var uri = new Uri("skype:echo123?call");
 var buffer = Encoding.Unicode.GetBytes(uri.ToString());
 var publishId = device.PublishBinaryMessage("WindowsUri:WriteTag",
 buffer.AsBuffer());

 402 CHAPTER 10: Networking

 Table 10.2 lists various protocols you can use when writing messages
to tags.

 TABLE 10.2 Message Protocols for Writing to Smart Tags

Protocol Description

 Windows:WriteTag Publish binary data to a static smart tag

 WindowsUri:WriteTag Write a URI to a static smart tag

 LaunchApp:WriteTag Write a tag that launches an app with specific
launch parameters

 NDEF:WriteTag Write a cross-platform message using the NDEF
format

 To write a tag that launches an app, use the LaunchApp:WriteTag for-
mat; then provide a tab-delimited list that starts with the text to pass in
as an argument and then includes pairs of platforms and application
names. You can fi nd the application name for a Windows 8.1 applica-
tion in the application manifest. It is in the format of the Package family
name (from the Packaging tab) and an exclamation mark. The following
tag passes an argument named id with a value of 1 to both the Windows
8.1 ProximityExample app and a fi ctional app on Windows Phone 8
(the application name on Windows Phone is simply the GUID for the
application ID).

 var launchTag =
 "id=1\tWindows\tWinRTByExampleProximityExample_req6rhny9ggkj! " +
 "ProximityExample.App\tWindowsPhone\t{063e933a-fc8e-4f0c" +
 "-8395-ab0e84725f0f}";

 If the app is present on the target device, it is launched with the argu-
ments passed (the user is always prompted to opt in for the launch when-
ever this type of tag is encountered). If the app is not present, the device
automatically takes the user to the app’s entry in the Windows Store. This
makes the tag extremely useful: If you pass out smart tags with the encod-
ing, users can easily discover and install your app, as well as subsequently
launch it.

403 Proximity (Near Field Communications)

 In this section, you learned ways to publish small messages that can
be sent to other devices or encoded in smart tags. You also learned how
to subscribe to and receive these messages. I mentioned earlier a way to
share much more information than permitted by the limited bandwidth
and speed of the NFC protocol. In this next section, you explore the tap-to-
connect scenario that uses NFC to establish a persistent peer-to-peer con-
nection for exchanging information.

 Tap-to-Connect Scenarios
 The PeerFinder class enables you to fi nd and interact with other devices
capable of peer-to-peer communications. Although a common use case is
through NFC, you can also use Bluetooth and Wi-Fi Direct to locate and
communicate with peers. The WinRT API abstracts these decisions from
you and enables you to focus on the actual process of locating a peer and
establishing a socket so that you can stream data back and forth.

 Even if you don’t have a proximity device, chances are good that you
can take advantage of the ProximityExample sample app to create a peer-
to-peer connection. That’s because the WinRT API supports a browse sce-
nario using Wi-Fi Direct, a technology that enables peer-to-peer wireless
connections between devices that exists in most modern radios. Using the
browsing scenario, you can install the app on two different devices and use
them to discover each other.

 The proximity APIs support fi nding peers running the same applica-
tion. The application is defi ned by the package family, a unique identi-
fi er for your app that is shared across target platforms. For this reason,
your app on a machine running Windows 8.1 can easily connect to the
same app on a machine running Windows RT. You can also extend the
peer to fi nd instances of your app on other platforms, such as Windows
Phone and Android. The PeerFinder class contains a dictionary named
 AlternateIdentities that hosts a list of platforms and application identi-
fi ers. In the previous section, you learned how to create a tag that launches
the application and can contain multiple platforms and identities. You can
add the same identifi er to recognize that app as a peer like this:

 PeerFinder.AlternateIdentities.Add("WindowsPhone",
 "{063e933a-fc8e-4f0c-8395-ab0e84725f0f}");

 404 CHAPTER 10: Networking

 You can discover and negotiate the peer connection either through
an NFC tap gesture or by browsing Wi-Fi Direct. After the devices rec-
ognize each other and initiate the handshake, Windows tries to connect
simultaneously using infrastructure (wireless or wired), Wi-Fi Direct,
and Bluetooth. It uses whichever connection completes fi rst (most likely,
Bluetooth, when available) and passes the connection as an active socket
to your app. You can restrict which connection types to allow by setting
the static AllowBluetooth , AllowInfrastructure , and AllowWiFiDirect proper-
ties on the PeerFinder class.

 The PeerSocket class in the example app provides a convenient way to
manage a persistent socket connection. It takes a StreamSocket in the con-
structor and immediately creates a persistent reader and writer to interact
with it.

 public PeerSocket(StreamSocket socket)
 {
 this.socket = socket;
 reader = new DataReader(socket.InputStream);
 writer = new DataWriter(socket.OutputStream);
 }

 It exposes a write method that uses the DataWriter to send a message
to the socket and starts an infi nite loop that runs on a background thread
to listen for incoming messages. When it receives an incoming message, it
raises an event so the app can register for the event, receive the message,
and process it (in the case of the sample app, by marshalling it to the UI
thread and showing it on the display). It also raises an error event when-
ever it encounters an error and disposes of both the reader and the writer
when its own Dispose method is called.

 To begin the process of connecting with a peer, you must fi rst set your
app to advertise. This broadcasts its identity over Wi-Fi Direct and makes it
available for tap gestures if a proximity device is present. The Wi-Fi Direct
mode is referred to as a browsed connect, and the NFC mode is referred to
as a triggered connect. The PeerFinder class is instructed to begin advertis-
ing in the StartPeerFinder method on the ViewModel class.

 First, the app registers to two events: the TriggeredConnectionStateChanged
that is raised when an NFC tap gesture is received, and the ConnectionRequested

405 Proximity (Near Field Communications)

event that is raised when another device browses your device and requests
a connection.

 PeerFinder.TriggeredConnectionStateChanged +=
 this.PeerFinderTriggeredConnectionStateChanged;
 PeerFinder.ConnectionRequested +=
 this.PeerFinderConnectionRequested;

 Next, the role is set. Three possible roles exist. In the Peer role (included
in the example app), two apps can connect with each other and commu-
nicate as peers. In a client/server scenario, one app can serve as the host
and must set the Host role; then up to four other apps can connect using the
 Client role. Note that only Peer roles can browse to each other. The Host role
can browse only Client roles, and vice versa.

 PeerFinder.Role = PeerRole.Peer;

 Finally, some discovery text is set. This is additional text you can share,
such as an application name, an invitation to connect, information about
the host system, or any other data up to 240 bytes in length. This data is
broadcast and can be displayed when browsing. After the data is set, the
 PeerFinder starts advertising when you call the Start method.

 PeerFinder.Role = PeerRole.Peer;
 PeerFinder.DiscoveryData = Encoding.UTF8.GetBytes(
 DiscoveryText).AsBuffer();
 PeerFinder.Start();

 When both peers have started advertising, one of two scenarios can
take place. The fi rst is the NFC tap-to-connect scenario. When the proxim-
ity devices are tapped together, the TriggeredConnectionStateChanged event
is raised. This event fi res multiple times as the devices come within range
and negotiate a connection.

 The event handler for the triggered connection receives a State prop-
erty of the type TriggeredConnectState (an enumeration). The handler on
the viewmodel is called PeerFinderTriggeredConnectionStateChanged . The
 Listening state indicates that the proximity device is waiting for a tap. When
the state is PeerFound or Connecting , the connection is being established and
the handler simply updates the status for the user. If the connection fails, a

 406 CHAPTER 10: Networking

 Failed state is passed. The Completed state indicates success, and the argu-
ments contain a Socket property with the active socket between the two
devices:

 case TriggeredConnectState.Completed:
 this.RouteToUiThread(() =>{this.IsConnecting = false;});
 this.InitializeSocket(args.Socket);
 break;

 The InitializeSocket method sets up an instance of the PeerSocket to
handle further communications. A state of Canceled means the connection
was broken for some reason—for example, the devices moved out of range
or a user intervention occurred.

 The browse scenario starts when you request a list of available peers.
The BrowseCommand method on the viewmodel calls the FindAllPeersAsync
method and then loads the results to the list of available peers.

 var peers = await PeerFinder.FindAllPeersAsync();

 The user can then select a peer and request a connection. The connec-
tion is initiated in the ConnectCommand method.

 var socket = await PeerFinder.ConnectAsync(
 this.SelectedPeer.Information);
 this.InitializeSocket(socket);

 Note that the end result is the same as the triggered connection sce-
nario: A socket is obtained and initialized to establish communications.
The mode of the connection is transparent to your app, and there is no
way to determine whether the connection was made using Bluetooth,
infrastructure, or Wi-Fi Direct (unless you have restricted the allowable
connection types to a single mode).

 If your device is running a version of the app and the connection is
requested from another device, a ConnectionRequested event is raised. The
viewmodel handles this in the PeerFinderConnectionRequested method. In
this scenario, you typically prompt the user to confi rm that he or she wants
to accept the request, and then either ignore the request or connect. The
sample app automatically initiates the connection. The method to connect
is identical for the host, client, or peer; the only difference is that, instead of

407 Proximity (Near Field Communications)

passing a peer from a list of selections, the peer requesting the connection
is passed as arguments to the event.

 var socket = await PeerFinder.ConnectAsync(args.PeerInformation);
 this.InitializeSocket(socket);

 If the call succeeds for both peers, a connection is established and
duplex communication can be initiated. You can transmit anything over
the binary socket—from images, to streaming videos, to text or documents.
The sample app simplifi es the connection by transmitting only text. The
text you enter is sent to the peer via the output stream of the socket, and
any text received raises an event that is marshalled to the UI.

 To use the sample program, install it on two Windows 8.1 devices that
support Wi-Fi Direct or have proximity devices. The easiest way is to build
and deploy the source, but you can also use the Store option on the Project
Properties menu to create a side load package. Copy the package to a
thumb drive and execute the included PowerShell script to install it on the
other device.

 Run the app on both devices. You must start advertising on both devices
to establish a connection. After you’ve started advertising, either tap the
devices or tap Browse to use Wi-Fi Direct. If you browse, select another
machine and tap Connect . When the connection is established, via either
NFC tap or browsing, you can begin to send messages between the two
peers (see Figure 10.3).

 FIGURE 10.3 Example of communicating between peers using the
Proximity API

 408 CHAPTER 10: Networking

 Numerous possibilities exist for taking advantage of the peer connec-
tion. You can use it to share documents or pictures between devices, archive
data, create a chat session, or even share game state in a multiplayer game.
The API handles all the necessary low-level handshakes and connectivity
so that you can focus on the implementation of your application without
worrying about the underlying NFC protocol or even whether the devices
connect over Bluetooth or Wi-Fi Direct. The Proximity API is nearly iden-
tical on the Windows Phone, making it possible to build apps that span
devices and create a truly continuous user experience among Windows
PCs, tablets, and phones.

 Background Transfers

 Many apps must download large amounts of information to present to the
user. For example, an app focused on providing instructional videos might
need to download new videos from the Internet. These fi les could be hun-
dreds of megabytes or even gigabytes in size. Although the HttpClient class
is capable of retrieving fi les of this size, you must also take into account the
application lifecycle.

 As you learned in Chapter 2 , “Windows Store Apps and WinRT
Components,” whenever the user moves your app into the background,
your app can be suspended or frozen, essentially stopping any downloads
dead in their tracks. In some scenarios, the app might even be terminated,
forcing you to create a new instance of the class in an attempt to start the
download again. Fortunately, WinRT provides a way to handle this spe-
cifi c scenario using a background task.

 You learn more about background tasks in Chapter 15 . This chapter
introduces a specifi c API for downloading fi les that exists in the Windows.
Networking.BackgroundTransfer namespace. The API is defi ned for several
reasons. The most obvious is to enable your app to download fi les without
interruption. These download tasks should continue even if your app is
swapped to the background or terminated. You should also be able to dis-
cover any existing downloads when your app is launched again, to either
continue to download or cancel them as needed. The extra advantage this
API provides is a power-friendly and cost-aware means of transferring

409 Background Transfers

fi les. The API is architected to handle the download in a way that maxi-
mizes battery life and can pause the transfer when the user switches to a
metered network. These features combine to provide the best mobile expe-
rience possible for the device user.

 The reference project TapAndGoProximityNetworking serves two
purposes. As a follow-up to the previous section about the Proximity API,
it downloads an excellent video presentation by my colleague Jeff Prosise
from Microsoft’s Channel 9 website. His talk, given at TechEd Europe in
2013, covers the Proximity API and provides working examples of encod-
ing tags, reading tags, and tapping to share data between multiple devices.
It is a great way to reinforce the information you learned in the previous
section. The project downloads a high-fi delity version of the video that
is almost 600MB in size. The second purpose is to demonstrate the back-
ground transfer capabilities.

 To simplify the example, I placed all the code in the code-behind of
the main page to simply download a fi le and then play it using the fi le
launcher. The associated video player should pick up the fi le and begin
playing the presentation after it is downloaded. The app fi rst checks to see
whether the movie already exists, based on a specifi c name in your video
library. The Video Library capability must be enabled in the manifest for
this to work. If the video exists, you are given the option to delete it to start
over or launch it.

 To start a background transfer, you need only two pieces of informa-
tion: the URI of the resource to download and a fi le to download it to. The
example app encodes the URI to the video download and creates a fi le with
the name TapAndGo_Prosise.mp4 in your video library in the DownloadOnClick
method.

 var source = new Uri(DownloadUri, UriKind.Absolute);
 var destinationFile =
 await KnownFolders.VideosLibrary.CreateFileAsync(
 LocalName, CreationCollisionOption.ReplaceExisting);

 An instance of the BackgroundDownloader class is created, and the
 CreateDownload method is called with the source and destination.

 var downloader = new BackgroundDownloader();
 download = downloader.CreateDownload(source, destinationFile);

 410 CHAPTER 10: Networking

 You can provide a callback to receive updates as the download pro-
gresses. This is done by creating an instance of the Progress class of type
 DownloadOperation and passing the callback handler, as shown in the
 DownloadProgressAsync method.

 var progress = new Progress<DownloadOperation>(UpdateProgress);

 The download is then kicked off and cast to a Task with a cancellation
token and the callback for progress.

 await this.download.StartAsync().AsTask(cts.Token, progress);

 The download is now kicked off and continues to execute even after
your app terminates. If it encounters an error, it updates the error state
for your app to query when the app is launched again. While the app is
running, it provides progress updates, as shown in the UpdateFromProgress
method.

 BytesReceived.Text = download.Progress.BytesReceived.ToString();
 TotalBytes.Text = download.Progress.TotalBytesToReceive.ToString();

 Table 10.3 lists the possible statuses available via the Progress.Status
enumeration. Use this to determine the state of the download and take
appropriate action (in the example app, it is used to enable or disable the
Pause and Resume buttons).

 TABLE 10.3 BackgroundTransferStatus Enumeration

Status Description

 Idle The application is idle (the download is still
active).

 Running The transfer is in progress.

 PausedByApplication The app has paused the download by calling the
Pause method on the DownloadOperation.

 PausedCostedNetwork The user transitioned to a metered network, and
the download has been paused to avoid additional
cost. It will resume when the user returns to a
nonmetered network.

411 Background Transfers

Status Description

 PausedNoNetwork The user has lost network connectivity. The
download will resume when Internet connectivity
is restored.

 Completed The operation successfully completed.

 Canceled The operation was canceled.

 Error An error was encountered.

 While the download is running, you can perform a number of actions.
For example, you can call the Pause method on the DownloadOperation to
temporarily pause the download. After it is paused, you can call Resume
to continue the download. Calling Pause twice in a row or calling Resume
before Pause results in an exception, so always keep track of or check the
current status. If you passed a cancellation token to the task, you can also
call Cancel on the token source to abort the download.

 If the download completes while your app is still running, it returns
control after await of the StartAsync call. The example app disposes of the
cancellation token and then launches the video. If your app is terminated
or exits before the download is fi nished, it will continue in the background.
When the app is launched again, you can check for existing transfers, as
the CheckState method shows.

 var downloads = await BackgroundDownloader
 .GetCurrentDownloadsAsync();

 An entry for the download exists whether it is still downloading or it
completed when your app was not running. Either way, you can obtain the
reference to the download, query the status, or attach to receive updates.
The sample app always reattaches to update the status. If the download
has completed, the call to AttachAsync returns immediately; otherwise, it
continues the same way the call to StartAsync worked.

 await this.download.AttachAsync().AsTask(cts.Token, progress);

 412 CHAPTER 10: Networking

 To test the app, compile, deploy, and run it. Tap the Download but-
ton. You then see a status similar to Figure 10.4 . You can pause, resume,
or cancel the download. After the download has begun, close the app by
stopping it if you are running through the debugger or by pressing Alt+F4 .
You can navigate to the video library and refresh the fi le list to verify that
the download is still running. Start the app again; it should return to the
progress display and begin showing you the current progress. If you let
the download fi nish, the app automatically launches the video and closes
itself.

 FIGURE 10.4 The download progress

 The transfer API enables you to launch multiple downloads and keep
track of each download individually. You can also group downloads and
perform various tasks on the group. In addition, you can set a priority for
the download and even request that the download run unconstrained so
that it happens more quickly. This prompts the user and also can affect
battery life and quality of the user experience. You learn more about the
various background APIs in Chapter 15 .

 Summary

 In this chapter, you learned how to use advanced features of the HttpClient .
You used the Windows 8.1 seamless integration of HomeGroup technol-
ogy to enumerate resources on your home network and then queried net-
work information to determine what type of connection was active and see
whether it was a metered plan. You leveraged the Sockets APIs to transfer
messages and packets of data between a client and a server. You learned

413 Summary

how to use NFC to transmit short, fast messages; subscribe to messages;
and write data to smart tags. The APIs also enable a scenario to tap and
create a persistent connection over your wired or wireless infrastructure,
Bluetooth, or Wi-Fi Direct. Finally, the background transfer API enabled
an app to download a large video resource even when it wasn’t running.

 In Chapter 11 , “Windows Charms Integration,” you learn more about
the special icons that appear on the right side of your monitor when you
swipe or hold down Windows+C . These icons, called charms, provide a
special way for your app to integrate with the OS and communicate with
other apps. Using charms enables scenarios such as streaming media to
a projector, using one app to take notes and then sending those notes to
another app to post them online, or accessing the specifi c settings of vari-
ous apps in a consistent way.

This page intentionally left blank

479

 13
 Devices

 In earlier chapters, you saw that although the built-in con-
trols you can use in your Windows 8.1 apps include extensive support

for touch-based interactions, input from mouse and keyboard input devices
continues to be fully supported. The Windows Runtime also features
extensive support for gathering information from other inputs, includ-
ing sensors. The information these sensors provide includes details about
a device’s location, as well as knowledge about its position and motion
within its immediate environment. Having the capability to incorporate
this information into your apps means you can consider giving your users
new kinds of interactivity and immersion.

 In this chapter, you see how the WinRT APIs provide a common model
for working with the various kinds of input pointer devices. This model
provides a range of access, allowing you not only to obtain information
about raw pointer events, but also to work with higher-level abstract
gestures, depending on the needs of your app. You also see how you can
access keyboard events from your code and obtain information about the
user’s key presses.

 In addition, you learn about the WinRT APIs for working with location
information, including the capability to set up geographic fences that can
result in automatic notifi cations to your app when your device crosses a
fence boundary. Furthermore, you learn how to work with the WinRT APIs
that provide access to sensors that can give you information about your

 480 CHAPTER 13: Devices

device’s interactions with the physical world around it, including details
about its orientation, its heading, the rate and direction of its motion, and
even the amount of light currently shining on it.

 Working with Input Devices

 In Chapter 2 , “Windows Store Apps and WinRT Components,” you saw
how the built-in controls that the Windows Runtime provides are designed
to support fi rst-class interactions through touch, as well as keyboard and
mouse combinations. Although access to touch input is becoming more
common in modern computers and devices, it is not yet available every-
where. Attached keyboards, mouse devices, and pens continue to be
important tools for application interaction, not only when touch input is
unavailable, but also in addition to touch input when certain interactions
are simply easier and more natural using these other input mechanisms.

 For touch, mouse, and pen inputs, the Windows Runtime API provides
several different kinds of methods and events for working with these
devices and responding to user interaction with them. In addition to the
APIs for working with these devices, a set of methods and events are avail-
able for responding to user interactions with their keyboards.

 The Example App
 The InputsExample project illustrates several kinds of input device API
integration that you can add to your apps. The app enables the user to add
shapes to the application canvas, which are then animated to move around
the canvas area. The app also detects what input devices are available and
shows information about these connected devices, and it provides options
for confi guring what device types the app will listen to for input and
which of the screen or keyboard events the app will respond to. Shapes
can be added through buttons provided on the user interface or by press-
ing predefi ned keyboard buttons. The shapes themselves are confi gured to
respond in several ways to interaction with pointer input devices. When a
pointer intersects the edge of a shape, the shape is highlighted and stops
moving. The shapes can also be manipulated to change position, degree of
rotation, and size, with or without inertia. Finally, the shapes respond to

481 Working with Input Devices

gestures by changing color when tapped, changing direction when dou-
ble-tapped, and resetting to their initial size, color, and rotation when they
are held or right-clicked.

 Identifying Connected Input Devices
 You can determine which touch input devices are connected and what
their capabilities are in a couple ways. One approach is to use the informa-
tion that the PointerDevice class provides to obtain detailed information
about available touch, mouse, or pen devices. Alternatively, higher-level
classes can garner more general information about the current mouse and
touch capabilities.

 The PointerDevice class can obtain detailed information about one or
more connected pointer devices. It provides a static GetPointerDevices
method that returns a list of available devices as PointerDevice object
instances, as well as a static GetPointerDevice method that can retrieve a spe-
cifi c device based on a pointer ID value (the “Pointer Events” section, later
in this chapter, explains how to obtain a pointer ID). Properties of particular
interest that the PointerDevice type exposes include the PointerDeviceType ,
which shows whether the device is a Mouse , Touch , or Pen device, and the
 IsIntegrated fl ag, to indicate whether the device is considered to be inte-
grated into the current machine or has been connected externally. It also
includes a SupportedUsages collection that lists Human Interface Device
(HID) “usages” as PointerDeviceUsage objects. These usages are defi ned by
Usage Page and Usage Id values that are part of the USB HID specifi cation 1
and expose value ranges that the pointer device supports.

 Listing 13.1 shows how the example application uses device informa-
tion to determine whether touch, mouse, or pen devices are available. A
list of available devices is obtained depending on whether the list should
include only integrated devices. The resulting values are then queried to
see if any of the desired device types are present.

 1 USB HID information, www.usb.org/developers/hidpage

http://www.usb.org/developers/hidpage

 482 CHAPTER 13: Devices

 LISTING 13.1 Determining Device Availability

 var devices = PointerDevice.GetPointerDevices();
 if (PointerIntegratedDevicesOnly)
 {
 devices = devices.Where(x => x.IsIntegrated).ToList();
 }
 IsTouchAvailable
 = devices.Any(x => x.PointerDeviceType == PointerDeviceType.Touch);
 IsMouseAvailable
 = devices.Any(x => x.PointerDeviceType == PointerDeviceType.Mouse);
 IsPenAvailable
 = devices.Any(x => x.PointerDeviceType == PointerDeviceType.Pen);

 The MouseCapabilities and TouchCapabilities classes obtain higher-level
system-wide information about the available mouse and touch device sup-
port. When an instance of one of these types is created, its properties pro-
vide access to information about the respective device availability.

 For MouseCapabilities:

 • The MousePresent property is set to a value of 1 if one or more mouse
devices are currently available.

 • The NumberOfButtons value indicates the highest value available for
any given device.

 • The VerticalWheelPresent or HorizontalWheelPresent properties is set
to a value of 1 to indicate whether a device is connected that has
each respective feature.

 • The SwapButtons property is set to 1 if the mouse buttons have been
swapped in the system settings.

 For TouchCapabilities :

 • The TouchPresent property returns a value of 1 if a touch digitizer is
present.

 • The Contacts property indicates the highest number of concurrent
contacts that are supported.

 The example application uses these values to populate the message
boxes that display when the user clicks the Details buttons next to the
check boxes that it provides to enable or disable mouse and touch input
(see Listings 13.2 and 13.3).

483 Working with Input Devices

 LISTING 13.2 Displaying Mouse Capabilities

 var capabilities = new MouseCapabilities();
 String message;
 if (capabilities.MousePresent == 1)
 {
 var rawMessage =
 "There is a mouse present. " +
 "The connected mice have a max of {0} buttons. " +
 "There {1} a vertical wheel present. " +
 "There {2} a horizontal wheel present. " +
 "Mouse buttons {3} been swapped.";

 message = String.Format(rawMessage
 , capabilities.NumberOfButtons
 , capabilities.VerticalWheelPresent == 1 ? "is" : "is not"
 , capabilities.HorizontalWheelPresent == 1 ? "is" : "is not"
 , capabilities.SwapButtons == 1 ? "have" : "have not"
);
 }
 else
 {
 message = "There are no mice present.";
 }
 ShowMessage(message, "Mouse Properties");

 LISTING 13.3 Displaying Touch Capabilities

 var capabilities = new TouchCapabilities();
 String message;
 if (capabilities.TouchPresent == 1)
 {
 var rawMessage =
 "Touch support is available. " +
 "Up to {0} touch points are supported.";

 message = String.Format(rawMessage, capabilities.Contacts);
 }
 else
 {
 message = "Touch support is not available.";
 }
 ShowMessage(message, "Touch Properties");

 484 CHAPTER 13: Devices

 Pointer, Manipulation, and Gesture Events
 Instead of having a separate set of input events for touch, mouse, and pen
inputs, the Windows Runtime API combines input from these devices and
provides several distinct tiers of events that can be raised in response to
input from any of these devices. At the lowest tier are the pointer events,
which are raised for each press, move, release, or other simple interaction.
Next are the manipulation events, which track and consolidate actions
from one or more pointers into higher-level events related to motion, scale,
rotation, and inertia. Finally, the gesture events consolidate pointer actions
into even higher-level gesture abstractions, such as tapping, double-
tapping, and holding.

 In the example application, all the support for working with input
device pointer, manipulation, and gesture events has been consolidated
into a single InputEventHandler class. This class handles the subscriptions
to the desired events and provides the event handler implementations for
these subscriptions.

 NOTE

 Chapter 2 introduced you to the Visual Studio simulator for Windows
Store Apps, which enables you to run and test your Windows 8.1 app
within a simulated environment on your development system. Ulti-
mately, testing touch support in an application is best done with a
device that actually has touch support. However, if you happen to be
using a development environment that does not provide this support,
using the simulator’s touch-emulation features is a good start toward
exercising this kind of functionality in your app. Ultimately, however,
it is a good idea to make sure your app is exercised for some amount
of time in an actual touch environment.

 Pointer Events

 The Windows Runtime combines input from touch, mouse, or stylus devices
into the abstract concept of a pointer. Each contact point from each device
is represented by a unique pointer instance. For example, imagine an app
running on a touch-enabled tablet that supports multiple touch points, and
imagine that multiple fi ngers are pressing the screen simultaneously. In

485 Working with Input Devices

this case, each fi nger touching the screen is treated as a unique pointer.
The same holds true if the touch actions include a combination of several
fi ngers, as well as a click by a mouse or screen contact with a stylus. The
mouse and/or stylus inputs are treated as additional unique pointers.

 In Windows 8 XAML apps, the most common way to subscribe to
pointer events is through events that individual UIElement objects expose.
An alternative approach involves subscribing to similar events exposed by
an ICoreWindow instance, which can be obtained through the Window.Current.
CoreWindow property. This latter approach is primarily used by DirectX
WinRT games when UIElement objects aren’t readily available. Table 13.1
summarizes the pointer events that are available when a UIElement is used.

 TABLE 13.1 Pointer Events

Event Description

 PointerEntered A pointer has moved into the item’s bounding area. For
mouse and stylus input, this does not require a press.
For touch input, because there is no “hover” support,
an actual touch is required; it results in an immediate
subsequent PointerPressed event, unless cancelled in
this event’s handler.

 PointerExited A pointer that was in an element’s bounding area has
left that area. For touch input, this event immediately
follows a PointerReleased event.

 PointerPressed A pointer has been pressed while within the bound-
ing area for an item. Note that a PointerPressed is not
always terminated by a PointerRelased event, but
it can instead be ended by PointerCanceled or
PointerCaptureLost events.

 PointerMoved A pointer that has entered an item’s bounding area is
being moved within that area, or a pointer that has
been captured by an item is moving, even if its position
is beyond the item’s bounding area.

 PointerReleased A pointer that was pressed has been released, usu-
ally within an item’s bounding area. This occurs if the
pointer was pressed while inside the item’s bounding
area; a corresponding PointerPressed event then has
been raised, or if the pointer was already pressed
when it moved into the item’s bounding area, the
PointerPressed event might have occurred elsewhere.
If the pointer is currently captured by an item, this
event can also be raised when the pointer is released
outside the item’s boundary.

 486 CHAPTER 13: Devices

Event Description

 PointerCanceled A pointer has lost contact with an item in an
unexpected way. This event can fire instead of the
PointerReleased event. Potential reasons for unex-
pected contact loss include changes in an app’s display
size, the user logging off, or the depletion of available
contact points. Note that this event is only part of the
UIElement events, and the ICoreWindow interface does
not provide or raise it.

 PointerCapture-
Lost

 A pointer capture that the event source item obtained
has been released either programmatically or because a
corresponding PointerPressed has been released.

 Several of the pointer events in Table 13.1 either are directly related
to or have side effects that are related to the idea of a pointer being cap-
tured. When a pointer is captured, only the element that captured it
receives any of the input events related to that pointer until the capture
has been released. Typically, a pointer is captured within the handler for a
 PointerPressed event because a pointer must be pressed to be captured. To
capture a pointer, the UIElement class includes a CapturePointer method that
takes a Pointer class instance that identifi es the pointer to capture. It just
so happens that the PointerRoutedEventArgs that are passed to the UIElement
pointer event handlers include this pointer object, as the following code
illustrates:

 private void HandlePointerPressed(Object sender,
 PointerRoutedEventArgs args)
 {
 _eventSourceElement.CapturePointer(args.Pointer);
 }

 The Pointer object includes a PointerId , which is simply a unique inte-
ger that is assigned to the current pointer and identifi es it throughout the
various subsequent pointer events. It also includes a PointerDeviceType
property that returns a value of the PointerDeviceType enumeration and
indicates whether the current pointer is related to input from a touch
device, a mouse device, or a pen device. In the example project, this value

487 Working with Input Devices

is used to ignore processing in the pointer events when a particular device
type is deselected in the user interface.

 if (!IsValidDevice(args.Pointer.PointerDeviceType)) return;

 The Pointer object also includes a pair of fl ags to indicate the position of
the pointer relative to the touch sensor. IsInContact indicates whether the
device is actually contacting the sensor, such as whether a stylus is in direct
contact with the screen when using a touchscreen tablet. In the case of a
mouse device, this is true when one of its buttons is being pressed. IsInRange
indicates whether the device is within detection range but not touching; it
is primarily meant for pen devices because, unlike touch devices, they can
usually be detected before they make physical contact. Generally, mouse
devices always return True for this value, and touch devices return True
only when a touch is actually occurring.

 In addition to the Pointer object, the arguments passed to the pointer
events include a KeyModifiers property that indicates whether one or more
of the Control, Menu, Shift, or Windows special keyboard keys was pressed
at the time of the event.

 Finally, the event arguments include a pair of methods that obtain addi-
tional information about the input pointer associated with the current inter-
action. The GetCurrentPoint and GetIntermediatePoints methods both accept
a UIElement to provide a frame of reference for any of the coordinate proper-
ties included in the method results. If this value is null , the coordinate val-
ues that are returned are relative to the app itself. Whereas GetCurrentPoint
returns a single PointerPoint instance, the GetIntermediatePoints returns a
collection of PointerPoint instances from the last pointer event through the
current one. In addition to being able to obtain PointerPoint information
from the pointer event arguments, the PointerPoint class itself includes
static methods that accept a PointerId value and return the current or inter-
mediate PointerPoint values, with coordinates relative to the app.

 The PointerPoint class includes a lot of information about the current
interaction. At the root, it includes the PointerId value, a Position value
indicating the Point where the pointer event occurred, and a PointerDevice
property that provides the same PointerDevice value discussed in the
earlier section “Identifying Connected Input Devices.” It also includes a

 488 CHAPTER 13: Devices

 Properties value that provides access to signifi cantly more detailed infor-
mation. Among the properties provided, this value includes touch infor-
mation, such as the contact rectangle value; mouse information, such as
whether the left, middle, right, fi rst extended, or second extended buttons
are pressed; and pen information, including several values that describe
the physical position of the pen, whether it is inverted, and the amount of
pressure being applied to its tip. Furthermore, the HasUsage and GetUsage
methods are useful in obtaining HID value information from the device
for the current interaction. These are the same HID values that can be enu-
merated with the SupportedUsages method that PointerDevice class instances
mentioned earlier provide. The following code shows how to request the
amount of tip pressure (usageId value 0x30) applied to a digitizer stylus
device (usagePage value 0x0D).

 if (pointerDetails.Properties.HasUsage(0x0D, 0x30))
 {
 pressure = pointerDetails.Properties.GetUsageValue(0x0D, 0x30);
 }

 Although the amount of detail provided by the pointer events can har-
ness a lot of power, the information provided is at a very low level. For
most application needs, this information needs to be synthesized into
more abstract concepts. Examples might include recognizing a pair of
 PointerPressed and PointerReleased events potentially as either a single tap
or a hold action, depending on how much time elapses between the two
pointer actions, or perhaps tracking multiple pointer actions to determine
whether pinch or rotation actions are occurring. Fortunately, you will most
likely not need to write and maintain the state-tracking code required to
achieve this level of abstraction; these kinds of events are already calcu-
lated and provided for you in the form of the manipulation events and
gesture events.

 Manipulation Events

 Manipulation events are the result of grouping and translating several
pointer events associated to an item that originate from either one or sev-
eral pointers. During a manipulation, changes to translation (position),
scale (size), and rotation are computed, tracked, and made available via
the event argument parameters provided by these events. A manipulation

489 Working with Input Devices

also tracks the velocities with which these changes are occurring and
includes the capability to optionally calculate and apply inertia based on
these velocities when the pointer events complete.

 In Windows 8.1 XAML apps, the most common way you subscribe to
manipulation events is through the events that individual UIElement objects
expose. For a UIElement to generate manipulation events, the element needs
to have its ManipulationMode property set to a value of the ManipulationModes
enumeration other than None or System . The default value for most controls
is System , and it enables the UIElement to process manipulations internally,
whereas a value of None suppresses all manipulations. Other signifi cant
values include TranslateX and TranslateY to track movement on the x- and
y-axis, Rotate to track rotation, and Scale to track stretching or pinching.
Values for TranslateInertia , RotateInertia , and ScaleInertia are also avail-
able to indicate that these manipulations should trigger inertia calcu-
lations. Table 13.2 summarizes the manipulation events exposed by the
 UIElement class.

 TABLE 13.2 Manipulation Events

Event Description

 ManipulationStarting A PointerPressed event has occurred, and
manipulation processing starts looking for
the pointer to move, to actually start track-
ing a manipulation.

 ManipulationStarted A pressed pointer has moved. This marks
the beginning of the manipulation, which
contains some number of Manipulation-
Delta events and is concluded with a
 ManipulationCompleted event.

 ManipulationDelta One or more of the pressed pointers have
moved or inertia is being applied.

 ManipulationInertiaStarting The manipulation has been configured to
support inertia, and the last pointer was
released while the manipulation still had
a velocity. ManipulationDelta events are
raised until velocity falls below the inertia-
defined threshold.

 ManipulationCompleted The last pointer is no longer pressed, and
any inertia calculations have completed.

 490 CHAPTER 13: Devices

 The fi rst event received during a manipulation is the ManipulationStarting
event. This event includes a Mode property that initially matches the
 ManipulationMode value set on the UIElement object. It allows the types of
manipulations that will be tracked to be modifi ed one last time before the
manipulation tracking actually starts. If a pressed pointer is moved, the
 ManipulationStarted event is fi red, followed by one or more ManipulationDelta
events as the pointer continues to move.

 The arguments provided to the ManipulationDelta event handler provide
the information that can be used to react to the manipulation. The argu-
ments contain some general-purpose informational properties that include
the PointerDeviceType , which is the same as it was for the pointer events
(note that this implies that a manipulation cannot span device types, such
as a pinch occurring with both a fi nger and a mouse); a Container value
that indicates the UIElement on which the manipulation is occurring; and an
 IsInertial fl ag that specifi es whether the ManipulationDelta event is a result
of inertia that occurs after pointers have been released. Of particular inter-
est, however, are the Delta , Cumulative , and Velocity values.

 The Delta property provides the changes in the values for Translation ,
 Expansion , Scale , and Rotation that have occurred since the last
 ManipulationDelta event occurred. Translation indicates how much move-
ment occurred on the x- and y-axis. Expansion specifi es how far the distance
grew or shrank between touch contacts. Scale is similar to Expansion , but
it specifi es the change in distance as a percentage. Finally, Rotation speci-
fi es the change in the rotation degrees. The Cumulative property returns the
same items, except that the values returned are the overall changes that
have occurred since the manipulation started instead of since the previ-
ous ManipulationDelta event. Finally, the Velocity provides a Linear prop-
erty that contains the x and y velocities specifi ed in pixels/milliseconds, an
 Expansion property that specifi es the scaling change in pixels/ milliseconds,
and an Angular property that specifi es the rotational velocity in degrees/
milliseconds.

 In the example application, the delta values are applied to the shape
being manipulated to move it onscreen, resize it, or rotate it (rotation is
better seen with the square shape than the circular one). Listing 13.4 shows

491 Working with Input Devices

the event handler in the InputEventHandler class for the ManipulationDelta
event.

 LISTING 13.4 Handling Manipulation Changes

 private void HandleManipulationDelta
 (Object sender, ManipulationDeltaRoutedEventArgs args)
 {
 // Check to see if this kind of device is being ignored
 if (!IsValidDevice(args.PointerDeviceType)) return;

 // Update the shape display based on the delta values
 var delta = args.Delta;
 _shapeModel.MoveShape(delta.Translation.X, delta.Translation.Y);
 _shapeModel.ResizeShape(delta.Scale);
 _shapeModel.RotateShape(delta.Rotation);
 }

 The processing in the ShapeModel class is fairly straightforward. The
 MoveShape method simply makes sure that adding the offset values to the
current position doesn’t move the shape beyond the current borders and
adjusts the resulting position value accordingly. ResizeShape multiplies
the current shape scale by the provided percentage and then makes sure
the resulting shape size is within the minimum and maximum boundar-
ies established for a shape. RotateShape simply adds the degree value to
the current Rotation property. A TranslateTransform is bound to the shape
position values. A RotateTransform has its Angle value bound to the rotation
angle, as well as its CenterX and CenterY values bound to the position of the
shape. Finally, a ScaleTransform has its ScaleX and ScaleY values bound to
the scale of the shape, with the CenterX and CenterY values also bound to
the shape position.

 The fi nal manipulation concept to be discussed is inertia. If one or more
of the inertia ManipulationMode values is specifi ed, the manipulation pro-
cessing can include the application of inertia, depending on whether the
last pointer involved in the manipulation was removed following an action
that had a velocity. In the example app, this occurs when a shape is being
dragged from one side of the screen to another and, halfway through, the
fi nger/mouse/pen is suddenly released. In the physical world, the object

 492 CHAPTER 13: Devices

would tend to continue to slide along until slowed by friction. With manip-
ulation support for inertia, your app can include similar behavior without
any extra work on your part.

 When inertia starts, the ManipulationInertiaStarting event is raised. The
arguments for this event include the arguments that were discussed for the
 ManipulationDelta event, as well as TranslationBehavior , ExpansionBehavior ,
and RotationBehavior arguments to control the behavior of the inertia
effect. Each of these values includes a value called DesiredDeceleration
that defi nes the deceleration rate, as well as a value to indicate the fi nal
desired value for each property, respectively named DesiredDisplacement ,
 DesiredExpansion , and DesiredRotation . You can either leave the default val-
ues in place or replace them with your own value for more control over
the inertia behavior. After the handler for this event has completed, the
manipulation processor automatically raises ManipulationDelta events with
values based on the application of inertia to the current state until either
the desired value is reached (if specifi ed) or deceleration results in a veloc-
ity of zero.

 When the last pointer has been released, or when inertia has com-
pleted (when specifi ed through the ManipulationMode setting), the
 ManipulationCompleted event is raised, signaling that the manipula-
tion is now complete. The arguments to this event include the general-
purpose informational properties that were discussed previously, as well
as the Cumulative and Velocities information that was also provided to the
 ManipulationDelta event.

 NOTE

 Although the manipulation and gesture events the UIElement class pro-
vides will take care of most needs, more control or additional gesture
types are required in some cases. The Windows Runtime provides the
 Windows.UI.Input.GestureRecognizer class, which can directly process
pointer events to generate these high-level events.

493 Working with Input Devices

 Gesture Events

 Gesture events are similar to manipulation events, in that they are the
result of grouping and interpreting several pointer events. However, a few
key differences set them apart. First, gesture events communicate more
abstract and discrete concepts than manipulation events. Manipulation
events communicate information about the beginning, middle, and end
of a manipulation and include arguments that provide information about
the different kind of changes that have occurred. Gesture events each relay
information about the occurrence of a single, isolated event, such as a tap
or a double-tap. Second, manipulation events provide information that
synthesizes input from several pointers, whereas gesture events are con-
cerned with the action of only one pointer at a given time.

 As with manipulation events, the UIElement class provides the most
commonly used access to gesture events and related confi guration settings.
 Table 13.3 summarizes the gesture events made available by UIElement
instances.

 TABLE 13.3 Gesture Events Defined in UIElement

Event Description

 Tapped A tap has occurred, defined by a quick pointer press and
release (where a long press followed by a release results
in Holding and RightTapped events). This is equivalent to a
mouse Click event.

 DoubleTapped A second tap has occurred after a first tap event, within a
system-setting defined time. This is equivalent to a mouse
 DoubleClick event.

 Holding A long-duration press is occurring or has completed. The
event is raised when the long-press is initially detected,
and once again when the long-press is either completed
or cancelled. Mouse devices generally do not raise this
event.

 RightTapped A right-tap has occurred, defined by either the completion
of a holding gesture (for touch and pen devices) or a click
with the right button (for mouse devices). This is equiva-
lent to a mouse RightClick event.

 494 CHAPTER 13: Devices

 All the gesture events include a PointerDeviceType property that indi-
cates the type of device that generated the event, as well as a GetPosition
method that returns the coordinates of the action that led to the event,
relative to the UIElement argument in the method call. If a null value is pro-
vided to GetPosition , the coordinates returned are relative to the app itself.
The Holding event also includes a HoldingState property that is discussed
shortly. Note that the Tapped and Holding events are mutually exclusive.
Also, when a double-tap occurs, a Tapped event is raised for the fi rst interac-
tion, but the second one generates only the DoubleTapped event.

 The UIElement class also provides the IsTapEnabled , IsDoubleTapEnabled ,
 IsHoldingEnabled , and IsRightTapEnabled properties. By default, they are all
set to true ; setting them to false prevents the corresponding event from
being raised.

 The Tapped , DoubleTapped , and RightTapped events are similar, but the
 Holding event behaves a little differently. As Table 13.3 mentioned, the
 Tapped event is usually generated only by interaction with touch and stylus
devices, not by mouse devices. It is also the only event that is raised when
the pointer involved in the event is in a pressed state. When a pointer is
pressed and held steady, and after the initial hold time interval has passed,
the Holding event is raised with its HoldingState property set to a value of
 Started . After the hold has begun, if the pointer is moved or the same ele-
ment captures another pointer, the hold is considered to have been can-
celled and the Holding event is raised once again, with the HoldingState
property set to a value of Cancelled . Otherwise, when the pressed pointer is
lifted, the Holding event is raised again with a HoldingState property set to a
value of Completed . If the hold was successfully completed, the RightTapped
event follows.

 In the example application, the tap-related gesture events cause dif-
ferent actions to happen to the shapes they occur on. The Tapped event
changes the shape color to a random value, the DoubleTapped event causes
the shape to take a new randomly calculated direction, and the RightTapped
event causes the shape to be reset to its original color, size, and rotation.
The code in Listing 13.5 illustrates this interaction for a Tapped event.

495 Working with Input Devices

 LISTING 13.5 Processing a Gesture Event

 private void HandleTapped(Object sender, TappedRoutedEventArgs args)
 {
 // Check to see if this kind of device is being ignored
 if (!IsValidDevice(args.PointerDeviceType)) return;

 // Examine the current position
 var position = args.GetPosition(_eventSourceElement);
 Debug.WriteLine("Tapped at X={0}, Y={1}", position.X, position.Y);

 // Alter the shape based on the gesture performed
 _shapeModel.SetRandomColor();
 }

 Keyboard Input
 In addition to the pointer-based input devices, the Windows Runtime
includes support for working with input gathered from keyboards.
To obtain information about the available keyboard support, you can
use the KeyboardCapabilities class. Similar to the MouseCapabilities and
 TouchCapabilities counterparts, it includes a KeyboardPresent property that
is set to a value of 1 if one or more keyboards are currently available. The
example application uses this value to provide the text for a message box
that displays when the user clicks the Details button next to the Keyboard
header, as in Listing 13.6 .

 LISTING 13.6 Displaying Keyboard Capabilities

 var keyboardCapabilities = new KeyboardCapabilities();
 var message = keyboardCapabilities.KeyboardPresent == 1
 ? "There is a keyboard present."
 : "There is no keyboard present.";

 ShowMessage(message, "Keyboard Properties");

 The UIElement class provides two available keyboard events. The KeyDown
event is raised when a key is pressed, and the KeyUp event is raised when a
pressed key is released. These events are raised by a control only when the
control has the input focus, either when the user taps inside the control or
uses the Tab key to rotate focus to that control, or when the control’s Focus
method has been called programmatically.

 496 CHAPTER 13: Devices

 As an alternative, the CoreWindow class provides three events related to
keyboard interactions. Similar to the UIElement , it provides KeyDown and KeyUp
events. However, these events are raised regardless of which control cur-
rently has input focus. The CoreWindow class also includes a CharacterReceived
event, which is discussed in more detail shortly.

 In the case of the UIElement , both the KeyDown and KeyUp events provide
 KeyRoutedEventArgs arguments; for the CoreWindow class, the KeyDown and
 KeyUp events provide KeyEventArgs arguments. The most signifi cant differ-
ence between these argument types is the naming of the property used to
identify the key involved in the action that led to the event being raised.
 KeyRoutedEventArgs provides a property named Key that returns a value of
the VirtualKey enumeration indicating the specifi c key on the keyboard
that was pressed or released. In the KeyEventArgs class, the corresponding
property is named VirtualKey .

 In either case, the KeyStatus property contains additional information
about the key event. For KeyDown events, its WasKeyDown property is particu-
larly interesting because it indicates whether the event is being raised in
response to a key being held down. In this case, several KeyDown events usu-
ally are raised, followed by a single KeyUp event. The fi rst KeyDown event has
its WasKeyDown value set to false , with the subsequent KeyDown events setting
the value to true .

 The CharacterReceived event of the CoreWindow class was previously
mentioned. This event is fi red between the KeyDown and KeyUp events and
provides access to the actual interpreted character resulting from the cur-
rent key combination. This value is returned as an unsigned integer in the
 CharacterReceivedEventArgs KeyCode property. It can be converted to the cor-
responding Char character using the Convert.ToChar function:

 var interpretedChar = Convert.ToChar(args.KeyCode);

 To put this in perspective, with a standard U.S. keyboard, pressing the
equals (=) key while the Shift key is also pressed is interpreted to result in
the plus (+) character. The KeyDown and KeyUp events understand this key only
as VirtualKey 187, regardless of whether the Shift key is pressed. However,

497 Working with Input Devices

the KeyCode value provided in the arguments to the CharacterReceived
event provides either a value of 61 for the equals key or a value of 43 for
the plus key.

 To illustrate the use of the keyboard input events, the main page in the
example application listens for KeyUp events via the CoreWindow class to add
either a new ball or a square shape whenever the B or S keys are pressed,
respectively. The following code illustrates this:

 if (args.VirtualKey == VirtualKey.B)
 CreateShape(ShapeModel.ShapeType.Ball);

 Note that if you are interested in key combinations in which a “modi-
fi er key,” such as one or more of the Shift, Control, or Alt keys pressed
in concert with another key, you have two options. First, you can track
the individual key down and key up events to determine which keys are
up or down at any given instant. Second, you can actively interrogate the
state of a given key by using the GetKeyState method that the CoreWindow
class provides. Because the result of GetKeyState returns a fl ag value, it is a
best practice to mask the result value before comparing it with the desired
value. Also note that the Alt key corresponds to the Menu member of the
 VirtualKey enumeration. Listing 13.7 shows this approach.

 LISTING 13.7 Checking for Modifier Keys

 // Check for shift, control, alt (AKA VirtualKey.Menu)
 var currentWindow = CoreWindow.GetForCurrentThread();
 var ctrlState = currentWindow.GetKeyState(VirtualKey.Control);
 var shftState = currentWindow.GetKeyState(VirtualKey.Shift);
 var altState = currentWindow.GetKeyState(VirtualKey.Menu);
 var isControlKeyPressed =
 (ctrlState & CoreVirtualKeyStates.Down) == CoreVirtualKeyStates.Down;
 var isShiftKeyPressed =
 (shftState & CoreVirtualKeyStates.Down) == CoreVirtualKeyStates.Down;
 var isAltKeyPressed =
 (altState & CoreVirtualKeyStates.Down) == CoreVirtualKeyStates.Down;

 498 CHAPTER 13: Devices

 Sensor Input

 Devices such as touchscreens, mouse devices, styluses, and keyboards pro-
vide interactivity by allowing an app to respond to their interactions with
components shown on their device displays. Users tap elements drawn to
the screen or type characters that will appear inside onscreen text regions.
However, a class of input devices known as sensors can give a running app
information about the device’s relationship to its physical environment.
Examples of the information sensors gather include details about which
way the device is facing, its velocity in any particular direction, its posi-
tion on the globe, and how much light is shining on it at a given moment.
Devices might or might not include one or more of these kinds of sensors.

 The Windows Runtime API includes support for working with several
different kinds of sensors and relaying the information they gather. These
APIs not only enable an app to ask for sensor measurements, but they also
provide events that can be subscribed to and, in most cases, the capability
to throttle how often these events can be raised. Some of the environmental
information that can be obtained through these APIs includes information
about a device’s physical location, its movement and orientation, and how
bright of an environment it is in.

 The Example App
 The SensorsExample project highlights a few different ways sensors can be
used from within an application. The app features an instance of the inter-
active Bing Maps control surrounded by boxes that show information from
and allow interaction with each of the various sensors. The boxes along the
left side also allow the app to coordinate the information it receives from
the sensors with the display of the Bing Maps control. The Location sec-
tion allows the map to be centered at the current geolocation coordinates
and also offers support for working with geofencing (the upcoming sec-
tions explain geofencing). The Compass section enables the app to set the
map’s orientation to approximate the current compass heading (although
the support offered for setting a specifi ed heading in the Bing Maps control
is currently somewhat limited). The Inclinometer section allows the map to
be panned in concert with the direction in which the device itself is being
tilted.

499 Sensor Input

 Working with the Bing Maps Control

 The Bing Maps control in the example project is part of the Bing Maps plat-
form, which includes the Windows control, controls for other platforms,
and several related data services. You can access information about the
Bing Maps control and the related services and the tools and resources you
need to include in your project through the Bing Maps Platform Portal. 2
Although the control and the related services offer a tremendous amount
of functionality, you need to be aware of some important license-related
and technical considerations for this example application and in case you
are considering their use in your own app.

 From a licensing standpoint, some restrictions govern how this control
can be used. The Bing Maps Platform Portal includes a Licensing Options
page that explains how the restrictions apply to your app, under what cir-
cumstances the tools can be used for free, and when a fee needs to be paid
to license the use of the control. As of this writing, you can access this
page by clicking the Licensing link from the Bing Maps Platform Portal
page. If you will use the Bing Maps control in your Windows Store App,
be sure to look over the restrictions and conditions for use in the context of
your application needs and ensure that you are abiding by the appropriate
terms of use.

 From a technical standpoint, before you can build the SensorsExample
project, you need to download and install the Bing Maps SDK. You can get
to the latest SDK installer by following links on the Bing Maps Platform
Portal. Alternatively, you can use the Visual Studio Extension Manager to
obtain the SDK.

 To use the Extension Manager, launch Visual Studio and select
 Extensions and Updates from the Tools menu. In the Extensions and
Updates dialog box, select the Online node and then select Visual Studio
Gallery . Then type Bing Maps SDK into the search box in the upper-right
corner (see Figure 13.1). In the search results, select the entry for Bing
Maps SDK for Windows 8.1 Store Apps and click the Download button;
then click the Install button in the ensuing dialog box after you have read
and reviewed the included license agreement. After the installation has

 2 Bing Maps Platform Portal, www.microsoft.com/maps/

http://www.microsoft.com/maps/

 500 CHAPTER 13: Devices

completed, you will most likely be instructed to restart Visual Studio so
that you can use the installed SDK components.

 FIGURE 13.1 Locating the Bing Maps SDK Visual Studio extension

 Because this additional download and installation is required to build
the example project, the build confi guration in the WinRTByExample solu-
tion has been confi gured to not include the SensorsExample project as part
of the solution build by default. To build the project, you need to either
select the project in the Solution Explorer and choose Build from the proj-
ect fi le’s context menu, or choose Build SensorsExample from the Build
menu. Another option is to open the Confi guration Manager entry from
the Build menu and check the Build entry next to the SensorsExample
project in the Confi guration Manager dialog box that appears; the
 SensorsExample project then is built along with the other projects in the
solution.

 Another consideration when building a project that includes the Bing
Maps control is the selection of a target platform. Most Windows Store apps
are built with the target set to Any CPU. However, the Bing Maps control

501 Sensor Input

relies on the Visual C++ Runtime, which requires selecting a specifi c pro-
cessor architecture to build a project that references it. You can set this value
in the Confi guration Manager dialog box. Select the appropriate Platform
for your build either for the entire solution or for the SensorsExample
project. For example, you need to select a value of ARM to create a version
of the resulting app that will run on Windows RT devices. Note that in
order to work with the XAML designer in Visual Studio, you need to select
the value x86 . If you prefer to have the interactive designer available, you
can always set the value temporarily to x86 and then set it to your desired
target platform when you have fi nished working in the XAML designer.

 To deploy an app that includes the Bing Maps control, you need to
specify a value for the map’s Credentials property. If you do not specify a
valid map key for the map Credentials property, the map control displays
with a banner indicating that invalid credentials are being used, as you can
see in the example app screen in Figure 13.2 .

 FIGURE 13.2 The Bing Maps control displayed without valid credentials

 The following markup shows the credentials being set in the example
project:

 <maps:Map Credentials="{StaticResource MapKey}"/>

 502 CHAPTER 13: Devices

 In this example, the credentials are located in the resource defi ned by
the value MapKey , which is defi ned in the project’s App.xaml fi le. The map key
is a value you obtain from the Bing Maps Account Center. 3 Sign into the
account center with your Microsoft Account credentials and select Create
or View Keys . At this point, you can defi ne a new key by specifying infor-
mation about your application or retrieve a previously defi ned key. Place
this key value into the MapKey resource in your project, and build and run
your project to make sure that the warning message from Figure 13.2 no
longer displays.

 3 Bing Maps Account Center, https://www.bingmapsportal.com/

 TIP

 After you deal with the logistics related to licensing for the Bing Maps
control and the mechanics related to installing the SDK, configuring
the project build, and obtaining and configuring the map key, you will
likely find that the Bing Maps control offers a tremendous amount of
functionality. The Bing Maps Platform Portal includes both develop-
ment guides and MSDN API documentation that covers the available
functionality. Another helpful resource in the interactive SDK is pro-
vided for the Bing Maps AJAX control at www.bingmapsportal.com/
isdk/ajaxv7 : It provides an interactive map and the JavaScript and
related HTML. Many of the concepts and much of the code illustrated
in this tool translate readily to the corresponding .NET API.

 Geolocation
 Geolocation refers to information about an item’s geographic location.
In the Windows Runtime, one of two data sources provides this location
information. The fi rst data source for location information is the Windows
Location Provider. The Windows Location Provider obtains its informa-
tion from a couple different data sources. The fi rst source it attempts to
use is Wi-Fi triangulation, in which the proximity to different known Wi-Fi
hotspots is used to determine a position. If Wi-Fi data is not available, IP

http://www.bingmapsportal.com/isdk/ajaxv7
http://www.bingmapsportal.com/isdk/ajaxv7
https://www.bingmapsportal.com/

503 Sensor Input

address resolution is then used. The second data source that the Windows
Runtime can use to obtain location information is available if the device
optionally includes one or more Global Positioning System (GPS) sensors.

 The network-based information that the Windows Location Provider
gathers is limited in both accuracy and amount of available detail because
only latitude, longitude, and accuracy information are made available.
An installed GPS sensor most likely provides more accurate information
(different sensors have different resolution capabilities) and also gives
more location information than the Windows Location Service, potentially
including details about direction, speed, and altitude. Note, however, that
the additional detail afforded by GPS sensors tends to come with addi-
tional power use and, therefore, reduced battery life.

 Getting Started

 To start working with location information in a Windows 8.1 application,
you fi rst need to declare that the app will be accessing this information.
Location information is considered to be personally identifi able informa-
tion (PII), so any app that will access this information needs to explicitly
declare its intent to do so. The App Store’s certifi cation process will refuse
an app that includes use of the geolocation APIs if it does not provide such
a declaration; if the app does provide the declaration, the app’s entry in
the store will indicate its intent to access this information. As an additional
measure meant to protect users, Windows notifi es users the fi rst time an
app accesses location information and prompts them to either allow or
block access. Windows also provides several places where the user can
choose to toggle this same permission on or off, as will be discussed shortly.
To declare that an app will attempt to access location information, open the
app manifest fi le, select the Capabilities panel, and check the Location
entry under the Capabilities list (see Figure 13.3) .

 504 CHAPTER 13: Devices

 FIGURE 13.3 Setting the location capability in the app manifest

 Using the Geolocator

 The Geolocator class provides location information in the Windows
Runtime. You can obtain the current position value from this class in two
ways. The fi rst option is to directly request the current position with the
 GetGeopositionAsync method. The second option is to provide a handler for
the PositionChanged event that is called when a position change is detected,
depending on the confi guration of the Geolocator instance.

 The fi rst time an app calls the GetGeopositionAsync method or registers
an event handler for the PositionChanged event, the user is prompted to
grant permission for the app to access location information, as Figure 13.4
illustrates. Because this step might display a user interface element, it is
important to make sure that this fi rst call takes place on the UI thread;
otherwise, an unexpected cross-thread exception might occur whose cause
can be diffi cult to diagnose.

505 Sensor Input

 FIGURE 13.4 Windows prompting the user for location information
permission

 The value selected in the prompt is refl ected in the Permissions panel
that you can access through the app’s Settings Charm , as well as within
the Location panel in the Privacy section located in PC Settings . This sys-
tem-wide location privacy screen lists all the applications that are regis-
tered to access position information and states whether access is currently
blocked or enabled. It also includes a system-wide switch to disable access
to location information for all apps that request it. However they access
it, when users choose to block the app’s access to location information,
the LocationStatus property on the Geolocator instance returns a value of
 PositionStatus.Disabled . The potential consequences of this LocationStatus
value and other values that can appear in this property are discussed
shortly.

 In the example app, interactions with the Geolocator are handled in the
 GeolocationHelper class. The code in Listing 13.8 shows the Geolocator ini-
tialization and subscription to the available events.

 506 CHAPTER 13: Devices

 LISTING 13.8 Geolocator Initialization and Event Subscription

 _geolocator = new Geolocator();

 // Listen for status change events, but also immediately get the status.
 // This is in case it is already at its end-state and therefore
 // won't generate a change event.
 _geolocator.StatusChanged +=
 (o, e) => SetGeoLocatorReady(e.Status == PositionStatus.Ready);
 SetGeoLocatorReady(_geolocator.LocationStatus == PositionStatus.Ready);

 // Set the desired accuracy. Alternatively, can use
 // DesiredAccuracyInMeters, where < 100 meters ==> high accuracy
 _geolocator.DesiredAccuracy = GetDesiredPositionAccuracy();

 // Listen for position changed events.
 // Set to not report more often than once every 10 seconds
 // and only when movement exceeds 50 meters
 _geolocator.ReportInterval = 10000; // Value in ms
 _geolocator.MovementThreshold = 50; // Value in meters
 _geolocator.PositionChanged += GeolocatorOnPositionChanged;

 The fi rst task in the code in Listing 13.8 is to work with the LocationStatus
value. The Disabled status was previously mentioned, but it is important
to note that an attempt to request the current position from a Disabled
instance results in an UnauthorizedAccessException . If location access has
not been blocked, the LocationStatus property has a value of NoData either
before the fi rst call to GetGeopositionAsync or before the fi rst time an event
handler is provided for PositionChanged . When either of these happens,
the Windows Runtime might trigger a startup sequence that takes a little
time to complete. During that time, the LocationStatus returns a value of
 NotInitialized . Additionally, if location data is coming from a GPS sensor,
the sensor tries to retrieve information from some required minimum num-
ber of satellites. Until the device reaches this number, the LocationStatus
has a value of Initializing . When the Geolocator instance is ready, the
 LocationStatus returns a value of Ready . With all that in mind, when includ-
ing the Geolocator in your project, be sure to account for the fact that, even
under ideal circumstances, a lag might occur before it is ready to be used;
you need to check to ensure that it has reached the Ready status.

 In the example code, the SetGeoLocatorReady function is called with a
value of true only when the sensor is in a Ready state. It is used to set the

507 Sensor Input

 SensorSettings IsLocationAvailable property, which the application user
interface uses to disable access to location retrieval functions. It also sets
a local fl ag that prevents direct calls to get the current position through
the GetCoordinate function from actually making the request through the
 Geolocator until it is in the Ready state.

 The next step after working with initialization and status information
involves establishing the desired accuracy for the Geolocator instance.
The DesiredAccuracy property can be set to either PositionAccuracy.High or
 PositionAccuracy.Default . A value of High instructs WinRT to always try to
use a GPS for its data if one is available, and to otherwise use the Windows
Location Provider. A value of Default instructs WinRT to make use of only
GPS sensors if it cannot obtain a value from the Windows Location Provider,
such as when no Wi-Fi signals exist for triangulation (or the device is either
not equipped or not confi gured to work with Wi-Fi) and when the device
does not have an IP address that can be looked up for location informa-
tion. Ultimately, setting either of these values does not guarantee how the
WinRT will make use of GPS devices; it just indicates a preference for how
it should behave.

 NOTE

 The Windows Runtime also includes a DesiredAccuracyInMeters
property. When this property is set to a non-null value, it resets the
 DesiredAccuracy property value. A DesiredAccuracyInMeters value of
less than 100 meters results in a DesiredAccuracy value of High ; a value
of 100 meters or higher sets DesiredAccuracy to Default .

 The fi nal task in Listing 13.8 is to confi gure how the Geolocator will
go about raising PositionChanged events, which is controlled with the
 ReportInterval and MovementThreshold properties. Each of these properties
limits how often the Geolocator instance can raise the PositionChanged events.
Whereas the ReportInterval property specifi es the minimum amount of
time that must elapse between instances of the Windows Runtime attempt-
ing to obtain location information values, the MovementThreshold property
indicates how much distance must pass before a subsequent event is

 508 CHAPTER 13: Devices

raised. In the example code, the ReportInterval property is set to ensure
that at least 10 seconds (10,000 milliseconds) pass between event updates.
The MovementThreshold value is set to ensure that the position has changed
by at least 50 meters. (The sensor is checked every 10 seconds, and the
class instance raises an event only if the distance between checks exceeds
50 meters.) A value of 0 for ReportInterval generates events at whatever the
maximum frequency is for the most accurate location source, and it should
be used only for apps that require near-real-time position updates. Because
it affects how often the location hardware is queried and, therefore, can
impact battery life, it is important to set the ReportInterval to the maxi-
mum value possible for the needs of your app. Also note that not every
scenario involving the Geolocator needs to subscribe to the PositionChanged
event; some cases are served just fi ne by requesting the position directly
only when it is needed. Each application has different needs in terms of
how frequently to update position information and whether to individu-
ally request it with the GetGeopositionAsync method or use change events.

 Working with Geocoordinate Values

 An instance of the Geoposition class is returned both from a call
to GetGeopostionAsync and within the Position member of the
 PositionChangedEventArgs event arguments that are provided to
 PositionChanged event handlers. Although the Geoposition class contains
both Coordinate and CivicAddress properties, the CivicAddress values are
not populated in Windows 8.1 (the only member that is set is the Country
property, which is obtained from the country value set in the Windows
region settings instead of the location information data sources that were
previously mentioned). The Coordinate property is an instance of the
 Geocoordinate class and contains several different kinds of position infor-
mation that are returned either from the Windows Location Provider or
from GPS sensors (as you have seen, this depends on how the Geolocator
is confi gured).

 At its root, the Geocoordinate object provides a PositionSource prop-
erty that either indicates how the location information was obtained or
includes a value of Unknown if information about the source is not available.
It also include an Accuracy property that indicates how accurate (in meters)

509 Sensor Input

the latitude and longitude position information are believed to be. If the
location information is being obtained from a GPS sensor, values for the
 Speed , Heading , AltitudeAccuracy , and SatelliteData properties might also be
included, depending on the sensor’s capabilities.

 The actual position information provided is a little buried in the object
hierarchy. It is actually returned in the Position property within the Point
property of the Geocoordinate instance. Regardless of whether the loca-
tion information is obtained from a GPS sensor or the Windows Location
Provider, values for Latitude and Longitude (measured in degrees) are pro-
vided in this Point property. If the information is obtained from a GPS sen-
sor, the Altitude value might be provided as well.

 To show how this information looks in practice, the example applica-
tion includes the capability to display all the fi elds of the Geocoordinate
object for the current location. Clicking the ShowCurrent button in the
app’s Location box displays a pop-up that contains these values, as pro-
vided by a call to the GetGeoPositionAsync method. The Center Map on
Current button also makes a call to the GetGeopositionAsync method and
sets a viewmodel property from the previously discussed Point property.
The property in the ViewModel is data bound to the Bing Maps control
so that when the value changes, the map centers itself at the Latitude and
 Longitude coordinates specifi ed in the position value.

 Using the Simulator Location Tools

 Chapter 2 introduced you to the Visual Studio simulator for Windows
Store Apps (the Simulator), which enables you to run and test your
Windows 8.1 app within a simulated environment on your development
system. In addition to being able to emulate various screen sizes and reso-
lutions (along with the other functionality it provides), the simulator can
be used to provide simulated geolocation values to a running app, which
can help you test your location-aware app. To use the simulator’s location
functions, several requirements must be met, primarily related to Location
Settings enabled on the local system. When you fi rst try to use the loca-
tion functions, you are prompted and instructed to take corrective action
if your system does not meet the necessary requirements for the location
simulator to run.

 510 CHAPTER 13: Devices

 To use the location functions of the simulator with your location-aware
app, start debugging in the simulator following the instructions in Chapter
 2 . When the app is running in the simulator, clicking the icon in the simu-
lator toolbar that resembles a globe displays the location simulation dia-
log box (see Figure 13.5). When the Use Simulated Location check box is
checked, it provides access to text boxes for setting location values such as
Latitude, Longitude, and Altitude.

 FIGURE 13.5 Using location tools in the Windows simulator

 When the Set Location button is clicked, the Geolocator API methods
and events that are used by the app running in the simulator use those
values for their position information. Removing the check from the Use
Simulated Location check box returns the simulator to using the host sys-
tem values for its current position values.

 Geofencing
 Geofencing enables your Windows 8.1 app to defi ne geographic boundar-
ies (known as geofences) and monitor a device’s position relative to those
boundaries. Your app then produces notifi cation events when the device
enters or exits those boundaries. For applications that need to be alerted

511 Sensor Input

when a device has moved into or beyond one of these boundaries, this
provides a much more effi cient solution than polling the geolocation APIs
and making the determinations programmatically. To support geofencing,
the Windows Runtime includes APIs that allow registering and managing
geofences, as well subscribing to and processing the related notifi cations.

 Getting Started

 The geofencing support the Windows Runtime provides is closely related
to the geolocation support and includes several of the same restrictions
and conditions related to working with personally identifi able informa-
tion. To use geofencing, you must set the Location capability in the app
manifest and set both the app-specifi c and system-wide permission set-
tings to allow the app to access location information.

 The GeofenceMonitor class provides geofencing support in the Windows
Runtime. Unlike using the Geolocator , where you create a new instance of
the class to access the functionality, a reference to the GeofenceMonitor is
accessed through its static Current property:

 var geofenceMonitor = GeofenceMonitor.Current;

 The following sections discuss the functionality that the GeofenceMonitor
exposes.

 NOTE

 Unlike with geolocation, accessing the geofencing properties and
events does not automatically prompt the user to grant permission to
location information. You might have to check to see if location func-
tionality is currently disabled by checking the GeofenceMonitor Status
property and instructing the user to access the permissions property
in the Settings Charm. If your app also uses the Geolocator to poten-
tially access the user’s current location (perhaps to obtain the center
point for a fence), that class access provides the necessary request for
permissions.

 512 CHAPTER 13: Devices

 Defining a Fence

 The GeofenceMonitor works with a collection of Geofence instances. Each
 Geofence object describes the region the fence covers, the types of events
to provide, and the conditions under which it indicates that an event has
occurred. Table 13.4 describes the settings provided by the Geofence class.
Be aware that these values must be set through one of the Geofence con-
structors and cannot be changed after the geofence has been defi ned.

 TABLE 13.4 Geofence Settings

Setting Description

 Id Specifies the ID for the fence. The ID is a String that
must be unique within the scope of the current app,
and it must be a maximum of 64 characters long. This
value is required.

 Geoshape Specifies the geofence boundary. Currently supports
being set to only a Geocircle instance, which defines
the boundary via a center point and a radius. This
value is required.

 MonitoredStates Specifies which events the GeofenceMonitor raises
for this fence. Can be set to a combination of the
 MonitoredGeofenceStates enumeration values, which
includes Entered , Exited , and Removed , but must mini-
mally include either Entered or Exited . This value is
optional and, by default, is set to the combination of
 Entered and Exited .

 SingleUse Specifies whether the fence is automatically removed.
If set, when each of the MonitoredStates (with the
exception of Removed) is reached at least once, the
fence is automatically removed from the GeofenceMoni-
tor collection. This value is optional and, by default, is
set to false.

 DwellTime Specifies the time that must elapse when a geofence
condition is met before an event is raised. This value is
optional and, by default, is set to 10 seconds.

 StartTime Specifies the time at which the geofence monitoring
begins. This value is optional and, by default, is set to
a minimal value of January 1, 1601 (which is the base
value for the Windows FILETIME structure).

513 Sensor Input

Setting Description

 Duration Specifies the amount of time following StartTime dur-
ing which the fence should be monitored. This value is
optional and, by default, is set to TimeSpan.Zero , which
indicates an indefinite duration.

 After a Geofence instance has been defi ned, the GeofenceMonitor begins
tracking it when it is added to its Geofences collection.

 In the example app, the code for working with the GeofenceMonitor has
been consolidated into the GeofenceHelper class. This class provides an
 AddGeofence method used to add new fences (see Listing 13.9). Clicking the
Add Fence at Map Center button in the example application produces a
fl yout that enables the user to defi ne a name for the geofence. The cen-
ter point is retrieved from the map’s current center point, and the radius
is hardcoded to 20KM. Pressing the fl yout’s Add Fence button calls this
method with the values in the fl yout. This method then creates a Geocircle
with the specifi ed center and radius, which is provided to the Geofence
constructor along with indications that the GeofenceMonitor should listen
to Entering , Exited , and Removed events (the next section covers the events)
and that the geofence is not confi gured to be single use. Default values are
accepted for the remaining parameters. The resulting Geofence instance is
then added to the GeofenceMonitor collection and returned so that it can be
used to include a UI entry on the Bing Maps control.

 LISTING 13.9 Adding a Geofence

 public Geofence AddGeofence(
 String fenceId,
 BasicGeoposition fenceCenter,
 Double radiusInMeters)
 {
 var fenceCircle = new Geocircle(fenceCenter, radiusInMeters);

 const MonitoredGeofenceStates states =
 MonitoredGeofenceStates.Entered |
 MonitoredGeofenceStates.Exited |
 MonitoredGeofenceStates.Removed;

 // Create the fence with the desired states and not single-use

 514 CHAPTER 13: Devices

 var fence = new Geofence(fenceId, fenceCircle, states, false);
 GeofenceMonitor.Current.Geofences.Add(fence);
 return fence;
 }

 When defi ning a geofence boundary, keep in mind the limitations of
the accuracy of the various location providers available to the Windows
Runtime. Depending on sensor capabilities and network connectivity,
extremely small fences might not be all that useful.

 Geofence Events

 You can receive notifi cations that geofencing events have occurred in
two ways. Foreground notifi cations are confi gured when an app regis-
ters an event handler for the GeofenceStateChanged event provided by the
 GeofenceMonitor class. Alternatively, you can set up a background task to
process geofence notifi cations even when the app is not running in the
foreground. To confi gure geofencing background task notifi cations, the
 LocationTrigger class needs to be provided to a BackgroundTaskBuilder , and
that builder instance needs to be confi gured and then registered. Chapter
 15 , “Background Tasks,” covers this in more detail.

 As previously discussed, the GeofenceMonitor events can be triggered
in response to the device entering or exiting a geofence, depending on the
combination of the Entered or Exited GeofenceState enumeration values pro-
vided in the MonitoredStates value when the Geofence instance was defi ned.
Additionally, the event can occur in response to the geofence being auto-
matically removed from the list of monitored fences and depending on
whether the Removed enumeration value was specifi ed.

 Automatic removal of a Geofence occurs in response to the values set in
its Duration and SingleUse properties. Duration is the easiest to understand.
When the time window indicated by the combination of the StartTime and
 Duration properties has expired, a geofence event is recorded indicating
that this fence is no longer being monitored. In this case, the event includes
a RemovalReason value that is set to Expired .

 The other option for automatic removal relates to the SingleUse prop-
erty. When this value is set to true , a geofence is removed after all its
 MonitoredStates have occurred. If a Geofence instance is defi ned with only

515 Sensor Input

 Entered or Exited specifi ed, then as soon as the corresponding event takes
place, the geofence is removed. If both Entered and Exited are specifi ed, the
geofence is removed only after both have occurred. In this case, the Removed
state is accompanied by a RemovalReason value of Used .

 When a geofence notifi cation event is received, the app should call the
 ReadReports method of the GeofenceMonitor instance, which returns the col-
lection of all notifi cation reports that have accumulated since the last call
to ReadReports was made. Each report is actually indicated in an individual
 GeoStateChangedEventReport , and a single GeofenceMonitor event can encom-
pass multiple reports, especially in the case of background tasks, which
run only periodically.

 The example app subscribes to geofence notifi cations only
in the foreground. To do so, the GeofenceHelper class registers its
 HandleGeofenceStateChanged method as a handler for the GeofenceStateChanged
event (see Listing 13.10).

 LISTING 13.10 Processing Geofence Events

 private void HandleGeofenceStateChanged(GeofenceMonitor monitor,Object o)
 {
 // Iterate over and process the accumulated reports
 var reports = monitor.ReadReports();
 foreach (var report in reports)
 {
 switch (report.NewState)
 {
 case GeofenceState.Entered:
 case GeofenceState.Exited:
 var updateArgs = new FenceUpdateEventArgs
 {
 FenceId = report.Geofence.Id,
 Reason = report.NewState.ToString(),
 Timestamp = report.Geoposition.Coordinate.Timestamp,
 Position =
 report.Geoposition.Coordinate.Point.Position
 };
 OnFenceUpdated(updateArgs);
 break;
 case GeofenceState.Removed:
 var removedArgs = new FenceRemovedEventArgs
 {
 FenceId = report.Geofence.Id,
 WhyRemoved = report.RemovalReason.ToString()
 };

 516 CHAPTER 13: Devices

 OnFenceRemoved(removedArgs);

 break;
 }
 }
 }

 The event handler retrieves the reports from the provided GeofenceMonitor
instance and then iterates over the individual report instances. In the case
of Entered and Exited events, information is gathered about which fence
caused the event, whether it was triggered on enter or exit, what posi-
tion caused the event to be triggered, and when exactly the reported
event occurred. This information is then used to relay an event out of the
 GeofenceHelper that displays the event’s occurrence in the app UI. In the
case of a Removed event, the event ID and Removal reason are obtained, and
a similar event is raised to provide notifi cation as well as remove the geo-
fence entry from the Bing Maps control.

 Be aware that because the GeofenceStateChanged events are raised from
an external entity, the handler will not run on the UI thread. Any reaction
to these events that affects the application UI needs to be marshalled to the
proper thread using either the Dispatcher or a valid SynchronizationContext ,
as discussed in the section “Accessing the UI Thread” in Chapter 9 ,
“Model-View-ViewModel.”

 Managing Geofences

 You can manage geofences by working directly with the Geofences col-
lection that the GeofenceMonitor instance provides. The example app enu-
merates these instances in two places. First, on app startup, the existing
collection is obtained to put markers on the Bing Maps control for each
geofence. Second, clicking the List Fences button shows a fl yout that lists
all the currently defi ned geofences. This fl yout includes the option to
remove the selected Geofence instance from the Geofences collection. Note
that programmatically removing a fence from the collection in this way
does not generate the previously discussed Removed events. Those occur
only when the removal happens automatically in response to the condi-
tions that the Geofence instance’s settings identify.

517 Sensor Input

 Motion and Orientation Sensors
 In addition to using the Geolocator and related APIs to obtain information
about a device’s physical location, the Windows Runtime provides APIs
for interacting with a class of sensors related to the movement and posi-
tioning of the device itself. Table 13.5 lists the kinds of sensors these APIs
can interact with and the kind of data they gather.

 TABLE 13.5 Motion and Orientation Sensor Types

Sensor Description

 Simple Orientation Reports the current orientation of the device based
on values from the SimpleOrientation enumeration.

 Compass Provides information about the position of the device
in relation to magnetic north. This is actually a com-
posite sensor whose output is based on combined
input from magnetometer and gyrometer sensors.

 Inclinometer Provides information about the pitch, yaw, and roll
state of a device. This is a composite sensor whose
output is based on combined input from accelerom-
eter, gyrometer, and magnetometer sensors.

 Accelerometer Provides information about the G-forces affecting the
device’s x-, y-, and z-axes.

 Gyrometer Provides information about the angular velocity along
the device’s x-, y-, and z-axes.

 TIP

 Testing geofence functionality directly with a device can be perhaps
more tricky than testing general geolocation functionality. An alter-
native to the potentially difficult, distraction-prone, and ultimately
dangerous option of mounting a tablet in a car and driving around
town (please do not do this) is to use the techniques discussed in the
previous section “Using the Simulator Location Tools.” From the
simulator’s location tools, you can set positions with coordinates that
are inside or outside a particular geofence by setting the location to
a particular latitude and longitude combination. The simulator then
properly emulates the position changes along with the appropriate
resulting geofence reactions.

 518 CHAPTER 13: Devices

Sensor Description

 Orientation Sensor Provides detailed information about how a device is
situated in space. This is a composite sensor whose
output is based on combined input from accelerom-
eter, gyrometer, and magnetometer sensors.

 Light Sensor Provides information about the amount of light cur-
rently striking the device display.

 You might have noticed that several of these sensors’ values are deter-
mined in part from a magnetometer, which is itself a sensor whose pur-
pose is to measure the strength of magnetic fi elds. However, the Windows
Runtime does not provide any APIs that allow direct access to output from
magnetometers.

 For the most part, the API for interacting with sensors is similar across
all the different kinds. They all basically offer the capability to obtain a
reference to a class instance that provides access to the sensor, as well as
methods for obtaining the current sensor value. In addition, they provide
events that you can subscribe to for notifi cations when the value changes.
The majority of the sensor APIs defi ne properties that specify the minimum
interval with which the sensor can raise these change events, as well as
properties that specify the requested interval for reporting value changes.

 Most of the code for working with sensors in the example project resides
in the SensorHelper class. You might be relieved to know that, unlike the
location information, the information these sensors return is not consid-
ered to be personally identifi able information. As a result, you do not have
to indicate entries in the application manifest, prompt the user for permis-
sion, or deal with users blocking access to the sensors if you include code
to make use of them in your application.

 Simple Orientation Sensor

 The simple orientation sensor is the simplest of the available sensors. It does
not work with the concept of a reporting interval for its change events, and
the data values that it reports are simply members of the SimpleOrientation
enumeration. When available, the purpose of this sensor is to describe
which way the device is facing. The values it can return are NotRotated, for

519 Sensor Input

when the device is sitting in a “natural” landscape orientation; Rotated90 ,
 Rotated180 , and Rotated270 , to indicate that the device has been rotated to
stand on one of its other edges; and FaceUp and FaceDown , to indicate that the
device is lying fl at.

 The code in Listing 13.11 shows how the example project is confi g-
ured to work with the simple orientation sensor, which is exposed via the
 SimpleOrientationSensor class. The GetDefault static method obtains a refer-
ence to the sensor, the value of which is null if the sensor is not available.
After that, it simply provides a handler for the OrientationChanged event
and then uses the GetCurrentOrientation method to obtain the current sen-
sor value.

 LISTING 13.11 Configuring the Simple Orientation Sensor

 // Get the reference to the sensor and see if it is available
 _simpleOrientation = SimpleOrientationSensor.GetDefault();
 if (_simpleOrientation == null) return;

 _sensorSettings.IsSimpleOrientationAvailable = true;

 // NOTE - Simple Orientation does not offer a minimum interval setting
 _simpleOrientation.OrientationChanged
 += SimpleOrientationOnOrientationChanged;

 // Read the initial sensor value
 _sensorSettings.LatestSimpleOrientationReading
 = _simpleOrientation.GetCurrentOrientation();

 The Visual Studio simulator for Windows Store Apps, which the preced-
ing section “Using the Simulator Location Tools” discussed, also includes
support for simulating device rotation by providing buttons that rotate the
simulator in 90-degree increments clockwise or counterclockwise.

 Compass

 The compass provides information about the current heading of the
device relative to magnetic north. When available, this sensor returns
readings as instances of the CompassReading type, which includes both
 HeadingMagneticNorth and HeadingTrueNorth properties, indicating degrees to
magnetic north and degrees to true north, respectively. HeadingMagneticNorth
always is provided; the availability of HeadingTrueNorth values depends on

 520 CHAPTER 13: Devices

the individual capabilities of the actual sensor hardware. HeadingTrueNorth
returns a value of null if it is not available.

 Listing 13.12 shows how the example project is confi gured to work
with the compass, which is exposed via the Compass class. The GetDefault
static method obtains a reference to the sensor, the value of which is null
if the sensor is not available. It next proceeds to set the sensor’s reporting
interval.

 LISTING 13.12 Configuring the Compass

 // Get the reference to the sensor and see if it is available
 _compass = Compass.GetDefault();
 if (_compass == null) return;

 _sensorSettings.IsCompassAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _compass.MinimumReportInterval;
 _compass.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _compass.ReadingChanged += CompassOnReadingChanged;

 // Read the initial sensor value
 _sensorSettings.LatestCompassReading = _compass.GetCurrentReading();

 The ReportInterval property is common to most of the available sensors.
The purpose of the property is to provide access to the minimum time (in
milliseconds) that must elapse between ReadingChanged events. Take care
when setting this value; setting it to a value below the minimum value that
the sensor can support can result in either an exception or unpredictable
behavior, depending on the sensor. You can obtain the minimum allow-
able report interval value through the MinimumReportInterval property. Note
that the ReportInterval setting has some of the characteristics of a request
rather than a certain value. Several factors can infl uence how the actual
sensor handles the ReportInterval setting. For example, when other apps
on the system that make use of the same sensor set their own values for
this property, the sensor might simply elect to use whichever is the small-
est defi ned value. Also be aware that the ReadingChanged event is raised only
when the reading actually changes, regardless of the ReportInterval setting.
It is important to not confuse the ReportInterval value with a frequency

521 Sensor Input

value that somehow guarantees that the ReadingChanged event will be raised
repeatedly in a steady cadence. After the ReportInterval is set, the code
simply provides a handler for the ReadingChanged event and then uses the
 GetCurrentReading method to obtain the current sensor value.

 Another important note is that the value the compass returns is relative
to the device being in a regular landscape orientation, with the device base
sitting at the bottom. (If the device is a tablet device built with Portrait as
its primary orientation, this sensor landscape condition still applies; the
“natural” landscape mode is the one where the hardware Windows but-
ton ends up on the right side of the display.) Figure 13.6 shows devices in
natural landscape orientation.

 FIGURE 13.6 Devices in natural landscape orientation

 If the device is in a different orientation, the value the sensor returns
needs to be adjusted to account for this. The example project includes a
 CompassOffset extension method for the DisplayOrientations class that you
can use to obtain the offset to apply to a compass direction based on a
provided orientation value. This method simply returns a value of 0 , 90 ,
 180 , or 270 , depending on what is needed to correct the compass reading
for the given orientation. You obtain the DisplayOrientations value to use
from the CurrentOrientation property of the DisplayInformation class. After
you determine the offset, you can add it to the HeadingMagneticNorth or
 HeadingTrueNorth values, using modular arithmetic to constrain the result-
ing value between 0 and 360 degrees, as follows:

 (LatestCompassReading.HeadingMagneticNorth + offset)%360

 522 CHAPTER 13: Devices

 The example project includes a Sensor Settings fl yout that you can bring
up using the Settings Charm. The panel includes a slider for updating the
minimum reporting interval for the sensors. It also includes a check box
that corresponds to a fl ag that the app uses to decide whether to compen-
sate for orientation changes when using and displaying sensor values. By
toggling these values and switching the orientation of the device on which
the app is running from a landscape to an inverted landscape orientation,
you can see the effect that changing an orientation has on sensor values,
as well as how the compensation code will correct them to their expected
state.

 Another feature present in the example app is the capability for the
Bing Maps control to “follow” the compass sensor value. Note that the cur-
rent version of the Bing Maps control supports rotating its display contents
only when viewed at high zoom levels (and to only one of four discrete
views), so this behavior is best viewed when the map is set to display and
is zoomed in enough to show bird’s-eye imagery. To enable this feature,
check the Follow box in the Compass panel in the app, and then point
the device in different directions. When the Follow box is checked, the
 Tick event handler for a timer on the display page periodically polls the
 SensorSettings class for the LatestCompassReading value, which is set by the
 ReadingChanged handler for the compass. This value then is set to a view-
model property that is data bound to the Bing Maps control. This approach
of using a timer to check for the most recent value is used because the
 ReadingChanged event is fi red only when a compass value actually changes,
as previously discussed. Listing 13.13 shows the code in the timer event
handler that obtains and applies the compass value.

 LISTING 13.13 Applying the Compass Orientation to the Map Display

 if (_sensorSettings.IsFollowingCompass)
 {
 // Get the latest compass reading
 var compassReading = _sensorSettings.LatestCompassReading;

 // Adjust the reading based on the display orientation, if necessary
 var displayOffset = _sensorSettings.CompensateForDisplayOrientation
 ? _sensorSettings.DisplayOrientation.CompassOffset()
 : 0;
 var heading
 = (compassReading.HeadingMagneticNorth + displayOffset)%360;

523 Sensor Input

 // Set the value used by data binding to update the map's heading
 DefaultViewModel["Heading"] = heading;
 }

 Inclinometer

 The inclinometer provides information about the current pitch, yaw, and
roll of the device. Pitch represents the degrees of rotation around the x-axis,
yaw represents degrees of rotation around the z-axis, and roll represents
degrees of rotation around the y-axis. Figure 13.7 illustrates how these val-
ues map to the physical position of a tablet device. When available, this
sensor returns readings as instances of the InclinometerReading type, which
provides its results in PitchDegrees , RollDegrees , and YawDegrees properties.

 FIGURE 13.7 Pitch, roll, and yaw relative to a tablet device

 Listing 13.14 shows how the example project is confi gured to work with
the inclinometer, which is exposed via the Inclinometer class. The steps
involved in confi guring the inclinometer are basically identical to those
shown in Listing 13.12 for confi guring the compass.

 524 CHAPTER 13: Devices

 LISTING 13.14 Configuring the Inclinometer

 // Get the reference to the sensor and see if it is available
 _inclinometer = Inclinometer.GetDefault();
 if (_inclinometer == null) return;

 _sensorSettings.IsInclinometerAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _inclinometer.MinimumReportInterval;
 _inclinometer.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _inclinometer.ReadingChanged += InclinometerOnReadingChanged;

 // Read the initial sensor value
 _sensorSettings.LatestInclinometerReading = GetInclinometerReading();

 Much like the compass, the values the inclinometer returns are relative
to the device being in a regular landscape orientation, and the resulting
values also need to be normalized if the device is being used from any
other orientation. The example project includes an AxisAdjustmentFactor
extension method for the DisplayOrientations class that you can use to
obtain the factors to apply to the x-, y-, and z-axis results, based on the cur-
rent device orientation.

 The example app includes a fun feature that you can enable by check-
ing the Follow box in the Inclinometer panel in the app. When this box is
checked, the content of Bing Maps control slides based on the Inclinometer
readings, allowing you to navigate the map simply by tilting your device
back and forth or left and right.

 NOTE

 If you find that tilting your device is causing your screen orientation
to be toggled, you can disable the automatic screen rotation feature
that Windows provides by bringing up the Settings Charm, selecting
Screen, and tapping the rectangular icon above the brightness adjust-
ment slider. If that icon has a pair of arrows next to it, automatic rota-
tion is enabled. If it has a small padlock next to it, the current screen
orientation is locked and will not automatically adjust as you tilt your
device.

525 Sensor Input

 As with the Follow feature discussed previously for the compass sen-
sor, implementation for this feature simply polls the SensorSettings class in
response to the same timer Tick event. In this case, the value used to obtain
the current device orientation is the LatestInclinometerReading value, which
the inclinometer’s ReadingChanged handler sets. The displayAdjustment value
used to compensate for device orientation changes returns per-axis values
of +1 or –1 that are multiplied to the sensor result to normalize the value.

 Listing 13.15 shows the calculations that move the map. First, the incli-
nometer reading is obtained and normalized, depending on the value of
the compensation setting and the device orientation. Next, a rate of one full
screen per timer tick was found to be a good maximum rate of traversal,
so the number of x- and y-axis pixels to move are obtained from the map
control. Then trigonometric functions convert the adjusted pitch and roll
values to percentage values so that the traversal is nearly nothing when the
device is lying fl at and is full-value when it is held vertically. This percent-
age determines the actual number of x and y pixels to move in the current
tick, which is applied to the center point to determine the equivalent des-
tination point. From here, the Bing Maps TryPixelToLocation utility func-
tion converts a pixel onscreen to equivalent latitude and longitude values,
which then set the new map position.

 LISTING 13.15 Applying the Inclinometer Reading to the Map Display

 if (_sensorSettings.FollowInclinometer)
 {
 var inclinometerReading = _sensorSettings.LatestInclinometerReading;

 // Optionally normalize the sensor reading values
 var displayAdjustment
 = _sensorSettings.CompensateForDisplayOrientation
 ? _sensorSettings.DisplayOrientation.AxisAdjustmentFactor()
 : SensorExtensions.AxisOffset.Default;
 var adjustedPitchDegrees
 = inclinometerReading.PitchDegrees * displayAdjustment.X;
 var adjustedRollDegrees
 = inclinometerReading.RollDegrees * displayAdjustment.Y;

 // At full speed/inclination, move 100% map size per tick
 const Double maxScreensPerTick = 1.00;
 var mapWidth = ExampleMap.ActualWidth;
 var xFullRateTraversalPerTick = mapWidth * maxScreensPerTick;
 var mapHeight = ExampleMap.ActualHeight;
 var yFullRateTraversalPerTick = mapHeight * maxScreensPerTick;

 526 CHAPTER 13: Devices

 // Turn rotation angles into percentages
 var xTraversalPercentage
 = Math.Sin(adjustedRollDegrees*Math.PI/180);
 var yTraversalPercentage
 = Math.Sin(adjustedPitchDegrees*Math.PI/180);

 // Compute the final traversal amounts based on the percentages
 // and compute the new destination center point
 var xTraversalAmount
 = xTraversalPercentage*xFullRateTraversalPerTick;
 var yTraversalAmount
 = yTraversalPercentage*yFullRateTraversalPerTick;
 var destinationPoint = new Point(
 mapWidth/2 + xTraversalAmount,
 mapHeight/2 + yTraversalAmount);

 // Use the Bing Maps methods to convert pixel pos to Lat/Lon
 // rather than trying to figure out Mercator map math
 Location location;
 if (ExampleMap.TryPixelToLocation(destinationPoint, out location))
 {
 // Obtain the current map position (for altitude)
 var position = (BasicGeoposition)DefaultViewModel["Position"];

 var newPosition = new BasicGeoposition
 {
 Altitude = position.Altitude,
 Latitude = location.Latitude,
 Longitude = location.Longitude
 };

 DefaultViewModel["Position"] = newPosition;
 }
 }

 Accelerometer

 The accelerometer provides information about the current G-forces act-
ing on the device in the x, y, and z directions. At rest, the most signifi cant
G-force affecting a device is the force of gravity, which pulls down along
whichever axis corresponds to the bottom edge of the device with a value
of –1.0. For example, if a device is standing up on its bottom edge in a land-
scape profi le, the y value has a value of approximately –1.0. When available,
this sensor returns readings as instances of the AccelerometerReading type,

527 Sensor Input

which provides its results in AccelerationX , AcclerationY , and AccelerationZ
properties.

 Listing 13.16 shows how the example project is confi gured to work
with the accelerometer, which is exposed via the Accelerometer class. The
steps involved in confi guring the accelerometer are otherwise identical to
those shown previously for confi guring the other sensors, with one notable
exception. The accelerometer sensor includes an additional Shaken event
that is raised when the sensor detects that the device is being subjected to
several quick back-and-forth motions.

 LISTING 13.16 Configuring the Accelerometer

 // Get the reference to the sensor and see if it is available
 _accelerometer = Accelerometer.GetDefault();
 if (_accelerometer == null) return;

 _sensorSettings.IsAccelerometerAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _accelerometer.MinimumReportInterval;
 _accelerometer.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _accelerometer.ReadingChanged += AccelerometerOnReadingChanged;
 _accelerometer.Shaken += AccelerometerOnShaken;

 // Read the initial sensor value
 _sensorSettings.LatestAccelerometerReading = GetAccelerometerReading();

 Gyrometer

 The gyrometer provides information about the device’s current rate of rota-
tion around the x-, y-, and z-axes, measured in degrees per second. When
available, this sensor returns readings as instances of the GyrometerReading
type, which provides its results in AngularVelocityX , AngularVelocityY , and
 AngularVelocityZ properties.

 Listing 13.17 shows how the example project is confi gured to work with
the gyrometer, which is exposed via the Gyrometer class. The steps involved
in confi guring the gyrometer are otherwise identical to those shown previ-
ously for confi guring the other sensors.

 528 CHAPTER 13: Devices

 LISTING 13.17 Configuring the Gyrometer

 // Get the reference to the sensor and see if it is available
 _gyrometer = Gyrometer.GetDefault();
 if (_gyrometer == null) return;

 _sensorSettings.IsGyrometerAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _gyrometer.MinimumReportInterval;
 _gyrometer.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _gyrometer.ReadingChanged += GyrometerOnReadingChanged;

 // Read the initial sensor value
 _sensorSettings.LatestGyrometerReading = GetGyrometerReading();

 Orientation Sensor

 The last sensor directly related to motion and/or orientation to be discussed
is the orientation sensor. As Table 13.4 described, the orientation sensor is
a composite sensor whose output consists of information gathered from
accelerometer, gyrometer, and magnetometer data. As you can see in Listing
 13.18 , the orientation sensor is confi gured using the OrientationSensor class
in the same way the rest of the sensors have been in this section. Its results
are returned in an instance of the OrientationSensorReading class, which
contains properties for Quaternion and RotationMatrix values, structures
that 3D and gaming apps often use.

 LISTING 13.18 Configuring the Orientation Sensor

 // Get the reference to the sensor and see if it is available
 _orientationSensor = OrientationSensor.GetDefault();
 if (_orientationSensor == null) return;

 _sensorSettings.IsOrientationSensorAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _orientationSensor.MinimumReportInterval;
 _orientationSensor.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _orientationSensor.ReadingChanged += OrientationSensorOnReadingChanged;

529 Summary

 // Read the initial sensor value
 _sensorSettings.LatestOrientationSensorReading
 = GetOrientationSensorReading();

 Light Sensor

 The light sensor isn’t actually a motion-/orientation-related sensor, but it
is included as an honorable mention with these sensors because the APIs
for working with this sensor are closely related to the rest of the APIs in
this section. The light sensor reports the intensity of the light shining on the
current device display in units of lux, is accessed through the LightSensor
class, and returns its values in a LightSensorReading instance (which con-
tains the property IlluminanceInLux). Listing 13.19 shows how the example
project is confi gured to work with the light sensor.

 LISTING 13.19 Configuring the Light Sensor

 // Get the reference to the sensor and see if it is available
 _lightSensor = LightSensor.GetDefault();
 if (_lightSensor == null) return;

 _sensorSettings.IsLightSensorAvailable = true;

 // Set the minimum report interval. Care must be taken to ensure
 // it is not set to a value smaller than the device minimum
 var minInterval = _lightSensor.MinimumReportInterval;
 _lightSensor.ReportInterval
 = Math.Max(_sensorSettings.SensorReportInterval, minInterval);
 _lightSensor.ReadingChanged += LightSensorOnReadingChanged;

 // Read the initial sensor value
 _sensorSettings.LatestLightSensorReading = GetLightSensorReading();

 Summary

 In this chapter, you learned how to work with several different user input
devices, including pointer-based devices such as touch inputs, mouse
devices, stylus devices, and keyboards. You saw how the Windows Runtime
provides the capability to determine which devices are connected, as well
as how adding the capability to interact with the various different kinds of

 530 CHAPTER 13: Devices

pointer devices has coalesced into a set of APIs that are differentiated more
by the level of abstraction than the characteristics of a specifi c device type.

 You also saw how the Windows Runtime provides the capability to
work with sensors that supply information about how the device is inter-
acting with its physical environment. This includes working with the geo-
location APIs to obtain device position information. It also includes the
related geofencing APIs for defi ning geographic boundaries that can result
in app notifi cations when a device either enters or exits those boundaries.
You also worked with the motion and orientation sensor APIs that provide
insight into the device’s physical position and movement.

 In the next chapter, you learn about the support the Windows Runtime
offers for working with these peripheral devices. This includes a discussion
about how you can add the capability to scan from your Windows Store
apps. You also see how you can print from your app, including how to gen-
erate content and layouts specifi cally for printing, as well as how to cus-
tomize and interact with the Print Settings and Print Preview experiences.

749

Index

Numbers
 3DES (Triple Data Encryption

Algorithm), 338

 A
 accelerometer, 517 , 526 - 527
 Accelerometer class, 527
 AcceptAllSetting property, 420 - 421
 accessibility, 615

 accessibility checker, 627 - 628
 automation and lists, 624 - 625
 automation peers, 626 - 627
 automation properties, 622 - 623
 keyboard support, 620 - 622
 live settings, 625
 Narrator, 623
 themes

 high contrast, 618 - 619
 requested theme, 616 - 618

 accessibility checker, 627 - 628
 AccessibilityExample project, 618 - 619

 accessibility checker, 627 - 628
 automation and lists, 624 - 625
 automation peers, 626 - 627
 automation properties, 622 - 623
 keyboard support, 620 - 622
 live settings, 625
 Narrator, 623

 themes
 high contrast, 618 - 619
 requested theme, 616 - 618

 AccessibilityTestProject, 626 - 627
 AccessibleItemConverter, 624
 accessing

 badges, 239
 SkyDrive content, 316
 UI thread, 369 - 370

 Account Picture Provider, 50 , 470 - 471
 accounts (developer), 657 - 658
 acquiring audio/video, 598 - 599

 CameraCaptureUI, 600 - 603
 declaring application capabilities,

 599 - 600
 MediaCapture, 604 - 610

 audio/video capture process, 608 - 610
 camera settings, 607 - 608
 capture preview, 607
 creating and initializing, 604 - 607
 image capture process, 610

 ActionCommand class, 156
 Activate method, 435
 AdControl components, 680 - 683
 Add a Language dialog box, 635
 Add Service Reference dialog, 205
 Add Translation Languages option

(Multilingual App Toolkit), 646
 AddPages event, 546 - 547

 750 Index

 AdDuplex, 679
 Advanced Encryption Standard

(AES), 338
 advertisements, 678 - 683

 AdControl components, 680 - 683
 pubCenter configuration, 679 - 680

 Advertising SDK for Windows 8.1, 678
 AES (Advanced Encryption

Standard), 338
 Alerts setting (AudioCategory), 564
 algorithms

 asymmetric algorithms, 345 - 347
 compression algorithms, 190 - 191

 AllowCropping property
(CameraCaptureUI PhotoSettings), 602

 AllowedMayUseActiveRealTime-
Connectivity, 574

 AllowedWithAlwaysOnRealTime-
Connectivity, 574

 AllowTrimming property (Camera-
CaptureUI VideoSettings), 601

 AllTasks collection, 576
 animations, applying to controls, 97 - 100
 AnimationsExample project, 97
 APIs

 proximity, 403
 sockets APIs, 379
 Windows Azure Mobile Services,

 289 - 291
 APM (Asynchronous Programming

Model), 218
 APNS (Apple Push Notification Service),

 292
 App Manifest entry, 458
 app manifest (Windows Store apps),

 45 - 46
 application UI, 46 - 48
 capabilities, 48 - 50
 content URIs, 52
 declarations, 50 - 51
 packaging, 52

 in-app purchases, 675 - 678
 AppBar control, 130
 AppBarButton control, 130
 AppBarSeparator control, 130

 AppBarToggleButton control, 130
 AppCredentialStorage class, 331
 AppendLinesAsync method, 174
 AppendTextAsync method, 174
 Apple Push Notification Service. See

APNS (Apple Push Notification
Service)

 application activation, integrating,
 462 - 463

 account picture providers, 470 - 471
 AutoPlay, 471 - 473
 example app, 463
 file activation, 463 - 467
 protocol activation, 467 - 470

 Application class, 86 , 90
 application lifecycle

 NavigationHelper class, 67 - 69
 SuspensionManager class, 67 - 69
 Windows Store apps, 61 - 67

 application sharing, 431 - 433
 application storage

 app storage hierarchy, 159 - 160
 composite values, 165 - 166
 containers, 162
 roaming data, 161 - 162
 settings, 163 - 165

 application UI, 46 - 48
 ApplicationData class, 163
 ApplicationDataCompositeValue class,

 165
 ApplyDeviceSettings method, 605 - 606
 appointments, integrating, 473 - 474 ,

 476 - 478
 ApproachingDataLimit, 387
 apps

 accessibility, 615
 accessibility checker, 627 - 628
 automation and lists, 624 - 625
 automation peers, 626 - 627
 automation properties, 622 - 623
 keyboard support, 620 - 622
 live settings, 625
 Narrator, 623
 themes, 616 - 619

 in-app purchases, 675 - 678

751 Index

 application activation, integrating,
 462 - 463
 account picture providers, 470 - 471
 AutoPlay, 471 - 473
 example app, 463
 file activation, 463 - 467
 protocol activation, 467 - 470

 application lifecycle
 NavigationHelper class, 67 - 69
 SuspensionManager class, 67 - 69
 Windows Store apps, 61 - 67

 application storage
 app storage hierarchy, 159 - 160
 composite values, 165 - 166
 containers, 162
 roaming data, 161 - 162
 settings, 163 - 165

 debugging
 code analysis, 712 - 716
 debug windows, 693 - 694
 Edit and Continue, 690
 exceptions, 694 - 696
 Just In Time debugging, 691
 Just My Code, 688 - 689
 launching debugger, 691 - 692
 logging and tracing, 696 - 702
 native, managed, and script debuggers,

 686 - 688
 overview, 685 - 686
 program databases, 692 - 693

 deployment
 other deployment options, 665 - 667
 overview, 649 - 650
 publishing to Windows Store, 657 - 665

 globalization and localization
 default language, 633 - 634
 design considerations, 632 - 633
 formatting dates, numbers, and

currencies for locale, 642 - 643
 Multilingual App Toolkit, 644 - 648
 MVVM (Model-View-ViewModel),

 643 - 644
 overview, 631 - 632
 preferred languages, 635 - 637

 resource qualification and matching,
 637 - 639

 XAML elements, 639 - 642
 making money from, 667 - 668

 advertisements, 678 - 683
 in-app purchases, 675 - 678
 PackageAndDeployExample project,

 668 - 669
 pricing apps, 669 - 670
 trial mode apps, 670 - 675

 packaging
 app package and app bundle contents,

 654 - 655
 Create App Packages Wizard, 650 - 654
 overview, 649 - 650
 package identifiers, 655 - 656

 performance optimization
 code analysis, 712 - 716
 logging and tracing, 696 - 702
 profiling and performance analysis,

 702 - 712
 Play To Source, 444 - 446
 Play To Target, 446 - 448
 pricing, 669 - 670
 publishing to Windows Store, 657 - 665

 application certification, 661 - 665
 developer accounts, 657 - 658
 steps, 658 - 661

 Share Source, 423 - 433
 application sharing, 431 - 433
 bitmap sharing, 429
 DataRequestEventArgs class, 424
 DataTransferManager class, 424 - 425
 file sharing, 430
 HTML sharing, 428
 predefined metaproperties available in

share data package, 426
 share data types, 427

 Share Target, 433 - 442
 creating, 434 - 441
 debugging, 441 - 442

 sharing, 431 - 433
 Skrape, 154
 trial mode apps, 670 - 675

 .appx file extension, 650 , 654

 752 Index

 AppxBundleManifest.xml, 654
 archives (zip), 187 - 191
 AreTransportControlsEnabled property,

 564 , 595
 ARM-based chip, 2
 arrays, 725
 AsBuffer method, 171
 AsForecastEntry method, 207
 AspectRatioHeight property

(MediaElement), 597
 AspectRatioWidth property

(MediaElement), 597
 AsWeatherForecast method, 208
 asymmetric algorithm encryption,

 345 - 347
 asynchronous functions, 24 - 26
 asynchronous printer actions, 536
 Asynchronous Programming Model

(APM), 218
 Atom, 2 , 199
 Atom Publishing Protocol (AtomPub),

 219
 AtomPub (Atom Publishing Protocol),

 219
 AttachAsync() method, 411 , 563
 attached properties, 94 - 95
 attributes. See specific attributes
 audio

 acquiring, 598 - 599
 CameraCaptureUI, 600 - 603
 declaring application capabilities,

 599 - 600
 MediaCapture, 604 - 610

 capturing, 598 - 599
 looping in toasts, 248
 playing, 590

 audio settings, 596 - 597
 in background, 563 - 569
 controlling playback, 592 - 595
 media information, 597
 media markers, 597 - 598
 MediaElement control appearance,

 595 - 596
 MediaElement control instantiation,

 591 - 592

 MultimediaExample project framework,
 590 - 591

 text-to-speech support, 610 - 612
 AudioBackgroundExample project,

 563 - 569
 AudioCategory settings, 564
 AudioDeviceController property

(MediaCapture class), 607 - 608
 AudioDeviceId (MediaCapture class), 604
 AuthenticateAsync method, 327
 authentication, 324 - 329

 documentation, 326
 Facebook, 329
 Live Connect, 304 - 307
 multistep (Google), 330 - 331
 options, 328
 symmetrical encryption, 342 - 343
 unlocking password vault, 331 - 333
 Windows Azure Mobile Services,

 269 - 270
 authenticating users, 272 - 274
 registration and configuration for

Microsoft account logins, 270 - 272
 authorization, Windows Azure Mobile

Services, 287 - 289
 automation

 automation peers, 626 - 627
 automation properties, 622 - 623
 lists, 624 - 625

 AutomationProperties, 622 - 623
 AutoPlay, 471 - 473

 AutoPlay Content, 50
 AutoPlay Device, 50
 AutoPlay property (MediaElement), 595

 Autos window (debugger), 693
 Autoscale values, 300
 availability

 devices, 482
 for scanners, 548 - 549

 await keyword, 148
 AxisAdjustmentFactor extension

method, 524
Azure. See Windows Azure

753 Index

 B
 background tasks, 50 , 559

 audio, 563 - 569
 control channel, 585 - 586
 downloads, 562 - 563
 lock screen tasks, 570

 conditions, 578 - 580
 creating background tasks, 573 - 576
 debugging background tasks, 580 - 581
 listing background tasks, 576 - 577
 lock screen capabilities, 570 - 573
 timer, 578

 overview, 559 - 560
 raw push notifications, 581 - 585
 system events, 587 - 588
 thread pool, 560 - 562
 uploads, 562 - 563

 background transfers, 408 - 412
 BackgroundAccessStatus enumeration,

 574
 BackgroundCapableMedia setting

(AudioCategory), 564
 BackgroundDownloadAsync method, 319
 BackgroundTaskBuilder, 577
 BackgroundTaskRegistration class, 576
 BackgroundTransferStatus, 410
 BackgroundUploader class, 562 - 563
 BackgroundWorkCostChange event, 587
 BackgroundWorkCostNotHigh condition,

 579
 BadgeHelper class, 241
 badges, 239 - 241

 accessing, 239
 periodic notifications, 242
 XML, 241

 Balance property (MediaElement), 597
 Base Class Library (BCL), 187
 base types, 720
 BaseCrypto class, 339
 BaseTile class, 235
 Basic tier (Windows Azure Mobile

Services), 299
 BCL (Base Class Library), 187
 BCP-47 language tag, 633
 binding. See data-binding

 Bing Maps control, 499 - 502
 Bing Maps Platform, 499
 Bitmap data type, 427
 BitmapIcon control, 130
 bitmaps, sharing, 429
 Blank app, 32 , 45
 block ciphers, 337 - 341
 Bluetooth RFCOMM, 389 , 396
 Border control, 115
 branding live tiles, 232
 Buffer class, 172
 buffers, 171 - 174

 .NET Framework, 14 - 15
 Buffer class, 172

 BuildPicturePage function, 545
 bundles (app), 654 - 655
 Button control, 103 - 106 , 130

 C
 C#, 9 , 722
 Cached File Updater, 50
 cached files, 180 - 187
 CalculatePi method, 560
 calendars, Live Connect, 311 - 314
 Call Stack window, 689 , 694
 calling managed WinRT components,

 78 - 79
 camera settings, 50 , 607 - 608
 CameraCaptureUI, 600 - 603
 cancel method, 380
 Canvas control, 116
 CaptureAsync method, 603
 CaptureFileAsync method, 600
 CaptureMode (MediaCapture class), 604
 CapturePhotoToStorageFileAsync target

type, 610
 CapturePhotoToStreamAsync target type,

 610
 capturing

 audio/video. See acquiring audio/
video

 pointers, 486
 CBC (cipher-block chaining), 338
 CDYNE Weather, 201
 certificates, 50 , 347
 ChannelPushNotificationReceived

method, 583

 754 Index

 Charms
 Devices Charm

 overview, 442 - 443
 Play To Source app, 444 - 446
 Play To Target app, 446 - 448
 PlayToExample project, 443 - 444

 overview, 415 - 417
 setting entries, adding, 418 - 421
 Settings Charm

 overview, 417
 ShareTargetExample project, 418 - 421

 Share Charm
 overview, 421 - 423
 share process, 422
 Share Source app, 423 - 433
 Share Target app, 433 - 442

 CheckBox control, 130
 CIL (Common Intermediate

Language), 30
 ciphers, 337

 cipher-block chaining, 338
 stream ciphers, 341

 class ID (CLSID), 726
 class library templates, 35
 class methods, 721 - 722
 classes, 721 - 722 . See also specific classes
 ClearAll method, 567
 client app data storage, 278 - 282
 ClientListener method, 395
 clients

 OData (Open Data), 217 - 219
 SyndicationClient, 219 - 222

 Clipboard class, 154 - 159
 copying content to, 158 - 159
 data formats, 158
 pasting content from, 157 - 158

 Close method, 13
 clouds, connecting to

 with Live Connect. See Live Connect
 Windows Azure Mobile Services. See

Windows Azure Mobile Services
 CLR (Common Language Runtime), 1
 CLSID (class ID), 726 , 728
 cmdlets, Import-Module, 666
 code analysis, 712 - 716

 code reuse, MVVM (Model-View-
ViewModel), 366

 coded UI tests, 43
 collections, AllTasks, 576
 COM (Component Object Model), 726
 ComboBox control, 130 , 624 - 625
 CommandBar control, 130
 commands

 MVVM (Model-View-ViewModel), 371
 ViewModel, 361

 Common Intermediate Language. See CIL
(Common Intermediate Language)

 Common Language Runtime (CLR), 1
 CommonAssemblyInfo.cs, 6
 CommonFileQuery enumeration values,

 176
 Communications setting

(AudioCategory), 564
 company developer accounts, 657 - 658
 Compare method, 334
 compass, 517 , 519 - 523
 CompassOffset extension method, 521
 compile errors when referencing

WinRT, 18
 Component Object Model (COM), 726
 components . See also classes; controls

 examining projections in WinRT
components, 20 - 24

 managed WinRT components, 75 - 76
 calling in any language, 78 - 79
 creating, 76 - 77

 templates, 42
 composite values, 165 - 166
 compression, 187 - 191
 conditions for lock screen tasks, 578 - 580
 ConfigureBackgroundTask method, 583
 ConfigureScanner method, 554
 configuring

 Microsoft account logins, 270 - 272
 print tasks, 534 - 537
 QuickLinks, 439 - 441

 ConnectCommand method, 406
 Connected Services Manager, 268
 connecting apps to Mobile Services

instances, 267 - 268
 connecting to cloud with Live Connect.

 See Live Connect

755 Index

 ConnectionInfo class, 386
 ConnectionProfile, 386
 connectivity, data plans and, 384 - 389
 Contact and Appointment integration,

 473 - 474
 appointments, 476 - 478
 contacts, 474 - 476
 example app, 474

 Contact Cards, 474
 contact pickers, 51 , 452 - 453 , 460 - 462
 ContactManager class, 475
 contacts, 473 - 474

 integrating, 474 - 476
 Live Connect, 310 - 311

 containers, 162
 creating, 162
 nesting, 162

 content URIs, 52
 ContentControl, 120 - 121
 contents of app packages, 654 - 655
 ContentSourceApplicationLink property

(Share DataPackage), 426
 ContentSourceWebLink property (Share

DataPackage), 426
 control channel, 585 - 586
 control independence, UI design patterns,

 351
 ControlChannelReset event, 587
 ControlChannelTrigger, 585 - 586
 controlling multimedia playback, 592 - 595
 controls . See also classes

 AdControl, 680 - 683
 animations, applying, 97
 AppBar, 130
 AppBarButton, 130
 AppBarSeparator, 130
 AppBarToggleButton, 130
 BitmapIcon, 130
 Border, 115
 Button, 130

 groups and states, 103
 states, 103 - 106

 Canvas, 116
 CheckBox, 130
 ComboBox, 130 , 624 - 625
 CommandBar, 130

 ContentControl, 120 - 121
 custom controls, 135 - 140
 DatePicker, 130
 FlipView, 124 - 125
 flyouts, 133 - 135
 FontIcon, 130
 Grid, 116 - 117
 GridView, 123
 Hub, 131
 HyperLink, 131
 HyperlinkButton, 131
 Image, 131
 ItemsControl, 121
 ListBox, 123 - 124
 ListView, 124
 MediaElement, 131

 appearance, 595 - 596
 audio settings, 596 - 597
 instantiating, 591 - 592
 media information, 597
 media markers, 597 - 598

 MediaPlayer, 131
 Panel, 115
 PasswordBox, 131
 PathIcon, 131
 PopupMenu, 131
 ProgressBar, 131
 ProgressRing, 131
 RadioButton, 131
 RepeatButton, 131
 RichEditBox, 131
 RichTextBlock, 131 , 196 - 197
 RichTextBlockOverflow, 132
 ScrollBar, 132
 ScrollViewer, 122
 SearchBox, 132
 SearchBox control, 73 - 75
 SemanticZoom, 132
 Slider, 86, 89, 96, 132
 StackPanel, 117 - 118
 SymbolIcon, 132
 table of, 130 - 132
 templates

 ControlTemplate class, 112
 DataTemplate class, 112
 TemplatesExample project, 112 - 115

 756 Index

 TextBlock, 132
 TextBox, 132
 TimePicker, 132
 ToggleButton, 132
 ToggleSwitch, 132
 ToolTip, 132
 VariableSizedWrapGrid, 119 - 120
 ViewBox

 LayoutsExample project, 125 - 129
 modes, 122

 VirtualizingPanel, 118
 VirtualizingStackPanel, 118
 WebView, 132 , 143 - 150
 Windows Charms

 Devices Charm, 442 - 448
 overview, 415 - 417
 Settings Charm, 417 - 421
 Share Charm, 421 - 442

 WrapGrid control, 119
 ControlTemplate class, 112
 ConvertBinaryToString, 334
 Converter attribute, 88
 ConverterLanguage attribute, 88
 ConverterParameter attribute, 88
 ConvertStringToBinary, 334
 Coordinated Universal Time (UTC), 12
 co-owner, 313
 CopyAndReplaceAsync method, 170
 copying content to Clipboard, 158 - 159
 CopyToByteArray, 335
 CoreWindow class, 496
 counters, frame rate, 702 - 704
 CPU sampling, 706 - 709
 Create App Packages Wizard, 650 - 654
 CreateCaptureToFileJobAsync method,

 608
 CreateContainer method, 162
 CreateFileAsync method, 167 , 169
 CreateFileQuery method, 169
 CreateFileQueryWithOptions method,

 169 , 178
 CreateFolderAsync method, 169
 CreateFromByteArray, 335
 CreateHtmlFormat method, 159 , 428
 CreateItemListOption method, 541

 CreatePrintTask method, 535
 CreateQuery method, 281
 CreateStaticFragment method, 159
 CreateStreamedFileAsync method, 170
 CreateStreamedFileFromUriAsync

method, 170
 CreateUpload() method, 562
 CreateUploadAsync() method, 562
 CreationCollisionOpen values, 167
 credential vault, 333
 CroppedAspectRatio property

(CameraCaptureUI PhotoSettings), 602
 CroppedSizeInPixels property

(CameraCaptureUI PhotoSettings), 602
 CryptographicBuffer class, 334
 Culture folder, 639
 Cumulative property, 490
 currencies, formatting for locale, 642 - 643
 CurrencyFormatter class, 642 - 643
 CurrentAppSimulator class, 671 , 672
 CurrentStateChanged event, 447 - 448
 custom API scripting objects, 290
 custom APIs, 289 - 291
 custom controls, 135 - 140

 creating, 135 - 140
 custom data types, 427
 custom print options, 538 - 542
 custom VSMs (Visual State Managers),

 109 - 110
 CustomVisualStateManager class, 110
 cycling tile notifications, 234 - 236

 D
 Dark theme, 616
 data access scripts, 282 - 287
 data-binding

 attached properties, 94 - 95
 attributes, 88
 classes, 86 - 87
 dependency properties, 91 - 94
 explained, 85 - 86
 MVVM (Model-View-ViewModel), 366
 Portable ViewModel, 41
 property change notification, 95 - 97
 value precedence, 95

 Data Encryption Standard (DES), 338

757 Index

 data formats, 191 - 192
 DataFormatsExample project, 192 - 194
 XSLT transformation, 195

 data manipulation . See also application
storage

 Clipboard class, 154 - 159
 copying content to, 158 - 159
 data formats, 158
 pasting content from, 157 - 158

 document data, 196 - 197
 files. See files
 folders. See folders
 Skrape app, 154

 data plans, connectivity and, 384 - 389
 data protection providers, 333 - 337
 data storage, Windows Azure Mobile

Services, 274
 authorization, 287 - 289
 data access scripts, 282 - 287
 data in client apps, 278 - 282
 managing data tables, 274 - 278

 data tables, managing, 274 - 278
 data types, share, 427
 databases (program), 692 - 693
 DataBindingExample project, 83 - 84 , 89 - 91
 DataFormatsExample project, 192 - 194
 DataPackage method, 159
 DataPackage object, 426
 DataPackageView class, 436
 DataReader class, 172
 DataReaderLoadOperation class, 172
 DataRequested event handler, 424
 DataRequestEventArgs class, 424
 DataTemplate class, 87 , 112
 DataTransferManager class, 424 - 425
 DataWriter class, 172
 DataWriterStoreOperation class, 172
 DatePicker control, 130
 dates, 12

 formatting for locale, 642 - 643
 DateTimeFormatter class, 643
 debug windows, 693 - 694
 debugging

 background tasks, 580 - 581
 code analysis, 712 - 716
 debug windows, 693 - 694

 Edit and Continue, 690
 exceptions, 694 - 696
 Fiddler, 211 - 213
 Just In Time debugging, 691
 Just My Code, 688 - 689
 launching debugger, 691 - 692
 logging and tracing, 696 - 702
 native, managed, and script debuggers,

 686 - 688
 overview, 685 - 686
 program databases, 692 - 693
 Share Target app, 441 - 442

 DecimalFormatter class, 642 - 643
 declarations, Windows Store apps, 50 - 51
 DecodeFromBase64String, 335
 DecodeFromHexString, 335
 decryption, 341 , 342
 default language, 633 - 634
 default tiles, 227 - 229
 DefaultPlaybackRate property

(MediaElement), 594
 DefaultQuery value (CommonFileQuery),

 176
 DefaultScanSource property, 549
 deferrals, 64
 DelayedBitmapRequestCallback method,

 432
 delegates, 724
 DELETE request (REST), 209
 DeleteAsync method, 169 , 170
 deleting SkyDrive items, 318
 Delta property, 490
 dependency properties, 91 - 94
 DependencyObject class, 87
 DependencyProperty class, 87
 deployment

 deployment tiers (Windows Azure
Mobile Services), 298 - 300

 other deployment options, 665 - 667
 overview, 649 - 650
 publishing apps to Windows Store,

 657 - 665
 application certification, 661 - 665
 developer accounts, 657 - 658
 steps, 658 - 661

 DES (Data Encryption Standard), 338

 758 Index

 Description property (Share
DataPackage), 426

 design, globalization and localization,
 632 - 633

 design-time data, MVVM (Model-View-
ViewModel), 367 - 369

 Desired View option, 465
 DesiredAccuracy property, 507
 desktop applications, 15

 creating, 15
 referencing WinRT, 15 - 20
 toasts, 248

 developer accounts (Windows Store),
 657 - 658

 Developer Command Prompt, 728
 Developer Preview version

(Windows 8), 29
 devices. See input devices; sensor input
 Devices Charm

 overview, 442 - 443
 Play To Target app, 446 - 448

 dialogs, MVVM (Model-View-
ViewModel), 371

 dictionaries, resource, 90 - 91
 DirectX WinRT, 485
 Disabled state, 103
 DisplayedOptions collection, 541
 DisplayOrientations class, 521
 document data, 196 - 197
 Document Object Model (DOM), 143
 documentation

 authentication, 326
 WebRequest object, 36

 DocumentDataExample project, 196 - 197
 DocumentsLibrary folder, 167
 DOM (Document Object Model), 143
 DoubleAnimation class, 98
 DoubleTapped, 493
 downloading from OneDrive (SkyDrive),

 319 - 320
 downloads, 562 - 563
 DownloadsFolder class, 166 , 167
 DPAPI (Windows Data Protection API),

 333
 Duration, 513
 DwellTime, 512

 E
 earning money from apps. See income,

earning from apps
 Edit and Continue option (debugging),

 690
 ElementName attribute, 88
 elements (XAML), 81

 localization, 639 - 642
 embedded HTML, 146 - 150
 EncodeToBase64String, 335
 EncodeToHexString, 335
 encrypt parameter, 359
 encryption, 333

 asymmetric algorithms, 345 - 347
 data protection providers, 333 - 337
 symmetrical encryption, 337

 authentication, 342 - 343
 block ciphers, 337 - 341
 stream ciphers, 341

 verification, 343
 hash algorithms, 343 - 344
 MAC (Message Authentication Code),

 344 - 345
 EncryptSymmetric method, 340
 end-user machines, deploying apps to,

 666 - 667
 energy consumption, 710 - 712
 EnsureLength method, 340
 enterprise authentication, 49
 enumerations, 723
 en-US folder, 637
 errors, HTTP status codes and REST

correlation, 211
 es-ES folder, 637
 Ethernet LAN, 384
 ETW (Event Tracing for Windows),

 696 - 702
 event handlers, 4
 Event Tracing for Windows (ETW),

 696 - 702
 EventListener class, 698
 events, 85 , 724

 application lifecycle, 61 - 62
 CurrentStateChanged, 447 - 448
 geofencing, 514 - 516

759 Index

 Live Connect, 311 - 314
 LogFileGenerated, 701
 LoggingEnabled, 701
 NavigationCompleted, 144
 PlayRequested, 447 - 448
 PropertyChanged, 94
 RateChanged, 594
 routed events, 85
 SourceChangeRequested, 447
 SourceRequested, 444 - 445
 SourceSelected, 445
 system events, 587 - 588

 EventSource class, 697 - 698
 examine projections in WinRT

components, 20 - 24
 Exception class instances, 391
 exceptions, 13 , 391 , 694 - 696
 Execute method, 246
 Expansion, 490
 expiration, toasts, 245
 Extensible Application Markup

Language. See XAML (Extensible
Application Markup Language)

 Extensible Markup Language (XML), 199
 Extensible Stylesheet Language

Transformations (XSLT)
transformation, 195

 extension methods, 15 , 25

 F
 Facebook

 authentication sessions, 329
 SSO (single sign-on), 326

 FacebookAuthenticator class, 327
 FacebookIdentity class, 329
 FadeOutThemeType class, 99
 FailIfExists option, 169
 FailWithDisplayText method, 424
 fences, geofencing, 512 - 514
 Fiddler, 211 - 213
 file activation, 463 - 467
 file pickers

 file open pickers, 51 , 454 - 458
 file save pickers, 51, 458 - 460
 integrating, 452 - 453

 file type associations, 51
 FileInputStream class, 173
 FileIO class, 174 - 175
 FileLoggingSession, 701
 FileOpenPickerUI, 454- 457
 FileOutputStream class, 173
 FilePickerExample project, 183 - 187
 FileRandomAccessStream class, 173
 files

 AppxBundleManifest.xml, 654
 buffers and streams, 171 - 174
 compression, 187 - 191
 flag.lang-en.jpg, 637
 flag.lang-es.jpg, 637
 path and file helper classes, 174 - 175
 pickers and cached files, 180 - 187
 sharing, 430
 storage files, 170 - 171
 storage query operations, 176 - 180
 .vspx extension, 706
 .xlf (Localization Interchange File

Format) files, 645
 FileSavePicker class, 181
 FileSavePickerUI, 458
 FileTypeFilter property, 454
 Fill mode (ViewBox), 122
 filled arrays, 725
 filtered lists, MVVM (Model-View-

ViewModel), 373 - 374
 finding packages on disk, 52 - 54
 firewalls, push notifications, 249
 flag.lang-en.jpg file, 637
 flag.lang-es.jpg file, 637
 FlipView control, 124 - 125
 flyouts, 133 - 135
 FlyoutsExample project, 133 - 135
 folders

 creating in OneDrive (SkyDrive), 318
 Culture, 639
 DocumentsLibrary, 167
 DownloadsFolder class, 167
 en-US, 637
 es-ES, 637
 HomeGroup, 167
 MediaServerDevices, 167
 MultilingualResources, 645

 760 Index

 MusicLibrary, 167
 PicturesLibrary, 167
 Playlists, 167
 RemovableDevices, 167
 SavedPictures, 168
 storage folders, 167 - 170
 storage query operations, 176 - 180
 table of, 166 - 167
 VideosLibrary, 168
 WindowsStoreProxy, 672

 FontIcon control, 130
 ForegroundOnlyMedia setting

(AudioCategory), 564
 Format method, 698
 Format property

 CameraCaptureUI PhotoSettings, 602
 CameraCaptureUI VideoSettings, 601

 formats (data), 191 - 192
 DataFormatsExample project, 192 - 194
 XSLT transformation, 195

 formatting dates, numbers, and
currencies for locale, 642 - 643

 frame rate counters, 702 - 704
 Framework design guidelines, 712
 FrameworkElement class, 87
 FrameworkElementAutomation-

Peer class, 626
 Free tier (Windows Azure Mobile

Services), 299
 free_busy, 313
 FreeNetworkAvailable condition, 579
 FromConnectionProfile method, 386
 functions. See specific functions
 fundamental types (.NET Framework),

 9 - 10
 FutureAccessList, 187

 G
 GameEffects setting (AudioCategory),

 564
 GameMedia setting (AudioCategory), 565
 GCM (Google Cloud Messaging

service), 292
 Generate Machine Translations option

(Multilingual App Toolkit), 646
 GenerateRandom, 335

 GenerateRandomNumber, 335
 GenerateUniqueName option, 169
 generating print preview content, 543 - 545
 generics, 722
 Geocoordinate, 508 - 509
 GeofenceMonitor, 513
 geofences, managing, 516 - 517
 geofencing, 510 - 511

 defining fences, 512 - 514
 events, 514 - 516
 managing geofences, 516 - 517

 geolocation, sensor input, 502 - 503
 simulator location tools, 509 - 510

 Geolocator, 504 - 508
 Geoshape, 512
 gesture events, 484 , 493 - 495
 GET request (REST), 209
 GetBasicPropertiesAsync method, 170
 GetConnectionCost method, 387
 GetCurrentPoint method, 487
 GetCurrentUploadsAsync() method, 562
 GetDeferral method, 430 , 432
 GetFileAsync method, 169
 GetFileFromApplicationUriAsync

method, 170
 GetFileFromPathAsync method, 170
 GetFilesAsync method, 169
 GetFolderAsync method, 169
 GetFolderFromPathAsync method, 169
 GetFoldersAsync method, 169
 GetForCurrentView method, 424 - 425
 GetGeopositionAsync method, 504
 GetImageUriForType method, 207
 GetIntermediatePoints method, 487
 GetInternetConnectionProfile method,

 386
 GetItemsAsync method, 169
 GetKeyState method, 497
 GetNetworkUsageAsync method, 388
 GetPointerDevice method, 481
 GetPreviewPage event, 545
 GetScannersAsync method, 548
 GetTemplateChild method, 139
 GetTemplateContent method, 230
 GetThumbnailAsync method, 169 , 170
 GetToken method, 254

761 Index

 GetWeatherForZipCode method, 208
 GetXmlDocument method, 222
 Git source control integration, 286
 Global System for Mobile

Communications (GSM), 384
 globalization

 default language, 633 - 634
 design considerations, 632 - 633
 formatting dates, numbers, and

currencies for locale, 642 - 643
 Multilingual App Toolkit, 644 - 648
 MVVM (Model-View-ViewModel),

 643 - 644
 overview, 631 - 632
 preferred languages, 635 - 637
 resource qualification and matching,

 637 - 639
 XAML elements, 639 - 642

 GlobalizationExample project. See
globalization

 globally unique identifier (GUID), 726
 GlobalViewModel class, 167
 Google

 Google Cloud Messaging service
(GCM), 292

 multistep authentication, 330 - 331
 GoogleIdentity class, 331
 GoToVisualState method, 127
 graphs, rich object, 82
 Grid app, 33
 Grid App template, 5
 Grid control, 116 - 117
 grids

 Grid control, 116 - 117
 GridView control, 123
 VariableSizedWrapGrid control, 119 - 120
 WrapGrid control, 119

 GridView control, 123
 GroupDetailPage, 7
 GroupItemsPage, 7
 groups (VSM), 103 - 105
 GSM (Global System for Mobile

Communications), 384
 GUID (globally unique identifier), 726
 gyrometer, 517 , 527 - 528

 H
 HandleOrientation property, 101
 HandleSwitchToggled event handler, 420
 handling exceptions, 694 - 696
 hash algorithms, 343 - 344
 HelpText property, 622
 high contrast, 618 - 619
 HighPriority setting, 163
 Holding, 493
 HomeGroup, 167 , 382 - 384
 HTML (Hypertext Markup Language)

 pages, 143 - 150
 sharing, 428

 HTML data type, 427
 HTML5 WebSocket Protocol, 389
 HtmlFormatHelper class, 159 , 428
 HTTP (Hypertext Transfer Protocol),

 379 - 382
 HTTP API, 382
 status codes and REST correlation, 211

 HttpBufferContent, 381
 HttpClient, 216
 HttpFormUrlEncodedContent, 381
 HttpJsonContent, 381
 HttpMultipartContent, 381
 HttpMultipartFormDataContent, 382
 HttpRequestMessage, 380
 HttpStreamContent, 382
 HttpStringContent, 382
 Hub app, 33 - 34
 Hub control, 131
 HyperLink control, 131
 HyperlinkButton control, 131
 Hypertext Transfer Protocol. See HTTP

(Hypertext Transfer Protocol)

 I
 IAsyncAction interface, 561
 IAsyncOperation interface, 26
 IBackgroundTask interface, 574
 IBuffer interface, 171 , 335
 IClose interface, 13
 ICommand interface, 39 , 361
 ICoreWindow instance, 485
 Id geofencing settings, 512

 762 Index

 IDataReader interface, 172
 IDataWriter interface, 172
 identifiers (package), 655 - 656
 identifying connected input devices,

 481 - 483
 IID (interface ID), 726
 IInputStream interface, 172
 Image control, 131
 ImageEncodingProperties class, 610
 images, capturing with

MediaCapture, 610
 ImageScanner class, 549 , 551
 ImageScannerFormat, 553
 Immediate window (debugger), 693
 Import-Module cmdlet, 666
 inclinometer, 517 , 523 - 526
 income, earning from apps

 advertisements, 678 - 683
 AdControl components, 680 - 683
 pubCenter configuration, 679 - 680

 in-app purchases, 675 - 678
 PackageAndDeployExample project,

 668 - 669
 pricing, 669 - 670
 trial mode apps, 670 - 675

 individual developer accounts, 657 - 658
 initialization vector (IV), 338
 InitializeAsync method, 334 , 604 , 606
 InitializeComponent method, 141
 InitializeSocket method, 406
 InitializeWithServiceData method, 217
 initializing MediaCapture, 604 - 607
 InMemoryRandomAccessStream class,

 173 , 551
 INotifyCollectionChanged interface, 97
 INotifyPropertyChanged interface, 40 , 96
 input devices, 480

 example app, 480 - 481
 gesture events, 484 , 493 - 495
 identifying connected, 481 - 483
 keyboard input, 495 - 497
 manipulation events, 484 , 488 - 492
 pointer events, 484 - 488

 InputEventHandler class, 484
 InputStreamOverStream class, 173

 installation ID, 294
 integrated push notification support

(Windows Azure Mobile Services),
 291 - 297

 integrating, 451 - 452
 application activation, 462 - 463

 account picture providers, 470 - 471
 AutoPlay, 471 - 473
 example app, 463
 file activation, 463 - 467
 protocol activation, 467 - 470

 with contacts and appointments,
 473 - 474
 appointments, 476 - 478
 contacts, 474 - 476

 with file and contact pickers, 452 - 453
 contact pickers, 460 - 462
 example app, 453
 file open pickers, 454 - 458
 file save pickers, 458 - 460

 interface ID (IID), 726
 interfaces, 723 , 731

 IAsyncAction, 561
 IBackgroundTask, 574
 IBuffer, 171
 IDataReader, 172
 IDataWriter, 172
 IInputStream, 172
 INotifyCollectionChanged, 97
 INotifyPropertyChanged, 94
 IOutputStream, 172
 IRandomAccessStream, 172 , 173
 IValueConverter, 89 - 90

 internal code, 719
 internals (WinRT), 725 - 731
 Internet (Client), 49
 Internet (Client & Server), 49
 InternetAvailable condition, 579
 InternetAvailable event, 587
 InternetNotAvailable condition, 579
 Invalid condition, 579
 Invalid event, 587
 IOutputStream interface, 172
 IRandomAccessStream instance, 551
 IRandomAccessStream interface, 172 , 173

763 Index

 IReference, 13
 IsAudioOnly property (MediaElement),

 597
 IsFullWindow property (MediaElement),

 596
 IsIntegrated flag, 481
 IsLooping property (MediaElement), 595
 IsMuted property (MediaElement), 596
 isolated storage, 159
 IsScreenCaptureEnabled property

(ApplicationView class), 433
 IStorageItem data type, 427
 ItemPage class, 700
 items (SkyDrive), renaming, 318
 ItemsControl, 121
 IV (initialization vector), 338
 IValueConverter interface, 89 - 90

 J
 JavaScript, invoking through WebView

control, 148
 journals, 8
 JSON data values, 277
 Json.NET, 216
 Just In Time debugging, 691
 Just My Code feature, 688 - 689

 K
 keyboard input

 accessibility, 620 - 622
 input devices, 495 - 497

 KeyboardCapabilities class, 495
 KeyDown, 496
 keys, modifier, 497
 keyUp, 496

 L
 language options (WinRT), 3
 language projections, 731
 languages

 default language, 633 - 634
 Multilingual App Toolkit, 644 - 648
 preferred languages, 635 - 637

 LastOrientation property, 101
 LaunchActivatedEvent Args, 65

 LaunchFileAsync method, 464
 launching debugger, 691 - 692
 layouts, 115

 Border control, 115
 Canvas control, 116
 ContentControl, 120 - 121
 FlipView control, 124 - 125
 Grid control, 116 - 117
 GridView control, 123
 ItemsControl, 121
 LayoutsExample project, 125 - 129
 ListBox control, 123 - 124
 ListView control, 124
 Panel control, 115
 ScrollViewer control, 122
 StackPanel control, 117 - 118
 VariableSizedWrapGrid control, 119 - 120
 ViewBox control

 LayoutsExample project, 125 - 129
 modes, 122

 VirtualizingPanel control, 118
 VirtualizingStackPanel control, 118
 WrapGrid control, 119

 LayoutsExample project, 125 - 129
 LicenseInformation class, 670 - 671
 LicenseInformation element, 677
 LicenseInformation property, 671
 licensing Bing Maps Platform, 499
lifecycle, application, 61
 lifecycle events, print tasks, 535
 light sensors, 518 , 529
 Light theme, 616
 limited_details, 313
 Link data type, 427
 ListBox control, 123 - 124
 listing background tasks, 576 - 577
 lists

 automation, 624 - 625
 filtered lists, 373 - 374

 ListView control, 124
 Live Connect, 301 - 302

 authentication, 304 - 307
 calendars and events, 311 - 314
 contacts, 310 - 311
 Example app, 304

 764 Index

 Live Connect Developer Center, 302 - 303
 Live Connect SDK, 302 - 303 , 309
 profile information, 308 - 309
 OneDrive (SkyDrive), 315 - 321

 live settings, 625
 live tiles, 229 - 234

 branding, 232
 templates, 229

 LiveAuthClient class, 305
 LiveSetting property, 625
 LoadListingInformationAsync method,

 671- 673
 LoadStoreProxyFile method, 672
 LoadSyndicatedContent method, 220
 local deployment, running, 55 - 56
 localization

 default language, 633 - 634
 design considerations, 632 - 633
 formatting dates, numbers, and

currencies for locale, 642 - 643
 Multilingual App Toolkit, 644 - 648
 MVVM (Model-View-ViewModel),

 643 - 644
 overview, 631 - 632
 preferred languages, 635 - 637
 resource qualification and matching,

 637 - 639
 XAML elements, 639 - 642

 Localization Interchange File Format (.xlf)
files, 645

 Locals window (debugger), 693
 location, 49

 simulator location tools, 509 - 510
 lock screen tasks, 570

 conditions, 578 - 580
 creating background tasks, 573 - 576
 debugging background tasks, 580 - 581
 listing background tasks, 576 - 577
 lock screen capabilities, 570 - 573
 timer, 578

 lockers, unlocking password vault,
 331 - 333

 LockScreen Example project. See lock
screen tasks

 LockScreenApplicationAdded event, 587

 LockScreenApplicationRemoved
event, 587

 LogEventListener class, 698 - 699
 LogFileGenerated event, 701
 logging, 696 - 702
 LoggingEnabled event, 701
 LoggingHelper project, 697 - 702
 LoggingSession, 701
 LogoBackgroundColor property (Share

DataPackage), 426
 Long Term Evolution (LTE), 384
 long-duration data load data type, 427
 long-duration toasts, 248
 looping audio, 248
 LTE (Long Term Evolution), 384

 M
 MAC (Message Authentication Code),

 344 - 345
 MainPage.xml, 83 - 84
 managed debugger, 686 - 688
 managed WinRT components, 75 - 76

 calling in any language, 78 - 79
 creating, 76 - 77

 managing exceptions, 694 - 696
 manipulation events, 484 , 488 - 492
 ManipulationCompleted, 489
 ManipulationDelta, 489 , 490
 ManipulationInertiaStarting, 489 , 492
 ManipulationModes, 489 , 490 , 492
 ManipulationStarted, 489
 ManipulationStarting, 489
 mapped types, 10 - 13
 MarkerReached event, 598
 markers (media), 597 - 598
 MaxDurationInSeconds property

(CameraCaptureUI VideoSettings), 601
 MaxResolution property

 CameraCaptureUI PhotoSettings, 602
 CameraCaptureUI VideoSettings, 601

 MD5 (Message Digest 5), 343
 media markers, 597 - 598
 MediaCapture, 604 - 610

 audio/video capture process, 608 - 610
 camera settings, 607 - 608

765 Index

 capture preview, 607
 creating and initializing, 604 - 607
 image capture process, 610

 MediaCaptureInitializationSettings class,
 604

 MediaCaptureJob class, 608
 MediaElement control, 131

 appearance, 595 - 596
 audio settings, 596 - 597
 instantiating, 591 - 592
 media information, 597
 media markers, 597 - 598

 MediaEncodingProfile parameter
(MediaCapture), 608

 MediaPlayer control, 131
 MediaServerDevices folder, 167
 Message Authentication Code (MAC),

 344 - 345
 Message Digest 5 (MD5), 343
 message protocols, smart tags, 402
 MessageReceived event, 391
 MessageWebSocket class, 390
 methods. See specific methods
 Metro, 29
 microphones, 49
 Microsoft account logins, authenticating,

 270 - 272
 Microsoft Advertising SDK for Windows

8.1, 678
 Microsoft design language, 29
 Microsoft Push Notification Service. See

MPNS (Microsoft Push Notification
Service)

 Microsoft System Center, 666
 Mobile Services. See Windows Azure

Mobile Services
 Mobile Services instance

 adding, 264
 connecting apps to, 267 - 268

 Mode attribute, 88
 models, UI design patterns, 351 - 352
 Model-View-Controller. See MVC

(Model-View-Controller)
 Model-View-ViewModel. See MVVM

(Model-View-ViewModel)

 Modem UT, 29
 modifier keys, 497
 money, making from apps. See income,

earning from apps
 MonitoredStates, 512
 motion sensors, 517 - 518

 accelerometer, 526 - 527
 gyrometer, 527 - 528
 inclinometer, 523 - 526
 light sensors, 529

 MouseCapabilities class, 482
 MoveAndReplaceAsync method, 170
 MoveAsync method, 170
 MovementThreshold, 508
 MPNS (Microsoft Push Notification

Service), 292
 ms-appdata:/// protocol, 175
 ms-appx:/// protocol, 175
 ms-appx-web protocol, 146
 Multilingual App Toolkit, 644 - 648
 MultilingualResources folder, 645
 multimedia

 acquiring, 598 - 599
 CameraCaptureUI, 600 - 603
 declaring application capabilities,

 599 - 600
 MediaCapture, 604 - 610

 overview, 589 - 590
 playing, 590

 audio settings, 596 - 597
 controlling playback, 592 - 595
 media information, 597
 media markers, 597 - 598
 MediaElement control appearance,

 595 - 596
 MediaElement control instantiation,

 591 - 592
 MultimediaExample project framework,

 590 - 591
 text-to-speech support, 610 - 612

 MultimediaExample project. See
multimedia

 multipart uploads, 562
 multiple files, uploading, 562
 MultipleAnimationType class, 99
 multistep authentication, 330 - 331

 766 Index

 Music Library, 49
 MusicLibrary folder, 167
 MVC (Model-View-Controller), 351 ,

 353 - 354
 MVP (Model-View-Presenter), 354 - 355
 MVVM (Model-View-ViewModel),

96 - 97 , 349
 accessing, 369 - 370
 benefits of, 364 - 366
 code reuse, 366
 commands, 371
 common misperceptions, 362 - 364
 data-binding, 366
 design-time data, 367 - 369
 dialogs, 371
 filtered lists, 373 - 374
 localization, 643 - 644
 refactoring, 366
 selection lists, 371 - 373
 tooling support, 366
 UI design patterns, 350 - 351 , 355 - 356

 models, 351 - 352
 MVC (Model-View-Controller), 353 - 354
 MVP (Model-View-Presenter), 354 - 355
 views, 352 - 353

 unit testing, 365
 validation, 375 - 377
 viewmodel, 356 - 362
 Windows Store apps, 17

 N
 namespaces, 720
 Narrator, 623
 native debugger, 686 - 688
 NaturalVideoHeight property

(MediaElement), 597
 NaturalVideoWidth property

(MediaElement), 597
 navigation, state management and, 69 - 73
 NavigationCompleted event, 144
 NavigationHelper class, 7 , 44 , 67 - 69
 NCP (Notification Client Platform), 249
 NDEF (NFC Data Exchange Format), 397
 Near Field Communications. See NFC

(Near Field Communications)

 negotiation, REST (Representational State
Transfer), 211 - 213

 nesting containers, 162
 .NET Base Class Library (BCL), 187
 .NET Framework, 9

 extension methods, 25
 WinRT

 buffers, 14 - 15
 fundamental types, 9 - 10
 mapped types, 10 - 13
 streams, 14 - 15

 networking
 background transfers, 408 - 412
 connectivity and data plans, 384 - 389
 HomeGroup, 382 - 384
 HTTP, 379 - 382
 proximity and NFC (Near Field

Communications), 397
 sockets. See sockets
 web, 379 - 382

 NetworkStateChange event, 587
 NFC (Near Field Communications), 379

 common message protocols, 401
 proximity, 397
 scenarios, 397 - 403

 NFC API, 400
 NFC Data Exchange Format (NDEF), 397
 None mode, 122 , 328
 Normal state, 103
 Notification Client Platform. See NCP

(Notification Client Platform)
 notifications, 226

 integrated push notification support,
 291 - 297

 periodic notifications, 242
 push notifications. See push

notifications
 raw push notifications, 581 - 585
 tile notifications, cycling, 234 - 236
 toast notifications, 225

 notify method, 149
 notifyOwner function, 296
 null values, 723
 numbers, formatting for locale, 642 - 643

767 Index

 O
 OAuth, 324
 ObservableDictionary, 44
 OData (Open Data), 200 , 213 , 217 - 219
 ODataServiceExample project, 217 - 219
 OneDrive, 315 - 321

 accessing, 316
 downloading from, 319 - 320
 folders, creating, 318
 items

 deleting, 318
 renaming, 318

 uploading to, 320 - 321
 OneDrive.com, 161 - 162
 OnEventWritten method, 699
 OnHandleOrientationChanged method,

 101
 OnLaunched method, 699
 OnNavigatedTo method, 8 , 533 , 582
 OnNavigationFailed method, 700
 OnShareTargetActivated method, 434 , 442
 Open Data (OData), 200 , 213 , 217 - 219
 OpenAsync method, 171
 OpenID, 324
 OpenIfExists option, 169
 OpenReadAsync method, 171
 OpenSequentialReadAsync method, 171
 OpenTransactedWriteAsync method, 171
 optimizing performance. See performance

optimization
 OrderByDate value

(CommonFileQuery), 177
 OrderByMusicProperties value

(CommonFileQuery), 177
 OrderByName value

(CommonFileQuery), 176
 OrderBySearchRank value

(CommonFileQuery), 177
 OrderByTitle value

(CommonFileQuery), 176
 orientation sensors, 518 , 528 - 529

 compass, 519 - 523
 light sensors, 529
 simple orientation sensors, 518 - 519

 OrientationHandler class, 101

 Other setting (AudioCategory), 565
 OutputStreamOverStream class, 173
 OverDataLimit, 387
 owner, 313

 P
 package identifiers, 655 - 656
 PackageAndDeployExample project,

 668 - 669
 packages on disk, finding, 52 - 54
 packaging

 app package and app bundle contents,
 654 - 655

 Create App Packages Wizard, 650 - 654
 overview, 649 - 650
 package identifiers, 655 - 656
 package information, 729
 Windows Store apps, 52

 PageAndGroupManager class, 162 , 165
 pages (HTML), 143 - 150
 Paginate events, 544
 Panel control, 115
 panels

 StackPanel control, 117 - 118
 VirtualizingPanel control, 118
 VirtualizingStackPanel control, 118

 parallel threads, 560
 parallel workflows, 351
 parameters

 encrypt parameter, 359
 query parameters, 254
 request parameters, 256
 response parameters, 258

 parsing XAML (Extensible Application
Markup Language), 140 - 142

 passed arrays, 725
 PasswordBox control, 131
 Paste method, 157 - 158
 pasting content from Clipboard, 157 - 158
 path and file helper classes, 174 - 175
path attribute, 88
 PathIcon control, 131
 PathIO class, 175
 PCL (Portable Class Library), 35 - 41
 PeerFinder class, 403

 768 Index

 peers (automation), 626 - 627
 PercentageConverter class, 89
 PercentFormatter class, 642 - 643
 Performance and Diagnostics dialog box,

 705
 performance optimization

 code analysis, 712 - 716
 logging and tracing, 696 - 702
 overview, 685 - 686
 profiling and performance analysis,

 702 - 712
 CPU sampling, 706 - 709
 energy consumption, 710 - 712
 frame rate counters, 702 - 704
 performance tips, 704 - 706
 XAML UI responsiveness, 709 - 710

 performance tips, 704 - 706
 periodic notifications, 242
 Permissions page, table data operations,

 287
 PhotoSettings properties

(CameraCaptureUI), 601
 pi, calculating, 560
 pickers and cached files, 180 - 187
 PickSingleFileAsync method, 184
 Pictures Library, 49
 PicturesLibrary folder, 167
 Plain Old CLR Object (POCO), 86
 Play To Source app, 444 - 446
 Play To Target app, 446 - 448
 PlaybackRate property

(MediaElement), 594
 playing multimedia, 590

 audio settings, 596 - 597
 background audio, 563 - 569
 controlling playback, 592 - 595
 media information, 597
 media markers, 597 - 598
 MediaElement control appearance,

 595 - 596
 MediaElement control instantiation,

 591 - 592
 MultimediaExample project framework,

 590 - 591
 Playlists folder, 167
 PlayRequested event, 447 - 448

 PlayToExample project, 443 - 444
 PlayToManager class, 444
 PlayToReceiver class, 446 - 448
 PlayToReceiver event handler, 447
 POCO (Plain Old CLR Object), 86
 pointer events, 484 - 488
 Pointer object, 487
 PointerCanceled, 486
 PointerCaptureLost, 486
 PointerDevice, 481
 PointerDeviceType, 481 , 494
 PointerEntered, 485
 PointerExited, 485
 PointerMoved, 485
 PointerOver state, 103
 PointerPoint, 487 - 488
 PointerPressed, 485
 PointerReleased, 485
 pointers, capturing, 486
 pools (thread), 560 - 562
 PopupMenu controls, 131
 Portable Class Library (PCL) , 35-41
 Portable ViewModel, 41
 PositionChanged, 506
 POST method, 291
 POST request (REST), 209
 PosterSource property (MediaElement),

 595
 PowerShell cmdlets, Import-Module, 666
 precedence, value, 95
 preferred languages, 635 - 637
 PrepareContainerForItemOverride

method, 624
 presentation logic testing, 351
 Pressed state, 103
 previewing scanners, 550 - 551
 pricing apps, 669 - 670
 PrimeCheckerExample project

 debug windows, 693 - 694
 Edit and Continue, 690
 exceptions, 694 - 696
 Just In Time debugging, 691
 Just My Code, 688 - 689
 launching debugger, 691 - 692
 native, managed, and script debuggers,

 686 - 688

769 Index

 profiling and performance analysis,
702 - 712 ,
 CPU sampling, 706 - 709
 energy consumption, 710 - 712
 performance tips, 704 - 706
 XAML UI responsiveness, 709 - 710

 program databases, 692 - 693
 primitives, 720 - 721
 print options, customizing, 538 - 542
 print preview content, generating,

 543 - 545
 print task settings, 51
 print tasks

 configuring, 534 - 537
 lifecycle events, 535

 PrintDocument, 544
 printers, 532 - 534

 asynchronous actions, 536
 customizing, 538 - 542
 example app, 532 - 533
 generating content to send to a printer,

 546 - 547
 print tasks, configuring, 534 - 537
 PrintTaskSourceRequested-

Handler callback, 537 - 538
 providing content, 542 - 545

 PrintManager, 534
 PrintTaskRequested, 533
 PrintTaskSourceRequestedHandler

callback, 535 , 537 - 538
 Private Networks (Client & Server), 49
 Product element, 677
 ProductLicenses property, 677
 profile information (Live Connect),

 308 - 309
 profiling and performance analysis,

702 - 712
 CPU sampling, 706 - 709
 energy consumption, 710 - 712
 performance tips, 704 - 706
 XAML UI responsiveness, 709 - 710

 profiting from apps
 advertisements, 678 - 683

 AdControl components, 680 - 683
 pubCenter configuration, 679 - 680

 in-app purchases, 675 - 678
 PackageAndDeployExample project,

 668 - 669
 pricing, 669 - 670
 trial mode apps, 670 - 675

 program databases, 692 - 693
 programmatic access to visual states, 109
 progress handlers, 381
 ProgressBar control, 131
 ProgressRing control, 131
 projections, examining in WinRT

components, 20 - 24
 projects

 AccessibilityExample. See
AccessibilityExample project

 AccessibilityTestProject, 626 - 627
 AnimationsExample, 97
 AudioBackgroundExample, 563 - 569
 DataBindingExample, 89 - 91

 MainPage.xml, 83 - 84
 DataFormatsExample, 192 - 194
 DocumentDataExample, 196 - 197
 FilePickerExample, 183 - 187
 FlyoutsExample, 133 - 135
 GlobalizationExample. See globalization
 LayoutsExample, 125 - 129
 LockScreen Example. See lock screen

tasks
 LoggingHelper, 697 - 702
 MultimediaExample. See multimedia
 ODataServiceExample, 217 - 219
 PackageAndDeployExample, 668 - 669
 PlayToExample, 443 - 444
 PrimeCheckerExample. See

PrimeCheckerExample
 QueryPicturesLibrary, 176 - 180
 RawNotificationExample, 582 - 585
 ShareTargetExample, 418 - 421
 SoapServiceExample. See

SoapServiceExample project
 SocketsGame, 713 - 716
 TemplatesExample, 112 - 115
 ThreadPoolExample, 560 - 562
 VisualStateExample, 101 - 102
 XamlParsingExample, 140 - 142

 770 Index

 properties, 723 - 724 . See also specific
properties

 attached properties, 94 - 95
 automation properties, 622 - 623
 data-binding attributes, 87
 dependency properties, 91 - 94
 property change notification, 95 - 97

 property change notification, 95 - 97
 PropertyChanged event, 94
 ProtectDataAsync method, 334
 protocol activation, 463 , 467 - 470
 protocols. See specific protocols
 providing print content, 542 - 543

 generating content to send to a printer,
 546 - 547

 generating print preview content,
 543 - 545

 proxies, SoapServiceExample project,
 206 - 207

 proximity, 49
 NFC (Near Field Communications), 397

 scenarios, 397 - 403
 proximity APIs, 403
 tap-to-connect scenarios, 403 - 408

 pubCenter configuration, 679 - 680
 PublishBinaryMessage method, 401
 publishing apps to Windows Store,

 657 - 665
 application certification, 661 - 665
 developer accounts, 657 - 658
 steps, 658 - 661
tools, 666

 PublishMessage method, 401
 purchases, in-app, 675 - 678
 push notifications, 249 - 251

 firewalls, 249
 raw push notifications, 581 - 585
 registering to receive, 251 - 253
 request parameters, 257
 response parameters, 258
 sending, 253 - 259

 PushNotificationChannel class, 253
 PushNotificationReceived event, 583
 PushNotificationTrigger, 582
 PUT request (REST), 209

 Q
 query parameters, 254
 QueryInterface, 731
 QueryPicturesLibrary project, 176 - 180
 QuickLinks, 439 - 441

 R
 RadioButton control, 131
 RandomAccessStream class, 173
 RandomAccessStreamOverStream

class, 173
 RandomAccessStreamReference class, 173
 RateChanged event, 594
 raw push notifications, 581 - 585
 RawNotificationExample project, 582 - 585
 RawNotificationTask, 582
 RC2 (Ron's Code), 338
 RCW (Runtime Callable Wrapper), 76
 read, 313
 read_write, 313
 ReadBufferAsync method, 174
 ReadingChanged event, 521
 ReadLinesAsync method, 174
 ReadOnlyArray attribute, 26
 ReadTextAsync method, 174
 Really Simple Syndication (RSS), 199 ,

 219 - 222
 received arrays, 725
 refactoring, 366
 referencing WinRT, 15 - 20
 RefreshTiles method, 573
 Register method, 92 , 577
 RegisterAttached method, 94
 registering

 attached properties, 94
 dependency properties, 92
 Microsoft account logins, 270 - 272
 to receive push notifications, 251 - 253

 Registry, 727 -730
 Relative Source attribute, 88
RelayCommand, 44
 ReloadSimulatorAsync method, 672
 remote deployment, running, 56 - 58
 Removable Storage, 49
 RemovableDevices folder, 167

771 Index

 RenameAsync method, 171
 renaming SkyDrive items, 318
 RepeatButton control, 131
 ReplaceExisting option, 169
 ReplaceWithStreamedFileFromUri-

Async method, 171
 ReplaceWithStreamFileAsync

method, 171
 ReportCompleted method, 439
 ReportDataRetrieved method, 438 - 439
 ReportError method, 439
 ReportStarted method, 438 - 439
 Representational State Transfer. See REST

(Representational State Transfer)
 request.body, 290
 requested theme, 616 - 618
 request.headers, 290
 RequestProductPurchaseAsync

method, 677
 request.query, 290
 requests

 push notification request
parameters, 256

 REST (Representational State Transfer),
 215 - 216

 request.service.mssql, 290
 request.service.push, 290
 request.service.tables, 290
 request.users, 290
 resource dictionaries, 90 - 91
 resource qualification and matching,

 637 - 639
 ResourceDictionary class, 87
 ResourceLoader, 641
 responses

 push notification response parameters,
 258

 response status, 328
 response.send, 290
 REST (Representational State Transfer),

 209 - 216
 compared to SOAP, 210
 HTTP status codes and REST

correlation, 211
 JSON for single category, 214 - 215

 negotiation, 211 - 213
 requests, 215 - 216
 sample result from REST service call,

 214
 RestorePageData method, 189
 .resw extension, 631
 RetrievePassword method, 332
 rich object graphs, 82
 Rich Site Summary. See RSS (Really

Simple Syndication)
 Rich Text data type, 427
 RichEditBox control, 131
 RichTextBlock control, 131 , 196 - 197
 RichTextBlockOverflow control, 132
 RightTapped, 493
 Rivest, Ron, 338
 roaming, 161 - 162 , 387
 RoamingSettings, 163 - 165
 Ron's Code (RC2), 338
 RoResolveNamespace, 731
 Rotation, 490
 routed events, 85
 RSS (Really Simple Syndication), 199 ,

 219 - 222
 running Windows Store apps, 54

 local deployment, 55 - 56
 remote deployment, 56 - 58
 simulators, 59 - 61

 Runtime Callable Wrapper. See RCW
(Runtime Callable Wrapper)

 S
 SafeNotes project, 334
 sampling CPUs, 706 - 709
 Save option (Multilingual App

Toolkit), 647
 SavedPictures folder, 168
 SaveNoteAsync method, 335
 SavePageData method, 187
 Scalable Vector Graphics (SVG), 143
 Scale, 490
 scan sources, 549 - 550
 scanners, 547

 determining availability, 548 - 549
 example app, 547 - 548

 772 Index

 previewing, 550 - 551
 scan sources, 549 - 550
 scanning, 551 - 552
 settings, 552 - 556

 scanning, 551 - 552
 ScanPicturesAsync method, 552
 scheduled tasks (Windows Azure Mobile

Services), 297 - 298
 scheduling toasts, 245
 schemas, 230
 script debugger, 686 - 688
 scripting objects, 290
 scripts

 data access scripts, 282 - 287
 Update script, 296

 ScrollBar control, 132
 ScrollViewer control, 122
 SDDL (security descriptor definition

language), 334
 SDK Live Connect, 302 - 303
 search declarations, 51
 SearchBox control, 73 - 75 , 132
 SearchBoxControlOnQuery-

Submitted method, 73
 secondary tiles, 236 - 239
 SecondaryTile class, 237
 Secure Hash Algorithm (SHA), 343
 security, 323 - 324

 authentication, 324 - 329
 documentation, 326
 Facebook, 329
 multistep (Google), 330 - 331
 options, 328
 unlocking password vault, 331 - 333

 certificates, 347
 encryption, 333

 asymmetric algorithms, 345 - 347
 data protection providers, 333 - 337
 symmetrical encryption. See

symmetrical encryption
 verification, 343

 SSO (single sign-on), 326
 security descriptor definition language

(SDDL), 334
 security descriptor (SID), 334

 Security Identifier. See SID (Security
Identifier)

 SelectedScanRegion property, 553
 SelectFileOnClick method, 565
 selection lists, MVVM (Model-View-

ViewModel), 371 - 373
 selling apps

 in-app purchases, 675 - 678
 PackageAndDeployExample project,

 668 - 669
 pricing, 669 - 670
 trial mode apps, 670 - 675

 SemanticZoom control, 132
 SemaphoreSlim class, 699
 sending

 content to printers, 546 - 547
 push notifications, 253 - 259

 SendNotificationHelper class, 256
 sendNotifications function, 297
 sensor input, 498

 example app, 498 - 502
 geofencing, 510 - 511

 defining fences, 512 - 514
 events, 514 - 516
 managing geofences, 516 - 517

 geolocation, 502 - 503
 Geocoordinate, 508 - 509
 Geolocator, 504 - 508
 simulator location tools, 509 - 510

 motion sensors, 517 - 518
 accelerometer, 526 - 527
 gyrometer, 527 - 528
 inclinometer, 523 - 526

 orientation sensors, 517 - 518
 compass, 519 - 523
 light sensors, 529
 orientation sensors, 528 - 529
 simple orientation sensors, 518 - 519

 services (web). See web services
 ServicingComplete event, 587
 SessionConnected condition, 579
 SessionConnected event, 588
 SessionDisconnected method, 579
 SetApplicationLink function, 430
 SetBitmap function, 428

773 Index

 SetButtonStates method, 564
 SetData function, 431
 SetDataProvider method, 432
 SetGeoLocatorReady function, 507
 SetMediaStreamSource method, 592
 SetMostRecentlyUsedFile method, 186
 SetPosition method, 593
 SetProperty method, 357
 SetSource method, 447 , 591
 SetStorageItems function, 430
 SetText function, 428
 SetThumbnailPrefetch method, 177
 settings

 RoamingSettings, 163 - 165
 setting entries, adding, 418 - 421
 Settings Charm, 417 - 421

 Settings Charm
 overview, 417
 setting entries, adding, 418 - 421
 ShareTargetExample project, 418 - 421

 Settings Flyout template, 417 - 421
 SetTransportControlStates method, 567 ,

 568
 SetTrigger method, 578
 SetupTroubleshooting method, 109
 SetWebLink function, 430
 SHA (Secure Hash Algorithm), 343
 ShapeConverter class, 126
 ShapeModel class, 491
 Share Charm

 overview, 421 - 423
 share process, 422
 Share Source app, 423 - 433

 application sharing, 431 - 433
 bitmap sharing, 429
 DataRequestEventArgs class, 424
 DataTransferManager class, 424 - 425
 file sharing, 430
 HTML sharing, 428
 predefined metaproperties available in

share data package, 426
 share data types, 427

 Share Target app, 433 - 442
 creating, 434 - 441
 debugging, 441 - 442

 share data types, 427
 Share Source app, 423 - 433

 application sharing, 431 - 433
 bitmap sharing, 429
 DataRequestEventArgs class, 424
 DataTransferManager class, 424 - 425
 file sharing, 430
 HTML sharing, 428
 predefined metaproperties available in

share data package, 426
 share data types, 427

 Share Target app, 433 - 442
 creating, 434 - 441
 debugging, 441 - 442

 share target declarations, 51
 Share30x30Logo property (Share

DataPackage), 426
 shared groups of subscribers (Windows

Azure Mobile Services), 267
 Shared User Certificates, 49
 ShareTargetActivatedEventArgs class,

 436
 ShareTargetExample project, 418 - 421
 sharing. See Share Charm
 Show method, 608
 SID (Security Identifier), 253 , 334
 sideloading Windows Store apps, 665 - 666
 signatures, verifying, 344
 signing up for developer accounts,

 657 - 658
 silencing toasts, 247
 SilentMode, 328
 Simple Object Access Protocol. See SOAP
 simple orientation sensors, 517 - 519
 simulator location tools, 509 - 510
 simulators, running, 59 - 61
 single sign-on. See SSO (single sign-on)
 SingleUse, 512
 sizesof tiles, 226 - 227
 Skrape app, 154
 SkrapeDataManager class, 164
 SkyDrive. See OneDrive
 Slider control, 86, 89, 96, 132
 smart tags, 402
 SmsReceived event, 588

 774 Index

 SOAP, 200 - 209
 compared to REST, 209
 explained, 200 - 201

 SoapServiceExample project, 200 - 209
 Add Service Reference dialog, 205
 AsForecastEntry method, 207
 AsWeatherForecast method, 208
 design-time data for forecast entry,

 202 - 203
 generated proxies, 206 - 207
 GetWeatherForZipCode method, 208
 WeatherHelperService class, 207
 XAML for forecast entry, 203 - 204

 sockets, 389
 sockets APIs, 379
 TCP (Transmission Control Protocol),

 392 - 396
 UDP (User Datagram Protocol), 392 - 396
 WebSocket protocol, 389 - 392

 SocketsGame project, 713 - 716
 SoundEffects setting

(AudioCategory), 565
 Source attribute, 88
SourceChangeRequested event, 447
 SourceRequested event, 444 - 445
 SourceSelected event, 445
 SpeakContentAsync method, 611 - 612
 SpeechSynthesizer class, 611 - 612
 split app, 34
 Square 30x30 Logo, 227
 Square 70x70 Logo, 227
 Square 310x310 Logo, 227
 SSO (single sign-on), 323 , 326
 StackPanel control, 117 - 118
 Standard tier (Windows Azure Mobile

Services), 300
 standard toast, 243
 StartAsync() method, 563
 StartCaptureAsync method, 608 - 609
 StartCapturePreview method, 606 - 607
 StartPreviewAsync method, 606 - 607
 StartRecordTo methods, 608
 StartRecordToCustomSinkAsync target

type, 608
 StartRecordToStorageFileAsync target

type, 608 - 609

 StartRecordToStreamAsync target
type, 608

 StartTime, 512
 states

 state management, navigation and,
 69 - 73

 VSM (Visual State Manager)
 explained, 105 - 106
 programmatic access to visual states, 109

 StopRecordAsync method, 609 - 610
 storage

 application storage
 app storage hierarchy, 159 - 160
 composite values, 165 - 166
 containers, 162
 roaming data, 161 - 162
 settings, 163 - 165

 isolated storage, 159
 storage files, 170 - 171
 storage folders, 167 - 170
 storage query operations, 176 - 180

 StorageFile class, 452
 StorageFile objects, 169
 StorageFileQueryResult class, 178
 Store Logo, 227
 Storyboard class, 97 , 109
 stream ciphers, 341
 streams, 14 - 15 , 171 - 174
 StreamSocket, 393
 Stretched state, 107
 structures, 722
 Style class, 87 , 111 - 112
 styles, 111 - 112
 subscription method, 400
 subscriptions, 263 , 267
 support for Windows RT, 3
 SupportUsages, 481
 SuspensionManager class, 6 , 44 , 67 - 69
 SVG (Scalable Vector Graphics), 143
 SymbolIcon control, 132
 symmetrical encryption, 337

 authentication, 342 - 343
 block ciphers, 337 - 341
 stream ciphers, 341

 syndication, 219 - 222
 SyndicationClient, 219 - 222

775 Index

 SynthesizeSsmlToStreamAsync
method, 612

 SynthesizeTextToStreamAsync
method, 612

 system events, 587 - 588
 SystemCondition class, 578
 SystemTrigger, 587 - 588

 T
 table access methods, 282
 table operation scripting objects, 284
 table proxy, 281
 tables

 table access methods, 282
 table data operations, 287
 table operation scripting objects, 284
 table proxy, 281
 Windows Azure Mobile Services,

 274 - 278
 Tapped, 493
 tap-to-connect scenarios, 403 - 408
 TargetFileRequested, 459- 460
 Task class, 560
 TaskRunCompleted handler, 577
 tasks

 background. See background tasks
 scheduled (Windows Azure Mobile

Services), 297 - 298
 TCP (Transmission Control Protocol), 389 ,

 392 - 396
 template assets, 44 - 45
 TemplateBinding keyword, 138
 templates

 adding text to (tiles), 231
 ControlTemplate class, 112
 DataTemplate class, 112
 explained, 112
 Grid App template, 5
 live tiles, 229
 TemplatesExample project, 112 - 115
 toasts, 244
 Windows Store apps, 32

 Blank app, 32
 class library, 35
 coded UI tests, 43

 Grid app, 33
 Hub app, 33 - 34
 PCL (Portable Class Library), 35 - 41
 split app, 34
 template assets, 44 - 45
 unit test library, 42 - 43
 WinRT components, 42

 TemplatesExample project, 112 - 115
 testing with WACK (Windows App

Certification Kit), 662 - 664
 text

 adding to templates (tiles), 231
 text-to-speech support

 Narrator, 623
 SpeechSynthesizer class, 610 - 612

 Text data type, 427
 TextBlock control, 132
 TextBox control, 132
 text-to-speech support

 Narrator, 623
 SpeechSynthesizer class, 610 - 612

 themes
 high contrast, 618 - 619
 requested theme, 616 - 618

 thread pool, 560 - 562
 ThreadPoolExample project, 560 - 562
 threads

 parallel threads, 560
 thread pool, 560 - 562

 tile helper, 231
 tile notifications, cycling, 234 - 236
 TileExplorer project, 233
 tiles, 225 - 227

 badges, 239 - 241
 cycling tile notifications, 234 - 236
 default tiles, 227 - 229
 live tiles, 229 - 234
 periodic notifications, 242
 schemas, 230
 secondary tiles, 236 - 239
 sizes, 226 - 227

 TileTemplateType, 230
 TileUpdateManager, 230 , 232
 TileUpdater method, 235
 time, formatting for locale, 642 - 643

 776 Index

 TimelineMarker objects, 597 - 598
 TimePicker control, 132
 timer, 578
 TimeTrigger, 578
 TimeZoneChange event, 588
 Title property (Share DataPackage), 426
 toast notifications, 225
 toasts, 242 - 248

 desktop applications, 248
 expiration, 245
 long-duration toasts, 248
 scheduling, 245
 silencing, 247
 standard toast, 243
 templates, 244

 ToggleButton control, 132
 ToggleSwitch control, 132
 token requests, 254
 tooling support, MVVM (Model-View-

ViewModel), 366
 ToolTip control, 132
 TouchCapabilities class, 482
 tracing, 696 - 702
 TransformToString method, 195
 transitions, VSM (Visual State Manager),

 106 - 107
 Translate option (Multilingual App

Toolkit), 646
 TranslateTransform, 491
 Translation, 490
 Translation Languages dialog box, 647
 Transmission Control Protocol. See TCP

(Transmission Control Protocol)
 TransportControlsButtonPressed

handler, 568
 trial mode apps, 670 - 675
 triggers

 ControlChannelTrigger, 585 - 586
 PushNotificationTrigger, 582
 SystemTrigger, 587 - 588
 TimeTrigger, 578

 Triple Data Encryption Algorithm (3DES),
 338

 troubleshooting HTTP status codes and
REST correlation, 211

 TryGetClickablePoint method, 626

 T-SQL data types, 277
 TypeConverter class, 82

 U
 UDP (User Datagram Protocol), 389 ,

 392 - 396
 UI design patterns, 350 - 351

 models, 351 - 352
 MVC (Model-View-Controller), 353 - 354
 MVP (Model-View-Presenter), 354 - 355
 MVVM (Model-View-ViewModel),

 355 - 356
 views, 352 - 353

 UI thread, accessing, 369 - 370
 UIElement class, 87 , 485
 UnauthorizedAccessException, 506 , 606
 Uniform mode (ViewBox), 122
 UniformToFill mode (ViewBox), 122
 unit testing

 MVVM (Model-View-ViewModel), 365
 unit test library templates, 42 - 43

 unlocking password vault, 331 - 333
 Update script, 296
 uploading to OneDrive (SkyDrive),

 320 - 321
 uploads, 562 - 563
 URIs, 13
 UriToString method, 23
 URLs, 381
 USB HIB, 481
 UseCorporateNetwork, 328
 UseHttpPost, 328
 User Datagram Protocol. See UDP (User

Datagram Protocol)
 UserAway event, 588
 UserInformation.SetAccountPictureAsync

method, 471
 UserNotPresent method, 579
 UserPresent event, 588
 UserPresent method, 579
 users, authenticating, 272 - 274
 UseTitle, 328
 UsingTransport method, 586
 UTC (Coordinated Universal Time), 12
 utilities. See specific utilities

777 Index

 V
 validation, MVVM (Model-View-

ViewModel), 375 - 377
 value precedence, 95
 values

 composite values, 165 - 166
 value precedence, 95

 VariableSizedWrapGrid control, 119 - 120
 Verb entry, 471
 verification

 encryption, 343
 hash algorithms, 343 - 344
 MAC (Message Authentication Code),

 344 - 345
 signatures, 344

 video
 acquiring, 598 - 599

 CameraCaptureUI, 600 - 603
 declaring application capabilities,

 599 - 600
 MediaCapture, 604 - 610

 playing, 590
 audio settings, 596 - 597
 controlling playback, 592 - 595
 media information, 597
 media markers, 597 - 598
 MediaElement control appearance,

 595 - 596
 MediaElement control instantiation,

 591 - 592
 MultimediaExample project framework,

 590 - 591
 VideoDeviceController property

(MediaCapture class), 607
 VideoDeviceId (MediaCapture class), 604
 Videos Library, 49
 VideoSettings properties

(CameraCaptureUI), 601
 VideosLibrary folder, 168
 ViewBox control

 LayoutsExample project, 125 - 129
 modes, 122

 ViewModel, 126 , 246 , 643 - 644
 commands, 361
 MVVM (Model-View-ViewModel),

 356 - 362

 ViewModel locators, 360
 views

 FlipView control, 124 - 125
 GridView control, 123
 ListView control, 124
 ScrollViewer control, 122
 UI design patterns, 352 - 353
 ViewBox control

 LayoutsExample project, 125 - 129
 modes, 122

 WebView control, 130 , 143 - 150
 VirtualizingPanel control, 118
 VirtualizingStackPanel control, 118
 VirtualKey enumeration, 497
 Visual State Manager. See VSM (Visual

State Manager)
 Visual Studio 2012, 29
 visual tree (XAML), 83 - 85
 VisualStateExample project, 101 - 102
 VoiceInformation class, 611
 Volume property (MediaElement), 596
 VSM (Visual State Manager)

 custom VSMs, 109 - 110
 explained, 100
 groups, 103 - 105
 states

 explained, 105 - 106
 programmatic access to visual states, 109

 transitions, 106 - 107
 VisualStateExample project, 101 - 102
 workflow, 107 - 108

 .vspx extension, 706

 W
 WACK (Windows App Certification Kit),

 662 - 664
 WasKeyDown property, 496
 Watch windows (debugger), 694
 WeatherHelperService class, 207
 web authentication brokers, 326
 Web Graphics Library (WebGL), 143
 web links, sharing, 431
 web services

 OData (Open Data), 217 - 219
 overview, 199 - 200

 778 Index

 REST (Representational State Transfer),
 209 - 216
 compared to SOAP, 209
 HTTP status codes and REST

correlation, 211
 JSON for single category, 214 - 215
 negotiation, 211 - 213
 requests, 215 - 216
 sample result from REST service call,

 214
 SOAP, 200 - 209

 compared to REST, 209
 explained, 200 - 201
 SoapServiceExample project, 201 - 209

 syndication, 219 - 222
 Webcam, 49
 WebGL (Web Graphics Library), 143
 WebRequest object, 36
 WebSocket protocol, 389 - 392
 WebSocketKeepAlive task, 585
 WebView control, 132 , 143 - 150
 Wide 310x150 Logo, 227
 Wi-Fi (Wireless Fidelity), 384
 Windows 8, Developer Preview

version, 29
 Windows App Certification Kit (WACK),

 662 - 664
 Windows Azure Mobile Services, 262 - 267

 authentication, 269 - 270
 authenticating users, 272 - 274
 registration and configuration for

Microsoft account logins, 270 - 272
 connecting apps to, 267 - 268
 custom APIs, 289 - 291
 data storage, 274

 authorization, 287 - 289
 data access scripts, 282 - 287
 data in client apps, 278 - 282
 managing data tables, 274 - 278

 deployment tiers, 298 - 300
 features, 262 - 263
 Git source control integration, 286
 integrated push notification support,

 291 - 297

 scheduled tasks, 297 - 298
 subscriptions, 263 , 267

 Windows Charms
 Devices Charm

 overview, 442 - 443
 Play To Source app, 444 - 446
 Play To Target app, 446 - 448
 PlayToExample project, 442 - 448

 overview, 415 - 417
 Settings Charm

 overview, 417
 setting entries, adding, 418 - 421
 ShareTargetExample project, 418 - 421

 Share Charm
 overview, 421 - 423
 share process, 422
 Share Source app, 423 - 433
 Share Target app, 433 - 442

 Windows Data Protection API (DPAPI),
 333

 Windows Intune, 666
 Windows Media Player, 444
 Windows Phone 7, 29
 Windows print functionality, 533
 Windows Push Notification Service. See

WNS (Windows Push Notification
Service)

 Windows RT, 2- 3
 Windows Store apps, 4 - 5 , 30 - 31

 app manifest, 45 - 46
 application UI, 46 - 48
 capabilities, 48 - 50
 content URIs, 52
 declarations, 50 - 51
 packaging, 52

 application lifecycle, 61 - 67
 connections, 384 - 385
 creating, 5 - 8
 finding your package on disk, 52 - 54
 making money from, 667 - 668

 advertisements, 678 - 683
 in-app purchases, 675 - 678
 PackageAndDeployExample project,

 668 - 669

779 Index

 pricing apps, 669 - 670
 trial mode apps, 670 - 675

 package information, 729
 publishing, 657 - 665

 application certification, 661 - 665
 developer accounts, 657 - 658
 steps, 658 - 661

 running, 54
 local deployment, 55 - 56
 remote deployment, 56 - 58
 simulators, 59 - 61

 sideloading, 665 - 666
 templates, 32

 Blank app, 32
 class library, 35
 coded UI tests, 43
 Grid app, 33
 Hub app, 33 - 34
 PCL (Portable Class Library), 35 - 41
 split app, 34
 template assets, 44 - 45
 unit test library, 42 - 43
 WinRT components, 42

 WindowsRuntimeBufferExtension class,
 171

 WindowsStoreProxy folder, 672
 Windows.Web.Syndication namespace,

 219
 winmd extension, 719
 WinRT, 1 - 4

 adding references, 17
 asynchronous functions, 24 - 26
 components, 20 - 24
 language options, 3
 .NET Framework

 buffers, 14 - 15
 fundamental types, 9 - 10
 mapped types, 10 - 13
 streams, 14 - 15

 referencing from desktop applications,
 15 - 20

 templates, 42
 WinRT internals, 725 - 731
 wireless wide area network (WWAN), 384

 WithExpiration method, 236
 wizards, Create App Packages Wizard,

 650 - 654
 WLAN (wireless local area

connections), 384
 WNS (Windows Push Notification

Service), 249 , 292 , 293
 workflow, VSM (Visual State Manager),

 107 - 108
 WrapGrid control, 119
 WriteBufferAsync method, 174
 WriteBytesAsync method, 175
 WriteEvent method, 698
 WriteLinesAsync method, 175
 WriteTextAsync method, 175
 WWAN (wireless wide area network), 384

 X
 x86 chips, 2
 XAML (Extensible Application Markup

Language)
 animations, applying to controls, 97 - 100
 data-binding

 attached properties, 94 - 95
 attributes, 87
 classes, 86 - 87
 DataBindingExample, 89 - 91
 dependency properties, 91 - 94
 explained, 85 - 86
 property change notification, 95 - 97
 value precedence, 95

 events, 85
 explained, 81 - 83
 localization, 639 - 642
 parsing, 140 - 142
 rich object graphs, 82
 TypeConverter class, 82
 visual tree, 83 - 85
 VSM (Visual State Manager)

 explained, 100
 groups, 103 - 105
 states, 105 - 106
 transitions, 106 - 107
 VisualStateExample project, 101 - 102

 XAML UI responsiveness, 709 - 710

 780 Index

 XamlParsingExample project, 140 - 142
 .xlf (Localization Interchange File Format)

files, 645
 XML (Extensible Markup Language), 81
 XML badges, 241
 XmlDocument, 230
 XOR (exclusive or), 338
 XSL Formatting Objects, 195
 XSLT transformation, 195

 Z
 zip archives, 187 - 191
 ZipArchive class, 188
 ZipFileExtensions class, 189

	Contents
	Foreword
	Preface
	10 Networking
	Web and HTTP
	HomeGroup
	Connectivity and Data Plans
	Sockets
	WebSockets
	UDP and TCP Sockets

	Proximity (Near Field Communications)
	NFC-Only Scenarios
	Tap-to-Connect Scenarios

	Background Transfers
	Summary

	13 Devices
	Working with Input Devices
	Sensor Input
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

