VMware Press is the official publisher of VMware books and training materials, which provide guidance on the critical topics facing today’s technology professionals and students. Enterprises, as well as small- and medium-sized organizations, adopt virtualization as a more agile way of scaling IT to meet business needs. VMware Press provides proven, technically accurate information that will help them meet their goals for customizing, building, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing and is the official source of reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products into more than forty-two languages, including, but not limited to, Chinese (Simplified), Chinese (Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit vmwarepress.com.
VMware® Press is a publishing alliance between Pearson and VMware, and is the official publisher of VMware books and training materials that provide guidance for the critical topics facing today’s technology professionals and students.

With books, eBooks, certification study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing, and is the official source of reference materials for preparing for the VMware certification exams.

vmwarepress.com

Complete list of products • User Group Info • Articles • Newsletters
This page intentionally left blank
This book is dedicated to my wife of 28 years, Juliann, who has supported me in every way possible, and my three children, John, Annmarie, and Michael.

-Michael Corey

This book is dedicated to my wife, Heather, and my three children, Wyatt, Oliver, and Stella.

-Jeff Szastak

This book is dedicated to my wife, Susanne, and my four sons, Sebastian, Bradley, Benjamin, and Alexander, for their ongoing support. I also dedicate this book to the VMware community.

-Michael Webster
This page intentionally left blank
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xxiii</td>
</tr>
<tr>
<td>About the Technical Reviewer</td>
<td>xxv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxvii</td>
</tr>
<tr>
<td>Reader Services</td>
<td>xxix</td>
</tr>
</tbody>
</table>

1. **Virtualization: The New World Order?** 1
 - Virtualization: The New World Order 1
 - Virtualization Turns Servers into Pools of Resources 3
 - Living in the New World Order as a SQL Server DBA 3
 - A Typical Power Company 6
 - Summary 7

2. **The Business Case for Virtualizing a Database** 9
 - Challenge to Reduce Expenses 9
 - The Database Administrator (DBA) and Saving Money 10
 - Service Level Agreements (SLA) and the DBA 11
 - Avoiding the Good Intention BIOS Setting 12
 - DBAs’ Top Reasons to Virtualize a Production Database 13
 - High Availability and Database Virtualization 14
 - Performance and Database Virtualization 16
 - Provisioning/DBaaS and Database Virtualization 17
 - Hardware Refresh and Database Virtualization 20
 - Is Your Database Too Big to Virtualize? 22
 - Summary 23

3. **Architecting for Performance: The Right Hypervisor** 25
 - What Is a Hypervisor? 25
 - Hypervisor Is Like an Operating System 26
 - What Is a Virtual Machine? 28
 - Paravirtualization 29
 - The Different Hypervisor Types 29
 - Type-1 Hypervisor 30
 - Type-2 Hypervisor 31
 - Paravirtual SCSI Driver (PVSCSI) and VMXNET3 31
 - Installation Guidelines for a Virtualized Database 32
 - It’s About Me, No One Else But Me 33
 - Virtualized Database: It’s About Us, All of Us 34
Contents

SQL Virtual Machine Storage Layout 152
Expanding SQL Virtual Machine Storage 158
Jumbo VMDK Implications for SQL Server 159

vSphere Storage Design for Maximum SQL Performance 164
Number of Data Stores and Data Store Queues 165
Number of Virtual Disks per Data Store 170
Storage IO Control—Eliminating the Noisy Neighbor 173
vSphere Storage Policies and Storage DRS 177
vSphere Storage Multipathing 184
vSphere 5.5 Failover Clustering Enhancements 185
RAID Penalties and Economics 187

SQL Performance with Server-Side Flash Acceleration 198
VMware vSphere Flash Read Cache (vFRC) 199
Fusion-io ioTurbine 201
PernixData FVP 204

SQL Server on Hyperconverged Infrastructure 207
Summary 213

7 Architecting for Performance: Memory 217

Memory 218
Memory Trends and the Stack 218
Database Buffer Pool and Database Pages 219
Database Indexes 222
Host Memory and VM Memory 225
Mixed Workload Environment with Memory Reservations 226
Transparent Page Sharing 228
Internet Myth: Disable Memory TPS 229
Memory Ballooning 230
Why the Balloon Driver Must Run on Each Individual VM 232
Memory Reservation 232
Memory Reservation: VMware HA Strict Admission Control 233
Memory Reservations and the vswap File 233
SQL Server Max Server Memory 234
SQL Server Max Server Memory: Common Misperception 235
Formula for Configuring Max Server Memory 236
Large Pages 237
What Is a Large Page? 237
Large Pages Being Broken Down 238
Lock Pages in Memory 239
How to Lock Pages in Memory 241
8 Architecting for Performance: Network 249

SQL Server and Guest OS Network Design 250
 Choosing the Best Virtual Network Adapter 250
 Virtual Network Adapter Tuning 252
 Windows Failover Cluster Network Settings 254
 Jumbo Frames 256
 Configuring Jumbo Frames 259
 Testing Jumbo Frames 262
VMware vSphere Network Design 264
 Virtual Switches 265
 Number of Physical Network Adapters 267
 Network Teaming and Failover 270
 Network I/O Control 274
 Multi-NIC vMotion 276
 Storage Network and Storage Protocol 279
Network Virtualization and Network Security 281
Summary 286

9 Architecting for Availability: Choosing the Right Solution 287

Determining Availability Requirements 287
Providing a Menu 288
SLAs, RPOs, and RTOs 290
Business Continuity vs. Disaster Recovery 291
 Business Continuity 291
 Disaster Recovery 291
 Disaster Recovery as a Service 292
vSphere High Availability 294
 Hypervisor Availability Features 294
 vMotion 296
 Distributed Resource Scheduler (DRS) 297
 Storage vMotion 297
 Storage DRS 297
Enhanced vMotion X-vMotion 298

vSphere HA 298

vSphere App HA 299

vSphere Data Protection 300

vSphere Replication 300

vCenter Site Recovery Manager 301

VMware vCloud Hybrid Service 302

Microsoft Windows and SQL Server High Availability 302

ACID 302

SQL Server AlwaysOn Failover Cluster Instance 304

SQL Server AlwaysOn Availability Groups 306

Putting Together Your High Availability Solution 308

Summary 310

10 How to Baseline Your Physical SQL Server System 311

What Is a Performance Baseline? 312

Difference Between Performance Baseline and Benchmarks 315

Using Your Baseline and Your Benchmark to Validate Performance 318

Why Should You Take a Performance Baseline? 319

When Should You Baseline Performance? 320

What System Components to Baseline 320

Existing Physical Database Infrastructure 321

Database Application Performance 323

Existing or Proposed vSphere Infrastructure 325

Comparing Baselines of Different Processor Types and Generations 328

Comparing Different System Processor Types 328

Comparing Similar System Processor Types Across Generations 330

Non-Production Workload Influences on Performance 331

Producing a Baseline Performance Report 332

Performance Traps to Watch Out For 333

Shared Core Infrastructure Between Production and Non-Production 333

Invalid Assumptions Leading to Invalid Conclusions 334

Lack of Background Noise 334

Failure to Considering Single Compute Unit Performance 335

Blended Peaks of Multiple Systems 335

vMotion Slot Sizes of Monster Database Virtual Machines 336

Summary 337
11 Configuring a Performance Test—From Beginning to End 339

Introduction 339
What We Used—Software 341
What You Will Need—Computer Names and IP Addresses 341
Additional Items for Consideration 342
Getting the Lab Up and Running 342
VMDK File Configuration 345
VMDK File Configuration Inside Guest Operating System 352
Memory Reservations 355
Enabling Hot Add Memory and Hot Add CPU 356
Affinity and Anti-Affinity Rules 358
Validate the Network Connections 359
Configuring Windows Failover Clustering 359
Setting Up the Clusters 362
Validate Cluster Network Configuration 368
Changing Windows Failover Cluster Quorum Mode 369
Installing SQL Server 2012 374
Configuration of SQL Server 2012 AlwaysOn Availability Groups 387
Configuring the Min/Max Setting for SQL Server 392
Enabling Jumbo Frames 393
Creating Multiple tempdb Files 394
Creating a Test Database 396
Creating the AlwaysOn Availability Group 399
Installing and Configuring Dell DVD Store 406
Running the Dell DVD Store Load Test 430

Summary 436

Appendix A Additional Resources 437

Additional Documentation Sources 437
User Groups 440
VMUG: The VMware Users Group 440
PASS: Professional Association of SQL Server 441
VMware Community 442
Facebook Groups 443

Blogs 444
Twitter: 140 Characters of Real-Time Action 445

Index 447
This page intentionally left blank
Foreword

About 10 years ago, I started a new job. The company I started working for had a couple hundred physical servers at the time. When several new internal software development projects started, we needed to expand quickly and added dozens of new physical servers. Pretty soon we started hitting all the traditional datacenter problems, such as lack of floor space, high power consumption, and cooling constraints. We had to solve our problems, and during our search for a solution we were introduced to a new product called VMware ESX and Virtual Center. It didn’t take long for us to see the potential and to start virtualizing a large portion of our estate.

During this exercise, we started receiving a lot of positive feedback on the performance of the virtualized servers. On top of that, our application owners loved the fact that we could deploy a new virtual machine in hours instead of waiting weeks for new hardware to arrive. I am not even talking about all the side benefits, such as VMotion (or vMotion, as we call it today) and VMware High Availability, which provided a whole new level of availability and enabled us to do maintenance without any downtime for our users.

After the typical honeymoon period, the question arose: What about our database servers? Could this provide the same benefits in terms of agility and availability while maintaining the same performance? After we virtualized the first database server, we quickly realized that just using VMware Converter and moving from physical to virtual was not sufficient, at least not for the databases we planned to virtualize.

To be honest, we did not know much about the database we were virtualizing. We didn’t fully understand the CPU and memory requirements, nor did we understand the storage requirements. We knew something about the resource consumption, but how do you make a design that caters to those requirements? Perhaps even more importantly, where do you get the rest of the information needed to ensure success?

Looking back, I wish we’d had guidance in any shape or form that could have helped along our journey—guidance that would provide tips about how to gather requirements, how to design an environment based on these requirements, how to create a performance baseline, and what to look for when hitting performance bottlenecks.

That is why I am pleased Jeff Szastak, Michael Corey, and Michael Webster took the time to document the valuable lessons they have learned in the past few years about virtualizing tier 1 databases and released it through VMware Press in the form of this book you are about to read. Having gone through the exercise myself, and having made all the mistakes mentioned in the book, I think I am well qualified to urge you to soak in all this valuable knowledge to ensure success!

Duncan Epping
Principal Architect, VMware
Yellow-Bricks.com
This page intentionally left blank
Preface

As we traveled the globe presenting on how to virtualize the most demanding business-critical applications, such as SQL Server, Oracle, Microsoft Exchange, and SAP, it became very clear that there was a very real and unmet need from the attendees to learn how to virtualize these most demanding applications correctly.

This further hit home when we presented at the VMworld conferences in San Francisco and Barcelona. At each event, we were assigned a very large room that held over 1,800 people; within 48 hours of attendees being able to reserve a seat in the room, it was filled to capacity. We were then assigned a second large room that again filled up within 24 hours.

Recognizing that the information we had among the three of us could help save countless others grief, we decided to collaborate on this very practical book.

Target Audience

Our goal was to create in one book—a comprehensive resource that a solution architect, system administrator, storage administrator, or database administrator could use to guide them through the necessary steps to successfully virtualize a database. Many of the lessons learned in this book apply to any business-critical application being virtualized from SAP, E-Business Suite, Microsoft Exchange, or Oracle, with the specific focus of this book on Microsoft SQL Server. Although you don’t have to be a database administrator to understand the contents of this book, it does help if you are technical and have a basic understanding of vSphere.

Approach Taken

Everything you need to succeed in virtualizing SQL Server can be found within the pages of this book. By design, we created the book to be used in one of two ways. If you are looking for a comprehensive roadmap to virtualize your mission-critical databases, then follow along in the book, chapter by chapter. If you are trying to deal with a particular resource that is constraining the performance of your database, then jump to Chapters 5 through 8.

At a high level, the book is organized as follows:

■ Chapters 1 and 2 explain what virtualization is and the business case for it. If you are a database administrator or new to virtualization, you will find these chapters very helpful; they set the stage for why virtualizing your databases is “doing IT right.”
Chapters 3 through 9 are the roadmap you can follow to successfully virtualize the most demanding of mission-critical databases. Each chapter focuses on a particular resource the database utilizes and how to optimize that resource to get the best possible performance for your database when it is virtualized. We purposely organized this section into distinct subject areas so that you can jump directly to a particular chapter of interest when you need to brush up. We expect that you will periodically return to Chapters 5 through 8 as you are fine-tuning the virtualized infrastructure for your mission-critical databases.

The last two chapters walk you through how to baseline the existing SQL Server database so that you adequately determine the resource load it will put onto the virtualized infrastructure. In these chapters, we also provide detailed instructions on how to configure a stress test.

Here are the three major sections of the book with the associated chapters:

What Virtualization Is and Why You Should Do It
In this section, the reader will learn about the benefits of virtualization and why the world is moving towards 100% virtualization. The reader will learn the benefits of breaking the bond between hardware and software, and the benefits this brings to the datacenter and why virtualization is a better way to do IT.

Chapter 1: Virtualization: The New World Order?
Chapter 2: The Business Case for Virtualizing a Database

Optimizing Resources in a Virtualized Infrastructure
In Chapters 3-9, the reader will gain knowledge on how to properly architect and implement virtualized SQL Server. The reader will start off learning how to put together a SQL Server virtualization initiative, and then dive into an in-depth discussion on how to architect SQL Server on a vSphere platform. This section includes deep dives on storage, memory, networking, and high availability.

Chapter 3: Architecting for Performance: The Right Hypervisor
Chapter 4: Virtualizing SQL Server: Doing IT Right
Chapter 5: Architecting for Performance: Design
Chapter 6: Architecting for Performance: Storage
Chapter 7: Architecting for Performance: Memory
Chapter 8: Architecting for Performance: Network
Chapter 9: Architecting for Availability: Choosing the Right Solution
How to Baseline and Stress Test

The final two chapters walk the reader through the importance of setting up a baseline for their virtualized SQL Server implementation. Chapter 10 speaks to the why and the how of baselining, which is critical to successfully virtualizing SQL Server. In the final chapter, the reader will put all the knowledge presented in the previous chapters together and will be walked through a beginning-to-end configuration of SQL Server 2012 with AlwaysOn Availability Groups running on Windows Server 2012 on a vSphere 5.5 infrastructure.

Chapter 10: How to Baseline Your Physical SQL Server System

Chapter 11: Configuring a Performance Test—From Beginning to End

A database is one of the most resource-intensive applications you will ever virtualize, and it is our sincere intention that with this book as your guide, you now have a roadmap that will help you avoid the common mistakes people make—and more importantly, you will learn how to get optimal performance from your virtualized database.

We want to thank you for buying our book, and we hope after you read it that you feel we have achieved our goal of providing you with a comprehensive resource on how to do IT right. Feel free to reach out to us with any questions, suggestions, or feedback you have.

Michael Corey (@Michael_Corey) Michael.corey@ntirety.com

Jeff Szastak (@Szastak)

Michael Webster (@vcdxnz001)
This page intentionally left blank
About the Authors

Michael Corey (@Michael_Corey) is the President of Ntirety, a division of Hosting. Michael is an experienced entrepreneur and a recognized expert on relational databases, remote database administration, and data warehousing. Microsoft named Michael a SQL Server MVP, VMware named him a vExpert, and Oracle named him an Oracle Ace. Michael has presented at technical and business conferences from Brazil to Australia. Michael is a past president of the Independent Oracle Users Group; he helped found the Professional Association of SQL Server, is a current board member of the IOUG Cloud SIG, and is actively involved in numerous professional associations and industry user groups. Michael currently sits on the executive committee for the Massachusetts Robert H. Goddard Council for Science, Technology, Engineering, and Mathematics.

Jeff Szastak (@Szastak) is currently a Staff Systems Engineer for VMware. Jeff has been with VMware for over six years, holding various roles with VMware during his tenure. These roles have included being a TAM, Systems Engineer Specialist for Business-Critical Applications, Enterprise Healthcare Systems Engineer, and a CTO Ambassador. Jeff is a recognized expert for virtualizing databases and other high I/O applications on the vSphere platform. Jeff is a regular speaker at VMworld, VMware Partner Exchange, VMware User Groups, and has spoken at several SQL PASS events. Jeff holds a Master of Information Assurance degree as well as the distinguished CISSP certification. Jeff has over 13 “lucky” years in IT and is passionate about helping others find a better way to do IT.

Michael Webster (@vcdxnz001) is based in Auckland, New Zealand. He is a VMware Certified Design Expert (VCDX #66), author of long-whiteclouds.com (a top-15 virtualization blog), and a Top 10 VMworld Session Speaker for 2013. In addition, he is a Senior Solutions and Performance Engineer for Nutanix, vExpert, MCSE, and NPP. Michael specializes in solution architecture and performance engineering for Unix-to-VMware migrations as well as virtualizing business-critical applications such as SQL, Oracle, SAP, Exchange, Enterprise Java Systems, and monster VMs in software-defined data centers. Michael has more than 20 years experience in the IT industry and 10 years experience deploying VMware solutions in large-scale environments around the globe. He is regularly a presenter at VMware VMworld, VMware vForums, VMware User Groups, and other industry events. In addition to this book, Michael was technical reviewer of *VCDX Boot Camp* and *Virtualizing and Tuning Large-Scale Java Platforms*, both published by VMware Press.
This page intentionally left blank
About the Technical Reviewer

Mark Achtemichuk (VCDX #50) is currently a Senior Technical Marketing Architect, specializing in Performance, within the SDDC Marketing group at VMware. Certified as VCDX #50, Mark has a strong background in data center infrastructures and cloud architectures, experience implementing enterprise application environments, and a passion for solving problems. He has driven virtualization adoption and project success by methodically bridging business with technology. His current challenge is ensuring that performance is no longer a barrier, perceived or real, to virtualizing an organization’s most critical applications on its journey to the software-defined data center.
Acknowledgments

We would like to thank the entire team at VMware Press for their support throughout this project and for helping us get this project across the line—especially Joan Murray for her constant support and encouragement. We would like to thank our editorial team. Thank you Ellie Bru and Mandie Frank for your attention to detail to make sure we put out a great book, and last but not least, we would especially like to thank our technical reviewer, Mark Achtemichuk (VCDX #50).

Michael Corey

Anyone who has ever written a book knows first hand what a tremendous undertaking it is and how stressful it can be on your family. It is for that reason I thank my wife of 28 years, Juliann. Over those many years, she has been incredible. I want to thank my children, Annmarie, Michael, and especially John, who this particular book was hardest on. John will know why if he reads this.

Jeff and Michael, my co-authors, are two of the smartest technologists I have ever had the opportunity to collaborate with. Thank you for making this book happen despite the many long hours it took you away from your families. Mark Achtemichuk, our technical reviewer, rocks! He helped take this book to a whole new level. To my friends at VMware—Don Sullivan, Kannan Mani, and Sudhir Balasubramanian—thank you for taking all my late-night emails and phone calls to discuss the inner workings of vSphere. To the publishing team at Pearson, what can I say? Thank you Joan Murray for believing and making this book possible.

Special thanks go to my Ntirety family—Jim Haas, Terrie White, and Andy Galbraith are all three incredible SQL Server technologists. And special thanks to people like David Klee and Thomas LaRock and to the entire SQL Server community. Every time I attend a SQLSaturday event, I always think how lucky I am to be party of such a special community of technologist who care a lot and are always willing to help.

Jeff Szastak

I would like to thank my loving wife, Heather, for her love, support, and patience during the writing of this book. I want to thank my children, Wyatt, Oliver, and Stella, for it is from you I draw inspiration. A huge thank-you to Hans Drolshagen for the use of his lab during the writing of this book! And thanks to my mentor, Scott Hill, who pushed me, challenged me, and believed in me. Thanks for giving a guy who couldn’t even set a DHCP address a job in IT, Scott.
Finally, I would like to thank the VMware community. Look how far we have come. I remember the first time I saw a VMware presentation as a customer and thought, “If this software works half as well as that presentation says it does, this stuff will change the world.” And it has, because of you, the VMware community.

Michael Webster

I’d like to thank my wife, Susanne, and my four boys, Sebastian, Bradley, Benjamin, and Alexander, for providing constant love and support throughout this project and for putting up with all the long hours on weeknights and weekends that it required to complete this project. I would also like to acknowledge my co-authors, Michael and Jeff, for inviting me to write this book with them. I am extremely thankful for this opportunity, and it has been a fantastic collaborative process. Finally, I’d like to thank and acknowledge VMware for providing the constant inspiration for many blog articles and books and for creating a strong and vibrant community. Also, thanks go out to my sounding boards throughout this project: Kasim Hansia, VMware Strategic Architect and SAP expert, Cameron Gardiner, Microsoft Senior Program Manager Azure and SQL, and Josh Odgers (VCDX #90), Nutanix Senior Solutions and Performance Architect. Your ideas and support have added immeasurable value to this book and the IT community as a whole.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write us directly to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: VMware Press
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website at www.informit.com/title/9780321927750 and register this book for convenient access to any updates, downloads, or errata that might be available for this book.
This page intentionally left blank
All aspects of architecting your SQL Server Database for performance are important. Storage is more important than most when compared to the other members of the IT Food Group family we introduced in Chapter 5, “Architecting for Performance: Design,” which consists of Disk, CPU, Memory, and Network. Our experience has shown us, and data from VMware Support validates this belief, that more than 80% of performance problems in database environments, and especially virtualized environments, are directly related to storage. Understanding the storage architecture in a virtualized environment and getting your storage architecture right will have a major impact on your database performance and the success of your SQL Server virtualization project. Bear in mind as you work through your storage architecture and this chapter that virtualization is bound by the laws of physics—it won’t fix bad code or bad database queries. However, if you have bad code and bad queries, we will make them run as fast as possible.

TIP
Greater than 80% of all problems in a virtualized environment are caused by the storage in some way, shape, or form.

This chapter first covers the key aspects of storage architecture relevant to both physical and virtual environments as well as the differences you need to understand when architecting storage, specifically for virtualized SQL Server Databases. Many of the concepts we discuss will be valid for past versions of SQL Server and even the newest release, SQL Server 2014.
We provide guidance on what our experience has taught us are important database storage design principles. We present a top-down approach covering SQL Server Database and Guest OS Design, Virtual Machine Template Design, followed by VMware vSphere Hypervisor Storage Design and then down to the physical storage layers, including using server-side flash acceleration technology to increase performance and provide greater return on investment. We conclude the chapter by covering one of the biggest IT trends and its impact on SQL Server. Throughout this chapter, we give you architecture examples based on real-world projects that you can adapt for your purposes.

When designing your storage architecture for SQL Server, you need to clearly understand the requirements and have quantitative rather than subjective metrics. Our experience has taught us to make decisions based on fact and not gut feeling. You will need to benchmark and baseline your storage performance to clearly understand what is achievable from your design. Benchmarking and baselining performance are critical to your success, so we’ve dedicated an entire chapter (Chapter 10, “How to Baseline Your Physical SQL Server System”) to those topics. In this chapter, we discuss some of the important storage system component performance aspects that will feed into your benchmarking and baselining activities.

The Five Key Principles of Database Storage Design

When architecting storage for SQL Server, it’s important to understand a few important principles. These will help guide your design decisions and help you achieve acceptable performance both now and in the future. These principles are important because over the past decade, CPU performance has increased at a much faster pace than storage performance, even while capacity has exploded.

Principle 1: Your database is just an extension of your storage

"Your database is just an extension of your storage"

Figure 6.1 Quote from Michael Webster, VMworld 2012

The first principle is highlighted in Figure 6.1: that your database is just an extension of your storage. A database is designed to efficiently and quickly organize, retrieve, and process large quantities of data to and from storage. So increasing the parallelism of access
to storage resources at low latency will be an important goal. Later in this chapter, we cover how to optimize the architecture of your database to maximize its storage performance and parallelism. When you understand this principle, it’s easy to understand why getting your storage design and performance is so critical to the success of your SQL Server Database virtualization project.

Principle 2: Performance is more than underlying storage devices

The next key principle is that storage performance is more than just about underlying storage devices and spindles, although they are very important too. SQL Server storage performance is multidimensional and is tightly coupled with a number of different system components, such as the number of data files allocated to the database, the number of allocated vCPUs, and the amount of memory allocated to the database. This is why we like to use the term “IT Food Groups,” because it is so important to feed your database the right balance of these critical resources. This interplay between resources such as CPU, Memory, and Network and their impact on storage architecture and performance will be covered in subsequent sections of this chapter.

Principle 3: Size for performance before capacity

“The bitterness of poor performance lasts long after the sweetness of a cheap price is forgotten”

Figure 6.2 Quote from Michael Webster, VMworld 2013

Figure 6.2 is loosely based on the eighteenth-century quote “The bitterness of poor quality remains long after the sweetness of low price is forgotten,” by Benjamin Franklin. Both quotes are extremely relevant to SQL Server database and storage performance.

This brings us to the next key principle. In order to prevent poor performance from being a factor in your SQL Server virtualization project (refer to Figure 6.2), you should design storage for performance first (IOPS and latency), then capacity will take care of itself. Capacity is the easy part. We will show you later in this chapter how compromising on certain storage configurations on the surface can actually cost you a lot more by causing unusable capacity due to poor performance.
CAUTION
A lesson from the field: We were working with a customer, and they wanted to design and run a database on vSphere that could support sustained 20,000 IOPS. After we worked with the customer’s vSphere, SAN, Network, and DBA teams, the customer decided to move forward with the project. The customer then called in a panic saying, “In our load test, we achieved 1,000 IOPS. We are 19,000 short of where we need to be.” Trust me, this is a phone call you don’t want to get. Playing the odds, we started with the disk subsystem. We quickly identified some issues. The main issue was the customer purchased for capacity, not performance. They had to reorder the right disk. Once the new (right) disk arrived and was configured, the customer exceeded the 20,000 IOPS requirement.

TIP
When it comes to storage devices, HDDs are cents per GB but dollars per IOP, whereas SSDs are cents per IOP and dollars per GB. SSDs should be considered cheap memory, rather than expensive disks, especially when it comes to enterprise SSDs and PCIe flash devices.

Principle 4: Virtualize, but without compromise
The next principle is that virtualizing business-critical SQL Server databases is all about reducing risk and not compromising on SLAs. Virtualize, but without compromise. There is no need to compromise on predictability of performance, quality of service, availability, manageability, or response times. Your storage architecture plays a big part in ensuring your SQL databases will perform as expected. As we said earlier, your database is just an extension of your storage. We will show you how to optimize your storage design for manageability without compromising its performance.

Believe it or not, as big of advocates as we are about virtualizing SQL Server, we have told customers in meetings that now is not the right time for this database to be virtualized. This has nothing to do with the capability of vSphere or virtualization, but more to do with the ability of the organization to properly operate critical SQL systems and virtualize them successfully, or because they are not able or willing to invest appropriately to make the project a success. If you aren’t willing to take a methodical and careful approach to virtualization projects for business-critical applications, in a way that increases the chances of success, then it’s not worth doing. Understand, document, and ensure requirements can
be met through good design and followed by testing and validation. It is worth doing, and it is worth “Doing It Right!”

Principle 5: Keep it standardized and simple (KISS)

This brings us to the final principle. Having a standardized and simplified design will allow your environment and databases to be more manageable as the numbers scale while maintaining acceptable performance (see Principle 4). If you have a small number of standardized templates that fit the majority of your database requirements and follow a building-block approach, this is very easy to scale and easy for your database administrators to manage. We’ll use the KISS principle (Keep It Standardized and Simple) throughout this chapter, even as we dive into the details. Once you’ve made a design decision, you should standardize on that decision across all your VM templates. Then when you build from those templates, you’ll know that the settings will always be applied.

SQL Server Database and Guest OS Storage Design

The starting point for any storage architecture for SQL Server Databases is actually with our last design principle: KISS (Keep It Standardized and Simple). But all of the principles apply. We will determine the smallest number of templates that are required to virtualize the majority (95%) of database systems, and anything that falls outside this will be handled as an exception.

Your first step is to analyze the inventory of the SQL Server Databases that will be virtualized as part of your project (refer to Chapter 4, “Virtualizing SQL Server 2012: Doing It Right”). From this inventory, you will now put each database and server into a group with similar-sized databases that have similar requirements. The storage requirements for all of these existing and new databases, based on their grouping, will be used to define the storage layouts and architecture for each of the SQL Server Databases, Guest OS, and VM template.
TIP
If you are virtualizing existing databases, you might consider using a tool such as VMware Capacity Planner, VMware Application Dependency Planner, Microsoft System Center, or Microsoft Assessment and Planning Toolkit to produce the inventory. VMware Capacity Planner and Application Dependency Planner are available from VMware Professional Services or your preferred VMware partner. When you’re baselining a SQL Server database, a lot can happen in a minute. We recommend your sample period for CPU, Memory, and Disk be 15 seconds or less. We recommend you sample T-SQL every minute.

SQL Server Database File Layout
Database file layout provides an important component of database storage performance. If you have existing databases that will be virtualized, you or your DBAs will likely have already developed some practices around the number of database files, the size of database files, and the database file layout on the file system. If you don’t have these practices already in place, here we provide you with some guidelines to start with that have proven successful.

Your SQL Server database has three primary types of files you need to consider when architecting your storage to ensure optimal performance: data files, transaction log files, and Temp DB files. Temp DB is a special system database used in certain key operations, and has a big performance impact on your overall system. The file extensions you’ll see are .mdf (master data file), .ndf (for secondary data files), and .ldf for transaction log files. We will go over all of these different file types later in this chapter.

Number of Database Files
First, we need to determine the number of database files. There are two main drivers for the number of files you will specify. The first driver is the number of vCPUs allocated to the database, and the second is the total capacity required for the database now and in the future.

Two design principles come into play here: The parallelism of access to storage should be maximized by having multiple database files, and storage performance is more than just the underlying devices. In the case of data files and Temp DB files, they are related to the number of CPU cores allocated to your database. Table 6.1 provides recommendations from Microsoft and the authors in relation to file type.
NOTE

It is extremely unlikely you will ever reach the maximum storage capacity limits of a SQL Server 2012 database system. We will not be covering the maximums here. We recommend you refer to Microsoft (http://technet.microsoft.com/en-us/library/ms143432.aspx).

Table 6.1 Number of Data Files and Temp DB Files Per CPU

<table>
<thead>
<tr>
<th>File Type</th>
<th>Microsoft Recommended Setting</th>
<th>Author Recommended Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp DB Data File</td>
<td>1 per CPU core</td>
<td>< 8 vCPU, 1 per vCPU
> 8 vCPU, 8 total (increase number of files in increments of four at a time if required) Max 32</td>
</tr>
<tr>
<td>Database Data File</td>
<td>0.25 to 1.0 per file group, per CPU core</td>
<td>Min 1 per vCPU, max 32
1**</td>
</tr>
<tr>
<td>Database Transaction Log File</td>
<td>1</td>
<td>1**</td>
</tr>
<tr>
<td>Temp DB Transaction Log File</td>
<td>1</td>
<td>1**</td>
</tr>
</tbody>
</table>

*If Temp DB and Transaction Log are deployed on local SSD or flash storage, especially when using AlwaysOn Availability Groups, then it is recommended to have an additional copy on SAN.

Microsoft recommends as a best practice that you should configure one Temp DB data file per CPU core and 0.25 to 1 data file (per file group) per CPU core. Based on our experience, our recommendation is slightly different.

If your database is allocated eight or fewer vCPUs as a starting point, we recommend you should configure at least one Temp DB file per vCPU. If your database is allocated more than eight vCPUs, we recommend you start with eight Temp DB files and increase by lots of four in the case of performance bottlenecks or capacity dictates.

TIP

Temp DB is very important because it’s extensively utilized by OLTP databases during index reorg operations, sorts, and joins, as well as for OLAP, DSS, and batch operations, which often include large sorts and join activity.
We recommend in all cases you configure at least one data file (per file group) per vCPU. We recommend a maximum of 32 files for Temp DB or per file group for database files because you’ll start to see diminishing performance returns with large numbers of database files over and above 16 files. Insufficient number of data files can lead to many writer processes queuing to update GAM pages. This is known as GAM page contention. The Global Allocation Map (GAM) tracks which extents have been allocated in each file. GAM contention would manifest in high PageLatch wait times. For extremely large databases into the many tens of TB, 32 files of each type should be sufficient.

Updates to GAM pages must be serialized to preserve consistency; therefore, the optimal way to scale and avoid GAM page contention is to design sufficient data files and ensure all data files are the same size and have the same amount of data. This ensures that GAM page updates are equally balanced across data files. Generally, 16 data files for tempdb and user databases is sufficient. For Very Large Database (VLDB) scenarios, up to 32 can be considered. See http://blogs.msdn.com/b/sqlserverstorageengine/archive/2009/01/04/what-is-allocation-bottleneck.aspx.

If you expect your database to grow significantly long term, we would recommend that you consider configuring more data files up front. The reason we specify at least one file per CPU is to increase the parallelism of access from CPU to data files, which will reduce any unnecessary data access bottlenecks and lower latency. This also allows for even data growth, which will reduce IO hotspots.

CAUTION

Having too few or too many Temp DB files can impact the overall performance of your database. Our guidance is conservative and aimed to meet the requirements for the majority of SQL systems. If you start to see performance problems such as higher than normal query response times or excessive database waits in `PAGELATCH_XX`, then you have contention in memory and may need to increase the number of Temp DB files further and/or implement trace flag 1118 (which we recommend), which prevents single page allocations. If you see waits in `PAGEIOLATCH_XX`, then the contention is at the IO subsystem level. Refer to http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-Temp DB-should-always-have-one-data-file-per-processor-core/ and Microsoft KB 328551 (http://support.microsoft.com/kb/328551).
TIP
The number of data files and Temp DB files is important enough that Microsoft has two spots in the Top 10 SQL Server Storage best practices highlighting the number of data files per CPU. Refer to http://technet.microsoft.com/en-us/library/cc966534.aspx.

NOTE
When you’re determining the number of database files, a vCPU is logically analogous to a CPU core in a native physical deployment. However, in a native physical environment without virtualization, each CPU core may also have a hyper-thread. In a virtual environment, each vCPU is a single thread. There is no virtual equivalent of a hyper-thread.

Figure 6.3 shows an example of data files, Temp DB files, and transaction log files allocated to a SQL Server 2012 Database on a sample system with four vCPU and 32GB RAM.

NOTE
As Figure 6.3 illustrates, there is only one transaction log file per database and per Temp DB. Log files are written to sequentially, so there is no benefit in having multiples of them, unless you exceed the maximum log file size (2TB) between backups. There is a benefit of having them on very fast and reliable storage, which will be covered later.
Index

Numbers

10Gb Ethernet NICs, 269

A

ABRTS/s counter, 326
ACID (Atomicity, Consistency, Isolation, and Durability), 302-303
ActivePerl, 407
ActiveState ActivePerl, 407
adapter count, 95
adapters
 CAN (Converged Network Adapter), 276
 iSCSI, 276
 LSI Logic SAS, 95
physical network adapters, 267-269
PVSCSI, 95
virtual network adapters, 100
 choosing, 250-251
 traffic types, 101-102
 tuning, 252-254
addresses (IP), 341-342
Admission Control, 88
affinity rules, 358
AGs (Availability Groups), 306-308
alignment of partitions, 128-129
AlwaysOn Availability Groups
 configuring, 387-391
 creating, 399-405
AlwaysOn Failover Cluster Instance, 125
anti-affinity rules, 358
Application Dependency Planner, 110
AQLEN, 168
arrays, 98-99
atomicity, 302-303
ATS (Atomic Test Set), 99
Auto Grow, 114-115
availability, 135
 ACID (Atomicity, Consistency, Isolation, and Durability), 302-303
 business continuity, 291
determining availability requirements, 287-288
disaster recovery, 291-294
high availability, 14-16
 providing a menu of options, 288-289
RPOs (recovery point objectives), 290
RTOs (recovery time objectives), 290
sample high availability chart, 308-309
SLAs (service-level agreements), 290
SQL Server AlwaysOn Failover Cluster Instance (FCI), 304-306
SQL Server Availability Groups (AGs), 306-308
vSphere high availability
 DRS (Distributed Resource Scheduler), 297
 hypervisor availability features, 294-296
Storage DRS, 297
Storage vMotion, 297
vCenter SRM (Site Recovery Manager), 301
vCHS (vCloud Hybrid Service), 302
vDP (vSphere Data Protection), 300
vMotion, 296-297
vSphere App HA, 299-300
vSphere HA, 298-299
vSphere Replication, 300-301
X-vMotion, 298
Availability Groups (AGs), 306-308
Available Mbytes metrics, 321
Average Latch Wait Time(ms) metric, 324
Average Wait Time(ms) metric, 324

B

background noise, lack of, 334
backing up networks, 103
ballooning, 230-232
bandwidth, vMotion traffic, 276
baselines
 baseline performance reports, 332-333
 benchmarks, 315-316
 developing, 317-318
 industry-standard benchmarks, 316
 validating performance with, 318
 vendor benchmarks, 316-317
common performance traps
 blended peaks of multiple systems, 335
 failure to consider SCU (Single Compute Unit) performance, 335
invalid assumptions, 334
lack of background noise, 334
shared core infrastructure between production and non-production, 333-334
vMotion slot sizes of monster database virtual machines, 336-337
comparing
different processor generations, 330-331
different processor types, 328-330
customer deployments, 71
database workload, 48-50
evaluated, 311-314
metrics
ESXTOP counters, 325-327
SQL Server baseline infrastructure metrics, 321-322
SQL Server Perfmon counters, 323-324
SQL Server Profiler counters, 324-325
non-production workload influences on performance, 331-332
reasons for, 319-320
validating performance with, 318
vSphere infrastructure, 46-48
when to record, 320
Batch Requests/sec metric, 324
Batch/ETL (Extract Transform Load) workloads, 64
benchmarks, 315-316
developing
benchmark model based on recorded production performance, 318
benchmark model based on system nonfunctional requirements, 317
industry-standard benchmarks, 316
validating performance with, 318
vendor benchmarks, 316-317
BIOS settings, 12-13
blended peaks of multiple systems, 335
blocks, Pointer Block Eviction Process, 163-164
blogs, 444
Thomas LaRock’s blog, 445
vLaunchPad, 444-445
breaking down large pages, 238-239
buffer
Buffer Cache, 49
Buffer Cache Hit Ratio, 50, 323
Buffer Manager, 323
Buffer Pool, 129-130, 219-220
built-in in-memory, 246-247
business case for virtualization, 9
BIOS settings, 12-13
DBA (database administrator) advantages, 10-11
hardware refresh, 20-22
high availability, 14-16
large databases, 22-23
performance, 16-17
provisioning/DBaaS, 17-20
database tiering, 19-20
shared environments, 20
reduced expenses, 9-10
SLAs (service level agreements), 11-12
business continuity, 291
business transparency, 73
Bytes Total/sec metric, 322

C

cache
- Buffer Cache, 49
- Buffer Cache Hit Ratio, 50, 323
- CACHEUSED counter, 326
- Fusion-io ioTurbine, 201-203
- vRFC (vSphere Flash Read Cache), 199-201
- CACHEUSED counter, 326
- CAN (Converged Network Adapter), 276
- capacity, one-to-one relationships and unused capacity, 38-40
- Center of Excellence (CoE), 61-63
- charge back, 73
- “check it before you wreck it” rule, 36
- choosing virtual network adapters, 250-251
- cloud, vCHS (vCloud Hybrid Service), 302
- Cluster Validation Wizard, 363-364
- clusters
 - failover cluster instance storage layout, 157
 - vSphere 5.5 failover clustering environments, 185-186
 - Windows Failover Clustering configuration, 359-368
 - quorum mode, 369-374
 - validating, 368
- WSFC (Windows Server Failover Clustering), 304
- CMDS/s counter, 326
- CoE (Center of Excellence), 61-63
- Column Storage, 134-135
- commands, SP_Configure, 246
- communication, 58-59
 - communication responsiveness, 253
 - mutual understanding, 59-60
 - responsibility domains, 60-61
- comparing performance baselines, 328
 - different processor generations, 330-331
 - different processor types, 328-330
- Complete page (SQL Server installation), 387
- compression, 133
- compromise, virtualization without, 108-109
- computer names, requirements for performance testing, 341-342
- configuration
 - AlwaysOn Availability Groups, 387-391
 - Hot-Add Memory and Hot-Add CPU, 356-358
 - jumbo frames, 259-262, 393-394
 - max/min memory, 392
 - Max Server Memory, 236-237
 - performance test labs, 342
 - performance tests, 339-340
 - affinity and anti-affinity rules, 358
 - AlwaysOn Availability Groups configuration, 387-391
AlwaysOn Availability Groups creation, 399-405
computer name/IP address requirements, 341-342
Dell DVD Store installation and configuration, 406-430
Dell DVD Store load test, 430-436
Hot-Add Memory and Hot-Add CPU, 356-358
jumbo frame configuration, 393-394
max/min memory configuration, 392
memory reservations, 355
multiple tempdb files, 394-395
network connection validation, 359
performance test lab setup, 342-345
software requirements, 341
SQL Server 2012 installation, 374-387
test database creation, 396-398
VMDK file configuration, 345-354
Windows Failover Clustering configuration, 359-368
Windows Failover Clustering quorum mode, 369-374
Windows Failover Clustering validation, 368
trace flags, 215
Configure Cluster Quorum Wizard, 370-374
consistency, 302-303
consolidations, 53, 68
continuity (business), 291
controllers, virtual storage, 138-143
Converged Network Adapter (CAN), 276
Cores per Socket, 83
counters
ESXTOP, 325-327
Perfmon, 50, 323-324
Profiler, 324-325
CPUs, 74-76
CPU Scheduler, 86
hot-add CPUs, 3-4
CPU Scheduler, 86
Create Cluster Wizard, 366
CrossSubnetDelay, 255
CrossSubnetThreshold, 255
%CSTP counter, 326
customer deployment baselines, 71

D

DaaS (Database as a Service), 73
and database virtualization, 17-20
Darwin, Charles, 1-3
database administrators. See DBAs
Database as a Service. See DaaS
database availability, 287
ACID (Atomicity, Consistency, Isolation, and Durability), 302-303
business continuity, 291
determining availability requirements, 287-288
disaster recovery, 291-294
providing a menu of options, 288-289
RPOs (recovery point objectives), 290
RTOs (recovery time objectives), 290
sample high availability chart, 308-309
SLAs (service-level agreements), 290
SQL Server AlwaysOn Availability Groups (AGs), 306-308
SQL Server AlwaysOn Failover Cluster Instance (FCI), 304-306
vSphere high availability
 DRS (Distributed Resource Scheduler), 297
hypervisor availability features, 294-296
Storage DRS, 297
Storage vMotion, 297
vCenter SRM (Site Recovery Manager), 301
vCHS (vCloud Hybrid Service), 302
vDP (vSphere Data Protection), 300
vMotion, 296-297
vSphere App HA, 299-300
vSphere HA, 298-299
vSphere Replication, 300-301
X-vMotion, 298
database availability design, 135
database buffer pool, 219-220
database consolidations, 53
Database Engine Configuration page (SQL Server installation), 382
database files
 file system layout, 110-122
data files, 123-126
log files, 123-126
NTFS file system allocation unit size, 126-127
OS, application binaries, and page file, 122
partition alignment, 128-129
Temp DB files, 123-126
Instant File Initialization (IFI), 120-122
number of, 110-113
size of, 114-116
data files, 116
Temp DB files, 116
transaction log file sizing, 117-120
database indexes, 222-225
database installation guidelines, 32-36
database instances, number of, 244-245
database metrics, 324
database pages
 explained, 219-220
 large pages
 breaking down into default page size, 238-239
 explained, 237-238
 locking pages in memory, 239-241
 paging, 220-221
 swapping, 220-221
 TPS (transparent page sharing), 228-229
data files
 file system layout, 123-126
 sizing, 116
data protection (vDP), 300
data stores
 number of, 165-169
 virtual disks per data store, 170-173
DAVG/cmd counter, 326
DAVG/cmd metric, 48
DBA Guide to Databases on VMware (white paper), 439
DBAs (database administrators)
 business case for virtualization, 10-11
 BIOS settings, 12-13
 hardware refresh, 20-22
 high availability, 14-16
 large databases, 22-23
 performance, 16-17
 provisioning/DBaaS, 17-20
 SLAs (service level agreements), 11-12
 SLAs (service level agreements), 11-12
Decision Support System. See DSS workload

default queue depth (QLogic HBA), 166
Dell DVD Store, 327
 installing and configuring, 406-430
 load test, 430-436
Dell DVD Store Custom Install Wizard, 408
Denneman, Frank, 444
deployment, 54, 63
design
 deployment, 54, 63
networks. See network design
server-side flash acceleration, 198-199
 Fusion-io ioTurbine, 201-203
 PernixData FVP, 204-206
 vSphere Flash Read Cache (vFRC), 199-201
SQL Server database and guest OS storage, 109
 Buffer Pool, 129-130
 Column Storage, 134-135
 database availability, 135
 database statistics, updating, 130-132
 Data Compression, 133
 file system layout, 110, 122-129
 Instant File Initialization (IFI), 120-122
 number of database files, 110-113
 size of database files, 114-120
 Storage Spaces, 136
 Volume Managers, 136
SQL Server on hyperconverged infrastructure, 207-213
SQL Server virtual machine storage, 136
 expanding, 158-159
 Jumbo VMDKs, 159-164
 layout, 152-157
 virtual disk devices, 143-152
 virtual storage controllers, 138-143
 VM hardware version, 137
storage design principles
 database as extension of storage, 106
 KISS principle (Keep It
 Standardized and Simple), 109
 performance and underlying
 storage devices, 107
 sizing for performance before
 capacity, 107-108
 virtualization without
 compromise, 108-109
vSphere storage, 164
 multipathing, 184-185
 number of data stores and data
 store queues, 165-169
 number of virtual disks per data
 store, 170-173
 RAID (Redundant Array of
 Independent Disks), 187-197
 storage DRS, 177-183
 Storage IO Control (SIOC), 173-177
 storage policies, 177-183
 vSphere 5.5 failover clustering
 environments, 185-186
determining availability requirements, 287-288
developing benchmarks
 benchmark model based on recorded
 production performance, 318
 benchmark model based on system
 nonfunctional requirements, 317
disaster recovery, 291-294
discovery, 53
Disk Management utility, 352
Disk Space Requirements page (SQL
Server installation), 382
disks
 disk layout, 95
 Disk Management utility, 352
 enterprise flash disks (EFDs), 195-197
 RAID (Redundant Array of
 Independent Disks)
 economics of RAID performance, 194-197
 IO penalties, 189-194
 randomness of IO pattern, 187-188
 read/write bias, 188
 virtual disk devices, 143
 IO blender effect, 151-152
 Raw Device Map (RDM), 149-151
 Thick Eager Zero disks, 147-148
 Thin versus Thick Lazy Zero
 disks, 144-146
Distributed Resource Scheduler (DRS), 297
distributed switches, 263
distributed virtual switches, 100
documentation
 online resources, 437-440
 reading, 43-44
dozing, 13
DQLEN, 168
DRaaS, 293-294
drivers (PVSCSI), 31
%DRPPX counter, 327
%DRPTX counter, 327
DRS (Distributed Resource Scheduler), 297
DSS (Decision Support System) workload, 64
durability, 302-303
dynamic threshold for automatic statistics update, 131

E
E1000 adapters, 250-252
E1000E adapters, 250-252
economics of RAID performance, 194-197
education, 60
EFDs (enterprise flash disks), 195-197
Effects of Min and Max Server Memory (article), 235
enabling. See configuration encapsulation, 28
enterprise flash disks (EFDs), 195-197
Epping, Duncan, 444
Error Reporting page (SQL Server installation), 385
ESXi host swap file location, 78
ESXTOP counters, 325-327
ETL (Extract Transform Load), 64
expanding SQL virtual machine storage layout, 158-159
expenses, reducing, 9-10

F
Facebook groups, 443
Failover Cluster Instance (FCI), 98, 304-306
Failover Cluster Manager, 362
Failover Clustering configuring, 359-368
Failover Cluster Instance (FCI), 98, 304-306
Failover Cluster Manager, 362
failover clustering environments, 185-186
network settings, 254-256
network teaming, 270-273
quorum mode, 369-374
storage layout, 157
validating, 368
FCI (Failover Cluster Instance), 98, 304-306
Feature Selection page (SQL Server installation), 379
file system layout, 110-122
data files, 123-126
log files, 123-126
NTFS file system allocation unit size, 126-127
OS, application binaries, and page file, 122
partition alignment, 128-129
Temp DB files, 123-126
files
database files
Instant File Initialization (IFI), 120-122
number of, 110-113
size of, 114-120
file system layout, 110-122
data files, 123-126
log files, 123-126
NTFS file system allocation unit size, 126-127
OS, application binaries, and page file, 122
partition alignment, 128-129
Temp DB files, 123-126
multiple tempdb files, 394-395
VLFs (Virtual Log Files), 118-120
VMDK files, configuring
inside guest operating system, 352-354
on virtual machines, 345-351
vswap, memory reservations and, 233-234
vswp files, 88
flash, server-side flash acceleration, 198-199
Fusion-io ioTurboine, 201-203
PernixData FVP, 204-206
vSphere Flash Read Cache (vFRC), 199-201
Flash Virtualization Platform (FVP), 204-206
frames
jumbo frames, 256-259
configuring, 259-262, 393-394
testing, 262-264
pause frames, 268
Free System Page Table Entries metric, 321
full virtualization, importance of, 36-38
Fusion-io ioTurboine, 201-203
Fusion-io ioTurboine Profiler, 203
FVP (Flash Virtualization Platform), 204-206

G

Gage, John, 281
GAVG/cmd for NFS Datastores counter, 326
General Statistics, 324
GPT (GUID Partition Table), 136
Gray, Jim, 302-303
groups
AlwaysOn Availability Groups
configuring, 387-391
creating, 399-405
database groups, 69
user groups
 Facebook groups, 443
 PASS (Professional Association of SQL Server), 441-442
VMUG (VMware Users Group), 440
VMWare Community, 442-443
guest OS storage, 27, 109
Buffer Pool, 129-130
Column Storage, 134-135
database availability, 135
database statistics, updating, 130-132
 with maintenance plan, 131-132
 with trace flag 2371, 131
Data Compression, 133
file system layout, 110, 122
data files, 123-126
log files, 123-126
NTFS file system allocation unit size, 126-127
OS, application binaries, and page file, 122
partition alignment, 128-129
Temp DB files, 123-126
Instant File Initialization (IFI), 120-122
number of database files, 110-112
size of database files, 114-116
data file sizing, 116
 Temp DB file sizing, 116
transaction log file sizing, 117-120
Storage Spaces, 136
VMDK file configuration in, 352-354
Volume Managers, 136
GUID Partition Table (GPT), 136

H

HA (high availability)
 ACID (Atomicity, Consistency, Isolation, and Durability), 302-303
 DRS (Distributed Resource Scheduler), 297
 hypervisor availability features, 294-296
 sample high availability chart, 308-309
 SQL Server AlwaysOn Availability Groups (AGs), 306-308
 SQL Server AlwaysOn Failover Cluster Instance (FCI), 304-306
 Storage DRS, 297
 Storage vMotion, 297
 vCenter SRM (Site Recovery Manager), 301
 vCHS (vCloud Hybrid Service), 302
 vDP (vSphere Data Protection), 300
 vMotion, 296-297
 vSphere App HA, 299-300
 vSphere HA, 298-299
 vSphere Replication, 300-301
 X-vMotion, 298
hardware. See physical hardware
hardware independence, 28
hardware refresh and database virtualization, 20-22
Heap size, 160-162
heartbeat vNICs, 256
help. See resources
high availability. See HA (high availability)

high-level virtualization implementation plan, 50-51
 phase 1: requirements gathering, 51-52
 phase 2: discovery, 53
 phase 2.1: database consolidations, 53
 phase 3: infrastructure adjustments, 53
 phase 4: validation and testing, 54
 phase 5: migration and deployment, 54
 phase 6: monitoring and management, 54

Hirt, Allan, 445
Hogan, Cormac, 445
host-local swap, 78
host memory, 225-226
host <servername> CPU% value, 434
Hot-Add CPU, 3-4, 356-358
Hot-Add Memory, 4-5, 356-358
HTT (Hyper-Threading Technology), 85-87
hyperconverged infrastructure, 207-213, 280
Hyper-Threading Technology (HTT), 85-87
Hyperic, 343-345
hypervisor, 25
 availability features, 294-296
 compared to OS, 26-27
 explained, 25-27
 importance of full virtualization, 36-38

one-to-many relationships, 40
one-to-one relationships and unused capacity, 38-40
paravirtualization, 29
PVSCSI (paravirtual SCSI driver), 31
Type-1 hypervisors, 30
Type-2 hypervisors, 31
virtualized database installation guidelines, 32-36
VMs (virtual machines), 28
VMware ESXi versions, 40-41
VMXNET3, 32

IFI (Instant File Initialization), 120-122
ILM (information life cycle management), 207

implementation plans
 database workload baselines, 48-50
 high-level plan, 50-51
 items to consider, 44-45
 phase 1: requirements gathering, 51-52
 phase 2: discovery, 53
 phase 2.1: database consolidations, 53
 phase 3: infrastructure adjustments, 53
 phase 4: validation and testing, 54
 phase 5: migration and deployment, 54
 phase 6: monitoring and management, 54
RPOs (recovery point objectives), 45-46
RTOs (recovery time objectives), 45-46
SLAs (service-level agreements), 45-46
vSphere infrastructure baselines, 46-48
Independent Persistent (SQL FCI), 157
indexes (database), 222-225
industry-standard benchmarks, 316
information life cycle management (ILM), 207
Infrastructure Navigator, 343-344
initialization, Instant File Initialization (IFI), 120-122
installation. See also configuration
Dell DVD Store, 406-430
SQL Server 2012, 374-377, 384-387
 Complete page, 387
 Database Engine Configuration page, 382
 Disk Space Requirements page, 382
 Feature Selection page, 379
 Installation Configuration Rules page, 385
 Installation Rules page, 380
 Installation Rules page (SQL Server installation), 385
 Instance Configuration page (SQL Server installation), 380
 Instance Configuration page (SQL Server installation), 380
 Installation Configuration Rules page (SQL Server installation), 385
 Setup Role page, 379
 virtualized database installation guidelines, 32-36
 installation.
 installation.
 SQL Server 2012, 374-377, 384-387
 Complete page, 387
 Database Engine Configuration page, 382
 Disk Space Requirements page, 382
 Feature Selection page, 379
 Installation Configuration Rules page, 385
 Installation Rules page, 380
 Instance Configuration page, 380
 License Terms page, 377
 preflight check, 375
 Product Key page, 375
 Ready to Install page, 385
 Server Configuration page, 382
 Setup Role page, 379
 virtualized database installation guidelines, 32-36
Installation Configuration Rules page (SQL Server installation), 385
Installation Rules page (SQL Server installation), 380
Instance Configuration page (SQL Server installation), 380
Instant File Initialization (IFI), 120-122
invalid assumptions, 334
IO blender effect, 151-152
IOBlazer, 327
IOMeter, 142-143, 327
ioTurbine (Fusion-io), 201-203
ioTurbine Profiler (Fusion-io), 203
IP addresses, requirements for performance testing, 342
iSCSI
 adapters, 276
 port binding, 281
 isolation, 28, 302-303

J

Jumbo VMDKs, 159

 Pointer Block Eviction Process, 163-164
 VMFS Heap size considerations, 160-162

jumbo frames, 256-259
configuring, 259-262, 393-394
testing, 262-264

Jumbo VMDKs, 159

 Pointer Block Eviction Process, 163-164
 VMFS Heap size considerations, 160-162
K

KAVG/cmd counter, 326
Keep It Standardized and Simple (KISS), 109
KISS principle (Keep It Standardized and Simple), 109
Klee, David, 445

L

LACP, 273
Lam, William, 444
large databases and database virtualization, 22-23
large pages, 79
 breaking down into default page size, 238-239
 explained, 237-238
 locking pages in memory, 239-241
LaRock, Thomas, 445
latches, 324
layout
 file system layout, 110
 data files, 123-126
 log files, 123-126
 NTFS file system allocation unit size, 126-127
 OS, application binaries, and page file, 122
 partition alignment, 128-129
 Temp DB files, 123-126
 virtual machine storage layout, 152-157
Leaf-Spine network architecture, 273
licenses
 License Terms page (SQL Server installation), 377
 VMware vCloud Suite licenses, 285
load test (Dell DVD Store), 430-436
locking pages in memory, 92, 239-241
locks, 324
log files
 file system layout, 123-126
 sizing, 117-120
Log Flush Wait Time, 324
Log Flush Waits/sec, 324
LogicalDisk(*): Avg Disk Sec/Read, 322
LogicalDisk(*): Avg. Disk Sec/Write, 322
LogicalDisk Disk Bytes/sec, 321
Logins/sec, 324
Logout/sec, 324
Lowe, Scott, 445
LSI Logic SAS, 95, 137-142
LUN queue depth, 167

M

maintenance plans, updating database statistics with, 131-132
Maintenance Plan Wizard, 420-422
management, 54
Max Server Memory, 234-236
MaxAddressableSpaceTB, 163-164
maximum memory, configuring, 392
maximum storage capacity limits, 111
MbRX/s counter, 327
MbTx/s counter, 327
MCTLSZ (MB) counter, 47-48, 326
memory
Buffer Pool, 129-130
cache
Buffer Cache, 49
Buffer Cache Hit Ratio, 50, 323
CACHEUSED counter, 326
Fusion-io ioTurbine, 201-203
vRFC (vSphere Flash Read Cache), 199-201
host memory, 225-226
hot-add memory, 4-5
large pages
breaking down into default page size, 238-239
explained, 237-238
locking pages in memory, 239-241
memory ballooning, 230-232
Memory Grants Pending, 324
Memory Manager, 324
memory overcommitment, 87
memory reservation, 355
explained, 232-233
mixed workload environment with memory reservations, 226-228
VMware HA strict admission control, 233
vswap file, 233-234
memory trends and the stack, 218
database buffer pool, 219-220
database indexes, 222-225
database pages, 219-221
paging, 220-221
swapping, 220-221
min/max memory, configuring, 392
mixed workload environment with memory reservations, 226-228
NUMA (Non-uniform Memory Access)
explained, 241-243
vNUMA, 243
overview, 76, 217-218
RAM, 87
shared-resource world, 246
SQL Server 2014 in-memory, 246-247
SQL Server Max Server Memory, 234-236
SQL Server Min Server Memory, 235
TPS (transparent page sharing), 228
VMs (virtual machines), 225-226
number of, 244-245
sizing, 244
vRFC (vSphere Flash Read Cache), 199-201
xVelocity memory, 134
Memory Grants Pending, 324
Memory Manager, 324
metrics
baseline metrics
ESXTOP counters, 325-327
SQL Server baseline infrastructure metrics, 321-322
SQL Server Perfmon counters, 323-324
SQL Server Profiler counters, 324-325
Buffer Cache Hit Ratio, 50
Cache Hit Ratio, 50
DAVG/cmd, 48
MCTLSZ, 47-48
%MLMTD, 47-48
%RDY, 47
READs/s, 47-48
storage-specific metrics, 94
Microsoft Assessment and Planning Toolkit, 110
“Microsoft Clustering on VMware vSphere: Guidelines for Supported Configurations,” 345
Microsoft System Center, 110
migration, 54
Min Server Memory, 235
minimum memory, configuring, 392
mixed workload environment with memory reservations, 226-228
MLAG (Multi-Link Aggregation Group), 273
%MLMTD metric, 47-48
models (benchmark workload)
 based on recorded production performance, 318
 based on system nonfunctional requirements, 317
monitoring, 54
Multi-Link Aggregation Group (MLAG), 273
Multi-NIC vMotion, 276-278
multipathing of storage paths, 184-185, 280
multiple tempdb files, creating, 394-395

N
National Institute of Standards and Technology (NIST), 291
n_browse_overall value, 433
NDFS (Nutanix Distributed File System), 207
network connections, validating, 359
network design, 264
 Multi-NIC vMotion, 276-278
 NIOC (Network IO Control), 101, 274-276
 physical network adapters, 267-269
 storage, 279-280
 teaming and failover, 270-273
 virtual switches, 265-267
Network IO Control (NIOC), 101, 274-276
network paths, verifying, 262
network security, 103, 281-284
network teaming, 270-273
network virtualization, 281-284
New Availability Group Wizard, 399-405
NIOC (Network IO Control), 101, 274-276
NIST (National Institute of Standards and Technology), 291
N%L counter, 326
n_newcust_overall value, 433
non-production workload influences on performance, 331-332
non-shared disks, 345
non-uniform memory architecture.
See NUMA
n_overall value, 432
n_purchase_from_start value, 434
n_purchase_overall value, 433
n_rollbacks_from_start value, 434
n_rollbacks_overall value, 434
NTFS allocation unit size, 126-127
NUMA (non-uniform memory architecture), 79-85
explained, 241-243
NUMA Scheduler, 81
vNUMA, 82, 243
Wide NUMA, 81
NUMA Scheduler, 81
Nutanix Bible (Poitras), 210
Nutanix Distributed File System (NDFS), 207
Nutanix Virtual Computing Platform, 207-213

OSs (operating systems)
application binaries, and page file, 122
compared to hypervisor, 26-27
guest operating systems, 27

P

PAGEIOLATCH, 124
PAGELATCH_XX, 112
Page Life Expectancy metric, 323
pages
explained, 219-220
large pages
breaking down into default page size, 238-239
explained, 237-238
locking pages in memory, 239-241
paging, 78, 220-221
swapping, 78, 220-221
TPS (transparent page sharing), 228-229
Pages/Sec metrics, 321
paging, 78, 220-221
Paging File(_Total): %Usage metric, 321
parallelism of storage design, 106
paravirtualization, 29
Paravirtualized SCSI (PVSCI), 31, 95, 137-141
partition alignment, 128-129
partitioning, 28
patches, 68
pause frames, 268
penalties (RAID IO), 189-194

O

OLAP (Online Analytical Processing), 64
OLTP (Online Transaction Processing), 64
one-to-many relationships, 40
one-to-one relationships and unused capacity, 38-40
Online Analytical Processing (OLAP), 64
Online Transaction Processing (OLTP), 64
operating systems. See OSs
opm value, 432
Perfmon counters, 50, 323-324
performance baselines, 311-315
 baseline performance reports, 332-333
 benchmarks, 315
 developing, 317-318
 industry-standard benchmarks, 316
 validating performance with, 318
 vendor benchmarks, 316-317
comparing, 319-327
 different processor generations, 330-331
 different processor types, 328-330
common performance traps
 blended peaks of multiple systems, 335
 failure to consider SCU (Single Compute Unit) performance, 335
 invalid assumptions, 334
 lack of background noise, 334
 shared core infrastructure between production and non-production, 333-334
vMotion slot sizes of monster database virtual machines, 336-337
and database virtualization, 16-17
metrics
 ESXTOP counters, 325-327
 SQL Server baseline infrastructure metrics, 321-322
 SQL Server Perfmon counters, 323-324
SQL Server Profiler counters, 324-325
non-production workload influences on performance, 331-332
server-side flash acceleration, 198-199
 Fusion-io ioTurbine, 201-203
 PernixData FVP, 204-206
 vSphere Flash Read Cache (vFRC), 199-201
storage
 KISS principle (Keep It Standardized and Simple), 109
 performance and underlying storage devices, 107
 sizing for performance before capacity, 107-108
 virtualization without compromise, 108-109
validating performance with, 318
vSphere storage design, 164
 multipathing, 184-185
 number of data stores and data store queues, 165-169
 number of virtual disks per data store, 170-173
 RAID (Redundant Array of Independent Disks), 187-197
storage DRS, 177-183
Storage IO Control (SIOC), 173-177
storage policies, 177-183
vSphere 5.5 failover clustering environments, 185-186
when to record, 320
performed tests, 339
affinity and anti-affinity rules, 358
AlwaysOn Availability Groups configuration, 387-391
AlwaysOn Availability Groups creation, 399-405
Dell DVD Store installation and configuration, 406-430
Dell DVD Store load test, 430-436
Hot-Add Memory and Hot-Add CPU, 356-358
jumbo frame configuration, 393-394
lab configuration, 342-345
max/min memory configuration, 392
memory reservations, 355
multiple tempdb files, 394-395
network connection validation, 359
reasons for performance testing, 339-340
requirements
computer names and IP addresses, 341-342
resources, 342
software, 341
SQL Server 2012 installation, 374-377, 384-387
Complete page, 387
Database Engine Configuration page, 382
Disk Space Requirements page, 382
Error Reporting page, 385
Feature Selection page, 379
Installation Configuration Rules page, 385
Installation Rules page, 380
Instance Configuration page, 380
License Terms page, 377
preflight check, 375
Product Key page, 375
Ready to Install page, 385
Server Configuration page, 382
Setup Role page, 379
test database creation, 396-398
VMDK file configuration
inside guest operating system, 352-354
on virtual machines, 345-351
Windows Failover Clustering configuration, 359-368
Windows Failover Clustering quorum mode, 369-374
Windows Failover Clustering validation, 368
performance traps
blended peaks of multiple systems, 335
failure to consider SCU (Single Compute Unit) performance, 335
invalid assumptions, 334
lack of background noise, 334
shared core infrastructure between production and non-production, 333-334
vMotion slot sizes of monster database virtual machines, 336-337
PernixData FVP, 204-206
PernixData FVP Datasheet, 205
phases of virtualization implementation

database consolidations, 53
discovery, 53
infrastructure adjustments, 53
migration and deployment, 54
monitoring and management, 54
requirements gathering, 51-52
validation and testing, 54

physical hardware, 73
adapter count, 95
CPUs, 74-76
data stores, 99
disk layout, 95
hardware compatibility, 62
HTT (Hyper-Threading Technology), 85-87
large pages, 79
LSI Logic SAS adapters, 95
memory, 76
memory overcommitment, 87
NUMA (non-uniform memory architecture), 79-85
PVSCSI adapters, 95
reservations, 87-89
SQL Server Lock Pages in Memory, 92
SQL Server Min Server Memory/Max Server Memory, 90-91
storage, 93
storage-specific metrics, 94
swapping files, 78
Thin Provisioning, 98-99
virtualization overhead, 76-77
VMDKs, 99

file size, 100
provisioning types, 96-98
versus RDM, 96

Physical Mode RDMs (pRDM), 159
physical network adapters, 267-269
PKTRX/s counter, 327
PKTTX/s counter, 327
plans. See implementation plans

Pointer Block Eviction Process, 163-164
Poitras, Steven, 210
policies (storage), 177-183
pool, database buffer, 219-220
port groups, 265
power management policies, 253
pRDM (Physical Mode RDMs), 159
processors baseline comparisons
between different processor generations, 330
between different processor types, 328-330
Processor(_Total):Privileged Time metric, 321
Processor(_Total)[metric] Processor Time metric, 321
Product Key page (SQL Server installation), 375
Product Updates page (SQL Server installation), 377
Professional Association of SQL Server (PASS)
PASS—Virtualization Virtual Chapter, 441
PASS SQLSaturday, 441-442
Profiler counters, 324-325
protocols, 279-280
provisioning
 and database virtualization, 17-20
 VMDK, 96-98
PVSCSI (Paravirtualized SCSI), 31, 95, 137-141

Q
QFULL SCSI sense code, 166
QLogic HBA, 166
QoS, 102-103
Query Plan Optimizer, 130
queues, data store, 165-169
quorum mode (Failover Clustering), 369-374

R
RAID (Redundant Array of Independent Disks), 187
economics of RAID performance, 194-197
IO penalties, 189-194
randomness of IO pattern, 187-188
read/write bias, 188
RAM, 87
randomness of IO pattern, 187-188
Raw Device Map (RDM), 149-151
RDM (Raw Device Map), 149-151
 versus VMDK, 96
%RDY counter, 47, 325
reading documentation, 43-44
READs/s counter, 47-48, 326
read/write bias, 188
Ready to Install page (SQL Server installation), 385
recovery
disaster recovery, 291-294
recovery point objectives (RPOs), 45-46, 290
recovery time objectives (RTOs), 45-46, 290
vCenter SRM (Site Recovery Manager), 301
recovery point objectives (RPOs), 45-46, 290
recovery time objectives (RTOs), 45-46, 290
reducing expenses, 9-10
Redundant Array of Independent Disks. See RAID
relationships
 one-to-many relationships, 40
 one-to-one relationships, 38-40
reorganizing SQL workloads, 68-69
replication (vSphere), 300-301
reports (performance), 332-333
requirements gathering, 51-52
reservation (memory), 87-89, 355
 explained, 232-233
 mixed workload environment with memory reservations, 226-228
VMware HA strict admission control, 233
vswap file, 233-234
RESETS/s counter, 327
resource pools, Network IO Control, 275
resources
 blogs
 Thomas LaRockTs blog, 445
 vLaunchPad, 444-445
documentation and white papers, 437-440
Twitter, 445-446
user groups, 440
 Facebook groups, 443
 PASS (Professional Association of SQL Server), 441-442
 VMUG (VMware Users Group), 440
 VMWare Community, 442-443
responsibility domains, 60-61
rollback_rate value, 434
Route Based on Physical NIC Load, 271
RPOs (recovery point objectives), 45-46, 290
rt_browse_avg_msec value, 433
rt_login_avg_msec value, 433
rt_newcust_avg_msec value, 433
RTOs (recovery time objectives), 45-46, 290
rt_purchase_avg_msec value, 433
rt_tot_avg, 433
rt_tot_avg value, 433
rt_tot_lastn_max value, 432
rules, affinity/anti-affinity, 358

S
SameSubnetDelay, 255
SameSubnetThreshold, 255
sample high availability chart, 308-309
SAP
 benchmark examples between different processor generations, 330-331
 benchmark examples between different processor types, 328-330
 Data Compression with, 133
SCU (Single Compute Unit), 335
security, 281-284
Server Configuration page (SQL Server installation), 382
server-side flash acceleration, 198-199
 Fusion-io ioTurbine, 201-203
 PernixData FVP, 204-206
 vSphere Flash Read Cache (vFRC), 199-201
service-level agreements (SLAs), 11-12, 45-46, 100, 290
settings (BIOS), 12-13
 “Setup for Failover Clustering and Microsoft Cluster Service” (white paper), 439
Setup Role page (SQL Server installation), 379
shared core infrastructure between production and non-production, 333-334
shared disks, 345
shared environments, 20, 35
shared-resource world, 246
SIOC (Storage IO Control), 157, 173-177
Site Recovery Manager (SRM), 16, 301

sizing

Heap size, 160-162
database files, 114-116
data file sizing, 116
Temp DB file sizing, 116
transaction log files, 117-120
databases, 22-23
performance before capacity, 107-108
VMs (virtual machines), 244

SLAs (service-level agreements), 11-12,
45-46, 100, 290

software requirements for performance
testing, 341

SP_Configure command, 246

SQL AlwaysOn Failover Cluster
Instances, 157

SQL Compilations/sec metric, 324

SQL Re-Compilations/sec metric, 324

SQL Server 2012 installation, 374-387

Complete page, 387
Database Engine Configuration page, 382

Disk Space Requirements page, 382

Feature Selection page, 379

Installation Configuration Rules
page, 385
Installation Rules page, 380

Instance Configuration page, 380
License Terms page, 377

preflight check, 375

Product Key page, 375

Ready to Install page, 385
Server Configuration page, 382
Setup Role page, 379

SQL Server 2014 & The Data Platform
(data sheet), 247
“SQL Server Best Practices” (white
paper), 210
SQL Server Max Server Memory, 90-91
SQL Server Min Server Memory, 90-91
“SQL Server on VMware—Availability
and Recovery Options” (white paper), 439
“SQL Server on VMware—Best
Practices Guide” (white paper), 439

SQL Server SysPrep, 71
SQL Statistics, 324

SQL workloads, 64-67

Batch/ETL workloads, 64
DSS workloads, 64
OLAP workloads, 64
OLTP workloads, 64
reorganization, 68-69
tiered database offering, 70-73

SQLIOsim, 327

SQLSaturday, 441-442

SRM (Site Recovery Manager), 16, 301

stack, memory trends and, 79, 218
database buffer pool, 219-220
database indexes, 222-225
database pages, 219-220

paging, 220-221

swapping, 220-221
storage
design principles
database as extension of storage, 106
KISS principle (Keep It Standardized and Simple), 109
performance and underlying storage devices, 107
sizing for performance before capacity, 107-108
virtualization without compromise, 108-109
overview, 93, 105-106
server-side flash acceleration, 198-199
Fusion-io ioTurbine, 201-203
PernixData FVP, 204-206
vSphere Flash Read Cache (vFRC), 199-201
SQL Server database and guest OS storage, 109
Buffer Pool, 129-130
Column Storage, 134-135
database availability, 135
database statistics, updating, 130-132
Data Compression, 133
file system layout, 110, 122-129
Instant File Initialization (IFI), 120-122
number of database files, 110-113
size of database files, 114-120
Storage Spaces, 136
Volume Managers, 136
SQL Server on hyperconverged infrastructure, 207-213
SQL Server virtual machine storage, 136
expanding, 158-159
Jumbo VMDKs, 159-164
layout, 152-157
virtual disk devices, 143-152
virtual storage controllers, 138-143
VM hardware version, 137
Storage Acceleration, 96
storage arrays, 98
Storage DRS, 177-183, 297
Storage IO Control (SIOC), 157, 173-176
storage networks, 279-280
storage policies, 177-183
storage protocols, 279-280
Storage Spaces, 136
storage-specific metrics, 94
vSphere storage design, 164
multipathing, 184-185
number of data stores and data store queues, 165-169
number of virtual disks per data store, 170-173
RAID (Redundant Array of Independent Disks), 187-197
storage DRS, 177-183
Storage IO Control (SIOC), 173-177
storage policies, 177-183
vSphere 5.5 failover clustering environments, 185-186
Storage Acceleration, 96
Storage DRS, 177-183, 297
Storage IO Control (SIOC), 157, 173-176
Storage Spaces, 136
Storage vMotion, 297
Strawberry Perl, 406
swap files, 78
Swapin counter, 326
Swapout counter, 326
swapping, 78, 220-221
switches
 virtual switches, 265-267
 distributed virtual switch, 100
 port groups, 265
 teaming methods, 270
 vSphere distributed switches, 263
 vSS, 265
%SWPWT counter, 326
%SYS counter, 325
Szastak, Jeff, 311

T

Target Server Memory (KB) metric, 324
TDE (Transparent Data Encryption), 122
teams
 Center of Excellence (CoE), 61-63
 communication, 58
 mutual understanding, 59-60
 responsibility domains, 60-61
Temp DB files
 file system layout, 123-126
 multiple tempdb files, creating, 394-395
 sizing, 116
test databases, creating, 396-398
testing, 54
 baseline. See performance baselines
 benchmarks, 315
 developing, 317-318
 industry-standard benchmarks, 316
 vendor benchmarks, 316-317
jumbo frames, 262-264
performance tests, 339
 affinity and anti-affinity rules, 358
 AlwaysOn Availability Groups
 configuration, 387-391
 creation, 399-405
 Dell DVD Store installation and
 configuration, 406-430
 Dell DVD Store load test,
 430-436
 Hot-Add Memory and Hot-Add
 CPU, 356-358
 jumbo frame configuration, 393-394
 lab configuration, 342-345
 max/min memory configuration, 392
 memory reservations, 355
 multiple tempdb files, 394-395
 network connection validation, 359
 reasons for performance testing, 339-340
 requirements, 341-342
SQL Server 2012 installation, 374-387

test database creation, 396-398

VMDK file configuration, 345-354

Windows Failover Clustering configuration, 359-368

Windows Failover Clustering quorum mode, 369-374

Windows Failover Clustering validation, 368

Thick Eager Zero disks, 147-148

Thick Lazy Zero disks, 144-146

Thick Provisioned Eager Zeroed, 97

Thick Provisioned Lazy Zeroed, 97

Thick Provisioned LUNs, 98

Thin disks, 144-146

Thin Provisioned LUNs, 98

Thin Provisioning, 98-99

 tiers (database), 19-20

TLB (translation lookaside buffer), 79

TPC (Transaction Processing Performance Council), 316

TPS (transparent page sharing), 79, 228-229

trace flags
 enabling, 215
 list of, 215
 trace flag 2371, 131

traffic types, 101-102

transaction log files, sizing, 117-120

Transaction Processing Performance Council (TPC), 316

translation lookaside buffer (TLB), 79

Transactions/sec metric, 324

Transparent Data Encryption (TDE), 122

transparent page sharing (TPS), 79, 228-229

troubleshooting common performance traps
 blended peaks of multiple systems, 335
 failure to consider SCU (Single Compute Unit) performance, 335
 invalid assumptions, 334
 lack of background noise, 334
 shared core infrastructure between production and non-production, 333-334
 vMotion slot sizes of monster database virtual machines, 336-337

 tuning virtual network adapters, 252-254

Twitter, 445-446

Type-1 hypervisors, 30

Type-2 hypervisors, 31

Understanding Memory Resource Management in VMware vSphere 5.0 (study), 229-230

“Understanding VMware vSphere 5.1 Storage DRS” (white paper), 182

unused capacity and one-to-one relationships, 38-40
updating database statistics, 130-132
with maintenance plan, 131-132
with trace flag 2371, 131
%USED counter, 325
User Connections metric, 324
user groups, 440
Facebook groups, 443
PASS (Professional Association of SQL Server)
PASS—Virtualization Virtual Chapter, 441
PASS SQLSaturday, 441-442
VMUG (VMware Users Group), 440
VMWare Community, 442-443

V

VAAI (vStorage APIs for Array Integration), 96
Validate a Configuration Wizard, 364
validation, 54
 cluster network configuration, 368
 network connections, 359
 performance with baselines/benchmarks, 318
vCenter Hyperic, 343-345
vCenter Infrastructure Navigator, 343-344
vCenter Operations Manager, 87
vCenter SRM (Site Recovery Manager), 301
vCHS (vCloud Hybrid Service), 302
vCloud Hybrid Service (vCHS), 302
vCPUs (virtual CPUs), 4
vDP (vSphere Data Protection), 266, 300
 Multi-NIC vMotion, 277
vDS (vSphere distributed switch), 262
vendor benchmarks, 316-317
verifying network paths, 262
Virtual Computing Platform (Nutanix), 207-213
virtual CPUs (vCPUs), 4
virtual disks, number per data store, 170-173
Virtual Log Files (VLFs), 118-120
virtuallyGhetto, 444
virtual machine storage, 136
 expanding, 158-159
 Jumbo VMDKs, 159
 Pointer Block Eviction Process, 163-164
 VMFS Heap size considerations, 160-162
 layout, 152-157
 number of VMs, 244-245
 sizing, 244
virtual disk devices, 143
 IO blender effect, 151-152
 Raw Device Map (RDM), 149-151
 Thick Eager Zero disks, 147-148
 Thin versus Thick Lazy Zero disks, 144-146
 virtual storage controllers, 138-143
 VM hardware version, 137
 VM memory, 225-226
Virtual Mode RDMs (vRDM), 159
virtual network adapters, 100
 choosing, 250-251
 traffic types, 101-102
 turning, 252-254
virtual server access ports, 281
virtual switches, 265-267
 distributed virtual switch, 100
 port groups, 265
 teaming methods, 270
virtualization, 93
 advantages of, 3
 hot-add CPUs, 3-4
 hot-add memory, 4-5
 business case for, 9
 BIOS settings, 12-13
 DBA (database administrator) advantages, 10-11
 hardware refresh, 20-22
 high availability, 14-16
 large databases, 22-23
 performance, 16-17
 provisioning/DBaaS, 17-20
 reduced expenses, 9-10
 SLAs (service level agreements), 11-12
and compromise, 108-109
documentation, 43-44
explained, 1-2
hypervisor, 25
 compared to OS, 26-27
 explained, 25-27
 importance of full virtualization, 36-38
one-to-many relationships, 40
one-to-one relationships and unused capacity, 38-40
paravirtualization, 29
PVSCSI (paravirtual SCSI driver), 31
Type-1 hypervisors, 30
Type-2 hypervisors, 31
virtualized database installation guidelines, 32-36
VMs (virtual machines), 28
VMware ESXi versions, 40-41
VMXNET3, 32
implementation plan
database workload baselines, 48-50
high-level plan, 50-51
items to consider, 44-45
phase 1: requirements gathering, 51-52
phase 2: discovery, 53
phase 2.1: database consolidations, 53
phase 3: infrastructure adjustments, 53
phase 4: validation and testing, 54
phase 5: migration and deployment, 54
phase 6: monitoring and management, 54
RPOs (recovery point objectives), 45-46
RTOs (recovery time objectives), 45-46
VMware Site Recovery Manager (SRM)

SLAs (service-level agreements), 45-46
vSphere infrastructure baselines, 46-48
importance of full virtualization, 36-38
overhead, 76-77
performance baselines
 baseline performance reports, 332-333
 benchmarks, 315-318
 common performance traps, 333-337
 comparing, 328-331
 explained, 311-315
 metrics, 321-327
 non-production workload influences on performance, 331-332
 reasons for, 319-320
 validating performance with, 318
 when to record, 320
power company example, 6
world before database virtualization, 5-6
“Virtualization Overview” (white paper), 21
virtualized database installation guidelines, 32-36
virtualized security zones, 283
vLaunchPad, 444-445
VLFs (Virtual Log Files), 118-120
VMDKs, 99
 files, configuring
 file size, 100
 inside guest operating system, 352-354
 on virtual machines, 345-351
Jumbo VMDKs, 159-160
 Pointer Block Eviction Process, 163-164
 VMFS Heap size considerations, 160-162
 provisioning types, 96-98
 versus RDM, 96
 virtual machine storage layout, 152-157
VMFS heap size considerations, 160-162
vMotion, 296-297
 slot sizes of monster database virtual machines, 336-337
 traffic, 276
VMs (virtual machines). See virtual machine storage
VMUG (VMware Users Group), 440
%VMWait counter, 326
VMware App Director, 70
VMware Capacity Planner, 110
VMWare Community, 442-443
VMware ESXi versions, 40-41
VMware HA strict admission control, 233
VMware NSX, 283
VMware PowerCLI, 253
VMware Site Recovery Manager (SRM), 16
VMware vCloud Suite licenses, 285
VMware vSphere on Nutanix Best Practices (white paper), 210
VMXNET 3, 100
VMXNET3, 32, 251, 257
vNIC, 256
vNUMA, 82, 243
Volume Managers, 136
vRAM, 87
vRDM (Virtual Mode RDMs), 159
vRFC (vSphere Flash Read Cache), 199-201
vSphere, 98-99
baselining, 46-48
ESXTOP counters, 325-327
failover clustering environments, 185-186
high availability
 DRS (Distributed Resource Scheduler), 297
 hypervisor availability features, 294-296
 Storage DRS, 297
 Storage vMotion, 297
 vCenter SRM (Site Recovery Manager), 301
 vCHS (vCloud Hybrid Service), 302
 vDP (vSphere Data Protection), 300
 vMotion, 296-297
 vSphere App HA, 299-300
 vSphere HA, 298-299
 vSphere Replication, 300-301
 X-vMotion, 298
storage design, 164
 multipathing, 184-185
 number of data stores and data store queues, 165-169
 number of virtual disks per data store, 170-173
 RAID (Redundant Array of Independent Disks), 187-197
 storage DRS, 177-183
 Storage IO Control (SIOC), 173-177
 storage policies, 177-183
 vSphere 5.5 failover clustering environments, 185-186
 vDS (vSphere distributed switch), 262-263
 vFRC (vSphere Flash Read Cache), 199-201
 vNUMA, 243
 vSphere App HA, 299-300
 vSphere HA, 298-299
 vSphere Hot Plug Memory, 91
 vSphere Replication, 300-301
 vSphere Web Client, 260
 vSS (vSphere standard switch), 265, 271
“vSphere Monitoring & Performance” (white paper), 440
“vSphere Resource Management” (white paper), 440
“vSphere Storage” (white paper), 440
vSphere Web Client, 260
vSS (vSphere standard switch), 265, 271
vStorage APIs for Array Integration (VAAI), 96
vswap file, memory reservations and, 233-234

W

Webster, Michael, 106, 170
white papers
“DBA Guide to Databases on VMware,” 439
“Setup for Failover Clustering and Microsoft Cluster Service,” 439
“SQL Server Best Practices,” 210
“SQL Server on VMware—Availability and Recovery Options,” 439
“SQL Server on VMware—Best Practices Guide,” 439
“Understanding VMware vSphere 5.1 Storage DRS,” 182
“VMware vSphere on Nutanix Best Practices,” 210
“vSphere Monitoring & Performance,” 440
“vSphere Resource Management,” 440
“vSphere Storage,” 440
Wide NUMA, 81
Windows Failover Cluster Heartbeat settings, 255
Windows Failover Clustering configuring, 359-368
network settings, 254-256
quorum mode, 369-374
validating, 368
Windows Server Failover Clustering (WSFC), 304
Windows vNIC properties page, 261
wizards
Cluster Validation Wizard, 363-364
Configure Cluster Quorum Wizard, 370-374
Create Cluster Wizard, 366
Dell DVD Store Custom Install Wizard, 408
Maintenance Plan Wizard, 420-422
New Availability Group Wizard, 399-405
Validate a Configuration Wizard, 364
Workload Driver Configuration Wizard, 409
Workload Driver Configuration Wizard, 409
workloads
based on recorded production performance, 318
based on system nonfunctional requirements, 317
baselining, 48-50
mixed workload environment with memory reservations, 226-228
SQL workloads, 64-67
reorganization, 68-69
tiered database offering, 70-73
worlds (VMs), 86
Writes/s counter, 326
WSFC (Windows Server Failover Clustering), 304

X-Y-Z

xVelocity memory, 134
X-vMotion, 298

Yellow-Bricks, 444