
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321917010
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321917010
https://plusone.google.com/share?url=http://www.informit.com/title/9780321917010
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321917010
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321917010/Free-Sample-Chapter

Effective Objective-C 2.0

The Effective Software Development Series provides expert advice on all aspects of
modern software development. Titles in the series are well written, technically sound,

and of lasting value. Each describes the critical things experts always do — or always
avoid — to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its third edition),
More Effective C++, and Effective STL (all available in both print and electronic versions),
conceived of the series and acts as its consulting editor. Authors in the series work with
Meyers to create essential reading in a format that is familiar and accessible for software
developers of every stripe.

Visit informit.com/esds for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Effective Objective-C 2.0
52 SpECifiC WayS tO imprOvE yOur

iOS and OS X prOgramS

matt galloway

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales, which may include
electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

The Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publica-
tion is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechan-
ical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-91701-0
ISBN-10: 0-321-91701-4
Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.
First printing, May 2013

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Chris Zahn

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Packager
Vicki Rowland

Copy Editor
Evelyn W. Pyle

Indexer
Sharon Hilgenberg

Proofreader
Archie Brodsky

Technical Reviewers
Anthony Herron
Cesare Rocchi
Chris Wagner

Editorial Assistant
Olivia Bassegio

Cover Designer
Chuti Prasertsith

Compositor
Vicki Rowland

To Rosie

This page intentionally left blank

Chapter 1: Accustoming Yourself to Objective-C 1
Item 1: Familiarize Yourself with Objective-C’s Roots 1

Item 2: Minimize Importing Headers in Headers 4

Item 3: Prefer Literal Syntax over the
Equivalent Methods 8

Item 4: Prefer Typed Constants to Preprocessor #define 12

Item 5: Use Enumerations for States, Options, and
Status Codes 17

Chapter 2: Objects, Messaging, and the Runtime 25
Item 6: Understand Properties 25

Item 7: Access Instance Variables Primarily Directly When
Accessing Them Internally 33

Item 8: Understand Object Equality 36

Item 9: Use the Class Cluster Pattern to Hide
Implementation Detail 42

Item 10: Use Associated Objects to Attach Custom Data to
Existing Classes 47

Item 11: Understand the Role of objc_msgSend 50

Item 12: Understand Message Forwarding 54

Item 13: Consider Method Swizzling to Debug
Opaque Methods 62

Item 14: Understand What a Class Object Is 66

Contents

Preface xi

Acknowledgments xv

About the Author xvii

viii Contents

Chapter 3: Interface and API Design 73
Item 15: Use Prefix Names to Avoid Namespace Clashes 73

Item 16: Have a Designated Initializer 78

Item 17: Implement the description Method 84

Item 18: Prefer Immutable Objects 89

Item 19: Use Clear and Consistent Naming 95

Item 20: Prefix Private Method Names 102

Item 21: Understand the Objective-C Error Model 104

Item 22: Understand the NSCopying Protocol 109

Chapter 4: Protocols and Categories 115
Item 23: Use Delegate and Data Source Protocols for

Interobject Communication 115

Item 24: Use Categories to Break Class Implementations
into Manageable Segments 123

Item 25: Always Prefix Category Names on
Third-Party Classes 127

Item 26: Avoid Properties in Categories 130

Item 27: Use the Class-Continuation Category to Hide
Implementation Detail 133

Item 28: Use a Protocol to Provide Anonymous Objects 140

Chapter 5: Memory Management 145
Item 29: Understand Reference Counting 145

Item 30: Use ARC to Make Reference Counting Easier 153

Item 31: Release References and Clean Up
Observation State Only in dealloc 162

Item 32: Beware of Memory Management with
Exception-Safe Code 165

Item 33: Use Weak References to Avoid Retain Cycles 168

Item 34: Use Autorelease Pool Blocks to Reduce
High-Memory Waterline 173

Item 35: Use Zombies to Help Debug Memory-
Management Problems 177

Item 36: Avoid Using retainCount 183

 Contents ix

Chapter 6: Blocks and Grand Central Dispatch 187
Item 37: Understand Blocks 188

Item 38: Create typedefs for Common Block Types 194

Item 39: Use Handler Blocks to Reduce Code Separation 197

Item 40: Avoid Retain Cycles Introduced by Blocks
Referencing the Object Owning Them 203

Item 41: Prefer Dispatch Queues to Locks
for Synchronization 208

Item 42: Prefer GCD to performSelector and Friends 213

Item 43: Know When to Use GCD and When to
Use Operation Queues 217

Item 44: Use Dispatch Groups to Take Advantage of
Platform Scaling 220

Item 45: Use dispatch_once for Thread-Safe
Single-Time Code Execution 225

Item 46: Avoid dispatch_get_current_queue 226

Chapter 7: The System Frameworks 233
Item 47: Familiarize Yourself with the System Frameworks 233

Item 48: Prefer Block Enumeration to for Loops 236

Item 49: Use Toll-Free Bridging for Collections with
Custom Memory-Management Semantics 243

Item 50: Use NSCache Instead of NSDictionary for Caches 248

Item 51: Keep initialize and load Implementations Lean 252

Item 52: Remember that NSTimer Retains Its Target 258

Index 265

This page intentionally left blank

Preface

Objective-C is verbose. Objective-C is clunky. Objective-C is ugly. I
have heard all these things said about Objective-C. On the contrary,
I find it elegant, flexible, and beautiful. However, to get it to be these
things, you must understand not only the fundamentals but also the
quirks, pitfalls, and intricacies: the topic of this book.

About This Book

This book doesn’t teach you the syntax of Objective-C. It is assumed
that you know this already. Instead, this book teaches you how to
use the language to its full potential to write good code. Objective-C
is extremely dynamic, thanks to having its roots in Smalltalk. Much
of the work that’s usually done by a compiler in other languages ends
up being done by the runtime in Objective-C. This leads to a potential
for code to function fine during testing but to break in strange ways
later down the line in production, perhaps when processing invalid
data. Avoiding these problems by writing good code in the first place
is, of course, the best solution.

Many of the topics are not, strictly speaking, related to core Objective-C.
Reference is made to items found in system libraries, such as Grand
Central Dispatch, which is part of libdispatch. Similarly, many classes
from the Foundation framework are referred to, not least the root class,
NSObject, because developing with modern Objective-C means develop-
ing for Mac OS X or iOS. When developing for either, you will undoubt-
edly be using the system frameworks, collectively known as Cocoa and
Cocoa Touch, respectively.

Since the rise of iOS, developers have been flocking to join the ranks
of Objective-C development. Some of these developers are new to pro-
gramming, some have come from Java or C++ backgrounds, and some
have come from web-development backgrounds. In any case, all devel-
opers should take the time to learn how to use a language effectively.

xii Preface

Doing so will yield code that is more efficient, easier to maintain, and
less likely to contain bugs.

Even though I have been writing this book for only around six months,
it has been years in the making. I bought an iPod Touch on a whim;
then, when the first SDK for it was released, I decided to have a play
with development. That led to me build my first “app,” which I released
as Subnet Calc, which immediately got many more downloads than I
could have imagined. I became certain that my future was in this beau-
tiful language I had come to know. Since then, I have been researching
Objective-C, regularly blogging about it on my web site, www.galloway.
me.uk/. I am most interested in the inner workings, such as the guts of
blocks and how ARC works. When I got the opportunity to write a book
about this language, I jumped at the chance.

In order to get the full potential from this book, I encourage you to
jump around it, hunting for the topics that are of most interest or rele-
vant to what you’re working on right now. Each item can be read indi-
vidually, and you can use the cross-references to go to related topics.
Each chapter collates items that are related, so you can use the chapter
headings to quickly find items relevant to a certain language feature.

Audience for This Book

This book is aimed at developers who wish to further their knowl-
edge of Objective-C and learn to write code that will be maintainable,
efficient, and less likely to contain bugs. Even if you are not already
an Objective-C developer but come from another object-oriented lan-
guage, such as Java or C++, you should still be able to learn. In this
case, reading about the syntax of Objective-C first would be prudent.

What This Book Covers

It is not the aim of this book to teach the basics of Objective-C, which
you can learn from many other books and resources. Instead, this
book teaches how to use the language effectively. The book comprises
Items, each of which is a bite-sized chunk of information. These Items
are logically grouped into topic areas, arranged as follows:

✦	Chapter 1: Accustoming Yourself to Objective-C

✦	 Core concepts relating to the language in general are featured
here.

✦	Chapter 2: Objects, Messaging, and the Runtime

✦	 Important features of any object-oriented language are how
objects relate to one another and how they interact. This chapter
deals with these features and delves into parts of the runtime.

http://www.galloway.me.uk/
http://www.galloway.me.uk/

 Preface xiii

✦	Chapter 3: Interface and API Design

✦	 Code is rarely written once and never reused. Even if it is not
released to the wider community, you will likely use your code in
more than one project. This chapter explains how to write classes
that feel right at home in Objective-C.

✦	Chapter 4: Protocols and Categories

✦	 Protocols and categories are both important language features to
master. Effective use of them can make your code much easier
to read, more maintainable, and less prone to bugs. This chapter
helps you achieve mastery.

✦	Chapter 5: Memory Management

✦	 Objective-C’s memory-management model uses reference count-
ing, which has long been a sticky point for beginners, especially
if they have come from a background of a language that uses a
garbage collector. The introduction of Automatic Reference Count-
ing (ARC) has made life easier, but you need to be aware of a lot of
important things to ensure that you have a correct object model
that doesn’t suffer from leaks. This chapter fosters awareness of
common memory-management pitfalls.

✦	Chapter 6: Blocks and Grand Central Dispatch

✦	 Blocks are lexical closures for C, introduced by Apple. Blocks are
commonly used in Objective-C to achieve what used to involve
much boilerplate code and introduced code separation. Grand
Central Dispatch (GCD) provides a simple interface to threading.
Blocks are seen as GCD tasks that can be executed, perhaps in
parallel, depending on system resources. This chapter enables you
to make the most from these two core technologies.

✦	Chapter 7: The System Frameworks

✦	 You will usually be writing Objective-C code for Mac OS X or iOS.
In those cases, you will have the full system frameworks stack at
your disposal: Cocoa and Cocoa Touch, respectively. This chapter
gives a brief overview of the frameworks and delves into some of
their classes.

If you have any questions, comments, or remarks about this book, I
encourage you to contact me. You can find my full contact details on
the web site for this book at www.effectiveobjectivec.com.

http://www.effectiveobjectivec.com

This page intentionally left blank

Acknowledgments

When asked whether I would like to write a book about Objective-C,
I instantly became excited. I had already read other books in this
series and knew that the task of creating one for Objective-C would
be a challenge. But with the help of many people, this book became
a reality.

Much inspiration for this book has come from the many excellent
blogs that are dedicated to Objective-C. Mike Ash, Matt Gallagher,
and “bbum” are a few of the individuals whose blogs I read. These
blogs have helped me over the years to gain a deeper understand-
ing of the language. NSHipster by Mattt Thompson has also provided
excellent articles that gave me food for thought while compiling this
book. Finally, the excellent documentation provided by Apple has also
been extremely useful.

I would not have been in a position to write this book had it not been
for the excellent mentoring and knowledge transfer that happened
while I was working at MX Telecom. Matthew Hodgson in particular
gave me the opportunity to develop the company’s first iOS applica-
tion, building on top of a mature C++ code base. The knowledge I
picked up from this project formed the basis of much of my subse-
quent work.

Over the years, I have had many excellent colleagues with whom I
have always stayed in touch either for academic reasons or purely just
being there for a beer and a chat. All have helped me while writing
this book.

I’ve had a fantastic experience with the team from Pearson. Trina
MacDonald, Olivia Basegio, Scott Meyers, and Chris Zahn have all
provided help and encouragement when required. They have pro-
vided the tools for me to get the book written without distraction and
answered my queries when necessary.

xvi Acknowledgments

The technical editors I have had the pleasure of working with have
been incredibly helpful. Their eagle eyes have pushed the content of
the book to be the very best. They should all be proud of the level of
detail they used when analyzing the manuscript.

Finally, I could not have written this book without the understanding
and support from Helen. Our first child was born the day I was sup-
posed to start writing, so I naturally postponed for a short time. Both
Helen and Rosie have been fantastic at keeping me going throughout.

Matt Galloway is an iOS developer from London, UK. He graduated
from the University of Cambridge, Pembroke College, in 2007, hav-
ing completed an M.Eng. degree, specializing in electrical and infor-
mation sciences. Since then, he has been programming, mostly in
Objective-C. He has been developing for iOS ever since the first SDK
was released. You’ll find him on Twitter as @mattjgalloway, and he is
a regular contributor to Stack Overflow (http://stackoverflow.com).

About the Author

http://stackoverflow.com

This page intentionally left blank

1 Accustoming
Yourself to

Objective-C

Objective-C brings object-oriented features to C through an entirely
new syntax. Often described as verbose, Objective-C syntax makes
use of a lot of square brackets and isn’t shy about using extremely
long method names. The resulting source code is very readable but is
often difficult for C++ or Java developers to master.

Writing Objective-C can be learned quickly but has many intricacies
to be aware of and features that are often overlooked. Similarly, some
features are abused or not fully understood, yielding code that is diffi-
cult to maintain or to debug. This chapter covers fundamental topics;
subsequent chapters cover specific areas of the language and associ-
ated frameworks.

Item 1: Familiarize Yourself with Objective-C’s Roots

Objective-C is similar to other object-oriented languages, such as
C++ and Java, but also differs in many ways. If you have experience
in another object-oriented language, you’ll understand many of the
paradigms and patterns used. However, the syntax may appear alien
because it uses a messaging structure rather than function calling.
Objective-C evolved from Smalltalk, the origin of messaging. The dif-
ference between messaging and function calling looks like this:

// Messaging (Objective-C)
Object *obj = [Object new];
[obj performWith:parameter1 and:parameter2];

// Function calling (C++)
Object *obj = new Object;
obj->perform(parameter1, parameter2);

The key difference is that in the messaging structure, the runtime
decides which code gets executed. With function calling, the compiler

2 Chapter 1: Accustoming Yourself to Objective-C

decides which code will be executed. When polymorphism is intro-
duced to the function-calling example, a form of runtime lookup is
involved through what is known as a virtual table. But with messag-
ing, the lookup is always at runtime. In fact, the compiler doesn’t even
care about the type of the object being messaged. That is looked up at
runtime as well, through a process known as dynamic binding, cov-
ered in more detail in Item 11.

The Objective-C runtime component, rather than the compiler, does
most of the heavy lifting. The runtime contains all the data struc-
tures and functions that are required for the object-oriented features
of Objective-C to work. For example, the runtime includes all the
memory-management methods. Essentially, the runtime is the set of
code that glues together all your code and comes in the form of a
dynamic library to which your code is linked. Thus, whenever the
runtime is updated, your application benefits from the performance
improvements. A language that does more work at compile time needs
to be recompiled to benefit from such performance improvements.

Objective-C is a superset of C, so all the features in the C language
are available when writing Objective-C. Therefore, to write effective
Objective-C, you need to understand the core concepts of both C and
Objective-C. In particular, understanding the memory model of C will
help you to understand the memory model of Objective-C and why ref-
erence counting works the way it does. This involves understanding
that a pointer is used to denote an object in Objective-C. When you
declare a variable that is to hold a reference to an object, the syntax
looks like this:

NSString *someString = @"The string";

This syntax, mostly lifted straight from C, declares a variable called
someString whose type is NSString*. This means that it is a pointer
to an NSString. All Objective-C objects must be declared in this way
because the memory for objects is always allocated in heap space and
never on the stack. It is illegal to declare a stack-allocated Objective-C
object:

NSString stackString;
// error: interface type cannot be statically allocated

The someString variable points to some memory, allocated in the heap,
containing an NSString object. This means that creating another vari-
able pointing to the same location does not create a copy but rather
yields two variables pointing to the same object:

NSString *someString = @"The string";
NSString *anotherString = someString;

 Item 1: Familiarize Yourself with Objective-C’s Roots 3

There is only one NSString instance here, but two variables are point-
ing to the same instance. These two variables are of type NSString*,
meaning that the current stack frame has allocated 2 bits of mem-
ory the size of a pointer (4 bytes for a 32-bit architecture, 8 bytes for
a 64-bit architecture). These bits of memory will contain the same
value: the memory address of the NSString instance.

Figure 1.1 illustrates this layout. The data stored for the NSString
instance includes the bytes needed to represent the actual string.

The memory allocated in the heap has to be managed directly,
whereas the stack-allocated memory to hold the variables is automat-
ically cleaned up when the stack frame on which they are allocated is
popped.

Memory management of the heap memory is abstracted away by
Objective-C. You do not need to use malloc and free to allocate and
deallocate the memory for objects. The Objective-C runtime abstracts
this out of the way through a memory-management architecture
known as reference counting (see Item 29).

Sometimes in Objective-C, you will encounter variables that don’t
have a * in the definition and might use stack space. These variables
are not holding Objective-C objects. An example is CGRect, from the
CoreGraphics framework:

CGRect frame;
frame.origin.x = 0.0f;
frame.origin.y = 10.0f;
frame.size.width = 100.0f;

NSString

<data>

someString

anotherString

Stack allocated Heap allocated

Figure 1.1 Memory layout showing a heap-allocated NSString
instance and two stack-allocated pointers to it

4 Chapter 1: Accustoming Yourself to Objective-C

frame.size.height = 150.0f;

A CGRect is a C structure, defined like so:

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

These types of structures are used throughout the system frame-
works, where the overhead of using Objective-C objects could affect
performance. Creating objects incurs overhead that using structures
does not, such as allocating and deallocating heap memory. When
nonobject types (int, float, double, char, etc.) are the only data to be
held, a structure, such as CGRect, is usually used.

Before embarking on writing anything in Objective-C, I encourage
you to read texts about the C language and become familiar with the
syntax. If you dive straight into Objective-C, you may find certain
parts of the syntax confusing.

Things to Remember

✦	Objective-C is a superset of C, adding object-oriented features.
Objective-C uses a messaging structure with dynamic binding,
meaning that the type of an object is discovered at runtime. The
runtime, rather than the compiler, works out what code to run for a
given message.

✦	Understanding the core concepts of C will help you write effective
Objective-C. In particular, you need to understand the memory
model and pointers.

Item 2: Minimize Importing Headers in Headers

Objective-C, just like C and C++, makes use of header files and imple-
mentation files. When a class is written in Objective-C, the standard
approach is to create one of each of these files named after the class,
suffixed with .h for the header file and .m for the implementation file.
When you create a class, it might end up looking like this:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;

 Item 2: Minimize Importing Headers in Headers 5

@end

// EOCPerson.m
#import "EOCPerson.h"

@implementation EOCPerson
// Implementation of methods
@end

The importing of Foundation.h is required pretty much for all classes
you will ever make in Objective-C. Either that, or you will import the
base header file for the framework in which the class’s superclass
lives. For example, if you were creating an iOS application, you would
subclass UIViewController often. These classes’ header files will
import UIKit.h.

As it stands, this class is fine. It imports the entirety of Foundation,
but that doesn’t matter. Given that this class inherits from a class
that’s part of Foundation, it’s likely that a large proportion of it will
be used by consumers of EOCPerson. The same goes for a class that
inherits from UIViewController. Its consumers will make use of most
of UIKit.

As time goes on, you may create a new class called EOCEmployer. Then
you decide that an EOCPerson instance should have one of those. So
you go ahead and add a property for it:

// EOCPerson.h
#import <Foundation/Foundation.h>

@interface EOCPerson : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, strong) EOCEmployer *employer;
@end

A problem with this, though, is that the EOCEmployer class is not vis-
ible when compiling anything that imports EOCPerson.h. It would
be wrong to mandate that anyone importing EOCPerson.h must also
import EOCEmployer.h. So the common thing to do is to add the follow-
ing at the top of EOCPerson.h:

#import "EOCEmployer.h"

This would work, but it’s bad practice. To compile anything that
uses EOCPerson, you don’t need to know the full details about
what an EOCEmployer is. All you need to know is that a class called
EOCEmployer exists. Fortunately, there is a way to tell the compiler this:

6 Chapter 1: Accustoming Yourself to Objective-C

@class EOCEmployer;

This is called forward declaring the class. The resulting header file for
EOCPerson would look like this:

// EOCPerson.h
#import <Foundation/Foundation.h>

@class EOCEmployer;

@interface EOCPerson : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, strong) EOCEmployer *employer;
@end

The implementation file for EOCPerson would then need to import the
header file of EOCEmployer, as it would need to know the full interface
details of the class in order to use it. So the implementation file would
end up looking like this:

// EOCPerson.m
#import "EOCPerson.h"
#import "EOCEmployer.h"

@implementation EOCPerson
// Implementation of methods
@end

Deferring the import to where it is required enables you to limit the
scope of what a consumer of your class needs to import. In the exam-
ple, if EOCEmployer.h were imported in EOCPerson.h, anything import-
ing EOCPerson.h would also import all of EOCEmployer.h. If the chain of
importing continues, you could end up importing a lot more than you
bargained for, which will certainly increase compile time.

Using forward declaration also alleviates the problem of both classes
referring to each other. Consider what would happen if EOCEmployer
had methods to add and remove employees, defined like this in its
header file:

- (void)addEmployee:(EOCPerson*)person;
- (void)removeEmployee:(EOCPerson*)person;

This time, the EOCPerson class needs to be visible to the compiler, for
the same reasons as in the opposite case. However, achieving this by
importing the other header in each header would create a chicken-
and-egg situation. When one header is parsed, it imports the other,

 Item 2: Minimize Importing Headers in Headers 7

which imports the first. The use of #import rather than #include
doesn’t end in an infinite loop but does mean that one of the classes
won’t compile correctly. Try it for yourself if you don’t believe me!

Sometimes, though, you need to import a header in a header. You
must import the header that defines the superclass from which you
are inheriting. Similarly, if you declare any protocols that your class
conforms to, they have to be fully defined and not forward declared.
The compiler needs to be able to see the methods the protocol
defines rather than simply that a protocol does exist from a forward
declaration.

For example, suppose that a rectangle class inherits from a shape
class and conforms to a protocol allowing it to be drawn:

// EOCRectangle.h
#import "EOCShape.h"
#import "EOCDrawable.h"

@interface EOCRectangle : EOCShape <EOCDrawable>
@property (nonatomic, assign) float width;
@property (nonatomic, assign) float height;
@end

The extra import is unavoidable. For such protocols, it is prudent to put
them in their own header file for this reason. If the EOCDrawable pro-
tocol were part of a larger header file, you’d have to import all of that,
thereby creating the same dependency and extra compilation-time
problems as described before.

That said, not all protocols, such as delegate protocols (see Item 23),
need to go in their own files. In such cases, the protocol makes sense
only when defined alongside the class for which it is a delegate. In
these cases, it is often best to declare that your class implements the
delegate in the class-continuation category (see Item 27). This means
that the import of the header containing the delegate protocol can go
in the implementation file rather than in the public header file.

When writing an import into a header file, always ask yourself whether
it’s really necessary. If the import can be forward declared, prefer that.
If the import is for something used in a property, instance variable,
or protocol conformance and can be moved to the class-continuation
category (see Item 27), prefer that. Doing so will keep compile time as
low as possible and reduce interdependency, which can cause prob-
lems with maintenance or with exposing only parts of your code in a
public API should ever you want to do that.

8 Chapter 1: Accustoming Yourself to Objective-C

Things to Remember

✦	Always import headers at the very deepest point possible. This usu-
ally means forward declaring classes in a header and importing
their corresponding headers in an implementation. Doing so avoids
coupling classes together as much as possible.

✦	Sometimes, forward declaration is not possible, as when declaring
protocol conformance. In such cases, consider moving the proto-
col-conformance declaration to the class-continuation category, if
possible. Otherwise, import a header that defines only the protocol.

Item 3: Prefer Literal Syntax over the
Equivalent Methods

While using Objective-C, you will come across a few classes all
the time. They are all part of the Foundation framework. Although
technically, you do not have to use Foundation to write Objective-C
code, you usually do in practice. The classes are NSString, NSNumber,
NSArray, and NSDictionary. The data structures that each represent
are self-explanatory.

Objective-C is well known for having a verbose syntax. That’s true.
However, ever since Objective-C 1.0, there has been a very simple way
to create an NSString object. It is known as a string literal and looks
like this:

NSString *someString = @"Effective Objective-C 2.0";

Without this type of syntax, creating an NSString object would require
allocating and initializing an NSString object in the usual alloc and
then init method call. Fortunately, this syntax, known as literals,
has been extended in recent versions of the compiler to cover NSNumber,
NSArray, and NSDictionary instances as well. Using the literal syntax
reduces source code size and makes it much easier to read.

Literal Numbers

Sometimes, you need to wrap an integer, floating-point, or Boolean
value in an Objective-C object. You do so by using the NSNumber class,
which can handle a range of number types. Without literals, you cre-
ate an instance like this:

NSNumber *someNumber = [NSNumber numberWithInt:1];

This creates a number that is set to the integer 1. However, using lit-
erals makes this cleaner:

NSNumber *someNumber = @1;

 Item 3: Prefer Literal Syntax over the Equivalent Methods 9

As you can see, the literal syntax is much more concise. But there’s
more to it than that. The syntax also covers all the other types of data
that NSNumber instances can represent. For example:

NSNumber *intNumber = @1;
NSNumber *floatNumber = @2.5f;
NSNumber *doubleNumber = @3.14159;
NSNumber *boolNumber = @YES;
NSNumber *charNumber = @'a';

The literal syntax also works for expressions:

int x = 5;
float y = 6.32f;
NSNumber *expressionNumber = @(x * y);

Making use of literals for numbers is extremely useful. Doing so
makes using NSNumber objects much clearer, as the bulk of the decla-
ration is the value rather than superfluous syntax.

Literal Arrays

Arrays are a commonly used data structure. Before literals, you would
create an array as follows:

NSArray *animals =
 [NSArray arrayWithObjects:@"cat", @"dog",
 @"mouse", @"badger", nil];

Using literals, however, requires only the following syntax:

NSArray *animals = @[@"cat", @"dog", @"mouse", @"badger"];

But even though this is a much simpler syntax, there’s more to it
than that with arrays. A common operation on an array is to get the
object at a certain index. This also is made easier using literals. Usu-
ally, you would use the objectAtIndex: method:

NSString *dog = [animals objectAtIndex:1];

With literals, it’s a matter of doing the following:

NSString *dog = animals[1];

This is known as subscripting, and just like the rest of the literal
syntax, it is more concise and much easier to see what’s being done.
Moreover, it looks very similar to the way arrays are indexed in other
languages.

However, you need to be aware of one thing when creating arrays
using the literal syntax. If any of the objects is nil, an exception is

10 Chapter 1: Accustoming Yourself to Objective-C

thrown, since literal syntax is really just syntactic sugar around
creating an array and then adding all the objects within the square
brackets. The exception you get looks like this:

*** Terminating app due to uncaught exception
'NSInvalidArgumentException', reason: '***
-[__NSPlaceholderArray initWithObjects:count:]: attempt to
insert nil object from objects[0]'

This brings to light a common problem when switching to using liter-
als. The following code creates two arrays, one in each syntax:

id object1 = /* … */;
id object2 = /* … */;
id object3 = /* … */;

NSArray *arrayA = [NSArray arrayWithObjects:
 object1, object2, object3, nil];
NSArray *arrayB = @[object1, object2, object3];

Now consider the scenario in which object1 and object3 point to valid
Objective-C objects, but object2 is nil. The literal array, arrayB, will
cause the exception to be thrown. However, arrayA will still be created
but will contain only object1. The reason is that the arrayWithObjects:
method looks through the variadic arguments until it hits nil, which
is sooner than expected.

This subtle difference means that literals are much safer. It’s much
better that an exception is thrown, causing a probable application
crash, rather than creating an array having fewer than the expected
number of objects in it. A programmer error most likely caused nil to
be inserted into the array, and the exception means that the bug can
be found more easily.

Literal Dictionaries

Dictionaries provide a map data structure in which you add key-value
pairs. Like arrays, dictionaries are commonly used in Objective-C
code. Creating one used to look like this:

NSDictionary *personData =
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Matt", @"firstName",
 @"Galloway", @"lastName",
 [NSNumber numberWithInt:28], @"age",
 nil];

 Item 3: Prefer Literal Syntax over the Equivalent Methods 11

This is rather confusing, because the order is <object>, <key>,
<object>, <key>, and so on. However, you usually think about dictio-
naries the other way round, as in key to object. Therefore, it doesn’t
read particularly well. However, literals once again make the syntax
much clearer:

NSDictionary *personData =
 @{@"firstName" : @"Matt",
 @"lastName" : @"Galloway",
 @"age" : @28};

This is much more concise, and the keys are before the objects, just as
you’d expect. Also note that the literal number in the example shows
where literal numbers are useful. The objects and keys have to all
be Objective-C objects, so you couldn’t store the integer 28; instead,
it must be wrapped in an NSNumber instance. But the literal syntax
means that it’s simply one extra character.

Just like arrays, the literal syntax for dictionaries suffers from an
exception being thrown if any values are nil. However, for the same
reason, this is a good thing. It means that instead of creating a dictio-
nary with missing values, owing to the dictionaryWithObjectsAndKeys:
method stopping at the first nil, an exception is thrown.

Also similar to arrays, dictionaries can be accessed using literal syn-
tax. The old way of accessing a value for a certain key is as follows:

NSString *lastName = [personData objectForKey:@"lastName"];

The equivalent literal syntax is:

NSString *lastName = personData[@"lastName"];

Once again, the amount of superfluous syntax is reduced, leaving an
easy-to-read line of code.

Mutable Arrays and Dictionaries

In the same way that you can access indexes in an array or keys in a
dictionary through subscripting, you can also set them if the object is
mutable. Setting through the normal methods on mutable arrays and
dictionaries looks like this:

[mutableArray replaceObjectAtIndex:1 withObject:@"dog"];
[mutableDictionary setObject:@"Galloway" forKey:@"lastName"];

Setting through subscripting looks like this:

mutableArray[1] = @"dog";
mutableDictionary[@"lastName"] = @"Galloway";

12 Chapter 1: Accustoming Yourself to Objective-C

Limitations

A minor limitation with the literal syntax is that with the exception
of strings, the class of the created object must be the one from the
Foundation framework. There’s no way to specify your own custom
subclass that should be created instead. If you wanted to create an
instance of your own custom subclass, you’d need to use the nonlit-
eral syntax. However, since NSArray, NSDictionary, and NSNumber are
class clusters (see Item 9), they are rarely subclassed, as it’s non-
trivial to do so. Also, the standard implementations are usually good
enough. Strings can use a custom class, but it must be changed
through a compiler option. Use of this option is discouraged because
unless you know what you are doing, you will always want to use
NSString anyway.

Also, in the case of strings, arrays, and dictionaries, only immutable
variants can be created with the literal syntax. If a mutable variant is
required, a mutable copy must be taken, like so:

NSMutableArray *mutable = [@[@1, @2, @3, @4, @5] mutableCopy];

This adds an extra method call, and an extra object is created, but
the benefits of using the literal syntax outweigh these disadvantages.

Things to Remember

✦	Use the literal syntax to create strings, numbers, arrays, and dic-
tionaries. It is clearer and more succinct than creating them using
the normal object-creation methods.

✦	Access indexes of an array or keys in a dictionary through the sub-
scripting methods.

✦	Attempting to insert nil into an array or dictionary with literal syn-
tax will cause an exception to be thrown. Therefore, always ensure
that such values cannot be nil.

Item 4: Prefer Typed Constants to Preprocessor
#define

When writing code, you will often want to define a constant. For
example, consider a UI view class that presents and dismisses itself
using animations. A typical constant that you’d likely want to factor
out is the animation duration. You’ve learned all about Objective-C
and its C foundations, and so you take the approach of defining the
constant like this:

#define ANIMATION_DURATION 0.3

This is a preprocessor directive; whenever the string ANIMATION_DURATION
is found in your source code, it is replaced with 0.3. This might seem
exactly what you want, but this definition has no type information.
It is likely that something declared as a “duration” means that the
value is related to time, but it’s not made explicit. Also, the prepro-
cessor will blindly replace all occurrences of ANIMATION_DURATION, so if
that were declared in a header file, anything else that imported that
header would see the replacement done.

To solve these problems, you should make use of the compiler. There
is always a better way to define a constant than using a prepro-
cessor define. For example, the following defines a constant of type
NSTimeInterval:

static const NSTimeInterval kAnimationDuration = 0.3;

Note that with this style, there is type information, which is bene-
ficial because it clearly defines what the constant is. The type is
NSTimeInterval, and so it helps to document the use of that variable. If
you have a lot of constants to define, this will certainly help you and
other people who read the code later.

Also note how the constant is named. The usual convention for con-
stants is to prefix with the letter k for constants that are local to a
translation unit (implementation file). For constants that are exposed
outside of a class, it is usual to prefix with the class name. Item 19
explains more about naming conventions.

It is important where you define your constants. Sometimes, it is
tempting to declare preprocessor defines in header files, but that is
extremely bad practice, especially if the defines are not named in such
a way that they won’t clash. For example, the ANIMATION_DURATION
constant would be a bad name to appear in a header file. It would
be present in all other files that imported the header. Even the
static const as it stands should not appear in a header file. Since
Objective-C has no namespaces, it would declare a global vari-
able called kAnimationDuration. Its name should be prefixed with
something that scopes it to the class it is to be used with, such as
EOCViewClassAnimationDuration. Item 19 explains more about using a
clear naming scheme.

A constant that does not need to be exposed to the outside world
should be defined in the implementation file where it is used. For
example, if the animation duration constant were used in a UIView
subclass, for use in an iOS application that uses UIKit, it would look
like this:

 Item 4: Prefer Typed Constants to Preprocessor #define 13

14 Chapter 1: Accustoming Yourself to Objective-C

// EOCAnimatedView.h
#import <UIKit/UIKit.h>

@interface EOCAnimatedView : UIView
- (void)animate;
@end

// EOCAnimatedView.m
#import "EOCAnimatedView.h"

static const NSTimeInterval kAnimationDuration = 0.3;

@implementation EOCAnimatedView
- (void)animate {
 [UIView animateWithDuration:kAnimationDuration
 animations:^(){
 // Perform animations
 }];
}
@end

It is important that the variable is declared as both static and const.
The const qualifier means that the compiler will throw an error if you
try to alter the value. In this scenario, that’s exactly what is required.
The value shouldn’t be allowed to change. The static qualifier means
that the variable is local to the translation unit in which it is defined.
A translation unit is the input the compiler receives to generate one
object file. In the case of Objective-C, this usually means that there
is one translation unit per class: every implementation (.m) file. So in
the preceding example, kAnimationDuration will be declared locally to
the object file generated from EOCAnimatedView.m. If the variable were
not declared static, the compiler would create an external symbol for
it. If another translation unit also declared a variable with the same
name, the linker would throw an error with a message similar to this:

duplicate symbol _kAnimationDuration in:
 EOCAnimatedView.o
 EOCOtherView.o

In fact, when declaring the variable as both static and const, the
compiler doesn’t end up creating a symbol at all but instead replaces
occurrences just like a preprocessor define does. Remember, however,
the benefit is that the type information is present.

Sometimes, you will want to expose a constant externally. For exam-
ple, you might want to do this if your class will notify others using

NSNotificationCenter. This works by one object posting notifications
and others registering to receive them. Notifications have a string
name, and this is what you might want to declare as an externally
visible constant variable. Doing so means that anyone wanting to reg-
ister to receive such notifications does not need to know the actual
string name but can simply use the constant variable.

Such constants need to appear in the global symbol table to be used
from outside the translation unit in which they are defined. There-
fore, these constants need to be declared in a different way from the
static const example. These constants should be defined like so:

// In the header file
extern NSString *const EOCStringConstant;

// In the implementation file
NSString *const EOCStringConstant = @"VALUE";

The constant is “declared” in the header file and “defined” in the
implementation file. In the constant’s type, the placement of the const
qualifier is important. These definitions are read backward, mean-
ing that in this case, EOCStringConstant is a “constant pointer to an
NSString.” This is what we want; the constant should not be allowed
to change to point to a different NSString object.

The extern keyword in the header tells the compiler what to do
when it encounters the constant being used in a file that imports
it. The keyword tells the compiler that there will be a symbol for
EOCStringConstant in the global symbol table. This means that the
constant can be used without the compiler’s being able to see the
definition for it. The compiler simply knows that the constant will
exist when the binary is linked.

The constant has to be defined once and only once. It is usually
defined in the implementation file that relates to the header file in
which it is declared. The compiler will allocate storage for the string
in the data section of the object file that is generated from this imple-
mentation file. When this object file is linked with other object files to
produce the final binary, the linker will be able to resolve the global
symbol for EOCStringConstant wherever else it has been used.

The fact that the symbol appears in the global symbol table means
that you should name such constants carefully. For example, a class
that handles login for an application may have a notification that is
fired after login has finished. The notification may look like this:

// EOCLoginManager.h
#import <Foundation/Foundation.h>

 Item 4: Prefer Typed Constants to Preprocessor #define 15

16 Chapter 1: Accustoming Yourself to Objective-C

extern NSString *const EOCLoginManagerDidLoginNotification;

@interface EOCLoginManager : NSObject
- (void)login;
@end

// EOCLoginManager.m
#import "EOCLoginManager.h"

NSString *const EOCLoginManagerDidLoginNotification =
 @"EOCLoginManagerDidLoginNotification";

@implementation EOCLoginManager

- (void)login {
 // Perform login asynchronously, then call 'p_didLogin'.
}

- (void)p_didLogin {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:EOCLoginManagerDidLoginNotification
 object:nil];
}

@end

Note the name given to the constant. Prefixing with the class name that
the constant relates to is prudent and will help you avoid potential clashes.
This is common throughout the system frameworks as well. UIKit, for
example, declares notification names as global constants in the same
way. The names include UIApplicationDidEnterBackgroundNotification
and UIApplicationWillEnterForegroundNotification.

The same can be done with constants of other types. If the animation
duration needed to be exposed outside of the EOCAnimatedView class in
the preceding examples, you could declare it like so:

// EOCAnimatedView.h
extern const NSTimeInterval EOCAnimatedViewAnimationDuration;

// EOCAnimatedView.m
const NSTimeInterval EOCAnimatedViewAnimationDuration = 0.3;

Defining a constant in this way is much better than a preprocessor
define because the compiler is used to ensure that the value can-
not change. Once defined in EOCAnimatedView.m, that value is used

 Item 5: Use Enumerations for States, Options, and Status Codes 17

everywhere. A preprocessor define could be redefined by mistake,
meaning that different parts of an application end up using different
values.

In conclusion, avoid using preprocessor defines for constants. Instead,
use constants that are seen by the compiler, such as static const
globals declared in implementation files.

Things to Remember

✦	Avoid preprocessor defines. They don’t contain any type information
and are simply a find and replace executed before compilation. They
could be redefined without warning, yielding inconsistent values
throughout an application.

✦	Define translation-unit-specific constants within an implementa-
tion file as static const. These constants will not be exposed in the
global symbol table, so their names do not need to be namespaced.

✦	Define global constants as external in a header file, and define
them in the associated implementation file. These constants will
appear in the global symbol table, so their names should be name-
spaced, usually by prefixing them with the class name to which
they correspond.

Item 5: Use Enumerations for States, Options, and
Status Codes

Since Objective-C is based on C, all the features of C are available.
One of these is the enumeration type, enum. It is used extensively
throughout the system frameworks but is often overlooked by develop-
ers. It is an extremely useful way to define named constants that can
be used, for example, as error status codes and to define options that
can be combined. Thanks to the additions of the C++11 standard,
recent versions of the system frameworks include a way to strongly
type such enumeration types. Yes, Objective-C has benefitted from
the C++11 standard as well!

An enumeration is nothing more than a way of naming constant
values. A simple enumeration set might be used to define the states
through which an object goes. For example, a socket connection might
use the following enumeration:

enum EOCConnectionState {
 EOCConnectionStateDisconnected,
 EOCConnectionStateConnecting,
 EOCConnectionStateConnected,
};

18 Chapter 1: Accustoming Yourself to Objective-C

Using an enumeration means that code is readable, since each state
can be referred to by an easy-to-read value. The compiler gives a
unique value to each member of the enumeration, starting at 0 and
increasing by 1 for each member. The type that backs such an enu-
meration is compiler dependent but must have at least enough bits to
represent the enumeration fully. In the case of the preceding enumer-
ation, this would simply need to be a char (1 byte), since the maxi-
mum value is 2.

This style of defining an enumeration is not particularly useful,
though, and requires the following syntax:

enum EOCConnectionState state = EOCConnectionStateDisconnected;

It would be much easier if you didn’t have to type enum each time
but rather use EOCConnectionState on its own. To do this, you add a
typedef to the enumeration definition:

enum EOCConnectionState {
 EOCConnectionStateDisconnected,
 EOCConnectionStateConnecting,
 EOCConnectionStateConnected,
};
typedef enum EOCConnectionState EOCConnectionState;

This means that EOCConnectionState can be used instead of the full
enum EOCConnectionState:

EOCConnectionState state = EOCConnectionStateDisconnected;

The advent of the C++11 standard brought some changes to enumer-
ations. One such change is the capability to dictate the underlying
type used to store variables of the enumerated type. The benefit of
doing this is that you can forward declare enumeration types. Without
speci fying the underlying type, an enumeration type cannot be for-
ward declared, since the compiler cannot know what size the under-
lying type will end up being. Therefore, when the type is used, the
compiler doesn’t know how much space to allocate for the variable.

To specify the type, you use the following syntax:

enum EOCConnectionStateConnectionState : NSInteger { /* … */ };

This means that the value backing the enumeration will be guaran-
teed to be an NSInteger. If you so wished, the type could be forward
declared like so:

enum EOCConnectionStateConnectionState : NSInteger;

 Item 5: Use Enumerations for States, Options, and Status Codes 19

It’s also possible to define the value a certain enumeration member
relates to rather than letting the compiler choose for you. The syntax
looks like this:

enum EOCConnectionStateConnectionState {
 EOCConnectionStateDisconnected = 1,
 EOCConnectionStateConnecting,
 EOCConnectionStateConnected,
};

This means that EOCConnectionStateDisconnected will use the value 1
rather than 0. The other values follow, incrementing by 1 each time,
just as before. Thus, EOCConnectionStateConnected will use the value
3, for example.

Another reason to use enumeration types is to define options, espe-
cially when the options can be combined. If the enumeration is
defined correctly, the options can be combined using the bitwise OR
operator. For example, consider the following enumeration type, found
in the iOS UI framework, used to define which dimensions of a view
can be resized:

enum UIViewAutoresizing {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5,
}

Each option can be either on or off, and using the preceding syntax
enables this because each option has just a single bit set in the value repre-
sented by it. Multiple options can be bitwise OR’ed together: for example,
UIViewAutoResizingFlexibleWidth | UIViewAutoresizingFlexibleHeight.
Figure 1.2 shows the bit layout of each enumeration member and the
combination of two of the members.

It’s then possible to determine whether one of the options is set by
using the bitwise AND operator:

enum UIVewAutoresizing resizing =
 UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight;
if (resizing & UIViewAutoresizingFlexibleWidth) {
 // UIViewAutoresizingFlexibleWidth is set
}

20 Chapter 1: Accustoming Yourself to Objective-C

This is used extensively throughout the system libraries. Another
example from UIKit, the iOS UI framework, uses it as a way of telling
the system what device orientations your view supports. It does this
with an enumerated type called UIInterfaceOrientationMask, and you
implement a method called supportedInterfaceOrientations to indi-
cate the supported orientations:

- (NSUInteger)supportedInterfaceOrientations {
 return UIInterfaceOrientationMaskPortrait |
 UIInterfaceOrientationMaskLandscapeLeft;
}

A couple of helpers defined within the Foundation framework help
define enumeration types that also allow you to specify the integral
type that will be used to store values that use the enumeration type.
These helpers provide backward compatibility such that if you’re
targeting a compiler that supports the new standard, that syntax is
used, but it falls back to the old syntax if not. The helpers are pro-
vided in the form of preprocessor #define macros. One is provided for
normal enumeration types, such as the EOCConnectionState example.
The other is provided for the case in which the enumeration defines a
list of options like the UIViewAutoresizing example. You use them as
follows:

UIViewAutoresizingFlexibleLeftMargin 0 0 0 100

UIViewAutoresizingFlexibleWidth 0 0 1 000

UIViewAutoresizingFlexibleRightMargin 0 1 0 000

UIViewAutoresizingFlexibleTopMargin 1 0 0 000

UIViewAutoresizingFlexibleHeight 0 0 0 010

UIViewAutoresizingFlexibleBottomMargin 0 0 0 001

UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight 0 0 1 010

Figure 1.2 Binary representation of three options values and two of
those values bitwise OR’ed together

 Item 5: Use Enumerations for States, Options, and Status Codes 21

typedef NS_ENUM(NSUInteger, EOCConnectionState) {
 EOCConnectionStateDisconnected,
 EOCConnectionStateConnecting,
 EOCConnectionStateConnected,
};
typedef NS_OPTIONS(NSUInteger, EOCPermittedDirection) {
 EOCPermittedDirectionUp = 1 << 0,
 EOCPermittedDirectionDown = 1 << 1,
 EOCPermittedDirectionLeft = 1 << 2,
 EOCPermittedDirectionRight = 1 << 3,
};

This is what the macro definitions look like:

#if (__cplusplus && __cplusplus >= 201103L &&
 (__has_extension(cxx_strong_enums) ||
 __has_feature(objc_fixed_enum))
) ||
 (!__cplusplus && __has_feature(objc_fixed_enum))
 #define NS_ENUM(_type, _name)
 enum _name : _type _name; enum _name : _type
 #if (__cplusplus)
 #define NS_OPTIONS(_type, _name)
 _type _name; enum : _type
 #else
 #define NS_OPTIONS(_type, _name)
 enum _name : _type _name; enum _name : _type
 #endif
#else
 #define NS_ENUM(_type, _name) _type _name; enum
 #define NS_OPTIONS(_type, _name) _type _name; enum
#endif

The reason for the various ways of defining the macros is that there
are different scenarios. The first case that is checked is whether the
compiler supports the new style enumerations at all. This is checked
with what looks like some rather complex Boolean logic, but all that
it’s checking is that the feature is there. If the feature is not there, it
defines the enumeration by using the old style.

If the feature is available, the NS_ENUM type is defined such that it
expands out like this:

typedef enum EOCConnectionState : NSUInteger EOCConnectionState;
enum EOCConnectionState : NSUInteger {
 EOCConnectionStateDisconnected,
 EOCConnectionStateConnecting,

22 Chapter 1: Accustoming Yourself to Objective-C

 EOCConnectionStateConnected,
};

The NS_OPTIONS macro is defined in different ways if compiling as C++
or not. If it’s not C++, it’s expanded out the same as NS_ENUM. However,
if it is C++, it’s expanded out slightly differently. Why? The C++ com-
piler acts differently when two enumeration values are bitwise OR’ed
together. This is something, as shown earlier, that is commonly done
with the options type of enumeration. When two values are OR’ed
together, C++ considers the resulting value to be of the type the enu-
meration represents: NSUInteger. It also doesn’t allow the implicit cast
to the enumeration type. To illustrate this, consider what would hap-
pen if the EOCPermittedDirection enumeration were expanded out as
NS_ENUM:

typedef enum EOCPermittedDirection : int EOCPermittedDirection;
enum EOCPermittedDirection : int {
 EOCPermittedDirectionUp = 1 << 0,
 EOCPermittedDirectionDown = 1 << 1,
 EOCPermittedDirectionLeft = 1 << 2,
 EOCPermittedDirectionRight = 1 << 3,
};

Then consider attempting the following:

EOCPermittedDirection permittedDirections =
 EOCPermittedDirectionLeft | EOCPermittedDirectionUp;

If the compiler were in C++ mode (or potentially Objective-C++), this
would result in the following error:

error: cannot initialize a variable of type
'EOCPermittedDirection' with an rvalue of type 'int'

You would be required to put in an explicit cast to the result of the
ORing, back to EOCPermittedDirection. So the NS_OPTIONS enumera-
tion is defined differently for C++ such that this does not have to be
done. For this reason, you should always use NS_OPTIONS if you are
going to be ORing together the enumeration values. If not, you should
use NS_ENUM.

An enumeration can be used in many scenarios. Options and states
have been shown previously; however, many other scenarios exist.
Status codes for errors are a good candidate as well. Instead of using
preprocessor defines or constants, enumerations provide a means for
grouping together logically similar status codes into one enumeration.
Another good candidate is styles. For example, if you have a UI element

 Item 5: Use Enumerations for States, Options, and Status Codes 23

that can be created with different styles, an enumeration type is per-
fect for that situation.

One final extra point about enumerations has to do with using a
switch statement. Sometimes, you will want to do the following:

typedef NS_ENUM(NSUInteger, EOCConnectionState) {
 EOCConnectionStateDisconnected,
 EOCConnectionStateConnecting,
 EOCConnectionStateConnected,
};

switch (_currentState) {
 EOCConnectionStateDisconnected:
 // Handle disconnected state
 break;
 EOCConnectionStateConnecting:
 // Handle connecting state
 break;
 EOCConnectionStateConnected:
 // Handle connected state
 break;
}

It is tempting to have a default entry in the switch statement. How-
ever, when used for switching on an enumeration that defines a state
machine, it is best not to have a default entry. The reason is that if
you add a state later on, the compiler will helpfully warn that the
newly added state has not been cared for in the switch statement.
A default block handles the new state, so the compiler won’t warn.
The same applies to any other type of enumeration defined using the
NS_ENUM macro. For example, if used to define styles of a UI element,
you would usually want to make sure that switch statements handled
all styles.

Things to Remember

✦	Use enumerations to give readable names to values used for the
states of a state machine, options passed to methods, or error sta-
tus codes.

✦	If an enumeration type defines options to a method in which multi-
ple options can be used at the same time, define its values as pow-
ers of 2 so that multiple values can be bitwise OR’ed together.

24 Chapter 1: Accustoming Yourself to Objective-C

✦	Use the NS_ENUM and NS_OPTIONS macros to define enumeration types
with an explicit type. Doing so means that the type is guaranteed to
be the one chosen rather than a type chosen by the compiler.

✦	Do not implement a default case in switch statements that han-
dle enumerated types. This helps if you add to the enumeration,
because the compiler will warn that the switch does not handle all
the values.

Index

A
ABI. See Application Binary Inter-

face (ABI)
abstract base class

hiding implementation detail,
42–47

immutable and mutable arrays,
45

subclasses inheriting from class
cluster, 46

ACAccountStoreBooleanCompletion
Handler type, 196

accessor methods
automatically writing, 25, 28–29
autosynthesis, 28–29
categories, 131
fine-grained control over, 31
instance variables, 34, 227
locking for atomicity, 29–30, 32
names, 31
preventing synthesis, 29
strict naming patterns, 27
user-implemented, 29

Accounts framework, 196
addFriend: method, 94, 126
addObject: method, 149
addOperationWithBlock: method,

218
alerts, 48–50
alertView parameter, 49
allObjects method, 237
alloc method, 149, 151, 153–154
AND operator, 19
animation, 235
anInstanceMethod method, 190

anonymous objects and protocols,
140–142

APIs
C-level, 235
completion callback blocks,

205–206
AppKit framework, 82, 235
Application Binary Interface

(ABI), 27
applications, 2

controlling high memory, 174
multithreaded, 187
not linking, 73–74
terminating when main threads

blocked, 197
applicationWillTerminate:

method, 163
ARC. See Automatic Reference

Counting (ARC)
arguments and messages, 50
arrays, 243

adding number object, 149
binning objects with hash, 38
block-based enumeration, 189,

240–241
common methods for, 45
defining interface to, 46
enumerating, 236–238
immutable, 12, 45
indexes, 9, 12, 241
literals, 9–10
mutable, 45
nil objects and exceptions, 9–10
placeholder arrays, 45

266 Index

arrays, (cont’d)
reversing enumeration, 240
size of, 243

arrayWithObjects: method, 10
assign attribute, 30, 171
associated objects

attaching custom data to classes,
47–50

categories, 131
keys, 48
usage example, 48–50

associations, 47
asynchronous dispatch, 210
asynchronous methods, 197–198
atomic attribute, 32
atomic locking and accessor meth-

ods, 29–30
atomic properties, 208–209
attributes

memory-management semantic,
91

properties, 29–33
audio hardware, C-level API for

interfacing with, 234–235
audio playback and recording, 235
AudioToolbox framework, 74
autoDictionaryGetter function,

60–61
autoDictionarySetter function,

60, 61
Automatic Reference Counting

(ARC), xiii, 108
backward compatibility, 156
cleanup code during deallocation,

160
code not compiling, 145, 149
destroying objects, 167
exceptions, 105
extraneous autorelease plus

immediate retain, 157–158
instance variables, 159, 160–161
lower-level C methods, 154
memory management, 154–156
memory-management rules, 214
memory-management semantics

of variables, 158–161
message dispatch and, 161
method-naming rules, 154–158
Objective-C objects, 231, 235, 244

optimizations, 156, 161
ownership of objects, 244
reference counting and, 153–161
retainCount method, 183–184
retains and releases, 154–156
runtime component, 156
safely handling exceptions, 167
variables retaining value, 158–159
writing setter, 159

autonilling, 117
autorelease method, 146, 150–151,

154, 156–157, 184
autorelease pools, 146, 150–151, 185

draining, 151
nesting, 174–175
overhead, 176
reducing high memory waterline,

173–177
scope, 174
stack, 175
temporary objects, 174–175
threads, 173

autoreleases, collapsing, 156
@autorelease syntax, 176
__autoreleasing qualifier, 159
autosynthesis, 28–29
AVFoundation framework, 235

B
backward compatibility and Auto-

matic Reference Counting
(ARC), 156

barrier feature, 211
base class

defining, 43
inheritance, 42–43, 140–142
instances, 45

beginContentAccess method,
251–252

bitfield data type, 121–122
bitwise AND operator, 19
bitwise OR operator, 19, 22, 23
block-based enumeration, 240–243

changing method signature
to limit need for casting,
241–242

versus for loops, 236–243
reversing, 242
stopping, 241

 Index 267

__block qualifier, 189
blocks, xiii, 187, 217

array enumeration, 189
asynchronous dispatch, 210
callback, 203
caret (^) symbol, 188
concurrent queues, 229–230
copies of captured variables,

191–192
copying, 192–193
direct use and deadlock, 208
error handling, 200–202
flexibility, 201
function pointers, 191
global, 192–193
Grand Central Dispatch (GCD),

216
handler blocks, 197–203
heap, 192–193
hiding complicated type, 194
inability to cancel, 218
inline, 188–189
instance methods, 190
instance variables, 190
memory regions, 191
network fetchers, 199–200, 205
as objects, 189–190
objects owning, 203–207
only executed once, 225
parameters, 194
pointer declaring size of, 191
queues to schedule in, 203
reference counting, 190, 192
registering to observe notification

through, 219
retain cycles, 160, 203–207
returning int, 188
return type, 194
running on queue, 221
runtime component, 188
scope, 188, 189, 192
self variable, 190
splitting up success and failure

cases, 200–202
stack, 192–193
synchronous dispatch, 210
timers and, 261–262
types, 188, 194–196, 198–199
used as function, 188–189

used as variable, 188
variables, 189, 194, 210

Boolean properties
methods, 100
specifying name of getter, 31

BOOL type, 194
breakpoints, 88
_bridge keyword, 244
_bridge_retained keyword, 244
_bridge_transfer keyword, 244
buffer parameter, 99
business logic, decoupling data

from, 115
buttons, 42
buttonWithType: method, 42

C
C++

exceptions, 165
function names, 96
NS_OPTIONS enumeration, 22
scope of instance variables, 26
system libraries, 137

caches
automatically removing objects,

251
cost limit, 249–250
freeing memory, 250–252
NSCache class, 248–252
NSDictionary class, 248–252
order objects evicted, 249
pruning contents, 248–249
retaining keys, 248
thread safe, 248
URL retrieved as cache key, 250

caching
delegate responding to selectors,

122–123
images from Internet, 248–252
methods delegates implement, 122
optimization of, 121

CALayer class, 62
callback blocks, 203
camel casing names, 95
cancel method, 218
capitalizedString selector, 63–64
catch block and exceptions, 166
categories, 115

accessor methods, 131

268 Index

categories, (cont’d)
associated objects, 131
avoiding properties, 130–133
breaking class implementation

into segments, 123–127
inability to synthesize variables,

131
loading, 252
load method, 253
methods, 127–128
namespacing name of, 128–129
overriding methods, 127–129
prefixing names, 74
prefixing third-party names,

127–129
CFArray class, 243
CFArrayGetCount function, 243
CFArrayRef class, 243
_CFArray struct, 243
CFDictionaryKeyCallBacks struct,

245
CFDictionary type, 244
CFDictionaryValueCallBacks

struct, 245
CFEqual class, 247
CFHash class, 247
CFMutableDictionary type, 244
CFNetwork framework, 234
CFString class, 234
CFURLRequest data structure, 126
CGFloat scalar type, 30
CGPoint data structure, 235
CGRect data structure, 3–4, 235
CGSize data structure, 235
char type, 17–24
Clang compiler, 153

blocks and, 188
class_addMethod runtime method,

60
Class Cluster pattern, hiding imple-

mentation detail, 42–47
class clusters, 12, 43

adding concrete implementation,
46

checking class of instance of, 46
Cocoa, 45–46
collection classes as, 45
Factory pattern, 44
member objects, 45

subclasses inheriting from
abstract base class, 46

class-continuation category, 7–8,
30, 130

classes implementing protocol,
117–118

data definitions, 135
hiding implementation detail,

133–140
implementation file definition,

133–140
instance variables, 27, 122,

133–134
methods, 133–134
mixing Objective-C and C++ code,

135–137
objects conforming to private

protocols, 138–139
private methods, 103, 138
properties, 135
read-only properties, 137–138

classes, 25
attaching custom data with

associated objects, 47–50
breaking implementation into

segments, 123–127
categories adding methods to,

127–128
checking instance of class

cluster, 46
collections, 243
comparing for equality, 37
copying mutable and immutable

variants, 112–113
custom, 12
defining blocks in instance

method, 190
delegate protocols, 117–118
delegates, 7
designated initializers, 78–84
documentation, 44
dynamically adding method for

unknown selector, 55–56
equality-checking methods, 36
forward declaring, 6, 8
Foundation framework, xi, 8
header files, 4–5
hierarchy, 69–71
hooking into forwarding paths, 55

 Index 269

implementation files, 4–5
inheritance, 7, 42–43
initializers, 78
initializing, 252–257
instance variables, 26, 28, 130
internal methods, 102
introspection, 66–71, 92
limiting imports to, 6
literals and, 12
loading, 252–257
metadata, 68
methods, 54, 62, 115
multiple alerts, 48–49
multiple network fetchers, 199
mutable, 40–42, 89
namespace clashes, 100
naming, 95, 100–101
not leaking, 140–142
not understanding messages,

54–62
parent class, 68
prefixing names, 73–74
properties, 89
protocols, 120
referring to each other, 6
representing rectangle, 78–79
retrieving methods for selectors,

64
shared-instance method, 225
system-supplied, 129
toll-free bridging, 243–247
translation unit, 14
type definition, 196

class_getInstanceMethod method,
64, 66

class objects, 27, 66–71, 191
class-specific equality methods,

39–40
Class type, 68
C-level APIs, 234–235
C-level facilities for talking to net-

works, 234
close method, 163
Cocoa, xi, xiii, 173, 234

class clusters, 45–46
protocol language feature, 116
two-letter prefixes, 74
UI work on main thread, 202
zombies, 177–183

Cocoa Touch, xi, xiii, 173, 234
UI work on main thread, 202

code
accessing from multiple threads,

208
calculating offset at compile time,

27
conventions for generating, 27
documenting interface to, 115
incompatibility at runtime, 27
memory leaks, 105
mixing Objective-C and C++ and

class-continuation category,
135–137

readable, 18
reducing separation with handler

blocks, 197–203
segmenting into functional areas,

126
thread-safe single-time execution,

225–226
waiting unnecessarily on lock,

208
collection classes

as class clusters, 45
mutable or immutable properties,

92–94
shallow copying, 113

collections, 234
adding objects, 40
classes for, 243
custom memory-management

semantics, 243–247
enumerating, 236–243
guaranteeing types of objects in,

242
looping through, 223–224
mutable objects, 89–90
retrieving objects from, 69–70
toll-free bridging, 243–247

comparing objects for equality, 36–42
compiler

accessor methods, 25, 28–29
deciding which code executes, 1–2
instance variables, 28
Objective-C++ mode, 167

compiler flag enabling excep-
tion-safe code, 105

_completion function, 76

270 Index

completion handler, 203
block types as, 198–199
instance variables, 203
other classes creating, 205

completion-handler block, 205–206
completionHandler property, 205,

207
concurrent queues, 210–211

blocks, 229–230
concurrent threads, 223
reads as normal blocks and

writes as barrier blocks, 212
connections handling error repre-

senting what happened, 107
connectionWithIdentifier:

method, 142
constants

defining, 12–13
exposing externally, 14–15
global, 17
global symbol table, 15
header file declaration, 15, 17
implementation file definition, 13,

15, 17
naming, 13, 15–16
naming values, 17–18
prefixing class name, 13, 16
translation unit, 17
types, 12–17

const qualifier, 14
constructors, 96–97
containers with mutable classes and

equality, 40–42
copy attribute, 30–31
copyDescription callback, 247
copy helper, 191
copying

deep or shallow, 113–114
designated initializer, 110, 112
mutable and immutable variants

of class, 112–113
objects, 109–114

copy message, 192
copy method, 109–110, 112–113, 154
copyWithZone: method, 109–110,

112–114, 247
CoreAnimation framework, 137, 235

CALayer class, 62
CoreAudio framework, 234–235

CoreData databases, 142
CoreData framework, 235

accessing properties of
NSManagedObjects class,
55–56

anonymous objects, 142
CoreFoundation framework, 234, 243

dictionaries, 244–245
zombie objects, 179

CoreFoundation objects
cleaning up, 160
releasing references, 162

CoreGraphics framework, 235
CGRect variable, 3–4

CoreText framework, 235
countByEnumeratingWithState:

method, 239
counters for objects, 145–152
count method, 46
_cppClass instance variable, 136
C programming language

accessing stack-allocated struct
member, 28

calling functions, 50–51
memory model, 2
Objective-C as superset of, 2, 4
prefixing function names, 77
seamless casting data structures

with Objective-C objects, 234
static binding, 50–51

custom
classes, 12
data attaching to classes with

associated objects, 47–50
memory-management semantics,

243–247
.cxx_destruct method, 160–161,

162

D
dangling pointer, 149
data

decoupling from business logic,
115

encapsulating, 130
equality, 40
ownership semantics, 30–31

databases, interfaces for persisting
objects, 235

 Index 271

objects, 115–123
obtaining information from,

119–120
passing errors to, 107
property definition, 140
responding to selectors, 121–123
task completion notification,

197–198
description message, 84
description method

dictionary within, 86–87
implementing, 84–89
overriding, 85–86
piggybacking on NSDictionary

class's implementation,
86–87

returning string from, 86–87
descriptor variable, 191
designated initializers, 78–84

EOCRectangle class, 81
EOCSquare class, 80–81
multiple, 81–83
overriding superclass, 80
Rectangle object, 79
superclass, 80

destructor function, 231
device orientations supported by

views, 20
dictionaries, 243

block-based enumeration, 241
CoreFoundation framework,

244–245
within description method, 86–87
enumerating, 237–238
fast enumeration, 239–240
Foundation framework, 244
immutable variants, 12
keys, 11–12, 48, 237–238, 241,

245–247
key-value pairs, 10–11
literals, 10–11
memory-management semantics,

140–141
mutable arrays and, 11
nil values and exceptions, 11
objects, 11, 241–242
retaining keys, 248
size of, 244–245
storing downloaded images, 248

data source, 115–123
Data Source pattern, 120–121
data source protocol, 120
data structures, 2D rendering, 235
_dateOfBirth instance variable, 27
deadlocks

dispatch queues, 228
getters, 227
synchronization blocks, 208

dealloc method, 154, 160–165, 181
debugDescription method, 88–89
debugger, invoking print-object com-

mand within, 88–89
debugging

breakpoints, 88
dispatch_get_current_queue

function, 231
load method, 253–254
memory-management problems,

177–183
opaque methods, 62–66
printing object to inspect during,

84–89
public and private methods, 102
retain counts, 185–186
splitting classes into categories,

126–127
deep copy, 113–114
deep equality, 40
#define preprocessor directive ver-

sus typed constants, 12–17
#define preprocessor macros,

20–22
delegate methods, 49, 119–120
Delegate pattern, 115–123, 171, 197
delegate protocols, 7, 117–118,

197–198
errors, 107
methods, 118–119

delegates
anonymous, 141
caching methods, 122
classes implementing, 7
implementing, 117
introspection, 119
list views, 120
methods, 119
network fetchers, 119
nonowning relationship, 117

272 Index

dot syntax, 25, 27–28
DRY. See “Don’t Repeat Yourself”

(DRY) principle of software
development

duplicate-symbol error, 74–77
dynamic binding, 2, 4, 51–52

on top of dynamic binding,
213–214

@dynamic keyword, 29
dynamic libraries, 233
dynamic method resolution, 55–56,

59–62
@dynamic properties, 55–56, 59–62
dyspatch_sync function, 227–228

E
else statement, 192
Employee example, 45, 46
encapsulating data, 130
endContentAccess method, 251–252
enumerateKeysAndObjectsUsing

Block: method, 242
enumerateKeysAndObjectsWith

Options: method, 242
enumerateObjectsUsingBlock:

method, 189
enumerateObjectsWithOptions:

method, 242
enumerating collections

arrays, 236–237
block-based enumeration,

240–243
dictionaries, 237
fast enumeration, 239–240
for loops, 236–237
NSEnumerator object, 237–239
Objective-C 1.0 enumerations,

237–239
reversing, 238–239
sets, 237

enumerations
adding typedef, 18
backward compatibility, 20–22
behavior of, 242
combining options, 19–20
forward declaring types, 18
grouping error status codes, 22
member values, 18–19
naming constant values, 17–18

dictionaries (cont’d)
subscripting, 11
user-created pruning code, 248
values, 238, 241, 245–247

dispatch_after argument, 216
dispatch_apply function, 223–224
dispatch_async argument, 216, 220
dispatch_function_t type, 231
dispatch_get_current_queue func-

tion, 226–231
dispatch_group_async function,

220
dispatch_group_enter function,

220
dispatch_group_leave function,

220
dispatch_group_notify function,

221
dispatch groups

associating tasks with, 220
platform scaling and, 220–224
timeout value, 221
tracking tasks submitted to serial

queues, 222–223
dispatch_group_wait function, 221
dispatch_once function, 217,

225–226
dispatch_once_t type, 225
dispatch queues, 91, 187, 217

deadlock, 228
versus locks for synchronization,

208–213
dispatch_sync argument, 216
dispose helper, 191
doADaysWork, 45
documentation, 44
doesNotRecognizeSelector: excep-

tion, 55, 57
"Don't Repeat Yourself" (DRY) prin-

ciple of software development,
219

doSomething: method, 108
doSomethingThatMayThrow object,

166
doSomethingThatUsesIts

InternalData method, 256
doSomethingWithInit: method, 174
doSomethingWithObject:

method, 186

 Index 273

EOCPerson class, 5, 31–32, 35, 39–40,
88, 93–94, 110–111, 114,
124–125, 130, 138–139, 175

categories, 125–126
class-continuation category, 133
implementation file, 6

EOCPerson.h header file, 4–6, 126
EOCPerson objects, 37, 39, 86
EOCPointOfInterest class, 90,

91–92
EOCRectangle class, 78–79, 80,

96–97
designated initializers, 81, 82–84

EOCReleaseCallback function, 247
EOCRetainCallback function, 247
EOCSecretDelegate protocol,

138–139
EOCSmithPerson class, 37
EOCSomeBlock type, 195
EOCSoundPlayer class, 74–76
EOCSoundPlayerCompletion comple-

tion handler, 77
EOCSquare class, 80–81
EOCSSmithPerson subclass, 35
EOCStringConstant constant, 15
EOCSubClass class, 255
EOCSuperSecretClass class,

134–135
EOCTheClass class, 73
EOCViewClassAnimationDuration

constant, 13
equal callback, 247
equality

comparing objects for, 36–42
data, 40
deep versus shallow, 40
mutable classes in containers,

40–42
objects, 42, 70
strings, 99

equality-checking methods, 36–37
equality methods, 39–40
equality (==) operator, 36, 70
error codes as enumeration type,

108–109
error domains

defining what error occurred,
106–107

libraries, 109

next object in, 238
options, 17–24
readable code, 18
socket connections, 17–18
states, 17–24
status codes, 17–24
switch statement, 23
types, 18
value backing, 18

enumeration type, 17–24
error codes, 108–109

enumerators, reverse, 238–239
enum type, 17–24
EOCAnimatedView class, 16
EOCAnimatedView.m file, 14, 16
EOCAutoDictionary class, 59–60, 62
EOCBaseClass class, 255
EOCClassA class, 169, 171, 253, 256
EOCClassB class, 169–171, 253, 256
EOCClass class, 190, 260, 263

shared-instance method, 225
EOCClass.h header file, 136–137
EOCClass instance, 205
EOCClass.mm implementation file, 136
EOCClass object, 180, 182
EOCConnectionStateConnected enu-

meration, 19
EOCConnectionStateDisconnected

enumeration, 19
EOCConnectionState enumeration,

18, 20
EOCDatabaseConnection protocol,

141–142
EOCDataModel object, 116
EOCDelegate object, 140
EOCDog class, 37
EOCDrawable protocol, 7
EOCEmployer class, 5–6
EOCEmployer.h header file, 5–6
EOCImageTableView class, 101
EOCLibrary library, 77
eoc_myLowercaseString method, 65
EOCNetworkFetcher class, 117, 119,

122
EOCNetworkFetcher object, 116, 207
EOCObject class and private meth-

ods, 102–103
EOCPermittedDirection enumera-

tion, 22

274 Index

types for enumerations, 18
forwarding function, 181–182
forwarding paths, 54–55
forwardingTargetForSelector:

method, 56
forwardInvocation:method, 57
Foundation framework, 89, 233

classes, xi, 8, 12, 243
collections, 234, 243
dictionaries, 244
helpers defined in, 20–22
importing entirety, 5
introspection, 66–71
loading, 253
NSCache class, 248
NS class prefix, 234
NSTimer class, 258
string processing, 234
zombie objects, 179

Foundation.h header file, 5
frameworks

See also system frameworks
base header file, 5
protocol language feature, 116
third-party, 233

friendship category, 130
_friends instance variable, 111–112
friends property, 94
full forward mechanism, 57
fullName method, 33–34
function pointers, 191
functions, 2

blocks used as, 188–189
calling, 1–2
calling versus messaging, 1
polymorphism, 2
tail-call optimization, 53–54
2D rendering, 235
unknown until runtime, 51

G
Galloway Web site, xii
garbage collector, 145, 169
GCD. See Grand Central Dispatch

(GCD)
getCharacters:range: method, 99
getter=<name> attribute, 31
getters

_block syntax, 210

error parameter, 108
errors, 106–107
error status codes

grouping, 22
named constants as, 17–24

evictsObjectsWithDiscarded
Content property, 251

exceptions, 104
Automatic Reference Counting

(ARC), 105
C++, 165
catch block, 166
causing application to exit, 105
code catching and handling, 165
fatal errors only, 105–106
Key-Value Observing (KVO), 165
memory leaks, 105
nil objects in arrays, 9–10
nil values in dictionaries, 11
object destruction, 166–167
Objective-C, 165
throwing in overridden methods,

105–106
try block, 166
zombie objects, 178

exception-safe code, 105
memory management, 165–168

extern keyword, 15

F
factory method, 98
Factory pattern, 44
fast enumeration, 236, 239–240
_fetchedData instance variable, 205
fetcher class, 116–117
file descriptors, 162
@finally block, 166, 167
_firstName instance variable,

26–27, 28
-fobjc-arc-exceptions flag, 105,

167–168
_foo instance variable, 150
foo setter accessor, 150
for loops, 174, 176

versus block enumeration, 236–243
enumerating collections, 236–237

forward declaring, 8
classes, 6
imports, 7

 Index 275

superclass, 7
heap

allocating and de-allocating mem-
ory, 2–4

copying blocks from stack, 192
managing memory, 3

heap-allocated memory, cleaning
up, 160

heap blocks, 192–193
height instance variable, 96
_height instance variable, 80, 84
helpers, backward compatibility,

20–22
.h file extension, 4
high memory, reducing waterline,

173–177
HTTP, obtaining data from server,

126
HTTP requests to Twitter API, 74
HTTP-specific methods, 126

I
IDE. See Integrated Development

Environment (IDE)
identifier property, 92
id<EOCDelegate> type, 140
id<NSCopying> type, 141
id type, 66–69. 215, 242
if statement, 45, 153, 192
images, caching from Internet,

248–252
immutable arrays, 45
immutable collection-class proper-

ties, 92–94
immutableCopy method, 112–113
immutable objects, 32, 89–94
immutable variants, 12
implementation

class-continuation category hid-
ing detail, 133–140

exchanging, 63–64
hiding with class clusters, 42–47
instance variables, 27

implementation files, 4–5
class-continuation category,

133–140
constants, 13, 15, 17

#import preprocessor directive, 7
imports, forward declared, 7

deadlock, 227
instance variables, 25, 35–36
properties, 30
running concurrently, 210
selectors, 56, 60
serial synchronization queue, 210
specifying name of, 31

global blocks, 192–193
global constants, 17
global symbol table, 15
global variables

defining source of error, 106
name conflicts, 74

Grand Central Dispatch (GCD), xi,
xiii, 187

barrier feature, 211
blocks, 216, 217
dispatch groups, 220–224
dispatch queues, 217
inability to cancel blocks, 218
locks, 208–213
versus performSelector: method

and friends, 213–217
queue currently being executed,

226–231
queue priorities, 218
queue-specific data functions,

230–231
singleton instances, 225–226
synchronization, 217
threads, 173, 223
when to use, 217–220

graphics, rendering, 235
grouping tasks, 220–224
groups, incrementing or decrement-

ing number of tasks, 220

H
handler blocks, reducing code sepa-

ration with, 197–203
hash callback, 247
hashes, 38–40, 42
hash methods, 37–39, 42, 247
hash tables, hash as index in, 38
hasPrefix: method, 99
header files, 4–8

constants, 15, 17
extern keyword, 15
protocols, 7

276 Index

declaring, 25–26
directly accessing internal,

33–36
documenting not exposed pub-

licly, 133–140
externally accessing, 33
getters, 25
inability to be synthesized by

category, 131
instances, 68
memory-management semantics,

158–160
naming, 28–29
network fetchers stored as, 199
offsets, 27, 92
only known internally, 134
pointer to instance, 136
private, 90
properties, 33–36
qualifiers, 159–160
queue usage, 227
runtime, 27
safe setting of, 159
scope, 26
setters, 25, 35
setting to 0 (zero), 79
as special variables held by class

objects, 27
subclasses, 46
superclass, 35
synthesis, 29

integers
defined at compile time, 257
parsing strings as, 98

Integrated Development Environ-
ment (IDE), 195

interface
classes implementing protocol,

117
documenting code, 115

Internet, caching images from,
248–252

introspection, 45, 66–71, 113
classes, 92
delegates, 119
methods, 46, 69–71
objects, 94
retrieving objects from collec-

tions, 69–70

IMPs function pointers, 62–63
#include preprocessor directive, 7
indexes for arrays, 12
inheritance, hierarchies with equal-

ity, 37
initialize method

called lazily, 254
inheritance, 255
lean implementation of, 255–256
runtime in normal state, 254
superclass running, 254–255
thread-safe environment, 254

initializers
classes, 78
designated, 78–84
instance variables, 35
methods, 35
naming, 78
throwing exceptions, 81

init method, 79–81
initWithCoder: method, 82, 84
initWithDimension: method, 81
initWithFormat: method, 151
initWithInt: method, 149
initWithSize: method, 97
initWithTimeIntervalSince

ReferenceDate: designated
initializer, 78

initWithWidth:andHeight method,
81

in keyword, 239
inline blocks, 189
instances

base class, 45
instance variables, 68
metadata, 68
value passed in, 106

instance variables, 25
accessor methods, 34
Automatic Reference Counting

(ARC) handling, 160–161
bitfield, 122
blocks, 190
class-continuation category, 27,

122, 133–134
classes, 28, 130
cleanup code during deallocation,

160
completion handler, 203

 Index 277

dictionaries, 11–12, 48
retain and release callbacks, 247
static global variables, 48

Key-Value Coding (KVC), 92
Key-Value Observing (KVO)

exceptions, 165
notifications, 34, 137
operation properties, 218
properties, 165

KVC. See Key-Value Coding (KVC)

L
_lastName instance variable, 28
lastObject method, 46
lazy initialization, 35–36
length method, 98
lengthOfBytesUsingEncoding

method, 98–99
libdispatch, xi
libraries

duplicates, 74
error domain, 109
Private category, 127
retain count, 185

list views, 120
literal arrays, 9–10
literal dictionaries, 10–11
literal numbers, 8–9
literals, 12
LLDB debugger, 88–89
load method, 252–256
localizedString method, 100
localizedStringWithFormat:

method, 98
local variables, 14

breaking retain cycles, 160
memory-management semantics,

158–160
qualifiers, 159–160

locks
Grand Central Dispatch (GCD),

208–213
recursive, 208
threads taking same lock multiple

times, 208
lowercaseString method, 98
lowercase strings, 98
lowercaseString selector, 55, 63,

64–66

int type, 98, 194
intValue method, 98
invoke variable, 191
iOS, xi, xiii

blocked UI thread, 187
blocks, 188
Cocoa Touch, 173, 234
main thread, 221
mapping functionality, 235
method called on application

termination, 163
operation queues, 217
social networking facilities,

235–236
UI framework, 78
UI work performed on main

thread, 226
iOS applications

main function, 173–174
UIApplication object, 147

iOS 5.0 SDK, 74
isa instance variable, 181
isa pointer, 68–69, 191
isCancelled property, 218
isContentDiscarded method, 250
isEqual: method, 36–39, 40, 42,

70, 247
isEqualToArray: method, 39
isEqualToDictionary: method, 39
isEqualToString: method, 36,

39, 99
isFinished property, 218
isKindOfClass: method, 69–70
island of isolation, 152
isMemberOfClass: method, 69

J
Java

exceptions, 104
function names, 96
instance variables scope, 26
interfaces, 115

K
kAnimationDuration constant, 14
kAnimationDuration global

variable, 13
keys

associated objects, 48

278 Index

memory-management semantics, 35
attributes, 91, 131
bypassing, 34
custom, 243–247
objects, 47
properties, 30–31
variables, 158–160

memory regions, 191
message dispatch and Automatic

Reference Counting (ARC), 161
message forwarding, 52

dynamic method resolution,
55–56, 59–62

flow diagram, 57–59
full forward mechanism, 57
receiver, 57, 59
replacement receiver, 55–57, 59
selector, 57

messageName selector, 52
message object, 153
messages

arguments, 50
description message, 84
floating-point values, 53
forwarding path, 54–55
method lookup, 103
names, 50
object not understanding, 54–62
objects responding to all, 103
passing, 50–54
receivers, 52, 55
selectors, 50, 52
structs, 53
superclass, 53
unhandled, 57
values, 50

messaging, 4, 25
versus function calling, 1
runtime and, 1–2
structure, 1

metaclass, 68
metadata, 68
method dispatch, 34
method dispatch system, 103
method_exchangeImplementations

method, 64
method-naming rules and Auto-

matic Reference Counting
(ARC), 154–158

M
Mac OS X, xi, xiii

blocked UI thread, 187
blocks, 188
Cocoa, 173, 234
garbage collector, 145, 169
main thread, 221, 226
method called on application ter-

mination, 163
NSApplication object, 147
operation queues, 217
social networking facilities, 235–236

main function, 173–174
main interface, defining properties,

132
main thread, 173

blocked terminating application,
197

UI work in Cocoa and Cocoa
Touch, 202

malloc() function, 160
MapKit framework, 235

MKLocalSearch class, 202
memory

allocated on stack for blocks, 192
caches freeing, 250–252
heap-space allocation for objects,

2–3
releasing large blocks of, 162
reusing, 177
segmenting into zones, 109

memory leaks, 168, 214
code safe against, 105
multiple objects referencing each

other cyclically, 152
object not released, 153
retain cycles, 169

memory management
Automatic Reference Counting

(ARC), 155–156
debugging problems with zom-

bies, 177–183
exception-safe code, 165–168
property accessors, 150
reference counting, 145–152, 183

memory-management methods, 2
illegally calling, 154
overriding, 161

memory-management model, 168

 Index 279

return type, 98
runtime, 62–66
system-supplied class, 129
threads, 164–165, 213
throwing exceptions, 105–106
types, 100
verbose naming, 96–100
well-named, 97

method swizzling, 62–66
.m file extension, 4
MKLocalSearch class, 202
multithreaded applications, 187
multithreading, 187
mutable arrays, 45

dictionaries and, 11
methods, 45
runtime, 257
subscripting, 11

mutable classes, 89
equality in containers, 40–42

mutable collection-class properties,
92–94

mutableCopy method, 112–113, 154
mutableCopyWithZone: method, 112
mutable dictionaries, 140–141
mutable objects, 89–90
mutable variants, 12
_myFirstName instance variable, 28
_myLastName instance variable, 28

N
name clashes, 74
name conflicts, 74
named constants as error status

codes, 17–24
namespace clashes, 73–77, 100
naming

camel casing, 95
classes, 95, 100–101
clear and consistent, 95–101
delegate protocol, 117
methods, 95, 96–100
methods rules in Automatic

Reference Counting (ARC),
154–158

prefixing, 73–77
prepositions in, 95
private methods, 102–104
properties, 98

methods
arrays, 45
Automatic Reference Counting

(ARC), 154–158
autoreleasing objects, 156–157
backtrace, 126–127
badly-named, 97
Boolean indicating success or

failure, 107–108
Boolean properties, 100
categories, 123–127
causing action to happen on

object, 100
as C function, 53
class-continuation category,

133–134
classes, 54, 115
class methods, 64
debugging opaque methods,

62–66
delayed execution of, 213
delegate methods, 119
delegate protocols, 118–119
delegates, 122
documenting not exposed pub-

licly, 133–140
dynamically adding for unknown

selector, 55–56
dynamic binding, 52
equality-checking, 36–37
exchanging implementations,

63–66
get prefix, 100
HTTP-specific, 126
introspection, 46
introspection methods, 69–71
memory-management, 2
mutable arrays, 45
naming, 1, 95
newly created value, 100
nil / 0, 106
not reentrant, 227
NSObject protocol, 85
objects, 50–54, 150–151
out-parameter passed to,

107–108
owned by caller, 154
parameters, 99, 100
prefixing names, 74, 102–104

280 Index

_NSCFNumber type, 55
NSCoding protocol, 81–83
NSCopying object, 141
NSCopying protocol, 109–114, 247
NSDate class, 78
NSDictionary class, 8, 12, 39, 140,

234, 241
versus NSCache class, 248–252
piggybacking on description

method of, 86–87
retaining keys, 248

NSDictionary collection, 236
NSDictionary object, 48, 231, 246
NSDiscardableContent protocols,

250
NSEnumerationConcurrent option,

242
NSEnumerationOptions type, 242
NSEnumerationReverse option, 242
NSEnumerator class, 236
NSEnumerator object, 237–240
NS_ENUM macro, 21–24
NSError class, 106–107
NSError object, 106–109
NSFastEnumeration protocol,

239–240
NSFetchedResultsController class,

142
NSFetchedResultsSectionInfo pro-

tocol, 142
NSHTTPURLRequest category, 126
NSInteger scalar type, 30
NSInvocation object, 57, 59
NSLinguisticTagger class, 234
NSLog class, 149, 253
NSManagedObject class, 29
NSManagedObjects class, 55–56
NSMutableArray class, 45, 100, 112
NSMutable arrays, 41
NSMutableCopying protocol, 112
NSMutableDictionary class, 247
NSMutableSet class, 41, 94
NSMutableString subclass, 30
NSMutableURLRequest category, 126
NSMutableURLRequest class, 126
NSNotificationCenter API, 15, 203
NSNotificationCenter class, 162,

219
NSNumber class, 8–9, 12, 129

naming (cont’d)
protocols, 100–101
superclass, 101
variables, 95

nesting autorelease pools, 174–175
networkFetcher:didFailWith

Error: method, 118
networkFetcher:didUpdate

ProgressTo: method, 121
network fetchers, 198–199

adding itself to global collection,
206

blocks, 199–200
completion handlers, 200, 203
deallocating, 207
delegates, 119
errors, 200–202
keeping alive, 206–207
multiple, 199
retaining block, 205
stored as instance variables, 199

networks, C-level facilities for
talking to, 234

new method, 154
newSelector selector, 64
nextObject method, 237–238
NeXTSTEP operating system, 234
NIBs XML format, 82
nil objects, 9–10
nonatomic attribute, 29, 32–33
nonfatal errors indicators, 106
nonfragile Application Binary Inter-

face (ABI), 27
non-Objective-C objects

cleaning up, 160
releasing references, 162

notifications, 15
notify function, 221
NSApplicationDelegate object, 163
NSApplication object, 147
NSArray class, 8, 12, 39–40, 45–46,

86, 89, 100, 112, 129, 234,
243

NSArray collection, 236
NSAutoReleasePool object, 176
NSBlockOperation class, 218–219
NSCache class versus NSDictionary

class, 248–252
NSCalendar class, 132

 Index 281

OBJC_ASSOCIATION_COPY type, 47
objc_AssociationPolicy enumera-

tion, 47
OBJC_ASSOCIATION_RETAIN_NON

ATOMIC type, 47
OBJC_ASSOCIATION_RETAIN type, 47
objc_autoreleaseReturnValue

function, 157–158
objc_duplicateClass() function, 181
objc_getAssociatedObject method,

47
objc_msgSend function, 52, 54
objc_msgSend role, 50–54
objc_removeAssociatedObjects

method, 48
objc_retainAutoreleaseReturn

Value function, 157
objc_retain method, 154
objc_setAssociatedObject method,

47
ObjectA object, 146
objectAtIndex: method, 9, 46
ObjectB object, 146
ObjectC object, 146
object_getClass() runtime func-

tion, 179
object graph, 146, 149–150, 168
_object instance variable, 158
Objective-C

error model, 104–109
exceptions, 165
garbage collector, 145
messages and zombie objects,

179–180
messaging structure, 1
roots, 1–4
runtime component, 2
square brackets, 1
as superset of C, 2, 4
verbose syntax, 1, 8

Objective-C 1.0 enumerations,
237–239

Objective-C++ mode, 167
Objective-C objects

Automatic Reference Counting
(ARC), 235

seamless casting with C data
structures, 234

what to do with, 244

NSNumber object, 174, 185
NSObject class, xi, 37, 54–55, 67, 79,

85, 109, 213, 233, 234, 247
NSObject object, 181
NSObject protocol, 36–37, 67, 85,

88, 146, 183
NSOperation class, 218, 219
NSOperationQueue class, 203,

217–218
NS_OPTIONS macro, 22, 24
NSProxy class, 67, 70, 85
NSPurgeableData class, 250
NSPurgeableData objects, 251
NSRecursiveLock class, 208
NSSet class, 94, 113, 241
NSSet collection, 236
NSString class, 8, 12, 36, 38–39,

128–129, 153, 253
methods, 97–99
selector table, 63–64

NSString global constant, 108
NSString instance, 2–3, 67
NSString object, 8, 15, 151, 174, 185
NSString type, 30
NSString* type, 2, 3
NSTimeInterval type, 13
NSTimer class, 258–263
NSUInteger type, 22
NSURLConnection class, 107, 234
NSURLConnectionDelegate method,

107
NSURLErrorDomain domain, 106
NSURLRequest class, 126
NSZombie class, 181
NSZombieEnabled environment vari-

able, 178, 181
_NSZombie_EOCClass object, 180
_NSZombie_OriginalClass object,

181
NSZombie template class, 180
NSZone class, 109
null pointer, 108
number object, 149
numbers and literals, 8–9

O
OBJC_ASSOCIATION_ASSIGN type, 47
OBJC_ASSOCIATION_COPY_NONATOMIC

type, 47

282 Index

mutable, 30–31
nonvalid, 149
notifications, 15, 162
not understanding message,

54–62
object graph, 150
operation queues as, 217
overhead, 4
owning other objects, 146, 148
pointers, 2, 67
printing to inspect while debug-

ging, 84–89
properties, 25–33
proxy, 70–71
reference counting, 173
releasing, 156, 173–177
releasing references, 162–165
responding to messages, 103
retain count, 146, 173, 183
retaining, 156
runtime, 67–68
with same hash, 42
serializing with NIBs XML format,

82
sets, 237
stack-allocated memory for, 2, 3
storage policies, 47
synchronized against self vari-

able, 208
talking to each other, 115–123
tasks, 221–222
types, 4, 66–71, 242
variable of Class type, 68
variables, 2
when application terminates, 163
zombie objects, 179

object1 variable, 10
object2 variable, 10
object3 variable, 10
obj_msgSend_fpret function, 53
obj_msgSend_stret function, 53
obj_msgSendSuper function, 53
observation state, 162–165
opaque methods, debugging, 62–66
opaqueObject property, 60
open: method, 163
operation queues, 217–220
operations, 218–219
@optional keyword, 118

objects, 25
accessing data encapsulated

by, 27
anonymous, 140–142
associated with objects, 47
autoreleasing, 108, 155–157
becoming related to each

other, 146
binning into arrays with hash, 38
blocks as, 189–190
calling methods, 50–54
classes, 68, 69, 120
cleaning up observation state,

162–165
collections, 69–70, 242
comparing for equality, 36–42
conforming to private protocols,

138–139
copying, 109–114
counters, 145–152, 183
deallocating, 146, 149, 162, 169
declaring, 2
delegates, 115–123
description message, 84
designated initializer, 78–84
destruction and exceptions,

166–167
dictionaries, 11
equality, 70
equality-checking methods,

36–37
exceptions, 105
heap-space allocated memory,

2–3
id type, 66–67
immutable, 32, 89–94
inconsistent internal data, 81
instance variables, 25
introspection, 94
invalid references to, 146
memory, 2
memory-management semantics,

47
memory regions, 191
messaging, 25
methods, 100, 142, 150–151
methods as C functions, 53
multiple referencing each other

cyclically, 152

 Index 283

classes, 89
collection-class mutable or

immutable, 92–94
comparing for equality, 37
custom initializer, 31–32
in definition of object, 27
dot syntax, 27–28
encapsulating data, 130
getter methods, 30
instance variables, 33–36, 35, 92
Key-Value Coding (KVC), 92
Key-Value Observation (KVO),

165
lazy initialization, 35–36
main interface definition, 132
memory-management semantics,

30–31, 34, 91, 131
naming, 98
nonowning relationship, 30
operations, 218
owning relationship, 30
read-only, 30, 32, 89, 90–91
read-write, 30, 89
setter methods, 30
single words as, 98
synchronization, 208–210
value potentially unsafe, 171
weak, 117

property accessors, 150, 165
@property attribute, 47
property dot syntax, 34
@property syntax, 27
protocol language feature, 116
protocols, 115

acquiring data for class, 120
anonymous objects, 140–142
declaring conformance, 8
Delegate pattern, 115–123
header files, 7
hiding implementation detail in

API, 141
methods for database connec-

tions, 141–142
namespace clashes, 100
naming, 100–101
objects conforming to private,

138–139
proxy, 70–71
public API, 92–94

options
combining, 17–24, 19–20
enumerations, 17–24

OR operator, 19, 22, 23
out-parameter, 99, 107–108
overriding methods, 129

P
parameters

methods, 99–100
pointers to structures, 245

parsing strings, 234
passing messages, 50–54
performSelector: method versus

Grand Central Dispatch (GCD),
213–217

performSelector:withObject:with
Object: method, 215

personWithName: method, 156
placeholder arrays, 45
platform scaling and dispatch

groups, 220–224
po command, 88
pointers

comparing for equality, 37
dangling pointer, 149
denoting objects, 2
nilling out, 149
to struct, 243

pointerVariable variable, 67
polymorphism, 2
prefixing

category third-party names,
127–129

names, 73–77
preprocessor directive, 13
printGoodbye() function, 51
printHello() function, 51
print-object command invoking in

debugger, 88–89
Private category, 127
private instance variables, 90
private methods, 102–104, 138
programmer error, 164
properties, 25–33

atomic, 208–209
attributes, 29–33, 131
avoiding in categories, 130–133
class-continuation category, 135

284 Index

destruction of objects, 166–167
indicating problem areas,

153–161
manually releasing objects, 162
memory management, 183
operation of, 146–150
refactoring, 168
retain cycles, 152
zombie objects, 179

reference-counting architecture, 168
references, releasing, 162–165
release method, 146, 154, 159, 184
removeFriend: method, 94
replace function, 95
replacement receiver, 55–57, 59
_resetViewController method, 104
resolveClassMethod: method, 55
resolveInstanceMethod: method, 56
respondsToSelector: method, 119
results controller, 142
retain count, 146, 173, 183,

185–186
autorelease pool, 146
balancing, 151
changing, 184
current, 183
at given time, 184
incrementing and decrementing,

146, 150
inspecting, 146
at least 1, 149
very large value, 184–185

retainCount method, 146
Automatic Reference Counting

(ARC), 183–184
avoiding use of, 183–187

retain cycles, 50, 152, 205–207
avoiding, 168–172
blocks, 203–207
detecting, 169
memory leaks, 169
objects referencing each other,

168–169
retain method, 146, 154, 156–157,

159, 184
ret object, 214–215
reverse enumerator, 238–239
root classes, 85
run loops and timers, 258

public interface declaring instance
variables, 25–26

pure C functions name conflicts, 74

Q
QuartzCore framework, 235
querying structures, 122
_queueA variable, 228
queue barrier, 211
_queueB variable, 228
queues

associating data as key-value
pair, 230–231

currently being executed,
226–231

hierarchy, 229–230
instance variables, 227
many reads and single write,

211–212
priorities, 218
reading and writing to same,

209–210
scheduling callback blocks, 230
synchronization of property, 229

R
readonly attribute, 30, 90–91
read-only properties, 30, 32, 89,

90–91
class-continuation category and

setting internally, 137–138
readonly property, 91–92
readwrite attribute, 30
read-write property, 89
receiver, 55, 57, 59
rectangle class, 7
Rectangle object, 79
rectangles, 78–79
recursive locks, 208
reference-counted objects, 192
reference counting, xiii, 2–3, 3,

145–152, 173, 220–221
automatic, 153–161
Automatic Reference Counting

(ARC) and, 153–161
autorelease pools, 150–151,

173–177
blocks, 190, 192
catching exceptions, 168

 Index 285

fast enumeration, 239–240
objects, 237

setter accessor, 150
setter=<name> attribute, 31
setters

Automatic Reference Counting
(ARC), 159

barrier block, 211
instance variables, 25, 35
naming, 31
properties, 30
scalar types, 30
selectors, 56, 60
serial synchronization queue, 210
subclasses overriding, 35
synchronous dispatch to asyn-

chronous dispatch, 210
setup method, 158
setValue:forKey: method, 92
shallow copy, 113–114
shallow equality, 40
shape class, 7
sharedInstance method, 225–226
Singleton design pattern, 225
singleton objects, 185
Smalltalk, 1
Social framework, 235–236
social networking facilities, 235–236
sockets, 162

connections and enumerations,
17–18

someBlock variable, 188
SomeClass class, 68
SomeCPPClass.h header file, 136
someObject receiver, 52
someString variable, 2
sound file, playing, 74–76
stack

autorelease pools, 175
blocks, 192–193
copying blocks to heap, 192
memory allocated for blocks, 192
memory allocated for objects, 2, 3
variables, 3–4

standard view, 48
start method, 195
states and enumerations, 17–24
static analyzer, 153
static global variables, 48

runtime, 25
dealloc method, 162
deciding which code executes, 1
as dynamic library, 2
functions, 2, 51
instance variables, 27
lookup, 2
memory-management methods, 2
methods, 54, 62–66
object types, 4, 66–71
reference counting, 3
selectors, 213
structures, 2
updating, 2
zombie objects, 179

S
scalar types, 30
scheduledTimerWithTimeInterval:

method, 258
sectionInfo object, 142
sections property, 142
selectors, 57

calling directly, 213
delegates, 121–123
getters, 56, 60
IMPs function pointers, 62–63
messages, 50
methods, 55–56, 62–66, 64
parameters, 215
running after delay, 215–216
runtime, 213
setters, 56, 60
storing to perform after event, 214
threads, 215–216

self variable, 190, 262
completion-handler block refer-

encing, 205
objects synchronized against, 208

serial synchronization queue,
209–213

setFirstName: method, 138
setFullName: method, 33–34
setIdentifier: method, 92
setLastName: method, 138
set prefix, 56
sets, 243

block-based enumeration, 241
enumerating, 237–238

286 Index

super_class pointer, 68, 69
super_class variable, 68
supportedInterfaceOrientations

method, 20
switch statements, 23–24
sychronization locks versus dis-

patch queues, 208–213
synchronization

Grand Central Dispatch (GCD),
217

properties, 208–209
synchronization blocks, 208
@synchronized approach, 226
synchronizedMethod method, 208
synchronous dispatch, 210
@synthesize syntax, 28
system frameworks

AVFoundation framework, 235
CFNetwork framework, 234
class clusters, 45
CoreAudio framework, 234–235
CoreData framework, 235
CoreFoundation framework, 234
CoreText framework, 235
dynamic libraries, 233
Foundation framework, 233, 234
UI frameworks, 235

system libraries
catching and handling excep-

tions, 165
C++ in, 137

system resources
deterministic life cycles, 163
exceptions thrown, 105
file descriptors, 162
memory, 162
performing tasks on, 223
sockets, 162

system-supplied class, 129

T
table view, 101
tagged pointers, 185
tail-call optimization, 53–54
tasks

arrays, 221–222
asynchronously performing, 197
decrementing number of, 220
delegates, 197–198

static library, 233
static qualifier, 14
status codes and enumerations,

17–24
stopPolling method, 260–261
stop variable, 241
storage policies, 47
string literal, 8
string method, 98
strings

characters within range of, 99
converting to lowercase, 98
custom classes, 12
equality, 99
factory method, 98
immutable variants, 12
length of, 98–99
parsing, 98, 234
prefixed by another string, 99
processing, 234
returning hash of, 39

stringValue method, 151
stringWithString: method, 98
str object, 151, 179
strong attribute, 30
__strong qualifier, 159
structs, 53
structures, 2

delegates, 122
fields sized, 121–122
instance variables, 122
parameters pointers to, 245
pointers, 191
querying, 122

styles and enumeration types, 22–23
subclasses, 46

overriding setter, 35
throwing exceptions, 105–106

Subnet Calc app, xii
subscripting, 9, 11–12
superclass

designated initializers, 80
header files defining, 7
inheritance, 7
instance variables, 35
prefixing names, 101
sending messages to, 53
subclasses overriding methods

of, 46

 Index 287

TWRequest object, 207
typed constants versus #define pre-

processor directive, 12–17
typedef keyword, 194–196

enumerations, 18
types

alias for another type, 194–196
blocks, 188, 194–196
compiler-dependent, 18
constants, 13, 14
enumerations, 18
literal numbers, 9
methods, 100
objects, 66–71
runtime, 4
variable name inside, 194

U
UIAlertView class, 48–50
UIApplicationDelegate object, 163
UIApplicationDidEnterBackground

Notification constant, 16
UIApplicationMain function, 174
UIApplication object, 147
UIApplicationWillEnterFore

groundNotification constant,
16

UIButton class, 42
UI frameworks, 235
UIInterfaceOrientationMask enu-

merated type, 20
UIKit framework, 13, 16, 19–20, 42,

78, 82, 235
UIKit.h header file, 5
UIKit iOS UI library, 100
UISwitch class, 31
UITableViewCell object, 78
UITableView class, 101
UITableViewController class, 101
UITableViewDelegate protocol, 101
UI thread, 187
UIVewController class, 103–104
UIViewAutoresizing enumeration,

20
UIViewAutoresizingFlexible

Height option, 19
UIViewAutoresizingFlexibleWidth

option, 19
UIView class, 100–101, 235

dispatch groups, 220
grouping, 220–224
priorities, 222
system resources, 223
waiting until finished, 221–222

temporary objects, 174–175
text, typesetting and rendering, 235
third-party classes, 127–129
third-party frameworks, 233
third-party libraries

catching and handling excep-
tions, 165

duplicate-symbol error, 77
threads

implicit autorelease pool, 173
methods, 164–165
multiple accessing code, 208
priorities, 219
safety of, 225–226
unblocking when long-running

tasks occur, 197
thread-safe single-time code execu-

tion, 225–226
timers

blocks and, 261–262
deallocating, 260, 263
invalidating, 258–259
repeating, 258, 259
retain cycle, 262
retain-cycle with repeating,

259–260
retaining target, 258–263
run loops and, 258
scheduling, 258
weak references, 262

title: attribute, 42
toll-free bridging, 55, 234, 243–247
translation unit, 14, 17
@try block, 166–167
try block exceptions, 166
Twitter API, HTTP requests to, 74
Twitter framework

TW prefix, 74
TWRequest class, 202
TWRequest object, 207

2D rendering data structures and
functions, 235

TW prefix, 74
TWRequest class, 74, 202

288 Index

naming, 95, 194
Objective-C objects, 3–4
pointing to same object, 2–3
retaining value, 158–159
stack, 3–4
static qualifier, 14
strong references to objects, 158
without asterisk (*), 3–4

video playback and recording, 235
views, 20, 100–101
virtual tables, 2
void return type, 215
void* variable, 191

W
weak attribute, 30, 117
weak properties, 117, 168–172
__weak qualifier, 159–160
weak references and timers, 262
WebKit web browser framework, 137
web services, 90
while loop, 184
width instance variable, 96
_width instance variable, 80, 84

X
Xcode and zombie objects, 178

Z
zombie classes, 180
zombie objects

debugging memory-management
problems, 177–183

detecting, 182
determining original class from,

181
exceptions, 178
Objective-C messages, 179–180
turning objects into, 179

zones, segmenting memory into, 109

UIViewController class, 5, 100
UIView subclass, 13
unsafe_unretained attribute, 30,

117, 169–171
__unsafe_unretained qualifier, 159
uppercaseString selector, 63,

64–65
urlEncodedString method, 128–129
URLs

downloading data from, 234
errors from parsing or obtaining

data from, 106
obtaining data from, 126
retrieved as cache key, 250

user-developed equality methods, 39
userInfo parameter, 262
user interface

unresponsive while task occurs,
197

views, 100

V
value property, 215
values

retain and release callbacks, 247
tagged pointers, 185

variables
_block qualifier, 189
blocks, 188, 189, 210
Class type, 68
const qualifier, 14
copies of captured, 191–192
declaring, 2
forward declaring types for enu-

merations, 18
holding memory address, 67
isa pointer, 68
local, 14
memory-management semantics,

158–161

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Accustoming Yourself to Objective-C
	Item 1: Familiarize Yourself with Objective-C’s Roots
	Item 2: Minimize Importing Headers in Headers
	Item 3: Prefer Literal Syntax over the Equivalent Methods
	Item 4: Prefer Typed Constants to Preprocessor #define
	Item 5: Use Enumerations for States, Options, and Status Codes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

