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 Preface  

 Every day, millions of Apple devices run applications, or apps, which rely on Core Data. This 
has led to a mature, stable, and incredibly fast platform for apps to access their data. Core Data 
itself is not a database. In fact, Core Data is a framework that, among other things, automates 
how you interact with a database. Instead of writing SQL code, you use Objective-C objects. 
All the associated SQL you would otherwise have to write yourself is generated automatically. 
This leaves you with all the benefits of a relational database without the headache of writing, 
testing, and optimizing SQL  queries within your Objective-C code. The SQL code generated 
automatically “under the hood” is the product of years of refinement and optimization by 
Apple’s masterful engineers. Using Core Data will not only speed up your own application 
development time, it will also significantly reduce the amount of code you have to write.  

 Here are some notable features of Core Data:  

    ■   Change management (undo and redo)   

   ■   Relationships   

   ■   Data model versioning and migration   

   ■   Efficient fetching (through batching and faulting)   

   ■   Efficient filtering (through predicates)   

   ■   Data consistency and validation    

 With this book, you’ll be introduced to Core Data features and best practices. As you progress 
through the chapters, you’ll also build a fully functional Core Data iPhone app from scratch. 
Each key piece of information will be explained in succinct detail so you can apply what you’ve 
learned straight away. The sample application built throughout this book has been especially 
designed to demonstrate as many aspects of Core Data as possible. At the same time it is a 
completely real-world application available on the App Store today. This should make it easier 
to absorb concepts as you relate them  to real-life scenarios.  

 The arrival of iOS 7 has seen major improvements in the speed, reliability, and simplicity of 
Core Data integration with iCloud. I encourage anyone who has previously given up on this 
technology to give it another go, because you will be pleasantly surprised.  

 If you have feedback, bug fixes, corrections, or anything else you would like to contribute to a 
future edition, please contact me at  timroadley@icloud.com . Finally, thank you for taking an 
interest in this book. I have put a lot of effort into meticulously crafting it, so I truly hope it 
helps you on your way to mastering this brilliant technology.  

 —Tim Roadley ( @TimRoadley ), September 2013  
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  Who Is This Book For?  

 This book is aimed at Objective-C programmers who wish to learn how to efficiently manage 
data in their iOS apps. Prior experience with databases may help you pick up some topics faster, 
yet is not essential knowledge. As old habits die hard, some SQL programmers may find it more 
difficult to wrap their heads around some topics. Whatever your scenario, don’t worry. Every 
step of the way will be explained and demonstrated clearly.   

  What You’ll Need  

 As an Objective-C programmer, it is expected that you already have a reasonably modern Mac 
running Xcode 5 or above. You should also be quite familiar with Xcode and have an iOS 
device to test with. This is particularly true once you reach  Chapter   10   , “Performance,” which 
is all about device performance.  

 You should already know what the Objective-C terms  property ,  method ,  delegate ,  class , and  class 
instance  mean. If you’re now uncertain that this book is for you, I suggest a detour via the 
following resources:  

    ■    iOS Programming: The Big Nerd Ranch Guide  (search amazon.com)   

   ■   The iOS Newbie Tutorial Series (search timroadley.com)   

   ■   Learning Objective-C: A Primer (search apple.com)     

  How This Book Is Organized  

 This book takes you through the entire process of building the  Grocery Dude  and  Grocery 
Cloud  apps, which are available from the App Store today. Grocery Dude demonstrates 
Core Data integration with iCloud. Grocery Cloud demonstrates Core Data integration with 
StackMob. Each chapter in this book builds on the last, so you’re introduced to topics in the 
order you need to implement them. Along the way you’ll build helper classes that simplify 
redeployment of what you’ve learned into your own applications. In fact, the exercises at the 
end of  Chapter   15   , “Taming iCloud,” guide you through a redeployment of these helper classes  
into an existing non–Core Data app. In next to no time, you’ll have a fully functional Core 
Data app that is reliably integrated with iCloud.  

 Here’s a brief summary of what you’ll find in each chapter:  

    ■     Chapter   1   , “Your First Core Data Application”—    The groundwork is laid as the 
fundamental concepts of Core Data are introduced. You’ll be shown what Core Data is, 
and just as importantly what it isn’t. In addition, Core Data integration with an existing 
application is demonstrated as the  CoreDataHelper  class is implemented.   
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   ■     Chapter   2   , “Managed Object Model Basics”—    Data models are introduced as parallels 
are drawn between traditional database schema design and Core Data. You’ll be shown 
how to configure a basic managed object model as entities and attributes are discussed, 
along with accompanying advice on choosing the right data types. Inserting, fetching, 
filtering, sorting, and deleting managed objects is also covered and followed up with an 
introduction to fetch request templates.   

   ■     Chapter   3   , “Managed Object Model Migration”—    Experience lightweight migration, 
default migration, and using a migration manager to display migration progress. Learn 
how to make an informed decision when deciding between migration options for your 
own applications and become comfortable with the model-versioning capabilities of Core 
Data.   

   ■     Chapter   4   , “Managed Object Model Expansion”—    The true power of a relational data 
model is unlocked as different types of relationships are explained and added to Grocery 
Dude. Other model features such as abstract and parent entities are also covered, along 
with techniques for dealing with data validation errors.   

   ■     Chapter   5   , “Table Views”—    The application really comes to life as Core Data is 
used to drive memory-efficient and highly performing table views with a fetched 
results controller. Of course, most of the generic legwork is put into a reusable table 
view controller subclass called  CoreDataTVC . By dropping this class into your own 
applications, you can easily deploy Core Data–driven table views yourself.   

   ■     Chapter   6   , “Views”—    Working with managed objects takes a front seat as you’re shown 
how to pass them around the application. Objects selected on a table view are passed 
to a second view, ready for editing. The editing interface is added to Grocery Dude, 
demonstrating how to work with objects and then save them back to the persistent store.   

   ■     Chapter   7   , “Picker Views”—    As a nice touch, Core Data–driven picker views are added 
to the editing views. Picker views allow the user to quickly assign existing items to a unit 
of measurement, home location, or shop location. A special reusable text field subclass 
called  CoreDataPickerTF  is introduced, which replaces the keyboard with a Core Data 
picker view whenever an associated text field is tapped.   

   ■     Chapter   8   , “Preloading Data”—    Techniques for generating a persistent store full of 
default data from XML are explained and demonstrated in this chapter as the generic 
 CoreDataImporter  helper class is introduced. Once you have a persistent store to 
include with a shipping application, you’ll then be shown how to determine whether a 
default data import is required or even desired by the user.   

   ■     Chapter   9   , “Deep Copy”—    A highly flexible and fine-grained alternative to 
 migratePersistentStore , deep copy enables you to copy objects and relationships 
from selected entities between persistent stores. In this chapter, the  CoreDataImporter  
helper class is enhanced with the deep copy capability.   

   ■     Chapter   10   , “Performance”—    Gain experience with Instruments as you identify and 
eliminate performance issues caused by the common pitfalls of a Core Data application. 
The camera functionality is introduced to highlight these issues and demonstrates just 
how important good model design is to a well-performing application.   



xviii Preface

   ■     Chapter   11   , “Background Processing”—    Top-notch performance requires intensive 
tasks be offloaded to a background thread. Learn just how easy it is to run processes in 
the background as the example of photo thumbnail generation is added with a generic 
helper class called  Thumbnailer . Also learn how to keep memory usage low with another 
helper class, called  Faulter .   

   ■     Chapter   12   , “Search”—    Learn how to handle twin fetched results controllers in the one 
table view as you implement efficient search in  CoreDataTVC .   

   ■     Chapter   13   , “Back Up and Restore with Dropbox”—    Create backups and synchronize 
them to Dropbox using their Sync API. Restore data to any iOS device using the same 
Dropbox account at the touch of a button.   

   ■     Chapter   14   , “iCloud”—    Enjoy the easiest, most reliable Core Data integration with 
iCloud yet. Handle multiple accounts and varying preferences on using iCloud without 
missing a beat.   

   ■     Chapter   15   , “Taming iCloud”—    Take iCloud integration to the next level with entity-
level seeding and unique object de-duplication. Accurately emulate first-time iCloud use 
by resetting ubiquitous content globally, the right way.   

   ■     Chapter   16   , “Web Service Integration”—    Enable collaboration as cross-platform data 
sharing between multiple users is introduced with StackMob. StackMob has one of the 
best free Backend-as-a-Service (BaaS) offerings available, and its iOS API is native to Core 
Data. Thanks to StackMob for generously allowing its art assets to be used in this book 
and for its assistance with  Chapter   16   .   

   ■     Appendix   A   , “Preparing Grocery Dude for Chapter 1”—    Every (non–Core Data) step 
involved in preparing the starting-point application for  Chapter   1    is documented here for 
completeness.   

   ■     Appendix   B   , “Preparing Grocery Cloud for Chapter 16”—    Every (non–Core Data) step 
involved in preparing the starting-point application for  Chapter   16    is documented here 
for completeness.     

  Getting the Sample Code  

 The sample code built throughout this book is available for download from timroadley.com. 
Links are given in each chapter, or you can use  Table   P.1    as a reference, which is arranged in 
the order of implementation.  

  Table P.1   Grocery Dude Code  

  Final Code     Link   

  Appendix   A       http://timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip   

  Chapter   1       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter01.zip   

  Chapter   2       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter02.zip   

timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter01.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter02.zip
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  Final Code     Link   

  Chapter   3       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter03.zip   

  Chapter   4       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter04.zip   

  Chapter   5       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter05.zip   

  Chapter   6       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter06.zip   

  Chapter   7       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter07.zip   

  Chapter   8       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter08.zip   

  Chapter   9       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter09.zip   

  Chapter   10       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter10.zip   

  Chapter   11       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter11.zip   

  Chapter   12       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter12.zip   

  Chapter   13       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter13.zip   

  Chapter   14       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter14.zip   

  Chapter   15       http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter15.zip   

  Chapter   15     

 “Mini-project”  

  http://timroadley.com/LearningCoreData/EasyiCloud.zip   

 Helper classes, 
for your own 
projects  

  http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20
Classes.zip   

  Appendix   B       http://timroadley.com/LearningCoreData/GroceryCloud-AfterAppendixB.zip   

  Chapter   16       http://timroadley.com/LearningCoreData/GroceryCloud-AfterChapter16.zip   

 Note that occasionally lines of code in the chapters are too long to fit on the printed page. 
Where that occurs, a code-continuation arrow (➥) has been used to mark the continuation. 
For example:  

  [[NSURL fileURLWithPath:[self applicationDocumentsDirectory]]

  ➥URLByAppendingPathComponent:@"Stores"];    

http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter03.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter04.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter05.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter06.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter07.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter08.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter09.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter10.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter11.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter12.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter13.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter14.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter15.zip
http://timroadley.com/LearningCoreData/EasyiCloud.zip
http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20Classes.zip
http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20Classes.zip
http://timroadley.com/LearningCoreData/GroceryCloud-AfterAppendixB.zip
http://timroadley.com/LearningCoreData/GroceryCloud-AfterChapter16.zip
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 Your First Core Data 

Application  

      If you can’t explain it simply, you don’t understand it well enough.   

 Albert Einstein  

  Kinesthetic learning, or learning by doing, is one of the best ways to absorb and retain information. 
The topic of Core Data has been a great hurdle for many seasoned programmers, so it’s about time a 
book with a hands-on approach to Core Data was written. In order to avoid side tracking into deep 
topics too early, this chapter has many pointers to later chapters. First things first: It will give you a 
Core Data essentials primer, then dive right in and show how to add Core Data to the sample applica-
tion. The sample application will be expanded over the  course of this book as increasingly advanced 
topics are introduced.    

     What Is Core Data?  

 Core Data is a framework that enables you to work with your data as objects, regardless of 
how they’re persisted to disk. This is useful to you as an Objective-C programmer, because 
you should be comfortable using objects in code already. To provide data objects, known as 
 managed objects , Core Data sits between your application and a  persistent store , which is the 
generic term given to a data file such as an SQLite database, XML file (which can’t be used as a 
persistent store on iOS), or Binary (atomic) store. These files are called “persistent” because they 
can survive the  underlying hardware being reset. Another (oddly named) persistent store option 
is the In-Memory store. Although it isn’t really “persistent,” an In-Memory store allows you to 
leverage all the functional benefits of Core Data to manage your data, such as change manage-
ment and validation, not to mention performance.  

 To map data to a persistent store from managed objects, Core Data uses a  managed object 
model , where you configure your application’s data structure using an  object graph . You can 
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think of an object graph as a collection of cookie cutters used to make managed objects from. 
The “object” in object graph refers to something called an  entity , which is used as a cookie 
cutter to make a customized managed object. Once you have managed objects, you’re then free 
to manipulate them natively in Objective-C, without having to write any SQL code (assuming 
you’re using SQLite as the persistent store,  which is the most common scenario). Core Data will 
transparently map those objects back to a persistent store when you save to disk.  

 A managed object holds a copy of data from a persistent store. If you use a database as a 
persistent store, then a managed object might represent data from a table row in that data-
base. If you use an XML file as a persistent store (Mac only), then a managed object would 
represent data found within certain data elements. A managed object can be an instance of 
 NSManagedObject ; however, it’s usually an instance of a  subclass  of  NSManagedObject . This is 
discussed in detail in  Chapter   2   , “Managed Object Model Basics.”  

 All managed objects exist in a  managed object context . A managed object context exists in 
high-speed volatile memory, also known as RAM. One reason a managed object context is 
required is the overhead involved with transferring data to and from disk. Disk is much slower 
than RAM, so you don’t want to use it more than necessary. Having a managed object context 
allows access to data that has been previously retrieved from disk to be very fast. The downside, 
however, is that you need to call  save:  on the managed object context periodically to write 
changes back to disk. The managed  object context exists also to track changes to its objects in 
order to provide full undo and redo support.  

  Note 

 “If you can’t explain it simply, you don’t understand it well enough” is a famous quote from 
the late great Albert Einstein. Each chapter of this book is headed by a famous Albert Einstein 
quote. Core Data can be a difficult topic to learn; however, that doesn’t mean it cannot be bro-
ken down and explained in understandable chunks. Whenever I write technical tutorials or docu-
mentation, I remember this quote and strive for easy-to-read, highly informative material.   

 To help visualize how the main pieces of Core Data fit together, examine  Figure   1.1   .   

  Persistent Store Coordinator  

 On the left of  Figure   1.1   , a  persistent store coordinator  is shown containing a persistent store 
with table rows. When you set up a persistent store coordinator, you’ll commonly choose an 
SQLite database as the persistent store. Other options for the persistent store are Binary, XML, 
and In-Memory stores. The thing to note about Binary and XML stores is that they are atomic. 
This means that even if you only want to change a small amount of data, you still have to 
write out the whole file to disk when you save. Of course, the same issue applies when reading 
an  atomic store into memory in the first place. This can become problematic if you have a lot 
of data because it consumes valuable memory.  
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 An SQLite database, on the other hand, is updated incrementally as change logs, also known 
as  transaction logs,  are committed. As a result, the SQLite database memory footprint is compa-
rably very small. For these reasons, you’ll typically choose an SQLite database, especially when 
integrating Core Data with iCloud.  

  Note 

 Persistent stores should only ever be created by Core Data. You should not configure Core 
Data to use a database it did not originally create. If you need to use existing data, you should 
import it. This topic is covered in  Chapter   8   , “Preloading Data.”   

 A persistent store coordinator can have multiple persistent stores. One situation where this may 
be appropriate is when Core Data is integrated with iCloud. By putting data that doesn’t belong 
in iCloud into one store, and data that does in another, you will save network bandwidth 
and iCloud storage space. Even though you would then have two persistent stores, it does not 
mean that you need two separate object graphs. Using Core Data model configurations allows 
you to use separate stores, yet still have the one object graph. When you set up a Core Data 
model configuration, you can select  what parts of the object graph belong in what persistent 
store. If you do use separate persistent stores, you’ll need to ensure there’s no requirement for a 
relationship between data in each store. Core Data configurations are discussed in  Chapter   15   , 
“Taming iCloud.”  

 A persistent store is created from an instance of  NSPersistentStore  and a persistent store 
coordinator is created from an instance of  NSPersistentStoreCoordinator .   

 Figure 1.1   Core Data overview        
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  Managed Object Model  

 In the middle of  Figure   1.1   , a  managed object model  is shown sitting between a persistent 
store coordinator and a managed object context. As its name suggests, a managed object 
model is the model or graphical representation of a data structure. It forms the basis on which 
managed objects are produced. This is similar to a database schema and is also referred to as an 
 object graph.  To create one, you’ll use Xcode to configure entities and the relationships between 
them. An entity is similar to a table schema in a database. Entities don’t contain data; they 
only dictate the properties that  managed objects that are based on them will have. They’re 
cookie cutters! Just as a database table has fields, similarly an entity has attributes. An attribute 
can have one of several data types, such as integer, string, or date.  Chapter   2    and  Chapter   4   , 
“Managed Object Model Expansion,” cover these topics in more detail.  

 A managed object model is created from an instance of  NSManagedObjectModel .   

  Managed Object Context  

 On the right of  Figure   1.1   , a  managed object context  is shown with managed objects inside. A 
managed object context manages the lifecycle of objects within and provides powerful features 
such as faulting, change tracking, and validation. Faulting simply means that when you fetch 
data from a persistent store, only the parts you need are retrieved. Faulting is covered further 
in  Chapter   10   , “Performance.” Change tracking is used for undo and redo support. Validation 
is the enforcement of rules set in the managed object model. For example, a minimum or 
maximum value rule can be enforced at an attribute level on  an entity. Validation is discussed 
in  Chapter   2   .  

 Much like you can have multiple persistent stores, you may also have more than one managed 
object context. Typically you would use multiple contexts for background processing, such 
as saving to disk or importing data. When you call  save:  on a foreground context, you may 
notice user interface lag, especially when there are a lot of changes. An easy way to get around 
this issue is to simply call  save:  only when the home button is pressed and the application 
enters the background. Another more complicated yet flexible way is to use two managed 
object contexts. Remember that a managed object context  is an area in high-speed memory. 
Well, you can actually configure a managed object context to save to  another  managed object 
context. Once you save a foreground context to a background context, you may then save the 
background context to disk asynchronously. This staged approach ensures the writes to disk 
never interfere with the user interface responsiveness.  

 The ability to configure a parent and child context hierarchy has been available since iOS 5. A 
child context treats its parent as a persistent store, when really the parent is another context 
that exists to process heavy workloads, such as saving in the background. This is discussed in 
further detail in  Chapter   11   , “Background Processing.”  

 A managed object context is created from an instance of  NSManagedObjectContext .    
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  When to Use Core Data  

 Once your application outgrows trivial “settings” storage, such as  NSUserDefaults  and prop-
erty lists, you’re going to run into memory usage issues. The solution is to use a database either 
directly or instead indirectly with Core Data. If you choose Core Data, you’ll save time other-
wise spent coding a database interface. You’ll also enjoy big performance gains, as well as some 
functional benefits such as undo and validation. The time you would have spent developing, 
testing, and generally speaking “reinventing the wheel,” you’ll free up to focus on more impor-
tant areas of your application.  

 Now you might be thinking, “I just want to save lots of stuff to disk, so why does it have to 
be so complicated?” Well, it’s not that difficult once a few key points are understood. Sure, 
you could write your own database interfaces and they would probably work great for a while. 
What happens, though, when your requirements change or you want to add, say, data synchro-
nization between devices? How are your skills at building multithreaded data-import routines 
that don’t impact the user interface? Would your code also support undo and validation yet 
still be fast and memory efficient  on an old iPhone?  

 The good news for you is that all the hard work has already been done and is wrapped up in 
the tried and tested Core Data Framework. Even if your application’s data requirements are 
minimal, it’s still worth using Core Data to ensure your application is as scalable as possible 
without compromising performance.  

 Once you start using Core Data, you’ll appreciate how robust and optimized it really is. The 
millions of people worldwide using Core Data applications every day has led to a mature 
feature set with performance to match. In short, you’ll save more time learning Core Data than 
throwing it in the too-hard basket and writing your own database interfaces. You’ll also benefit 
from loads of additional functionality for free.  

  Note 

 Before you continue, you should have at least Xcode 5 installed on your Mac. The code used 
in this book is targeted at iOS 7, so it won’t work in lower versions of Xcode. It is also recom-
mended that you become a member of the iOS Developer Program, so you can run the sample 
application on your device as required. Go to  http://developer.apple.com  for further information 
on becoming a member.    

  Introducing Grocery Dude  

 Grocery Dude is the sample iPhone application you’ll create over the course of this book. As 
the features and best practices of Core Data are introduced, you can apply what you’ve learned 
to Grocery Dude. By the end of the book, you’ll have created a fast and fully functional Core 
Data application that integrates seamlessly with iCloud. If you would like to see the end result 

http://developer.apple.com
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upfront, head over to the App Store and download Grocery Dude now. Note that Grocery Dude 
is written only for iPhone. This is because Core Data doesn’t care what size screen you display 
data  on; the concepts are the same. Without further ado, it’s time to begin!  

 Have you ever stood in front of the fridge, pantry, cupboard, or some other location at home 
wondering what you’re forgetting to put on your shopping list? Then, when you get to the 
store, you can’t find something because you have no idea what aisle it’s in? To top it off, after 
zigzagging all the way from aisle 8 (and finally finding what you’re looking for in aisle 2), you 
discover the next item you need is back in aisle 8!  

 Here’s what Grocery Dude will do for you:  

    ■   Remind you what you  might  need by sorting potential items by their storage location in 
your house.   

   ■   Help you locate items at the grocery store by showing what aisle they’re in.   

   ■   Group your list by aisle so you only need to visit each aisle once, and in order.   

   ■   Sync between your devices with iCloud.   

   ■   Help you learn Core Data!    

  Note 

 Appendix A, “Preparing Grocery Dude for  Chapter   1   ,” shows the steps required to create 
the master project “Grocery Dude” from scratch. You may run through those steps manu-
ally or alternatively download the starting point project from  http://www.timroadley.com/
LearningCoreData/GroceryDude-AfterAppendixA.zip . Once you have downloaded the project, 
you should open it in Xcode 5 or above.    

  Adding Core Data to an Existing Application  

 When you create an iOS Application project in Xcode, you can choose from various starting-
point templates. Using Core Data in your project is as easy as ticking the  Use Core Data  check 
box during creation of a Master-Detail, Utility Application, or Empty Application template-
based project. Adding Core Data manually is more educational, so the “Grocery Dude” project 
is created based on the  Single View Application  template, which doesn’t include Core Data. 
To use the Core Data Framework, you’ll need to link it to the project.  

 Update Grocery Dude as follows to link to the Core Data Framework:  

    1.   Select the  Grocery Dude Target , as shown in  Figure   1.2   .   

   2.   Click the  +  found in the  Linked Frameworks and Libraries  section of the  General  tab 
and then link to the  CoreData.framework , as shown in  Figure   1.2   .    

http://www.timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip
http://www.timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip
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 Figure 1.2   Linking the Core Data Framework         

  Introducing Core Data Helper  

 If you’ve ever examined the built-in Core Data–enabled templates, you may have noticed a lot 
of Core Data setup is done in the application delegate. So that you may apply the approach 
used in this book to your own projects, Core Data will be set up using a helper class. This keeps 
the Core Data components modular and portable. The application delegate will be used to 
lazily create an instance of the  CoreDataHelper  class. An instance of this class will be used to 
do the following:  

    ■   Initialize a managed object model   

   ■   Initialize a persistent store coordinator with a persistent store based on the managed 
object model   

   ■   Initialize a managed object context based on the persistent store coordinator    

 Update Grocery Dude as follows to create the  CoreDataHelper  class in a new Xcode group:  

    1.   Right-click the  Grocery Dude  group in Xcode and then create a new group called 
 Generic Core Data Classes , as shown in  Figure   1.3   .  

 

 Figure 1.3   Xcode group for generic Core Data classes          
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   2.   Select the  Generic Core Data Classes  group.   

   3.   Click  File  >  New  >  File... .   

   4.   Create a new  iOS  >  Cocoa Touch  >  Objective-C class  and then click  Next .   

   5.   Set  Subclass of  to  NSObject  and  Class  name to  CoreDataHelper  and then click  Next .   

   6.   Ensure the Grocery Dude target is ticked and then create the class in the Grocery Dude 
project directory.    

  Listing   1.1    shows new code intended for the  CoreDataHelper  header file.  

  Listing 1.1    CoreDataHelper.h   

 #import <Foundation/Foundation.h>
  #import <CoreData/CoreData.h>
  
  @interface CoreDataHelper :NSObject
  
  @property (nonatomic, readonly) NSManagedObjectContext       *context;
  @property (nonatomic, readonly) NSManagedObjectModel         *model;
  @property (nonatomic, readonly) NSPersistentStoreCoordinator *coordinator;
  @property (nonatomic, readonly) NSPersistentStore            *store;
  
  - (void)setupCoreData;
  - (void)saveContext;
  @end   

 As an Objective-C programmer, you should be familiar with the purpose of header ( .h ) 
files.  CoreDataHelper.h  is used to declare properties for the context, model, coordina-
tor and the store within it. The  setupCoreData  method will be called once an instance of 
 CoreDataHelper  has been created in the application delegate. The  saveContext  method may 
be called whenever you would like to save changes from the managed object context to the 
persistent store. This method can cause interface lag if there are a lot of changes to be written 
to disk. It is recommended that it only be called from the  applicationDidEnterBackground  
and  applicationWillTerminate  methods of  AppDelegate.m —at least  until background save 
is added in  Chapter   11   .  

 Update Grocery Dude as follows to configure the  CoreDataHelper  header:  

    1.   Replace all code in  CoreDataHelper.h  with the code from  Listing   1.1   . If you select 
 CoreDataHelper.m , Xcode will warn that you haven’t implemented the  setupCoreData  
and  saveContext  methods, which is okay for now.     
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  Core Data Helper Implementation  

 The helper class will start out with four main sections. These sections are  FILES ,  PATHS ,  SETUP , 
and  SAVING . For easy navigation and readability, these areas are separated by pragma marks. As 
shown in  Figure   1.4   , the pragma mark feature of Xcode allows you to logically organize your 
code and automatically provides a nice menu for you to navigate with.  

 

 Figure 1.4   Pragma mark generated menu          

  Files  

 The  FILES  section of  CoreDataHelper.m  starts out with a persistent store filename stored in 
an  NSString . When additional persistent stores are added later, this is where you’ll set their 
filenames.  Listing   1.2    shows the code involved along with a new  #define  statement, which 
will be used in most of the classes in Grocery Dude to assist with debugging. When  debug  is set 
to  1 , debug logging will be enabled for that class. Most  NSLog  commands will be wrapped in an 
 if (debug == 1)  statement, which will only work when debugging is enabled.  
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  Listing 1.2    CoreDataHelper.m :  FILES   

 #define debug 1
  
  #pragma mark - FILES
  NSString *storeFilename = @"Grocery-Dude.sqlite";   

 Update Grocery Dude as follows to add the  FILES  section:  

    1.   Add the code from  Listing   1.2    to the bottom of  CoreDataHelper.m  before  @end .     

  Paths  

 To persist anything to disk, Core Data needs to know where in the file system persistent store 
files should be located. Three separate methods help provide this information.  Listing   1.3    
shows the first method, which is called  applicationDocumentsDirectory  and returns an 
 NSString  representing the path to the application’s documents directory. You’ll also notice 
the first use of an  if (debug==1)  statement wrapping a line of code that shows what method 
is running. This  NSLog  statement is useful for seeing the order of execution of methods in the 
application, which is great for debugging.  

  Listing 1.3    CoreDataHelper.m :  PATHS   

 #pragma mark - PATHS
  - (NSString *)applicationDocumentsDirectory {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class,NSStringFromSelector(_cmd));
  }
  return [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask,YES) 
➥lastObject];
  }   

 Update Grocery Dude as follows to add the  PATHS  section:  

    1.   Add the code from  Listing   1.3    to the bottom of  CoreDataHelper.m  before  @end .    

 The next method,  applicationStoresDirectory , appends a directory called Stores to the 
application’s documents directory and then returns it in an  NSURL . If the Stores directory 
doesn’t exist, it is created as shown in  Listing   1.4   .  

  Listing 1.4    CoreDataHelper.m :  applicationStoresDirectory   

 - (NSURL *)applicationStoresDirectory {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
  



11Adding Core Data to an Existing Application

  NSURL *storesDirectory =
  [[NSURL fileURLWithPath:[self applicationDocumentsDirectory]]
                                      URLByAppendingPathComponent:@"Stores"];
  
  NSFileManager *fileManager = [NSFileManager defaultManager];
  if (![fileManager fileExistsAtPath:[storesDirectory path]]) {
      NSError *error = nil;
      if ([fileManager createDirectoryAtURL:storesDirectory
                withIntermediateDirectories:YES
                                 attributes:nil
                                      error:&error]) {
          if (debug==1) {
              NSLog(@"Successfully created Stores directory");}
          }
          else {NSLog(@"FAILED to create Stores directory: %@", error);}
      }
      return storesDirectory;
  }   

 Update Grocery Dude as follows to add to the  PATHS  section:  

    1.   Add the code from  Listing   1.4    to the bottom of  CoreDataHelper.m  before  @end .    

 The last method, which is shown in  Listing   1.5   , simply appends the persistent store filename to 
the store’s directory path. The end result is a full path to the persistent store file.  

  Listing 1.5    CoreDataHelper.m :  storeURL   

 - (NSURL *)storeURL {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
  return [[self applicationStoresDirectory]
                URLByAppendingPathComponent:storeFilename];
  }   

 Update Grocery Dude as follows to add to the  PATHS  section:  

    1.   Add the code from  Listing   1.5    to the bottom of  CoreDataHelper.m  before  @end .     

  Setup  

 With the files and paths ready to go, it’s time to implement the three methods responsible for 
the initial setup of Core Data.  Listing   1.6    shows the first method, called  init , which runs auto-
matically when an instance of  CoreDataHelper  is created.  
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  Listing 1.6    CoreDataHelper.m :  SETUP   

 #pragma mark - SETUP
  - (id)init {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
      self = [super init];
      if (!self) {return nil;}
  
      _model = [NSManagedObjectModel mergedModelFromBundles:nil];
      _coordinator = [[NSPersistentStoreCoordinator alloc]
                              initWithManagedObjectModel:_model];
      _context = [[NSManagedObjectContext alloc]
                              initWithConcurrencyType:NSMainQueueConcurrencyType];
      [_context setPersistentStoreCoordinator:_coordinator];
      return self;
  }   

 The  _model  instance variable points to a managed object model. The managed object model 
is initiated from all available data model files (object graphs) found in the main bundle by 
calling  mergedModelFromBundles  and passing  nil . At the moment, there are no model files 
in the project; however, one will be added in  Chapter   2   . It is possible to pass an  NSArray  of 
 NSBundles  here in case you wanted to merge multiple models. Usually you won’t need to 
worry about this.  

  Note 

 Another way to initialize a managed object model is to specify the exact model file to use. This 
takes over twice the amount of code, as opposed to just merging bundles. Here’s how you 
would manually specify the model to use:  _model = [[NSManagedObjectModel alloc] 
initWithContentsOfURL: [[NSBundle mainBundle] URLForResource:@"Model" 

withExtension:@"momd"]]; .   

 The  _coordinator  instance variable points to a persistent store coordinator. It is initialized 
based on the  _model  pointer to the managed object model that has just been created. So far, 
the persistent store coordinator has no persistent store files because they will be added later by 
the  setupCoreData  method.  

 The  _context  instance variable points to a managed object context. It is initialized with a 
concurrency type that tells it to run on a “main thread” queue. You’ll need a context on the 
main thread whenever you have a data-driven user interface. Once the context has been initial-
ized, it is configured to use the existing  _coordinator  pointer to the persistent store coordi-
nator.  Chapter   8    will demonstrate how to use multiple managed object contexts, including a 
background (private queue) concurrency type. For now, the main thread context will do.  
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 Update Grocery Dude as follows to add the  SETUP  section:  

    1.   Add the code from  Listing   1.6    to the bottom of  CoreDataHelper.m  before  @end .    

 The next method required in the  SETUP  section is  loadStore  and is shown in  Listing   1.7   .  

  Listing 1.7    CoreDataHelper.m :  loadStore   

 - (void)loadStore {
  if (debug==1) {
  NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
      if (_store) {return;} // Don't load store if it's already loaded
      NSError *error = nil;
      _store = [_coordinator addPersistentStoreWithType:NSSQLiteStoreType
                                          configuration:nil
                                                    URL:[self storeURL]
                                                options:nil error:&error];
      if (!_store) {NSLog(@"Failed to add store. Error: %@", error);abort();}
      else         {if (debug==1) {NSLog(@"Successfully added store: %@", _store);}}
  }   

 The  loadStore  method is straightforward. Once a check for an existing  _store  has been 
performed, a pointer to a nil  NSError  instance is created as  error . This is then used when setting 
the  _store  instance variable to capture any errors that occur during setup. If  _store  is nil after 
an attempt to set it up fails, an error is logged to the console along with the content of the error.  

 When the SQLite persistent store is added via  addPersistentStoreWithType , a pointer to the 
persistent store is held in  _store . The  storeURL  of the persistent store is the one returned by the 
methods created previously.  

 Update Grocery Dude as follows to add to the  SETUP  section:  

    1.   Add the code from  Listing   1.7    to the bottom of  CoreDataHelper.m  before  @end .    

 Finally, it’s time to create the  setupCoreData  method. With the other supporting methods in 
place, this is a simple task.  Listing   1.8    shows the contents of this new method, which at this stage 
only calls  loadStore . This method will be expanded later in the book as more functionality is 
added.  

  Listing 1.8    CoreDataHelper.m :  setupCoreData   

 - (void)setupCoreData {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
      [self loadStore];
  }   



14 Chapter 1 Your First Core Data Application

 Update Grocery Dude as follows to add to the  SETUP  section:  

    1.   Add the code from  Listing   1.8    to the bottom of  CoreDataHelper.m  before  @end .     

  Saving  

 The next puzzle piece is a method called whenever you would like to save changes from the 
 _context  to the  _store . This is as easy as sending the context a  save:  message, as shown in 
 Listing   1.9   . This method will be placed in a new  SAVING  section.  

  Listing 1.9    CoreDataHelper.m :  SAVING   

 #pragma mark - SAVING
  - (void)saveContext {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
      if ([_context hasChanges]) {
          NSError *error = nil;
          if ([_context save:&error]) {
              NSLog(@"_context SAVED changes to persistent store");
          } else {
              NSLog(@"Failed to save _context: %@", error);
          }
      } else {
          NSLog(@"SKIPPED _context save, there are no changes!");
      }
  }   

 Update Grocery Dude as follows to add the  SAVING  section:  

    1.   Add the code from  Listing   1.9    to the bottom of  CoreDataHelper.m  before  @end .    

 The Core Data Helper is now ready to go! To use it, a new property is needed in the applica-
tion delegate header. The  CoreDataHelper  class also needs to be imported into the application 
delegate header, so it knows about this new class. The bold code shown in  Listing   1.10    high-
lights the changes required to the application delegate header.  

  Listing 1.10    AppDelegate.h   

 #import <UIKit/UIKit.h>
   #import "CoreDataHelper.h" 
  @interface AppDelegate : UIResponder <UIApplicationDelegate>
  @property (strong, nonatomic) UIWindow *window;
   @property (nonatomic, strong, readonly) CoreDataHelper *coreDataHelper; 
  @end   
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 Update Grocery Dude as follows to add  CoreDataHelper  to the application delegate:  

    1.   Replace all code in  AppDelegate.h  with the code from  Listing   1.10   .    

 The next step is to update the application delegate implementation with a small method called 
 cdh , which returns a non-nil  CoreDataHelper  instance. In addition, a  #define debug 1  
statement needs to be added for debug purposes, as shown in  Listing   1.11   .  

  Listing 1.11    AppDelegate.m :  cdh   

 #define debug 1
  
  - (CoreDataHelper*)cdh {
  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }
      if (!_coreDataHelper) {
          _coreDataHelper = [CoreDataHelper new];
          [_coreDataHelper setupCoreData];
      }
      return _coreDataHelper;
  }   

 Update Grocery Dude as follows to add the  cdh  method to the application delegate:  

    1.   Add the code from  Listing   1.11    to  AppDelegate.m  on the line after  @implementation 
AppDelegate .    

 The final step required is to ensure the context is saved each time the application enters the 
background or is terminated. This is an ideal time to save changes to disk because the user 
interface won’t lag during save as it is hidden.  Listing   1.12    shows the code involved in saving 
the context.  

  Listing 1.12    AppDelegate.m :  applicationDidEnterBackground   

 - (void)applicationDidEnterBackground:(UIApplication *)application {
      [[self cdh] saveContext];
  }
  - (void)applicationWillTerminate:(UIApplication *)application {
      [[self cdh] saveContext];
  }   

 Update Grocery Dude as follows to ensure the context is saved when the application enters the 
background or is terminated:  

    1.   Add  [[self cdh] saveContext];  to the bottom of the 
 applicationDidEnterBackground  method in  AppDelegate.m .   
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   2.   Add  [[self cdh] saveContext];  to the bottom of the  applicationWillTerminate  
method in  AppDelegate.m .    

 Run Grocery Dude on the iOS Simulator and examine the debug log window as you press the 
home button ( Shift +„+ H  or  Hardware  >  Home ). The log is initially blank because Core Data is 
set up on demand using the  cdh  method of the application delegate. The first time Core Data 
is used is during the  save:  that’s triggered when the application enters the background. As the 
application grows, the  cdh  method will be used earlier.  Figure   1.5    shows the order of method 
execution once you press the home button.  

 

 Figure 1.5   The debug log window showing order of execution            

     Summary  

 You’ve now been introduced to the key components of Core Data. The sample application 
Grocery Dude has been updated to include an SQLite persistent store, persistent store coor-
dinator, managed object model, and managed object context. The data model has not been 
configured, so the application isn’t very interesting yet.  Chapter   2    is where the real fun begins 
with the introduction of data models. If you’re still unclear on the role some parts of Core Data 
play, don’t worry too much at this stage. As you come to use each component more, it should 
become easier to understand how they fit together.   

  Exercises  

 Why not build on what you’ve learned by experimenting?  

    1.    Add the following code to the top of each method in the application delegate to assist 
with debugging:  

  if (debug==1) {
      NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
  }     
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   2.    Examine the console log to compare the different locations persistent store files are saved 
to when running the application on a device versus running on the iOS Simulator. This is 
useful information when it comes time to open the persistent store for troubleshooting.    

   3.    Change the persistent store type in the  loadStore  method of  CoreDataHelper.m  from 
 NSSQLStoreType  to  NSXMLStoreType  and try running the application. You won’t be 
able to run the application because this store type is not available on iOS.        
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