
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321905765
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321905765
https://plusone.google.com/share?url=http://www.informit.com/title/9780321905765
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321905765
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321905765/Free-Sample-Chapter

 Learning Core
Data for iOS

The Addison-Wesley Learning Series is a collection of hands-on programming

guides that help you quickly learn a new technology or language so you can

apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in

the text. This code is fully annotated and can be reused in your own projects

with no strings attached. Many chapters end with a series of exercises to

encourage you to reexamine what you have just learned, and to tweak or

adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and

leave you with the ability to walk off and build your own application and apply

the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

 Learning Core
Data for iOS

 Tim Roadley

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder,
FireWire, iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch,
iTunes, the iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C,
Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode are
trademarks of Apple, Inc., registered in the United States and other countries. OpenGL
and the logo are registered trademarks of Silicon Graphics, Inc. The YouTube logo is
a trademark of Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in
the United States and other countries.

 Library of Congress Control Number: 2013946325

 Visit us on the Web: informit.com/aw

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-321-90576-5
 ISBN-10: 0-321-90576-8

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: November 2013

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Senior Development
Editor

Chris Zahn

 Development Editor

Sheri Cain

 Managing Editor

Kristy Hart

 Senior Project Editor

Betsy Gratner

 Copy Editor

Bart Reed

 Indexer

Brad Herriman

 Proofreader

Paula Lowell

 Technical Reviewers

Carl Brown
Mark H. Granoff
 Ricky O’Sullivan
 Rich Warren

 Publishing Coordinator

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

❖

 The more I learn, the more I learn I need to learn more.

 I dedicate this book to my wonderful wife, Tracey, who has
given up many nights and weekends with me to help make

this book a reality. Finally, we can sit back and relax together
again! I’m sure Tyler & Taliah will let us....

<3

❖

 Contents at a Glance

 Preface xv

 1 Your First Core Data Application 1

 2 Managed Object Model Basics 19

 3 Managed Object Model Migration 45

 4 Managed Object Model Expansion 71

 5 Table Views 91

 6 Views 125

 7 Picker Views 159

 8 Preloading Data 189

 9 Deep Copy 215

 10 Performance 239

 11 Background Processing 263

 12 Search 281

 13 Back Up and Restore with Dropbox 297

 14 iCloud 331

 15 Taming iCloud 351

 16 Web Service Integration 379

 A Preparing Grocery Dude for Chapter 1 411

 B Preparing Grocery Cloud for Chapter 16 417

 Index 425

 Table of Contents

 Preface xv

 1 Your First Core Data Application 1

What Is Core Data? 1

Persistent Store Coordinator 2

Managed Object Model 4

Managed Object Context 4

When to Use Core Data 5

Introducing Grocery Dude 5

Adding Core Data to an Existing Application 6

Introducing Core Data Helper 7

Core Data Helper Implementation 9

Files 9

Paths 10

Setup 11

Saving 14

Summary 16

Exercises 16

 2 Managed Object Model Basics 19

What Is a Managed Object Model? 19

Adding a Managed Object Model 20

Entities 20

Attributes 22

Integer 16/32/64 23

Float and Double 24

Decimal 25

String 25

Boolean 25

Date 25

Binary Data 26

Transformable 26

Attribute Settings 28

Subclassing NSManagedObject 29

viii Contentsviii Contents

Scalar Properties for Primitive Data Types 31

Snippet Demo Method 31

Creating a Managed Object 32

Backend SQL Visibility 33

Fetching Managed Objects 36

Fetch Request Sorting 38

Fetch Request Filtering 39

Fetch Request Templates 40

Deleting Managed Objects 42

Summary 43

Exercises 43

 3 Managed Object Model Migration 45

Changing a Managed Object Model 45

Adding a Model Version 47

Lightweight Migration 48

Default Migration 52

Migration Manager 57

Summary 69

Exercises 69

 4 Managed Object Model Expansion 71

Relationships 71

Delete Rules 77

Validation Errors 81

Entity Inheritance 86

Summary 90

Exercises 90

 5 Table Views 91

Table Views 101 91

Core Data Table Views 93

Introducing CoreDataTVC 93

Fetching 95

DATASOURCE: UITableView 96

DELEGATE: NSFetchedResultsController 98

AppDelegate’s CoreDataHelper Instance 104

ixContents ixContents

Introducing PrepareTVC 105

Data 106

View 108

Interaction 114

Introducing ShopTVC 117

Data 117

View 118

Interaction 121

Summary 122

Exercises 122

 6 Views 125

Overview 125

The Target View Hierarchy 126

Introducing ItemVC 127

Keeping Reference to a Selected Item 128

Passing a Selected Item to ItemVC 128

Configuring the Scroll View and Text Fields 129

ItemVC Implementation 134

Interaction 134

DELEGATE: UITextField 136

View 137

Data 139

Units, Home Locations, and Shop Locations 143

Adding and Editing Units 145

Implementing UnitsTVC 147

Implementing UnitVC 149

Segue from UnitsTVC to UnitVC 153

Adding and Editing Home or Shop Locations 154

Configuring the Home Location Views 154

Configuring the Shop Location Views 156

Summary 158

Exercises 158

 7 Picker Views 159

Overview 159

Introducing CoreDataPickerTF 160

x Contentsx Contents

DELEGATE+DATASOURCE: UIPickerView 162

Interaction 164

Data 165

View 165

Introducing UnitPickerTF 168

Creating the Unit Picker 170

Connecting the Unit Picker 171

Configuring ItemVC for the Unit Picker 171

Introducing LocationAtHomePickerTF 176

Introducing LocationAtShopPickerTF 178

Creating the Location Pickers 179

Connecting the Location Pickers 180

Configuring ItemVC for the Location Pickers 181

Picker-Avoiding Text Field 186

Summary 188

Exercises 188

 8 Preloading Data 189

Default Data 189

Is an Import Required? 190

Importing from XML 193

Creating an Import Context 196

Preventing Duplicate Default Data 197

Triggering a Default Data Import 198

Introducing CoreDataImporter 200

Selecting Unique Attributes 205

Mapping XML Data to Entity Attributes 206

Importing from a Persistent Store 209

Using the Default Data Store as the
Initial Store 210

Summary 213

Exercises 214

 9 Deep Copy 215

Overview 215

Configuring a Source Stack 218

Configuring the Source Store 219

xiContents xiContents

Enhancing CoreDataImporter 221

Object Info 221

Array For Entity 222

Copy Unique Object 223

Establish To-One Relationship 224

Establish To-Many Relationship 226

Establish Ordered To-Many Relationship 227

Copy Relationships 228

Deep Copy Entities 230

Triggering a Deep Copy 232

Summary 236

Exercises 236

 10 Performance 239

Identifying Performance Issues 239

Implementing the Camera 240

Generating Test Data 245

Measuring Performance with SQLDebug 250

Measuring Performance with Instruments 251

Improving Performance 254

Clean Up 261

Summary 262

Exercises 262

 11 Background Processing 263

Background Save 263

Background Processing 268

Introducing Faulter 269

Introducing Thumbnailer 273

Summary 279

Exercises 279

 12 Search 281

Updating CoreDataTVC 282

Updating PrepareTVC 289

Summary 294

Exercises 294

xii Contentsxii Contents

 13 Back Up and Restore with Dropbox 297

Dropbox Integration 298

Supporting Frameworks 299

Linking to Dropbox 300

Introducing DropboxHelper 302

Introducing DropboxTVC 304

Preparing CoreDataHelper 307

Building DropboxHelper 308

Local File Management 308

Dropbox File Management 310

Backup & Restore 312

Building DropboxTVC 316

Creating Backups 319

Displaying Backups 322

Restore 324

Summary 328

Exercises 328

 14 iCloud 331

Overview 331

Enabling iCloud 333

Updating CoreDataHelper for iCloud 334

The iCloud Store 335

iCloud Notifications 337

The Debug Navigator 341

Disabling iCloud 342

Summary 348

Exercises 348

 15 Taming iCloud 351

De-Duplication 351

Seeding 360

Developing with a Clean Slate 367

Configurations 369

Finishing Touches 370

Summary 371

Exercises 372

xiiiContents xiiiContents

 16 Web Service Integration 379

Introducing StackMob 379

The StackMob SDK 381

Creating a StackMob Application 382

Managed Object Model Preparation 383

Configuring a StackMob Client 385

Saving 387

Underlying Changes 389

Automatic Schema Generation 390

Schema Permissions 393

Authentication 394

Securing the User Class 396

Introducing LoginVC 397

Maintaining Responsiveness 406

Summary 408

Exercises 409

 A Preparing Grocery Dude for Chapter 1 411

New Xcode Project 411

Storyboard Design 412

App Icons and Launch Images 415

 B Preparing Grocery Cloud for Chapter 16 417

Renaming Grocery Dude 417

Repointing File Paths 418

Renaming Groups and Tests 419

Renaming the Scheme 420

Updating the Artwork 421

Disabling Camera and Image Support 421

Workaround: Section Name Key Path Issue 422

Summary 423

 Index 425

 Acknowledgments

 A resounding thank-you first goes out to Trina MacDonald for giving me the opportunity to
write this book. Her guidance throughout the whole process has been invaluable, as has the
assistance of the fantastic technical reviewers Rich Warren, Carl Brown, Mark Granoff, and
Ricky O’Sullivan. You guys saved this book from a few bugs that crept through on those late
nights and also provided some great insight and coding technique suggestions. Special thanks
also go to Betsy Gratner, Olivia Basegio, Bart Reed, Sheri Cain, Chris Zahn, and Matt Vaznaian
for your assistance in making this book a reality.

 About the Author

 Tim Roadley is a senior analytics software consultant at Emite Pty Ltd. He is primarily
focused on delivering business intelligence dashboards, currently for one of Australia’s
major banks. Prior to Emite, Tim was Infrastructure Manager at Cuscal Pty Ltd, where he was
heavily involved in designing and implementing a payments switch that drives 1,300+ ATMs
throughout Australia. By night he is an avid iOS developer and tutorial writer, with several apps
on the App Store, including Teamwork, iSoccer, and now Grocery Dude and Grocery Cloud.
In his downtime, he enjoys spending time with his wonderful wife, Tracey, and two lovely
children, Tyler and Taliah.

 Preface

 Every day, millions of Apple devices run applications, or apps, which rely on Core Data. This
has led to a mature, stable, and incredibly fast platform for apps to access their data. Core Data
itself is not a database. In fact, Core Data is a framework that, among other things, automates
how you interact with a database. Instead of writing SQL code, you use Objective-C objects.
All the associated SQL you would otherwise have to write yourself is generated automatically.
This leaves you with all the benefits of a relational database without the headache of writing,
testing, and optimizing SQL queries within your Objective-C code. The SQL code generated
automatically “under the hood” is the product of years of refinement and optimization by
Apple’s masterful engineers. Using Core Data will not only speed up your own application
development time, it will also significantly reduce the amount of code you have to write.

 Here are some notable features of Core Data:

 ■ Change management (undo and redo)

 ■ Relationships

 ■ Data model versioning and migration

 ■ Efficient fetching (through batching and faulting)

 ■ Efficient filtering (through predicates)

 ■ Data consistency and validation

 With this book, you’ll be introduced to Core Data features and best practices. As you progress
through the chapters, you’ll also build a fully functional Core Data iPhone app from scratch.
Each key piece of information will be explained in succinct detail so you can apply what you’ve
learned straight away. The sample application built throughout this book has been especially
designed to demonstrate as many aspects of Core Data as possible. At the same time it is a
completely real-world application available on the App Store today. This should make it easier
to absorb concepts as you relate them to real-life scenarios.

 The arrival of iOS 7 has seen major improvements in the speed, reliability, and simplicity of
Core Data integration with iCloud. I encourage anyone who has previously given up on this
technology to give it another go, because you will be pleasantly surprised.

 If you have feedback, bug fixes, corrections, or anything else you would like to contribute to a
future edition, please contact me at timroadley@icloud.com . Finally, thank you for taking an
interest in this book. I have put a lot of effort into meticulously crafting it, so I truly hope it
helps you on your way to mastering this brilliant technology.

 —Tim Roadley (@TimRoadley), September 2013

xvi Preface

 Who Is This Book For?

 This book is aimed at Objective-C programmers who wish to learn how to efficiently manage
data in their iOS apps. Prior experience with databases may help you pick up some topics faster,
yet is not essential knowledge. As old habits die hard, some SQL programmers may find it more
difficult to wrap their heads around some topics. Whatever your scenario, don’t worry. Every
step of the way will be explained and demonstrated clearly.

 What You’ll Need

 As an Objective-C programmer, it is expected that you already have a reasonably modern Mac
running Xcode 5 or above. You should also be quite familiar with Xcode and have an iOS
device to test with. This is particularly true once you reach Chapter 10 , “Performance,” which
is all about device performance.

 You should already know what the Objective-C terms property , method , delegate , class , and class
instance mean. If you’re now uncertain that this book is for you, I suggest a detour via the
following resources:

 ■ iOS Programming: The Big Nerd Ranch Guide (search amazon.com)

 ■ The iOS Newbie Tutorial Series (search timroadley.com)

 ■ Learning Objective-C: A Primer (search apple.com)

 How This Book Is Organized

 This book takes you through the entire process of building the Grocery Dude and Grocery
Cloud apps, which are available from the App Store today. Grocery Dude demonstrates
Core Data integration with iCloud. Grocery Cloud demonstrates Core Data integration with
StackMob. Each chapter in this book builds on the last, so you’re introduced to topics in the
order you need to implement them. Along the way you’ll build helper classes that simplify
redeployment of what you’ve learned into your own applications. In fact, the exercises at the
end of Chapter 15 , “Taming iCloud,” guide you through a redeployment of these helper classes
into an existing non–Core Data app. In next to no time, you’ll have a fully functional Core
Data app that is reliably integrated with iCloud.

 Here’s a brief summary of what you’ll find in each chapter:

 ■ Chapter 1 , “Your First Core Data Application”— The groundwork is laid as the
fundamental concepts of Core Data are introduced. You’ll be shown what Core Data is,
and just as importantly what it isn’t. In addition, Core Data integration with an existing
application is demonstrated as the CoreDataHelper class is implemented.

xviiPreface

 ■ Chapter 2 , “Managed Object Model Basics”— Data models are introduced as parallels
are drawn between traditional database schema design and Core Data. You’ll be shown
how to configure a basic managed object model as entities and attributes are discussed,
along with accompanying advice on choosing the right data types. Inserting, fetching,
filtering, sorting, and deleting managed objects is also covered and followed up with an
introduction to fetch request templates.

 ■ Chapter 3 , “Managed Object Model Migration”— Experience lightweight migration,
default migration, and using a migration manager to display migration progress. Learn
how to make an informed decision when deciding between migration options for your
own applications and become comfortable with the model-versioning capabilities of Core
Data.

 ■ Chapter 4 , “Managed Object Model Expansion”— The true power of a relational data
model is unlocked as different types of relationships are explained and added to Grocery
Dude. Other model features such as abstract and parent entities are also covered, along
with techniques for dealing with data validation errors.

 ■ Chapter 5 , “Table Views”— The application really comes to life as Core Data is
used to drive memory-efficient and highly performing table views with a fetched
results controller. Of course, most of the generic legwork is put into a reusable table
view controller subclass called CoreDataTVC . By dropping this class into your own
applications, you can easily deploy Core Data–driven table views yourself.

 ■ Chapter 6 , “Views”— Working with managed objects takes a front seat as you’re shown
how to pass them around the application. Objects selected on a table view are passed
to a second view, ready for editing. The editing interface is added to Grocery Dude,
demonstrating how to work with objects and then save them back to the persistent store.

 ■ Chapter 7 , “Picker Views”— As a nice touch, Core Data–driven picker views are added
to the editing views. Picker views allow the user to quickly assign existing items to a unit
of measurement, home location, or shop location. A special reusable text field subclass
called CoreDataPickerTF is introduced, which replaces the keyboard with a Core Data
picker view whenever an associated text field is tapped.

 ■ Chapter 8 , “Preloading Data”— Techniques for generating a persistent store full of
default data from XML are explained and demonstrated in this chapter as the generic
 CoreDataImporter helper class is introduced. Once you have a persistent store to
include with a shipping application, you’ll then be shown how to determine whether a
default data import is required or even desired by the user.

 ■ Chapter 9 , “Deep Copy”— A highly flexible and fine-grained alternative to
 migratePersistentStore , deep copy enables you to copy objects and relationships
from selected entities between persistent stores. In this chapter, the CoreDataImporter
helper class is enhanced with the deep copy capability.

 ■ Chapter 10 , “Performance”— Gain experience with Instruments as you identify and
eliminate performance issues caused by the common pitfalls of a Core Data application.
The camera functionality is introduced to highlight these issues and demonstrates just
how important good model design is to a well-performing application.

xviii Preface

 ■ Chapter 11 , “Background Processing”— Top-notch performance requires intensive
tasks be offloaded to a background thread. Learn just how easy it is to run processes in
the background as the example of photo thumbnail generation is added with a generic
helper class called Thumbnailer . Also learn how to keep memory usage low with another
helper class, called Faulter .

 ■ Chapter 12 , “Search”— Learn how to handle twin fetched results controllers in the one
table view as you implement efficient search in CoreDataTVC .

 ■ Chapter 13 , “Back Up and Restore with Dropbox”— Create backups and synchronize
them to Dropbox using their Sync API. Restore data to any iOS device using the same
Dropbox account at the touch of a button.

 ■ Chapter 14 , “iCloud”— Enjoy the easiest, most reliable Core Data integration with
iCloud yet. Handle multiple accounts and varying preferences on using iCloud without
missing a beat.

 ■ Chapter 15 , “Taming iCloud”— Take iCloud integration to the next level with entity-
level seeding and unique object de-duplication. Accurately emulate first-time iCloud use
by resetting ubiquitous content globally, the right way.

 ■ Chapter 16 , “Web Service Integration”— Enable collaboration as cross-platform data
sharing between multiple users is introduced with StackMob. StackMob has one of the
best free Backend-as-a-Service (BaaS) offerings available, and its iOS API is native to Core
Data. Thanks to StackMob for generously allowing its art assets to be used in this book
and for its assistance with Chapter 16 .

 ■ Appendix A , “Preparing Grocery Dude for Chapter 1”— Every (non–Core Data) step
involved in preparing the starting-point application for Chapter 1 is documented here for
completeness.

 ■ Appendix B , “Preparing Grocery Cloud for Chapter 16”— Every (non–Core Data) step
involved in preparing the starting-point application for Chapter 16 is documented here
for completeness.

 Getting the Sample Code

 The sample code built throughout this book is available for download from timroadley.com.
Links are given in each chapter, or you can use Table P.1 as a reference, which is arranged in
the order of implementation.

 Table P.1 Grocery Dude Code

 Final Code Link

 Appendix A http://timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip

 Chapter 1 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter01.zip

 Chapter 2 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter02.zip

timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter01.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter02.zip

xixPreface

 Final Code Link

 Chapter 3 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter03.zip

 Chapter 4 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter04.zip

 Chapter 5 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter05.zip

 Chapter 6 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter06.zip

 Chapter 7 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter07.zip

 Chapter 8 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter08.zip

 Chapter 9 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter09.zip

 Chapter 10 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter10.zip

 Chapter 11 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter11.zip

 Chapter 12 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter12.zip

 Chapter 13 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter13.zip

 Chapter 14 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter14.zip

 Chapter 15 http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter15.zip

 Chapter 15

 “Mini-project”

 http://timroadley.com/LearningCoreData/EasyiCloud.zip

 Helper classes,
for your own
projects

 http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20
Classes.zip

 Appendix B http://timroadley.com/LearningCoreData/GroceryCloud-AfterAppendixB.zip

 Chapter 16 http://timroadley.com/LearningCoreData/GroceryCloud-AfterChapter16.zip

 Note that occasionally lines of code in the chapters are too long to fit on the printed page.
Where that occurs, a code-continuation arrow (➥) has been used to mark the continuation.
For example:

 [[NSURL fileURLWithPath:[self applicationDocumentsDirectory]]

 ➥URLByAppendingPathComponent:@"Stores"];

http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter03.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter04.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter05.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter06.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter07.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter08.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter09.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter10.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter11.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter12.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter13.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter14.zip
http://timroadley.com/LearningCoreData/GroceryDude-AfterChapter15.zip
http://timroadley.com/LearningCoreData/EasyiCloud.zip
http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20Classes.zip
http://timroadley.com/LearningCoreData/Generic%20Core%20Data%20Classes.zip
http://timroadley.com/LearningCoreData/GroceryCloud-AfterAppendixB.zip
http://timroadley.com/LearningCoreData/GroceryCloud-AfterChapter16.zip

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone number or email address. I will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 1
 Your First Core Data

Application

 If you can’t explain it simply, you don’t understand it well enough.

 Albert Einstein

 Kinesthetic learning, or learning by doing, is one of the best ways to absorb and retain information.
The topic of Core Data has been a great hurdle for many seasoned programmers, so it’s about time a
book with a hands-on approach to Core Data was written. In order to avoid side tracking into deep
topics too early, this chapter has many pointers to later chapters. First things first: It will give you a
Core Data essentials primer, then dive right in and show how to add Core Data to the sample applica-
tion. The sample application will be expanded over the course of this book as increasingly advanced
topics are introduced.

 What Is Core Data?

 Core Data is a framework that enables you to work with your data as objects, regardless of
how they’re persisted to disk. This is useful to you as an Objective-C programmer, because
you should be comfortable using objects in code already. To provide data objects, known as
 managed objects , Core Data sits between your application and a persistent store , which is the
generic term given to a data file such as an SQLite database, XML file (which can’t be used as a
persistent store on iOS), or Binary (atomic) store. These files are called “persistent” because they
can survive the underlying hardware being reset. Another (oddly named) persistent store option
is the In-Memory store. Although it isn’t really “persistent,” an In-Memory store allows you to
leverage all the functional benefits of Core Data to manage your data, such as change manage-
ment and validation, not to mention performance.

 To map data to a persistent store from managed objects, Core Data uses a managed object
model , where you configure your application’s data structure using an object graph . You can

2 Chapter 1 Your First Core Data Application

think of an object graph as a collection of cookie cutters used to make managed objects from.
The “object” in object graph refers to something called an entity , which is used as a cookie
cutter to make a customized managed object. Once you have managed objects, you’re then free
to manipulate them natively in Objective-C, without having to write any SQL code (assuming
you’re using SQLite as the persistent store, which is the most common scenario). Core Data will
transparently map those objects back to a persistent store when you save to disk.

 A managed object holds a copy of data from a persistent store. If you use a database as a
persistent store, then a managed object might represent data from a table row in that data-
base. If you use an XML file as a persistent store (Mac only), then a managed object would
represent data found within certain data elements. A managed object can be an instance of
 NSManagedObject ; however, it’s usually an instance of a subclass of NSManagedObject . This is
discussed in detail in Chapter 2 , “Managed Object Model Basics.”

 All managed objects exist in a managed object context . A managed object context exists in
high-speed volatile memory, also known as RAM. One reason a managed object context is
required is the overhead involved with transferring data to and from disk. Disk is much slower
than RAM, so you don’t want to use it more than necessary. Having a managed object context
allows access to data that has been previously retrieved from disk to be very fast. The downside,
however, is that you need to call save: on the managed object context periodically to write
changes back to disk. The managed object context exists also to track changes to its objects in
order to provide full undo and redo support.

 Note

 “If you can’t explain it simply, you don’t understand it well enough” is a famous quote from
the late great Albert Einstein. Each chapter of this book is headed by a famous Albert Einstein
quote. Core Data can be a difficult topic to learn; however, that doesn’t mean it cannot be bro-
ken down and explained in understandable chunks. Whenever I write technical tutorials or docu-
mentation, I remember this quote and strive for easy-to-read, highly informative material.

 To help visualize how the main pieces of Core Data fit together, examine Figure 1.1 .

 Persistent Store Coordinator

 On the left of Figure 1.1 , a persistent store coordinator is shown containing a persistent store
with table rows. When you set up a persistent store coordinator, you’ll commonly choose an
SQLite database as the persistent store. Other options for the persistent store are Binary, XML,
and In-Memory stores. The thing to note about Binary and XML stores is that they are atomic.
This means that even if you only want to change a small amount of data, you still have to
write out the whole file to disk when you save. Of course, the same issue applies when reading
an atomic store into memory in the first place. This can become problematic if you have a lot
of data because it consumes valuable memory.

3What Is Core Data?

 An SQLite database, on the other hand, is updated incrementally as change logs, also known
as transaction logs, are committed. As a result, the SQLite database memory footprint is compa-
rably very small. For these reasons, you’ll typically choose an SQLite database, especially when
integrating Core Data with iCloud.

 Note

 Persistent stores should only ever be created by Core Data. You should not configure Core
Data to use a database it did not originally create. If you need to use existing data, you should
import it. This topic is covered in Chapter 8 , “Preloading Data.”

 A persistent store coordinator can have multiple persistent stores. One situation where this may
be appropriate is when Core Data is integrated with iCloud. By putting data that doesn’t belong
in iCloud into one store, and data that does in another, you will save network bandwidth
and iCloud storage space. Even though you would then have two persistent stores, it does not
mean that you need two separate object graphs. Using Core Data model configurations allows
you to use separate stores, yet still have the one object graph. When you set up a Core Data
model configuration, you can select what parts of the object graph belong in what persistent
store. If you do use separate persistent stores, you’ll need to ensure there’s no requirement for a
relationship between data in each store. Core Data configurations are discussed in Chapter 15 ,
“Taming iCloud.”

 A persistent store is created from an instance of NSPersistentStore and a persistent store
coordinator is created from an instance of NSPersistentStoreCoordinator .

 Figure 1.1 Core Data overview

4 Chapter 1 Your First Core Data Application

 Managed Object Model

 In the middle of Figure 1.1 , a managed object model is shown sitting between a persistent
store coordinator and a managed object context. As its name suggests, a managed object
model is the model or graphical representation of a data structure. It forms the basis on which
managed objects are produced. This is similar to a database schema and is also referred to as an
 object graph. To create one, you’ll use Xcode to configure entities and the relationships between
them. An entity is similar to a table schema in a database. Entities don’t contain data; they
only dictate the properties that managed objects that are based on them will have. They’re
cookie cutters! Just as a database table has fields, similarly an entity has attributes. An attribute
can have one of several data types, such as integer, string, or date. Chapter 2 and Chapter 4 ,
“Managed Object Model Expansion,” cover these topics in more detail.

 A managed object model is created from an instance of NSManagedObjectModel .

 Managed Object Context

 On the right of Figure 1.1 , a managed object context is shown with managed objects inside. A
managed object context manages the lifecycle of objects within and provides powerful features
such as faulting, change tracking, and validation. Faulting simply means that when you fetch
data from a persistent store, only the parts you need are retrieved. Faulting is covered further
in Chapter 10 , “Performance.” Change tracking is used for undo and redo support. Validation
is the enforcement of rules set in the managed object model. For example, a minimum or
maximum value rule can be enforced at an attribute level on an entity. Validation is discussed
in Chapter 2 .

 Much like you can have multiple persistent stores, you may also have more than one managed
object context. Typically you would use multiple contexts for background processing, such
as saving to disk or importing data. When you call save: on a foreground context, you may
notice user interface lag, especially when there are a lot of changes. An easy way to get around
this issue is to simply call save: only when the home button is pressed and the application
enters the background. Another more complicated yet flexible way is to use two managed
object contexts. Remember that a managed object context is an area in high-speed memory.
Well, you can actually configure a managed object context to save to another managed object
context. Once you save a foreground context to a background context, you may then save the
background context to disk asynchronously. This staged approach ensures the writes to disk
never interfere with the user interface responsiveness.

 The ability to configure a parent and child context hierarchy has been available since iOS 5. A
child context treats its parent as a persistent store, when really the parent is another context
that exists to process heavy workloads, such as saving in the background. This is discussed in
further detail in Chapter 11 , “Background Processing.”

 A managed object context is created from an instance of NSManagedObjectContext .

5Introducing Grocery Dude

 When to Use Core Data

 Once your application outgrows trivial “settings” storage, such as NSUserDefaults and prop-
erty lists, you’re going to run into memory usage issues. The solution is to use a database either
directly or instead indirectly with Core Data. If you choose Core Data, you’ll save time other-
wise spent coding a database interface. You’ll also enjoy big performance gains, as well as some
functional benefits such as undo and validation. The time you would have spent developing,
testing, and generally speaking “reinventing the wheel,” you’ll free up to focus on more impor-
tant areas of your application.

 Now you might be thinking, “I just want to save lots of stuff to disk, so why does it have to
be so complicated?” Well, it’s not that difficult once a few key points are understood. Sure,
you could write your own database interfaces and they would probably work great for a while.
What happens, though, when your requirements change or you want to add, say, data synchro-
nization between devices? How are your skills at building multithreaded data-import routines
that don’t impact the user interface? Would your code also support undo and validation yet
still be fast and memory efficient on an old iPhone?

 The good news for you is that all the hard work has already been done and is wrapped up in
the tried and tested Core Data Framework. Even if your application’s data requirements are
minimal, it’s still worth using Core Data to ensure your application is as scalable as possible
without compromising performance.

 Once you start using Core Data, you’ll appreciate how robust and optimized it really is. The
millions of people worldwide using Core Data applications every day has led to a mature
feature set with performance to match. In short, you’ll save more time learning Core Data than
throwing it in the too-hard basket and writing your own database interfaces. You’ll also benefit
from loads of additional functionality for free.

 Note

 Before you continue, you should have at least Xcode 5 installed on your Mac. The code used
in this book is targeted at iOS 7, so it won’t work in lower versions of Xcode. It is also recom-
mended that you become a member of the iOS Developer Program, so you can run the sample
application on your device as required. Go to http://developer.apple.com for further information
on becoming a member.

 Introducing Grocery Dude

 Grocery Dude is the sample iPhone application you’ll create over the course of this book. As
the features and best practices of Core Data are introduced, you can apply what you’ve learned
to Grocery Dude. By the end of the book, you’ll have created a fast and fully functional Core
Data application that integrates seamlessly with iCloud. If you would like to see the end result

http://developer.apple.com

6 Chapter 1 Your First Core Data Application

upfront, head over to the App Store and download Grocery Dude now. Note that Grocery Dude
is written only for iPhone. This is because Core Data doesn’t care what size screen you display
data on; the concepts are the same. Without further ado, it’s time to begin!

 Have you ever stood in front of the fridge, pantry, cupboard, or some other location at home
wondering what you’re forgetting to put on your shopping list? Then, when you get to the
store, you can’t find something because you have no idea what aisle it’s in? To top it off, after
zigzagging all the way from aisle 8 (and finally finding what you’re looking for in aisle 2), you
discover the next item you need is back in aisle 8!

 Here’s what Grocery Dude will do for you:

 ■ Remind you what you might need by sorting potential items by their storage location in
your house.

 ■ Help you locate items at the grocery store by showing what aisle they’re in.

 ■ Group your list by aisle so you only need to visit each aisle once, and in order.

 ■ Sync between your devices with iCloud.

 ■ Help you learn Core Data!

 Note

 Appendix A, “Preparing Grocery Dude for Chapter 1 ,” shows the steps required to create
the master project “Grocery Dude” from scratch. You may run through those steps manu-
ally or alternatively download the starting point project from http://www.timroadley.com/
LearningCoreData/GroceryDude-AfterAppendixA.zip . Once you have downloaded the project,
you should open it in Xcode 5 or above.

 Adding Core Data to an Existing Application

 When you create an iOS Application project in Xcode, you can choose from various starting-
point templates. Using Core Data in your project is as easy as ticking the Use Core Data check
box during creation of a Master-Detail, Utility Application, or Empty Application template-
based project. Adding Core Data manually is more educational, so the “Grocery Dude” project
is created based on the Single View Application template, which doesn’t include Core Data.
To use the Core Data Framework, you’ll need to link it to the project.

 Update Grocery Dude as follows to link to the Core Data Framework:

 1. Select the Grocery Dude Target , as shown in Figure 1.2 .

 2. Click the + found in the Linked Frameworks and Libraries section of the General tab
and then link to the CoreData.framework , as shown in Figure 1.2 .

http://www.timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip
http://www.timroadley.com/LearningCoreData/GroceryDude-AfterAppendixA.zip

7Adding Core Data to an Existing Application

 Figure 1.2 Linking the Core Data Framework

 Introducing Core Data Helper

 If you’ve ever examined the built-in Core Data–enabled templates, you may have noticed a lot
of Core Data setup is done in the application delegate. So that you may apply the approach
used in this book to your own projects, Core Data will be set up using a helper class. This keeps
the Core Data components modular and portable. The application delegate will be used to
lazily create an instance of the CoreDataHelper class. An instance of this class will be used to
do the following:

 ■ Initialize a managed object model

 ■ Initialize a persistent store coordinator with a persistent store based on the managed
object model

 ■ Initialize a managed object context based on the persistent store coordinator

 Update Grocery Dude as follows to create the CoreDataHelper class in a new Xcode group:

 1. Right-click the Grocery Dude group in Xcode and then create a new group called
 Generic Core Data Classes , as shown in Figure 1.3 .

 Figure 1.3 Xcode group for generic Core Data classes

8 Chapter 1 Your First Core Data Application

 2. Select the Generic Core Data Classes group.

 3. Click File > New > File... .

 4. Create a new iOS > Cocoa Touch > Objective-C class and then click Next .

 5. Set Subclass of to NSObject and Class name to CoreDataHelper and then click Next .

 6. Ensure the Grocery Dude target is ticked and then create the class in the Grocery Dude
project directory.

 Listing 1.1 shows new code intended for the CoreDataHelper header file.

 Listing 1.1 CoreDataHelper.h

 #import <Foundation/Foundation.h>
 #import <CoreData/CoreData.h>

 @interface CoreDataHelper :NSObject

 @property (nonatomic, readonly) NSManagedObjectContext *context;
 @property (nonatomic, readonly) NSManagedObjectModel *model;
 @property (nonatomic, readonly) NSPersistentStoreCoordinator *coordinator;
 @property (nonatomic, readonly) NSPersistentStore *store;

 - (void)setupCoreData;
 - (void)saveContext;
 @end

 As an Objective-C programmer, you should be familiar with the purpose of header (.h)
files. CoreDataHelper.h is used to declare properties for the context, model, coordina-
tor and the store within it. The setupCoreData method will be called once an instance of
 CoreDataHelper has been created in the application delegate. The saveContext method may
be called whenever you would like to save changes from the managed object context to the
persistent store. This method can cause interface lag if there are a lot of changes to be written
to disk. It is recommended that it only be called from the applicationDidEnterBackground
and applicationWillTerminate methods of AppDelegate.m —at least until background save
is added in Chapter 11 .

 Update Grocery Dude as follows to configure the CoreDataHelper header:

 1. Replace all code in CoreDataHelper.h with the code from Listing 1.1 . If you select
 CoreDataHelper.m , Xcode will warn that you haven’t implemented the setupCoreData
and saveContext methods, which is okay for now.

9Adding Core Data to an Existing Application

 Core Data Helper Implementation

 The helper class will start out with four main sections. These sections are FILES , PATHS , SETUP ,
and SAVING . For easy navigation and readability, these areas are separated by pragma marks. As
shown in Figure 1.4 , the pragma mark feature of Xcode allows you to logically organize your
code and automatically provides a nice menu for you to navigate with.

 Figure 1.4 Pragma mark generated menu

 Files

 The FILES section of CoreDataHelper.m starts out with a persistent store filename stored in
an NSString . When additional persistent stores are added later, this is where you’ll set their
filenames. Listing 1.2 shows the code involved along with a new #define statement, which
will be used in most of the classes in Grocery Dude to assist with debugging. When debug is set
to 1 , debug logging will be enabled for that class. Most NSLog commands will be wrapped in an
 if (debug == 1) statement, which will only work when debugging is enabled.

10 Chapter 1 Your First Core Data Application

 Listing 1.2 CoreDataHelper.m : FILES

 #define debug 1

 #pragma mark - FILES
 NSString *storeFilename = @"Grocery-Dude.sqlite";

 Update Grocery Dude as follows to add the FILES section:

 1. Add the code from Listing 1.2 to the bottom of CoreDataHelper.m before @end .

 Paths

 To persist anything to disk, Core Data needs to know where in the file system persistent store
files should be located. Three separate methods help provide this information. Listing 1.3
shows the first method, which is called applicationDocumentsDirectory and returns an
 NSString representing the path to the application’s documents directory. You’ll also notice
the first use of an if (debug==1) statement wrapping a line of code that shows what method
is running. This NSLog statement is useful for seeing the order of execution of methods in the
application, which is great for debugging.

 Listing 1.3 CoreDataHelper.m : PATHS

 #pragma mark - PATHS
 - (NSString *)applicationDocumentsDirectory {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class,NSStringFromSelector(_cmd));
 }
 return [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask,YES)
➥lastObject];
 }

 Update Grocery Dude as follows to add the PATHS section:

 1. Add the code from Listing 1.3 to the bottom of CoreDataHelper.m before @end .

 The next method, applicationStoresDirectory , appends a directory called Stores to the
application’s documents directory and then returns it in an NSURL . If the Stores directory
doesn’t exist, it is created as shown in Listing 1.4 .

 Listing 1.4 CoreDataHelper.m : applicationStoresDirectory

 - (NSURL *)applicationStoresDirectory {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }

11Adding Core Data to an Existing Application

 NSURL *storesDirectory =
 [[NSURL fileURLWithPath:[self applicationDocumentsDirectory]]
 URLByAppendingPathComponent:@"Stores"];

 NSFileManager *fileManager = [NSFileManager defaultManager];
 if (![fileManager fileExistsAtPath:[storesDirectory path]]) {
 NSError *error = nil;
 if ([fileManager createDirectoryAtURL:storesDirectory
 withIntermediateDirectories:YES
 attributes:nil
 error:&error]) {
 if (debug==1) {
 NSLog(@"Successfully created Stores directory");}
 }
 else {NSLog(@"FAILED to create Stores directory: %@", error);}
 }
 return storesDirectory;
 }

 Update Grocery Dude as follows to add to the PATHS section:

 1. Add the code from Listing 1.4 to the bottom of CoreDataHelper.m before @end .

 The last method, which is shown in Listing 1.5 , simply appends the persistent store filename to
the store’s directory path. The end result is a full path to the persistent store file.

 Listing 1.5 CoreDataHelper.m : storeURL

 - (NSURL *)storeURL {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 return [[self applicationStoresDirectory]
 URLByAppendingPathComponent:storeFilename];
 }

 Update Grocery Dude as follows to add to the PATHS section:

 1. Add the code from Listing 1.5 to the bottom of CoreDataHelper.m before @end .

 Setup

 With the files and paths ready to go, it’s time to implement the three methods responsible for
the initial setup of Core Data. Listing 1.6 shows the first method, called init , which runs auto-
matically when an instance of CoreDataHelper is created.

12 Chapter 1 Your First Core Data Application

 Listing 1.6 CoreDataHelper.m : SETUP

 #pragma mark - SETUP
 - (id)init {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 self = [super init];
 if (!self) {return nil;}

 _model = [NSManagedObjectModel mergedModelFromBundles:nil];
 _coordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:_model];
 _context = [[NSManagedObjectContext alloc]
 initWithConcurrencyType:NSMainQueueConcurrencyType];
 [_context setPersistentStoreCoordinator:_coordinator];
 return self;
 }

 The _model instance variable points to a managed object model. The managed object model
is initiated from all available data model files (object graphs) found in the main bundle by
calling mergedModelFromBundles and passing nil . At the moment, there are no model files
in the project; however, one will be added in Chapter 2 . It is possible to pass an NSArray of
 NSBundles here in case you wanted to merge multiple models. Usually you won’t need to
worry about this.

 Note

 Another way to initialize a managed object model is to specify the exact model file to use. This
takes over twice the amount of code, as opposed to just merging bundles. Here’s how you
would manually specify the model to use: _model = [[NSManagedObjectModel alloc]
initWithContentsOfURL: [[NSBundle mainBundle] URLForResource:@"Model"

withExtension:@"momd"]]; .

 The _coordinator instance variable points to a persistent store coordinator. It is initialized
based on the _model pointer to the managed object model that has just been created. So far,
the persistent store coordinator has no persistent store files because they will be added later by
the setupCoreData method.

 The _context instance variable points to a managed object context. It is initialized with a
concurrency type that tells it to run on a “main thread” queue. You’ll need a context on the
main thread whenever you have a data-driven user interface. Once the context has been initial-
ized, it is configured to use the existing _coordinator pointer to the persistent store coordi-
nator. Chapter 8 will demonstrate how to use multiple managed object contexts, including a
background (private queue) concurrency type. For now, the main thread context will do.

13Adding Core Data to an Existing Application

 Update Grocery Dude as follows to add the SETUP section:

 1. Add the code from Listing 1.6 to the bottom of CoreDataHelper.m before @end .

 The next method required in the SETUP section is loadStore and is shown in Listing 1.7 .

 Listing 1.7 CoreDataHelper.m : loadStore

 - (void)loadStore {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 if (_store) {return;} // Don't load store if it's already loaded
 NSError *error = nil;
 _store = [_coordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self storeURL]
 options:nil error:&error];
 if (!_store) {NSLog(@"Failed to add store. Error: %@", error);abort();}
 else {if (debug==1) {NSLog(@"Successfully added store: %@", _store);}}
 }

 The loadStore method is straightforward. Once a check for an existing _store has been
performed, a pointer to a nil NSError instance is created as error . This is then used when setting
the _store instance variable to capture any errors that occur during setup. If _store is nil after
an attempt to set it up fails, an error is logged to the console along with the content of the error.

 When the SQLite persistent store is added via addPersistentStoreWithType , a pointer to the
persistent store is held in _store . The storeURL of the persistent store is the one returned by the
methods created previously.

 Update Grocery Dude as follows to add to the SETUP section:

 1. Add the code from Listing 1.7 to the bottom of CoreDataHelper.m before @end .

 Finally, it’s time to create the setupCoreData method. With the other supporting methods in
place, this is a simple task. Listing 1.8 shows the contents of this new method, which at this stage
only calls loadStore . This method will be expanded later in the book as more functionality is
added.

 Listing 1.8 CoreDataHelper.m : setupCoreData

 - (void)setupCoreData {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 [self loadStore];
 }

14 Chapter 1 Your First Core Data Application

 Update Grocery Dude as follows to add to the SETUP section:

 1. Add the code from Listing 1.8 to the bottom of CoreDataHelper.m before @end .

 Saving

 The next puzzle piece is a method called whenever you would like to save changes from the
 _context to the _store . This is as easy as sending the context a save: message, as shown in
 Listing 1.9 . This method will be placed in a new SAVING section.

 Listing 1.9 CoreDataHelper.m : SAVING

 #pragma mark - SAVING
 - (void)saveContext {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 if ([_context hasChanges]) {
 NSError *error = nil;
 if ([_context save:&error]) {
 NSLog(@"_context SAVED changes to persistent store");
 } else {
 NSLog(@"Failed to save _context: %@", error);
 }
 } else {
 NSLog(@"SKIPPED _context save, there are no changes!");
 }
 }

 Update Grocery Dude as follows to add the SAVING section:

 1. Add the code from Listing 1.9 to the bottom of CoreDataHelper.m before @end .

 The Core Data Helper is now ready to go! To use it, a new property is needed in the applica-
tion delegate header. The CoreDataHelper class also needs to be imported into the application
delegate header, so it knows about this new class. The bold code shown in Listing 1.10 high-
lights the changes required to the application delegate header.

 Listing 1.10 AppDelegate.h

 #import <UIKit/UIKit.h>
 #import "CoreDataHelper.h"
 @interface AppDelegate : UIResponder <UIApplicationDelegate>
 @property (strong, nonatomic) UIWindow *window;
 @property (nonatomic, strong, readonly) CoreDataHelper *coreDataHelper;
 @end

15Adding Core Data to an Existing Application

 Update Grocery Dude as follows to add CoreDataHelper to the application delegate:

 1. Replace all code in AppDelegate.h with the code from Listing 1.10 .

 The next step is to update the application delegate implementation with a small method called
 cdh , which returns a non-nil CoreDataHelper instance. In addition, a #define debug 1
statement needs to be added for debug purposes, as shown in Listing 1.11 .

 Listing 1.11 AppDelegate.m : cdh

 #define debug 1

 - (CoreDataHelper*)cdh {
 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }
 if (!_coreDataHelper) {
 _coreDataHelper = [CoreDataHelper new];
 [_coreDataHelper setupCoreData];
 }
 return _coreDataHelper;
 }

 Update Grocery Dude as follows to add the cdh method to the application delegate:

 1. Add the code from Listing 1.11 to AppDelegate.m on the line after @implementation
AppDelegate .

 The final step required is to ensure the context is saved each time the application enters the
background or is terminated. This is an ideal time to save changes to disk because the user
interface won’t lag during save as it is hidden. Listing 1.12 shows the code involved in saving
the context.

 Listing 1.12 AppDelegate.m : applicationDidEnterBackground

 - (void)applicationDidEnterBackground:(UIApplication *)application {
 [[self cdh] saveContext];
 }
 - (void)applicationWillTerminate:(UIApplication *)application {
 [[self cdh] saveContext];
 }

 Update Grocery Dude as follows to ensure the context is saved when the application enters the
background or is terminated:

 1. Add [[self cdh] saveContext]; to the bottom of the
 applicationDidEnterBackground method in AppDelegate.m .

16 Chapter 1 Your First Core Data Application

 2. Add [[self cdh] saveContext]; to the bottom of the applicationWillTerminate
method in AppDelegate.m .

 Run Grocery Dude on the iOS Simulator and examine the debug log window as you press the
home button (Shift +„+ H or Hardware > Home). The log is initially blank because Core Data is
set up on demand using the cdh method of the application delegate. The first time Core Data
is used is during the save: that’s triggered when the application enters the background. As the
application grows, the cdh method will be used earlier. Figure 1.5 shows the order of method
execution once you press the home button.

 Figure 1.5 The debug log window showing order of execution

 Summary

 You’ve now been introduced to the key components of Core Data. The sample application
Grocery Dude has been updated to include an SQLite persistent store, persistent store coor-
dinator, managed object model, and managed object context. The data model has not been
configured, so the application isn’t very interesting yet. Chapter 2 is where the real fun begins
with the introduction of data models. If you’re still unclear on the role some parts of Core Data
play, don’t worry too much at this stage. As you come to use each component more, it should
become easier to understand how they fit together.

 Exercises

 Why not build on what you’ve learned by experimenting?

 1. Add the following code to the top of each method in the application delegate to assist
with debugging:

 if (debug==1) {
 NSLog(@"Running %@ '%@'", self.class, NSStringFromSelector(_cmd));
 }

17Exercises

 2. Examine the console log to compare the different locations persistent store files are saved
to when running the application on a device versus running on the iOS Simulator. This is
useful information when it comes time to open the persistent store for troubleshooting.

 3. Change the persistent store type in the loadStore method of CoreDataHelper.m from
 NSSQLStoreType to NSXMLStoreType and try running the application. You won’t be
able to run the application because this store type is not available on iOS.

This page intentionally left blank

Index

 A
 app icons, Grocery Dude sample app, 415

 AppDelegate: demo (Deleting) listing

(2.9), 43

 AppDelegate: demo (Fetch Request

Template) listing (2.8), 41

 AppDelegate: demo (Filtering) listing

(2.7), 40

 AppDelegate.h: cdh listing (5.6), 104

 AppDelegate.m:

applicationDidEnterBackground listing

(1.12), 15

 AppDelegate.m: cdh listing (1.11), 15

 AppDelegate.m: cdh listing (5.7), 105

 AppDelegate.m: demo (Fetch Request)

listing (2.4), 37

 AppDelegate.m: demo (Fetching) listing

(2.5), 37

 AppDelegate.m: demo (Fetching Test

Amount Data) listing (3.4), 55

 AppDelegate.m: demo (Fetching Test

Measurement Data) listing (3.3), 51

 AppDelegate.m: demo (Fetching Test Unit

Data) listing (3.10), 67

 AppDelegate.m: demo (Inserting) listing

(2.3), 32

 AppDelegate.m: demo (Inserting Test

Measurement Data) listing (3.2), 50

426 AppDelegate.m: demo listing (2.2)

 AppDelegate.m: demo listing (2.2), 31 - 32

 AppDelegate.m: demo listing (5.11),

 110 - 111

 AppDelegate.m: demo (Relationship

Creation) listing (4.1), 75 - 76

 AppDelegate.m: demo (Sorting) listing

(2.6), 38

 AppDelegate.m: demo (Unit Deletion)

listing (4.3), 79

 AppDelegate.m: demo (Validate for Delete)

listing (4.4), 80 - 81

 AppDelegate.m: generateStackMobSchema

listing (16.6), 390 - 392

 AppDelegate.m listing (13.1), 300 - 301

 AppDelegate.m: showUnitAndItemCount

listing (4.2), 78

 Application Stores Directory, 332

 applicationDidBecomeActive method, 31

 applications

 Core Data, adding to existing
applications, 6 - 16

 Grocery Cloud sample app, 417 , 423

 disabling camera and image
support, 421

 renaming groups and tests, 419

 renaming scheme, 420

 repointing file paths, 418

 updating artwork, 421

 working around section name key
path issue, 422 - 423

 Grocery Dude sample app, 5 - 6 , 16 , 411

 app icons, 415

 creating new Xcode project, 411

 launch images, 416

 renaming to Grocery Cloud,
 417 - 418

 storyboard design, 412 - 414

 profiling, 251

 StackMob, creating, 382

 arrays, entities, 222

 artwork, Grocery Cloud sample app,

updating, 421

 attribute data types

 Binary Data, 26

 Boolean, 25

 Date, 25

 Decimal, 25

 doubles, 24 - 27

 floats, 24 - 27

 integers, 23 - 24

 String, 25

 Transformable, 26 - 27

 attributes, managed object model, 22 - 23

 settings, 28 - 29

 authentication, StackMob, 394 - 406

 LoginVC class, 397 - 406

 user class, 396 - 397

 automatic schema generation,

StackMob, 390 - 392

 B
 backend SQL visibility, 33 - 36

 Backend-as-a-Service (BaaS),

StackMob, 379

 background processing, 263 , 268 - 269 , 279

 background save, 263 - 268

 Faulter class, 269 - 273

 Thumbnailer class, 273 - 279

 BACKUP & RESTORE section,

DropboxHelper, 312 - 316

427code listings

 backups

 displaying, 322 -323

 Dropbox, 297 - 298 , 328

 building DropboxHelper, 308 - 316

 building DropboxTVC, 316 - 327

 CoreDataHelper, 307 - 308

 Integration, 298 - 307

 performing, 319 - 321

 Binary Data attribute data type, 26

 Boolean attribute data type, 25

 building, DropboxHelper, 308 - 316

 C
 camera

 disabling, 421

 implementing, 240 - 245

 Cascade delete rule, 77

 classes

 CoreDataHelper, 7 - 8

 FILES section, 9 - 10

 Implementation, 9

 PATHS section, 10 - 11

 SAVING section, 14 - 16

 SETUP section, 11 - 14

 updating for iCloud, 334 - 341

 Deduplicator, 351 - 360

 DropboxHelper, 302 - 304

 Faulter, 269 - 273

 LoginVC, 397 - 406

 Thumbnailer, 273 - 279

 user, StackMob, 396 - 397

 clean slate, reveting iCloud to, 367 - 369

 clients, StackMob, configuring, 385 - 387

 code listings

 AppDelegate: demo (Deleting) (2.9), 43

 AppDelegate: demo (Fetch Request
Template) (2.8), 42

 AppDelegate: demo (Filtering) (2.7), 40

 AppDelegate.h (1.10), 14

 AppDelegate.h: cdh (5.6), 104

 AppDelegate.m (13.1), 300 - 301

 AppDelegate.m:
applicationDidEnterBackground
(1.12), 15

 AppDelegate.m: cdh (1.11), 15

 AppDelegate.m: cdh (5.7), 105

 AppDelegate.m: demo (2.2), 32

 AppDelegate.m: demo (5.11), 110 - 111

 AppDelegate.m: demo (Fetch
Request) (2.4), 37

 AppDelegate.m: demo (Fetching)
(2.5), 37

 AppDelegate.m: demo (Fetching Test
Amount Data) (3.4), 55

 AppDelegate.m: demo (Fetching Test
Measurement Data) (3.3), 51

 AppDelegate.m: demo (Fetching Test
Unit Data) (3.10), 67

 AppDelegate.m: demo (Inserting)
(2.3), 32

 AppDelegate.m: demo (Inserting Test
Measurement Data) (3.2), 50

 AppDelegate.m: demo (Relationship
Creation) (4.1), 76

 AppDelegate.m: demo (Sorting)
(2.6), 38

 AppDelegate.m: demo (Unit Deletion)
(4.3), 79

 AppDelegate.m: demo (Validate for
Delete) (4.4), 81

428 code listings

 AppDelegate.m:
generateStackMobSchema (16.6),
 390 - 392

 AppDelegate.m:
showUnitAndItemCount (4.2), 78

 CoreDataHelper.h (1.1), 8

 CoreDataHelper.h (9.1), 218

 CoreDataHelper.h (14.2), 335

 CoreDataHelper.h (15.8), 361

 CoreDataHelper.h (16.1), 385

 CoreDataHelper.h: deepCopyEntities
(9.14), 231

 CoreDataHelper.m:
alertView:clickedButtonAtIndex (8.7),
 198 - 199

 CoreDataHelper.m:
alertView:clickedButtonAtIndex
(9.16), 233

 CoreDataHelper.m:
applicationStoresDirectory (1.4),
 10 - 11

 CoreDataHelper.m:
backgroundSaveContext (11.2), 266

 CoreDataHelper.m:
checkIfDefaultDataNeedsImporting
(8.2), 192

 CoreDataHelper.m:
confirmMergeWithiCloud (15.13),
 365 - 366

 CoreDataHelper.m: CORE DATA RESET
(13.7), 307 - 308

 CoreDataHelper.m: CORE DATA RESET
(14.9), 343 - 344

 CoreDataHelper.m: CORE DATA RESET
(15.10), 362

 CoreDataHelper.m:
deepCopyFromPersistentStore (9.15),
 232 - 233

 CoreDataHelper.m: deepCopyFrom
PersistentStore (9.18), 235

 CoreDataHelper.m: DELEGATE:
NSXMLParser (8.14), 206 - 208

 CoreDataHelper.m: demo (Unit
Deletion) (4.5), 81

 CoreDataHelper.m:
ensureAppropriateStoreIsLoaded
(14.10), 344 - 345

 CoreDataHelper.m: FILES (1.2), 10

 CoreDataHelper.m: FILES (9.3), 219

 CoreDataHelper.m: ICLOUD (14.6),
 338 - 339

 CoreDataHelper.m: ICLOUD RESET
(15.14), 367 - 368

 CoreDataHelper.m:
iCloudAccountIsSignedIn (14.1), 334

 CoreDataHelper.m:
iCloudEnabledByUser (14.8), 342 - 343

 CoreDataHelper.m: iCloudStoreURL
(14.3), 336

 CoreDataHelper.m: importFromXML
(8.3), 194

 CoreDataHelper.m:
importGroceryDudeTestData (10.5),
 260 - 261

 CoreDataHelper.m:
importGroceryDudeTestData (11.6),
 272 - 273

 CoreDataHelper.m: init (8.5), 197

 CoreDataHelper.m: init (9.2), 219

 CoreDataHelper.m: init (10.4), 248 - 249

 CoreDataHelper.m: init (11.1), 264 - 265

 CoreDataHelper.m: init (15.9), 361

 CoreDataHelper.m: init (16.2), 385 - 386

 CoreDataHelper.m:
isDefaultDataAlreadyImportedFor-
StoreWithURL (8.1), 191

 CoreDataHelper.m: isMigration-
NecessaryForStore (3.5), 60

429code listings

 CoreDataHelper.m: setupCoreData
(1.8), 13

 CoreDataHelper.m: setupCoreData
(10.3), 247

 CoreDataHelper.m: setupCoreData
(14.11), 346

 CoreDataHelper.m:
showValidationError (4.6), 83 - 84

 CoreDataHelper.m:
showValidationError (Additional
Cases) (4.7), 85 - 86

 CoreDataHelper.m: somethingChanged
(9.17), 234

 CoreDataHelper.m: storeURL (1.5), 11

 CoreDataHelper.m: TEST DATA
IMPORT (10.2), 246 - 247

 CoreDataImporter.h (8.8), 200 - 201

 CoreDataImporter.m: arrayForEntity
(9.7), 222

 CoreDataImporter.m:
copyRelationshipsFromObject (9.12),
 229 - 230

 CoreDataImporter.m:
copyUniqueObject (9.8), 223 - 224

 CoreDataImporter.m:
copyUniqueObject:toContext (15.7),
 360

 CoreDataImporter.m: deepCopyEntities
(9.13), 231

 CoreDataImporter.m:
establishOrderedToManyRelationship
(9.11), 227 - 228

 CoreDataImporter.m:
establishToManyRelationship (9.10),
 226 - 227

 CoreDataImporter.m:
establishToOneRelationship (9.9),
 224 - 225

 CoreDataHelper.m: listenForStore-
Changes (14.5), 338

 CoreDataHelper.m: loadiCloudStore
(14.4), 336 - 337

 CoreDataHelper.m: loadiCloudStore
(14.7), 340

 CoreDataHelper.m: loadNoniCloud-
StoreAsSeedStore (15.11), 363

 CoreDataHelper.m: loadSourceStore
(9.5), 220 - 221

 CoreDataHelper.m: loadStore (1.7), 13

 CoreDataHelper.m: loadStore (3.1), 49

 CoreDataHelper.m: loadStore (3.9), 65

 CoreDataHelper.m:
mergeNoniCloudDataWithiCloud
(15.12), 364 - 365

 CoreDataHelper.m: migrateStore (3.6),
 60 - 62

 CoreDataHelper.m:
observeValueForKeyPath and
replaceStore (3.7), 62 - 63

 CoreDataHelper.m: PATHS (1.3), 10

 CoreDataHelper.m: PATHS (9.4), 220

 CoreDataHelper.m:
performBackgroundManaged-
MigrationForStore (3.8), 64

 CoreDataHelper.m: SAVING (1.9), 14

 CoreDataHelper.m: SAVING (16.3),
 387 - 388

 CoreDataHelper.m:
selectedUniqueAttributes (8.13),
 205 - 206

 CoreDataHelper.m:
setDefaultDataAsImportedForStore
(8.6), 197 - 198

 CoreDataHelper.m:
setDefaultDataStoreAsInitialStore
(8.15), 212

 CoreDataHelper.m: SETUP (1.6), 12

430 code listings

 CoreDataTVC.m: DELEGATE:
NSFetchedResultsController (5.5),
 99 - 100

 CoreDataTVC.m: DELEGATE:
NSFetchedResultsController (12.5),
 284 - 286

 CoreDataTVC.m: DELEGATE:
UISearchDisplayController (12.6), 286

 CoreDataTVC.m: FETCHING (5.2),
 95 - 96

 CoreDataTVC.m: GENERAL (12.3), 283

 CoreDataTVC.m: performFetch
(16.13), 407

 CoreDataTVC.m:
reloadSearchFRCForPredicate (12.8),
 287 - 288

 CoreDataTVC.m: viewDidLoad
(16.14), 408

 Deduplicator.h:
deDuplicateEntityWithName
(15.3), 355

 Deduplicator.m:
deDuplicateEntityWithName
(15.2), 354 - 355

 Deduplicator.m:
deDuplicateEntityWithName
(15.5), 358 - 359

 Deduplicator.m:
duplicatesForEntityWithName
(15.1), 353

 Deduplicator.m: saveContextHierarchy
(15.4), 358

 Default Data XML Example Format
(8.4), 195

 DropboxHelper.h (13.11), 316

 DropboxHelper.h (13.3), 302

 DropboxHelper.m (13.4), 303

 DropboxHelper.m: BACKUP / RESTORE
(13.10), 312 - 315

 CoreDataImporter.m:
existingObjectInContext (8.10),
 202 - 203

 CoreDataImporter.m:
insertBasicObjectInTargetEntity
(8.12), 204 - 205

 CoreDataImporter.m:
insertUniqueObjectInTargetEntity
(8.11), 203 - 204

 CoreDataImporter.m: objectInfo (9.6),
 221 - 222

 CoreDataImporter.m: saveContext,
initWithUniqueAttributes,
uniqueAttributeForEntity (8.9),
 201 - 202

 CoreDataPickerTF.h (7.1), 160 - 161

 CoreDataPickerTF.m: DATA (7.4), 165

 CoreDataPickerTF.m:
DELEGATE+DATASOURCE:
UIPickerView (7.2), 163 - 164

 CoreDataPickerTF.m: INTERACTION
(7.3), 164

 CoreDataPickerTF.m: VIEW (7.5),
 166 - 167

 CoreDataTVC.h (5.1), 95

 CoreDataTVC.h (12.1), 282

 CoreDataTVC.h:
reloadSearchFRCForPredicate
(12.7), 287

 CoreDataTVC.h: searchFRC and
searchDC (12.2), 282

 CoreDataTVC.m: configureSearch
(12.9), 288

 CoreDataTVC.m Content Changes
(5.4), 98

 CoreDataTVC.m: DATASOURCE:
UITableView (5.3), 97 - 98

 CoreDataTVC.m: DATASOURCE:
UITableView (12.4), 283 - 284

431code listings

 ItemVC.m: refreshInterface (11.10), 278

 ItemVC.m: selectedObjectClearedFor-
PickerTF (7.18), 185

 ItemVC.m: selectedObjectID:changed-
ForPickerTF (7.17), 184

 ItemVC.m: textFieldDidBeginEditing
(7.10), 174

 ItemVC.m: textFieldDidBeginEditing
(7.14), 182

 ItemVC.m: VIEW (6.5), 138

 ItemVC.m: viewDidDisappear
(7.21), 188

 ItemVC.m: viewDidDisappear
(10.6), 262

 ItemVC.m: viewDidLoad (7.15), 182

 ItemVC.m: viewDidLoad (7.8), 172

 ItemVC.m: viewWillAppear (7.20), 187

 LocationAtHomePickerTF.m (7.12),
 176 - 177

 LocationAtHomeVC.m,
LocationAtShopVC.m, and UnitVC.m:
viewDidDisappear (11.3), 267

 LocationAtShopPickerTF.m (7.13),
 178 - 179

 LoginVC.h (16.9), 397

 LoginVC.m (16.10), 399 - 401

 LoginVC.m: authenticate (16.12),
 404 - 405

 LoginVC.m: create (16.11), 402 - 404

 PrepareTVC.h (5.8), 106

 PrepareTVC.m,
ShopTVC.m, UnitsTVC.m,
LocationsAtHomeTVC.m,
and LocationsAtShopTVC.m:
viewWillAppear (16.5), 390

 PrepareTVC.m:
accessoryButtonTappedForRowWith-
IndexPath (12.14), 293 - 294

 DropboxHelper.m: DROPBOX FILE
MANAGEMENT (13.9), 310 - 312

 DropboxHelper.m: LOCAL FILE
MANAGEMENT (13.8), 309

 DropboxTVC.h (13.12), 316

 DropboxTVC.h (13.5), 304

 DropboxTVC.m (13.6), 305

 DropboxTVC.m: BACKUP (13.15),
 319 - 320

 DropboxTVC.m: backup / restore
(15.15), 371

 DropboxTVC.m: DATA (13.13),
 317 - 318

 DropboxTVC.m: DATASOURCE:
UITableView (13.16), 322 - 323

 DropboxTVC.m: RESTORE (13.17),
 325 - 327

 DropboxTVC.m: VIEW (13.14),
 318 - 319

 Faulter.h (11.4), 270

 Faulter.m (11.5), 270 - 271

 Grocery Cloud Object Insertions (16.4),
 388 - 389

 Grocery Dude-Info.plist (13.2), 301 - 302

 Item.h (2.1), 30

 ItemVC.h (6.1), 128

 ItemVC.h (7.7), 172

 ItemVC.m: CAMERA (10.1), 243 - 244

 ItemVC.m: DATA (6.6), 140 - 141

 ItemVC.m: DELEGATE: UITextField
(6.4), 136 - 137

 ItemVC.m: INTERACTION (6.3), 135

 ItemVC.m: INTERACTION (7.19),
 186 - 187

 ItemVC.m: PICKERS (7.9), 173 - 174

 ItemVC.m: refreshInterface (7.11),
 174 - 175

 ItemVC.m: refreshInterface (7.16), 183

432 code listings

 configuration

 Core Data, 369 - 370

 home location views, 154 - 156

 shop location views, 156 - 157

 source stack, 218 - 221

 StackMob clients, 385 - 387

 connections

 LocationAtShopPickerTF, 180 - 181

 UnitPickerTF, 171

 context, import, creating, 196 - 197

 copy relationships, 228 - 230

 copyRelationshipsFromObject method,

 228 - 230

 copyUniqueObject method, 223 - 224

 Core Data, 1 - 4 , 16

 adding to existing applications, 6 - 16

 configurations, 369 - 370

 entity mapping, 21

 table views, 93

 CoreDataTVC, 93 - 103

 when to use, 5

 CoreDataHelper class, 7 - 8 , 307 - 308

 FILES section, 9 - 10

 implementation, 9

 PATHS section, 10 - 11

 SAVING section, 14 - 16

 SETUP section, 11 - 14

 updating for iCloud, 334 - 341

 CoreDataHelper instance, 104 - 105

 CoreDataHelper.h: deepCopyEntities listing

(9.14), 231

 CoreDataHelper.h listing (1.1), 8

 CoreDataHelper.h listing (9.1), 218

 CoreDataHelper.h listing (14.2), 335

 CoreDataHelper.h listing (15.8), 361

 PrepareTVC.m and ShopTVC.m:
prepareForSegue and
accessoryButtonTappedForRow
WithIndexPath (6.2), 128 - 129

 PrepareTVC.m and ShopTVC.m:
viewDidAppear (11.9), 276 - 277

 PrepareTVC.m: cellForRowAtIndexPath
(12.11), 290 - 291

 PrepareTVC.m: cellForRowAtIndexPath
(B.1), 422 - 423

 PrepareTVC.m: commitEditingStyle
(12.12), 292

 PrepareTVC.m: DATA (5.9), 106 - 107

 PrepareTVC.m:
didSelectRowAtIndexPath (12.13), 293

 PrepareTVC.m: INTERACTION (5.13),
 115 - 116

 PrepareTVC.m: SEARCH (12.10),
 289 - 290

 PrepareTVC.m: VIEW (5.10), 108 - 109

 PrepareTVC.m: VIEW (Selection and
Deletion) (5.12), 112 - 113

 PrepareTVC.m: viewDidAppear
(15.6), 359

 ShopTVC.m: DATA (5.14), 118

 ShopTVC.m: INTERACTION (5.16), 121

 ShopTVC.m: VIEW (5.15), 119 - 120

 Thumbnailer.h (11.7), 274

 Thumbnailer.m (11.8), 275 - 276

 UnitPickerTF.m (7.6), 168 - 169

 UnitsTVC.m (6.7), 147 - 149

 UnitsTVC.m: prepareForSegue (6.10),
 153 - 154

 UnitVC.h (6.8), 150

 UnitVC.m (6.9), 150 - 152

 User.h (16.7), 396

 User.m (16.8), 396

433CoreDataHelper.m: loadNoniCloudStoreAsSeedStore listing (15.11)

 CoreDataHelper.m: ICLOUD RESET listing

(15.14), 367 - 368

 CoreDataHelper.m:

iCloudAccountIsSignedIn listing

(14.1), 334

 CoreDataHelper.m: iCloudEnabledByUser

listing (14.8), 342 - 343

 CoreDataHelper.m: iCloudStoreURL listing

(14.3), 336

 CoreDataHelper.m: importFromXML listing

(8.3), 194

 CoreDataHelper.m:

importGroceryDudeTestData listing (10.5),

 260 - 261

 CoreDataHelper.m:

importGroceryDudeTestData listing (11.6),

 272 - 273

 CoreDataHelper.m: init listing (8.5), 197

 CoreDataHelper.m: init listing (9.2), 219

 CoreDataHelper.m: init listing (10.4),

 248 - 249

 CoreDataHelper.m: init listing (11.1),

 264 - 265

 CoreDataHelper.m: init listing (15.9), 361

 CoreDataHelper.m: init listing (16.2),

 385 - 386

 CoreDataHelper.m:

isDefaultDataAlreadyImportedForStore-

WithURL listing (8.1), 191

 CoreDataHelper.m: isMigrationNecessary-

ForStore listing (3.5), 60

 CoreDataHelper.m: listenForStoreChanges

listing (14.5), 338

 CoreDataHelper.m: loadiCloudStore listing

(14.4), 336 - 337

 CoreDataHelper.m: loadiCloudStore listing

(14.7), 340

 CoreDataHelper.m:

loadNoniCloudStoreAsSeedStore listing

(15.11), 363

 CoreDataHelper.h listing (16.1), 385

 CoreDataHelper.m:

alertView:clickedButtonAtIndex listing

(8.7), 198 - 199

 CoreDataHelper.m:

alertView:clickedButtonAtIndex listing

(9.16), 233

 CoreDataHelper.m: applicationStores-

Directory listing (1.4), 10 - 11

 CoreDataHelper.m: backgroundSave-

Context listing (11.2), 266

 CoreDataHelper.m:

checkIfDefaultDataNeedsImporting listing

(8.2), 192

 CoreDataHelper.m:

confirmMergeWithiCloud listing (15.13),

 365 - 366

 CoreDataHelper.m: CORE DATA RESET

listing (13.7), 307 - 308

 CoreDataHelper.m: CORE DATA RESET

listing (14.9), 343 - 344

 CoreDataHelper.m: CORE DATA RESET

listing (15.10), 362

 CoreDataHelper.m:

deepCopyFromPersistentStore listing

(9.15), 232 - 233

 CoreDataHelper.m:

deepCopyFromPersistentStore listing

(9.18), 235

 CoreDataHelper.m: DELEGATE:

NSXMLParser listing (8.14), 206 - 208

 CoreDataHelper.m: demo (Unit Deletion)

listing (4.5), 81

 CoreDataHelper.m:

ensureAppropriateStoreIsLoaded listing

(14.10), 344 - 345

 CoreDataHelper.m: FILES listing (1.2), 8

 CoreDataHelper.m: FILES listing (9.3), 219

 CoreDataHelper.m: ICLOUD listing (14.6),

 338 - 339

434 CoreDataHelper.m: loadSourceStore listing (9.5)

 CoreDataHelper.m: showValidationError

(Additional Cases) listing (4.7), 83 - 86

 CoreDataHelper.m: somethingChanged

listing (9.17), 234

 CoreDataHelper.m: storeURL listing

(1.5), 11

 CoreDataHelper.m: TEST DATA IMPORT

listing (10.2), 246 - 247

 CoreDataImporter, 200 - 205

 enhancing, 221 - 232

 entity attributes, mapping XML data
to, 206 - 208

 selecting unique attributes, 205 - 206

 CoreDataImporter.h listing (8.8), 200 - 201

 CoreDataImporter.m: arrayForEntity listing

(9.7), 222

 CoreDataImporter.m:

copyRelationshipsFromObject listing

(9.12), 229 - 230

 CoreDataImporter.m: copyUniqueObject

listing (9.8), 223 - 224

 CoreDataImporter.m:

copyUniqueObject:toContext listing

(15.7), 360

 CoreDataImporter.m: deepCopyEntities

listing (9.13), 231

 CoreDataImporter.m:

establishOrderedToManyRelationship

listing (9.11), 227 - 228

 CoreDataImporter.m:

establishToManyRelationship listing

(9.10), 226 - 227

 CoreDataImporter.m:

establishToOneRelationship listing (9.9),

 224 - 225

 CoreDataImporter.m:

existingObjectInContext listing (8.10),

 202 - 203

 CoreDataHelper.m: loadSourceStore listing

(9.5), 220 - 221

 CoreDataHelper.m: loadStore listing

(1.7), 13

 CoreDataHelper.m: loadStore listing

(3.1), 49

 CoreDataHelper.m: loadStore listing

(3.9), 65

 CoreDataHelper.m:

mergeNoniCloudDataWithiCloud listing

(15.12), 364 - 365

 CoreDataHelper.m: migrateStore listing

(3.6), 60 - 62

 CoreDataHelper.m:

observeValueForKeyPath and

replaceStore listing (3.7), 62 - 63

 CoreDataHelper.m: PATHS listing (1.3), 10

 CoreDataHelper.m: PATHS listing (9.4), 220

 CoreDataHelper.m:

performBackgroundManagedMigration-

ForStore listing (3.8), 64

 CoreDataHelper.m: SAVING listing (1.9), 14

 CoreDataHelper.m: SAVING listing (16.3),

 387 - 388

 CoreDataHelper.m:

selectedUniqueAttributes listing (8.13),

 205 - 206

 CoreDataHelper.m:

setDefaultDataAsImportedForStore listing

(8.6), 197 - 198

 CoreDataHelper.m:

setDefaultDataStoreAsInitialStore listing

(8.15), 212

 CoreDataHelper.m: SETUP listing (1.6), 11

 CoreDataHelper.m: setupCoreData listing

(1.8), 13

 CoreDataHelper.m: setupCoreData listing

(10.3), 247

 CoreDataHelper.m: setupCoreData listing

(14.11), 346

435data

 CoreDataTVC.h: searchFRC and searchDC

listing (12.2), 282

 CoreDataTVC.m: configureSearch listing

(12.9), 288

 CoreDataTVC.m: DATASOURCE: UITableView

listing (5.3), 97 - 98

 CoreDataTVC.m: DATASOURCE: UITableView

listing (12.4), 283 - 284

 CoreDataTVC.m: DELEGATE:

NSFetchedResultsController listing (5.5),

 99 - 100

 CoreDataTVC.m: DELEGATE:

NSFetchedResultsController listing (12.5),

 284 - 286

 CoreDataTVC.m: DELEGATE:

UISearchDisplayController listing

(12.6), 286

 CoreDataTVC.m: FETCHING listing (5.2),

 95 - 96

 CoreDataTVC.m: GENERAL listing

(12.3), 283

 CoreDataTVC.m: performFetch listing

(16.13), 407

 CoreDataTVC.m:

reloadSearchFRCForPredicate listing

(12.8), 287 - 288

 CoreDataTVC.m: viewDidLoad listing

(16.14), 408

 D
 data

 backups

 displaying, 322 - 323

 Dropbox, 297 - 328

 performing, 319 - 321

 default, 189 - 190

 importing, 190 - 192

 preventing duplicate, 197 - 198

 CoreDataImporter.m:

insertBasicObjectInTargetEntity listing

(8.12), 204 - 205

 CoreDataImporter.m:

insertUniqueObjectInTargetEntity listing

(8.11), 203 - 204

 CoreDataImporter.m: objectInfo listing

(9.6), 221 - 222

 CoreDataImporter.m: saveContext,

initWithUniqueAttributes,

uniqueAttributeForEntity listing (8.9),

 201 - 202

 CoreDataPickerTF, 160 - 168

 DATA section, 165

 INTERACTION section, 164 - 165

 VIEW section, 165 - 168

 CoreDataPickerTF.h listing (7.1), 160 - 161

 CoreDataPickerTF.m: DATA listing

(7.4), 165

 CoreDataPickerTF.m:

DELEGATE+DATASOURCE: UIPickerView

listing (7.2), 163 - 164

 CoreDataPickerTF.m: INTERACTION listing

(7.3), 164

 CoreDataPickerTF.m: VIEW listing (7.5),

 166 - 167

 CoreDataTVC table view, 93 - 103

 DATASOURCE: UITableView, 96 - 98

 FETCHING section, 95 - 96

 NSFetchedResultsControllerDelegate
protocol, 96 - 98

 updating to support search, 282 - 289

 CoreDataTVC.h listing (5.1), 95

 CoreDataTVC.h listing (12.1), 282

 CoreDataTVC.h:

reloadSearchFRCForPredicate listing

(12.7), 287

436 data

 default data, 189 - 190

 importing, 190 - 192

 triggering, 198 - 200

 preventing duplicate, 197 - 198

 using default data store as initial store,
 210 - 213

 Default Data XML Example Format

listing, 195

 default migration, managed object

model, 52 - 56

 delete rules, objects, 77 - 81

 deleting managed objects, 42 - 43

 demo method, 32

 Deny delete rule, 77 , 79 - 80

 disabling iCloud, 342 - 348

 displaying data backups, 322 - 323

 doubles, 24 - 27

 Dropbox, 297 - 298 , 328

 DropboxHelper class, 302 - 304

 building, 308 - 316

 DropboxTVC, 304 - 307

 building, 316 - 327

 iCloud, 370 - 371

 integration, 298 - 307

 linking to, 300 - 302

 preparing CoreDataHelper, 307 - 308

 supporting frameworks, 299 - 300

 DROPBOX FILE MANAGEMENT section,

DropboxHelper, 310 - 312

 DropboxHelper class, 302 - 304

 BACKUP & RESTORE section, 312 - 316

 building, 308 - 316

 DROPBOX FILE MANAGEMENT
section, 310 - 312

 LOCAL FILE MANAGEMENT section,
 308 - 309

 importing, 213

 CoreDataImporter, 200 - 208 ,
 221 - 232

 creating import context, 196 - 197

 from persistent stores, 209 - 213

 importing from XML, 193 - 195

 restoring, 324 - 327

 test, generating, 245 - 249

 DATA section

 CoreDataPickerTF, 165

 ItemVC table view, 139 - 142

 PrepareTVC table view, 106 - 107

 ShopTVC table view, 117 - 118

 Date attribute data type, 25

 Debug Navigator, iCloud, 341 - 342

 Decimal attribute data type, 25

 Deduplicator class, 351 - 360

 Deduplicator.h: deDuplicateEntityWithName

listing (15.3), 355

 Deduplicator.m:

deDuplicateEntityWithName listing (15.2),

 354 - 355

 Deduplicator.m:

deDuplicateEntityWithName listing (15.5),

 358 - 359

 Deduplicator.m:

duplicatesForEntityWithName listing

(15.1), 353

 Deduplicator.m: saveContextHierarchy

listing (15.4), 358

 deep copy, 215 - 218 , 236

 configuring source stack, 218 - 221

 CoreDataImporter, enhancing, 221 - 232

 entities, 230 - 232

 triggering, 232 - 236

437Grocery Cloud sample app

 entity attributes, CoreDataImporter,

mapping XML data to, 206 - 208

 establishOrderedToManyRelationship

method, 227 - 228

 establishToManyRelationship method,

 226 - 227

 establishToOneRelationship method,

 224 - 225

 F
 Faulter class, 269 - 273

 Faulter.h listing (11.4), 270

 Faulter.m listing (11.5), 270 - 271

 fetch request filtering, 39 - 40

 fetch request sorting, 38 - 39

 fetch request templates, 40 - 42

 fetching

 managed objects, 36 - 42

 fetch request sorting, 38 - 39

 FETCHING section, CoreDataTVC, 95 - 96

 file paths, renaming, 418

 FILES section, CoreDataHelper class, 9 - 10

 floats, 24 - 27

 G
 Grocery Cloud Object Insertions listing

(16.4), 388 - 389

 Grocery Cloud sample app, 417 , 423

 disabling camera and image
support, 421

 Grocery Dude sample app, renaming,
 417 - 418

 renaming groups and tests, 419

 renaming scheme, 420

 repointing file paths, 418

 updating artwork, 421

 working around section name key path
issue, 422 - 423

 DropboxHelper.h listing (13.11), 316

 DropboxHelper.h listing (13.3), 302

 DropboxHelper.m: BACKUP / RESTORE

listing (13.10), 312 - 315

 DropboxHelper.m: DROPBOX FILE

MANAGEMENT listing (13.9), 310 - 312

 DropboxHelper.m listing (13.4), 303

 DropboxHelper.m: LOCAL FILE

MANAGEMENT listing (13.8), 309

 DropboxTVC table view, 304 - 307

 building, 316 - 327

 DropboxTVC.h listing (13.12), 316

 DropboxTVC.h listing (13.5), 304

 DropboxTVC.m: BACKUP listing (13.15),

 319 - 320

 DropboxTVC.m: backup / restore listing

(15.15), 371

 DropboxTVC.m: DATA listing (13.13),

 317 - 318

 DropboxTVC.m: DATASOURCE: UITableView

listing (13.16), 322 - 323

 DropboxTVC.m listing (13.6), 305

 DropboxTVC.m: RESTORE listing (13.17),

 325 - 327

 DropboxTVC.m: VIEW listing (13.14),

 318 - 319

 duplicate default data, preventing, 197 - 198

 E
 editing units, ItemVC, 145 - 147

 entities

 arrays, 222

 deep copy, 230 - 232

 inheritance, 86 - 90

 managed object model, 20 - 22

 relationships, 71 - 76

 creating, 75 - 76

438 Grocery Dude sample app

 Instruments, measuring performance,

 251 - 252

 integers, managed object model, ranges,

 23 - 24

 INTERACTION section

 CoreDataPickerTF, 164 - 165

 ItemVC table view, 134 - 137

 PrepareTVC table view, 114 - 116

 ShopTVC table view, 121 - 122

 iOS SDK, StackMob, 381 - 382

 Item.h listing (2.1), 30

 ItemVC, 127 - 144

 adding and editing units, 145 - 147

 DATA section, 139 - 142

 implementation, 134

 INTERACTION section, 134 - 137

 LocationAtShopPickerTF, configuring
for, 181 - 185

 passing selected items to, 128 - 129

 UnitPickerTF, configuring for, 171 - 176

 VIEW section, 137 - 139

 ItemVC.h (7.7) listing, 172

 ItemVC.h listing (6.1), 128

 ItemVC.m: CAMERA listing (10.1), 243 - 244

 ItemVC.m: DATA listing (6.6), 140 - 141

 ItemVC.m: DELEGATE: UITextField listing

(6.4), 136 - 137

 ItemVC.m: INTERACTION listing (6.3), 135

 ItemVC.m: INTERACTION listing (7.19),

 186 - 187

 ItemVC.m: PICKERS listing (7.9), 173 - 174

 ItemVC.m: refreshInterface listing (7.11),

 174 - 175

 ItemVC.m: refreshInterface listing

(7.16), 183

 ItemVC.m: refreshInterface listing

(11.10), 278

 Grocery Dude sample app, 5 - 6 , 16 , 411

 app icons, 415

 creating new Xcode project, 411

 launch images, 416

 renaming to Grocery Cloud, 417 - 418

 storyboard design, 412 - 414

 updating, 7 - 8

 Grocery Dude-Info.plist listing (13.2),

 301 - 302

 groups, renaming, 419

 H-K
 hierarchy, table views, 126 - 127

 home location views

 adding and editing, 153 - 154

 configuring, 154 - 156

 iCloud, 331 - 333 , 346 , 351 , 371

 Debug Navigator, 341 - 342

 de-duplication, 351 - 360

 disabling, 342 - 348

 Dropbox backup, 370 - 371

 enabling, 333

 iCloud Store, 335 - 337

 notifications, 337 - 341

 reverting to clean slate, 367 - 369

 seeding, 360 - 366

 updating CoreDataHelper for, 334 - 341

 identifying performance issues, 239 - 240

 importing data, 213

 CoreDataImporter, 200 - 208 , 221 - 232

 creating import context, 196 - 197

 default, 190 - 192 , 198 - 200

 from persistent stores, 209 - 213

 from XML, 193 - 195

 inheritance, entities, 86 - 90

439listings

 AppDelegate.m: demo (2.2), 32

 AppDelegate.m: demo (5.11), 110 - 111

 AppDelegate.m: demo (Fetch Request)
(2.4), 37

 AppDelegate.m: demo (Fetching)
(2.5), 37

 AppDelegate.m: demo (Fetching Test
Amount Data) (3.4), 55

 AppDelegate.m: demo (Fetching Test
Measurement Data) (3.3), 51

 AppDelegate.m: demo (Fetching Test
Unit Data) (3.10), 67

 AppDelegate.m: demo (Inserting)
(2.3), 32

 AppDelegate.m: demo (Inserting Test
Measurement Data) (3.2), 50

 AppDelegate.m: demo (Relationship
Creation) (4.1), 76

 AppDelegate.m: demo (Sorting)
(2.6), 38

 AppDelegate.m: demo (Unit Deletion)
(4.3), 79

 AppDelegate.m: demo (Validate for
Delete) (4.4), 81

 AppDelegate.m:
generateStackMobSchema (16.6),
 390 - 392

 AppDelegate.m:
showUnitAndItemCount (4.2), 78

 CoreDataHelper.h (1.1), 8

 CoreDataHelper.h (9.1), 218

 CoreDataHelper.h (14.2), 335

 CoreDataHelper.h (15.8), 361

 CoreDataHelper.h (16.1), 385

 CoreDataHelper.h: deepCopyEntities
(9.14), 231

 CoreDataHelper.m:
alertView:clickedButtonAtIndex (8.7),
 198 - 199

 ItemVC.m:

selectedObjectClearedForPickerTF listing

(7.18), 185

 ItemVC.m: selectedObjectID:changedFor-

PickerTF listing (7.17), 184

 ItemVC.m: textFieldDidBeginEditing listing

(7.10), 174

 ItemVC.m: textFieldDidBeginEditing listing

(7.14), 182

 ItemVC.m: VIEW listing (6.5), 138

 ItemVC.m: viewDidDisappear listing

(7.21), 188

 ItemVC.m: viewDidDisappear listing

(10.6), 262

 ItemVC.m: viewDidLoad listing (7.15), 182

 ItemVC.m: viewDidLoad listing (7.8), 172

 ItemVC.m: viewWillAppear listing

(7.20), 187

 L
 launch images, Grocery Dude sample

app, 416

 lightweight migration, managed object

model, 48 - 51

 linking to Dropbox, 300 - 302

 listings

 AppDelegate: demo (Deleting) (2.9), 43

 AppDelegate: demo (Fetch Request
Template) (2.8), 42

 AppDelegate: demo (Filtering) (2.7), 40

 AppDelegate.h (1.10), 14

 AppDelegate.h: cdh (5.6), 104

 AppDelegate.m (13.1), 300 - 301

 AppDelegate.m:
applicationDidEnterBackground
(1.12), 15

 AppDelegate.m: cdh (1.11), 15

 AppDelegate.m: cdh (5.7), 105

440 listings

 CoreDataHelper.m:
iCloudAccountIsSignedIn (14.1), 334

 CoreDataHelper.m:
iCloudEnabledByUser (14.8), 342 - 343

 CoreDataHelper.m: iCloudStoreURL
(14.3), 336

 CoreDataHelper.m: importFromXML
(8.3), 194

 CoreDataHelper.m:
importGroceryDudeTestData (10.5),
 260 - 261

 CoreDataHelper.m:
importGroceryDudeTestData (11.6),
 272 - 273

 CoreDataHelper.m: init (8.5), 197

 CoreDataHelper.m: init (9.2), 219

 CoreDataHelper.m: init (10.4), 248 - 249

 CoreDataHelper.m: init (11.1), 264 - 265

 CoreDataHelper.m: init (15.9), 361

 CoreDataHelper.m: init (16.2), 385 - 386

 CoreDataHelper.m:
isDefaultDataAlreadyImportedFor-
StoreWithURL (8.1), 191

 CoreDataHelper.m:
isMigrationNecessaryForStore (3.5), 60

 CoreDataHelper.m:
listenForStoreChanges (14.5), 338

 CoreDataHelper.m: loadiCloudStore
(14.4), 336 - 337

 CoreDataHelper.m: loadiCloudStore
(14.7), 340

 CoreDataHelper.m:
loadNoniCloudStoreAsSeedStore
(15.11), 363

 CoreDataHelper.m: loadSourceStore
(9.5), 220 - 221

 CoreDataHelper.m: loadStore (1.7), 13

 CoreDataHelper.m: loadStore (3.1), 49

 CoreDataHelper.m: loadStore (3.9), 65

 CoreDataHelper.m:
alertView:clickedButtonAtIndex
(9.16), 233

 CoreDataHelper.m:
applicationStoresDirectory (1.4),
 10 - 11

 CoreDataHelper.m:
backgroundSaveContext (11.2), 266

 CoreDataHelper.m:
checkIfDefaultDataNeedsImporting
(8.2), 192

 CoreDataHelper.m:
confirmMergeWithiCloud (15.13),
 365 - 366

 CoreDataHelper.m: CORE DATA RESET
(13.7), 307 - 308

 CoreDataHelper.m: CORE DATA RESET
(14.9), 343 - 344

 CoreDataHelper.m: CORE DATA RESET
(15.10), 362

 CoreDataHelper.m:
deepCopyFromPersistentStore (9.15),
 232 - 233

 CoreDataHelper.m:
deepCopyFromPersistentStore
(9.18), 235

 CoreDataHelper.m: DELEGATE:
NSXMLParser (8.14), 206 - 208

 CoreDataHelper.m: demo (Unit
Deletion) (4.5), 81

 CoreDataHelper.m:
ensureAppropriateStoreIsLoaded
(14.10), 344 - 345

 CoreDataHelper.m: FILES (1.2), 10

 CoreDataHelper.m: FILES (9.3), 219

 CoreDataHelper.m: ICLOUD (14.6),
 338 - 339

 CoreDataHelper.m: ICLOUD RESET
(15.14), 367 - 368

441listings

 CoreDataHelper.m: TEST DATA
IMPORT (10.2), 246 - 247

 CoreDataImporter.h (8.8), 200 - 201

 CoreDataImporter.m: arrayForEntity
(9.7), 222

 CoreDataImporter.m:
copyRelationshipsFromObject (9.12),
 229 - 230

 CoreDataImporter.m:
copyUniqueObject (9.8), 223 - 224

 CoreDataImporter.m:
copyUniqueObject:toContext
(15.7), 360

 CoreDataImporter.m: deepCopyEntities
(9.13), 231

 CoreDataImporter.m:
establishOrderedToManyRelationship
(9.11), 227 - 228

 CoreDataImporter.m:
establishToManyRelationship (9.10),
 226 - 227

 CoreDataImporter.m:
establishToOneRelationship (9.9),
 224 - 225

 CoreDataImporter.m:
existingObjectInContext (8.10),
 202 - 203

 CoreDataImporter.m:
insertBasicObjectInTargetEntity
(8.12), 204 - 205

 CoreDataImporter.m:
insertUniqueObjectInTargetEntity
(8.11), 203 - 204

 CoreDataImporter.m: objectInfo (9.6),
 221 - 222

 CoreDataImporter.m: saveContext,
initWithUniqueAttributes,
uniqueAttributeForEntity (8.9),
 201 - 202

 CoreDataPickerTF.h (7.1), 160 - 161

 CoreDataHelper.m:
mergeNoniCloudDataWithiCloud
(15.12), 364 - 365

 CoreDataHelper.m: migrateStore (3.6),
 60 - 62

 CoreDataHelper.m:
observeValueForKeyPath and
replaceStore (3.7), 62 - 63

 CoreDataHelper.m: PATHS (1.3), 10

 CoreDataHelper.m: PATHS (9.4), 220

 CoreDataHelper.m:
performBackgroundManaged-
MigrationForStore (3.8), 64

 CoreDataHelper.m: SAVING (1.9), 14

 CoreDataHelper.m: SAVING (16.3),
 387 - 388

 CoreDataHelper.m:
selectedUniqueAttributes (8.13),
 205 - 206

 CoreDataHelper.m:
setDefaultDataAsImportedForStore
(8.6), 197 - 198

 CoreDataHelper.m:
setDefaultDataStoreAsInitialStore
(8.15), 212

 CoreDataHelper.m: SETUP (1.6), 12

 CoreDataHelper.m: setupCoreData
(1.8), 13

 CoreDataHelper.m: setupCoreData
(10.3), 247

 CoreDataHelper.m: setupCoreData
(14.11), 346

 CoreDataHelper.m:
showValidationError (4.6), 83 - 84

 CoreDataHelper.m:
showValidationError (Additional
Cases) (4.7), 85 - 86

 CoreDataHelper.m: somethingChanged
(9.17), 234

 CoreDataHelper.m: storeURL (1.5), 11

442 listings

 CoreDataTVC.m: viewDidLoad
(16.14), 408

 Deduplicator.h:
deDuplicateEntityWithName
(15.3), 355

 Deduplicator.m:
deDuplicateEntityWithName (15.2),
 354 - 355

 Deduplicator.m:
deDuplicateEntityWithName (15.5),
 358 - 359

 Deduplicator.m:
duplicatesForEntityWithName
(15.1), 353

 Deduplicator.m: saveContextHierarchy
(15.4), 358

 Default Data XML Example Format
(8.4), 195

 DropboxHelper.h (13.11), 316

 DropboxHelper.h (13.3), 302

 DropboxHelper.m (13.4), 303

 DropboxHelper.m: BACKUP / RESTORE
(13.10), 312 - 315

 DropboxHelper.m: DROPBOX FILE
MANAGEMENT (13.9), 310 - 312

 DropboxHelper.m: LOCAL FILE
MANAGEMENT (13.8), 309

 DropboxTVC.h (13.12), 316

 DropboxTVC.h (13.5), 304

 DropboxTVC.m (13.6), 305

 DropboxTVC.m: BACKUP (13.15),
 319 - 320

 DropboxTVC.m: backup / restore
(15.15), 371

 DropboxTVC.m: DATA (13.13),
 317 - 318

 DropboxTVC.m: DATASOURCE:
UITableView (13.16), 322 - 323

 CoreDataPickerTF.m: DATA (7.4), 165

 CoreDataPickerTF.m:
DELEGATE+DATASOURCE:
UIPickerView (7.2), 163 - 164

 CoreDataPickerTF.m: INTERACTION
(7.3), 164

 CoreDataPickerTF.m: VIEW (7.5),
 166 - 167

 CoreDataTVC.h (5.1), 95

 CoreDataTVC.h (12.1), 282

 CoreDataTVC.h:
reloadSearchFRCForPredicate
(12.7), 287

 CoreDataTVC.h: searchFRC and
searchDC (12.2), 282

 CoreDataTVC.m: configureSearch
(12.9), 288

 CoreDataTVC.m Content Changes
(5.4), 98

 CoreDataTVC.m: DATASOURCE:
UITableView (5.3), 97 - 98

 CoreDataTVC.m: DATASOURCE:
UITableView (12.4), 283 - 284

 CoreDataTVC.m: DELEGATE:
NSFetchedResultsController (5.5),
 99 - 100

 CoreDataTVC.m: DELEGATE:
NSFetchedResultsController (12.5),
 284 - 286

 CoreDataTVC.m: DELEGATE:
UISearchDisplayController (12.6), 286

 CoreDataTVC.m: FETCHING (5.2),
 95 - 96

 CoreDataTVC.m: GENERAL (12.3), 283

 CoreDataTVC.m: performFetch
(16.13), 407

 CoreDataTVC.m:
reloadSearchFRCForPredicate (12.8),
 287 - 288

443listings

 ItemVC.m: viewDidLoad (7.15), 182

 ItemVC.m: viewDidLoad (7.8), 172

 ItemVC.m: viewWillAppear (7.20), 187

 LocationAtHomePickerTF.m (7.12),
 176 - 177

 LocationAtHomeVC.m,
LocationAtShopVC.m, and UnitVC.m:
viewDidDisappear (11.3), 267

 LocationAtShopPickerTF.m (7.13),
 178 - 179

 LoginVC.h (16.9), 397

 LoginVC.m (16.10), 399 - 401

 LoginVC.m: authenticate (16.12),
 404 - 405

 LoginVC.m: create (16.11), 402 - 404

 PrepareTVC.h (5.8), 106

 PrepareTVC.m,
ShopTVC.m, UnitsTVC.m,
LocationsAtHomeTVC.m,
and LocationsAtShopTVC.m:
viewWillAppear (16.5), 390

 PrepareTVC.m:
accessoryButtonTappedForRow-
WithIndexPath (12.14), 293 - 294

 PrepareTVC.m and ShopTVC.m:
prepareForSegue and accessory-
ButtonTappedForRowWithIndexPath
(6.2), 128 - 129

 PrepareTVC.m and ShopTVC.m:
viewDidAppear (11.9), 276 - 277

 PrepareTVC.m: cellForRowAtIndexPath
(12.11), 290 - 291

 PrepareTVC.m: cellForRowAtIndexPath
(B.1), 422 - 423

 PrepareTVC.m: commitEditingStyle
(12.12), 292

 PrepareTVC.m: DATA (5.9), 106 - 107

 PrepareTVC.m:
didSelectRowAtIndexPath (12.13), 293

 DropboxTVC.m: RESTORE (13.17),
 325 - 327

 DropboxTVC.m: VIEW (13.14),
 318 - 319

 Faulter.h (11.4), 270

 Faulter.m (11.5), 270 - 271

 Grocery Cloud Object Insertions (16.4),
 388 - 389

 Grocery Dude-Info.plist (13.2), 301 - 302

 Item.h (2.1), 30

 ItemVC.h (6.1), 128

 ItemVC.h (7.7), 172

 ItemVC.m: CAMERA (10.1), 243 - 244

 ItemVC.m: DATA (6.6), 140 - 141

 ItemVC.m: DELEGATE: UITextField
(6.4), 136 - 137

 ItemVC.m: INTERACTION (6.3), 135

 ItemVC.m: INTERACTION (7.19),
 186 - 187

 ItemVC.m: PICKERS (7.9), 173 - 174

 ItemVC.m: refreshInterface (7.11),
 174 - 175

 ItemVC.m: refreshInterface (7.16), 183

 ItemVC.m: refreshInterface (11.10), 278

 ItemVC.m:
selectedObjectClearedForPickerTF
(7.18), 185

 ItemVC.m: selectedObjectID:changed-
ForPickerTF (7.17), 184

 ItemVC.m: textFieldDidBeginEditing
(7.10), 174

 ItemVC.m: textFieldDidBeginEditing
(7.14), 182

 ItemVC.m: VIEW (6.5), 138

 ItemVC.m: viewDidDisappear
(7.21), 188

 ItemVC.m: viewDidDisappear
(10.6), 262

444 listings

 LoginVC class, 397 - 406

 LoginVC.h listing (16.9), 397

 LoginVC.m: authenticate listing (16.12),

 404 - 405

 LoginVC.m: create listing (16.11), 402 - 404

 LoginVC.m listing (16.10), 399 - 401

 M
 managed object context, 4

 managed object model, 2 , 4 , 19 , 43 , 71

 adding, 20 , 47 - 48

 attribute settings, 28 - 29

 attributes, 22 - 23

 backend SQL visibility, 33 - 36

 changing, 45 - 46

 creating managed objects, 32 - 33

 doubles, 24 - 27

 entities, 20 - 22

 entity inheritance, 86 - 90

 fetching managed objects, 36 - 42

 floats, 24 - 27

 integer ranges, 23 - 24

 migration, 45 , 69

 default, 52 - 56

 lightweight, 48 - 51

 migration manager, 57 - 68

 NSManagedObject subclass, 29 - 31

 primitive data types, scalar
properties, 31

 relationships, 71 - 76

 creating, 75 - 76

 delete rules, 77 - 81

 StackMob, preparing for, 383 - 384

 validation errors, 81 - 86

 PrepareTVC.m: INTERACTION (5.13),
 115 - 116

 PrepareTVC.m: SEARCH (12.10),
 289 - 290

 PrepareTVC.m: VIEW (5.10), 108 - 109

 PrepareTVC.m: VIEW (Selection and
Deletion) (5.12), 112 - 113

 PrepareTVC.m: viewDidAppear
(15.6), 359

 ShopTVC.m: DATA (5.14), 118

 ShopTVC.m: INTERACTION (5.16), 121

 ShopTVC.m: VIEW (5.15), 119 - 120

 Thumbnailer.h (11.7), 274

 Thumbnailer.m (11.8), 275 - 276

 UnitPickerTF.m (7.6), 168 - 169

 UnitsTVC.m (6.7), 147 - 149

 UnitsTVC.m: prepareForSegue (6.10),
 153 - 154

 UnitVC.h (6.8), 150

 UnitVC.m (6.9), 150 - 152

 User.h (16.7), 396

 User.m (16.8), 396

 LOCAL FILE MANAGEMENT section,

DropboxHelper, 308 - 309

 LocationAtHomePickerTF, 176 - 177

 LocationAtHomePickerTF.m listing (7.12),

 176 - 177

 LocationAtHomeVC.m,

LocationAtShopVC.m, and UnitVC.m:

viewDidDisappear listing (11.3), 267

 LocationAtShopPickerTF, 178 - 185

 configuring ItemVC for, 181 - 185

 connecting to, 180 - 181

 creating, 179 - 180

 LocationAtShopPickerTF.m (7.13), 178 - 179

445performance issues

 objects

 managed

 creating, 32 - 33

 deep copy, 215 - 218

 deleting, 42 - 43

 fetching, 36 - 42

 managed object model, 19 , 43 , 71

 adding, 20 , 47 - 48

 attributes, 22 - 23

 backend SQL visibility, 33 - 36

 changing, 45 - 46

 doubles, 24 - 27

 entities, 20 - 22

 entity inheritance, 86 - 90

 floats, 24 - 27

 integer ranges, 23 - 24

 migration, 45 , 48 - 56 , 69

 NSManagedObject subclass, 29 - 31

 relationships, 71 - 76

 copy, 228 - 230

 creating, 75 - 76

 delete rules, 77 - 81

 to-many, 226 - 227

 to-one, 224 - 225

 ordered to-many, 227 - 228

 validation errors, 81 - 86

 ordered to-many relationships,

establishing, 227 - 228

 P-Q
 PATHS section, CoreDataHelper class, 10 - 11

 performance issues, 239 , 262

 generating test data, 245 - 249

 identifying, 239 - 240

 managed objects

 cleaning up, 261-262

 deep copy, 215-218

 configuring source stack, 218-219

 deleting, 42 - 43

 fetch request sorting, 38 - 39

 mapping XML data to entity attributes,

 206 - 208

 measuring performance

 with Instruments, 251 - 252

 with SQLDebug, 250 - 251

 methods

 applicationDidBecomeActive, 31

 copyRelationshipsFromObject, 228 - 230

 copyUniqueObject, 223 - 224

 deepCopyEntities, 230 - 232

 demo, 32

 establishOrderedToManyRelationship,
 227 - 228

 establishToManyRelationship, 226 - 227

 establishToOneRelationship, 224 - 225

 objectInfo, 221 - 222

 showValidationError, 84

 viewDidDisappear, 262

 migration, managed object model, 45 , 69

 default, 52 - 56

 lightweight, 48 - 51

 migration manager, 57 - 68

 View Controller, 57 - 59

 N-O
 No Action delete rule, 77

 notifications, iCloud, 337 - 341

 Nullify delete rule, 77

 objectInfo method, 221 - 222

446 performance issues

 PrepareTVC.m and ShopTVC.m:

prepareForSegue and

accessoryButtonTappedForRow-

WithIndexPath listing (6.2), 128 - 129

 PrepareTVC.m and ShopTVC.m:

viewDidAppear listing (11.9), 276 - 277

 PrepareTVC.m: cellForRowAtIndexPath

listing (12.11), 290 - 291

 PrepareTVC.m: cellForRowAtIndexPath

listing (B.1), 422 - 423

 PrepareTVC.m: commitEditingStyle listing

(12.12), 292

 PrepareTVC.m: DATA listing (5.9), 106 - 107

 PrepareTVC.m: didSelectRowAtIndexPath

listing (12.13), 293

 PrepareTVC.m: INTERACTION listing (5.13),

 115 - 116

 PrepareTVC.m: SEARCH listing (12.10),

 289 - 290

 PrepareTVC.m: VIEW (5.10) listing,

 108 - 109

 PrepareTVC.m: VIEW (Selection and

Deletion) listing (5.12), 112 - 113

 PrepareTVC.m: viewDidAppear listing

(15.6), 359

 preventing duplicate default data, 197 - 198

 processing

 background, 263 , 268 - 269 , 279

 save, 263 - 268

 Thumbnailer class, 273 - 279

 profiling applications, 251

 R
 relationships

 copy, 228 - 230

 delete rules, 77 - 81

 entities, 71 - 76

 creating, 75 - 76

 improving performance, 254 - 261

 with Instruments, 251 - 252

 with SQLDebug, 250 - 251

 persistent store coordinator, 2 - 3

 persistent stores, 3

 importing data from, 209 - 213

 picker views, 159 , 188

 CoreDataPickerTF, 160 - 168

 DATA section, 165

 INTERACTION section, 164 - 165

 VIEW section, 165 - 168

 LocationAtHomePickerTF, 176 - 177

 LocationAtShopPickerTF, 178 - 185

 configuring ItemVC for, 181 - 185

 connecting to, 180 - 181

 creating, 179 - 180

 picker-avoiding text field, 186 - 188

 UnitPickerTF, 168 - 176

 configuring ItemVC for, 171 - 176

 connecting to, 171

 creating, 170

 preloading data, 189

 default data, 189 - 190

 PrepareTVC table view, 105 - 116

 DATA section, 106 - 107

 INTERACTION section, 114 - 116

 updating to support search, 289 - 294

 PrepareTVC.h listing (5.8), 106

 PrepareTVC.m, ShopTVC.m, UnitsTVC.m,

LocationsAtHomeTVC.m, and

LocationsAtShopTVC.m: viewWillAppear

listing (16.5), 390

 PrepareTVC.m:

accessoryButtonTappedForRowWith-

IndexPath listing (12.14), 293 - 294

447table views

 StackMob, 379 - 381 , 408

 applications, creating, 382

 authentication, 394 - 406

 LoginVC class, 397 - 406

 user class, 396 - 397

 automatic schema generation, 390 - 392

 clients, configuring, 385 - 387

 iOS SDK, 381 - 382

 maintaining responsiveness, 406 - 408

 managed object model, preparing,
 383 - 384

 saving, 387 - 389

 schema permissions, 393

 underlying changes, 389 - 390

 storyboard design, Grocery Dude sample

app, 412 - 414

 String attribute data type, 25

 T
 table views, 91 , 93

 CoreDataHelper instance, 104 - 105

 CoreDataTVC, 93 - 103

 DATASOURCE: UITableView, 96 - 98

 FETCHING section, 95 - 96

 NSFetchedResultsController-
Delegate protocol, 96 - 98

 updating to support search,
 282 - 289

 DropboxTVC, 304 - 307

 building, 316 - 327

 fundamental components, 91

 hierarchy, 126 - 127

 home location views

 adding and editing, 153 - 154

 configuring, 154 - 156

 to-many, establishing, 226 - 227

 to-one, establishing, 224 - 225

 ordered to-many, establishing, 227 - 228

 REST (Representational State Transfer),

 380

 restoring data, Dropbox, 324 - 327

 S
 SAVING section, CoreDataHelper class,

 14 - 16

 schema generation, StackMob, 390 - 392

 schema permissions, StackMob, 393

 Scroll View, configuring, 129 - 134

 SDK, StackMob, 381 - 382

 Search, 281 , 294

 CoreDataTVC, updating to support,
 282 - 289

 PrepareTVC, updating to support,
 289 - 294

 seeding, iCloud, 360 - 366

 selected items, keeping reference to, 128

 SETUP section, CoreDataHelper class,

 11 - 14

 shop location views

 adding and editing, 153 - 154

 configuring, 156 - 157

 ShopTVC table view, 117 - 122

 DATA section, 117 - 118

 INTERACTION section, 121 - 122

 VIEW section, 118 - 121

 ShopTVC.m: DATA listing (5.14), 118

 ShopTVC.m: INTERACTION listing (5.16),

 121

 ShopTVC.m: VIEW listing (5.15), 119 - 120

 showValidationError method, 84

 SQLDebug, measuring performance,

 250 - 251

448 table views

 units, ItemVC, adding and editing, 145 - 147

 UnitsTVC

 Implementing, 147 - 149

 seguing from, 153 - 154

 UnitsTVC.m listing (6.7), 147 - 149

 UnitsTVC.m: prepareForSegue listing (6.10),

 153 - 154

 UnitVC

 implementing, 149 - 152

 seguing from, 153 - 154

 UnitVC.h listing (6.8), 150

 UnitVC.m listing (6.9), 150 - 152

 updating

 CoreDataTVC, search support, 282 - 289

 Grocery Dude, 7 - 8

 PrepareTVC, search support, 289 - 294

 user class, StackMob, 396 - 397

 User.h listing (16.7), 396

 User.m listing (16.8), 396

 V
 validation errors, objects, 81 - 86

 VIEW section

 CoreDataPickerTF, 165 - 168

 ItemVC, 137 - 139

 PrepareTVC table view, 108 - 113

 ShopTVC table view, 118 - 121

 viewDidDisappear method, 262

 views, 125 - 126 , 158

 ItemVC, 127 - 144

 adding and editing units, 145 - 147

 passing selected items to, 128 - 129

 VIEW section, 137 - 139

 PrepareTVC, 105 - 116

 DATA section, 106 - 107

 INTERACTION section, 114 - 116

 updating to support search,
 289 - 294

 shop location views

 adding and editing, 153 - 154

 configuring, 156 - 157

 ShopTVC, 117 - 122

 DATA section, 117 - 118

 INTERACTION section, 121 - 122

 VIEW section, 118 - 121

 test data, generating, 245 - 249

 tests, renaming, 419

 text fields, configuring, 129 - 134

 Thumbnailer class, 273 - 279

 Thumbnailer.h listing (11.7), 274

 Thumbnailer.m listing (11.8), 275 - 276

 to-many relationships, establishing,

 226 - 227

 to-one relationships, establishing, 224 - 225

 Transformable attribute data type, 26 - 27

 triggering

 deep copy, 232 - 236

 default data import, 198 - 200

 U
 Ubiquity Container, 332

 UITableViewController subclass, 92

 UnitPickerTF, 168 - 176

 connecting to, 171

 creating, 170

 ItemVC, configuring for, 171 - 176

 UnitPickerTF.m listing (7.6), 168 - 169

449XML, importing data from

 X-Z
 Xcode, Grocery Dude sample app, creating

new project, 411

 Xcode 5, 5

 XML, importing data from, 193 - 195

 picker, 159 , 188

 CoreDataPickerTF, 160 - 168

 LocationAtHomePickerTF, 176 - 177

 LocationAtShopPickerTF, 178 - 185

 picker-avoiding text field, 186 - 188

 UnitPickerTF, 168 - 176

 Scroll View, configuring, 129 - 134

 table views, 91 - 93

 adding and editing home and shop
location, 153 - 154

 CoreDataTVC, 93 - 103

 hierarchy, 126 - 127

 PrepareTVC, 105 - 116

 ShopTVC, 117 - 121

 UnitsTVC

 implementing, 147 - 149

 seguing from, 153 - 154

 UnitVC

 implementing, 149 - 152

 seguing from, 153 - 154

 W
 web services, StackMob, 379 - 381 , 408

 authentication, 394 - 406

 automatic schema generation, 390 - 392

 configuring clients, 385 - 387

 creating applications, 382

 iOS SDK, 381 - 382

 maintaining responsiveness, 406 - 408

 managed object model preparation,
 383 - 384

 saving, 387 - 389

 schema permissions, 393

 underlying changes, 389 - 390

	Table of Contents
	Preface
	1 Your First Core Data Application
	What Is Core Data?
	Persistent Store Coordinator
	Managed Object Model
	Managed Object Context

	When to Use Core Data
	Introducing Grocery Dude
	Adding Core Data to an Existing Application
	Introducing Core Data Helper
	Core Data Helper Implementation
	Files
	Paths
	Setup
	Saving

	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H-K
	L
	M
	N-O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

