
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321904942
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321904942
https://plusone.google.com/share?url=http://www.informit.com/title/9780321904942
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321904942
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321904942/Free-Sample-Chapter

Essential Windows Phone 8

This page intentionally left blank

Essential
Windows
Phone 8

 Shawn Wildermuth

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was aware

of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or

special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearson.com

Visit us on the Web: informit.com/aw

The Library of Congress cataloging-in-publication data is on file.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,

and permission must be obtained from the publisher prior to any prohibited reproduction, storage in

a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopy-

ing, recording, or likewise. To obtain permission to use material from this work, please submit a writ-

ten request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,

New Jersey 07458, or you may fax your request to (201) 236-3290.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United

States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or

trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

ISBN-13: 978-0-321-90494-2

ISBN-10: 0-321-90494-X

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing May 2013

To Resa Shwarts—for her patience and education on the passive voice.

This page intentionally left blank

vii

Contents at a Glance

 Preface xvii
 Acknowledgments xx
 About the Author xxii

 1 Introducing Windows Phone 1

 2 Writing Your First Phone Application 27

 3 XAML Overview 67

 4 Controls 97

 5 Designing for the Phone 157

 6 Developing for the Phone 217

 7 Phone Hardware 261

 8 Phone Integration 317

 9 Databases and Storage 389

10 Multitasking 425

11 Services 463

12 Making Money 525

13 Enterprise Phone Apps 553

 Index 573

This page intentionally left blank

ix

 1 Introducing Windows Phone 1
A Different Kind of Phone 1

Phone Specifications 7

Input Patterns 10

Designing for Touch 11
Hardware Buttons 12
Keyboards 12
Sensors 15

Application Lifecycle 15

Driving Your Development with Services 17

Live Tiles 18

The Windows Phone Store 19

Distributing Your Application Through the Windows Phone
Store 20
App Hub Submissions 20
Application Policies 22
Content Policies 25

Where Are We? 26

 2 Writing Your First Phone Application 27
Preparing Your Machine 27

Creating a New Project 29

Visual Studio 29
XAML 34

Designing with Blend 39

Contents

 x Contents

Adding Code 48

Working with Events 51
Debugging in the Emulator 52
Debugging with a Device 53
Using Touch 58

Working with the Phone 61

Where Are We? 66

 3 XAML Overview 67
What Is XAML? 67

XAML Object Properties 69

Understanding XAML Namespaces 70
Naming in XAML 71

Visual Containers 72

Visual Grammar 77

Shapes 77
Brushes 79
Colors 80
Text 81

Images 82

Transformations and Animations 84

Transformations 84
Animations 87

XAML Styling 90

Understanding Resources 91
Understanding Styles 93

Where Are We? 96

 4 Controls 97
Controls in XAML 97

Simple Controls 100
Content Controls 106
List Controls 107

Phone-Specific Controls 108

Panorama Control 108
Pivot Control 112

xi Contents

Data Binding 115

Simple Data Binding 115
Using a DataTemplate 117
Improving Scrolling Performance 118
Binding Formatting 120
Element Binding 121
Converters 121
Data Binding Errors 123
Control Templates 125

Windows Phone Toolkit 130

AutoCompleteBox Control 131
ContextMenu Control 133
DatePicker and TimePicker Controls 135
ListPicker Control 137
LongListSelector Control 140
PerformanceProgressBar Control 144
ToggleSwitch Control 145
ExpanderView Control 146
PhoneTextBox Control 147
CustomMessageBox 149
WrapPanel Layout Container 153

Where Are We? 156

 5 Designing for the Phone 157
The Third Screen 157

It Is a Phone, Right? 160
Deciding on an Application Paradigm 162

Panorama 164
Pivot 166
Simple Pages 169

Microsoft Expression Blend 169

Creating a Project 170
A Tour Around Blend 171

Blend Basics 180

Layout 180
Brushes 186

 xii Contents

Creating Animations 191
Working with Behaviors 196

Phone-Specific Design 199

The ApplicationBar in Blend 199
Using the Panorama Control in Blend 203
Using the Pivot Control in Blend 206

Previewing Applications 209

Designing with Visual Studio 210

Implementing the Look and Feel of the Phone 212

Where Are We? 215

 6 Developing for the Phone 217
Application Lifecycle 217

Navigation 220
Tombstoning 227

The Phone Experience 233

Orientation 233
Designing for Touch 236
Application Client Area 245
Application Bar 247
Understanding Idle Detection 249
The Tilt Effect 250

Localizing Your Phone Application 252

Where Are We? 258

 7 Phone Hardware 261
Using Vibration 261

Using Motion 262

Emulating Motion 266
Using Sound 268

Playing Sound with MediaElement 269
Using XNA Libraries 270
Playing Sounds with XNA 270
Adjusting Playback 271
Recording Sounds 272

xiii Contents

Working with the Camera 275

Using the PhotoCamera Class 276
Raw Hardware Access 281
Camera Lens App 284

The Clipboard API 286

Location APIs 287

Location Permission 287
Accessing Location Information 289
Turning Coordinates into Addresses 294
Emulating Location Information 295

Voice Commands 299

Speech Recognition 306

Speech Synthesis 310

Bluetooth and VOIP 316

Where Are We? 316

 8 Phone Integration 317
Contacts and Appointments 317

Contacts 318
Appointments 323

Alarms and Reminders 324

Creating an Alarm 327
Creating a Reminder 328
Accessing Existing Notifications 329

Using Tasks 330

Launchers 333
Choosers 344

Media and Picture Hubs 355

Accessing Music 355
Playing Music 359
Accessing Pictures 360
Storing Pictures 363
Integrating into the Pictures Hub 364
Integrating into the Music and Videos Hub 367

 xiv Contents

Live Tiles 371

Main Live Tile 375
Secondary Tiles 377

Other Ways of Launching Your App 380

Using a Custom Protocol 380
Using a File Association 384

Where Are We? 387

 9 Databases and Storage 389
Storing Data 389

Storage 390

Serialization 395
Local Databases 401

Getting Started 402
Optimizing the Context Class 408
Associations 412
Using an Existing Database 418
Schema Updates 420
Database Security 422

Where Are We? 423

10 Multitasking 425
Multitasking 425

Background Agents 426

Periodic Agent 428
Resource-Intensive Agent 436
Audio Agent 439

Location-Aware Apps 448

Background Transfer Service 452

Requirements and Limitations 453
Requesting Transfers 454
Monitoring Requests 456

Where Are We? 461

xv Contents

11 Services 463
The Network Stack 464

The WebClient Class 464
Accessing Network Information 467

Consuming JavaScript Object Notation 470

Using JSON Serialization 472
Parsing JSON 473

Web Services 477

Consuming OData 482

How OData Works 483
The URI 484
Using OData on the Phone 492
Generating a Service Reference for OData 492
Retrieving Data 493
Updating Data 496

Using Push Notifications 497

Push Notification Requirements 499
Preparing the Application for Push Notifications 499
Setting Up the Server for Push Notifications 501
Raw Notifications 504
Sending Toast Notifications 516
Creating Live Tiles 519
Handling Push Notification Errors 522

Where Are We? 524

12 Making Money 525
What Is the Store? 525

How It Works 527
Charging for Apps 529
Getting Paid 531

Submitting Your App 533

Preparing Your Application 533
The Submission Process 538
After the Submission 545

Modifying Your Application 548

 xvi Contents

Dealing with Failed Submissions 548

Using Ads in Your Apps 551

Where Are We? 552

13 Enterprise Phone Apps 553
Enterprise Apps? 553

Registering Your Company 554

Buying a Symantec Code-Signing Certificate 556

Installing the Certificate 558

Application Enrollment Token 563

Registering Phones 564

Preparing Apps for Distribution 566

Building a Company Hub 567

Where Are We? 571

 Index 573

xvii

Preface

I never owned a Palm Pilot. But I did have Palm tops and smartphones. I

dived into writing software for a plethora of devices but never got very far.

My problem was that the story of getting software onto the phones was

chaotic and I didn’t see how the marketing of software for phones would

lead to a successful product. In the intervening years, I got distracted by

Silverlight and web development. I didn’t pay attention as the smartphone

revolution happened. I was happily neck deep in data binding, business

application development, and teaching XAML.

The smart revolution clearly started with the iPhone. What I fi nd inter-

esting is that the iPhone is really about the App Store, not the phone. It’s a

great device, but the App Store is what changed everything. A simple way

to publish, market, and monetize applications for these handheld pow-

erhouses that people all wanted. Of course, Apple didn’t mean to do it.

When the original iPhone shipped, Apple clearly said that Safari (its web

browser) was the development environment. With the pressure of its OSX

developer community, Apple relented and somewhat accidently created

the app revolution.

When it was clear that I had missed something, I dove headlong into

looking at development for phones again. I had an Android phone at the

time, so that is where I started. Getting up to speed with Eclipse and Java

wasn’t too hard, but developing for the phone was still a bit of a chore. The

development tools just didn’t seem to be as easy as the development I was

 xviii Preface

used to with Visual Studio and Blend. In this same timeframe, I grabbed a

Mac and tried my hand at Objective-C and Xcode to write something sim-

ple for the iPhone. That experience left me bandaged and bloody. I wanted

to write apps, but because it was a side effort, the friction of the toolsets for

Android and iPhone left me wanting and I put them aside.

Soon after my experience with the iPhone and Android, Microsoft took

the cover off its new phone platform: the Windows Phone. For me, the real

excitement was the development experience. At that point, I’d been teach-

ing and writing about Silverlight since it was called WPF/E, so the ability

to take my interest in mobile development and marry it to my Silverlight

knowledge seemed like a perfect match.

I’ve enjoyed taking the desktop/web Silverlight experience I have

and applying the same concepts to the phone. By using Visual Studio and

Blend to craft beautiful user interface designs and quickly go from proto-

type to fi nished application, the workfl ow of using these tools and XAML

makes the path of building my own applications much easier than on other

platforms.

After my experience writing the fi rst edition of this book, I was excited

about the newest version of the Windows Phone that Microsoft unveiled:

Windows Phone 8. It was more than just a few added features—it was a

real change to the underlying operating system. This was a big change, but

how did it affect Windows Phone 7 and 7.5 developers? Microsoft could

have really affected those developers by just shuttering the entire back

catalog and changing the APIs in the new edition. I am happy to tell you

that Microsoft walked the razor-thin line between change and backward

compatibility. But how would that change the book I wrote?

Coming back to a book for a second edition is a challenge for any

author. At the face of it, I could have just done a quick search-and-replace

to change Windows Phone 7.5 to Windows Phone 8 and moved on, but I

felt like I could really highlight and improve the fi rst edition. My goal was

to make the book approachable for both developers new to the Windows

Phone, as well as show the new features. I hope I’ve been able to accom-

plish this.

While the changes are peppered all over this edition, for me the most

striking change comes in the very last chapter: enterprise development.

xix Preface

Microsoft allows you to build your own applications for the phone that can

be delivered to your own employees without certifi cation or validation.

Microsoft is fi nally opening the door to the power of using the Windows

Phone as a platform for your employees.

xx

Acknowledgments

This is the second edition of this book, and that changes the way you write

a book. Writing is hard…editing is even more diffi cult. It is easy to simply

miss the obvious changes that should be caught. To that end, three people

have been pivotal in getting this book correct (or perhaps will shoulder the

blame for any errata that got missed ;):

I want to thank Joan Murray at Addison-Wesley for maintaining her

incredible patience. When I am writing, I tend to vacillate between an

excited pixie and an angry imp. She handles that swinging pendulum bet-

ter than most.

In addition, I want to again thank Christopher Cleveland for the job of

developmental editor. He’s been great at keeping the little things in mind

and making sure the i’s are dotted and the ts are crossed.

I’d also like to specially thank Jeff Wilcox (of 4th and Mayor fame) for

doing an exemplary job at tech reviewing the chapters. He’s been critical

at getting the phone story right. He’s been in the thick of building a large

Windows Phone application that has weathered the storms of a high num-

ber of users, and his experience shows in every chapter.

To the litany of people on the Windows Phone Advisor’s Mailing Lists,

I would like to thank you for your patience as I pestered the lists with end-

less questions and hyperbolic rants.

xxi Acknowledgments

Like the fi rst edition, my blog’s readers and my followers on Facebook

and Twitter have helped immeasurably with their passion, wit, and

knowledge.

For anyone else I forgot, I apologize.

Shawn Wildermuth

May 2013

http://wildermuth.com

@shawnwildermuth

http://wildermuth.com

xxii

About the Author

During his 27 years in software development, Shawn Wildermuth has

experienced a litany of shifts in software development, shaping how he

understands technology. Shawn is a 10-time Microsoft MVP, a member

of the INETA Speaker’s Bureau, and an author of several books on .NET.

He has spoken at a variety of international conferences, including TechEd,

MIX, VSLive, OreDev, SDC, WinDev, MIX, DevTeach, DevConnections,

and DevReach. Shawn has written dozens of articles for a variety of maga-

zines and websites, including MSDN, DevSource, InformIT, CoDe Magazine,

ServerSide.NET, and MSDN Online. He is currently helping companies with

coaching and training through his company Wilder Minds LLC (http://

wilderminds.com).

http://wilderminds.com
http://wilderminds.com

27

 2
 Writing Your First Phone
Application

While the press might have you believe that becoming a phone-

app millionaire is a common occurrence, it’s actually pretty rare,

but that doesn’t mean you won’t want to create applications for the phone.

Hopefully the days of cheap and useless but popular phone apps are over,

and we can start focusing on phone-app development as being a way to

create great experiences for small and large audiences. Microsoft’s vision

of three screens is becoming a reality, as the phone is joining the desktop

and the TV as another vehicle for you to create immersive experiences for

users.

Although understanding Windows Phone capabilities and services is a

good start, you are probably here to write applications. With that in mind,

this chapter will walk you through setting up a machine for authoring

your very fi rst Windows Phone application.

Preparing Your Machine

Before you can start writing applications for the phone, you must install

the Windows Phone Developer Tools. Go to https://dev.windowsphone.

com/ to download the tools called Windows Phone SDK. This website is

the starting point for downloading the tools as well as accessing the forums

if you have further questions about creating applications.

https://dev.windowsphone.com/
https://dev.windowsphone.com/

 28 CHAPTER 2: Writing Your First Phone Application

To install the Windows Phone SDK, you must meet the minimum

system requirements shown in Table 2.1.

TABLE 2.1 Windows Phone Developer Tools Requirements

Requirement Description

Operating system Windows 7, x86 or x64 (all but Starter Edition); or
Windows Vista SP2, x86, or x64 (all but Starter Edition).

Memory 3GB RAM.

Disk space 4GB free space.

Graphics card DirectX 10-capable card with a WDDM 1.1 driver.

Once you meet the requirements, you can run the vm_web.exe fi le that

you downloaded from the website to install the Windows Phone SDK. The

SDK installer includes Microsoft Visual Studio 2012 Express for Windows

Phone, Microsoft Blend Express for Windows Phone (the Express version

of Microsoft Expression Blend), and the Software Development Kit (SDK).

Visual Studio Express is the coding environment for Windows Phone.

Blend Express is the design tool for phone applications. And the SDK is a

set of libraries for creating phone applications and an emulator for creating

applications without a device.

In addition, the Windows Phone SDK’s phone emulator has additional

requirements. This is because the Windows Phone SDK for Windows

Phone 8 includes an all-new emulator that is a Hyper-V image (instead of

the old virtual machine technology). This matters because the emulator has

steeper requirements than the SDK itself. These requirements are shown in

Table 2.2.

TABLE 2.2 Windows Phone Developer Tools Requirements

Requirement Description

Operating system Windows 8 Professional, 64-bit version

Memory 4GB RAM

Hyper-V Installed and running

BIOS settings Hardware Assisted Virtualization, Secondary Level
Address Translation (SLAT) and Data Execution
Protection (DEP) all enabled

Group membership Must be member of both local Administrator and
Hyper-V Administrator groups

29 Creating a New Project

 TIP

The Windows Phone emulator does not work well in a virtual
machine (for example, Virtual PC, VMware, and so on) and is not
officially supported. The emulator is a virtual machine of the phone,
so running a virtual machine in a virtual machine tends to cause
problems, especially slow performance.

Visual Studio is the primary tool for writing the code for your phone

applications. Although the Windows Phone SDK installs a version of Visual

Studio 2012 Express specifi cally for phone development, if you already

have Visual Studio 2012 installed on your machine, the phone tools will

also be integrated into this version of Visual Studio. The workfl ow for

writing code in both versions of Visual Studio is the same. Although both

versions offer the same features for developing applications for the phone,

in my examples I will be using Visual Studio Express Edition for Windows

Phone. In addition, I will be using Blend Express, not the full version of

Blend (that is, Expression Blend).

Creating a New Project

To begin creating your fi rst Windows Phone application, you will need to

start in one of two tools: Visual Studio or Expression Blend. Visual Studio is

where most developers start their projects, so we will begin there; however,

we will also discuss how you can use both applications for different parts

of the development process.

Visual Studio
As noted earlier, when you install the Windows Phone SDK you get a

version of Visual Studio 2010 Express that is used to create Windows Phone

applications only. When you launch Visual Studio 2012 Express, you will

see the main window of the application, as shown in Figure 2.1.

 30 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.1 Microsoft Visual Studio 2012 Express for Windows Phone

Click the New Project link on the Start page; you will be prompted

to start a new project. Visual Studio 2012 Express only supports creating

applications for Window Phone. The New Project dialog box shows only

Windows Phone and XNA projects (see Figure 2.2). For our fi rst project we

will start with a new project using the Windows Phone App template and

name it HelloWorldPhone.

When you click the OK button to create the project, Visual Studio will

prompt you with a dialog box where you can pick the version of the phone

to target (version 7.1 or 8.0), as shown in Figure 2.3.

31 Creating a New Project

FIGURE 2.2 New Project dialog box

FIGURE 2.3 Picking the phone version to target

After Visual Studio creates the new project, you can take a quick tour of

the user interface (as shown in Figure 2.4). By default, Visual Studio shows

two main panes for creating your application. The fi rst pane (labeled #1

in the fi gure) is the main editor surface for your application. In this pane,

every edited fi le will appear separated with tabs as shown. By default,

the MainPage.xaml fi le is shown when you create a new Windows Phone

application; this is the main design document for your new application.

 32 CHAPTER 2: Writing Your First Phone Application

The second pane (#2 in the fi gure) is the Solution Explorer pane, and it

displays the contents of the new project.

FIGURE 2.4 The Visual Studio user interface

Another common pane you will use is the toolbar; it is collapsed when

you fi rst use Visual Studio. On the left side of the main window is a Toolbox

tab that you can click to display the Toolbox, as shown in Figure 2.5.

You also might want to click the pin icon to keep the toolbar shown at

all times (as highlighted in Figure 2.5).

Before we look at how to create the application into something that is

actually useful, let’s see the application working in the device. You will

notice that in the toolbar (not the Toolbox) of Visual Studio there is a bar

for debugging. On that toolbar is a drop-down box for specifying what to

do to debug your application. This drop-down should already display the

words “Emulator WVGA 512MB,” as that is the default when the tools are

installed (as shown in Figure 2.6).

33 Creating a New Project

FIGURE 2.5 Enabling the toolbar

FIGURE 2.6 Using the emulator

At this point, if you press the F5 key (or click the triangular play button

on the debugging toolbar), Visual Studio will build the application and

start the emulator with our new application, as shown in Figure 2.7.

 34 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.7 The emulator

This emulator will be the primary way you will debug your applications

while developing applications for Windows Phone. Our application does

not do anything, so you can go back to Visual Studio and click the square

stop button on the debugging toolbar (or press Shift+F5) to end your

debugging session. You should note that the emulator does not shut down.

It is meant to stay running between debugging sessions.

XAML
In Silverlight, development is really split between the design and the

code. The design is accomplished using a markup language called

eXtensible Application Markup Language (XAML). XAML (rhymes with

camel) is an XML-based language for representing the look and feel of

35 Creating a New Project

your applications. Because XAML is XML-based, the design consists of

a hierarchy of elements that describe the design. At its most basic level,

XAML can be used to represent the objects that describe the look and feel

of an application.1 These objects are represented by XML elements, like so:

<Rectangle />

<!-- or -->

<TextBox />

You can modify these XML elements by setting attributes to change the

objects:

<Rectangle Fill=”Blue” />

<!-- or -->

<TextBox Text=”Hello World” />

Containers in XAML use XML nesting to imply ownership (a parent-

child relationship):

<Grid>
 <Rectangle Fill=”Blue” />
 <TextBox Text=”Hello World” />
</Grid>

Using this simple XML-based syntax, you can create complex,

compelling designs for your phone applications. With this knowledge in

hand, we can make subtle changes to the XAML supplied to us from the

template. We could modify the XAML directly, but instead we will start by

using the Visual Studio designer for the phone. In the main editor pane of

Visual Studio, the MainPage.xaml fi le is split between the designer and the

text editor for the XAML. The left pane of the MainPage.xaml fi le is not just

a preview but a fully usable editor. For example, if you click on the area

containing the words “page name” on the design surface, it will select that

element in the XAML, as shown in Figure 2.8.

1 This is an oversimplifi cation of what XAML is. Chapter 3, “XAML Overview,” will explain the nature
of XAML in more detail.

 36 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.8 Using the Visual Studio XAML design surface

When you have that element selected in the designer, the properties for

the element are shown in the Properties window (which shows up below

the Solution Explorer). If the window is not visible, you can enable it in the

View menu by selecting “Properties window” or by pressing the F4 key.

This window is shown in Figure 2.9.

FIGURE 2.9 Location of the Properties window

The Properties window consists of a number of small parts containing

a variety of information, as shown in Figure 2.10.

37 Creating a New Project

FIGURE 2.10 Contents of the Properties window

The section near the top (#1 in Figure 2.10) shows the type of object you

have selected (in this example, a TextBlock) and the name of the object, if

any (unspecifi ed here so shown as <No Name>). This should help you

ensure that you have selected the correct object to edit its properties.

The next section down (#2) contains a Search bar where you can search

for properties by name, as well as buttons for sorting and grouping the

properties. The third section (#3) is a list of the properties that you can edit.

 NOTE

You can also use the Properties window to edit events, but we will
cover that in Chapter 3.

From the Properties window you can change the properties of the

selected item. For example, to change the text that is in the TextBlock, you

can simply type in a new value for the Text property. If you enter “hello

world” in the Text property and press Return, the designer will change

to display the new value. Changing this property actually changes the

XAML in the MainPage.xaml fi le. The design surface is simply reacting

to the change in the XAML. If you look at the XAML, the change has been

affected there as well, as shown in Figure 2.11.

 38 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.11 The changed property

You can edit the XAML directly as well if you prefer. If you click on the

TextBlock above the PageTitle (the one labeled “ApplicationTitle”), you can

edit the Text attribute directly. Try changing it to “MY FIRST WINDOWS

PHONE APP” to see how it affects the designer and the Properties window:

...
<TextBlock x:Name=”ApplicationTitle”
 Text=”MY FIRST WINDOWS PHONE APP”
 Style=”{StaticResource PhoneTextNormalStyle}” />
...

Depending on their comfort level, some developers fi nd it easier to use

the Properties window while others will be more at ease editing the XAML

directly. There is no wrong way to do this.

Although the Visual Studio XAML designer can create interesting

designs, the real powerhouse tool for designers and developers is Blend.

Let’s use it to edit our design into something useful for our users.

39 Designing with Blend

Designing with Blend

As noted earlier, in addition to offering an Express version of Visual Studio,

the Windows Phone SDK includes an Express version of Expression Blend

specifi cally for use in developing phone applications. You can launch Blend

by looking for the shortcut key, or you can open it directly with Visual

Studio. If you right-click the MainPage.xaml fi le, you will get a context

menu like the one shown in Figure 2.12.

FIGURE 2.12 Opening Blend directly in Visual Studio

When you select Open in Expression Blend, Blend will open the same

solution in the Expression Blend tool with the selected XAML fi le in the

editor, as shown in Figure 2.13. You should save your project before going

to Blend to make sure Blend loads any changes (Ctrl+Shift+S).

 40 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.13 The Blend user interface

Although Expression Blend is thought of as purely a design tool, designers

and developers alike can learn to become comfortable with it. And although

Visual Studio and Expression Blend share some of the same features, both

developers and designs will want to use Blend to build their designs. Some

tasks are just simpler and faster to do in Blend. Chapter 5, “Designing for the

Phone,” covers which tasks are better suited to Expression Blend.

Like Visual Studio, Blend consists of a number of panes that you will

need to get familiar with.

 NOTE

Blend and Visual Studio both open entire solutions, not just files.
This is a significant difference from typical design tools.

41 Designing with Blend

The fi rst pane (labeled #1 in Figure 2.13) contains multiple tabs that

give you access to several types of functionality. By default, the fi rst tab

(and the one in the foreground) is the Projects tab (although a different

tab could be showing by default). This tab displays the entire solution of

projects. The format of this tab should look familiar; it’s showing the same

information as the Solution Explorer in Visual Studio. The next pane (#2)

is the editor pane. This pane contains tabs for each opened fi le (only one

at this point). MainPage.xaml should be the fi le currently shown in the

editor. Note that the editor displays the page in the context of the phone so

that you can better visualize the experience on the phone. On the right side

of the Blend interface is another set of tabs (#3) that contain information

about selected items in the design surface. The selected tab should be the

Properties tab. This tab is similar to the Properties window in Visual Studio

but is decidedly more designer-friendly. As you select items on the design

surface, you’ll be able to edit them in the Properties tab here. Finally, the

Objects and Timeline pane (#4) displays the structure of your XAML as a

hierarchy.

Let’s make some changes with Blend. First (as shown in Figure 2.14);

select the “hello world” text in the designer.

FIGURE 2.14 Selecting an object in Blend

After it’s selected, you can see that eight squares surround the selection.

These are the handles with which you can change the size or location of

the TextBlock. While this object is selected, the Objects and Timeline pane

shows the item selected in the hierarchy; as well, the item is shown in

the Properties tab so you can edit individual properties (as shown in

Figure 2.15).

 42 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.15 Selecting an object to edit in the Properties pane

If you type “text” into the search bar of the Properties pane, the

properties that have that substring in them will appear (to temporarily

reduce the number of properties in the Properties pane). You can change

the title by changing the Text property, as shown in Figure 2.16.

FIGURE 2.16 Updating a property in Blend

43 Designing with Blend

After you’re done changing the text, you might want to click the “X” in

the Search bar to clear the search criteria. This will remove the search and

show all the properties of the TextBlock again.

Selecting items and changing properties seems similar to what you

can do in Visual Studio, but that’s just where the design can start. Let’s

draw something. Start by selecting a container for the new drawing. In

the Objects and Timeline pane, select the ContentPanel item. This will show

you that it is a container that occupies most of the space below our “hello

world” text on the phone’s surface.

We can draw a rectangle in that container by using the left toolbar. On

the toolbar is a rectangle tool (as shown in Figure 2.17). Select the tool and

draw a rectangle in the ContentPanel to create a new rectangle (also shown

in Figure 2.17). If you then select the top arrow tool (or press the V key),

you’ll be able to modify the rectangle.

FIGURE 2.17 Drawing in a container

 44 CHAPTER 2: Writing Your First Phone Application

The rectangle you created has eight control points (the small squares at

the corners and in the middle of each side). In addition, the rectangle has

two small control points in the upper-left side (outside the surface area of

the rectangle). These controls are used to round the corners of rectangles.

Grab the top one with your mouse and change the corners to be rounded

slightly, as shown in Figure 2.18.

FIGURE 2.18 Rounding the corners

Now that you have rounded the corners, you can use the Properties pane

to change the colors of the rectangle. In the Properties pane is a Brushes

section showing how the various brushes for the rectangle are painted. The

rectangle contains two brushes: a fi ll brush and a stroke brush. Selecting

one of these brushes will allow you to use the lower part of the brush editor

to change the look of that brush. Below the selection of brush names is a set

of tabs for the various brush types, as shown in Figure 2.19.

FIGURE 2.19 Editing brushes

45 Designing with Blend

The fi rst four tabs indicate options for brushes. These include no brush,

solid color brush, gradient brush, and tile brush. Select the stroke brush,

and then select the fi rst tab to remove the stroke brush from the new

rectangle. Now select the fi ll brush, and change the color of the brush by

selecting a color within the editor, as shown in Figure 2.20.

FIGURE 2.20 Picking a color

Now let’s put some text in the middle of our design to show some data.

More specifi cally, let’s put a TextBlock on our design. Go back to the toolbar

and double-click the TextBlock tool (as shown in Figure 2.21). Although

we drew our rectangle, another option is to double-click the toolbar, which

will insert the selected item into the current container (in this case, the

ContentPanel). The inserted TextBlock is placed in the upper left of our

ContentPanel, as also shown in Figure 2.21.

 46 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.21 Inserting a TextBlock

After the new TextBlock is inserted, you can simply type to add some

text. Type “Status” just to have a placeholder for some text we will place

later in this chapter. You should use the mouse to click the Selection tool

(the top arrow on the toolbar) so that you can edit the new TextBlock. You

could use the mouse to place the TextBlock exactly where you like, but you

could also use the Properties pane to align it. In the Properties pane, fi nd

the Layout section and select the horizontal center alignment and vertical

bottom alignment, as shown in Figure 2.22. You might need to set your

margins to zero as well to achieve the effect (because Blend might put a

margin on your item depending on how you draw it).

Next you can edit the font and size of the TextBlock using the Text section

of the Properties pane. You will likely need to scroll down to reach the Text

section. From there, you can change the font, font size, and text decoration

(for example, bold, italic, and so on). Change the font size to 36 points and

make the font bold, as shown in Figure 2.23.

47 Designing with Blend

FIGURE 2.22 Centering the TextBlock

FIGURE 2.23 Changing the text properties

At this point our application does not do much, but hopefully you have

gotten your fi rst taste of the basics of using Blend for design. To get our fi rst

application to do something, we will need to hook up some of the elements

with code. So we should close Blend and head back to Visual Studio.

When you exit Blend you will be prompted to save the project. Upon

returning to Visual Studio, your changes will be noticed by Visual Studio;

allow Visual Studio to reload the changes.

 TIP

Blend is great at a variety of design tasks, such as creating anima-
tions, using behaviors to interact with user actions, and creating
transitions. In subsequent chapters we will delve much further into
using those parts of the tool.

 48 CHAPTER 2: Writing Your First Phone Application

Adding Code

This fi rst Windows Phone application is not going to do much, but we

should get started and make something happen with the phone. Because

this is your fi rst Windows Phone application, let’s not pretend it is a

desktop application but instead show off some of the touch capabilities.

First, if you look at the text of the XAML you should see that the fi rst line

of text shows the root element of the XAML to be a PhoneApplicationPage. This

is the basic class from which each page you create will derive. The x:Class

declaration is the name of the class that represents the class. If you open the

code fi le, you will see this code was created for you:

<phone:PhoneApplicationPage x:Class=”HelloWorldPhone.MainPage”
 ...

 NOTE

The “phone” alias is an XML alias to a known namespace. If you’re
not familiar with how XML namespaces work, we will cover it in
more detail in Chapter 3.

You will need to open the code fi le for the XAML fi le. You can do this by

right-clicking the XAML page and picking View Code, or you can simply

press F7 to open the code fi le. The initial code fi le is pretty simple, but you

should see what the basics are. The namespace and class name match the

x:Class defi nition we see in the XAML. This is how the two fi les are related

to each other. If you change one, you will need to change the other. You

should also note that the base class for the MainPage class is the same as the

root element of the XAML. They are all related to each other. Here is the

initial code fi le:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Navigation;
using Microsoft.Phone.Controls;

49 Adding Code

using Microsoft.Phone.Shell;
using HelloWorldPhone.Resources;

namespace HelloWorldPhone
{
 public partial class MainPage : PhoneApplicationPage
 {
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 // Sample code to localize the ApplicationBar
 //BuildLocalizedApplicationBar();
 }
 }
 // ...
}

These two fi les (the .xaml and the code fi les) are closely tied to each

other. In fact, you can see that if you fi nd an element in the XAML that has

a name, it will be available in the code fi le. If you switch back to the .xaml

fi le, click the TextBlock that you created in Blend. You will notice in the

Properties window that it does not have a name (as shown in Figure 2.24).

FIGURE 2.24 Naming an element in the Properties window

If you click the text “<no name>”, you can enter a name. Name the

TextBlock “theStatus.” If you then switch over to the code fi le, you will be

able to use that name as a member of the class:

 50 CHAPTER 2: Writing Your First Phone Application

...
public partial class MainPage : PhoneApplicationPage
{
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 theStatus.Text = “Hello from Code”;
 }
}
...

At this point, if you run the application (pressing F5 will do this), you

will see that this line of code is being executed as the theStatus TextBlock is

changed to show the new text (as seen in Figure 2.25).

FIGURE 2.25 Running the application

51 Adding Code

There is an important fact you should derive from knowing that named

elements in the XAML become part of the class: The job of the XAML is to

build an object graph. The hierarchy of the XAML is just about creating the

hierarchy of objects. At runtime, you can modify these objects in whatever

way you want.

When you stop your application, the emulator will continue to run.

You can leave the emulator running across multiple invocations of your

application. You should not close the emulator after debugging your

application.

Working with Events
Because you are building a phone application, let’s show how basic events

work. You can wire up events just as easily using standard language (for

example, C#) semantics.2 For example, you could handle the Tap event on

theStatus to run code when the text is tapped:

...
public partial class MainPage : PhoneApplicationPage
{
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 theStatus.Text = "Hello from Code";

 theStatus.Tap += theStatus_Tap;

 // Sample code to localize the ApplicationBar
 //BuildLocalizedApplicationBar();
 }

 void theStatus_Tap(object sender,
 System.Windows.Input.GestureEventArgs e)
 {
 theStatus.Text = "Status was Tapped";
 }
}
...

2 For Visual Basic, you would just use the handles keyword instead of the C# event handler syntax.

 52 CHAPTER 2: Writing Your First Phone Application

When you tap on theStatus the Tap event will be fi red (which is what

causes the code in the event handler to be called). All events work in

this simple fashion, but the number and type of events in Silverlight for

Windows Phone vary widely.

Debugging in the Emulator
If clicking the user interface was not working the way we would like, it

might help if we could stop the operation during an event to see what was

happening during execution. We can do this by debugging our operation.

We can use the debugger to set breakpoints and break in code while using

the emulator. Place the text cursor inside the event handler and press F9

to create a breakpoint. When you run the application (again, press F5),

you can see that when you click the theStatus TextBlock the debugger stops

inside the event handler. You can hover your mouse over specifi c code

elements (for example, theStatus.Text) to see the value in a pop-up (as

shown in Figure 2.26).

FIGURE 2.26 Using the Visual Studio debugger

53 Adding Code

Pressing the F5 key while stopped at a breakpoint will cause the

application to continue running. There are other ways to walk through the

code, but for now that should be suffi cient to get you started. Using the

emulator is the most common way you will develop your applications,

but there are some interactions that are diffi cult to do with the emulator

(for example, multitouch, using phone sensors, and so on) for which

debugging directly on a device would be very useful. Luckily, debugging

on the device is supported and works pretty easily.

Debugging with a Device
If you have a phone with which you want to do your development, you

will need to be able to deploy and debug directly on the phone itself. First,

you need to connect your phone to your development machine. All you

need to do is connect your phone to your computer by a USB cable.

‘Now that your device is connected, you can use it to browse to the

directories for music, photos, and so on. However, before you can use a

phone as a development device, you will need to register the phone for

development. This lifts the requirements that applications be signed by

Microsoft and allows you to deploy your applications directly to the phone

so that you can debug applications.

Before you can enable your phone as a developer phone, you will need

to have an account at the Windows Phone App Hub (http://developer.

windowsphone.com). After you have done that, you can enable your

phone to be used for development. To do this you will need the Windows

Phone Developer Registration tool, which is installed when you install

the Windows Phone SDK. When you run this application, it detects the

device. You will need to ensure that the device is unlocked and turned on.

At that point the Windows Phone Developer Registration tool will enable

the Register button, as shown in Figure 2.27.

http://developer.windowsphone.com
http://developer.windowsphone.com

 54 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.27 Windows Phone Developer Registration tool

Next, it will ask you for your Windows Live ID that you used to register

with the developer portal, as shown in Figure 2.28.

If your phone is successfully attached to your computer, the Status

area will tell you that it is ready to register your device for development.

At this point, just click the Register button to register with the developer

portal. After it registers the phone, it changes the status to show you that

the phone is ready.

55 Adding Code

FIGURE 2.28 Signing in with your Microsoft ID

When you use a device to debug, you will fi nd it much easier to change

the default time-out of the device to be longer than the default (usually one

minute, but it depends on the device manufacturer and carrier). To do this,

go to the settings on your phone. In the settings is an option called “lock

screen”, as shown in Figure 2.29.

 56 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.29 The Lock Screen option on the settings screen

When you’re in this option, you can scroll down to fi nd the “Screen

times out after” option, open the option, and select the longest time-out

you can tolerate (this will affect battery life when you’re not debugging on

the device, so be careful to choose a time-out you can live with if it’s not a

testing-only device). You can see this in Figure 2.30.

Now that you’ve registered your device, you can deploy and debug

your applications using Visual Studio. The key to using the device instead

of the emulator is to change the deployment using the drop-down list of

deployment options. The drop-down is located in the toolbar of Visual

Studio, as shown in Figure 2.31.

57 Adding Code

FIGURE 2.30 Changing the default device time-out

FIGURE 2.31 Changing the deployment to use a development phone

 58 CHAPTER 2: Writing Your First Phone Application

After you change the deployment target, you can debug just like you

did with the emulator. When you run the application, it will deploy your

application to the device and run it so that you can debug it in the same

way as you did with the emulator.

Using Touch
Even though the touch interactions do fi re mouse events, other events enable

you to design your application for touch. Because touch is so important

to how applications on the phone work, this fi rst application should give

you a taste of that experience. To show touch working, let’s add an ellipse

to the application that the user can move around by dragging it with her

fi nger. To get started, you should open the MainPage.xaml fi le and add a

new ellipse in the center of the page. To do this, fi nd the TextBlock called

theStatus and place a new Ellipse element after it, like so:

...
 <Grid x:Name="ContentGrid"
 Grid.Row="1">
 <Rectangle Fill="#FF7E0505"
 Margin="8"
 RadiusY="24"
 RadiusX="24" />
 <TextBlock HorizontalAlignment="Center"
 TextWrapping="Wrap"
 Text="Status"
 VerticalAlignment="Bottom"
 FontSize="48"
 FontWeight="Bold"
 Name="theStatus" />
 <Ellipse x:Name="theEllipse"
 Fill="White"
 Width="200"
 Height="200">
 </Ellipse>
 </Grid>
...

We need to be able to move the ellipse (named theEllipse) as the user

drags it. To allow us to do this, we must use something called a transform.

In XAML, a transform is used to change the way an object is rendered

without having to change properties of the ellipse. Although we could

59 Adding Code

change the margins and/or alignments to move it around the screen, using

a transform is much simpler. You should use a TranslateTransform to allow

this movement. A TranslateTransform provides X and Y properties, which

specify where to draw the element (as a delta between where it originally

exists and where you want it). You can specify this transform by setting

the RenderTransform property with a Translate Transform (naming it in the

process):

...
<Ellipse x:Name="theEllipse"
 Fill="White"
 Width="200"
 Height="200">
 <Ellipse.RenderTransform>
 <TranslateTransform x:Name="theMover" />
 </Ellipse.RenderTransform>
</Ellipse>
...

Now that we have a way to move our ellipse around the page, let’s look

at dealing with touch. In Silverlight, there are two specifi c types of touch

interactions that are meant to allow the user to change onscreen objects.

These are when the user drags her fi nger on the screen and when she

uses a pinch move to resize objects. These types of interactions are called

manipulations. Silverlight has three events to allow you to use this touch

information:

• ManipulationStarted

• ManipulationDelta

• ManipulationCompleted

These events let you get information about the manipulation as it

happens. For example, let’s handle the ManipulationDelta event to get

information about when the user drags on the screen. This event is called

as the manipulation happens, and it includes information about the

difference between the start of the manipulation and the current state (for

example, how far the user has dragged her fi nger):

 60 CHAPTER 2: Writing Your First Phone Application

...
public partial class MainPage : PhoneApplicationPage
{
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 theStatus.Text = "Hello from Code";

 theStatus.Tap += theStatus_Tap;

 theEllipse.ManipulationDelta += theEllipse_ManipulationDelta;

 // Sample code to localize the ApplicationBar
 //BuildLocalizedApplicationBar();
 }

 void theEllipse_ManipulationDelta(object sender,
 System.Windows.Input.
 ManipulationDeltaEventArgs e)
 {
 // As a manipulation is executed (drag or resize), this is called
 theMover.X = e.CumulativeManipulation.Translation.X;
 theMover.Y = e.CumulativeManipulation.Translation.Y;
 }

 ...
}
...

The event is fi red while the user either pinches or drags within the

theEllipse element. In this case the code is only concerned with the dragging.

In the event handler for ManipulationDelta, the ManipulationDeltaEventArgs

object contains information about the extent of the manipulation. The

CumulativeManipulation property of the event args has a property called

Translation, which contains the extent of the drag operation (the complete

delta). We are just changing theMover’s properties to match the manipulation.

This means we can now drag the theEllipse element around and see it

change position under our dragging, as shown in Figure 2.32.

61 Working with the Phone

FIGURE 2.32 Dragging the ellipse

Working with the Phone

This fi rst application is a program that can be pretty self-suffi cient, but not

all applications are like that. Most applications will want to interact with

the phone’s operating system to work with other parts of the phone. From

within your application, you might want to make a phone call, interact

with the user’s contacts, take pictures, and so on. The Windows Phone

SDK calls these types of interactions tasks. Tasks let you leave an applica-

tion (and optionally return) to perform a number of phone-specifi c tasks.

Here is a list of some of the most common tasks:

 62 CHAPTER 2: Writing Your First Phone Application

• CameraCaptureTask

• EmailAddressChooserTask

• EmailComposeTask

• PhoneCallTask

• SearchTask

• WebBrowserTask

These tasks allow you to launch a task for the user to perform. In some

of these tasks (for example, CameraCaptureTask, EmailAddressChooserTask),

after the task is complete the user expects to return to your application;

while in others (for example, SearchTask), the user might be navigating to a

new activity (and might come back via the Back key, but might not).

Let’s start with a simple task, the SearchTask. Add a using statement to the

top of the code fi le for Microsoft.Phone.Tasks to ensure that the SearchTask

class is available to our code fi le. Next, create an event handler for the Tap

event on theEllipse. Then, inside the handler for the Tap event, you can

create an instance of the SearchTask, set the search criteria, and call Show to

launch the task:

...
using Microsoft.Phone.Tasks;
...
public partial class MainPage : PhoneApplicationPage
{
 // Constructor
 public MainPage()
 {
 ...

 theEllipse.Tap += theEllipse_Tap;

 }

 void theEllipse_Tap(object sender,
 System.Windows.Input.GestureEventArgs e)
 {
 SearchTask task = new SearchTask();
 task.SearchQuery = “Windows Phone”;
 task.Show();
 }

 ...
}

63 Working with the Phone

If you run your application, you’ll see that when you tap on the

 theEllipse element it will launch the phone’s Search function using the search

query you supplied (as shown in Figure 2.33). The results you retrieve for the

search query can vary because it is using the live version of Bing for search.

FIGURE 2.33 The SearchTask in action

Although this sort of simple task is useful, the more interesting story

is being able to call tasks that return to your application. For example,

let’s pick an email address from the phone and show it in our application.

The big challenge here is that when we launch our application, we might

get tombstoned (or deactivated). Remember that, on the phone, only one

application can be running at a time. To have our task wired up when our

application is activated (remember, it can be deactivated or even unloaded

 64 CHAPTER 2: Writing Your First Phone Application

if necessary), we have to have our task at the page or application level and

wired up during construction. So, in our page, we create a class-level fi eld

and wire up the Completed event at the end of the constructor for it, like so:

public partial class MainPage : PhoneApplicationPage
{

 EmailAddressChooserTask emailChooser =
 new EmailAddressChooserTask();

 // Constructor
 public MainPage()
 {
 ...

 emailChooser.Completed += emailChooser_Completed;
 }

 ...
}

In the event handler, we can simply show the email chosen using the

MessageBox API:

...
void emailChooser_Completed(object sender, EmailResult e)
{
 MessageBox.Show(e.Email);
}
...

Now we need to call the task. To do this, let’s hijack the event that gets

called when the theEllipse element is tapped. Just comment out the old

SearchTask code and add a call to the emailChooser’s Show method, like so:

...
void theEllipse_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 //SearchTask task = new SearchTask();
 //task.SearchQuery = “Windows Phone”;
 //task.Show();

 // Get an e-mail from the user’s Contacts
 emailChooser.Show();
}
...

65 Working with the Phone

After you run the application, a list of contacts will be displayed and

you will be able to pick a contact (and an address, if there is more than

one), as shown in Figure 2.34. The emulator comes prepopulated with

several fake contacts to test with.

FIGURE 2.34 Choosing a contact to retrieve an email address via the
EmailAddressChooserTask

After the user selects the contact, the phone returns to your application.

You will be returned to your application (and debugging will continue).

The event handler should be called when it is returned to the application,

as shown in Figure 2.35.

 66 CHAPTER 2: Writing Your First Phone Application

FIGURE 2.35 Showing the selected email in a MessageBox

Where Are We?

You have created your fi rst Windows Phone application using Silverlight.

Although this example has very little real functionality, you should have

a feel for the environment. Taking this fi rst stab at an application and

applying it to your needs is probably not nearly enough. That’s why, in

subsequent chapters, we will dive deep into the different aspects of the

phone application ecosystem. You will learn how to build rich applications

using Silverlight, services, and the phone itself.

573

Index

A
Accelerometer class, 264

accelerometer range, 265

Accelerometer tab, 266

accelerometers, 262-265

accessing

contacts, 318

location information, 289

memory cards, 394

music, 355-358

network information, 467-470

notifications, 329-330

pictures, 360-362

resources, 253

accounts, contacts, 321

activated, 228

Add Service Reference dialog

box, 479

adding

associations, 414

code, 48-50

debugging in emulators, 52-53
debugging with devices, 53-58
touch, 58-60

references to Scheduled Task

Agent project, 432

service references, 478-479

text, Blend, 46

using statements to data

services, 494

AddPackageAsync, 571

AddPackageAsync method, 569

 574 Index

AddressChooserTask, 348

AddWalletItemTask, 346-348

adjusting playback, sound, 271-272

AdMob, 551

ads in apps, 551-552

AET.aet, 564

AET.aetx, 564

AETGenerator.exe tool, 563

AET.xml, 564

A-GPS (Assisted Global Positioning

System), 287, 289

alarms, 324-325

creating, 327-328

animations

Microsoft Expression Blend,

191-196

RenderTransform, 195

XAML, 84, 87-90

keyframe animations, 89
timeline animations, 89

APIs

Bluetooth, 316

clipboard, 286-287

location, 287

VOIP, 316

App Deployment services, 17

App Hub, 20

submissions, 20-22

App Info page, 541

App.IsRunningInBackground

property, 452

App.xaml, 449

appdata, 394

application bar, 4

phone experience, 247-249

Application Certification

Requirements, 550

memory consumption, 161

Application class, 218-219

application client area, phone

experience, 245-246

application enrollment token,

enterprise apps, 563-565

application lifecycle, 15-17, 217-220

navigation, 220-226

tombstoning, 227-233

application paradigms, 162-164

panorama pages, 164-166

pivot, 166-168

simple pages, 169

application policies, Windows

Phone Store, 22

basic policies, 22-23

legal usage policies, 23-25

Application.Terminate method, 221

ApplicationBar, 255

Microsoft Expression Blend,

199-202

applications for Windows Phone

Store

after the submission, 545-548

failed submissions, 548-551

modifying, 548

preparing, 533-538

submission process, 538-545

appointments, 317, 323-324

SearchAsync method, 323

AppResources, 252

AppResources class, 254

AppResources.resx, 252

575 Index

apps

ads in, 551-552

distributing through Windows

Phone Store, 20

enterprise apps, 553-554

application enrollment token,
563-565

building company hubs, 567-571
buying symantec code signing

certificates, 556-558
Company Hub, 567-571
installing certificates, 558-562
preparing apps for distribution,

566-567
registering phones, 564-565
registering your company, 554-556

exiting, 221

free apps, 530

launching, 380

custom protocol, 380-384
file association, 384-387

Lite version, 530

location aware apps, 448-452

preparing for push notifications,

499-501

previewing, 209

submitting, Windows Phone

Store, 533

preparing applications, 533-538
trial mode, 531

artboard, Microsoft Expression

Blend, 176-177

ASP.NET, 502

Assets panel, Microsoft Expression

Blend, 174

Assisted Global Positioning System

(A-GPS), 287

associations

adding, 414

local databases, 412-417

async, 466

audio agents, 439-448

Audio Playback Agent project,

440-441

AudioTrack, 444-445

authenticating push

notifications, 504

AutoCompleteBox control,

Windows Phone Toolkit, 131-133

await, 290

await keyword, 392, 466

B
back button, 10

background agents, 426-428

audio agents, 439-448

periodic agents, 428-435

resource-intensive agents, 436-439

scheduled task limitations, 428

BackgroundAudioPlayer class,

441-442, 447

BackgroundServiceAgent

element, 441

BackgroundTransferRequest class,

455, 459

BackgroundTransferRequest

object, 454

 576 Index

BackgroundTransferService,

456-458

Background Transfer Service (BTS),

426, 452

limitations, 453-454

requests, monitoring, 456-460

requirements, 453-454

transfers, requesting, 454-456

backStack property, 223

base price, 539

behaviors, Microsoft Expression

Blend, 196-199

best practices, system resources, 215

binding contacts, 320

binding formatting, data binding,

120-121

binding markup extension, 115

BitmapImage, 119

Blend

designing with, 39-47

drawing, 43, 44-45

editor pane, 41

exiting, 47

handles, 41

Objects and Timeline pane, 41

Projects tab, 41

Properties tab, 41

text

adding, 46
changing, 42
sizing, 46

Bluetooth APIs, 316

boilerplate functions, 230

Border, visual containers, 73

brush editors, Microsoft Expression

Blend, 187-188

brush resource, Microsoft

Expression Blend, 190

brushes

Microsoft Expression Blend,

186-191

XAML, 79-80

BTS (Background Transfer Service),

426, 452

limitations, 453-454

requests, monitoring, 456-460
requirements, 453-454

transfers, requesting, 454-456

BufferReady, 274

buying symantec code signing

certificates (enterprise apps),

556-558

C
calling

tasks, 64-65

web services, 481

CallMethodAction, 197

camera, 275-276

Camera Lens app, 284-286

PhotoCamera class, 276-280

raw hardware access, 281-283

camera button, 10

Camera Lens app, 284-286

camera shutter, 279

CameraButtons class, 279

CameraCaptureTask, 275, 348

Cancel property, 227

577 Index

CanDeserialize method, 398

Canvas, visual containers, 73

CaptureImageAvailable, 277

CaptureSource, 283

CaptureSource class, 281

certificate snap-in, 559

certificates

exporting, 559

installing enterprise apps, 558-562

ChangePropertyAction, 197

ChannelErrorType

enumeration, 523

ChannelPowerLevel

enumeration, 524

charging for apps

getting paid, 531-532

international pricing, 529

Windows Phone Store, 529-531

tax information for developers in
U.S., 532

tax information for developers
outside U.S., 532-533

chat input scope, 102

choosers, tasks, 332, 344-345

AddressChooserTask, 348

AddWalletItemTask, 346-348

EmailAddressChooserTask,

349-350

PhoneNumberChooserTask, 350

PhotoChooserTask, 350-351

SaveContactTask, 352

SaveEmailAddressTask, 353

SavePhoneNumberTask, 353-354

SaveRingtoneTask, 354-355

circular navigation, 224

clipboard, 286-287

Clipboard class, 286-287

cloud, 17

code, adding, 48-50

debugging with devices, 53-58

touch, 58-60

colors, XAML, 80

Column attribute, 403

ColumnDefinitions, 73-74

columns, creating, 75, 76

CommandPrefix, 302

CommandSet, 302

Common Panel, Microsoft

Expression Blend, 173

CommonStates, 128

companies, registering enterprise

apps, 554-556

Company Hub, building, 567-571

ConsumerID, 286

contacts, 317-323

accessing, 318

accounts, 321

binding, 320

LINQ, 321

pictures, 322

containers, XAML, 72-77

content controls, XAML, 106-107

content policies, Windows Phone

Store, 25

context class, 404

optimizing, 408-411

ContextMenu control, Windows

Phone Toolkit, 133-135

 578 Index

control templates, data bindings,

125-129

controls

AutoCompleteBox control,

Windows Phone Toolkit,

131-133

ContextMenu control, Windows

Phone Toolkit, 133-135

CustomMessageBox, Windows

Phone Toolkit, 149-153

DatePicker control, Windows

Phone Toolkit, 135-137

ExpanderView control, Windows

Phone Toolkit, 146-147

ListPicker control, Windows

Phone Toolkit, 137-139

LongListSelector control,

Windows Phone Toolkit,

140-144

Panorama control, 108-112

PerformanceProgressBar control,

Windows Phone Toolkit,

144-145

PhoneTextBox control, Windows

Phone Toolkit, 147-149

Pivot control, 112-113

Silverlight, 99

TimePicker control, Windows

Phone Toolkit, 135-137

ToggleSwitch control, Windows

Phone Toolkit, 145-146

WebBrowser control, 127

WrapPanel, Windows Phone

Toolkit, 153-155

XAML, 97-99

simple controls. See simple
controls

ControlStoryboardAction, 197-198

ControlTemplate, 126

converters, data binding, 121-123

coordinates, turning into

addresses, 294

CopySharedFileAsync, 387

CreationOptions, 119

CumulativeManipulation, 242

CustomMessageBox, Windows

Phone Toolkit, 149-153

Cycle style live tiles, 373

D
data

retrieving, OData, 493-495

storing, 389-390

updating, OData, 496-497

data binding, 115

binding formatting, 120-121

control templates, 125-129

converters, 121-123

DataTemplate, 117-118

element binding, 121

errors, 123-125

improving scrolling performance,

118-120

simple data binding, 115-117

static classes, 253

data binding modes, 117

data context class, 404-405

Data property, 78

Database API, 405

databases, local databases, 401-402

associations, 412-417

getting started, 402-408

optimizing context class, 408-411

579 Index

performance

recommendations, 411

schema updates, 420-421

security, 422

using existing, 418-419

DatabaseSchemaUpdater class,

420-422

DataContext, 118

DataContractXmlSerialization, 398

DataTemplate, 118, 142

data binding, 117-118

DatePicker control, Windows

Phone Toolkit, 135-137

DateStateBehavior, 197

Deactivated event, 232

deactivation, 227

debugging

devices, 53-58

emulators, 52-53

Music and Videos hub, 368

push notifications, 515

delay-loaded, 119

DeleteOnSubmit, 407

Description property, 433

Deserialize method, 397

designing

with Blend, 39-47

for touch, 237-245

input buttons, 11-12
with Visual Studio, 210-212

design language, 74-75

Dev Center, 527-528

Device panel, previewing

applications, 209

DeviceNetworkInformation class,

467-468

devices, debugging, 53-58

DismissedEventArgs, 153

DispatcherTimer, 273

distributing apps through Windows

Phone Store, 20

distribution, preparing apps for,

566-567

dormant state, 227

drawing with Blend, 43-45

E
EaseIn, 90

EaseOut, 90

EasingFunction property, 90

editor pane, Expression Blend, 41

element binding, 121

ElementName, 121

EmailAddressChooserTask, 349-350

EmailComposeTask, 333

emoticon button, 102

emulating

location information, 295-298

motion, 266-267

creating recorded data, 268
emulators, debugging, 52-53

endpoints, OData, 483

EntityRef, 416

EntityRef class, 414

EntitySet class, 416-417

enumeration

ChannelErrorType, 523

ChannelPowerLevel, 524

 580 Index

FilterKind, 318-319

MediaPlaybackControls, 340

PaymentInstrumentKinds, 347

errors

data binding, 123-125

push notifications, 522-523

events, 51-52

ExecutionElement, 449

exiting

applications, 221

Expression Blend, 47

$expand, 490-491

ExpanderView control, Windows

Phone Toolkit, 146-147

ExponentialEase, 90

exporting certificates, 559

ExtendedTask, 431

extensions,

WMAppManifest.xml, 365

F
failed submissions, applications for

Windows Phone Store, 548-551

feedback, haptic feedback, 261-262

file association, launching apps,

384-387

files, accessing (memory cards), 394

FileTypeAssociation element, 385

$filter, 487-489

functions, 489

operators, 488

FilterKind enumeration, 318-319

Find method, 500

flicking, 243

Flip style live tiles, 372

FluidMoveBehavior, 197

FluidMoveSetTagBehavior, 197

FocusStates, 128

Foursquare, 158

FrameworkDispatcher, 359

FrameworkElement, 92

free apps, 530

functions, $filter, 489

G
Game object, 406

generating service references for

OData, 492

GeoCoordinates, 335

GeoCoordinateWatcher class,

289, 451

geolocation, 290-292

tracking changes, 292-294

Geolocator class, 289

location aware apps, 450

Geoposition, 292

gestures, 11, 244

GetGeopositionAsync, 290

GetPrimaryTouchPoint method, 239

GetResponse method, 506

GetTouchPoints method, 239

GoToStateAction, 197

GPS (Global Positioning

System), 287

gradient brush editor, Microsoft

Expression Blend, 188

Grid element, visual containers,

72-73

grids, Microsoft Expression

Blend, 182

581 Index

GroupHeaderTemplate, 141

GroupItemTemplate, 141

groups, 142

H
handles, Blend, 41

haptic feedback, 261-262

hardware, points of input, 9-10

hardware buttons, 12

hardware inputs, 10-11

hardware specifications, 8

HCTI (hard-copy tax invoice), 533

header status codes, push

notifications, 509-514

History section, Music and Videos

section, 369-370

HTTP verb mappings, OData, 483

HttpNotificationReceived

event, 514

HttpWebRequest, 467

HttpWebResponse, 467

hubs, 5, 18-19

HyperlinkButton, 222

I
Iconic style live tiles, 372

idle detection, phone experience,

249-250

image brush editor, Microsoft

Expression Blend, 188

ImageBrush, 80

images, XAML, 82-84

implementing the look and feel of

the phone, 212-215

implicit styles, 95-96

improving scrolling performance,

118-120

Index attribute, 403-404

inertia, touch gestures, 243

input buttons, designing for touch,

11-12

input patterns, 10

hardware buttons, 12

keyboards, 12-15

sensors, 15

input scope values, 103-104

InstallationManager, 570

InstallationManager class, 568

installing certificates, enterprise

apps, 558-562

integrating

Music and Videos hub, 367-368

debugging, 368
History section, 369-370
launching, 370-371
New section, 370
Now Playing section, 368-369

Picture hub, 364-366

interactions, 12

international pricing, charging for

apps, 529

InvokeCommandAction, 197

IsApplicationInstancePreserved

property, 232

IsForeignKey parameter, 415

IsNavigationInitiator property, 226

isolated storage settings,

serialization, 400-401

 582 Index

IsolatedStorageSettings class, 401

isostore, 394

IsTrial, 531

ItemTemplate, 118, 141-142

Item Tools section, Microsoft

Expression Blend, 178-179

IValueConverter interface, 122

J
JArray class, 474

JSON (JavaScript Object Notation),

470-471

parsing, 473-477

serialization, 472-473

Json.NET objects, 476

JSON serialization, 399-400, 472-473

K
keyboards

input patterns, 12-15

XAML, 100-104

keyframe animations, 89

keywords

async, 466

await, 392, 466

L
LabeledMapLocation, 335

Landscape, 235

landscape sections, 111

languages, 255-258

Launch method, 571

launchers, tasks, 331-333

EmailComposeTask, 333

MapsDirectionsTask, 334-335

MapsDownloaderTask, 337

MapsTask, 336

MarketplaceDetailTask, 337

MarketplaceHubTask, 338

MarketplaceReviewTask, 338

MarketplaceSearchTask, 338

MediaPlayerLauncher, 339-341

PhoneCallTask, 341

SaveAppointmentTask, 341-342

SearchTask, 342

ShareLinkTask, 343

ShareStatusTask, 343

SmsComposeTask, 344

WebBrowserTask, 344

LaunchForTest method, 435

launching

apps, 380

custom protocol, 380-384
file association, 384-387

Music and Videos hub, 370-371

layout, Microsoft Expression Blend,

180-185

Quadrant Sizing, 184

layout containers, WrapPanel,

153-155

LayoutRoot, 176

legal usage policies, 23-25

length indicator, 149

583 Index

LicenseInformation, 531

limitations, BTS, 453-454

LinearGradientBrush, 79

LinearVelocity, 243

LineBreak, 82

LINQ, 143

contacts, 321

JSON, 476

list controls, XAML, 107

ListBox, data binding errors, 124

ListenFor, 303

ListPicker control, Windows Phone

Toolkit, 137-139

Lite versions, 530

live tiles, 371-375

Cycle style, 373

Flip style, 372

Iconic style, 372

main live tiles, 375-377

screen resolution, 375

secondary tiles, 377-379

Live Tiles, 2, 18-19

notifications, 519-521

local databases, 401-402

associations, 412-417

getting started, 402-408

optimizing context class, 408-411

performance

recommendations, 411

schema updates, 420-421

security, 422

using existing, 418-419

local folder, 390

LocalizedResources object, 254

localizing phone applications,

252-258

location, 287

accessing information, 289

coordinates, turning into

addresses, 294

emulating information, 295-298

geolocation, 290-292

tracking changes, 292-294
permission, 287-289

location aware apps, 448-452

location services, 17

LocationStatus property, 291

logical client area, 4

LongListSelector control, Windows

Phone Toolkit, 140-144

M
main live tiles, 375-377

mainBrush, 93

ManipulationCompleted, 240

event, 243

ManipulationContainer, 242

ManipulationDelta, 240-241

manipulations, 59, 243

ManipulationStarted, 240

MapsDirectionsTask, 334-335

MapsDownloaderTask, 337

MapsTask, 336

MarketplaceDetailTask, 337

MarketplaceHubTask, 338

 584 Index

MarketplaceReviewTask, 338

MarketplaceSearchTask, 338

markup tags, RichTextBox, 105

MDM (Mobile Device

Management), 564

MediaElement, playing sound, 269

MediaLibrary class, 356-357

MediaPlaybackControls

enumeration, 340

MediaPlayerLauncher, 339-341

memory cards, accessing files, 394

memory consumption, 161

Microphone class, 275

Microsoft Blend Express for

Windows Phone, 28

Microsoft Expression Blend, 169

ApplicationBar, 199-202

artboard, 176-177

Assets panel, 174

behaviors, 196-199

brush editors, 187-188

brushes, 186-191

Common Panel, 173

creating animations, 191-196

creating projects, 170-171

grids, 182

Item Tools section, 178-179

layout, 180-185

Quadrant Sizing, 184
Objects and Timeline panel, 174

orientation, 236

overview, 171-179

Panorama control, 203-205

Pivot control, 206-208

Projects panel, 173

Properties panel, 179

storyboards, 192

toolbar, 172

Microsoft.Phone.Shell, 245

Microsoft Push Notification Service

(MPNS), 498

Microsoft Visual Studio 2012

Express for Windows Phone, 28

Millennial, 551

MMC (Microsoft Management

Console), exporting

certificates, 559

Mobile Device Management

(MDM), 564

modifying applications for

Windows Phone Store, 548

monikers, 393-394

monitoring requests, BTS, 456-460

motion, 262-265

emulating, 266-267

creating recorded data, 268
mouse events, 237

MouseDragElementBehavior, 197

MovementThreshold, 293

MPNS (Microsoft Push Notification

Service), 498

ms-appx:/// moniker, 393

multitasking, background agents,

426-428

audio agents, 439-448

periodic agents, 428-435

resource-intensive agents, 436-439

scheduled task limitations, 428

585 Index

music

accessing, 355-358

playing, 359-360

Music and Videos hub, 355

integrating, 367-368

debugging, 368
History section, 369-370
launching, 370-371
New section, 370
Now Playing section, 368-369

music, accessing, 355-358

music, playing, 359-360

music library, 356

N
names, changing names (XAML

files), 220

namespaces, XAML, 70-71

naming in XAML, 71-72

Navigate(), 224

NavigateToPageAction, 197

NavigatingCancelEventArgs, 227

navigation

application lifecycle, 220-226

circular navigation, 224

NavigationContext class, 225

Navigation Framework, 233

NavigationMode, 226, 305

NavigationService class, 221, 224

NavigationService property, 221

Near Field Communications

(NFC), 3

network information, accessing,

467-470

network stack, 464

accessing network information,

467-470

WebClient class, 464-467

NetworkAvailabilityChanged

event, 468

NetworkInterfaceInfo class, 470

New section, Music and Video

hub, 370

NFC (Near Field

Communications), 3

Notification Service, 17, 19

notifications

accessing, 329-330

stacked notifications, 326

NotifyComplete method, 430

Now Playing section, Music and

Videos hub, 368-369

O
object properties, XAML, 69-70

Objects and Timeline pane,

Blend, 41

Objects and Timeline panel,

Microsoft Expression Blend, 174

OData (Open Data Protocol), 482

data, retrieving, 493-495

endpoints, 483

generating service references, 492

how it works, 483-484

HTTP verb mappings, 483

 586 Index

query options, 486

$expand, 490-491
$filter, 487-489
$orderby, 487
$select, 491-492
$skip, 487
$stop, 487

transactions, 497

updating data, 496-497

URI, 484-485

using on the phone, 492

OnCaptureStarted, 282

OnCaptureStopped, 282

OnFormatChange, 282

OnNavigatedTo method, 225

OnNavigateFrom method, 226

OnSample, 283

OnUserAction, 443

Open Data Protocol. See OData, 482

OpenForReadAsync, 395

operators, $filter, 488

optimizing context class, local
databases, 408-411

$orderby, 487

orientation

Microsoft Expression Blend, 236

phone experience, 233-236

P
panorama application, 5-6, 160

Panorama control, 108-112

Microsoft Expression Blend,

203-205

Panorama element, 109

panorama pages, 164-166

versus pivot, 168

PanoramaItem, 109, 205

parsing JSON, 473-477

passwords, database security, 422

Path, 78-79

PathGeometry, 78

Pause, 443

payment, charging for apps,

531-532

PaymentInstrument class, 346

PaymentInstrumentKinds

enumeration, 347

performance recommendations,

local databases, 411

PerformanceProgressBar control,

Windows Phone Toolkit, 144-145

periodic agents, 428-435

timing, 433

periodic tasks, 434

PeriodicTask, 433

permission, location, 287-289

Permission property, 288

Personal Information Exchange

file, 560

.pfx files, 560

pfxfilename, 566

phone applications, localizing,

252-258

PhoneApplicationFrame class, 221

PhoneApplicationPage class, 235

PhoneApplicationService class,

229-231, 449

587 Index

PhoneCallTask, 341

phone experience, 233

application bar, 247-249

application client area, 245-246

designing for touch, 237-245

idle detection, 249-250

orientation, 233-236

tilt effect, 250-251

phone-specific design, 199

ApplicationBar, Microsoft

Expression Blend, 199-202

Panorama control, Microsoft

Expression Blend, 203-205

Pivot control (Microsoft

Expression Blend), 206-208

phone specifications, 7-10

phone styling, 91

PhoneNumberChooserTask, 350

phones, registering (enterprise

apps), 564-565

PhoneTextBox control, Windows

Phone Toolkit, 147-149

PhotoCamera class, 276-280

PhotoChooserTask, 350-351

PhraseList, 302

Picture hub

integrating, 364-366

pictures

accessing, 360-362
storing, 363-364

pictures

accessing, 360-362

contacts, 322

storing, 363-364

Pictures class, 361

Pictures hub, 355

pivot, 166-168

versus panorama pages, 168

Pivot control, 112-113

Microsoft Expression Blend,

206-208

PivotItem, 114

playback, adjusting sound, 271-272

PlayCurrentTrack, 444, 446

playing

music, 359-360

sound with MediaElement, 262,

265, 268-280, 287-292, 295, 302,

305-308, 314-315

with XNA, 270-271
PlaySoundAction, 197

PlayState, 446-447

Portrait, 235

PortraitOrLandscape, 235

PositionStatus, 294

power button, 10

preparing

applications for push notifications,

499-501

apps for distribution, 566-567

machines to write apps, 27-29

preparing applications for

Windows Phone Store, 533-538

previewing applications, 209

 588 Index

project types, Microsoft Expression

Blend, 170

projects

code, adding, 48-50

creating new, 29

Visual Studio, 29-33
XAML, 34-38

events, 51-52

Projects panel, Microsoft Expression

Blend, 173

Projects tab, Blend, 41

properties

App.IsRunningInBackground

property, 452

ColumnDefinitions, 74

Data, 78

Description, 433

EasingFunction property, 90

LocationStatus, 291

object properties, XAML, 69-70

permission, 288

ReportInterval, 293

Request, 456

RowDefinitions, 74

Properties panel, Microsoft

Expression Blend, 179

Properties tab, Expression Blend, 41

PropertyChanged event, 409

PropertyChanging event, 409

protocols, registering, 381

Proximity, 313

ProximityDevice, 314

pubCenter, 551

push notifications, 497-498

authenticating, 504

debugging, 515

errors, 522-523

header status codes, 509-514

Live Tiles notifications, 519-521

preparing applications for, 499-501

raw notifications, 504-515

requirements, 499

response codes, 509-514

response headers, 509

setting up servers for, 501-504

toast notifications, sending,

516-518

Q
Quadrant Sizing, Microsoft

Expression Blend, 184

query options, OData, 486

$expand, 490-491

$filter, 487-489

$orderby, 487

$select, 491-492

$skip, 487

$stop, 487

R
RadialGradientBrush, 80

RaisePropertyChanged

method, 410

RaisePropertyChanging

method, 410

raw hardware access, camera,

281-283

589 Index

raw notifications

push notifications, 504-515

sending, 505

RecognizeAsync method, 310

RecognizeWithUIAsync, 307

recorded data, emulating

motion, 268

recording sound, 272-275

references, adding to Scheduled

Task Agent project, 432

RefreshBindings, 457-459

registering

phones, enterprise apps, 564-565

protocols, 381

your company, enterprise apps,

554-556

reminders, 325-326

creating, 328-329

RemoveElementAction, 197

RenderTransform, animations, 195

ReportInterval property, 293

requesting transfers, BTS, 454-456

requests, monitoring (BTS), 456-460

Requests property, 456

requirements

BTS, 453-454

push notifications, 499

for Windows Phone Developer

Tools, 28

resource brush editor, Microsoft

Expression Blend, 188

resource dictionaries, 93

resource-intensive agents, 436-439

ResourceIntensiveTask, 438

resources

accessing, 253

XAML, 91-93

response codes, push notifications,

509-514

response headers, push

notifications, 509

retrieving data, OData, 493-495

RichTextBox, 104-105

markup tags, 105

Silverlight, 105

Rodriguez, Jaime, 236

RootFrame, 218

RowDefinition, 73-74

rows, creating, 75-76

S
SaveAppointmentTask, 341-342

SaveContactTask, 352

SaveEmailAddressTask, 353

SavePhoneNumberTask, 353-354

SaveRingtoneTask, 354-355

saving tombstone state, 231

ScaleTransform, 241-242

ScheduledAction, 328

ScheduledActionService, 328, 441

ScheduledAgent class, 430

Scheduled Task Agent project, 429

adding references, 432

scheduled task limitations,

background agents, 428

schema updates, local databases,

420-421

screen resolution, live tiles, 375

 590 Index

scrolling, improving scrolling

performance, 118-120

ScrollViewer, visual containers, 73

Search button, 10

SearchAsync, 318

appointments, 323

SearchTask, 62-63, 342

secondary tiles, 377-379

security, local databases, 422

$select, 491-492

sending

raw notifications, 505

toast notifications, 516-518

sensors, input patterns, 15

serializable objects, 231

serialization, 395

format, 68

isolated storage settings, 400-401

JSON serialization, 399-400

XML serialization, 395-398

servers, setting up for push

notifications, 501-504

service references, 480

adding, 478-479

generating for OData, 492

services, 17

creating your own, 482

SetDataStoreValueAction, 197

SetVoice, 312

Shape element, 77

shapes, XAML, 77-79

SharedStorageAccessManager

class, 387

ShareLinkTask, 343

ShareStatusTask, 343

ShellTile, 376

ShellTile.Create, 378

ShellToast class, 436

ShowCamera property, 351

ShutterKeyHalfPressed, 279

ShutterKeyPressed, 279

ShutterKeyReleased, 279

Silverlight

controls, 99

RichTextBox, 105

simple controls, XAML, 100

keyboards, 100-104

RichTextBox, 104-105

simple data binding, 115-117

simple pages, application

paradigms, 169

sinks, 281-283

SIP (software input panel), 100-102

sizing text, Blend, 46

$skip, 487

Slider, 121

Smaato, 551

SmsComposeTask, 344

SOCKS proxies, 514

software input panel (SIP), 100-102

SolidColorBrush, 69, 79

solid color brushes, Microsoft

Expression Blend, 187

sound, 268

adjusting playback, 271-272

playing

with MediaElement, 262, 265,
268-280, 287-292, 295, 302,
305-308, 314-315

with XNA, 270-271

591 Index

recording, 272-275

XNA libraries, 270

SoundEffect class, 271

SpeakTextAsync, 311

specifications, hardware

specifications, 8

Speech Recognition, 306-310

speech synthesis, 310-315

SpeechRecognizer, 309

SpeechRecognizerUI class, 306

SpeechSynthesizer class, 310-311

SQL Server Compact Edition, 402

stacked notifications, 326

StackPanel, 154

visual containers, 73

StandardTileData, 377

Start button, 10

static classes, data binding, 253

StaticResource markup

extension, 92

status messages after submitting

applications to Store, 546

StatusChanged, 293

$stop, 487

storage, 390-395

local folder, 390-391

serialization, 395

isloated storage settings, 400-401
JSON serialization, 399-400
XML serialization, 395-398

Store (Windows Phone Store), 19,

525-527

App Hub, submissions, 20-22

application policies, 22

basic policies, 22-23
legal usage policies, 23-25

applications

after the submission, 545-548
failed submissions, 548-551
modifying, 548

charging for apps, 529-531

tax information for developers in
U.S., 532

tax information for developers
outside U.S., 532-533

content policies, 25

Dev Center, 527-528

distributing apps through, 20

how it works, 527-529

submission process, 538-545

submitting apps, 533

preparing applications, 533-538
Store Test Kit, 536

Store Tile, creating, 534

storing

data, 389-390

pictures, 363-364

Storyboard, 87-88

storyboards, Microsoft Expression

Blend, 192

Stream, 323

Stretch attribute, 83

StringFormat property, 120

Style object, 93

styles

implicit styles, 96

XAML, 93-95

implicit styles, 95-96
styling

phone styling, 91

XAML, 90

 592 Index

submission process, Windows

Phone Store, 538-545

submissions, App Hub, 20-22

submitting apps

Windows Phone Store, 533

preparing applications, 533-538
SubscribeForMessage, 315

SupportedOrientations, 235

suspended state, 228

symantec code signing certificates,

buying enterprise apps, 556-558

Symantec Id, 555

system resources

best practices, 215

implementing the look and feel of

the phone, 212-215

SystemTray, 246

system tray area, 4

T
Tap event, 51

tapping, 237

TargetType, 95-96

tasks, 61-62, 330

calling, 64-65

choosers, 332, 344-345

AddressChooserTask, 348
AddWalletItemTask, 346-348
CameraCapturesTask, 348-349
EmailAddressChooserTask,

349-350
PhoneNumberChooserTask, 350
PhotoChooserTask, 350-351
SaveContactTask, 352
SaveEmailAddressTask, 353

SavePhoneNumberTask, 353-354
SaveRingtoneTask, 354-355

launchers, 331-333

EmailComposeTask, 333
MapsDirectionsTask, 334-335
MapsDownloaderTask, 337
MapsTask, 336
MarketplaceDetailTask, 337
MarketplaceHubTask, 338
MarketplaceReviewTask, 338
MarketplaceSearchTask, 338
MediaPlayerLauncher, 339-341
PhoneCallTask, 341
SaveAppointmentTask, 341-342
SearchTask, 342
ShareLinkTask, 343
ShareStatusTask, 343
SmsComposeTask, 344
WebBrowserTask, 344

SearchTask, 62-63

Tasks element, 431

tax information

for developers in the U.S., 532

for developers outside the U.S.,

532-533

template parts, 127

templates, control templates (data

bindings), 125-129

text

Blend

adding, 46
changing, 42
sizing, 46

XAML, 81-82

TextBlock, 74, 81

593 Index

third screen, 157-160

developing strategies for

phones, 160

tilt, 263

tilt effect, 250-251

timeline animations, 89

TimePicker control, Windows

Phone Toolkit, 135-137

timing, periodic agents, 433

toast notifications, sending, 516-518

ToggleSwitch control, Windows

Phone Toolkit, 145-146

tombstone state, saving, 231

tombstoning, 16

application lifecycle, 227-233

toolbar, Microsoft Expression

Blend, 172

touch

code, adding, 58-60

designing for, 237-245

input buttons, 11-12
Touch class, 238

touch events, UIElement, 244

Touch.FrameReported event, 240

TouchFrameEventArgs class, 239

touch gestures, 11

inertia, 243

touch interactions, 12

touch screen, 10

TouchPoint objects, 239-240

TrackEnded, 446

tracking changes, geolocation,

292-294

TrackReady, 446

transactions, OData, 497

TransferError, 460

TransferPreferences, 455

TransferProgressChanged, 458

transfers, requesting (BTS), 454-456

TransferStatus, 459

transformations, XAML, 84-87

TranslateTransform, 59, 241-242

trial mode, 531

U
UIElement, touch events, 244

Universal Volume Control

(UVC), 439

updating data, OData, 496-497

URI

listening for launching, 381

OData, 484-485

UriMapper, 383

UriMapperBase derived class, 386

UserIdleDetectionMode, 249

UserPreferences class, 397

using statements, adding to data

services, 494

UVC (Universal Volume

Control), 439

UX Design Language, 7

V
VibrateController, 262

vibration, 261-262

visual cues, 261

VideoBrush, 80

VideoSink, 282

 594 Index

visual containers

Canvas, 73

XAML, 72-77

Border, 73
Canvas, 73
Grid, 73
ScrollViewer, 73
StackPanel, 73

visual cues, vibration, 261

visual grammar, XAML, 77

Visual State Manager, 128

Visual Studio, 29

designing with, 210-212

projects, creating new, 29-33

VisualStateManager.

VisualStateGroups property, 128

VisualState objects, 129

voice commands, 299-306

voiceCommandName, 305

VoiceCommandService class, 303

VOIP API, 316

volume control, 32

W
WCF, 502

web services, 477-482

adding service references, 478-479

calling, 481

service references, 480

WebBrowser control, 127

WebBrowserTask, 344

WebClient class, network stack,

464-467

Windows Phone, overview, 1-7

Windows Phone 7.0/7.5

developers, 391

Windows Phone Developer

Tools, 27

requirements, 28

Windows Phone emulator, 29

Windows Phone SDK, 27-28

Windows Phone Store, 19, 525-527

App Hub, submissions, 20-22

application policies, 22

basic policies, 22-23
legal usage policies, 23-25

applications

after the submission, 545-548
failed submissions, 548-551
modifying, 548

charging for apps, 529-531

tax information for developers in
U.S., 532

tax information for developers
outside U.S., 532-533

content policies, 25

Dev Center, 527-528

distributing apps through, 20

how it works, 527-529

submission process, 538-545

submitting apps, 533

preparing applications, 533-538
Windows Phone Toolkit, 130-131

AutoCompleteBox control,

131-133

ContextMenu control, 133-135

CustomMessageBox, 149-153

DatePicker control, 135-137

ExpanderView control, 146-147

ListPicker control, 137-139

LongListSelector control, 140-144

PerformanceProgressBar control,

144-145

595 Index

PhoneTextBox control, 147-149

TimePicker control, 135-137

ToggleSwitch control, 145-146

WrapPanel, 153-155

WMAppManifest.xml, 219, 285

extensions, 365

location aware apps, 448

WrapPanel, Windows Phone

Toolkit, 153-155

X-Y
X-DeviceConnectionStatus, 509

X-NotificationStatus, 509

X-SubscriptionStatus, 509

XAML (eXtensible Application

Markup Language), 67-68

animations, 84, 87-90

brushes, 79-80

changing names of files, 220

code, adding, 48-49

colors, 80

content controls, 106-107

controls, 97-99

defined, 67-68

images, 82-84

list controls, 107

namespaces, 70-71

naming, 71-72

object properties, 69-70

projects, creating new, 34-38

resources, 91-93

shapes, 77-79

simple controls, 100, 104

keyboards, 100-104
RichTExtBox, 104-105

styles, 93-95

implicit styles, 95-96
styling, 90

text, 81-82

transformations, 84-87

visual containers, 72-77

visual grammar, 77

WebBrowser control, 127

.xap file, 543

xapfilename, 566

Xbox apps, 368

Xbox Live, 17

XML files, 68

XML serialization, 395-398

xmlns, 70

XmlReader, 398

XmlSerializer class, 399

XNA, playing sound, 270-271

XNA libraries, 270

Z
Zune, pivot, 166

	Contents
	2 Writing Your First Phone Application
	Preparing Your Machine
	Creating a New Project
	Visual Studio
	XAML

	Designing with Blend
	Adding Code
	Working with Events
	Debugging in the Emulator
	Debugging with a Device
	Using Touch

	Working with the Phone
	Where Are We?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

