THE TECHNICAL AND SOCIAL HISTORY OF SOFTWARE ENGINEERING
The Technical and Social History of Software Engineering
This page intentionally left blank
Contents

Foreword by Walker Royce .. vii
Foreword by Tony Salvaggio ... ix
Preface ... xix
Acknowledgments ... xxvii
About the Author ... xxix

Chapter 1: Prelude: Computing from Ancient Times to the Modern Era ... 1
 The Human Need to Compute ... 1
 Early Sequence of Numerical Knowledge 3
 Inventions for Improved Mathematics 8
 Mathematics and Calculating .. 10
 Recording Information .. 14
 Communicating Information .. 15
 Storing Information ... 17
 Enabling Computers and Software 18
 Key Inventions Relevant to Software 21
 Alphabetic Languages .. 21
 Binary and Decimal Numbers and Zero 21
 Digital Computers .. 22
 Higher-Level Programming Languages 22
 Random-Access Storage ... 23
 The Impact of Software on People and Society 23
 Beneficial Tools and Applications 23
 Harmful Inventions ... 32
 Weighing the Risks ... 34
 Summary .. 35

 The First Innovators of Modern Computing 37
 Small Mathematical Applications 40
 Summary .. 42
Chapter 3: 1940 to 1949: Computing During World War II and the Postwar Era

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Conflict and Computing</td>
<td>43</td>
</tr>
<tr>
<td>Wartime Innovations</td>
<td>45</td>
</tr>
<tr>
<td>Analog Computers During World War II</td>
<td>46</td>
</tr>
<tr>
<td>Computers in Germany During World War II</td>
<td>47</td>
</tr>
<tr>
<td>Computers in Japan During World War II</td>
<td>50</td>
</tr>
<tr>
<td>Computers in Poland During World War II</td>
<td>51</td>
</tr>
<tr>
<td>Computers in France During World War II</td>
<td>52</td>
</tr>
<tr>
<td>Computers in Australia During World War II</td>
<td>52</td>
</tr>
<tr>
<td>Computers in Russia During World War II</td>
<td>53</td>
</tr>
<tr>
<td>Computers in Great Britain During World War II</td>
<td>54</td>
</tr>
<tr>
<td>Computers in the United States During World War II</td>
<td>59</td>
</tr>
<tr>
<td>The Postwar Era</td>
<td>68</td>
</tr>
<tr>
<td>The Cold War Begins</td>
<td>69</td>
</tr>
<tr>
<td>Postwar Computer Development</td>
<td>69</td>
</tr>
<tr>
<td>Historical Contributions of the Decade</td>
<td>73</td>
</tr>
<tr>
<td>Building Software in 1945</td>
<td>75</td>
</tr>
<tr>
<td>Summary</td>
<td>76</td>
</tr>
</tbody>
</table>

Chapter 4: 1950 to 1959: Starting the Ascent of Digital Computers and Software

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military and Defense Computers in the 1950s</td>
<td>77</td>
</tr>
<tr>
<td>SAGE</td>
<td>78</td>
</tr>
<tr>
<td>BOMARC</td>
<td>80</td>
</tr>
<tr>
<td>Innovators of the 1950s</td>
<td>81</td>
</tr>
<tr>
<td>Programming Languages of the 1950s</td>
<td>84</td>
</tr>
<tr>
<td>The First Commercial Computers</td>
<td>85</td>
</tr>
<tr>
<td>LEO</td>
<td>85</td>
</tr>
<tr>
<td>IBM</td>
<td>86</td>
</tr>
<tr>
<td>Other Computer Business Implementations</td>
<td>88</td>
</tr>
<tr>
<td>Software Applications in the 1950s</td>
<td>89</td>
</tr>
<tr>
<td>Function Points in 1955</td>
<td>90</td>
</tr>
<tr>
<td>Summary</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Evolving Workforce</td>
<td>93</td>
</tr>
</tbody>
</table>
Contents

Early Specialized Outsourcing ... 95
Computer Programmers in the 1960s 96
 Becoming a Programmer ... 96
 A High Demand for Programmers 100
 Emergence of the Software Engineer 103
IBM System/360 .. 104
The Turing Award .. 106
The Invention of the Credit Card 109
Automation and New Professions 110
The DEC PDP-1 ... 111
Programming Languages of the 1960s 112
The Computer Business of the 1960s 115
Litigation Changes the Computer World Forever 118
Computers and Software in Space 119
Computer and Software Growth in the 1960s 120
Function Points Backfired for 1965 122
Summary ... 123

Chapter 6: 1970 to 1979: Computers and Software Begin

Creating Wealth .. 125
Software Evolution in the 1970s 125
 Trends in Software .. 126
 Political Failures ... 127
 Rapid Rise of Computer Companies 128
Major Companies Formed During the 1970s 129
 FedEx .. 129
 NASDAQ .. 129
 Southwest Airlines .. 130
Computer and Software Companies Formed During the 1970s 130
 Altair Computers ... 131
 Apple Computer .. 132
 Baan ... 132
 Computer Associates (CA) .. 132
 Cray Computers .. 134
 Cullinane ... 134
 Digital Research .. 135
 Galorath Incorporated .. 136
<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSAI Computers</td>
<td>137</td>
</tr>
<tr>
<td>InterSystems Corporation</td>
<td>137</td>
</tr>
<tr>
<td>Lawson Software</td>
<td>138</td>
</tr>
<tr>
<td>Microsoft</td>
<td>138</td>
</tr>
<tr>
<td>Oracle</td>
<td>139</td>
</tr>
<tr>
<td>Price Systems</td>
<td>140</td>
</tr>
<tr>
<td>Prime Computers (Prime)</td>
<td>141</td>
</tr>
<tr>
<td>Systems Applications Programs (SAP)</td>
<td>141</td>
</tr>
<tr>
<td>Tandem Computers</td>
<td>142</td>
</tr>
<tr>
<td>Yourdon, Inc.</td>
<td>144</td>
</tr>
</tbody>
</table>

The Impact of Companies Founded During the 1970s 145

The Troublesome Growth of Software Applications 146

Numerous Fragmented Software Subcategories 147

- Advanced and Experimental Software 147
- Business Software 147
- Communications Software 148
- Cybercrime and Hacking Software 148
- Database Software 149
- Education Software 149
- Embedded Software 150
- Gaming and Entertainment Software 151
- Manufacturing Software 151
- Middleware Software 152
- Military Software 152
- Open-Source Software 153
- Personal Software 154
- Programming Tool Software 155
- Project Management Software 155
- Scientific and Mathematical Software 155
- Security and Protective Software 156
- Social Network Software 156
- Survey Tools Software 157
- Utility Software 157

A Lawsuit That Changed Computer History 158

Background Enabling Inventions 159

Function Points in 1975 162

Summary 163

Rapid Changes in Computing ... 166
Companies Formed During the 1980s. 168
 Accenture ... 171
 Adobe ... 172
 America Online (AOL) ... 173
 Avira ... 174
 BlackBerry (Research in Motion, or RIM) 174
 Borland ... 175
 Computer Aid, Inc. (CAI) ... 177
 Cisco Systems .. 178
 Digital Consulting Institute (DCI) 179
 Huawei ... 180
 Intuit ... 183
 KPMG ... 184
 Lotus ... 186
 NeXT ... 187
 PeopleSoft .. 188
 Rational .. 189
 SEI ... 192
 Software Productivity Research (SPR) 194
 Stepstone Corporation .. 197
 Symantec ... 198
 TechSoup Global .. 200
 Wolfram Research ... 202
The Growth of Software During the 1980s. 204
Results for 1,000 Function Points Circa 1985 204
Summary ... 205

Emergence of the World Wide Web 208
Other Innovations of the 1990s .. 210
Companies Formed During the 1990s. 212
 Akamai ... 214
 Amazon ... 214
Contents

Freelanthropy .. 265
Global Insight .. 266
HIVE Group .. 267
Intellectual Ventures 268
Internet Marketing Association (IMA) 270
Meeting Zone .. 270
Moody’s Analytics ... 271
Mozilla Foundation ... 272
Open Source Development Labs (OSDL) 274
PerfectMatch ... 275
RPX Corporation .. 276
SolveIT Software ... 277
Twitter .. 278
YouTube .. 279
Zillow ... 281
Growth of Software from 2000 to 2010 283
Results for 1,000 Function Points Circa 2005 284
Summary .. 285

Chapter 10: 2010 to 2019: Clouds, Crowds, Blogs, Big Data, and Predictive Analytics .. 287
Predicting the Future .. 288
Professional Status for Software Engineering 289
Possible Software Engineering Improvements in the 2010s .. 293
Companies Formed During the Early 2010s 296
AngelPad ... 298
Authr ... 299
CloudVelocity .. 299
CrowdCube .. 300
Fiverr ... 301
Flattr ... 302
Geekli.St ... 303
GoFundMe ... 304
Namcook Analytics LLC 304
Nest Labs ... 308
Contents

Peer Index .. 309
Unified Inbox .. 310
Yesware .. 310
Predicting New Companies and Products from
2013 to 2019 ... 311
Big Data .. 312
Crowd Intelligence and Crowdfunding 312
Cybercrime and Cybersecurity 313
Education ... 314
Intelligent Agents 321
Medical Devices ... 322
Predictive Analytics 323
Wearable Computers 325
Projected Growth of Software from 2010 to 2019 327
Results for 1,000 Function Points Circa 2015 328
Summary .. 329

Chapter 11: Modern Software Problems 331
Analysis of Major Software Failures 331
 1962: Failure of the Mariner 1 Navigation Software . . 333
 1978: Hartford Coliseum Collapse 333
 1983: Soviet Early Warning System 334
 1986: Therac 25 Radiation Poisoning 334
 1987: Wall Street Crash 335
 1990: AT&T Telephone Lines Shutdown 336
 1991: Patriot Missile Target Error 336
 1993: Intel Pentium Chip Division Problem 337
 1993: Denver Airport Delays 337
 1996: Ariane 5 Rocket Explosion 338
 1998: Mars Climate Orbiter Crash 339
 1999: Failure of the British Passport System 339
 2000: The Y2K Problem 340
 2004: Shutdown of Los Angeles Airport (LAX) Air-Traffic Controls 341
 2005: Failure to Complete the FBI Trilogy Project . . 342
 2005: Secret Sony Copy Protection Software 343
Chapter 12: A Brief History of Cybercrime and Cyberwarfare

A New Form of Crime

Preparing Defenses

Increasing Seriousness of Cyberattacks

A Growing Number of Victims

Types of Cyberattacks

Bluetooth Hijacking

Botnets

Browser Hijacking

Computer Voting Fraud

Cyberwarfare Against Civilian Targets

Data Theft from Corporations

Data Theft from Unsecured Networks

Denial of Service Attacks

Electromagnetic Pulses (EMPs)

Email Address Harvesting

Identity Thefts

Java Vulnerability Attacks

Keyboard Trackers

Macro Attacks in Word and Excel Documents

Pharming

Phishing

Rootkits

Skimming

Smart Card Hijacking

Spam

SQL Injections

Trojans
Viruses ... 389
Worms ... 390
Zero-Day Security Attacks 391
The Odds of Being Attacked 392
Improving Defenses Against Cyberattacks 394
Raising Our Immunity to Cyberattacks 396
Access Controls .. 399
Authentication Controls 400
EMP Protection .. 401
Encryption .. 401
Estimating Cyberattack Recovery Costs 402
Insurance Against Cybertheft and Cyberattack Damages . 403
Secure Programming Languages 404
The Increasing Frequency and Costs of Cyberattacks in the United States 404
Summary .. 406

Appendix A: Annotated Bibliography and References 407

Index ... 423
Foreword by Walker Royce

Over the last several decades, the software industry has advanced at a breakneck pace. Few of us have stopped to reflect on all the foundations, breakthroughs, and know-how that have made software the world’s most dominant product.

Our world now depends on software. It is everywhere, in almost every man-made thing, and used by almost everybody. All that invisible stuff in our phones, cars, gadgets, banks, and hospitals was once considered to be magical. Now it is taken for granted as just another necessary part, service, or feature. Don’t you wonder how it all evolved? And where it came from? And why it was built? If you are curious about the evolution of all this magical technology, this book provides an authoritative chronology of software’s evolution. Moreover, if your profession depends on software—and there are very few that don’t—you will find this book to be a valuable and educational history lesson. It is loaded with quantified benchmarks of performance that you won’t find anywhere else in the literature.

As a young engineer, I was introduced to Capers Jones through his books and papers on software measurement. He was one of the go-to thought leaders on software economics, and he was bold enough to publish facts and figures that helped quantify the challenges and opportunities. He has written more than a dozen books since then. When I wrote my first book in the 1990s, Capers was one of my top choices for peer review. To some degree back then, we were competitors, and his review of my manuscript was . . . well . . . let’s just say that it was brutal. However, his review was, by far, the most valuable, insightful, and constructive. He knows how to write. His strong convictions are credible because he compiles extensive data and statistics on software quality and productivity across diverse industries. The big lesson he taught me was this: In the software world dominated by uncertainty, the person with the best data will be the most persuasive. His critique was effective for steering me in a better direction, and we have maintained a great professional relationship ever since by frequently exchanging ideas, presentations, and provocative positions.

The measurements and forecasts of progress, quality, and business trends in most software organizations sound like the sleight-of-hand statistics quoted by politicians rather than the matter-of-fact measurements expressed by engineers.
and scientists. Is this statement too harsh? No. Politicians have a well-deserved reputation and a track record similar to the software industry for under-delivering on committed forecasts and productivity improvements. The software marketplace is full of cynical customers because their experience with software productivity improvement—internally from their own people as well as externally from vendors—is plagued by hyperbole and spin. Software delivery endeavors have a high degree of uncertainty and complexity.

Reducing uncertainty through better measurement can increase trust among consumers, suppliers, and developers. Through his decades of work on measurement, Capers Jones has contributed immensely to the trust we put in today’s software industry. Capers is a great writer and an authority on software history. He was a firsthand participant in the evolution of software from its infancy. This book synthesizes his research, knowledge, and quantified insights into a history lesson that every software professional will find useful and every software user will find enlightening. His writing is fluid, engaging, and crisp. Enjoy this measured story of software advances and learn from it.

—Walker Royce
Chief Software Economist, IBM
When we founded Computer Aid, Inc., (CAI) in the early 1980s, we stated that our business mission would be to strive toward thought leadership in the areas of software engineering, software development productivity, and application support productivity. The founders of CAI had a strong belief that doing things the right way, repeatedly, would unlock tremendous business value for our future clients. Although our startup team had deep experience in software engineering, as well as large-project design and development, we knew that such experience alone would not be sufficient to qualify us as “thought leaders.”

There is a great quote from Isaac Newton about how scientists “stand on the shoulders of giants.” Newton meant that all scientific discovery and progress—in particular, his own historic breakthroughs—were built upon the hard work and insight of previous individuals. At CAI, our team members and associates have all stood solidly on the shoulders of Capers Jones. Over the course of CAI’s 30-year history, Capers has been the most learned, most knowledgeable, and most prolific discoverer in the software engineering industry, perhaps even in the entire history of computing. He has written more than eighteen books across the entire spectrum of IT management, and each one has unlocked and revealed new insights, both for engineers and managers. I have personally given countless executive-level presentations on productivity and process improvement while waving a copy of Capers’s original thick “yellow book” in one hand.

Capers has accumulated, without doubt, the most comprehensive data on every aspect of software engineering, and he has performed the most scientific analysis on this data. To say that he has forgotten more than the average top software professional ever learns would be an understatement. In his new book, Capers performs yet another invaluable service to our industry, and for each current and future IT professional, by documenting, for the first time, the long and fascinating history of information technology.

This profession, which was unheard of in the 1960s and ’70s, has evolved through so many dramatic changes in the course of my lifetime. I have seen the software industry lead the business reengineering revolution and watched how this, in turn, has revolutionized life on our planet for billions of people. History will repeat itself, whether we study it or not, and in this sense, Capers’s new
book is a must-read for every software engineering student and IT professional. In spite of our revolutionary successes, there has been a consistent record within the IT industry of not diligently putting to work the lessons of the past, the lessons first documented so well in Capers’s original “yellow book.”

Over these past three decades, Capers has become a treasured friend of mine who often starts my day with early morning emails in which we discuss quality management, removing early defects, and avoiding project failures. His words ring in my ear with their clarity and insight and for thirty years have helped me guide our business here at CAI. I highly recommend Capers’s new book, as well as many of his earlier works. The messages are timeless in their value.

—Tony Salvaggio

CEO and President, Computer Aid, Inc. (CAI)
Preface

I was born prior to World War II and therefore just before the dawn of the computer era. From growing up, I have personal recollections of the announcement of the transistor being invented and of reading about integrated circuits. I also remember the arrival of television and later of color television.

When I attended the University of Florida, there were no on-campus computers, no computer science programs, and no software engineering programs. In fact, engineering students still used slide rules, and there was an active debate about whether new electronic calculators could be used for exams.

There were no personal computers, no personal music players, no social networks other than fraternities and sororities, and certainly no smartphones. There were no embedded software applications and no embedded medical devices such as cochlear implants; all of these things would come later.

Older readers have lived through the entire history of the computing and software industries from the very beginning. So many inventions have occurred so rapidly, and so many companies have sprung up, that they tend to blur together. We are living in remarkable times with technical advances occurring almost every month.

This is the fifteenth book I have written. Although I had been a professional programmer in the 1960s, my first eleven books, which included *Programming Productivity; Assessment and Control of Software Risks; Applied Software Measurement*; and *Estimating Software Costs*, were all about software management issues. I became interested in management topics while working at IBM when I was commissioned to develop IBM’s first software estimating tool in 1973 with a colleague, Dr. Charles Turk.

My first book was published while I was at IBM. Later, I moved to ITT and then founded my own software company when ITT sold its telecommunications businesses. In general, I have written a book every two years.

As a lifelong reader of *Scientific American*, I like to stay current on scientific topics. (One of the highlights of my publication career was publishing an article about sizing software in *Scientific American* in December 1998. This article featured function point metrics.)

Having sold my first software company in 1998, my wife and I moved to Rhode Island, a state where I had never lived before but where my wife was
born and had many relatives. Soon after we arrived, the history of the state attracted my interest.

The economic history of Rhode Island was almost a microcosm of the U.S. economy, having started with ship building and commerce, then manufacturing, then moving toward services as labor costs drove out manufacturing. In 2006, I published *The History and Future of Narragansett Bay*, which was my first non-software-related book as well as my first history book.

The “future” part of the Rhode Island book dealt with modern problems that are also becoming endemic: rising taxes; unsustainable government pensions; pollution of the Bay and fresh-water aquifers; political corruption; new exotic diseases such as West Nile virus and Lyme disease; the dwindling numbers of professionals such as physicians and dentists; and an ever-expanding bureaucracy that primarily supports special interests rather than the general population. These are national problems as well as state and local problems.

In any case, having written a history of Rhode Island, it seemed useful to consider a history of the software engineering field, but at the time I had other book projects in mind. Two of these other books were *Software Engineering Best Practices* and *The Economics of Software Quality*. I was also busy starting a new software company, Namcook Analytics LLC, with my business partner, Ted Maroney.

The specific event that led to this book was a casual visit to a used book store adjacent to the University of Rhode Island. At the store, I happened to pick up a book with an interesting title: Paul Starr’s book *The Social Transformation of American Medicine*. This book won a Pulitzer Prize in 1984 and is highly recommended for software professionals. It shows the transformation of medicine from a craft with barely adequate training to the top tier of respected professions with perhaps the best training of any profession.

Starr’s book was the inspiration for this book. Software “engineering” is still also a craft and only approaching the status of being a true profession. For example, licensing is just getting started for software; formal specialization and board certifications are still in the future. Malpractice monitoring is in the future. Starr’s book contains a good road map for what software engineering needs to accomplish.

I had always had an interest in medical topics since my first programming job was in the Office of the Surgeon General at the U.S. Public Health Service in Washington, D.C. We were working on software for the National Institutes of Health.

In fact, one of my earlier books from 1994 was titled *Assessment and Control of Software Risks*. This book used the exact structure and format of a medical
textbook titled *Control of Communicable Diseases in Man*. The medical format has worked very well for discussing software problems.

There have been so many inventions and so many companies springing up in the computer and software domains that this new book needed a workable structure. What I decided was to look at software innovations, inventions, and companies decade by decade starting in 1930 and running through 2012 and beyond. Social and professional organizations such as the Institute of Electrical and Electronics Engineers, the Association for Computing Machinery, the Society for Information Management, SHARE, and so on would also be discussed.

The final chapter begins in 2010 and includes projections of potential future progress through 2019. This is reminiscent of the “future” chapter of my Rhode Island history, which also projected ten years from the completion of the book.

However, starting in 1930 was a bit too abrupt. Therefore, I decided to add a prelude chapter that would summarize the human drive toward faster computation from ancient times though the modern era. The overall structure of the book includes 12 chapters:

- Chapter 1 is a prelude on computing from ancient times to the current era. It deals with several interlinked topics, including the evolution of mathematics; the drive to speed up mathematical calculations using mechanical devices; methods for communicating mathematical results from person to person; and methods for storing or archiving mathematical results for historical purposes, including famous libraries from the ancient world.

- Chapter 2 deals with the 1930s and discusses the foundations of digital computing and software. The seminal works of Alan Turing, Konrad Zuse, and other pioneers are covered. The Great Depression was in force during this decade, and many companies failed. IBM came close to failing, but the arrival of social security in 1935 revived IBM earnings and led toward future growth for forty-five years in a row. Without social security, IBM might not have survived the decade, and computer and software history would be very different than it is today.

- Chapter 3 deals with the 1940s. This chapter covers computers and software among the belligerent countries during World War II and also the postwar era. The famous British code-breaking devices at Bletchley Park are discussed, as are Konrad Zuse’s computers in Germany. However, during World War II, analog computers were the real workhorses, so
the book also discusses ship-board gun controls, torpedo-aiming computers, bombsights, and other analog computing devices. The end of the chapter deals with the early electronic digital computers and the dawn of programming as we know it today.

- Chapter 4 deals with the 1950s. This decade witnessed computers and software moving from military and scientific purposes to business purposes. Two huge efforts bracketed this decade: The SAGE air-defense system at the beginning of the decade and the SABRE airline reservation system at the end were the two largest systems built up until that time. Many enabling inventions occurred, such as transistors and integrated circuits. High-level programming languages, like COBOL, began to appear.

- Chapter 5 deals with the 1960s. This decade saw computers and software becoming business tools for hundreds of corporations. Physical sizes of computers shrank as transistors and integrated circuits replaced tubes and discrete wiring. This decade also saw IBM growing rapidly due to computers such as the IBM 1401 and later the System 360. Minicomputers and special computers also emerged. Software expanded as operating systems and database applications made computers easier to use. Some universities began offering computer science and software engineering degree programs. Software jobs were exploding in numbers.

- Chapter 6 deals with the 1970s. This decade witnessed the birth of Apple and Microsoft and a push toward commercial packages. Several companies began to use computers to create new business models such as Southwest Airlines and Federal Express, with its unique hub-and-spoke arrangement to optimize shipping logistics. Software engineering became a common academic subject. Programming jobs expanded rapidly. Structured development emerged to control software chaos as applications got larger and harder to manage. Several companies founded in this decade would later grow and create wealth beyond imagination and become global powerhouses: Apple and Microsoft are two. Embedded medical devices, such as cochlear implants, appeared.

- Chapter 7 deals with the 1980s. This decade is clearly dominated by the IBM personal computer and the advent of the DOS and Windows operating systems. Hundreds of specialized software companies sprang up like mushrooms. Programming jobs continued to grow rapidly in numbers. Object-oriented development and object-oriented languages
began to appear. Programming languages expanded from dozens to hundreds for reasons that are hard to understand. Personal computers began to move toward portability, although the first of these weighed more than twenty-five pounds. The Software Engineering Institute (SEI) was founded to assist the military sector in achieving better and more reliable software.

- Chapter 8 deals with the 1990s. The big news during this decade was the development and rapid expansion of the internet and the World Wide Web. Toward the end of this decade, the famous dot-com bubble began to inflate as hundreds of companies tried to market products and services via the web. This bubble burst early within the next decade. Cybercrime began to expand as the internet made remote hacking of data centers fairly easy to accomplish. Outsourcing, in particular international outsourcing, expanded rapidly as companies decided that building their own software programs was not cost-effective.

- Chapter 9 deals with the 2000s. The start of this decade saw the bursting of the dot-com bubble. However, dot-coms that survived, such as Amazon, would grow to become giants. Social networks appeared, as did new search engines and new web browsers. The Agile development method began to expand in popularity, but so did others, such as the team software process (TSP) and the rational unified process (RUP). The number of programming languages topped 2,500 by the end of the decade and continues to grow, with new languages appearing almost every month. All of these programming languages and the aging of software make maintenance very expensive. During this decade, maintenance and support of legacy software applications moved past new software development as the dominant work of the industry. A new subindustry of “patent trolls” appeared, and patent litigation became endemic among computer, software, and telecommunication companies as they each tried to use patents to damage competitors and push ahead.

- Chapter 10 deals with the 2010s, with speculation about possible future inventions. Current trends that will expand include clouds, crowds, big data, and predictive analytics. Some possible future inventions may be wearable computers, virtual education, and significant advances in embedded medical devices. Quantum computing may occur, with another increase in speed and another reduction in physical size. Intelligent agents
will become increasingly powerful in extracting useful information from heterogeneous, big data sources. Cybercrime will certainly increase and cyberwarfare is already happening. The nations of the world now have formal cyberwarfare units, and attacks on industrial, financial, and military sectors are becoming common.

- Chapter 11 deals with topics that are difficult to pin down to a specific decade. This chapter revisits famous software failures and explains what happened and how they might have been avoided. It seemed better to show these in one place than to separate them by decade.

- Chapter 12 outlines the nature and forms of various cybercrime and cyberwarfare issues, which are becoming increasingly severe and increasingly common. Here, too, there are so many kinds of cyberattacks that it was best to put them in one chapter in order to emphasize their magnitude and seriousness.

History books are enjoyable for authors to write. Hopefully, this book will be enjoyable to read. It quickly became obvious while writing it that if the book attempted to include every company and every invention that appeared during this timeframe, it might top 1,000 pages, which no publisher would want and probably no reader would want either.

Therefore, quite a few companies are omitted in the interest of space. When a number of companies occupy a similar niche, only one or two are cited to explain the niche. There is no need, for example, to name fifty static analysis companies, fifty computer game companies, twenty-five webinar tool companies, or twenty-five antivirus companies.

Note
It is an interesting social characteristic of the software industry that as soon as a niche becomes hot, dozens of similar companies and products rush into it. It is sometimes hard for a new invention to get venture funding, but it is much easier for the next dozen companies within the same space.

When stringing together dates and timelines, some of the source information is inconsistent. One source might say a company was founded in 1982, while another might cite 1983 for the same company. Hopefully, this book is generally correct in timelines and dates, but it is easy to be off by a year in either direction.
The purpose of this book is to show the overall sweep of progress and the bubbles of inventions that keep occurring. The software engineering field has been one of the most innovative and exciting fields in human history, and I hope younger readers will enjoy learning about older inventions that might have occurred before they were born. I hope older readers will enjoy reading about the many new inventions such as social networks and (soon) wearable computers.
Acknowledgments

As always, thanks to my wife, Eileen, for her support through fifteen books over a thirty-year period. Thanks also to my business partner, Ted Maroney, for his interest and support of my various patents and inventions.

Thanks to Bernard Goodwin, acquisitions editor at Addison-Wesley Professional, for his support of this book and several of my past books, too. Thanks to the capable editorial and production staff as well.

Many thanks to the reviewers of the drafts of this book and also of my older books, because often the same reviewers have seen more than one. Thanks to Rex Black, Gary Gack, Peter Hill, Leon Kappelman, Alex Pettit, Walker Royce, and Joe Schofield. Some unofficial reviewers, such as Tom DePetrillo, Pontus Johnson, Tony Salvaggio, Paul Strassmann, and Jerry Weinberg, also deserve thanks.

Thanks also to the editors of web journals who have published excerpts from this book and some of my older books: Andrew Binstock of Dr. Dobb's Journal; Greg Hutchins of the Certified Enterprise Risk Management Academy; Ben Linders of InfoQ; and Michael Milutis of the Information Technology Metrics and Productivity Institute.

All of us in the software field owe thanks to the pioneers and inventors who make this field so interesting: Al Albrecht, Barry Boehm, Fred Brooks, Ward Cunningham, Esther Dyson, Bill Gates, Grace Hopper, Watts Humphrey, Steve Jobs, Steve Kan, Mitch Kapor, Ken Olson, Alan Turing, An Wang, Jerry Weinberg, Stephen Wolfram, and hundreds more.

Over the years, I’ve had the good fortune of meeting several senior executives who understood the value of software to the world and to their companies. These executives funded research centers chartered to improve software methods and practices, and I was fortunate to work in some of them.

Among these top corporate executives have been Thomas J. Watson, Jr., of IBM, Harold Geneen and Rand Araskog of ITT, Mort Myerson of Electronic Data Systems, and Dr. Hishahi Tomino of Kozo Keikaku Engineering. Dr. Tomino’s company has translated most of my older books into Japanese, and the translation teams did an excellent job. Hopefully, this new book will also find its way into Japanese and other languages.
Software and computers have changed human communications in profound ways. Today, many people have more virtual friends than real friends. Some young people spend more time texting and using social networks than speaking face to face. The internet and World Wide Web have opened up vast new collections of information, larger than the sum of every library in the world. Almost every complex device is now controlled by embedded software, including automobiles, aircraft, and even smart appliances. Computers and software have changed the world, and more changes are still in store for us.
About the Author

Capers Jones is a cofounder, vice president, and chief technology officer of Namcook Analytics LLC. Namcook Analytics builds patent-pending advanced risk, quality, and cost-estimation tools. The website is www.namcook.com. Capers Jones’s blog is http://namcookanalytics.com.

Until cofounding Namcook Analytics LLC in 2011, he was the president of Capers Jones & Associates LLC from 2000 through 2011.

He is also the founder and former chairman of Software Productivity Research LLC (SPR). Capers Jones founded SPR in 1984.

Before founding SPR, Capers was assistant director of Programming Technology for the ITT Corporation at the Programming Technology Center in Stratford, Connecticut. He created the first software measurement program at ITT.

Capers Jones was also a manager and software researcher at IBM in California, where he designed IBM’s first software cost-estimating tools in 1973 and 1974.

In total, Capers Jones has designed seven proprietary software estimation tools and four commercial software estimation tools.

The Technical and Social History of Software Engineering is his second history book. This book was inspired by Paul Starr’s book The Social Transformation of American Medicine, which won a Pulitzer Prize in 1984.
Chapter 1

Prelude: Computing from Ancient Times to the Modern Era

The human need to compute probably originated in prehistory when humans began to accumulate physical possessions. It soon became desirable to keep track of how many specific possessions (e.g., cattle) were owned by a family or tribe. Once simple addition and subtraction became possible, a related need was to record the information so it could be kept for long time periods and could be shared with others. Early recording devices were pebbles or physical objects, but it was eventually found that these could be replaced with symbols.

As humans evolved and began to settle in communities, other calculating needs arose, such as measuring the dimensions of bricks or marking off fields. With leisure came curiosity and a need for more complex calculations of time, distance, and the positions of the stars.

Fairly soon, the labor involved with calculations was seen as burdensome and tedious, so mechanical devices that could speed up calculations (the abacus being among the first) were developed.

Tools for assisting with logical decisions were the last to be developed. The needs for rapid calculations, long-range data storage, and complex decision making were the critical factors that eventually came together to inspire the design of computers and software.

The Human Need to Compute

A book on the history of software engineering and computers should not just start abruptly at a specific date such as 1930. It is true that digital computers
and the beginnings of software were first articulated between 1930 and 1939, but many prior inventions over thousands of years had set the stage.

From ancient times through today, there was a human need for various kinds of calculations. There has also been a human need to keep the results of those calculations in some kind of a permanent format.

Another human need that is harder to articulate is the need for logical analysis of alternative choices. An example of such a choice is whether to take a long flat road or a short hilly road when moving products to a marketplace. Another choice is what kind of crop is most suited to a particular piece of land.

More important alternatives are whether or not a community should go to war with another community. In today’s world, some choices have life and death importance, such as what is the best therapy to treat a serious medical condition like antibiotic-resistant tuberculosis.

Other choices have economic importance. The Republicans and Democrats are examples of totally opposite views of what choices are best for the U.S. economy.

For choices with diametrically opposing alternatives, it is not possible for both sides to be right, but it is easily possible for both sides to be wrong. (It is also possible that some other choice and neither of the alternatives is the best.)

From analysis of what passes for arguments between the Democrats and Republicans, both sides seem to be wrong and the end results will probably damage the U.S. economy, no matter which path is taken.

From the point of view of someone who works with computers and software on a daily basis, it would not be extremely difficult to create mathematical models of the comparative impacts on the economy of raising taxes (the Democratic goal), reducing spending (the Republican goal), or some combination of both.

But instead of rational discussions augmented by realistic financial models, both sides have merely poured out rhetoric with hardly any factual information or proof of either side’s argument. It is astonishing to listen to the speeches of Republicans and Democrats. They both rail against each other, but neither side presents anything that looks like solid data.

The same kinds of problems occur at state and municipal levels. For example, before the 2012 elections, the General Assembly of Rhode Island passed unwise legislation that doubled the number of voters per voting station, which effectively reduced the places available for citizens to vote by half.

The inevitable results of this foolish decision were huge lines of annoyed voters, waits of up to four hours to vote, and having to keep some voting stations open almost until midnight to accommodate the voters waiting in line.
This was not a very complicated issue. The numbers of voters passing through voting stations per hour have been known for years. But the Rhode Island Assembly failed to perform even rudimentary calculations about what halving the number of voting stations would do to voter wait times.

As a result, in the 2012 elections, many Rhode Island citizens who could not afford to wait four hours or more simply left without voting. They were disfranchised by the folly of a foolish law passed by an inept general assembly. This law by the Rhode Island Assembly was incompetent and should never have been passed without mathematical modeling of the results of reducing polling places on voting wait times.

The point of carping about governments passing unwise laws and issuing foolish regulations is because in today's world, computers and software could easily provide impact assessments and perhaps even eliminate thoughts of passing such foolish laws and regulations.

The fact that humans have used mathematics, made logical choices, and kept records from prehistory through today brings up questions that are relevant to the history of software and computers:

- What kinds of calculations do we use?
- What kinds of information or data do we need to save?
- What are the best storage methods for long-range retention of information?
- What methods of analysis can help in making complicated choices or decisions?
- What are the best methods of communicating data and knowledge?

It is interesting to consider these five questions from ancient times through the modern era and see how computers and software gradually emerged to help in dealing with them.

Early Sequence of Numerical Knowledge

Probably soon after humans could speak they could also count, at least up to ten, by using their fingers. It is possible that Neanderthals or Cro-Magnons could count as early as 35,000 years ago, based on parallel incised scratches on
both a wolf bone in Czechoslovakia from about 33,000 years ago and a baboon bone in Africa from about 35,000 years ago.

Whether the scratches recorded the passage of days, numbers of objects, or were just scratched as a way to pass time is not known. The wolf bone is the most interesting due to having 55 scratches grouped into sets of five. This raises the probability that the scratches were used to count either objects or time.

An even older mastodon tusk from about 50,000 years ago had 16 holes drilled into it, of unknown purpose. Because Neanderthals and Cro-Magnons overlapped from about 43,000 BCE to 30,000 BCE, these artifacts could have come from either group or from other contemporaneous groups that are now extinct.

It is interesting that the cranial capacity and brain sizes of both Neanderthals and Cro-Magnons appear to be slightly larger than modern homo sapiens, although modern frontal lobes are larger. Brain size does not translate directly into intelligence, but it does indicate that some form of abstract reasoning might have occurred very early. Cave paintings date back more than 40,000 years, so at least some form of abstraction did exist.

In addition to counting objects and possessions, it was also important to be able to keep at least approximate track of the passage of time. Probably the length of a year was known at least subjectively more than 10,000 years ago. With the arrival of agriculture, also about 10,000 years ago, knowing when to plant certain crops and when to harvest them would have aided in food production.

One of the first known settlements was Catal Huyuk in Turkey, dating from around 7,000 BCE. This village, constructed of mud bricks, probably held several hundred people. Archaeological findings indicate agriculture of wheat, barley, and peas. Meat came from cattle and wild animals.

Findings of arrowheads, mace heads, pottery, copper, and lead indicate that probably some forms of trading took place at Catal Huyuk. Trading is not easily accomplished without some method of keeping track of objects. There were also many images painted on walls and this may indicate artistic interests.

The probable early sequence of humans acquiring numerical knowledge may have started with several key topics:

- Prehistoric numeric and mathematical knowledge:
 - Counting objects to record ownership
 - Understanding the two basic operations of addition and subtraction
 - Measuring angles, such as due east or west, to keep from getting lost
• Counting the passage of time during a year to aid agriculture
• Counting the passage of daily time to coordinate group actions

• Numeric and mathematical knowledge from early civilizations:
 • Counting physical length, width, and height in order to build structures
 • Measuring weights and volumes for trade purposes
 • Measuring long distances such as those between cities
 • Measuring the heights of mountains and the position of the sun above the horizon
 • Understanding the mathematical operations of multiplication and division

• Numeric and mathematical knowledge probably derived from priests or shamans:
 • Counting astronomical time such as eclipses and positions of stars
 • Measuring the speed or velocity of moving objects
 • Measuring curves, circles, and irregular shapes
 • Measuring rates of change such as acceleration
 • Measuring invisible phenomena such as the speed of sound and light

• Numeric and mathematical knowledge developed by mathematicians:
 • Analyzing probabilities for games and gambling
 • Understanding abstract topics such as zero and negative numbers
 • Understanding complex topics such as compound interest
 • Understanding very complex topics such as infinity and uncertainty
 • Understanding abstract topics such as irrational numbers and quantum uncertainty

Prehistoric numeric and mathematical knowledge probably could have been handled with careful observation assisted by nothing more than tokens such as stones or scratches, plus sticks for measuring length. Addition and subtraction are clearly demonstrated by just adding or removing stones from a pile.
Numeric and mathematical knowledge from early civilizations would have needed a combination of abstract reasoning aided by physical devices. Obviously, some kind of balance scale is needed to measure weight. Some kind of angle calculator is needed to measure the heights of mountains. Some kind of recording method is needed to keep track of events, such as star positions over long time periods.

Numeric and mathematical knowledge probably derived from priests or shamans would need a combination of abstract reasoning; accurate time keeping; accurate physical measures; and awareness that mathematics could represent intangible topics that cannot be seen, touched, or measured directly. This probably required time devoted to intellectual studies rather than to farming or hunting.

Numeric and mathematical knowledge developed by mathematicians is perhaps among the main incentives leading to calculating devices and eventually to computers and software. This required sophisticated knowledge of the previous topics, combined with fairly accurate measurements and intellectual curiosity in minds that have a bent for mathematical reasoning. These probably originated with people who had been educated in mathematical concepts and were inventive enough to extend earlier mathematical concepts in new directions.

One of the earliest cities, Mohenjo-Daro, which was built in Northern India about 3,700 years ago, shows signs of sophisticated mathematics. In fact, balance scales and weights have been excavated from Mohenjo-Daro.

This city may have held a population of 35,000 at its peak. The streets are laid out in a careful grid pattern; bricks and construction showed signs of standard dimensions and reusable pieces. These things require measurements.

Both Mohenjo-Daro and another city in Northern India, Harappa, show signs of some kind of central authority because they are built in similar styles. Both cities produced large numbers of clay seals incised both with images of animals and with symbols thought to be writing, although these remain undeciphered. Some of these clay seals date as far back as 3,300 BCE.

Other ancient civilizations also developed counting, arithmetic, measures of length, and weights and scales. Egypt and Babylonia had arithmetic from before 2,000 BCE.

As cities became settled and larger, increased leisure time permitted occupations to begin that were not concerned with physical labor or hunting. These occupations did not depend on physical effort and no doubt included priests and shamans. With time freed from survival and food gathering, additional forms of mathematical understanding began to appear.
Keeping track of the positions of the stars over long periods, measuring longer distances such as property boundaries and distances between villages, and measuring the headings and distances traveled by boats required more complex forms of mathematics and also precise measurements of angles and time periods. The advent of boat building also required an increase in mathematical knowledge. Boat hulls are of necessity curved, so straight dimensional measurements were not enough.

Rowing or sailing a boat in fresh water or within sight of land can be done with little or no mathematical knowledge. But once boats began to venture onto the oceans, it became necessary to understand the positions of the stars to keep from getting lost.

Australia is remote from all other continents and was not connected by a land bridge to any other location since the continents broke up. Yet it was settled about 40,000 years ago, apparently by means of a long ocean voyage from one (or more) of the continents. The islands of Polynesia and Easter Island are also far from any mainland and yet were settled thousands of years ago. These things indicate early knowledge of star positions and some kind of math as well.

Many early civilizations in Egypt, Mesopotamia, China, India, and South America soon accumulated surprisingly sophisticated mathematical knowledge. This mathematical knowledge was often associated with specialists who received substantial training.

Many ancient civilizations, such as the ancient Chinese, Sumerians, Babylonians, Egyptians, and Greeks, invested substantial time and energy into providing training for children. Not so well known in the West are the similar efforts for training in India and among the people of Central and South America, such as the Olmecs, Mayans, Incans, and later the Aztecs.

Japan also had formal training. For the upper classes, Japanese training included both physical skills in weapons and also intellectual topics such as reading, writing, and mathematics. All of these ancient civilizations developed formal training for children and also methods of recording information.

The University of Nalanda in Northern India was founded circa 472 BC and lasted until about the 12th century, with a peak enrollment during around 500 AD. It was one of the largest in the ancient world, with more than 10,000 students from throughout Asia and more than 2,000 professors. It was among the first universities to provide training in mathematics, physics, medicine, astronomy, and foreign languages.

The University of Nalanda had an active group of translators who translated Sanskrit and Prakrit into a variety of other languages. In fact, much of the
information about the University of Nalanda comes from Chinese translations preserved in China since the University of Nalanda library was destroyed during the Moslem invasion of India in the 12th century. It was reported to be so large that it burned for almost six weeks.

Indian scholars were quite advanced even when compared to Greece and Rome. Concepts such as zero and the awareness of numerous star systems were known in India prior to being known in Europe. (The Olmecs of Central America also used zero prior to the Greeks.)

In ancient times, out of a population of perhaps 1,000 people in a Neolithic village, probably more than 950 were illiterate or could only do basic counting of objects and handle simple dimensional measures. But at least a few people were able to learn more complex calculations, including those associated with astronomy, construction of buildings and bridges, navigation, and boat building.

Inventions for Improved Mathematics

From the earliest knowledge of counting and numerical concepts, those who used numerical information were troubled by the needs for greater speed in calculating and for greater reliability of results than the unaided human mind could provide. In order to explain the later importance of computers and software, it is useful to begin with some of the earliest attempts to improve mathematical performance.

It is also useful to think about what computers and software really do and why they are valuable. The services that are provided to the human mind by various calculating devices include, but are not limited to, the following:

- Basic arithmetic operations of addition, subtraction, multiplication, and division
- Scientific mathematics, including powers, sines, cosines, and others
- Financial mathematics, including simple and compound interest and rates of return
- Logical calculations, such as routing and choices between alternatives
- Calculations of time, distance, height, and speed
• Deriving useful inductive knowledge from large collections of disparate information
• Deductive logic, such as drawing conclusions from rules

In doing research for this chapter, a great many interesting and useful sources were found during my web searches. For example, IBM has a graphical history of mathematics that can even be downloaded onto iPhones. Wikipedia and other web sources have dozens of histories of computer hardware and some histories of software development, too. More than a dozen computer museums were noted in a number of countries, such as the London Science Museum, which has a working version of the Babbage analytical engine on display.

For this book, it seemed useful to combine six kinds of inventions that are all synergistic and ultimately related to each other as well as to modern software.

Mathematics is the first of these six forms of invention. Calculating devices, computers, and software were all first invented to speed up mathematical calculations. Mathematics probably started with addition and subtraction and were then followed later by multiplication and division. After that, many other and more abstract forms appeared: geometry, trigonometry, algebra, and calculus, for example.

The second form of invention is the recording of ideas and information so they can be shared and transmitted and also to keep the ideas available over long time periods. The inventions in this category include writing systems and physical storage of writing. Physical storage of writing includes stone tablets, clay tablets, papyrus, animal skins, paper, and eventually magnetic and optical storage. Storage also includes manuscripts, books, libraries, and eventually databases and cloud storage.

The third form of invention is that of physical calculating devices that could assist human scholars in faster and more accurate calculations than would be possible using only the human mind and the human body. Tables of useful values were perhaps the first method used to speed up calculations. Physical devices include the abacus, protractors, astrolabes, measuring devices, mechanical calculating devices, slide rules, analog computers, and eventually electronic digital computers.

A fourth form of invention involves the available channels for distributing information to many people. The first channel was no doubt word of mouth and passing information along to be memorized by students or apprentices. But soon information transmission started to include markings on stones and bones; markings on clay; and eventually pictographs, ideographs, and finally alphabets.
The fifth form of invention is that of software itself. This is the most recent form of invention; essentially all software used in 2013 is less than 55 years old, probably more than 50% of the software is less than 20 years old.

A sixth form of invention is indirect. These are enabling inventions that are not directly connected to computers and software but that helped in their development. One such enabling invention is the patent system. A second and very important enabling invention was plastic.

Mathematics and Calculating

Table 1.1 shows the approximate evolution of mathematics, calculating devices, and software from prehistory through the modern era. It is intended to show the overall sweep of inventions and is not a precise timeline. The table focuses on the inventions themselves rather than providing the names of the inventors, such as Newton, Leibnitz, Turing, Mauchly, von Neumann, Hopper, and many others. The topics in Table 1.1 that eventually had an impact on computers and software are shown in italic.

<table>
<thead>
<tr>
<th>Mathematics, Calculating Devices, and Software</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting objects</td>
<td>35,000</td>
</tr>
<tr>
<td>Addition and subtraction</td>
<td>30,000</td>
</tr>
<tr>
<td>Measuring angles</td>
<td>25,000</td>
</tr>
<tr>
<td>Counting the annual passage of time</td>
<td>20,000</td>
</tr>
<tr>
<td>Pebbles used for calculation</td>
<td>20,000</td>
</tr>
<tr>
<td>Counting the daily passage of time</td>
<td>19,000</td>
</tr>
<tr>
<td>Quantifying physical length, width, and height</td>
<td>18,000</td>
</tr>
<tr>
<td>Measuring weights and volumes</td>
<td>15,000</td>
</tr>
<tr>
<td>Measuring long distances between towns</td>
<td>10,000</td>
</tr>
<tr>
<td>Measuring astronomical time</td>
<td>7,000</td>
</tr>
<tr>
<td>Geometry</td>
<td>5,500</td>
</tr>
<tr>
<td>Sundials</td>
<td>5,500</td>
</tr>
<tr>
<td>Measuring the height of the sun and mountains</td>
<td>5,000</td>
</tr>
</tbody>
</table>
Table 1.1 (Continued)

<table>
<thead>
<tr>
<th>Mathematics, Calculating Devices, and Software</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication and division</td>
<td>4,500</td>
</tr>
<tr>
<td>Measuring the speed of moving objects</td>
<td>4,000</td>
</tr>
<tr>
<td>Analog computing devices</td>
<td>4,000</td>
</tr>
<tr>
<td>Algebra</td>
<td>4,000</td>
</tr>
<tr>
<td>Trigonometry</td>
<td>4,000</td>
</tr>
<tr>
<td>Fractions</td>
<td>4,000</td>
</tr>
<tr>
<td>Multiplication tables</td>
<td>3,900</td>
</tr>
<tr>
<td>Clocks: water</td>
<td>3,300</td>
</tr>
<tr>
<td>Decimal numbers</td>
<td>3,100</td>
</tr>
<tr>
<td>Abacus and mechanical calculations</td>
<td>3,000</td>
</tr>
<tr>
<td>Clocks: mechanical</td>
<td>3,000</td>
</tr>
<tr>
<td>Binary numbers</td>
<td>2,700</td>
</tr>
<tr>
<td>Zero</td>
<td>2,600</td>
</tr>
<tr>
<td>Measuring curves, circles, and irregular objects</td>
<td>2,500</td>
</tr>
<tr>
<td>Measuring temperature</td>
<td>2,500</td>
</tr>
<tr>
<td>Antikythera mechanism</td>
<td>2,200</td>
</tr>
<tr>
<td>Astrolabe</td>
<td>2,100</td>
</tr>
<tr>
<td>Abstract topics such as zero and negative numbers</td>
<td>2,000</td>
</tr>
<tr>
<td>Hourglasses</td>
<td>1,500</td>
</tr>
<tr>
<td>Complex topics such as compound interest</td>
<td>1,400</td>
</tr>
<tr>
<td>Measuring probabilities for games of chance</td>
<td>1,000</td>
</tr>
<tr>
<td>Accounting</td>
<td>900</td>
</tr>
<tr>
<td>Graphs</td>
<td>800</td>
</tr>
<tr>
<td>Slide rules</td>
<td>575</td>
</tr>
<tr>
<td>Measuring rates of change and acceleration</td>
<td>500</td>
</tr>
<tr>
<td>Mechanical calculators for addition and subtraction</td>
<td>425</td>
</tr>
<tr>
<td>Measuring power</td>
<td>400</td>
</tr>
<tr>
<td>Calculating trajectories</td>
<td>400</td>
</tr>
<tr>
<td>Mechanical calculators for multiplication and division</td>
<td>375</td>
</tr>
<tr>
<td>Mathematics, Calculating Devices, and Software</td>
<td>Approximate Number of Years Prior to 2013</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Measuring invisible phenomena such as sound</td>
<td>350</td>
</tr>
<tr>
<td>Abstract topics such as irrational numbers and uncertainty</td>
<td>350</td>
</tr>
<tr>
<td>Punch-card calculating devices</td>
<td>350</td>
</tr>
<tr>
<td>Calculus</td>
<td>350</td>
</tr>
<tr>
<td>Counting short passages of time (<1 second)</td>
<td>300</td>
</tr>
<tr>
<td>Large-scale statistical studies with millions of samples</td>
<td>250</td>
</tr>
<tr>
<td>Very complex topics such as infinity and uncertainty</td>
<td>250</td>
</tr>
<tr>
<td>Mathematical weather prediction</td>
<td>250</td>
</tr>
<tr>
<td>Measuring electrical and magnetic phenomena</td>
<td>200</td>
</tr>
<tr>
<td>Mechanical tabulating machines</td>
<td>200</td>
</tr>
<tr>
<td>Boolean algebra</td>
<td>175</td>
</tr>
<tr>
<td>Set theory</td>
<td>150</td>
</tr>
<tr>
<td>Fuzzy sets</td>
<td>145</td>
</tr>
<tr>
<td>Relativity</td>
<td>105</td>
</tr>
<tr>
<td>Measuring the strong and weak forces and gravity</td>
<td>100</td>
</tr>
<tr>
<td>Digital computers</td>
<td>70</td>
</tr>
<tr>
<td>Operations research</td>
<td>65</td>
</tr>
<tr>
<td>Programming languages</td>
<td>65</td>
</tr>
<tr>
<td>Sorting algorithms</td>
<td>55</td>
</tr>
<tr>
<td>Databases</td>
<td>55</td>
</tr>
<tr>
<td>Pocket calculators</td>
<td>50</td>
</tr>
<tr>
<td>Mathematical software applications</td>
<td>50</td>
</tr>
<tr>
<td>Scientific software applications</td>
<td>50</td>
</tr>
<tr>
<td>Financial software applications</td>
<td>45</td>
</tr>
<tr>
<td>Statistical software applications</td>
<td>40</td>
</tr>
<tr>
<td>Accounting software applications</td>
<td>40</td>
</tr>
<tr>
<td>Architectural and engineering applications</td>
<td>40</td>
</tr>
<tr>
<td>Graphics rendering engines for games</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 1.1 illustrates the fact that the human use of mathematics is ancient and can be traced almost as far back as speech. The reason for this is that mathematical knowledge became a critical factor when human beings started to live in villages and trade with others.

Those who hunt and gather wild plants have little need for math and only rudimentary needs for sophisticated communications of any kind. But the advent of agriculture, living in communities, and trade with other communities brought the needs for weights, measures, awareness of seasonal changes, and at least basic arithmetic such as addition and subtraction.

Table 1.2 Evolution of Recording Methods and Media

<table>
<thead>
<tr>
<th>Recording Methods and Media</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>On stone or bones</td>
<td>50,000</td>
</tr>
<tr>
<td>On clay</td>
<td>6,000</td>
</tr>
<tr>
<td>With pictographs such as hieroglyphics</td>
<td>4,500</td>
</tr>
<tr>
<td>On papyrus</td>
<td>4,000</td>
</tr>
<tr>
<td>With ideographs such as Chinese characters</td>
<td>4,000</td>
</tr>
<tr>
<td>Using encryption</td>
<td>2,500</td>
</tr>
<tr>
<td>With alphabetic information</td>
<td>2,500</td>
</tr>
<tr>
<td>On vellum</td>
<td>2,000</td>
</tr>
<tr>
<td>On paper</td>
<td>2,000</td>
</tr>
<tr>
<td>In full color</td>
<td>700</td>
</tr>
<tr>
<td>Graphically</td>
<td>400</td>
</tr>
<tr>
<td>On punched cards</td>
<td>350</td>
</tr>
<tr>
<td>Using tactile symbols such as Braille</td>
<td>250</td>
</tr>
<tr>
<td>On paper tape</td>
<td>250</td>
</tr>
<tr>
<td>Using cameras and film</td>
<td>160</td>
</tr>
<tr>
<td>Recording sounds</td>
<td>130</td>
</tr>
<tr>
<td>Magnetically on tape</td>
<td>125</td>
</tr>
<tr>
<td>On vinyl</td>
<td>125</td>
</tr>
<tr>
<td>Dynamically in full motion</td>
<td>100</td>
</tr>
<tr>
<td>On microfilm</td>
<td>80</td>
</tr>
</tbody>
</table>

(Continued)
Recording Information

Once calculations have been performed, there is also a need to keep the information in a permanent or at least long-lasting format so that the information can be shared with others or used later on as needed. Table 1.2 considers all of the various methods used from ancient times through the modern era for recording information in a permanent form.

As can be seen from Table 1.2, the recording of information is an ancient activity that dates back about as far as the invention of writing and numerals. Without a method of recording the information, calculations or ownership of articles could not be shared with others or used later to verify transactions.

A modern problem that will be discussed in later chapters is the fact that storage methods are not permanent and there is uncertainty about how long either paper records or computerized records might last.

Paper is flammable and also affected by insects, moisture, and other forms of destruction. Magnetic memory is long lasting but not permanent. What’s worse is that any kind of stray magnetic field can damage or destroy magnetic records.

Optical records stored on plastic disks might last 100 years or more, but the plastic itself has an unknown life expectancy and the recording surfaces are easily damaged by abrasion, soot, fire, or mechanical stress.

The bottom line is that the earliest known forms of records, such as carvings on stone or clay, probably have the longest life expectancies of any form of recording yet invented.
Communicating Information

Table 1.3 lists the inventions for how information can be transmitted or shared with other human beings once calculations have been performed and the results stored in some fashion. It is obvious that almost all information will be needed by more than one person, so communication and information sharing are almost as old as mathematics.

Table 1.3 Evolution of Communication Channels

<table>
<thead>
<tr>
<th>Communication Channels</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word of mouth</td>
<td>50,000</td>
</tr>
<tr>
<td>Couriers</td>
<td>6,000</td>
</tr>
<tr>
<td>Flashing lights</td>
<td>5,000</td>
</tr>
<tr>
<td>Smoke signals</td>
<td>5,000</td>
</tr>
<tr>
<td>Music notation</td>
<td>4,500</td>
</tr>
<tr>
<td>Carrier pigeons</td>
<td>3,500</td>
</tr>
<tr>
<td>Codes and ciphers</td>
<td>2,500</td>
</tr>
<tr>
<td>Handwritten books</td>
<td>2,500</td>
</tr>
<tr>
<td>Mirrors or polished surfaces</td>
<td>2,000</td>
</tr>
<tr>
<td>Sign languages</td>
<td>1,750</td>
</tr>
<tr>
<td>Knotted strings</td>
<td>1,500</td>
</tr>
<tr>
<td>Printed books</td>
<td>1,000</td>
</tr>
<tr>
<td>Graphs for mathematical values</td>
<td>800</td>
</tr>
<tr>
<td>Newspapers</td>
<td>350</td>
</tr>
<tr>
<td>Magazines</td>
<td>300</td>
</tr>
<tr>
<td>Signal length (Morse code)</td>
<td>175</td>
</tr>
<tr>
<td>Touch for the blind (Braille)</td>
<td>175</td>
</tr>
<tr>
<td>Telegraph</td>
<td>175</td>
</tr>
<tr>
<td>Radio</td>
<td>150</td>
</tr>
<tr>
<td>Telephone</td>
<td>130</td>
</tr>
<tr>
<td>Television</td>
<td>70</td>
</tr>
<tr>
<td>Satellite</td>
<td>60</td>
</tr>
<tr>
<td>Subliminal signals</td>
<td>50</td>
</tr>
</tbody>
</table>

(Continued)
Over the centuries, the human species has developed scores of interesting and useful methods for conveying information. Often, there is a need to transmit information over very long distances. Until recently, carrier pigeons were used for messages between distant locations.

However, military organizations have long recognized that visible hilltops or other high places could be used to send information over long distances by means of either polished surfaces during the day or fires at night. Recall the famous line from Paul Revere’s ride that describes lighting lanterns in the North church tower to warn of the approach of British troops: “. . . one if by land, two if by sea.”

Communication with undersea submarines was difficult until the advent of communication by ultra-low frequency sounds.

Codes and secret communications also have a long history of several thousand years. Later chapters of this book will deal with several forms of codes and secret communications during World War II, including the famous Native American “code talkers” who spoke in a code based on Navajo, Choctaw, and other Native American languages.
Awareness of the need to communicate is ancient knowledge. There is a curious passage in a Buddhist sutra dating from about the third century BC, in which the Buddha discussed how his teachings might be transmitted. He mentions casually that, on earth, teachings are transmitted with words, but on other worlds, teachings are transmitted by lights, by scents, or by other nonverbal means.

Storing Information

Table 1.4 lists how information has been stored and accessed. As all scholars and researchers know, once the volume of information exceeds a few books or a few dozen written documents, there is an urgent need for some kind of taxonomy or catalog scheme to ensure that information can be found again when it is needed.

Information storage and access are critical features of modern computers, and modern software has played a huge part in improving information retrieval.

Table 1.4 Evolution of Information Storage and Access

<table>
<thead>
<tr>
<th>Information Storage and Access</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal collections of written information</td>
<td>6,000</td>
</tr>
<tr>
<td>Libraries or public collections of written information</td>
<td>4,500</td>
</tr>
<tr>
<td>Topical collections of laws and legal codes</td>
<td>2,000</td>
</tr>
<tr>
<td>Topical collections such as medical and law libraries</td>
<td>1,200</td>
</tr>
<tr>
<td>University curricula for information by topic</td>
<td>1,000</td>
</tr>
<tr>
<td>Taxonomy for biological and scientific organization</td>
<td>300</td>
</tr>
<tr>
<td>Dewey decimal system for book organization</td>
<td>135</td>
</tr>
<tr>
<td>Sequential databases of information</td>
<td>65</td>
</tr>
<tr>
<td>Random databases of information</td>
<td>55</td>
</tr>
<tr>
<td>Relational databases of information</td>
<td>50</td>
</tr>
<tr>
<td>Affinity recommendations based on past preferences</td>
<td>35</td>
</tr>
<tr>
<td>Web search engines for selection of keyword information</td>
<td>25</td>
</tr>
<tr>
<td>Intelligent agents for selection of relevant information</td>
<td>15</td>
</tr>
<tr>
<td>Big data analytical tools</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 1.4 shows topics that have been difficult for large volumes of information for thousands of years and that in fact are becoming worse in the modern world. For most of human history, information collections seldom topped more than 10,000 volumes, even for large libraries. In today’s world of almost instantaneous recording of all books, magazines, research papers, images, and other forms of intellectual content, there are now billions of documents. Every week that passes, more and more information is published, recorded, and added to cloud libraries and other forms of computer storage. There is no end in sight.

There is an urgent need for continuing study of the best ways of recording information for long-term survival and for developing better methods of sorting through billions of records and finding and then aggregating topics relevant to specific needs. The emerging topic of “big data” is beginning to address these issues, but the solution is not currently visible and is still over the horizon.

The first and most long-lasting method of storing and accessing data was by means of libraries. Throughout civilized history, many famous libraries have served scholars and researchers. The library of Alexandria, the library of the University of Nalanda, the library of Perganum, the five libraries of Ugarit, the Roman libraries of Trajan in the Forum, and the library of Constantinople were all famous throughout antiquity.

Modern libraries such as the Library of Congress, the Harvard Library, and in fact many large college libraries still serve as major repositories of information for students and researchers.

Books have been used for thousands of years to record and convey knowledge from human to human, especially from teachers to students. Personal libraries of reference books are the normal accoutrements of all professions, including engineering, law, medicine and, of course, software engineering.

More recently, e-books, web search engines, and intelligent agents are making it possible for individuals and scholars to access more data and information at greater orders of magnitude than was possible at any time in human history up until about 25 years ago.

Enabling Computers and Software

Table 1.5 departs somewhat from the direct line of descent between inventions and computers and software. This table deals with some of the *enabling inventions* that later became important when computers and software also became important.
One of the first enabling inventions is that of the patent system itself. The first known patent in English was granted in 1331 in England to a man named John Kemp. Later, an Italian patent was granted in Florence in 1421. Patents similar to modern patents and enforced by statute appeared in Venice in a law establishing patents in 1474.

Table 1.5 Enabling Inventions for Computers and Software

<table>
<thead>
<tr>
<th>Enabling Inventions</th>
<th>Approximate Number of Years Prior to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>The modern patent systems</td>
<td>800</td>
</tr>
<tr>
<td>Boolean algebra</td>
<td>175</td>
</tr>
<tr>
<td>Plastics for computer cases, screens, connections, etc.</td>
<td>125</td>
</tr>
<tr>
<td>Vacuum tubes</td>
<td>120</td>
</tr>
<tr>
<td>Punched cards</td>
<td>120</td>
</tr>
<tr>
<td>CRT tubes</td>
<td>80</td>
</tr>
<tr>
<td>Von Neumann architecture</td>
<td>75</td>
</tr>
<tr>
<td>Paper tape</td>
<td>75</td>
</tr>
<tr>
<td>Integrated circuits</td>
<td>70</td>
</tr>
<tr>
<td>Transistors</td>
<td>70</td>
</tr>
<tr>
<td>Magnetic tape</td>
<td>70</td>
</tr>
<tr>
<td>High-level programming languages</td>
<td>65</td>
</tr>
<tr>
<td>Magnetic disks</td>
<td>60</td>
</tr>
<tr>
<td>Operating systems</td>
<td>55</td>
</tr>
<tr>
<td>Magnetic ink for bank checks</td>
<td>55</td>
</tr>
<tr>
<td>Magnetic stripes for credit cards</td>
<td>50</td>
</tr>
<tr>
<td>Graphics display adapters</td>
<td>40</td>
</tr>
<tr>
<td>Laser printers</td>
<td>40</td>
</tr>
<tr>
<td>Floppy disks</td>
<td>40</td>
</tr>
<tr>
<td>Dot matrix printers</td>
<td>35</td>
</tr>
<tr>
<td>Ethernet</td>
<td>35</td>
</tr>
<tr>
<td>LED displays</td>
<td>30</td>
</tr>
<tr>
<td>Ink-jet printers</td>
<td>25</td>
</tr>
<tr>
<td>Solid-state memory</td>
<td>20</td>
</tr>
<tr>
<td>Flash disks</td>
<td>15</td>
</tr>
</tbody>
</table>
The first patent issued in North America was issued by the Massachusetts General Court in 1641 to a man named Samuel Winslow for a method of making salt. The first federal patent law in the United States was passed on April 10, 1790, and had the title of “An Act to Promote the Progress of Useful Arts.”

Note

The name “patent” is derived from the phrases “letters patent” and “letters close.” The seal on letters close covered the fold and had to be broken in order to read the letter. The seal on letters patent was attached to the bottom of the document so it could be read with the seal intact.

Software patents have had a very convoluted path and were sometimes barred and more recently accepted. But there is no guarantee that software patents will always be accepted by the U.S. Patent Office. In the 1960s, software patents were barred and several lawsuits were filed, with the courts generally concurring that software was not patentable.

In 1981, the U.S Supreme Court became involved in the case of *Diamond vs. Diehr* and decided that, at least in special cases, software was patentable. This forced a change of procedure in the Patent Office. But the situation remained murky and ambiguous and largely decided on by a case-by-case basis without any real guides or fixed rules.

In 1998 in the famous case of *State Street Bank vs. Signature Financial Group*, it was finally decided what forms of software could be patented. This case involved the hub-and-spoke method of processing mutual funds. The Supreme Court decided that business processes, including those embodied in software, were patentable.

A number of other precursor inventions were also important. For example, without transistors and integrated circuits, there would not be any portable computers, embedded computers, or any types of small electronic devices that today all use software.

The inventions that became integral parts of computers include plastic for cases and screens, integrated circuits, transistors, graphics boards, and LED displays.

Other inventions had a strong impact on the use of computers and hence on the software that was created to support those uses. For example, without the 1960 IBM patent on a magnetic stripe that could be applied to plastic, credit cards would not have been developed. Without the invention of magnetic ink, bank checks would still be sorted alphabetically instead of in numeric order and probably sorted by hand.
Key Inventions Relevant to Software

The inventions listed in the previous tables are all important in one way or another. However, in thinking about the inventions that had the greatest impact on software, the inventions discussed in the following section are the most critical.

Alphabetic Languages

Information recorded using pictograms such as Egyptian hieroglyphics is elegant and beautiful and has produced some wonderful calligraphy, but such systems do not lend themselves to rapid data entry and computerization. The same is true of information recorded using ideograms such as Chinese and Japanese kanji (which uses Chinese symbols). There are thousands of symbols, which makes typing extremely difficult.

During World War II, the text entered into the Japanese “Purple” coding machine actually used two American Underwood typewriters and plain text using English characters. Alphabetic languages have the greatest speed for typed entry.

Binary and Decimal Numbers and Zero

Computers and software can process numbers using any base such as binary, octal, decimal, or hexadecimal. However, electronic circuits for performing mathematics are somewhat easier to design using binary arithmetic. Octal or base 8 numbering systems are easily convertible from binary. (Some Native American tribes used octal numbers since they counted by using the gaps between the fingers rather than the fingers themselves.) Several computers were based on octal numbers such as the DEC PDP line.

Hexadecimal or base 16 numbers are also used in computers and are convenient because they match byte capacities. However, the bulk of day-to-day calculations used by humans are based on decimal or base 10 numbers. Decimal numbers are somewhat analogous to the QWERTY keyboard: not optimal but so widely used that switching to something else would be too expensive to consider.

The decimal point seemed to have originated in India during the ninth century, but it was John Napier who made the concept important in Western mathematics around 1620. Napier also invented logarithms and an interesting manual
calculator called “Napier’s bones.” Logarithms were used in the first slide rules and hence are an important background topic for analog computation.

The concept of zero seemed to have several independent sources. It was used in Babylon with base 60 math, but apparently as a placeholder rather than actual calculations. This use was about 2,500 years ago.

The Olmecs and Mayans both used zero as a true number, and it was used for calendar calculations, which were quite complex. This use of zero seems to date to around 400 AD.

The use of zero in India dates to about 458 AD when it was found in a text on mathematics. Whether this was an indigenous invention or inherited from Babylon is not certain. Later in the 600s, the famous Indian mathematician Brahmagupta wrote a paper on the uses of zero, which moved past zero itself into negative numbers.

Decimal numbers, the decimal point, and zero were all important precursors leading to computers and software calculations.

Digital Computers

Later chapters in this book will discuss the evolution of digital computers and associated software from the mid-1930s through 2010, with projections to 2019. Suffice it to say that software was created specifically to operate on digital computers. Without digital computers, there would be no software. Without software, digital computers would have no major purpose and would probably not have supplanted analog computers.

Higher-Level Programming Languages

I started as a young programmer in the 1960s. Programming using both machine language (mainly for patches and bug repairs) and basic assembly language was how I first programmed IBM 1401 computers.

My firsthand experience was that machine language was very error prone and also rapidly fatiguing due to the high attention span needed to deal with it. Assembly language was a step in the right direction, but not a very big step. Having to use dozens of assembly instructions to handle calculations or format printed output was time consuming and actually boring. Higher-level languages, starting with ALGOL, COBOL, FORTRAN, PL/I, APL, and others, reduced coding time, significantly reduced coding errors, and converted programming into a viable occupation.
Random-Access Storage

Sequential storage of data on paper tape, card decks, or magnetic tape had a fairly long and useful life. But it was very inefficient and required far too much movement of tapes to achieve high speeds. The invention of disk drives and random-access storage allowed faster processing, sophisticated search algorithms, and a path that eventually would lead to today’s “big data” world with billions of records and millions of files being accessed for specific problems.

Without random access, modern computing and software could handle only a small fraction of important data analysis problems. Random access would also lead to the relational database concept, sorts, and a variety of powerful query languages in the Structured Query Language (SQL) family.

The Impact of Software on People and Society

The time frame in which computers and software have developed has barely been more than 75 years. Yet their impact on individual humans and on societies has been as important as the printing press, airplanes, television, and automobiles.

Beneficial Tools and Applications

The following is a summary of tools and applications that have transformed the way businesses operate; wars are fought; and individuals gather information, communicate, and use their leisure time. It is surprising that these have all originated within the past 50 years. Probably half of these tools and applications are less than 25 years old.

- Business tools
 - Accounting
 - Actuarial studies
 - Advertising via the web
 - Agricultural planning
 - Analytics
 - Bar-code scanners
• Big data
• Budget analysis
• Cloud computing
• Competitive analysis
• Cost and resource tracking
• Cost estimating
• Crowdsourcing
• Customer relationship management (CRM)
• Customer satisfaction analysis
• Customer support
• Distribution optimization analysis
• Electric power grid controls
• Enterprise resource planning (ERP) packages
• Finance
• Governance
• Human resource management
• Inventory
• Investments
• Just-in-time inventory controls
• Legal support
• Marketing
• Oil exploration
• Order entry
• Order tracking
• Planning and scheduling
• Process controls
• Reservation systems
• Risk estimation and analysis
• Robotic manufacturing
• Sales support
• Supply chain management
• Surveys and opinion analysis
• Telephone network controls
• Water purification
• Web retailing
• Databases
 • Graphics and images
 • Music
 • Signals and analog
 • Text and numeric
• Data warehouses
 • Mixed-data forms
• Education tools
 • Comparative education statistics
 • Curriculum planning
 • Customized e-learning for each student
 • Skills inventory analysis
 • Special tools for the handicapped
 • Student research via the web
 • Virtual classrooms
• Embedded devices
 • Automotive engines and brakes
 • Automotive security systems
 • Avionic
• GPS navigation
• Hearing aids
• Manufacturing
• Medical
• Signal processing
• Smart appliances
• Telecommunications

• Government tools
• Air traffic control
• Background verification
• Budget analysis
• Census
• Court records
• Disaster preparedness
• Economic analysis
• Employment statistics
• Environmental monitoring
• Financial controls
• Health and longevity statistics
• Highway siting, design, and construction
• Identity verification
• Land management
• Law enforcement
• Legislative records
• Mandates and regulations
• National defense
• Patent analysis
• Political records
• Pollution monitoring
• Prisons
• Property assessments
• Redistricting
• Regulatory agencies
• Risk analysis
• Taxation
• Traffic analysis and controls
• Unemployment support
• Voter records
• Water supply controls
• Welfare
• Zoning

• Leisure
• Blu-ray and digital video
• Computer games
• Digital music formats
• Geocaching
• Music playlists
• Online magazines
• Streaming video
• Virtual reality worlds

• Medical
• Coordination in real time among medical teams
• External devices
• Implanted devices
• Insurance record keeping
• Lab tests
• Patient hospital monitoring
• Patient records
• Robotic surgical devices
• Statistics: national, global
• National defense
 • Antimissile shields
 • Combat simulation
 • Command and control
 • Cybersecurity
 • Deep ocean monitoring
 • Early threat warnings
 • Encryption and decryption
 • Intelligence gathering and coordination
 • Logistics analysis
 • National Security Agency signal interception
 • Satellite monitoring
 • Secure communications
 • Threat analysis
• Personal tools
 • Blogs
 • Computers
 • Contact lists
 • Daily news feeds
 • Digital appliances
 • Digital cameras
• Digital image processing
• Digital watches
• E-books
• Email
• Graphics
• Handheld full-function digital calculators
• Handicap support for the deaf, blind, etc.
• Home finances
• Instant computer chat
• Music
• Natural language translation
• Presentations
• Scheduling
• Search engines
• Smartphones
• Social networks
• Spreadsheets
• Statistics
• Tablet computers
• Text to speech
• Video processing
• Web browsers
• Word processing

• Professional tools
 • Accounting
 • Analytics
 • Animation and graphic arts
• Architecture
• Civil engineering
• Computer animation
• Data mining
• Drafting
• Economic analysis
• E-learning
• Encryption and decryption
• Engineering
• Intelligent agents for web scanning
• Law enforcement
• Legal support
• Math
• Medical support
• Music composition
• Music recording, playback, and mixing
• National security
• Patent analysis
• Pharmaceutical
• Project management
• Property management
• Publishing
• Real estate listings
• Spell checkers and grammar checkers
• Statistics
• Programming tools
• Application sizing
• Automatic testing
• Complexity analysis
• Configuration controls
• Continuous integration
• Cost and schedule estimation
• Data mining of legacy applications
• Debugging
• Inspection support
• Maintenance and support estimation
• Measurements and benchmarks
• Programming language compilers
• Quality estimation
• Requirements and design analysis
• Requirements modeling
• Reusability analysis
• Risk estimation
• Static analysis
• Test tools (design and execution)
• Virtualization
• Website design and construction

• Protective tools
 • Antispam
 • Antispyware
 • Antivirus
 • Smart alarm systems

• Scientific tools
 • Archaeological analysis
• Astronomical analysis
• Biological analysis
• Chemical analysis
• Computer-enhanced image calibrations
• Computer-stabilized optical devices
• Deep ocean exploration
• DNA analysis
• Epidemiology analysis
• Forensic analysis
• Geological exploration (side-scan radar)
• Linguistic analysis
• Metallurgy
• Meteorology analysis and weather predictions
• Nanotechnologies
• Nuclear device controls
• Physics research equipment
• Self-aiming telescopes for the deaf, blind, etc.
• Simulations of physical phenomena
• Space vehicles, rovers, and satellites
• Visualization

As can be seen from this list, computers and software are making profound changes to every aspect of human life: education, work, warfare, entertainment, medicine, law, and everything else.

Harmful Inventions

Computers and software have also introduced a number of harmful inventions that are listed below, some of which did not exist before. Among the harmful
inventions caused by computers and software are identity theft, hacking, and computer viruses. These are new and alarming criminal activities.

• Browser hijackers
• Computer botnets
• Computer keyboard tracking
• Computer spam
• Computer spyware
• Computer viruses
• Computer worms
• Computerized customer support
• Difficulty in correcting errors in computerized data
• Electronic voting machines without backup
• Hacking tools
• Identity theft
• Phishing
• Piracy
• Robotic telephone calls (robo-calls)
• Robotic weapons systems
• Smart weapons: bombs, drones, and missiles
• Spam
• Special viruses attacking industrial equipment
• Spyware
• Stock market software without anomaly shutoffs
• Unintelligible telephone voice menus
• Web pornography
These threats are comparatively new and all are increasingly hazardous in the modern world. Indeed, identify theft has become one of the largest and most pervasive crimes in human history. It is also an example of a new kind of crime where the criminal and the victim never see each other and can be separated by more than 12,000 miles when the crime takes place.

These harmful aspects of computers and software have triggered new laws and new subindustries that provide virus protection, hacking insurance, and other forms of protection.

These inventions have also led to the creation of new and special cybercrime units in all major police forces, the FBI, the CIA, the Secret Service, the Department of Defense and the uniformed services, Homeland Security, and other government organizations. The emergence of the Congressional Cyber Security Caucus is a sign that these new kinds of cybercrimes are attracting attention at the highest levels of government.

Weighing the Risks

Computers and software are making profound changes to every aspect of human existence. Many readers have thousands of “friends” on social networks. Even more readers follow the daily lives and activities of countless celebrities and personal friends by using “tweets” or short messages. Text messages are beginning to outnumber live telephone calls (and also cost more due to new computerized billing algorithms).

Purchases of electronic e-books recently topped purchases of ordinary paper books. Banks now charge extra fees to provide paper bank statements as opposed to online electronic statements. All of our medical and education records are now computerized and stored in databases.

It would not be possible to book an airline flight or a hotel without computers and software. Indeed, after large snowstorms or hurricanes when power lines are down, many kinds of businesses cease operations because they are no longer equipped to handle manual transactions. Computerized games, including massively interactive games with thousands of simultaneous players, are now the preferred form of entertainment for millions of young people. Modern films use special effects with lifelike realism that are generated by computers. It is even possible to create new roles for actors and actresses who are no longer living by means of computers and software.
The impact of computers and software has been a mixture of good and bad. Certainly, the ability to send emails and text messages and to find information on the web are very useful additions to our daily lives. We use GPS maps on our smartphones almost every time we travel, particularly when we travel to new and unfamiliar locations.

The ability of physicians to communicate instantly with colleagues helps medical practice. Computerized medical diagnostic machines such as CAT scans and MRI equipment are also beneficial. Cochlear implants have restored hearing to thousands of profoundly deaf patients. Robotic manufacturing is cheaper and sometimes more precise than the manual construction of many complex devices.

But the ever-increasing odds of identity theft and the constant need to keep our computers and electronic devices safe from hackers and data theft are a source of continuing worry and also a source of considerable expense.

In evaluating the advantages and disadvantages of computers and software, the weight of available evidence is that software and computers have provided more benefits to the human condition than they have caused harm. Of course, those who have been harmed probably disagree.

But statistically looking at all known uses of computer and software in the modern world, there have been significant benefits in the way we can communicate, transact business, and carry out scientific and engineering work. It is doubtful that any scientist or engineer would want to stop using computers and software. The same is true of many other kinds of work such as health care, law enforcement, accounting, and even real estate.

Summary

This prelude showed the evolution and convergence of many fields that would come together to create modern computers and software. Mathematics, data storage and retrieval, communication methods, and software itself would come together to create the modern era of personal software and personal computing.

Later chapters in this book discuss the evolution of software engineering from the earliest dreams of visionaries in the 1930s through the growth of the largest and wealthiest companies in human history by the end of the 20th century.
This page intentionally left blank
This page intentionally left blank
Index

3D printing, 288
“15 Worst Data Security Breaches of the 21st Century” (Amerding), 358
901 computer, 84
1930 to 1939, 37
 innovators, 37–40
 small mathematical applications, 40–42
1940 to 1949, 43
 global conflicts, 43–44
 historical contributions, 73–75
 postwar era, 68–72
 software applications, 74–75
 software building, 75–76
 World War II. See World War II
1950 to 1959
 cultural perceptions of computers, 80–81
 first commercial computers, 85–89
 function points, 90–91
 innovators, 81–84
 military and defense computers, 77–80
 overview, 77
 programming languages, 84
 software applications, 89–90
1960 to 1969, 93
 automation and new professions, 110–111
 businesses, 115–118
 computer and software growth, 120–122
 credit cards, 109–110
 early specialized outsourcing, 95–96
 evolving workforce, 93–95
 function points, 122–123
 IBM System/360 computer, 104–106
 litigation, 118–119
 PDP-1 computer, 111–112
 programmers, 96–104
 programming languages, 112–115
 space, 119–120
 Turing award, 106–108
1970 to 1979
 background enabling inventions, 159–162
 companies formed, 129–145
 function points in 1975, 162–163
 Honeywell and Sperry-Rand lawsuit, 158–159
 impact of companies, 145
 overview, 125
 software applications, 146–147
 software categories, 147–158
 software evolution, 125–129
1980 to 1989
 companies formed, 168–204
 function points, 204
 overview, 165
 rapid changes, 166–168
 software growth, 204–205
1990 to 1999
 companies formed, 212–237
 function points, 244–245
 innovations, 210–212
 international date formats, 239–242
 mass updates and legacy software, 237–239
 outsourcing, 243
 overview, 207–208
 software growth, 243–244
 World Wide Web emergence, 208–210
2000 presidential election, 368–370
2000 to 2009
 companies formed, 257–283
 dot-com bubble, 248–250
 function points, 284–285
 Great Recession, 250–254
 innovations, 254–257
 overview, 247–248
 software growth, 283–284
2001: A Space Odyssey (Clarke), 81
2010 to 2019
companies and products predictions, 311–327
companies formed, 296–311
function points, 328–329
overview, 287–288
predictions, 288
software engineering improvements, 293–296
software engineering professional status, 289–293
software growth, 327–328
“Abbreviated Computer Instructions” report (Turing), 55
ABC computer, 40, 64–65
Abnow browser hijacker, 366
AbsolutData Research company, 260–261
Accenture company, 171–172
Access
controls, 399–400
evolution of, 17–18
Accord automobiles safety recall, 348
Accounting practices, 133
“Act to Promote the Progress of Useful Arts”, 20
Activity metric in social networks, 309
Ada programming language, 190
Adams, Charley, 72
Adaptive Business Intelligence
(Michalewicz, Michalewicz, Schmidt, and Chiriac), 277
Addition in prehistoric knowledge, 4
Addresses
harvesting, 376–378
munging, 377
Adelman, Leonard, 390
Adhar, Azeem, 309
Administrators, 399
Adobe company, 172–173, 320
Adolphus, Gustavus, 413
Adult videos, 218
Advanced and experimental software, 147
Advanced Research Projects Agency (DARPA), 121
Agile Manifesto, 234, 255
Agile system, 190–192, 225, 256
Agnew, Spiro, 127
Aiken, Howard H., 40, 66–67
Air-traffic control systems
need for, 88–89
shutdown, 341–342
Airbus A380 wiring problem, 344–345
Airport luggage handling failure, 337–338
Akamai company, 214
Albrecht, Allan
backfiring, 226
function point metrics, 106, 161–162, 419
at SPR, 196–197
Alcatel company, 166
Aldrin, Buzz, 119
Alexander, Keith, 405
ALGOL language, 84
Algorithm, concept of, 39
Allen, Paul
entrepreneur of year, 180
Microsoft founding, 131, 138–139
wealth of, 145
Alphabetic languages, 21
Altair Basic language, 131
Altair computers, 131–132
ALTOPS architecture, 399
Amazon company, 214–216
Amdahl, Gene, 104, 106
Amdahl computers, 106
Amerding, Taylor, 358
America Invents Act (AIA), 269
America Online (AOL)
accidentally exposed records, 360
Netscape acquisition, 229
overview, 173–174
phishing on, 382–383
American Express credit cards, 109
American Institute of Electronic Engineers (AIEE), 68
American Medical Association (AMA), 414
American National Standards Institute (ANSI) standard date format, 239
American Programmer magazine, 145
American Standard for Information Interchange (ASCII), 95
Amster, Geoffrey, 276
AN/FSQ-7 Combat Direction Central computer, 79
Analog computers
1960s, 117
espionage, 48
gun control, 42
World War II, 46–47
Ancient times to modern era, 1
beneficial tools, 23–32
harmful inventions, 32–34
human need to compute, 1–3
mathematics inventions, 8–20
numerical knowledge, 3–8
risks, 34–35
software inventions, 21–23
Andersen Consulting company, 171
Andreesen, Marc, 228, 261
Andreesen Horowitz company, 261
Android operating system, 175
Andrus, Cashman, 310
AngelPad company, 298–299
Angles in prehistoric knowledge, 4
Animation, 151
Anonymous group, 356, 361, 373
Anti-Phishing Working Group, 383
Antiaircraft guns, 57
Antitrust lawsuits
IBM, 136
Microsoft, 210, 249, 255
Sperry-Rand and Honeywell, 118–119
Antivirus programs
bug, 345
development of, 199, 354
effectiveness of, 396–397
free, 174
Apache company, 216
Apache Software Foundation, 216
APL programming language, 114
Apollo Guidance Computer (AGC), 119
Apollo spacecrafts, 119–120
Apple Computer
Adobe dispute, 173
founding, 131
NeXT lawsuit, 187
Objective-C for, 166
overview, 132
wealth from, 145
Appliances, smart, 309
Application life cycle management (ALM), 176
Applied Software Measurement (Jones), 411
Appraisals, real estate, 281–283
Archon Information Systems, 262
Argots, 209
Ariane 5 rocket explosion, 338–339
“Arms and Insecurity” (Richardson), 323
Armstrong, Neil, 119
ARPANET, 121
Art of Software Testing (Myers), 146
Artemis company, 197
Arthur Andersen company, 172
Artificial intelligence (AI), 397–398
Artzt, Russell, 132
ASCII coding system, 109
Assembly language, 22, 84
Assessment and Control of Software Risks (Jones), 410
Association of Computing Machinery (ACM), 68
Astronomical time, 241–242
AT&T
Datnet modem, 109
telephone lines shutdown, 336
Atanasoff, John Vincent, 38, 40, 64–65, 158
Atomic bombs
EMP, 375–376
Soviet Union, 69
Auction Bid company, 218
Audience metric for social networks, 309
Auerbach, Tjark, 174
Australia in World War II, 52–53
Australian Computer Society, 68
Authentication controls, 400
Authority metric in social networks, 309
Authr company, 299
Autoflow software, 114
Automated function points, 226
Automated Project Office (APO) tool, 178
Automated teller machines (ATMs)
 development of, 95
 skimming, 384
Automatic abacus machine, 50
“Automatic Computing Engine” (ACE) (Turing), 55, 65
Automatic Sequence Controlled Calculator (ASCC), 40, 66
Automation in 1960s, 110–111
Automotive safety recalls, 348–349
Avira antivirus company, 174
Axon Corporation, 235

Baan, Jan, 132
Baan, Paul, 132
Baan Corporation, 132
Babbage, Charles, 40
Babbage analytical engine, 9, 40
Babylonia, prehistoric knowledge in, 6
Backfiring, 122, 226
Background enabling inventions, 159–162
Backus, John, 67
Baez, Joan, 411
Bagle botnet, 364
Baidu company, 222
Baker, Mitchel, 273
Bales, Steve, 120
Ballister, Andrew, 304
Ballmer, Steve
 spam report, 387
 wealth of, 145
Ballots, 367–371
Bank of America credit cards, 109
BankAmerica Services Corporation, 109
Banks
 automation in, 94
 credit cards, 109–110
 hacking targets, 371
 mortgage foreclosures, 253
 paper statement fees, 34
 predictive analysis, 324
 QIF format, 184
 security offices, 396
 vertical markets, 126, 141
Bar-El, Hagai, 386
Bardeen, William, 81–82
Bargava, Rajat, 310
Barker, John, 276
Barrios, Brian P., 262
Barron's Magazine dot-com article, 249
Barton, Rich, 281
Bartoo, Jim, 267
BASIC programming language
 development of, 114–115
 Microsoft, 138–139
Bauer, F. L., 103
Bawdsey Research Station, 58
Baxter, William, 119
Bazaar service, 263
Beard, Malcom, 53
Beck, Kent, 255
Beckman hybrid computer, 117
Beede, Mike, 255
Bell, Alexander Graham, 182
Bell, Gordon, 415
Bell, Gwen, 415
Bell Labs firewalls, 355
Bellows, Matthew, 310
Ben-Horin, Daniel, 200
Benchmark data, 225–227
Beneficial tools and applications, 23–32
Berners-Lee, Tim
 NeXT computer used by, 188
 World Wide Web, 208
 “World Wide Web” term, 166
Bernoulli Box, 168
Berry, Clifford, 38, 40, 64
Bezos, Jeff
 Amazon, 214–215
 wealth of, 145
Bibliography and references, 407
 book sources, 407–415
 web sources, 415–421
Big data, 149, 312
Bill and Melinda Gates Foundation, 219
Binary Automatic Computer (BINAC), 72
Binary numbers, 21–22
Binary synchronous communication, 95
Biometric identification, 385, 400
Bitcoin method, 302–303
BitDefender, 355
Black Hat conference, 353
Black hat hackers, 353
Black Point Park, 63
Black Point ship, 63
BlackBerry company, 174–175
Bletchley Park, 54
Blind people
 future products, 322
 virtual education, 316, 320
 wearable computers for, 327
Blogs, 296
Blue boxes, 352
Blue hat hackers, 353
“Blue ox” bombsight, 59
Blueprints tool, 263
Bluetooth hijacking, 363–364
Boat building and navigating, prehistoric knowledge for, 7
Boehm, Barry, 106, 407
Bogardus, Claude, 119
BOMARC supersonic guided missile, 80
Bombe machine, 54
Bombights
 Lotfernrohr 7, 48
 Norden, 59–61
Bonsignour, Olivier, 411
Booch, Grady, 191
Book sources, 407–415
Books for storage, 18
Boole, George, 39
Borland company, 175–177
Bosack, Leonard, 178
Boston Computer Museum, 415–416
Boston Consulting Group (BCG), 96
Bot herders, 364
Bot masters, 364
Botnets, 364–365
Bottlenecks in von Neumann architecture, 66
Bougnion, Edouard, 236
“Bouncing ball” game, 72
Bownman, Eric, 299
Brahe, Tycho, 324
Brahmagupta (mathematician), 22
Brain size, 4
Brattan, Walter, 81–82
Brazil, function points in, 255–256
Bricklin, Dan, 161, 421
Brin, Sergey
 Google development, 210, 222
 wealth of, 145
Brindley, Doug, 197
Briskman, Robert, 232
Brisman, Julissa, 217
British Computer Society, 68
British Computer Society, 68
British passport system failure, 339–340
“Bronze goddess”, 54
Brook, Isaac S., 53, 82
Brooks, Fred
 IBM lab, 121
 influence of, 145
 on JCL, 114
 Mythical Man-Month, 104, 146, 408
 Turing award, 106
Broward County, Florida, electronic voting problems in, 368
Browser wars, 210, 229
Browsers
 competition, 273–274
 development of, 208
 hijackers, 365–366
Brunner, John, 390
Bryce, James, 67
Buchanan, Pat, 369
Buckmaster, Jim, 217
Buddha
 encryption, 402
 teaching transmissions, 17
Buick automobiles safety recall, 348
Built-in cameras on portable computers, 399
Bull, Fredrik Rosing, 52
Bull company, 52
Burroughs company, 88
Bush, George H. W., 209
Bush, George W., 369–370
Bush, Vannevar, 37
Buscom company, 50
Business software, 147–148
Business-to-business (B2B) software, 132
Business tools, 23–25
Butterfly ballots, 369
Butterfly ballots, 369
Button, Beau L., 262

C programming language, 112
C&E Software company, 198
CACHE database, 138
Cadillac automobiles safety recall, 348
Cagle, Stan, 131
Calculating devices, evolution of, 10–14
Caliber product, 176
Cameras on portable computers, 399
Camino browser, 273
Camp Varnum, 63
Campbell-Kelly, Martin, 408
Campuses, virtual, 315–321
CAN-SPAM Act, 387
Canonical, Ltd., 262–263
Capability Maturity Model (CMM), 192–193
CAPTCHA method, 377
Carmack, John, 188
Carr, Robert O., 223
Cartridges in APO, 178
Cassandra, 325
CAST Software company, 404
Catal Huyuk settlement, 4
Cathedral and the Bazaar (Raymond), 154
Cavity magnetrons, 61
Celebrities on Twitter, 279
Centre Electronique Horloger (CEH), 160
Cerullo, John, 138
CGI Informatique company, 145
Chamberlain, Neville, 60
Change control improvements, 294
Channels for distributing information, 9
Charitable activities, 291
Freelanthropy, 265–266
GoDaddy, 221
Chawla, Rajeev, 300
Chawla, Raman, 300
Chen, Richard, 298
Chen, Steve, 280
Chess programs, 232
Chief Information Security Officers (CISOs), 393
Chief Security Officers (CSOs), 393
Child training in ancient times, 7
Chino, Kobun, 411
Chiriac, Constantin, 277
Cincom company, 119
Cipher systems, 49
Cisco Systems, 178–179
CivicSource brand, 262
Civilian cyberwarfare targets, 371–372
Clancy, Tom, 231
Clark, Jim, 228
Clare, Arthur C., 81
Classrooms, virtual, 315–321
Clerical work in 1960s, 94
Climis, Ted, 121
Cloud applications, 257
CloudVelocity company, 299–300
CMM levels, 212
CMMI, 192–193, 403
COBOL language, 84
Cochlear implants development of, 160
future products, 322
wearable computers, 326
Cockburn, Alastir, 255
CODASYL data model, 114, 135
Codd, Ted
DCI seminars, 179
IBM lab, 121
relational databases, 139, 159
SECC, 67
Code Breakers (Kahn), 401–402
Code-breaking programs, 55
Code Complete: A Practical Guide for Software Construction (McConnell), 413
Code talkers, 16
Cohen, Fred, 353, 390
Cold War era, 68–69
beginning, 69
computer development, 69–72
military and defense computers, 77–80
Coleman, Dennis, 198
Collins, Susan, 356
Colossus computer, 54–56
Colt, Samuel, 412
Commercial computers, first, 85–89
COMMON association, 87
Common Cause site, 368
Communication channels, evolution of, 15–17
“Communications, Computers, and Networks” (Gore), 209
Communications software, 148
Compact disk read-only memory (CD-ROM), 168
Companies
1970s, 130–145
1980s, 168–204
1990s, 212–239
2000s, 257–283
2010s, 296–311
predictions, 311–327
Compaq company, 143–144
Compilation, 99
Computable Document Format (CDF), 202
Computer Aid, Inc. (CAI), 177–178
Computer Associates (CA), 132–133
Computer Emergency Response Team (CERT), 194, 354
Computer Fraud and Abuse Act, 391
Computer-game companies, 260
Computer History Museum, 416
Computer programmers in 1960s, 96–104
Computer Science Lab, 416
Computer security engines, 397–398
Computer Society of India, 68
“Computer” term, 44
“Computer virus” term, 353
“Computer Virus: Theory and Experiment” (Cohen), 353
Computer voting fraud, 366–371
ComputerMentor Project, 200–201
Computerspielemuseum, 416–417
Conferences in virtual education, 318
Conficker botnet, 364–365
Congressional Cyber Caucus, 110, 355, 372, 417
Consolidated Edison company, 128
Constantine, Larry, 145–146
Continuous operations in SAGE, 78
Control Data Corporation (CDC), 88
Control program for microprocessors (CP/M) operating system, 136
Control Video Corporation, 173
Cook, Scott, 183
CoolWebSearch browser hijacker, 366
Copy protection scheme, 343–344, 383
Copyleft, 154, 275
Copyright lawsuit of Borland and Lotus, 176
Core memory, 70–72
Core ropes, 119–120
Corporate databases, 355
Corporations
data theft from, 372–373
virtual education, 318
Cost per defect metric, 225, 284
Costs
cyberattacks, 402–406
identity theft, 395
software projects, 306–307
virtual education, 319–321
weapons and defense, 323
Council for Scientific and Industrial Research Automatic Computer (CSIRAC), 52–53
“Cowboy programming”, 98
Cox, Brad
Objective-C, 166
Stepstone Corporation, 197
Cyber Security Agency, 403
Cybercrime and cyberwarfare, 357
access controls, 399–400
attack types overview, 362–363
authentication controls, 400
Bluetooth hijacking, 363–364
Botnets, 364–365
browser hijackers, 365–366
civilian targets, 371–372
corporate theft, 372–373
credit cards, 109, 223–224
criminal activities, 33–34
defenses, 354–356, 394–396
denial of service attacks, 374–375
defenses, 354–356, 394–396
e-mail address harvesting, 376–378
EMP, 375–376
EMP protection, 401
encryption, 401–402
frequency and cost, 404–406
future, 288, 313–314
growth, 358–362
hacker invasion, 352–354
history, 351–352
identity thefts, 378–379
immunity to, 396–399
insurance, 403
Java attacks, 379–380
keyboard trackers, 380–381
macro attacks, 381
odds of being attacked, 392–394
overview, 351
pharming, 381
phishing, 381–383
recovery costs, 402–403
rootkits, 383–384
secure programming languages, 404
seriousness, 356–358
skimming, 384–385
smart card hijacking, 385–386
software, 148–149
spam, 387–388
SQL injection attacks, 388
start of, 256
Trojans, 388–389
unsecured networks, 373–374
viruses, 389–390
voting fraud, 366–371
worms, 390–391
zero-day security attacks, 391–392
Cybersecurity in virtual education, 319
Cyclomatic complexity metric, 160, 182

Dahl, Duane, 275
Daimler automobiles safety recall, 348
Damphousee, Brad, 304
Dasai, Keval, 298
Data encryption, 398, 401–402
Data theft
 from corporations, 372–373
 from unsecured networks, 373–374
Data warehouses, 25
Database management systems (DBMS), 95
Database software, 149
Databases, 25, 139, 159, 355
Datamnet modem, 109
Date formats, 239–242
Date-related software updates, 238
Datta, Sudeshna, 260
Dave and Buster’s company, 224
David’s Consulting Group, 197
Davidson, Mary Ann, 357
Deaf people
 virtual education, 320
 wearable computers for, 326
Debit card information
 skimming, 384
 theft, 373
Decimal numbers, 21–22
Decimal point, 21
Decline and Fall of the American Programmer (Yourdon), 144, 414
Deep Blue supercomputer, 232
Defect removal, 290
Defense Advanced Research Projects Agency (DARPA)
 cybercrime response unit, 354
 for SEI creation, 192
Defense computers in 1950s, 77–80
Defenses for cyberattacks, 354–356, 394–396
Degrees from virtual education, 319
Delphi product, 176
Demand for programmers in 1960s, 100–103
DeMarco, Tom, 408
DeMarco, Tony, 140
Deming, W. Edwards, 50, 83
Deming Prize, 83
Democratic National Committee (DNC) headquarters break-in, 127
Denali Systems, 300
Denial of service attacks, 364, 374–375
Dennard, Robert, 70
Denver airport delays, 337–338
Depth charges, 58, 63
Derby, Jack, 278
Desk checking, 99
Devine, Scott, 236
Devlin, Mike, 189
Diamond v. Diehr, 20
DIANA metalanguage, 190
Differential calculator, 37–38
Digital computers for software, 22
Digital Consulting Institute (DCI), 179–180
Digital Domain company, 249
Digital Equipment Corporation (DEC) company
 Compaq acquisition of, 144
 creation, 88
 firewalls, 355
 PDP-1, 110–112
Digital Playground company, 217–218
Digital Research company, 135–136
Digital video disks (DVDs), 168, 211
Digital watches, 160
Dijkstra, Edsger, 103
Diners Club credit cards, 109
Disabled people, virtual education for, 316
Disk drives, 159
Disk operating systems (DOS), 136, 166
Distributing information, channels for, 9
DNS analysis tool, 389
DNS Changer Trojan, 388–389
Doenitz, Karl, 63
Domain Name System (DNS), 221
Domain names, 264
Dorsey, Jack, 255, 279
Dot-com bubble, 248–250
Douglass, Charles, 196
“Dr. Dobb’s Journal of Tiny Basic Calisthenics and Orthodontia” journal, 135
Dr. Dobb’s site, 417
DR DOS operating system, 136
DRAM, invention of, 70
Draper, Charles Stuart, 120
Duffield, Dave, 189
Duffy, Tim, 271
Dummer, Geoffrey, 82
Duquesne, Fredrick, 48
Duval County, Florida, election problems in, 369
Dylan, Bob, 411
Dynabook notebook computer, 117
Dynamic modeling, 191
E-books
 readers, 215
 virtual education, 317
E-learning tools, 320
E programming language, 404
EAI 680 scientific hybrid computer, 117
Eames, Ray, 418
Early Office Museum, 94
Early-warning system failure, 334
eBay company
 craigslist ownership, 217
 overview, 218–220
Eckert, J. Presper
 EMCC, 72
 ENIAC computer, 65
 ENIAC lawsuit, 158
 UNIVAC computer, 82
Eckert, Wallace John, 67
Eckert-Mauchly Computer Company (EMCC), 72
Economic importance, 2
Economics of Software Quality (Jones and Bonsignour), 411
Education
 future, 314–321
 software, 149–150
 tools, 25
EDVAC computer, 65
Edwards, Nathan, 399
Egypt, prehistoric knowledge in, 6
Einstein, Albert, 49
Electrical Numerical Integrator and Computer (ENIAC)
 Honeywell and Sperry-Rand lawsuit, 158–159
 overview, 64–65
 Sperry-Rand against Honeywell case, 118–119
 women programmers, 44
Electromagnetic pulses (EMP), 375–376, 401
Electronic Data Systems (EDS) company, 96, 133
Electronic Delay Storage Automatic Calculator (EDSAC), 70–71
Electronic Discrete Variable Automatic Computer (EDVAC), 55
Electronic Systems and Software company, 368
Electronic voting ballots, 367–371
Ellison, Larry
 DCI seminars, 179
 in Jobs, 411
 Oracle founding, 139
 wealth of, 145
Email addresses
 harvesting, 376–378
 phishing, 382
Embedded devices, 25–26, 78
Embedded software, 150–151
EMC corporation, 236
Emmott, Bill, 309
Employment websites, 227
Enabling inventions, 10, 18–20
Encryption, 398, 401–402
English, Larry, 134
ENIAC computer, 64–65
 Honeywell and Sperry-Rand lawsuit, 158–159
 overview, 64–65
 Sperry-Rand against Honeywell case, 118–119
 women programmers, 44
Enigma code machine, 44, 49, 51
Entertainment software, 151
Epsilon company, 359
Equal rights and equal pay, 38, 44
Equifax company, 379
Equivalency determination, 201
Ericsson, John, 412
Ericsson AXE telephone switching system, 384
Espionage, analog, 48
Estimating Software Costs (Jones), 410
Estonia, internet shutdown in, 359–360
ESTSoft company, 360
Eubanks, Gordon, 198
Euro currency, 237
European Network, 403
Everett, Robert, 71
Evolving workforce in 1960s, 93–95
Ewing, Mark, 230
Excel documents, macro attacks in, 381
Expensive Typewriters, 112
Experian company
 identity theft support, 379
 portfolio management, 272
Extended Binary Coded Decimal Interchange Code (EBCDIC), 95
Extreme Programming (XP), 256
Facebook, 157
 introduction, 255
 overview, 263–265
 virtual education, 317
FaceSmash site, 263
Fad, Bruce, 140
Fadell, Tony, 308
Fagan, Michael, 162, 408
Falkoff, Adin, 114
Families of computers, 105
Faraday boxes, 401
FBI Trilogy project failure, 342–343
Federal Aviation Administration (FAA), 89
FedEx
 overview, 129
 reliance on computers, 145
Fermi, Enrico, 49, 375
Festinger, Leon, 412
Fidelity Growth Partners, 261
Field-length problems, 340–341
Fink, Lloyd, 281
Fire-control computers, 56
Firefox browser, 229, 273
Firewalls, 355, 396–397
First commercial computers, 85–89
“First Draft of a Report on the EDVAC” (von Neumann), 65
Fischer, Thomas, 137
FISH machines, 49
Fitch’s company, 272
Fiverr company, 301–302
Flame attacks, 361
Flash drives, 254
Flashback Trojan malware, 379
Flattr company, 302–303
Floppy disks, 159
Florida, electronic voting problems in, 368
Flowers, T. H., 54
“Fly-by-wire” systems, 120
Follett tool, 320
Ford, Gerald, 127
Ford automobiles safety recall, 348
Foreclosures, 252–253
Forrester, Jay, 70–72
FORTRAN programming language, 84, 88
Foster, Peter, 403
Foundry Group, 310
Fowler, Martin, 234, 255
Frame, Jim, 121
France in World War II, 52
Frankston, Robert, 161, 421
FreaX operating system, 275
Free Standards Group, 274
Free wireless networks, 373–374
Freelanthropy group, 201, 265–266
Freemium business model, 311
Freiman, Frank, 140
Freitas, Nancy, 137
Frequency and costs of U.S. cyberattacks, 404–406
Friden Flexowriters, 111
Fuel hedging, 130
Function points
1955, 90–91
1963, 122–123
1975, 162–163
1985, 204–205
1995, 244–245
2005, 284–285
2015, 328–329
overview, 225–226
use of, 167
Future System operating system, 146
Gack, Gary, 408
Galorath, Dan, 136
Galorath Incorporated, 136–137
Games
bouncing ball, 72
companies, 260
software, 151
Spacewar, 112
success of, 231–232
Gandy, Steve, 271
Gates, Bill
browser suit, 210
on education, 149
entrepreneur of year, 180
in Jobs, 411
Microsoft founding, 131, 138–139
referred IBM to Kildall, 136
social issues, 174
spam to, 387
wealth of, 145, 166
Gates, Mary Maxwell, 105, 139
Gates, Rick, 254
Gauss virus attacks, 372
Geekli.St organization, 303
Gender discrimination, 38, 44
Geological time periods, 241
GeoStar system, 232
Germany in World War II, 47–49
Gerrold, David, 353, 390
Geschke, Charles, 172
Gibson, William, 353
Gift of Hearing Foundation (GOHF), 200
Gilb, Tom, 408
Glad, Mole, 175
Glass, R. L., 409
Global conflicts in 1940s, 43–44
Global Insight company, 266–267
Global Payments company, 373
Global System for Mobile Systems Communications (GSM) standards, 278
Global warming reversal method, 268
Glushkov, V. M., 53
Gmail, spam blocking by, 388
GNU General Public License (GPL), 153–154, 275
GNU project, 275
GoDaddy Bowl, 221
GoDaddy company, 220–221
Goetz, Martin, 114
GoFundMe organization, 304
Goldsmith, Thomas, 69
Golf courses mapping, 211
Gonzalez, Albert, 224, 359
Google company
cloud, 300
hacked, 360
overview, 221–223
search engine, 210
Google Glasses, 223, 325–327
Google Maps product, 223
Google Ventures, 310
Googolplexes, 222
Gore, Al, 209, 369–370
Government programs, 324–325
Government-sponsored botnets, 364
Government tools, 26–27
Gow, Brad, 403
GPS satellites
 golf courses, 211
 notebooks and tablets tracking, 398
Graham, Dorothy, 408
Graphical history of mathematics, 9
Gray, Elisha, 182
Gray hat hackers, 353
Great Britain in World War II, 54–59
Great Recession, 250–254
Green, Diane, 236
Green, Michael, 142
Grenning, James, 255
Grosch, Herb, 67
Ground Observation Corps, 79
Groupe Bull company, 52
Groves, Ken, 411
Guest speakers for virtual education, 318
GUIDE association, 87
Guided missile, 80
Gulf War, patriot missile target error in, 336–337
Gun control computer, 42
Hacker invasion, 352–354
Hacking, 148–149
Hactivism, 356
Hambrecht and Quist company, 135
Hamilton, Francis, 67
Hamilton company, 160
Harappa city, 6
Harmful inventions, 32–34
Hartford Coliseum collapse, 333
Harvard architecture, 66
Harvard Connection project, 264
Harvard Mark I computer, 40, 56, 66–67
Harvesting bots, 377
Health condition monitoring, 326
Healy, Jim, 121
Hearing aids
 future products, 322
 wearable computers for, 326–327
Heartland Payment Systems
 credit card theft from, 358–359, 373
 overview, 223–224
Hector, Hans-Werner, 142
Heil, Oskar, 82
Hemy, Derek, 86
Henderson Carriage building, 195
Hendrix, Gary, 198
Henricsen, Ole, 175
Henry-Dahl, Cindy, 275
Hewett, William, 40
Hewlett-Packard company, 40, 404
Hexadecimal numbers, 21
High Performance Computing and Communications Act, 209
Higher-level programming languages
 evolution of, 161
 overview, 22
Highsmith, Jim, 255
Hijacklers, browser, 365–366
Hill, Peter, 225
Hill, Winslow, 177
History of the Software Industry: From Airline Reservations to Sonic the Hedgehog (Campbell-Kelly), 408
History Timelines site, 417–418
HIVE Group, 267–268
Hoff, Ted, 50
Home heating and cooling control product, 308
Home networks, 373
Honda automobiles safety recall, 348
Honeypots, 377
Honeywell company
 Nest Labs lawsuit, 309
 Sperry-Rand lawsuit, 158–159
Hoover’s Business Guides site, 418
Hopp, Detmar, 142
Hopper, Grace
 Mark I design, 40, 66
 oral recordings, 421
Horing, Jeff, 224
Horowitz, Ben, 261
Huawei company, 180–182
Huawei Symantec company, 199
Hub-and-spoke model, 129
Hughes, Chris, 263
Human need to compute, 1–3
Human resource management systems (HRMS), 188–189
Humphrey, Watts, 409
software assessments, 166
TSP, 256
Hunt, Andrew, 255
Hurley, Chad, 280
HYCOMP desktop hybrid computer, 117
HYDAC 2400 hybrid computer, 117
Hypertext markup language (HTML), 208
Hypertext transfer protocol (HTTP), 208
IBM
antitrust lawsuit, 119, 136
Apollo program, 120
Automatic Sequence Controlled Calculator, 66
Bull lawsuit, 52
first commercial computers, 86–88
function points, 162–163
graphical history of mathematics, 9
longevity of, 128
Lotus acquisition, 186
magnetic core memory, 72
magnetic tape, 109
personal computer release, 166
IBM 650 computer, 87–88, 98
IBM 701 computer, 86–87
IBM 1401 computer, 98–100, 110–111
IBM 1403 printer, 99–100
IBM 5100 computer, 160
IBM 7090 computer, 87
“IBM and the Seven Dwarves”, 115
IBM Corporate Archives site, 418
IBM Math Timeline site, 418
IBM Rational company, 191–192
IBM System/360 computer, 104–106
Ichitaro, Kawaguchi, 50
Identity Theft Resource Center, 379
Identity thefts
costs, 395
highest incidence states, 396
overview, 378–379
pervasiveness, 34
Ideograms, 21
IEEE Computer Society site, 418–419
“Illustrated History of Computers”, 416
Immunity to cyberattacks, 396–399
Impact of software on people and society
beneficial tools and applications, 23–32
harmful inventions, 32–34
risks, 34–35
IMSAI computers, 131–132, 137
IN04 directive, 255
India
encryption in, 402
scholars, 8
Industrial sites, cyberattacks on, 372
Information management system (IMS), 95, 135, 137
Information storage and access
distribution channels, 9
evolution of, 17–18
recording information, 14
“Information superhighway” term, 209
Information Technology Metrics and
Productivity Institute (ITMPI)
description, 177, 255
website, 419
Infrastructure costs for virtual education, 320
Injection attacks, 358–359, 388
Innovators and innovations
1930s, 37–40
1950s, 81–84
2000s, 254–257
Inprise company, 176
Insight Venture Partners, 224
Instant messaging for phishing, 382
Instant translation, wearable computers
for, 326
Institute for Numerical Analysis, 81
Institute of Electrical and Electronic
Engineers (IEEE), 68
Institute of Radio Engineers (IRE), 68
Instructional staff for virtual education, 315–317, 320
Insurance companies in 1960s, 94
Index

InterProgram programming language, 53
InterSystems Corporation, 137–138
Intuit company, 183–184
Intuit Quicken product, 183–184
Inventions for improved mathematics calculating, 10–14
communication channels, 15–17
enabling, 18–20
overview, 8–10
recording information, 14
storing information, 17–18
Inventions overview
background enabling, 159–162
harmful, 32–34
for software, 21–23
Investigation on The Laws of Thought (Boole), 39
Iomega Zip Disk, 168
iPads, 256
iPhones, 256
Iran, cyberattacks on, 360–361, 372
Isaacson, Walter, 132, 149, 409
ISBSG company, 225–227
IStation tool, 320
IT History Society site, 420
Italy, function points in, 256
Iverson, Ken, 114, 121
Iyengar, Amand, 300
J. Lyons Company, 85
Jackson, Thomas Penfield, 210
Jacobsen, Ivar, 190–191
Jaech, Jeremy, 235
Jaguar automobiles safety recall, 348
Japan
training in ancient times, 7
World War II, 50–51
Java programming language attacks, 379–380
Jazz product, 186
JBuilder product, 176
JD Edwards company, 189
Jeffries, Ron, 255
Jensen, Niels, 175

Insurance for cybertheft and cyberattack damages, 403
Integrated circuits
development of, 81–82
as enabling invention, 20
patent, 83
Integrated Data Base Management System (IDMS), 135
Intel Pentium chip division problem, 337
Intellectual Ventures, 268–269
Intellectual Ventures Labs, 268
Intelligent agents
description, 202
future, 321–322
Intelligent Assistant tool, 198
Interactive Productivity and Quality model (IPQ), 114
InterBank Card Association (ICA), 110
International Computers Limited (ICL), 86
International cyber warfare, 372
International date formats, 239–242
International Function Point Users Group (IFPUG)
in Brazil, 255–256
ISBSG functions points, 225
move to U.S., 167
website, 419–420
International Organization of Standards (ISO) standard date format, 239–242
International Software Benchmark Standards Group (ISBSG), 225
formation, 211
function point projects, 256
website, 420
Internet Crime Complaint Center, 396
Internet Crime Report, 396
Internet Explorer browser, 273
Internet Impact Awards, 270
Internet Marketing Association (IMA), 270
Internet pornography, 218
Internet protocol (IP), 352
Jesse, H. William, 267
Jet aircraft, 88
Job control language (JCL), 113–114
Jobs, Steve
Apple founding, 131
biography, 132, 149, 409
DCI seminars, 179
on education, 149
entrepreneur of year, 180
NeXT company, 187
Objective-C, 198
Turing award, 106
wealth of, 145
Xerox influence, 117
Johnson, Ted, 235
Joint Application Design (JAD), 212
Jolt awards, 417
Jomax Technologies, 220
Jones, Capers
Applied Software Measurement, 411
Assessment and Control of Software Risks, 410
Economics of Software Quality, 411
Estimating Software Costs, 410–411
Namco Analytics founding, 304
Program Quality and Programmer Productivity, 146
Software Engineering Best Practices, 411
SPR founding, 194
Jones, Eileen, 194, 200
“Joone” film maker, 217
Joule programming language, 404
Juran, Joseph, W., 50, 83
Just-in-time manufacturing, 152
Kahn, David, 401–402
Kahn, Philippe, 175
Kama Sutra, 402
Kanatsiz, Sinan, 270
Kapor, Suhale, 260
Kapor, Mitch
Lotus founding, 186
Mozilla Foundation funding, 273
Karim, Jawed, 280
Kasner, Edward, 222
Kasparov, Gary, 232
Kaspersky company, 355
Kasputys, Joseph, 267
Katz, Reuben, 303
Katzman, James, 142
Kaufman, Micha, 301
Kaul, Anil, 260
Kay, Alan, 117
Kelleher, Herb, 130
Kemeny, John, 115
Kemp, John, 19
Keppler, Johannes, 324
Kern, Jon, 255
Key inventions for software, 21–23
Key process areas (KPAs), 192
Keyboard trackers, 380–381
Kilburn, Tom, 69
Kilby, Jack, 83
Kildall, Dorothy, 135
Kildall, Gary, 135–136
Kindle e-book readers, 215
King, Earl, 140
King, Ernest, 62
King George V battleship, 42, 56
Knight Capitol stock-trading software problems, 347
KnowledgePLAN tool, 196
“Known Attacks Against Smart Cards” (Bar-El), 386
Kongo Gumi company, 128
Korte, Thomas, 298
KPMG company, 184–185
Kubrick, Stanley, 81
Kuhn, Thomas, 412
Kumar, Sanjay, 133
Kurtz, Thomas, 115
Kurtzman, Clifford, 238
LaCrosse automobiles safety recall, 348
Lang, Luke, 300
Langevin, James
Congressional Cyber Caucus, 110, 355
Cyber Security Act, 372
Language levels, 123
Languages
 alphabetic, 21
 programming. See Programming languages
Larson, Earl R., 158
Las Zetas drug cartel, 361
Late millennium bug, 386
Latent security flaws, 403
Law, future of, 319
Lawson, Richard, 138
Lawson, William, 138
Lawson Software, 138
Lawsuits
 Apple and NeXT, 187
 Borland and Lotus, 176
 Bull and IBM, 52
 CA and Electronic Data Systems, 133
 embedded software, 151
 Facebook, 265
 Honeywell and Sperry-Rand, 118–119, 158–159
 IBM and Digital Research, 136
 Microsoft and Intersystems, 138
 Microsoft antitrust, 210, 249, 255
 Nest Labs and Honeywell, 309
 Oracle and SAP, 139
 patent, 20, 269
 Sony copy protection, 344
 thumb drives, 254
Lazaridis, Mike, 174
Leaf automobiles safety recall, 348
Learning and education
 future, 314–321
 software, 149–150
 tools, 25
Lebanon, cyberattacks on, 361
Lebedev, S. A., 53, 82
Legacy applications
 1990s, 237–239
 2000s, 257
 maintenance of, 295
Lehman Brothers company, 251
Lehnert, Markus, 310
Leighton, Tom, 214
Leisure tools, 27
LEO computer, 85–86
LEO Computers Limited company, 86
Leon County, Florida, electronic voting problems in, 368
Lerner, Sandy, 178
Levy, Paul, 189
Lewin, Daniel, 214
Leyden, John, 386
Li, Robin, 222
Libraries
 for storage, 18
 virtual universities, 316
Licenses
 GNU, 153–154, 275
 software engineering, 289
 virtual education, 317
Liebman, Joe, 355–356
Lieberman Collins Cyber Security Bill, 356
Life expectancy of American corporations, 128
Lillenfield, Julius, 82
Lines of code (LOC) metric, 167, 225
LINK trainer, 71
Linked oscillating systems, 252
LinkedIn network
 data thefts from, 373
 lengthy messages, 279
 virtual education, 317
Linux Foundation, 274
Linux operating system
 development of, 210
 emergence of, 274–275
 kernel, 230
 Ubuntu version, 262
Linux Trademark Institute, 275
LISP language, 84
Lister, Tim, 408
Litigation. See Lawsuits
Littlejohns, Doug, 231
Local information in virtual education, 317
Logarithms, 21–22
London Science Museum, 9
Long lance torpedoes, 30
Los Angeles Airport (LAX) air-traffic controls shutdown, 341–342
Lotfenrohr 7 bombsight, 48
Lotus company
 Borland lawsuit, 176
 overview, 186–187
Lotstaunou, Jack, 142
Love, Tom
 Object Lessons, 412–413
 Stepstone Corporation, 166, 197
Luggage handling failure, 337–338
Lulzsec group, 373
Lyons Electronic Office computer, 86

M-1 computer, 82
Machine language
 limitations, 22, 84
 small mathematical applications, 41
Macro attacks, 381
Macro instructions, 84
Magnetic core memory, 70–72
Magnetic tape, 109
Magneto-optical drives, 188
Magnetrons, 61
Maintenance of legacy applications, 295
Malone program, 263
Malware term, 381
Malwarebytes tool, 313
Man-in-the-middle attacks, 400
Management information systems (MIS), 149
Managing the Black Hole—The Executive’s Guide to Project Risk (Gack), 408
Managing the Software Process (Humphrey), 409
Manchester Automatic Digital Machine (MADM), 69
Manchester Mark I computer, 69
Mann, Estie Ray, 69
Manufacturing software, 151–152
Manwin company, 218
Manzi, Jim, 186
Marconi, Guglielmo, 352
Marick, Bran, 255
Mariner 1 navigation software failure, 333
Mariposa botnet, 364
Mark I computer (CSIRAC), 53
Mark I computer (Harvard), 40, 56, 66–67
Mark I computer (Manchester), 69
Mark II computer, 67
Mark III computer, 47, 62, 67
Mark IV computer, 62, 67
Mark VI detonators, 62
Mark 14 torpedoes, 62
Mark 18 torpedoes, 62
Markoff, Philip, 217
Maroney, Ted, 304
Mars climate orbiter crash, 339
Marshall stores, 359
Martin, James, 145
Martin, Robert C., 255
Mass updates in 1990s, 237–239
Massively multiplayer online role-playing games (MMORPG), 231
MasterCard credit cards, 110
Match-making services, 275–276
Mathematica product, 202–203
Mathematical applications, 40–42
Mathematical software, 155–156
Mathematics
 graphical history, 9
 inventions. See Inventions for improved mathematics
Mauchly, John W.
 EMCC, 72
 ENIAC computer, 65
 ENIAC lawsuit, 158
 UNIVAC computer, 82
Mayans, 22
McAfee Antivirus bug, 345
McAfee company, 256
McCabe, Tom, 160, 182
McCaul, Mike, 355
McClore, Carma, 145
McCullom, Andrew, 263
McConnell, Steve, 413
McCool, Robert, 216
McDonald, Stuart, 388
McPherson, John, 67
McVey, Jason, 275
Mean time to failure (MTTF), 143
Medical degrees, 414
Medical devices, 322–323
Medical records, 138
Medical tools, 27–28
Medicine, future, 319
Meeting Zone company, 270–271
Meister, Bill, 173
Melbourne Computer Museum site, 420
Mellor, Steve, 255
Memory
 magnetic core, 70–72
 Williams-Kilburn tube, 69–70
Mercury delay lines, 71
MESM computer, 53, 82
Metal cases for EMP, 401
Metrics
 overview, 225–226
 social-network effectiveness, 309
Meucci, Antonio, 182
Michalewicz, Matthew, 277
Michalewicz, Zbigniew, 277
Micro Focus company, 176
Micro Instrumentation and Telemetry Systems Corporation (MITS), 131
Microblogging, 278
Microdonations, 302–303
Microsoft Basic language, 138–139
Microsoft Corporation
 antitrust lawsuit, 210, 249, 255
 founding, 131, 138–139
 Google competition, 223
 Intersystem lawsuit, 138
 Visio acquisition, 235
 wealth from, 145
Microsoft DOS (MS-DOS) operating system, 166
Microsoft Money product, 183–184
Middleware software, 152
Military computers in 1950s, 77–80
Military software, 152–153
Millard, William, 137
Mills, Harlan, 121
Mims, Forrest, 131
Mindplay tool, 320
Miner, Bob, 139
Minicomputers, 111
Ministry of International Trade and Industry (MITI), 83
Missiles
 BOMARC, 80
 target errors, 336–337
 World War II, 48
MITRE vulnerabilities list, 394
Mittal, Vibuh, 298
Mockapetris, Paul, 221
Model 1 computing machine, 39
Modeling, dynamic, 191
Modems, 109
Mohenjo-Daro city, 6
Molitano, David, 403
Monster.com, 227–228
Moody, John, 271
Moody's Analytics company, 271–272
Moody's Foundation, 271
Morgan Stanley company, 265
Morris, Ken, 189
Morris, Robert, 391
Morris worm, 391
Mortgages, 251–253
Moseley, 255
MOSAIC computer, 55
Mosaic web browser, 209
Moskowitz, Dustin, 263
Mozilla Foundation, 229, 272–273
Multitasking operating systems, 120
MUMPS programming language, 138
Murdock, Jerry, 224
Mutually assured destruction, 69
MyDoom worms, 391
Myers, Glenford, 146
Myhrvold, Nathan, 268
MySearch browser hijacker, 366
Mythical Man-Month (Brooks), 104, 146, 408
Nalanda University, 7–8
Namcook Analytics LLC, 226, 304–307
Nano devices, 323
Napier, John, 21–22
Napier's bones, 22
Narendra, Divya, 264
NASDAQ stock exchange, 129, 145
Nash Bargaining Solution, 269
National Center for Supercomputing Applications (NCSA), 209
National defense
cybercrime, 357
tools, 28
National information in virtual education, 317
National Institute of Standards and Technology (NIST)
analysis tool study, 395
standard date format, 239
National Institutes of Health (NIH), 98
National Museum of Computing site, 421
National Research and Education Network, 209
National Science Foundation (NSF), 221
National Security Agency (NSA), 82–83
Natural language translation, 327
Naur, Peter, 103
Navajo code talkers, 16
Naval gunnery and battles, 56–57
Navigation, prehistoric knowledge for, 7
Neanderthals, 3–4
Nelson ship, 56
Nest Labs company, 308–309
Nest Learning Thermostat, 308–309
Netscape browser, 273
Netscape Communications, 228
New economy, 248–250
Newmark, Craig, 216–217
NeXT company, 187–188
NeXT computer for browser design, 208
NeXTStep operating system, 188
Nies, Thomas, 119
Night vision, 326
Nimoy, Leonard, 229
Nippon Calculating Machine company, 50
Nishar, Deep, 298
Nissan automobiles safety recall, 348
Nixdorf company, 88
Nixon, Richard, 127
Nonprofits
Bill and Melinda Gates Foundation, 219
in computing and software, 200
Google philanthropic wing, 223
Norden, Carl, 60
Norden bombsight, 59–61
North Korea, 323–324
Norton Utilities, 199
Notebooks, GPS tracking of, 398
“Notes on Structured Programming” (Dijkstra), 103
NoteTaker computer, 160
Number systems, 21–22
Numeric-related software updates, 238
Numerical knowledge, early sequence of, 3–8
Oates, Ed, 139
Obamacare, 324
Object Lessons (Love), 412–413
Object Management Group (OMG), 226
“Object-Oriented Precompiler: Programming Smalltalk—80 Methods in C Language” (Cox), 197
Objective-C programming language
Apple computers, 132, 166
NeXT computers, 188, 198
Stepstone Corporation, 197
Objectory tool, 190
Octal numbers, 21
Odeo company, 278
Olmecs, 8, 22
Olsson, Linus, 302
Omidyar, Pierre, 218
“On Computable Numbers” (Turing), 38, 54
On-Line Career Center (OLC), 227–228
Online web-based education information, 314–321
Online “webinars”, 180
Opel, John, 104–105, 139
Open-source business model, 263
Open Source Development Labs (OSDL), 274
Open-source software, 153–154
OpenStep operating system, 188
Operations research, 58
Oracle company
 overview, 139–140
 wealth from, 145
Oshima, Hiroshi, 51
Outsourcing
 1960s, 95–96
 1990s, 243
Packard, David, 40
Page, Larry, 210, 222
Page-description languages, 172
Palm Beach County “butterfly” ballots, 369
PanAmSat group, 232
Pandora music service, 151
Paper voting ballots, 367–368
Pappalardo, Neil, 138
Parametric estimation, 137, 140
Park, Robert, 140
Parsons, Bob, 220
Parsons Technology, 220
Passport readers, 386
Patent litigation
 Honeywell and Sperry-Rand, 158–159
 Nest Labs and Honeywell, 309
 recent years, 269
Patent trolls, 82, 268–269, 276
Patent wars, 288
Patents and patent system
 first U.S. law, 20
 IBM and Bull lawsuit, 52
 integrated circuits, 83
 invention of, 10, 19
 openness with, 82
 pattern matching, 305
 Sperry-Rand and Honeywell lawsuit, 118–119
Patrick, Danica, 221
Patriot missile target error, 336–337
Pattern matching, patents, 305
Pay-per-click model, 266
PayPal company, 219
Pearcey, Trevor, 53
Peat Marwick company, 185
Peer Index company, 309
People’s Liberation Army of China, 372
PeopleSoft company, 188–189
PeopleTools methodology, 189
Peopleware (DeMarco and Lister), 408
PerfectMatch company, 275–276
Perot, H. Ross, 96, 187
Personal computers, 131
Personal data theft, 362
Personal software, 154–155
Personal Software Process (PSP), 256
Personal tools, 28–29
Peter Norton Computing company, 199
Pfister, Douglas, 81
Pharming, 381
Phishing, 381–383
Phone phreakers, 352
Pictograms, 21
Pierce, John R., 82
Piggybacking, 373
Pilot Model ACE computer, 55
Pinkerton, John, 86
Pirate Bay, 302
PL/I programming language, 114–115
Plan Calculus language, 47
Planet Oasis site, 266
Plastic
 as enabling invention, 20
 importance of, 10
Plattner, Hasso, 142
Plaxo for virtual education, 317
Poduska, William, 141
Point Judith battle, 63
Poland in World War II, 51–52
Poley, Stan, 88
Political activists, 356
Political failures, 127–128
Polly, Jean Armour, 209
Pornography, 218
Port St. Lucie, Florida, office failures in, 249
Portable computers
 cameras on, 399
 early, 160
Portable document format (PDF), 172
Postwar era, 68–72
Predictions
 2010s, 288
 companies and products, 311–327
 software project outcomes, 305
Predictive analytics
 future, 323–325
 working with, 307–308
Premier company, 368
Presidential election of 2000, 368–370
Pressman, Roger, 413
Pretty Good Privacy, 402
Price Systems, 140
Priceline company, 229–230
Priests in prehistoric knowledge, 5–6
Primary education, virtual, 320
Prime Computers (Pr1me), 141
Printers, 99–100
Printing, 3D, 288
Prius automobiles safety recall, 348–349
Productivity and quality measures
 improvements, 293
Productivity Products, 197
Professional associations for virtual education, 318
Professional status for software engineering, 289–293
Professional tools, 29–30
Program Quality and Programmer Productivity (Jones), 146
Programmed Data Processor-1 (PDP-1) computer, 110–112
Programming aptitude test (PAT), 97
Programming Language/Systems (PL/S), 123
Programming languages
 1950s, 84
 1960s, 112–115
 higher-level, 22
 number of, 212
 secure, 404
Programming tools, 30–31, 155
Project estimation improvements, 294
Project Management Institute (PMI), 168
Project management software, 155
Protective software, 156
Protective tools, 31
Proult, Tom, 183
Psychology of Computer Programming (Weinberg), 121, 146, 408, 414
Public networks, 373–374
Punched cards, 52, 99
Purple coding machine, 21, 51
Puskas, Tivadar, 183
QNX operating system, 175
Quality control
 improvements, 294
 telecommunications, 182
Quality/Productivity Management Group, 197
Quartz movement, 160
Quattro spreadsheet, 176
Quick response (QR) codes, 303
Quicken Interface Format (QIF), 184
Quicken product, 183–184
Radar, 61
Radiation poisoning, 334–335
Radice, Ronald, 162, 408
Radio, satellite, 232–233
Ragon, Philip T., 137–138
Ragon, Terry, 145
Rajaram, Gokul, 298
Rameev, B. I., 53
Randall, Brian, 103
Random-access storage, 23, 70
Ranking systems on Amazon, 215
Rational company, 189–192
Rational Environment, 190
Rational Unified Process (RUP), 190, 212
Raymond, Eric, 154
RCA Corporation, 140
Real estate bubbles, 250
Real estate property values, 281–283, 305
Real-time computation, 78
Real-time translation services, 316
Recalls, automotive, 348–349
Recession in 2000s, 250–254
Recording of ideas and information
invention of, 9
methods and media evolution, 13–14
Recovery costs from cyberattack, 402–403
Recruited software personnel, 94
Red Hat Software, 230
Red Storm Entertainment company, 231
Redistricting packages, 367
Redundancy, 143
Reis, Johan Philip, 182
Relational database model, 159
Relay-based computers, 38–39
Remington-Rand company, 82, 88
Remote computers
input and output, 39–40
security for, 352
Requirements creep, 307
Research in Motion (RIM) company, 174–175
Reusable components, 294
Rhode Island assembly, 2–3
Rhode Island Computer Museum site, 421
Richardson, Lewis F., 323
Richley, Tom, 119
Rio Tinto Iron Ore company, 277
Risak, Veith, 390
Risks
assessing, 185
weighing, 34–35
Ritchie, Dennis, 112, 274
Riverdeep tool, 320
Roberts, Ed, 131
Robo calling, 388
Rodney ship, 56
Rogers, Matt, 308
Roosevelt, Franklin Delano, 61
Rootkits, 383–384
Rosen, Ben, 186
Rosenblum, Mendel, 236
Rosetta program, 263
Rothblatt, Martine, 232
Royce, Walker E, 413–414
RPX Corporation, 276–277
RSA Security company, 359
Ruckert, Toby, 310
Rumbaugh, James, 191
Russia in World War II, 53
Russian Business Bureau group, 382
Russian Mafia, 357
Ryoichi, Yazu, 50
S-100 bus, 131
SABRE airline reservation system, 79–80, 89
Sachs, Jonathan, 186
SAGE air-defense system
Cold War, 69
overview, 78–80
Whirlwind computer for, 72
Sales taxes, 215
Salvaggio, Tony
CAI founding, 177
social issues, 174
SAMATE study, 395
Sandberg, Sheryl, 265
Sands, Christian, 303
Sanger, Larry, 254
SANS Institute
purpose, 355
vulnerabilities list, 394–395
Satellite radio, 232–233
Satellites, GPS
golf courses, 211
notebooks and tablets tracking, 398
Saudi Aramco company, 372
Savarin, Eduardo, 263
Scacco, David, 298
Scandals, Watergate, 127
Schilling, Curt, 250, 345
Schmidt, Martin, 277
Schussel, Martin, 179–180
Schwaber, Ken, 255
Schwanenflugel, Ditlev, 309
Schwartz, Matthew, 404
Schwartz, Pepper, 276
Scientific purposes
dates, 241
software, 155–156
tools, 31–32
Script kiddies, 360
Scrum programs, 256
SDS/SAPE package, 142
SeaMonkey browser, 273
search.conduit browser hijacker, 366
Search-daily browser hijacker, 366
Secondary education, virtual, 320
Secret copy protection software, 343–344
Secure programming languages, 404
Secure Sockets Layer (SSL) protocol, 228
Security. See also Cybercrime and cyberwarfare
future, 313
improvements, 294–295
software, 156
virtual education, 319
Security Agency, 403
Security staffs, 393
Seeber, Robert, 67
SEER product, 136
Segue product, 176
SEI assessment approach, 193–194
SEI company, 192–194, 404
Selective Sequence Electronic Calculator (SSEC), 67
Seminars
DCI, 179
virtual education, 319
Sentinel of Eternity (Clarke), 81
Sequence controlled calculators, 40
Sequoia Capital company, 280
Shamans, 5–6
Shannon, Claude, 39
SHARE association, 87
Shatner, William, 229
Sheehy, Dan, 266
Shestakov, Victor, 39
Shneiderman, Ben, 267
Shockley, William, 81–82
Short message service (SMS), 278
Shuttleworth, Mark, 262
SideKick product, 175
Siemens computers, 360
SIGCOM groups, 68
SIGGRAPH groups, 68
Silicon Valley, 130–131
Simula programming language, 114
Singham, Roy, 234
Singham Business Services, 234
Sirius Satellite Radio, 232–233
Sirota, Milton, 222
Six pack sales program, 199
Six Sigma quality program, 182
Skimming, 384–385
Sky Map product, 223
Slide rules, 22, 97
Small mathematical applications, 40–42
Small-Scale Experimental Machine (SSEM), 69
Smart appliances, 309
Smart cards
biometric information in, 400
hijacking, 385–386
Smart thermostats, 308
Smartphones as hearing aids, 322
Smith, C. R., 89
Smith, Frederick, 129
Smith, R. Blair, 89
SNAP metrics, 226, 295
Sniffers, 374
Snow, Gordon, 384
Snowbird Lodge meeting, 255
Social Network film, 255, 263
Social networks
software, 156–157
virtual education, 317
Social security stolen files, 361
Social Transformation of American Medicine (Starr), 414
“Software”, first use of word, 83
Software
1940s, 75–76
Software applications

1930s, 41
1940s, 74–75
1950s, 89–90
1960s, 120–122
1970s, 146–147
1980s, 204–205
1990s, 243–244
2000s, 283–284
2010s, 327–328

Software as a service (SaaS) applications, 257

Software categories in 1970s, 147–158

Software Development Laboratories company, 139

Software Engineering—A Practitioner’s Approach (Pressman), 413

Software Engineering Best Practices (Jones), 411

Software Engineering conference, 103

Software Engineering Economics (Barry), 407

Software Engineering Institute (SEI), 166

Software Engineering Methods and Theory (SEMAT), 296

Software engineers

emergence of, 103–104
Geekli.St organization, 303
improvements in, 293–296
professional status for, 289–293

Software evolution in 1970s, 125–129

Software failure analysis

Airbus A380 wiring, 344–345
Ariane 5 rocket, 338–339
AT&T telephone lines, 336
automotive safety recalls, 348–349
British passport system, 339–340
Denver airport, 337–338
FBI Trilogy project, 342–343
Hartford Coliseum collapse, 333
Intel Pentium chip division, 337
Knight Capital stock-trading software, 347
Los Angeles Airport air-traffic controls, 341–342
Mariner 1, 333
Mars climate orbiter, 339
McAfee Antivirus, 345
overview, 331–332
patriot missiles, 336–337
Sony copy protection, 343–344
Soviet early-warning system, 334
Studio 38 investment, 345–346
Therac 25, 334–335
Wall Street crash, 335
Y2K problem, 340–341

Software Inspections (Gilb and Graham), 408

Software Process Improvement Network (SPIN), 270

Software Project Management—A Unified Approach (Royce), 413–414

Software Query Language (SQL) injection attacks, 358–359, 388

Software Risk Master (SRM) tool cyberattack recovery costs, 403
overview, 305–307

Software Runaways: Lessons Learned from Massive Software Project Failures (Glass), 409

Solar flares, 376
SolveIT Software, 277–278
Sony Corporation

copy protection software, 343–344, 383
hacked accounts, 359
Sony TR-63 transistor radios, 88
Sossamon, William D., 262
SourceForge.net site, 154
South Korea

function points, 256
North Korea threat, 324
Southwest Airlines, 130, 145
Index

Soviet Union
- Cold War era, 68–72
- dissolution, 357
- early-warning system failure, 334
- military and defense computers against, 77–80
 in World War II, 53
Space, computers in, 119–120
Space Travel game, 112
Spacewar game, 112
Spam, 387–388
Spear phishing, 382
Special interest groups in virtual education, 317
Specialized outsourcing in 1960s, 95–96
Speculative bubbles, 248
Sperry-Rand company, 65, 118–119, 158–159
Spider traps, 377
Spiders, 377
Sports, 121, 211
SPQR/20 estimating tool, 167, 195
SPR company, 194–197
Spreadsheets, 186
Spy rings, 48
SQL injection attacks, 358–359, 388
Square company, 279
SRX automobiles safety recall, 348
St. Petersburg, Florida, electronic voting problems in, 368
Stabilized Bombing Approach Equipment (SBAE), 60
Stallman, Richard
- GNU project, 274
- open-source software, 153
- Wikipedia concept, 254
Standard and Poors company, 272
Standingford, Oliver, 85–86
Stanford Digital Library Project, 222
Star positions, prehistoric knowledge of, 7
Starfish Prime test, 375
Starr, Paul, 414
StarTeam product, 176

State Street Bank v. Signature Financial Group, 20
Static analysis tools, 395–3496
“Statistics of Deadly Quarrels” (Richardson), 323
Stepping switches, 183
Stepstone Corporation, 197–198
Steve Jobs: The Exclusive Biography (Isaacson), 132, 149, 409
Stevens, John Paul, 176
Stibitz, George, 39
Stibitz relay machine, 39
Stock trading
- computers for, 117
- software problems, 347
Stone, Biz, 278
Storage
- evolution of, 17–18
- permanence of, 14
Stowger, Almon Brown, 183
Stowger Automatic Telephone Exchange Company, 183
Strauss, Richard, 168
Structure of Scientific Revolutions (Kuhn), 412
Structured Design (Yourdon and Constantine), 146
Student centers in virtual education, 317
Studio 38 company, 249, 345–346
Stuxnet worm, 360, 372
Submicron nano devices, 323
Subprime mortgages, 251–252
Subroutines, 70–71
Subtraction in prehistoric knowledge, 4
Sudan, cyberattacks on, 361
Sunde, Peter, 302
Super Bowl ads, 248
Supercomputers, 134
Supersonic guided missile, 80
Supreme Court
- 2000 presidential election, 370
- Borland and Lotus case, 176, 186
- patent cases, 20, 288
“Surfing the Internet” (Polly), 209
Survey tools software, 157
TurboTax product, 184
Turing, Alan
 ACE computer, 55, 65
 algorithm concept, 39
 Bletchley Park, 54
 computer description, 38
 decryption computers, 51
Turing award, 106–108
Turing-complete computers, 54
Turing machines, 38
Turk, Charles, 114, 121
Turner Hall company, 199
Tutte, Bill, 49
Twitter, 255, 278–279
TX-0 computer, 112

U-boats
 attacks by, 58
 U-853, 63–64
Ubisoft company, 231
Ubuntu operating system, 262
Ultra program, 55
Unified Inbox company, 310
Unified modeling language (UML), 190–191, 212
United States
 cyberattack frequency and costs, 404–406
 World War II, 59–67
Univac company, 72, 88
UNIVAC computer, 82, 85
Universities. See Education
University Alliance Program, 142
University of Florida programming courses, 96–97
University of Nalanda, 7–8
Unix clock, 238, 341
UNIX operating system
 development of, 112, 121
 start of, 160
Unsecured networks, data theft from, 373–374
Use-case points, 225
Usenet services, 296
User associations, 87
utility software, 157–158

V-1 cruise missile, 48
V-2 rocket, 48
Vacuum tube failures, 65
van Benekum, Arie, 255
Vasa ship, 412–413
Venture capital community, 248–250
VeriSign company, 200, 360
Veritas company, 199
Verizon study on corporate theft, 372
Vermam, Gilbert, 49
Vertical markets, 126, 137–138, 141
Veterans Administration hacking, 359
Virtual bulletin boards, 317
Virtual Education Software (VESi), 320
Virtual machines, 236–237
Virtual reality for education, 314–321
Virus, term, 353
Viruses
 Antivirus programs. See Antivirus programs
 overview, 389–390
 Visa credit cards, 110
 VisiCalc application, 161
 Visio company, 235–236
 Vision Appraisal company, 281
 Visual Basic for Applications (VBA), 381
 Visual modeling, 191
 VMware company, 236–237
 Vodafone network, 383
 Voice-to-text tools, 316
 Volvo automobiles safety recall, 349
 von Neumann, John, 49, 55, 65
 von Neumann architecture
 bottlenecks, 66
 weaknesses, 399
 Voting fraud, 366–371

Wales, Jimmy, 254
Walker, Dave, 235
Walker, J. S., 229
Wall Street crash, 335
Wang, An, 70
Wang, Charles
 bonuses, 133
 CA founding, 132
 wealth of, 145
Wang, Edward, 236
War. See World War II
Ware, Willis, 81
Warnock, John, 172
Watches, 160
Waterfall projects, 290
Watergate scandal, 127
Watson, Thomas J., Jr.
 IBM System/360 computer, 104
 quality improvements, 121
 Turing award, 106
Watson, Thomas J., Sr.
 equal rights and equal pay, 38, 44
 Mark I computer, 67
Wearable computers, 325–327
Weather prediction, 323
“Weather Prediction by Numerical Process” (Richardson), 323
Web browsers
 competition, 273–274
 development of, 208
 hijackers, 365–366
Web logs, 296
Web sources, 415–421
Webinars
 popularity of, 180
 virtual education, 317
Weighing risks, 34–35
Weinberg, Gerald M.
 IBM lab, 121
 influence of, 145
 Psychology of Computer Programming, 121, 146, 408, 414
 structured development, 144
Wellenreuther, Claus, 142
Westlake, Darren, 300
Whale phishing, 382
Wheeler, David, 70
Whirlwind computer, 71–72
White hat hackers, 353
Whitman, Meg, 219
WikiLeaks group, 356–357
WikiLeaks site, 302
Wikipedia encyclopedia
 contributors, 247
 introduction, 254–255
overview, 421
 success of, 312–313
Wilkes, Maurice, 70
Williams, Evan, 278
Williams, Frederic, 69
Williams-Kilburn tube, 69–70
Windows operating systems
 first versions, 166
 Windows 3.1, 210
 Windows 95, 211
Winingier, Shai, 301
Winklevoss, Cameron, 264
Winklevoss, Tyler, 264
Winslow, Samuel, 20
Wireless networks, 373–374
Wolfram, Stephen, 202–203
Wolfram Alpha product, 202–204, 321
Wolfram Research company, 202–204
Wolfram System Modeler product, 202
Women
 Bletchley Park, 54
 ENIAC programmers, 44
 IBM, 38
Wood, David, 173–174
Word documents, macro attacks in, 381
Word processing, 160
Workforce in 1960s, 93–95
World War II
 analog computers, 46–47
 Australia, 52–53
 France, 52
 Germany, 47–49
 Great Britain, 54–59
 innovations overview, 45–46
 Japan, 50–51
 overview, 43–44
 Poland, 51–52
 Russia, 53
 United States, 59–67
World-Wide Military Command and Control System (WWMCCS), 153
World Wide Web, 208–210
World Wide Web term, 166
WorldCom company, 249
Worms, 390–391
Wozniak, Steve
- Apple founding, 131
- blue boxes, 352
- entrepreneur of year, 180
- on Prius acceleration problem, 349
Wright, Terry, 225
Wright amendment, 130

Xerox
- Jobs influenced by, 117
- SAP influence, 142
- XM Radio, 232–233

Y2K problem
- legacy applications, 237–238
- overview, 340–341
- Yahoo Real Estate service, 281
- Yamhill County, Oregon, electronic voting problems in, 368
- Yesware company, 310–311
Young, Bob, 230
Young, Edward, 268
Yourdon, Edward, 146

DCI seminars, 179
Decline and Fall of the American Programmer, 144, 414
structured development, 144–146
Yourdon, Inc., 144–145
YouTube company, 279–281

Z1 computer, 38, 47
Z2 computer, 38, 47
Z3 computer, 47
Zaller, Bob, 131
Zero, 21–22
Zero-day attacks, 380, 391–392
Zestimate tool, 282
Zeus botnet, 364
Zhenfei, Ren, 181
Zillow company, 281–283, 305
Zimmerman, Phil, 402
Zombie computers, 364, 391
Zuckerberg, Mark, 255, 263
Zuse, Konrad, 38, 47–48