
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321902931
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321902931
https://plusone.google.com/share?url=http://www.informit.com/title/9780321902931
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321902931
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321902931/Free-Sample-Chapter

Praise for Learning Android™ Application
Programming

“James Talbot and Justin McLean have done excellent work creating this begin-
ner’s tutorial. The hands-on focus of the book takes the reader from installing the
development environment to writing the app and finally publishing the app. Top-
ics include what most developers would want to know, from basic app structure
and function, styling the app, testing and optimization, to using social media.”
—Matthew Boles, learning specialist, Brightcove Inc.

“Learning Android Application Programming is a treasure trove of holistic informa-
tion on developing applications for Android devices. It should satisfy those who
prefer detailed descriptions as well as those who enjoy a book chock full of high-
quality code samples. This book is a one-stop shop to take the reader from zero
to app publish via a most relevant sample application. Throughout the book, the
sample app is built, refactored, and optimized as the reader picks up all the neces-
sary concepts and skills needed to become a true Android developer. Outstanding
work, Justin and James!”
—Jun Heider, senior architect and development manager, RealEyes Media

“A unique book that iteratively covers every aspect—requirements, design, devel-
oping, testing, and publishing—of a production-grade Android application.”
—Romin Irani, owner, Mind Storm Software

“Learning Android Application Programming covers a rich variety of commonly en-
countered scenarios when approaching the Android development platform. New-
comers can step through the provided examples in an easily approachable format,
while those who are more familiar with Android will find many useful nuggets
scattered throughout. Everything is written in an understandable way and dem-
onstrated through concrete examples, which can be immediately applied to a
multitude of projects—great stuff!”
—Joseph Labrecque, senior interactive software engineer, University of Denver

This page intentionally left blank

Learning Android™
Application

Programming

The Addison-Wesley Learning Series is a collection of hands-on programming

guides that help you quickly learn a new technology or language so you can

apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in

the text. This code is fully annotated and can be reused in your own projects

with no strings attached. Many chapters end with a series of exercises to

encourage you to reexamine what you have just learned, and to tweak or

adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and

leave you with the ability to walk off and build your own application and apply

the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning Android™
Application

Programming

A Hands-On Guide to Building
Android Applications

James Talbot

Justin McLean

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Talbot, James.
 Learning Android application programming : a hands-on guide to building Android
applications / James Talbot, Justin McLean.
 pages cm
 Includes index.
 ISBN 978-0-321-90293-1 (pbk. : alk. paper)—ISBN 0-321-90293-9 (pbk. : alk. paper)
1. Android (Electronic resource) 2. Application software—Development. 3. Mobile computing.
I. McLean, Justin. II. Title.
 QA76.76.A65T35 2014
 004.16—dc23

 2013037213

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

Code Listings:
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limita-
tions under the License.

The URL http://www.apache.org/licenses/LICENSE-2.0 has the full terms and conditions of
the license.

ISBN-13: 978-0-321-90293-1
ISBN-10: 0-321-90293-9
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.
First printing, December 2013

Copyright page continues on page 395.

Editor-in-Chief

Mark L. Taub

Executive Editor

Laura Lewin

Development Editor

Michael Thurston

Managing Editor

John Fuller

Full-Service

Production Manager

Julie B. Nahil

Copy Editor

Betsy Hardinger

Indexer

John S. Lewis

Proofreader

Rebecca Rider

Technical Reviewers

Romin Irani
Douglas Jones
Prashant Thakkar

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

Kim Arney

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

❖

I’d like to thank my family and friends,
as well as my colleagues at Adobe Systems.

This book is dedicated to my brand new niece, Lenora Talbot,
who is entering a world that is forever changed

by the mobile revolution.
—James Talbot

I’d like to thank my family, friends,
and all the new people I’ve met over the last year while traveling,

speaking at conferences, and writing this book.
Life would be a boring place without you.

Parts of this book were written in New York City; Los Angeles;
San Francisco; Portland; Gloucester, MA; Denver; St. Louis; Sydney;
Hobart; Perth; Melbourne; Brisbane; up Bostock Road (near Tucabia);

Cologne; Berlin; outside Arklow (near Dublin); London;
Ammanford in Wales; and Edinburgh.

It’s been a fun adventure, and I hope you enjoy the book
as much as I’ve enjoyed working on it.

—Justin McLean

❖

This page intentionally left blank

Contents at a Glance

 Preface xix

 Acknowledgments xxi

 About the Authors xxiii

 1 An Introduction to Android Development 1

 2 Kicking the Tires: Setting Up Your
Development Environment 13

 3 Putting On the Training Wheels: Creating Your First
Android Application 29

 4 Going for Your First Ride: Creating an Android
User Interface 51

 5 Customizing Your Bike: Improving Android
Application Usability 81

 6 Pimping Your Bike: Styling an Android
Application 125

 7 Are We There Yet? Making Your Application
Location Aware 165

 8 Inviting Friends for a Ride: Social
Network Integration 223

 9 Tuning Your Bike: Optimizing Performance,
Memory, and Power 249

 10 Taking Off the Training Wheels: Testing
Your Application 285

 11 Touring France: Optimizing for Various Devices
and Countries 327

 12 Selling Your Bike: Using Google Play and the
Amazon Appstore 363

 Index 377

This page intentionally left blank

Contents

 Preface xix

 Acknowledgments xxi

 About the Authors xxiii

 1 An Introduction to Android Development 1

Understanding the Android Difference 2

Building Native Applications 2

Understanding the History of Android 3

Using the Android User Interface 8

Understanding Android Applications 10

Introducing Google Play 10

Summary 12

 2 Kicking the Tires: Setting Up Your

Development Environment 13

Installing the Java JDK and JRE on Windows 14

Understanding Java Versions 16

Installing the Eclipse IDE on Windows 16

Installing Eclipse 16

Configuring the Java JRE in Eclipse 17

Getting Familiar with Eclipse 17

Installing the Android SDK on Windows 19

Installing the Android Developer Tools Plug-in
on Windows 21

Installing and Using Java on a Mac 24

Downloading and Installing the JDK on a Mac 24

Downloading and Installing the Eclipse IDE
on a Mac 25

Downloading and Installing the Android SDK
on a Mac 25

Installing the Android Developer Tools Plug-in
on a Mac 26

Summary 27

xii Contents

 3 Putting On the Training Wheels: Creating Your

First Android Application 29

Creating an Android Application 29

Running Your Android Project 32

Creating an Android Virtual Device 32

Running an Application on the AVD 33

Best Practices for Using an Android
Virtual Device 34

Installing an Android Application on an
Actual Device 36

Working with Lint in an Android Project 37

Understanding the Android Project Files 37

Understanding the Layout XML Files 38

Understanding the Resource XML File 39

Using IDs in XML Files and Their Effect
on Generated Files 40

Understanding the Activity File 42

Understanding the Activity Lifecycle 44

Getting Access to the TextView Within
the Activity 45

Using Logging in Your Application 46

Understanding the Android Manifest File 49

Summary 50

 4 Going for Your First Ride: Creating an Android

User Interface 51

Refactoring Your Code 51

Implementing Strict Mode 54

Creating a Simple User Interface 55

Using Linear Layouts 56

Creating Button Event Handlers 60

Updating the Timer Display 63

Displaying a Running Timer 65

Understanding the Activity Lifecycle 68

Exploring the Android Activity Lifecycle 70

Fixing Activity Lifecycle Issues 72

Making an Android Device Vibrate 72

Contents xiii

Saving User Preferences 74

Creating a New Activity 75

Showing a New Activity 75

Saving an Application’s State 76

Using Shared Preferences 79

Summary 80

 5 Customizing Your Bike: Improving Android

Application Usability 81

Refactoring Your Code 82

Improving the Setting Activity 88

Showing Toast Pop-Ups 88

Returning from the Settings Activity with
a Back Button 92

Action Bars and Menus 94

Creating a Menu 95

Creating an Action Bar 97

Going Home 99

Using Notifications 101

Creating a Notification 101

Showing or Replacing a New Notification 104

Showing Notifications at Regular Intervals 104

Creating a Database 107

Creating a Data Model 108

Creating a Database and Its Tables 109

Checking Table Creation 112

Creating Relationships Between Tables 113

Creating a Routes ListView 118

Summary 122

 6 Pimping Your Bike: Styling an Android

Application 125

Refactoring Your Application 126

Understanding Screen Differences 126

Understanding Screen Sizes and Densities 127

Knowing the Devices Out There 128

Making Your Application Resolution Independent 129

xiv Contents

Using Configuration Qualifiers 132

Creating Launcher Icons 134

Creating Notification Icons 136

Making Apps Look Good on Different
Screen Sizes 137

Using Resource Dimensions 140

Changing Text Size in Java 142

Changing the Layout for Landscape Mode 144

Changing the Layout for Tablets 145

Creating a Side-by-Side View 146

Using Styles and Themes 149

Enabling Night Mode 151

Changing Themes 153

Detecting Light Levels 158

Dealing with Erratic Sensor Values 160

Summary 162

 7 Are We There Yet? Making Your Application

Location Aware 165

Refactoring Your Code 165

Finding the Device’s Location 169

Testing GPS in a Virtual Device 175

How Accurate Is the GPS Location? 176

Improving the User Experience When Using GPS
Location 178

Displaying Google Maps 181

Dealing with Inaccurate Location Data 190

Storing GPS Data 196

Inserting, Updating, and Deleting Data 197

Updating the Model 200

Using the Database in Your Application 205

Displaying GPS Data 209

Working with List Activities 209

Displaying GPS Data in Google Maps 214

Summary 220

Contents xv

 8 Inviting Friends for a Ride: Social Network

Integration 223

Refactoring Your Code 223

Integrating Photos into an Android Application 224

Taking a Photograph 224

Checking Whether You Can Take a Photograph 226

Displaying a Photograph in Your Application 231

Getting Results from Activities 237

Sharing Content with Friends 242

Displaying a Chooser 242

Sharing Text and Photos 245

Summary 248

 9 Tuning Your Bike: Optimizing Performance,

Memory, and Power 249

Refactoring Your Code 249

Running Your Application as a Service 250

Handling Orientation Changes 251

Creating a Service 254

Improving Battery Life 267

Determining Power Usage 268

Reacting to Power Levels 270

Checking the Battery Regularly 276

Speeding Up Databases 278

Speeding Up Databases with Indexes 278

Speeding Up Databases with Asynchronous
Tasks 280

Summary 284

 10 Taking Off the Training Wheels: Testing Your

Application 285

Refactoring Your Code 285

Testing with JUnit 286

Creating a New Test Application 286

Increasing Test Coverage 292

xvi Contents

Speeding Up Your Tests 294

Making Testing Easier by Refactoring 297

Testing with Android JUnit Extensions 299

Testing Android Activities 300

Creating a Mock Application 302

Testing an Activity Lifecycle 305

Testing an Activity Further 308

Testing by Interacting with the UI 309

Testing Services 310

Using Monkey Testing 313

Running Tests Automatically 316

Running Tests from the Command Line 316

Installing Jenkins 318

Using Version Control with Git 319

Overview of Git Bash Commands 321

Using Jenkins 322

Testing on a Wide Range of Devices 323

Summary 325

 11 Touring France: Optimizing for Various Devices

and Countries 327

Refactoring Your Code 327

Going International 329

Supporting Various Languages 330

Starting with a Rough Machine Translation 331

Improving the Translation with Help from Users 335

Adding More Languages 337

Accommodating Various Dialects 342

Adding Language Region Codes 342

Dealing with Word Variations: Route, Path, Trail,
and Track 343

Handling Various Language Formats 344

Supporting Right-to-Left Layouts 344

Dealing with Variations in Dates, Numbers, and
Currencies 346

Enabling Backward Compatibility 348

Contents xvii

Using the Android Support Library 348

Android Version Checking 349

Building for Various Screen Sizes 352

Using Fragments 355

Summary 361

 12 Selling Your Bike: Using Google Play and the

Amazon Appstore 363

Building Your Media Strategy 363

Using Google Play 364

Implementing Google Licensing Using Services
and APIs 368

Employing Advertising in Your Application 369

Using the Amazon Appstore 373

Summary 376

 Index 377

This page intentionally left blank

Preface

This is a book about learning how to program an Android application from start to fin-
ish. It assumes that you have some web development or programming experience but
may not be familiar with the Java language or the Android operating system or have
working knowledge of the Android API/SDK. This book teaches you best practices for
programming Android applications and explains how to solve real-world issues such as
device fragmentation. You’ll learn how to code your application to work on the widest
range of Android OSs while still taking advantage of the latest Android features, and
you’ll explore how to use (often inaccurate) data from sensors. You’ll discover how to
preserve the battery life of your device and how to make your application easily work
in multiple countries and languages.

Each chapter builds upon the preceding chapter, step by step, until you have a com-
plete working application. This book is best read in order, but you can skip around if
you already understand the content in a chapter, because the code for each chapter can
be found on the book’s website and on GitHub. However, remember that the goal of
this book is to learn by doing, and, if you follow each chapter, you will learn some use-
ful best practices.

This book is aimed at web developers or programmers who may have little or no
Android or Java experience and want to know how to write an Android application
from start to finish. This book is not an API reference, and it isn’t filled with small
snippets of unconnected code. Instead, it’s a hands-on, learn-as-you-go tutorial that
helps you avoid the common traps and pitfalls that new Android developers get them-
selves into. As you go through each chapter, you’ll build the On Your Bike Android ap-
plication, a handy tool for bicycle riders. When you’ve finished the book, you’ll have a
complete application, and you will have learned enough to create your own application
and publish it in Google Play and the Amazon Appstore.

While working through this book, it’s recommended that you have access to an
Android device. Although it’s possible to work through most of the book using only
a computer and the Android emulator, there are some things that will work only on a
real device.

The color code in the printed book is meant to be representative of what you will
see when you are programming in Eclipse. Colors do not match exactly but are close
approximations of what you will see in the Eclipse Development Environment.

xx Preface

Code Examples

The code listings for each chapter can be found at the book’s website:

http://www.androiddevbook.com/code.html

They are also available on GitHub:

https://github.com/androiddevbook/onyourbike

The application can also be found in Google Play:

https://play.google.com/store/apps/details?id=com.androiddevbook.onyourbike.book

If you have any questions about the book or the code, please contact the authors
at james@androiddevbook.com or justin@androiddevbook.com. You can follow the
book on Twitter at @androiddevbook. The code and more information are on
http://www.androiddevbook.com.

http://www.androiddevbook.com/code.html
https://github.com/androiddevbook/onyourbike
https://play.google.com/store/apps/details?id=com.androiddevbook.onyourbike.book
http://www.androiddevbook.com

Acknowledgments

The authors would like to thank the following:

Jorge Hernández, who proposed the initial idea of a cycle computer application and
helped us write and format the initial chapters.

Romin Irani, Douglas Jones, and Prashant Thakkar for being the technical review-
ers of the book. They picked up many issues, both big and small, during the review
process, and the book would not be the quality it is without the time and effort they
put into reviewing both the content and the code.

Betsy Hardinger, an absolutely amazing editor who caught many things we did not
even think of. We appreciate her professionalism and diligence.

Michael Thurston, the development editor, who suffered through our bad grammar
and spelling, inconsistent formatting, and confusing language and structure, and
managed to get the draft document into a state fit for publishing.

Olivia Basegio, an incredible asset, who always stepped in and made us feel comfort-
able with the daunting process of publishing a book.

Laura Lewin, the editor of the project, who kept us on schedule and was tire-
less in her research and assistance. We owe a lot to her and really appreciate her
professionalism.

We would also like to thank Julian Ledger for designing the Android On Your Bike
icon and for general design guidance in the production of this book.

Finally, for the internationalization chapter we’d like to thank several people who
provided translations of the application resource strings into their own language: Kai
König (German), Carlos Rovira (Spanish), Frédéric Thomas (French), Christophe
Herreman (Dutch), and John Koch (Japanese).

This page intentionally left blank

About the Authors

James Talbot has been with Adobe for more than a decade, on the sales engineering,
professional services, and training teams, and has many years of experience in working
with object-oriented programming and web applications. He is currently working on
constructing exciting web, mobile web, and native Android applications built on top of
a Java Content Repository (JCR) based on open source standards. He cowrote Object-
Oriented Programming with ActionScript 2.0 (New Riders Press, 2004) and Adobe Flex 2:
Training from the Source (Adobe Press, 2006), as well as Adobe Flex 3: Training from the
Source (Adobe Press, 2008). He has also recorded training videos for Lynda.com and
Total Training and has spent extensive time teaching in the classroom. He has deep
knowledge of all Adobe web products and has spoken at numerous conferences.

Justin Mclean has been writing code since the early days of the web. For 15 years he
has managed his own consulting company, Class Software, and during that time he
has worked on hundreds of browser, desktop, and mobile applications. He has seen
significant changes of technology in the industry, surviving the browser wars and the
dot-com bubble. He is an Apache Flex committer, board member, and release manager
and an Adobe Community Professional. He teaches training courses and has spoken at
numerous conferences all over the world. In his spare time he tinkers about with open
source electronics.

This page intentionally left blank

We Want to Hear
from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re will-
ing to pass our way.

You can email or write us directly to let us know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address.

Email: laura.lewin@pearson.com
Mail: Reader Feedback

 Addison-Wesley Learning Series
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient ac-
cess to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

4
Going for Your First Ride:

Creating an Android
User Interface

Life is like a riding a bicycle,
you don’t fall off unless you stop pedaling.

—Claude Pepper

Now it’s time to begin coding the On Your Bike application. This Android app will
act as a bicycle computer—a device, usually clipped on the handlebars, that helps you
keep track of the length and time of your ride. By creating this application, you will
learn more about how to code with the Android activity lifecycle, how to code a simple
user interface, and how to specify user preferences.

Refactoring Your Code

Because of project time pressures, you often need to make quick changes to code. Over
time, these little changes add up, and, as a result, you need to revisit the code before the
project is complete. This is known as technical debt. The code base becomes fragile,
and it’s easy to introduce bugs and more difficult to maintain the code. It’s important to
have a spring cleaning every now and then to fix the most obvious issues.

It makes sense to rearrange the code at a time when you’re not trying to change its
functionality, a process referred to as refactoring. Of course, it’s also much easier to
change functionality when you have clean, refactored code.

When you’re undertaking a major refactoring, don’t forget to back up your code
first, or, better still, keep your code under version control. But don’t despair if you get
lost and make a mistake with your code: You can always download the code for the

Chapter 4 Going for Your First Ride: Creating an Android User Interface52

chapter from the On Your Bike website (http://www.androiddevbook.com) or from
GitHub (https://github.com/androiddevbook/onyourbike).

The simplest form of refactoring is to rename packages, classes, methods, and vari-
ables. You might do this for several reasons.

 n Renaming a class, method, or variable will increase the readability or under-
standing of the existing code.

 n Naming wasn’t consistent across the application.
 n A method’s functionality has changed, and it now does something a little differ-

ent from what its original name indicated. It makes sense to rename the method
to something more descriptive.

 n You can move duplicate blocks of code into a single new method. This can help
implement the Don’t Repeat Yourself (DRY) principle, whose primary purpose
is to prevent the repetition of information.

 n You can break larger methods into several smaller methods so that they can be
reused. This will also make the code more readable.

Always remember, your code should be human readable first, and machine read-
able second. If you’ve ever had to work on other people’s code or returned to code you
wrote months ago, you’ll be thankful for that readability. If you don’t follow this prin-
ciple, it can result in substantial frustration. You may end up cursing yourself—or the
original developer.

Now let’s refactor your ongoing project to better describe it. Follow these steps.

1. In the Package Explorer view, do the following.
 n Expand the /src directory.
 n Right-click the com.androiddevbook.onyourbike.chapter3 package.
 n Select Refactor > Rename.
 n Change the end of the package name from chapter3 to chapter4, as shown

in Figure 4.1. Keep the Update references checkbox checked.
 n Click Preview to check the changes that will take place. You will see that

the import statements in MainActivity will change and that the package will
be renamed.

 n Click OK to apply the changes. Ignore any compiler errors that are shown.

2. Perform the same procedure (by right-clicking the filename and selecting
Refactor > Rename) with the MainActivity class, and rename it
TimerActivity.

3. Locate the \res\layout\activity _ main.xml file, and rename it
activity_timer.xml.

http://www.androiddevbook.com
https://github.com/androiddevbook/onyourbike

Refactoring Your Code 53

4. Change the call to the setContentView method in TimerActivity to pass the
new activity identifier:

setContentView(R.layout.activity _ timer);

5. After you save the TimerActivity.java file, the compilation error will
be resolved.

6. Open \res\values\strings.xml, and change the following lines to ref lect a
new application name and a new title.

 n Change the value of the string node with an attribute app _ name to
the following:

<string name="app _ name">On Your Bike - Chapter 4</string>

 n Change the name attribute title _ activity _ main to
title _ activity _ timer, and the node value to the following:

<string name="title _ activity _ timer">Timer</string>

7. Double-click on the error in the Problem view to open the AndroidManifest.xml
file. Change the following.

 n Change the package name to match the new package:

package="com.androiddevbook.onyourbike.chapter4"

 n Change the activity name to match the new activity class:

android:name=".TimerActivity"

 n Change the activity label to match the new string resource:

android:label="@string/title _ activity _ timer"

Figure 4.1 Rename Package dialog box in Eclipse

Chapter 4 Going for Your First Ride: Creating an Android User Interface54

8. From the Refactor menu, select Rename, and rename the className constant
in TimerActivity. It is better practice to define a variable treated as a constant
with uppercase letters and make it private so that it is not visible outside the class:

private static String CLASS _ NAME;

Eclipse will automatically rename all references to the constant.

9. Rename the project On Your Bike Chapter 4 by right-clicking on the project
name, selecting Refactor -> Rename, entering the new name, and clicking
OK. It is a good idea to clean your project after making all the changes to make
sure that everything has been recompiled and to double-check that there are no
errors. You do this by selecting Project > Clean.

Implementing Strict Mode

When you’re first programming for Android, you need to be aware of several gotchas
that may trip you up. For example, it’s common to accidentally block the user interface
thread and cause your application to perform badly or, even worse, to become unre-
sponsive. Strict mode was added to the Android SDK to identify issues like this. It’s a
good idea, especially when you’re starting out, to always turn on Strict mode.

Strict mode is f lexible in that you can filter issues so that it reports only the ones
you’re interested in and, when those issues occur, what sort of action should be taken.

You can take the following actions:

 n Logging the issue to LogCat
 n Flashing the device’s screen
 n Stopping the application
 n Opening a dialog box

Setting up Strict mode in your application is straightforward.

1. To enable Strict mode, add the code in Listing 4.1 after the call to Log.d in the
onCreate method of TimerActivity.

Listing 4.1 Turning On Strict Mode in onCreate

if (BuildConfig.DEBUG) {

 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()

 .detectAll().penaltyLog().build());

 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()

 .detectAll().penaltyLog().penaltyDeath().build());

}

Creating a Simple User Interface 55

This code will detect all issues with threading and display them to the LogCat
view. It will also detect common memory leaks, log them, and stop the applica-
tion. Note that the Builder constructor and all the various detect and penalty
methods return the current instance of builder. This is known as function
chaining. In this way, methods can be called together one after another to make
the code more readable and concise.

2. A few errors will show in the Problem view. Run Quick fix StrictMode to add
the import statement:

import android.os.StrictMode;

Creating a Simple User Interface

At this point, your activity _ timer activity is using as its base tag the Relative-
Layout view group. By using the RelativeLayout class, you’re telling the app to
position the views in relation to how other views are positioned. For example, the
position of views could be determined by whether the views are to the right or left of
another view, below or above another view, centered in the view group, aligned to the
left or right of each other, or even aligned to the bottom or top of the view group.

The values for the layout properties are either a Boolean or an ID that references
another view. In the XML layout, they can be declared in any order. For example, if
android:layout _ centerVertical is set to true, then the top edge of the view
will match the top edge of the parent. If android:layout _ below is set, then the top
edge of the view will be below the view specified with a resource ID—for example,
android:layout _ below="@id/name". If android:layout _ toRightOf is set,
then the left edge of the view will be to the right of the view with the resource ID.

Once you have indicated the position of the views in a view group, you can then
specify the layout width and layout height. These measurements can be an exact num-
ber and a unit.

Possible units of measurement include the following.

 n Density-independent pixels (dp): Use to make UI elements the same size on
 different screen densities.

 n Pixels (px): Try to use dp instead.
 n Scale-independent pixels (sp): Use for font sizes that scale according to the user

preference and the screen density.
 n Points (pt): Try to use sp instead.
 n Millimeters (mm) and inches (in): Avoid if possible.

You can also specify the height and width in terms of the view’s actual size
or the view group’s size; to do this, set the width or height layout attribute to

Chapter 4 Going for Your First Ride: Creating an Android User Interface56

wrap _ content or match _ parent. This gives you even more f lexibility in de-
signing layouts for devices of various sizes. (Note that match _ parent was called
fill _ parent in earlier versions of the SDK, so you may come across this in old
code.) The wrap _ content attribute makes the view as big as it needs to be, so the
view group layout may include gaps; match _ parent also makes the view resize, so
there are no gaps in the view group’s layout except for the padding.

There are other concepts that come into play when you’re laying out views. Weight
describes how the total width or height is shared between multiple views. For example,
each child view is given a proportion of its weight over the total weight of all views.
If all child views have the same weight, then all of them will have the same height
and width. However, if a child view has a weight of 2 and other child views have a
weight of 1, then the first child view will be twice as high and twice as wide as the
other views.

If any of the child views also has a width or height, then the remaining space is di-
vided by the weights; in the preceding example, the f irst child would be proportion-
ally wider but not twice as wide as the other views. You often need to experiment
with the right combination of width, height, and weight to get something that works
for each view.

It makes sense to do one of two things: either (1) express weight in terms of how
much bigger or smaller a view is compared to its siblings or (2) make the weights add
up to 100 so that the weight can be thought of as a percentage. You should use what-
ever makes sense in the layout.

Another view group is LinearLayout. A LinearLayout enables you to position
views vertically (one view above the other on the screen) or horizontally (the views
side by side). To control whether the views inside a LinearLayout are positioned
horizontally or vertically, set the orientation attribute to horizontal or vertical.

Note that layouts are defined in this way so that the screen size of an activity is
mostly irrelevant and activities scale and resize to fit on a wide range of screen sizes and
densities. In this way, your app can display correctly on all the different Android de-
vices out there.

Other layout view groups include GridView, ListView, and WebView. As you
might expect, Gridview displays items in a grid, ListView displays views in a vertical
list, and WebView displays web pages. Laying out a UI is a complex topic, and you will
learn much more about it as you begin to build the application.

Using Linear Layouts

The basic display on a bicycle computer includes a timer that tracks how long you’ve
been riding. You will build this functionality in this section. The first step is to build a
user interface that will include a Start button as well as a Stop button for the timer. The
timer output will appear on the text view you have already created. To build this func-
tionality, follow these steps.

Creating a Simple User Interface 57

1. Edit the existing TextView in the activity _ timer.xml file. Remove the line
that sets the android:text attribute. (The text will no longer be hard-coded
but instead will be dynamic and changed through code you will add later.)

2. Change the android:id to the value @+id/timer:

<TextView

 android:id="@+id/timer"

3. Change the toolContext to be the TimerActivity class by assigning it a value
.TimerActivity:

tools:context=".TimerActivity"

4. Add a LinearLayout below the TextView:

<LinearLayout>

</LinearLayout>

5. In the linear layout you just added, you will add two buttons. The buttons
need to stretch horizontally. To do this, change the android:layout _ width
to match _ parent. For the buttons to be as high as they need to
be, set the android:layout _ height to wrap _ content. Set the
android:orientation to horizontal so that the buttons are side by side:

<LinearLayout

 android:layout _ width="match _ parent"

 android:layout _ height="wrap _ content"

 android:orientation="horizontal">

6. Still inside the LinearLayout tag, align the buttons at the bottom of the screen
by assigning the android:layout _ alignParentBottom to true:

android:layout _ alignParentBottom ="true"

7. Also inside the LinearLayout tag, add the Start button inside the lin-
ear layout, give it an android:id of @+id/start _ button, and set the
android:layout _ width and android:layout _ height to wrap _ content:

<Button

 android:id="@+id/start _ button"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"/>

8. Still inside the LinearLayout tag, add the Stop button after the Start, give it an
android:id of @+id/stop _ button, and set the android:layout _ width
and android:layout _ height to wrap _ content:

<Button

 android:id="@+id/stop _ button"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"/>

Chapter 4 Going for Your First Ride: Creating an Android User Interface58

9. The two buttons need to be the same size, so set the android:layout _ weight
on both to 1:

android:layout _ weight="1"

10. Click on the Graphical Layout view to check that there are no errors; that the
view consists of a TextView in the center of the layout; and that there are two
buttons of equal size at the bottom of the layout, as shown in Figure 4.2.

11. To the first button, add an android:text value of @string/start _ button:

android:text="@string/start _ button"

12. Add the same attribute to the second button with a value of @string/
stop _ button:

android:text="@string/stop _ button"

13. Add the two created resources to values/strings.xml:

<string name="start _ button">Start</string>

<string name="stop _ button">Stop</string>

Your layout code should now look like Listing 4.2.

Figure 4.2 Graphical Layout view showing two blank buttons

Creating a Simple User Interface 59

Listing 4.2 Linear Layout Containing Two Buttons

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout _ width="match _ parent"

 android:layout _ height="match _ parent" >

 <TextView

 android:id="@+id/timer"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"

 android:layout _ centerHorizontal="true"

 android:layout _ centerVertical="true"

 tools:context=".TimerActivity" />

 <LinearLayout

 android:layout _ width="match _ parent"

 android:layout _ height="wrap _ content"

 android:layout _ alignParentBottom="true"

 android:orientation="horizontal">

 <Button

 android:id="@+id/start _ button"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"

 android:layout _ weight="1"

 android:text="@string/start _ button" />

 <Button

 android:id="@+id/stop _ button"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"

 android:layout _ weight="1"

 android:text="@string/stop _ button" />

 </LinearLayout>

</RelativeLayout>

14. Open TimerActivity.java and either correct or run Quick fix to address the
 error by changing hello to timer.

15. Debug your application. The activity should be displayed, as shown in Fig-
ure 4.3. You can click both buttons, but they don’t do anything yet.

Chapter 4 Going for Your First Ride: Creating an Android User Interface60

Creating Button Event Handlers

To make the buttons do something, you need to add event handlers to the buttons that
detect when they are clicked, and you need to supply the method to be called. There
are several ways of doing this with the Android SDK, but first let’s take the simple ap-
proach and add the handlers to the layout.

1. Open the activity _ timer.xml layout file, and locate the two buttons you
added earlier. Add the two click handlers to the appropriate buttons by setting
android:onClick to the name of the methods you want called when the but-
tons are clicked. Call the two methods clickedStart and clickedStop, as
shown in Listing 4.3.

Listing 4.3 Adding Click Handlers to Two Buttons

<Button

android:id="@+id/start _ button"

android:layout _ width="wrap _ content"

android:layout _ height="wrap _ content"

android:layout _ weight="1"

android:text="@string/start _ button"

android:onClick="clickedStart" />

Figure 4.3 Debugging application showing buttons

Creating a Simple User Interface 61

<Button

android:id="@+id/stop _ button"

 android:layout _ width="wrap _ content"

android:layout _ height="wrap _ content"

android:layout _ weight="1"

android:text="@string/stop _ button"

 android:onClick="clickedStop" />

2. Add the clickedStart and clickedStop methods to the TimerActivity
class, logging that the methods have been called. Run Quick fix to import the
View class. See Listing 4.4.

Listing 4.4 Adding Click Handlers Methods

public void clickedStart(View view) {

 Log.d(CLASS _ NAME, "Clicked start button.");

}

public void clickedStop(View view) {

 Log.d(CLASS _ NAME, "Clicked stop button.");

}

3. Debug the application. Click each button to make sure the click log messages are
displayed in the LogCat view, as shown in Figure 4.4.

Note that if the method names are incorrect (if they don’t match what is in the
layout XML), then the application will compile and run with no warnings or
errors, but you will get a run time exception (RTE) when clicking on the button.
This is the downside of specifying handlers this way, but it’s easy enough to avoid
with a little care and testing.

4. Add the following class properties at the top of the TimerActivity class
declaration:

 protected TextView counter;

 protected Button start;

 protected Button stop;

Figure 4.4 LogCat view showing Start and Stop button logs

Chapter 4 Going for Your First Ride: Creating an Android User Interface62

5. Change the onCreate method to assign each of these variables to match the cor-
responding view in the layout. To do this in each case, call findViewById, pass-
ing the automatically generated identifier for that view. This must be done after
the setContentView call; otherwise, you get an RTE when the application is
run. Also, change the text view findViewById to refer to the new timer variable:

counter = (TextView) findViewById(R.id.timer);

start = (Button) findViewById(R.id.start _ button);

stop = (Button) findViewById(R.id.stop _ button);

6. Remove the hello.setText line. The text of this text view will now be set
through code.

7. Create a new class property called timerRunning to store the state of the timer
and whether or not it has been started. This in turn determines whether the but-
tons are enabled or disabled.

protected boolean timerRunning;

8. Add a new method called enableButtons to toggle which button (Start or Stop)
is enabled depending on the value of timerRunning:

protected void enableButtons() {

 Log.d(CLASS _ NAME, "Set buttons enabled/disabled.");

 start.setEnabled(!timerRunning);

 stop.setEnabled(timerRunning);

}

9. Call enableButtons after the calls to findViewById in onCreate and in the
clickedStart and clickedStop methods.

10. Before the call to enableButtons, set the property timerRunning to true in
clickedStart, and to false in clickedStop. Your two event handlers should
now look like Listing 4.5.

Listing 4.5 Button onClick Event Handlers

public void clickedStart(View view) {

 Log.d(CLASS _ NAME, "Clicked start button.");

 timerRunning = true;

 enableButtons();

}

public void clickedStop(View view) {

 Log.d(CLASS _ NAME, "Clicked stop button.");

 timerRunning = false;

 enableButtons();

}

11. Run the application. The buttons should now toggle to the one that is enabled
when it is clicked, as shown in Figure 4.5.

Creating a Simple User Interface 63

Updating the Timer Display

For the application to work as a bicycle computer, the counter needs to be updated fre-
quently. This update is based on how much time has passed since the timer was started.
There are two parts to solving this issue: updating the display and doing it at regular
intervals. Let’s first update the display.

1. Create two new properties of type long in the TimerActivity class called
startedAt and lastStopped:

protected long startedAt;

protected long lastStopped;

2. In the clickedStart method, set startedAt to contain the current time in
milliseconds:

startedAt = System.currentTimeMillis();

And in the clickedStop method, set lastStopped to contain the current time
in milliseconds:

lastStopped = System.currentTimeMillis();

In this way, you can determine how long the timer has been running between a
start click and a stop click.

Figure 4.5 Debugging application showing enabled button

Chapter 4 Going for Your First Ride: Creating an Android User Interface64

3. Create a new method called setTimeDisplay that sets the counter’s text to the
elapsed time. The method should look like Listing 4.6.

Listing 4.6 Method for Displaying the Elapsed Time

protected void setTimeDisplay() {

 String display;

 long timeNow;

 long diff;

 long seconds;

 long minutes;

 long hours;

 Log.d(CLASS _ NAME, "Setting time display");

 if (timerRunning) {

 timeNow = System.currentTimeMillis();

 } else {

 timeNow = lastStopped;

 }

 diff = timeNow - startedAt;

 // no negative time

 if (diff < 0) {

 diff = 0;

 }

 seconds = diff / 1000;

 minutes = seconds / 60;

 hours = minutes / 60;

 seconds = seconds % 60;

 minutes = minutes % 60;

 display = String.format("%d", hours) + ":"

 + String.format("%02d", minutes) + ":"

 + String.format("%02d", seconds);

 counter.setText(display);

}

The first section of Listing 4.6, after the local variable declarations and log call,
checks to see whether the timer is running. If it is, it gets the current time; other-
wise, it gets the time when the Stop button was last clicked.

The difference between the time the Start button was clicked (stored in
startedAt) and the current time (stored in timeNow) is then calculated. This

Creating a Simple User Interface 65

gives the number of milliseconds that the counter has been running. Make sure
that the difference is a positive number. You wouldn’t want to display a negative
time value.

The time difference is in milliseconds and needs to be converted to a more
human-friendly representation of time. From the number of milliseconds, you
can calculate the number of seconds, minutes, and hours through integer divi-
sion and modulo arithmetic (the remainder after a number is divided by another).
This ref lects the way minutes and seconds normally wrap around on a clock.

Once the time is calculated, you can create and format a time string by using
String.format. Notice the use of the format String %02d, which pads the
minutes and seconds with an initial zero if needed.

Then the counter text can set to the value of the time-formatted string stored
in display.

4. Add a call to the setTimeDisplay method at the end of the clickedStart and
clickedStop methods.

5. Run the application. Click the Start button, and the timer will display 0:00:00.
Wait a few seconds, and then click the Stop button. The timer will now display
something different, such as 0:00:03.

Displaying a Running Timer

Next, you need to update the display at regular intervals so that the current time is
displayed. On Android this is not as straightforward as it may seem.

The activity’s user interface runs in a single thread. If you block that thread for
too long, the Android OS thinks your application has frozen, and you will get the
Application Not Responding (ANR) dialog box. Strict mode (which you added
earlier) will tell you about potential issues that could cause your application to
become unresponsive.

One solution is to create an extra thread and do all the work in that thread; in
this way, you would not block the main UI thread and would stop any ANRs. Un-
fortunately, though, simply using standard Java timers or threads is not the answer.
That’s because the Android SDK is not thread safe, and any thread you create in
this manner will not be able to update the display. Only the UI thread can update
the display.

The solution? You can create a timer by using the Runnable interface and the
Handler class.

The Runnable interface defines a single method called run that you implement. (It
takes no parameters and returns void.) This run method is called once when the new
thread is started.

The Handler class allows you to queue calls to the run method (and a few other
things) in a Runnable class. You can use this class to make a timer that fires at
regular intervals.

Chapter 4 Going for Your First Ride: Creating an Android User Interface66

There are a couple of other ways of implementing this—for instance, using
AsyncTask or Services—but using Runnable and Handler is the most straight-
forward way. In the following, you will create a timer using the Runnable and
Handler process.

1. Open TimerActivity.java, and, at the top of the class, create a static long
called UPDATE _ EVERY. Set it to a value of 200; this is how often you want the
screen counter to update. If you set it to 1000, it may not exactly match every
second, and the timer display may miss seconds. You might want to play with this
value to see what works best.

private static long UPDATE _ EVERY = 200;

2. Create a new class called UpdateTimer that implements Runnable and has a
single run method. In the run method, log that it has been called.

class UpdateTimer implements Runnable {

 public void run() {

 Log.d(CLASS _ NAME, "run");

 }

}

3. Add a handler property and an updateTimer property to the class:

protected Handler handler;

protected UpdateTimer updateTimer;

Run Quick fix to add the import statement for the Handler class, making sure
it is the android.os.Handler class that you import. The UpdateTimer class
doesn’t need an import, because it’s in the same package as Handler.

4. At the end of the clickedStart method in the TimerActivity class, cre-
ate a new instance of both properties, and call the handler’s postDelayed
method. This will cause the run method of UpdateTimer to be called in
200 milliseconds.

handler = new Handler();

updateTimer = new UpdateTimer();

handler.postDelayed(updateTimer, UPDATE _ EVERY);

5. Debug the application. Check that the run method is logged when you click the
Start button.

6. At the end of clickedStop, stop any pending call to the run method by calling
removeCallbacks and set the handler to null.

handler.removeCallbacks(updateTimer);

handler = null;

Creating a Simple User Interface 67

7. In the run method, comment out the log call (otherwise, the LogCat view will
be f looded with messages). Add calls to set the timer display and call the run
method again in another 200 milliseconds (via a call to postDelayed).

setTimeDisplay();

if (handler != null) {

 handler.postDelayed(this, UPDATE _ EVERY);

}

The null check is to make sure that the handler exists and the Start button has
been clicked.

8. Run the application again. You should now see the timer counting up when the
Start button is pressed, and the timer stopping when the Stop button is pressed
(see Figure 4.6).

The application seems as though it is now working. Not quite. Run the application
on a USB-connected device, start the timer, wait a while, and rotate the screen. What
happened? If you’re running in an emulator, you can rotate the screen via Ctrl + F12
on Windows and Ctrl + fn + F12 on Mac. The activity lifecycle, discussed brief ly in
Chapter 3, is the reason the application did not function. In the next section, you will
examine the activity lifecycle in more detail to get to the bottom of this.

Figure 4.6 Debugging application showing timer

Chapter 4 Going for Your First Ride: Creating an Android User Interface68

Understanding the Activity Lifecycle

As you have seen, an activity is simply a screen or user interface in an Android applica-
tion—either a full screen or a f loating window that a user interacts with. An Android
app is made up of different activities that interact with the user as well as one another.
For example, a simple calculator would use one single activity. If you enhanced the
calculator app to switch between a simple version and a scientific version, you would
then use two activities.

Every Android application runs inside its own process. Processes are started and
stopped to run an application and also can be killed to conserve memory and resources.
Activities, in turn, are run inside the main UI thread of the application’s process.

Once an activity is launched, it goes through a lifecycle, a term that refers to the
steps the activity progresses through as the user (and OS) interacts with it. There are
specific method callbacks that let you react to the changes during the activity lifecycle.

The activity lifecyle has four states.

 n When the activity is on the foreground of the application, it is the running activ-
ity. Only one activity can be in the running state at a given time.

 n If the activity loses focus but remains visible (because a smaller activity appears on
top), the activity is paused.

 n If the activity is completely covered by another running activity, the original
activity is stopped. When an activity stops, you will lose any state and will need to
re-create the current state of the user interface when the activity is restarted.

 n While the activity is paused or stopped, the system can kill it if it needs to reclaim
memory. The user can restart the activity.

While the application moves through the different states, the
android.app.Activity lifecycle methods (or callbacks) get called by the system.
These callbacks are as follows.

 n onCreate(Bundle savedInstanceState)is called when the activity is created
for the first time. You should initialize data, create an initial view, or reclaim the
activity’s frozen state if previously saved (this is covered later). The onCreate
callback is always followed by onStart.

 n onStart() is called when the activity is becoming visible. This is an ideal place
to write code that affects the UI of the application, such as an event that deals
with user interaction. This callback is normally followed by onResume but could
be followed by onStop if the activity becomes hidden.

 n onResume() is called when the activity is running in the foreground and the user
can interact with it. It is followed by onPause.

Understanding the Activity Lifecycle 69

 n onPause() is called when another activity comes to the foreground. The imple-
mentation needs to be quick, because the other activity cannot run until this
method returns. The onPause callback is followed by onResume if the activity
returns to the foreground, or by onStop if the activity becomes invisible.

 n onStop() is called when the activity is invisible to the user; either a new activ-
ity has started, an existing activity has resumed, or this activity is getting de-
stroyed. The onStop callback is followed by onRestart if the activity returns
to the foreground.

 n onRestart() is called when the activity is being restarted, as when the activity is
returning to the foreground. It is always followed by onStart.

 n onDestroy() is called by the system before the activity is destroyed, either be-
cause the activity is finishing or because the system is reclaiming the memory the
activity is using.

Figure 4.7 illustrates the various states the activity goes through and the order in
which the callback methods get invoked.

onCreate()

onDestroy()

onRestart()

onResume()onStart()

onPause()onStop()

Figure 4.7 Activity lifecycle showing activity states

Chapter 4 Going for Your First Ride: Creating an Android User Interface70

Exploring the Android Activity Lifecycle

Now let’s look at how the Android activity lifecycle works. In Chapter 3, you overrode
the onCreate method. Now you’ll override the remaining lifecycle methods in your
TimerActivity class by following these steps.

1. Open the TimerActivity.java file in the project, and override the existing
 onStart method, which is called when the activity is first viewed. Call the
 onStart method of the parent class, and log a debug message:

@Override

public void onStart(){

 super.onStart();

 Log.d(CLASS _ NAME, "onStart");

}

2. Override the existing onPause method, which is called when another activity
is called to the foreground. Call the onPause method of the parent and log a
debug message:

@Override

public void onPause(){

 super.onPause();

 Log.d(CLASS _ NAME, "onPause");

}

3. Override the existing onResume method, which is called when the activity is
running in the foreground and the user can interact with it. Call the onResume
method of the parent class, and log a debug message:

@Override

public void onResume(){

 super.onResume();

 Log.d(CLASS _ NAME, "onResume");

}

4. Override the existing onStop method, which is called when the activity is in-
visible to the end user. Call the onStop method of the parent class, and log a
debug message:

@Override

public void onStop(){

 super.onStop();

 Log.d(CLASS _ NAME, "onStop");

}

Understanding the Activity Lifecycle 71

5. Override the existing onDestroy method, which is called when the activ-
ity is removed from the system and can no longer be interacted with. Call the
onDestroy method of the parent class, and log a debug message:

@Override

public void onDestroy(){

 super.onDestroy();

 Log.d(CLASS _ NAME, "onDestroy");

}

6. Override the existing onRestart method, which is called when the activity is
started again and returns to the foreground. Call the onRestart method of the
parent class and log a debug message:

@Override

public void onRestart(){

 super.onRestart();

 Log.d(CLASS _ NAME, "onRestart");

}

7. Now debug your application on a device, and look at the debug messages (in the
LogCat view) that show the changes of state in the application, as shown in Fig-
ure 4.8. Experiment with the application to see which state changes occur.

 n Turn your device on its side to see if the state changes. The activity is
re-created when you do this, and in that process it loses all state.

 n Navigate to another application, and see which methods are called.
 n Let your device go to sleep, and then unlock the screen to see your

application again.

Figure 4.8 LogCat showing activity lifecycle

Chapter 4 Going for Your First Ride: Creating an Android User Interface72

Fixing Activity Lifecycle Issues

As you’ve seen, when the application is not running there is no need to have the timer
display update, and when the timer activity is re-created you need to refresh the display
to put it into the correct state.

To fix these issues you need to update the screen at the correct time.

1. When onStart is called and the timer is still running, start calling the run
method of UpdateTimer again. Add this code to the onStart method:

if (timerRunning) {

 handler = new Handler();

 updateTimer = new UpdateTimer();

 handler.postDelayed(updateTimer, UPDATE _ EVERY);

}

2. When onStop is called, you no longer need to update the display. Add this code
to the onStop method:

if (timerRunning) {

 handler.removeCallbacks(updateTimer);

 updateTimer = null;

 handler = null;

}

3. When onResume is called, you need to refresh the display. Add these two lines
of code:

enableButtons();

setTimeDisplay();

4. Debug the application on a device, and rotate the screen when the timer is run-
ning. You should now see that the application behaves as you would expect.

Making an Android Device Vibrate

Sometimes a device’s screen may not be visible (for example, if it’s in someone’s
pocket), so you need to indicate that time has passed in a nonvisual way. Making the
device vibrate is a good way to do this.

Let’s set up the code to vibrate once every 5 minutes, twice every 15 minutes, and
three times every hour while the timer is running.

1. Add a property called vibrate of type Vibrator to the TimerActivity class:

protected Vibrator vibrate;

Making an Android Device Vibrate 73

2. Add a property called lastSeconds of type long. This is needed because the
run method is called several times a second, and you want the device to vibrate
only once.

protected long lastSeconds;

3. In the onStart method, set up the vibrate property by calling
getSystemService. Not all devices can vibrate (and most tablets can’t), so you
need to check and log when a device doesn’t support the feature:

vibrate = (Vibrator) getSystemService(VIBRATOR _ SERVICE);

if (vibrate == null) {

 Log.w(CLASS _ NAME, "No vibration service exists.");

}

4. Add a new method called vibrateCheck, which should look like Listing 4.7.
This method uses a similar approach as setTimeDisplay’s to work out the time
difference, but you need only calculate the current minutes and seconds.

To vibrate the device, you call the vibrate method, passing it an array of num-
bers. The numbers represent a vibration pattern, with the first number being the
number of milliseconds to wait before starting. This is followed by how long it
should vibrate and how long it should pause between each vibration.

Listing 4.7 Method for Vibrating a Number of Times at Regular Intervals

protected void vibrateCheck() {

 long timeNow = System.currentTimeMillis();

 long diff = timeNow - startedAt;

 long seconds = diff / 1000;

 long minutes = seconds / 60;

 Log.d(CLASS _ NAME, "vibrateCheck");

 seconds = seconds % 60;

 minutes = minutes % 60;

 if (vibrate != null && seconds == 0 && seconds != lastSeconds) {

 long[] once = { 0, 100 };

 long[] twice = { 0, 100, 400, 100 };

 long[] thrice = { 0, 100, 400, 100, 400, 100 };

 // every hour

 if (minutes == 0) {

 Log.i(CLASS _ NAME, "Vibrate 3 times");

 vibrate.vibrate(thrice, -1);

Chapter 4 Going for Your First Ride: Creating an Android User Interface74

 }

 // every 15 minutes

 else if (minutes % 15 == 0) {

 Log.i(CLASS _ NAME, "Vibrate 2 time");

 vibrate.vibrate(twice, -1);

 }

 // every 5 minutes

 else if (minutes % 5 == 0) {

 Log.i(CLASS _ NAME, "Vibrate once");

 vibrate.vibrate(once, -1);

 }

 }

 lastSeconds = seconds;

}

Once the minutes and seconds have been calculated, the code needs to check
whether it is on one of the three vibration boundaries. If it is, it should vibrate
the required number of times. Note the check seconds != lastSeconds. This
makes sure you don’t vibrate more than once per second, because this method
could be called multiple times in a single second.

5. Inside the run method, add a check (before the handler check and postDelayed
call) to see whether the timer is running and, if it is, to call the vibrateCheck
method:

if (timerRunning) {

 vibrateCheck();

}

6. Debug the application in the emulator, and see that vibrateCheck is being
called in the LogCat view.

7. Debug the application via USB debugging. An error will occur. Correct this
error by adding the vibrate permission to the Android manifest file just after
<uses-sdk>:

<uses-permission android:name="android.permission.VIBRATE" />

Saving User Preferences

Because an activity’s state is not saved automatically during its lifecycle, you need to
save user preferences so that you can redisplay an activity in the correct state. Let’s see
how to do that.

Saving User Preferences 75

Creating a New Activity

Applications often consist of more than one activity. Let’s create a new Settings activity
to enable and disable vibration and create the best possible experience for the user.

1. Create a new activity called activity_settings via the Android New Activity
wizard. Select BlankActivity as the template, Settings as the activity name, and
activity_settings as the layout file. Type Settings as the title.

2. Open the activity _ settings file. Change the RelativeLayout to a
LinearLayout with a vertical orientation:

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

 xmlns:tools=http://schemas.android.com/tools

 android:layout _ width="match _ parent"

 android:layout _ height="match _ parent"

 android:orientation="vertical" >

3. Add a new checkbox view inside the linear layout. Give it a
new id of vibrate _ check, and set the layout _ width and
layout _ height to wrap _ content. Set a resource text to the value
@string/vibrate _ checkbox:

<CheckBox

 android:id="@+id/vibrate _ checkbox"

 android:layout _ width="wrap _ content"

 android:layout _ height="wrap _ content"

 android:text="@string/vibrate _ checkbox" />

4. Add the new resource string vibrate _ checkbox to the strings.xml file:

 <string name="vibrate _ checkbox">Vibrate</string>

Showing a New Activity

To show a new activity, you first need to create an intent. Intents, in their simplest
form, are a description of an activity that you want to occur. (You can also start activi-
ties in other applications, as covered later in the book.)

Next, you’ll create a new intent to display the Settings activity.

1. Open the activity _ timer layout. To launch the new activity, add a new but-
ton to the linear layout. Give the button an ID of settings _ button, and a
click handler to call the method clickedSettings when the button is pressed:

<Button

 android:id=”@+id/settings _ button”

 android:layout _ width=”wrap _ content”

 android:layout _ height=”wrap _ content”

 android:layout _ weight=”1”

Chapter 4 Going for Your First Ride: Creating an Android User Interface76

 android:text=”@string/settings _ button”

 android:onClick=”clickedSettings” />

2. Add the new resource string for the Settings button:

<string name=”settings _ button”>Settings</string>

3. In the TimerActivity.java file, add a new clickedSettings method:

public void clickedSettings(View view) {

 Log.d(CLASS _ NAME, “clickedSettings”);

}

4. Debug the application, and check that the clickedSettings call is logged in
the LogCat view. If an RTE occurs, double-check that the onClick contains
exactly the same method name as the new method just added.

5. In the clickedSettings method, create a new Intent. Then pass the applica-
tion context and the class property of the SettingsActivity. Run Quick fix
to add the import statement for the Intent class:

Intent settingsIntent = new Intent(getApplicationContext(),

 SettingsActivity.class);

6. Display the new activity by calling startActivity, passing the intent you
just created:

startActivity(settingsIntent);

7. Run the application again, and click the Settings button. The setting activity
(displaying a checkbox) with a single checkbox will replace the timer activity, as
shown in Figure 4.9.

Saving an Application’s State

Application state can be stored in many ways, either as static properties stored globally
in the application or through the use of the singleton pattern. This pattern is designed
to control object creation, limiting the number of objects to one. Because there is only
ever one instance of the application class, you can use that to act as a singleton.

Here’s how to create a class to save and retrieve the application settings.

1. Create a new Java class called Settings. Add a private static (of type
String) CLASS _ NAME, and assign the class name in the class constructor:

public class Settings {

 private static String CLASS _ NAME;

 public Settings() {

 CLASS _ NAME = getClass().getName();

 }

}

Saving User Preferences 77

2. Create a private property to store whether or not the vibrate setting is turned on:

protected boolean vibrateOn;

3. Create a method to return this property. Run Quick fix to import the Log class:

public boolean isVibrateOn() {

 Log.d(CLASS _ NAME, "isVibrateOn");

return vibrateOn;

}

4. Create a method to set the value of the property:

public void setVibrate(boolean vibrate) {

 Log.d(CLASS _ NAME, "setVibrate");

vibrateOn = vibrate;

}

5. Create a new class called OnYourBike that extends Application. Add a
settings property of type Settings to this class:

public class OnYourBike extends Application {

 protected Settings settings;

}

Figure 4.9 The new Settings activity

Chapter 4 Going for Your First Ride: Creating an Android User Interface78

6. Add a method named getSettings that creates an instance of Settings if it
hasn’t already been created, and return the settings property:

public Settings getSettings() {

 if (settings == null) {

 settings = new Settings();

 }

 return settings;

}

7. Add a method named setSettings that changes the settings property to the
settings value passed in:

public void setSettings(Settings settings) {

 this.settings = settings;

}

8. Change the Android manifest file so that the application uses this class as its ap-
plication by setting the android:name attribute to ".OnYourBike":

<application android:name=".OnYourBike"

 android:allowBackup="true"

 android:icon="@drawable/ic _ launcher"

 android:label="@string/app _ name"

 android:theme="@style/AppTheme" >

9. Open SettingActivity.java, and add a vibrate checkbox property. Run Quick
fix to import the CheckBox class:

private CheckBox vibrate;

10. In the onCreate method, after the call to setContentView, obtain access to the
checkbox by calling findViewById:

vibrate = (CheckBox)

 findViewById(R.id.vibrate _ checkbox);

11. Obtain the settings by calling the getSettings method just created:

Settings settings = ((OnYourBike)getApplication()).getSettings();

12. Just after that, set the state of the checkbox according to the setting:

vibrate.setChecked(settings.isVibrateOn());

13. Override the onStop method to save the settings:

@Override

public void onStop() {

 super.onStop();

 Settings settings = ((OnYourBike) getApplication()).getSettings();

 settings.setVibrate(vibrate.isChecked());

}

Saving User Preferences 79

14. Run the application, click the Settings button, change the settings checkbox,
and press the back button. Go back into the setting activity again by clicking the
Settings button. The vibrate checkbox should still be ticked.

Notice that there was no need to add a handler to the checkbox for the state to be
saved when the activity was stopped. Depending on how the activity is used in your ap-
plication, you may want to save the setting right away rather than wait until the activity
is stopped.

Using Shared Preferences

The settings class you created saves the application’s state only while it is running. If the
application is stopped and restarted, it won’t remember the previous state. To fix that,
you need to use shared preferences to save the application’s state. Shared preferences al-
low you to save key value pairs on a device.

You can save the vibration setting—whether it’s turned on or off—as a preference:

1. Open Settings.java, and add a private static string called VIBRATE:

private static String VIBRATE = "vibrate";

2. In the isVibrateOn method, obtain an instance of shared preferences by calling
activity.getPreferences:

SharedPreferences preferences
 = activity.getPreferences(Activity.MODE _ PRIVATE);

Run Quick fix to import the SharedPreferences and Activity classes.

3. Check whether the VIBRATE keys exist, and, if they do, set vibrateOn to be the
saved value:

if (preferences.contains(VIBRATE)) {

 vibrateOn = preferences.getBoolean(VIBRATE, false);

}

4. Change the isVibrateOn method to take a single parameter of type Activity:

public boolean isVibrateOn(Activity activity)

5. In the setVibrate method, after the existing code, save the vibrate property
by getting access to the shared preferences, creating an editor, saving the property
by calling putBoolean, and committing the changes by calling apply:

SharedPreferences preferences
 = activity.getPreferences(Activity.MODE _ PRIVATE);

Editor editor = preferences.edit();

editor.putBoolean(VIBRATE, vibrate);

editor.apply();

Run Quick fix to import the Editor class.

Chapter 4 Going for Your First Ride: Creating an Android User Interface80

6. Change the setVibrate method to take an additional parameter of type
Activity:

public void setVibrate(Activity activity, boolean vibrate)

7. Open SettingsActivity.java, and fix the two errors by passing this to the
isVibrateOn and setVibrate methods:

vibrate.setChecked(settings.isVibrateOn(this));

settings.setVibrate(this, vibrate.isChecked());

8. Run the application, click Settings, check the vibrate checkbox, and press
the back button. Click Menu, and select all apps. Select your application, and
click force stop. Run the application again, and click the Settings button. The
 vibrate checkbox should still be checked.

Summary

It’s important to refactor and keep your code clean, as you’ve learned in this chapter.
Android gives you a way to lay out child views in relation to each other and to their
parent view group, and adding event handlers to your code lets your app react to
button clicks.

Looking further into the activity lifecycle identifies a few issues with the applica-
tion you’re building. To fix these issues, you implement simple threading by using the
Runnable interface and the Handler class. (Remember it’s important to not hold
up the main thread of the UI, or you’ll get the dreaded Application Not Respond-
ing dialog box.) You can display a new activity by creating an intent and calling
startActivity.

To store your application’s state, you can create a data model and extend the
Application class. In this data model, you store a simple user preference to control
whether or not the device will vibrate.

Index

A
Action bars

Application icon on, 99
creating, 97–99
detecting Android version, 100
enabling/disabling Go Home icon,

168–169
Share icon on, 245–246

Activities
accessing TextView inside, 45–46
applying styles to, 149
back button for returning to previous, 92
converting to fragments, 355–359
creating, 31, 118
creating and showing, 75–76
creating list activity, 209–212
lifecycle of, 44–45
main executable file for, 42–44
maps. See map activity
photographs. See photo activity
returning to home activity, 99–101
settings. See Settings activity
timers. See Timer activity
trips activity. See Trips activity
understanding Java activity file, 42–44

Activity lifecycle
adding lifecycle methods, 236–237
callbacks (methods), 68–69
exploring how it works, 70–71
fixing issues with, 72
states of, 68
testing, 305–308
understanding, 44–45

ADB (Android Debug Bridge), 112

adb devices command
checking running emulators, 316
showing list of connected devices and

emulators, 112
AdMob advertising service, 370–372
ADT (Android Developer Tools)

design mode, 38
installing on Mac computers, 26–27
installing on Windows computers, 21–24
Lint tool in, 37

Advertising
employing in applications, 369–372
for monetizing mobile apps, 11

AirPush advertising service, 370
AlarmManager, checking battery with,

276–278
Amazon Appstore

marketplaces for Android apps, 363
overview of, 372–373
uploading app to, 373–376

Amazon coins, 373
Android applications. See Applications
Android Asset Studio

creating launcher icons, 134–136, 365
creating notification icons, 136–137

Android Debug Bridge (ADB), 112
Android Developer Tools. See ADT (Android

Developer Tools)
Android development, introduction

Android applications and, 10
building native applications, 2–3
compared with other mobile OSs, 2
Google Play and, 10–11
history of, 3

378 Index

Android development, introduction, continued
market share of Android OS versions, 8
overview of, 1
summary, 10–11
user interface, 8–10
versions releases, 3–7

Android Device Dashboards, 21
Android Device Manager, installing Android

application on devices, 36–37
Android SDK Manager. See SDK Manager
Android Studio, as free development IDE, 14
Android Support Library

installed automatically when creating
applications, 31

viewing features by version releases, 348
Android Virtual Device. See AVD (Android

Virtual Device)
AndroidManifest.xml file, 49–50. See also

Manifest file
ANR (Application Not Responding) dialog

box, 65
ant, compiling tests with, 317–318
APIs (application programming interfaces),

in Android SDK, 19–21
APK (Android Application Package)

compiling applications and installing on
devices, 10

uploading to Amazon Appstore, 374
uploading to Google Play, 365

Apkudo testing service, 324
Application icon, on action bar, 99
Application Manager, uninstalling applica-

tions with, 8
Application Not Responding (ANR) dialog

box, 65
Application state

saving, 76–79
shared preferences, 79–80

Applications
adding map objects to, 183–186
creating first. See On Your Bike applica-

tion, creating
customizing. See On Your Bike applica-

tion, customizing
introduction to, 10
styling. See Styling applications
testing. See Testing applications

Arabic
language support, 330
right-to-left formatting, 344

Asian languages, support for, 330
Asynchronous tasks, speeding up databases

and, 280–284
AsyncTask class, 280–284
Attributes, styles as, 149
Australia, dealing with regional word varia-

tions, 343
Automatic tests

installing Jenkins for, 318–319
overview of, 316
running from command line, 316–318
running with Jenkins, 322–323
version control with Git, 319–322

AVD (Android Virtual Device)
best practices, 34–36
cloning existing virtual device, 138–139
creating for testing applications, 32–33
running application in, 33–34
starting Jelly Bean emulator from, 316

B
Back button

adding to application, 93–94
convention for use of, 92–93

Backward compatibility
Android Support Library and, 348
Android version checking, 349
expanding device support by setting SDK

at lower level, 349–352
overview of, 348

Banner ads, 371–372
BaseActivity class, Java classes, 174
Bash commands, Git, 320–321
Battery

checking with AlarmManager, 276–278
getting current level, 270–272
improving life of, 267–268
reacting if level is critical, 272

Bitmaps
displaying in ImageView, 239
nine-patch PNG for, 149–150
scaling, 131
sharing content with friends, 247

Blackberry, 1

379Index

Blogs, building media strategy for selling
apps, 363–364

Brightness of screen, Night mode and,
151–153

Buttons
adding photo button, 233
adding start and stop buttons for timer,

56–60
applying dimension values to resources,

140–141
applying styles to, 149–150
changing font size, 130–131
creating event handlers for, 60–63
hiding/disabling camera button, 229–231
starting Photo activity from, 234

C
calcLatitude method

battery use and, 275
changing calculation of latitude and lon-

gitude, 191–194
calcLongitude method

battery use and, 275
changing calculation of latitude and lon-

gitude, 191–194
Callbacks (methods), activity lifecycle, 68–69
Camera class, Java classes, 226–227
Cameras. See also Photographs

checking if device has camera and photo
app, 226–229

hiding/disabling camera button, 229–231
requirements for distributing apps via

Google Play, 368
testing activity lifecycle, 305–308

Cell towers
checking accuracy of GPS location,

176–177
comparing location awareness methods,

170
dealing with location inaccuracies,

190–191
finding device location, 169

checkBattery method
calling from onReceive, 277–278
debugging, 276
overview of, 270–272

Checkboxes, applying styles to, 149–150

Chinese, language support, 330
Chooser control, creating/launching, 242–245
Classes. See also by individual classes

adding properties to, 85
creating instances of, 88
creating methods for, 85–88
creating new classes in Eclipse, 84–85,

89–92
Click handlers, adding to buttons, 60–63
Code, refactoring. See Refactoring code
Command line

checking JRE version, 14
checking table creation, 112
Jenkins tool operating from, 322–323
Monkey tool operating from, 313
running tests from, 316–318

Compatibility, backward. See Backward
compatibility

Configuration qualifiers, 132–134
Constructor, for map activity, 184
Content ratings, distributing apps via Google

Play and, 365–366
Continuous integration, 318–319
Coordinates

adding to trip coordinate list, 207–208
displaying on Google Maps, 218–220
getting trip coordinates in proper order,

216–217
storing route information in trip database,

203–204
CPCs (costs per clicks), for advertising,

370–372
CPMs (cost per thousand impressions), for

advertising, 370–372
CPUs, viewing CPU usage, 268–270
createTable command, SQL command for

creating tables, 115
Cross-platform frameworks, 2–3
Cupcake

history of Android version releases, 3
market share of Android OS versions, 8

Currencies, localization of apps and,
346–348

Cursors
looping over, 213
for moving over a set of rows returned

from a query, 120

380 Index

D
Dalvik Debug Monitor Server (DDMS), 176
Data models, creating, 108
Data types, in SQLite, 109
Databases

applying trip database, 205–209
checking table creation, 112–113
creating, 109–111
creating data models, 108
creating relationships between tables,

113–117
inserting, updating, deleting GPS data,

197–199
speeding up databases with asynchronous

tasks, 280–284
speeding up databases with indexes,

278–280
storing GPS data in, 196–197
storing trip route information in,

201–205
date data type, SQLite, 109
Dates, localization and, 346–348
DDMS (Dalvik Debug Monitor Server), 176
Debug perspective, Eclipse IDE, 18
Debugging

enabling USB debugging on device, 36–37
logging inside applications, 46–49
timer button view, 59–60

delete command, for removing data,
200–201

Density-independent pixel. See Dp (density-
independent pixel)

Design mode, ADT (Android Developer
Tools), 38

Developer account, creating on Google Play,
364

Development environment, setting up
installing ADT (Android Developer

Tools) on Windows, 21–24
installing Android SDK on Windows,

19–21
installing Eclipse IDE on Windows,

16–19
installing Java JDK and JRE on Win-

dows, 14–15
installing/using Java on Mac computers,

24–27

overview of, 12–13
summary, 27
understanding Java versions, 16

Devices
adding vibration to, 72–74
adding WhereAmI class to, 173–175
Android Device Dashboards, 21
Android virtual. See AVD (Android Vir-

tual Device)
camera support, 231
changing layout for tablet devices,

145–146
checking for camera and photo app,

226–229
comparing ways of finding device loca-

tion, 170
expanding device support by setting SDK

at lower level, 349–352
installing APK on, 10
installing applications, 36–37
showing list of connected, 112
styling applications and, 128–129
testing applications on range of, 323–325
testing GPS in virtual device, 175–176
testing photo app in, 225
ways for finding device location, 169
widgets for personalizing, 8–9

Dialect support, localization of apps and, 342
Dimensions, applying dimension values to

resources, 140–141
Directories, in Android SDK, 21
Donut

history of Android version releases, 4
market share of Android OS versions, 8

Dp (density-independent pixel)
converting to pixels, 127–128
definitions of screen-related concepts,

126–127
for spacing and layout, 129

Drawing, on maps, 187–190
drop command, SQL command for removing

tables, 112–113, 117

E
Eclair

history of Android version releases, 4
market share of Android OS versions, 8

381Index

Eclipse IDE (Integrated Development
Environment)

ADT plug-in, 21–24
building Android applications, 30
configuring Java JRE in, 17
creating classes in, 84–85, 89–92
installing on Mac computers, 25
installing on Windows computers, 16–17
keyboard shortcuts, 19
perspectives, 18
running tests from, 286
views, 18

Emulator Control view, in Eclipse, 175–176
Emulators

best practices for running, 34–35
Jelly Bean AVD as, 32–34
running tests from command line,

316–318
showing list of connected, 112
testing GPS in virtual device, 175–176
testing photo app in, 225

English, dialect support and, 342
Event handlers, creating button event han-

dlers, 60–63

F
Files

layout files, 38–39
reference files, 39–40
types of, 37–38
understanding activity files, 42–44
understanding manifest file, 49–50
using IDs with layout files, 40–42

Filters, distributing apps via Google Play and,
367

Fonts
changing size of, 130
measuring in sp units, 129

Foreign keys
creating and dropping tables and, 117
speeding up databases with indexes,

279–280
turning on foreign key support, 114

Formats
currency and number formats by region,

346
language formats, 344–346

Fragments
converting activity to, 355–359
lifecycle methods, 355
overview of, 355
using in side-by-side views in tablet land-

scape orientation, 359–361
French

improving translation with user help,
335–337

translating, 332–334
Friends, sharing content with, 242
Froyo

history of Android version releases, 4
knowing Android devices and, 128–129
market share of Android OS versions, 8

G
German

language support, 330
translating, 337–340

getLatitude method, 187
getLongitude method, 187
Gingerbread

history of Android version releases, 4–5
knowing Android devices and, 128–129
market share of Android OS versions, 8
market share of Android versions, 324
Settings menu in, 96
testing applications on, 323

Git
GUI and Bash commands, 321–322
installing, 320–321
version control with, 319–322

Globalization. See Localization of apps
Google

Android OS championed by, 2
history of Android and, 3

Google Licensing, 368–369
Google Maps

adding map objects to application,
183–186

configuring application to use, 183
displaying coordinates on, 218–220
displaying GPS data, 214–215
distributing apps via Google Play and, 368
placing markers and drawing on maps,

187–190

382 Index

Google Maps, continued
setting up Google Play services, 181–183
showing Google Map view, 185

Google Play
comparing with Amazon Appstore, 373,

375
employing advertising in application,

370–372
error message when trying to view

Google Maps, 185
getting application onto, 364–368
Google Licensing and, 368–369
international support, 330, 344
marketplaces for Android apps, 10–11,

363
search feature, 364
setting up service, 181–183
testing service, 324–325

Google Translator Toolkit
creating Hebrew translation with, 344
for rough machine translation, 331–332

GPS (Global Positioning System)
accuracy of, 176–177
battery use and, 267
checking to see if enabled, 173
comparing ways of finding device loca-

tion, 170
dealing with inaccuracies of location data,

190–191
device location awareness and, 169
displaying GPS data, 206, 209, 214–215
improving, 178–181
inserting, updating, deleting GPS data,

197–199
storing GPS data, 196–197
testing in virtual device, 175–176

GPS_PROVIDER, 170
Graphical Layout views

changing layout for tablet devices,
145–146

changing layout to landscape mode,
144–145

creating side-by-side views, 146–148
error checking in, 58

GUI, Git, 320–321. See also UI (user
interface)

H
Halo Dark theme

changing themes, 153–157
default themes, 97–99

Halo Light theme
changing themes, 153–157
default themes, 97–99

Halo Light with dark action bars
changing themes, 153–157
default themes, 97–99

Handler process, creating timer using, 66–67
Hardware requirements, distributing apps via

Google Play and, 367
Hebrew

language support, 330
right-to-left formatting, 344

Height
configuration qualifiers, 132
making apps look good on different

screen sizes, 137–139
specifying layout height, 55–56

Hello world application. See On Your Bike
application, creating

Helper classes
building, 89–92
using with notifications, 101

Home screen
in Android user interface, 8
enabling/disabling Go Home icon on

action bar, 168–169
returning to home activity, 99–101

Honeycomb
action bar introduced in, 94
history of Android version releases, 5
knowing Android devices and, 128–129
market share of Android OS versions, 8
Notification.Builder class, 103
testing applications on devices running,

323

I
I18N (internationalization). See Localization of

apps
Ice Cream Sandwich

history of Android version releases, 6
knowing Android devices and, 128–129

383Index

market share of Android OS versions, 8,
324

testing applications on devices running,
323

Icelandic, language support, 330
Icons

adding for photo menu, 234
Application icon on action bar, 99
Go Home icon on action bar, 168–169
launcher icons, 134–136
notification icons, 136–137
Share icon on action bar, 245–246

IDE (Integrated Development Environment)
Android Studio, 14
Eclipse. See Eclipse IDE (Integrated

Development Environment)
Images, 244. See also Bitmaps
ImageView

adding to layouts, 239–240
sharing content with friends, 247

IMEI (International Mobile Equipment Iden-
tify) number, 368

Indexes, speeding up databases, 278–280
inMobi advertising service, 370
Input methods, configuration qualifiers, 132
insert command, SQL

inserting GPS data into database,
197–198

inserting rows into table, 116–117
updating trip model, 200–201

Instagram, 223
Installing

ADT (Android Developer Tools) on
Windows, 21–24

Android SDK on Windows, 19–21
Android Support Library, 31
APK (Android Application Package) on

devices, 10
applications on devices, 36–37
Eclipse IDE on Windows, 16–19
Git, 320–321
Java JDK and JRE on Windows, 14–15
Java on Mac computers, 24–27
JDK (Java Development Kit) on Macs, 24
Jenkins, 318–319
Jenkins plug-in, 322

Integrated Development Environment (IDE)
Android Studio, 14
Eclipse. See Eclipse IDE (Integrated

Development Environment)
IntelliJ IDEA, Android IDE based on, 14
International Mobile Equipment Identify

(IMEI) number, 368
Internationalization (I18N). See Localization

of apps
iOS, comparing mobile OSs, 1

J
Japanese, language support, 330
JAR files, for advertising in applications,

370–371
Java

changing text size, 142–144
installing JDK and JRE on Windows,

14–15
installing on Mac computers, 24–27
versions, 16

Java classes
BaseActivity class, 174
Camera class, 226–227
MapActivity class, 208
MapFragment class, 359
Notify class, 137
OnYourBike class, 120
RoutesActivity class, 118, 120
Settings class, 76, 82
SQLiteHelper class, 204
TimerActivity class, 225
TimerFragment class, 355
WhereAmI class, 186, 191, 206

Java Development Kit (JDK)
installing on Mac computers, 24
installing on Windows computers,

14–15
Java files

types of Android project files, 37
understanding activity files, 42–44

Java Runtime Environment (JRE)
configuring in Eclipse, 17
installing on Windows, 14–15

javac-version command, for checking Java
compiler version, 24

384 Index

java-version command, for checking JRE
version, 16

JDK (Java Development Kit)
installing on Mac computers, 24
installing on Windows computers,

14–15
Jelly Bean

history of Android version releases, 6–7
knowing Android devices and, 128–129
language support, 330
market share of Android OS versions, 8,

324
notifications in, 101
selecting SDK when building Android

application, 30
starting Jelly Bean emulator from AVD,

316
testing applications on devices running,

323
Jenkins

installing, 318–319
running tests with, 322–323

JPG format, 364–365
JRE (Java Runtime Environment)

configuring in Eclipse, 17
installing on Windows, 14–15

JUnit
comparing versions 3 and 4, 299–300
creating test application, 286–291
improving tests by refactoring, 297–299
increasing test coverage, 292–293
running test, f ixing failed tests, and

 re-running, 291–292
speeding up tests, 294–297
testing applications with, 286

JUnit extensions
testing Android applications, 299–300
testing timer activity initial state,

300–302

K
Key value pairs, saving application state and,

79–80
Keyboard shortcuts, Eclipse IDE, 19
Keypads, configuration qualifiers, 132
Killed state, of activity lifecycle, 68

Kindle Fire/Kindle Fire HD/Kindle Fire
HDX

accessing Amazon Appstore, 372
developing for, 374–375
uploading app to Amazon Appstore, 373

Kit-Kat, history of Android version
releases, 7

L
Landscape orientation

changing layout for, 144–145
handling orientation changes, 251–252
setting in relative layout, 146
side-by-side views in tablets, 359–361

Languages
adding language region codes, 342–343
configuration qualifiers, 132
dealing with regional word variations,

343–344
dialect support, 342
Google Translator Toolkit, 331–332
handling language formats, 344
improving translation with user help,

335–337
right-to-left layouts, 344–346
support, 330–331
translating French, 332–334
translating German, 337–340
translating Spanish, 340–342

Latitude
battery use and, 275
changing calculation of, 191–194
comparing raw location values and cor-

rected location values, 194–196
default location for 0 latitude, 186
getLatitude method, 187
logging accuracy of location data, 172

Launcher icons, 134–136, 364
Layout files

using IDs with, 40–42
XML files, 38–39

Layouts
adding ImageView, 239–240
changing for landscape mode, 144–145
changing for tablet devices, 145–146
creating for photo activity, 232

385Index

creating side-by-side views, 146–148
dp (density-independent pixel) for, 129
handling orientation changes, 251–252
ldrtl/ldltr for layout direction, 132
linear layout view, 56–60, 224–226
relative layout view, 55–56, 137–139, 146
specifying width and height, 55–56
supporting right-to-left layouts, 330,

344–346
taking photographs and, 224–226

ldrtl/ldltr, for layout direction, 132
Licenses, Google Licensing, 368–369
Light sensors

dealing with erratic sensor values,
160–162

detecting light levels, 158–160
Linear layout views

adding start and stop buttons for timer,
56–60

positioning vertically, 56
taking photographs and, 224–226

Lint, finding errors with, 37
List activity, creating list activity for trips,

209–212
ListView

converting trip activity to, 211
creating for routes, 118–122

Localization of apps
adding language region codes, 342–343
backward compatibility and. See Back-

ward compatibility
building for various screen sizes, 352–354
dealing with regional word variations,

343–344
dialect support, 342
fragments for customizing apps for differ-

ent countries, 355–361
Google Translator Toolkit and, 331–332
handling language formats, 344
handling variations in dates, numbers, and

currencies, 346–348
improving translations with user help,

335–337
international demand for Android plat-

form, 329–330
language support, 330–331

overview of, 327
refactoring code and, 327–329
summary, 361
supporting right-to-left layouts, 344–346
translating French, 332–334
translating German, 337–340
translating Spanish, 340–342

Location awareness
accuracy of GPS locations, 176–177
adding map objects to application, 183–186
adding WhereAmI class to device, 173–175
applying trip database, 205–209
changing calculation of latitude and lon-

gitude, 191–194
comparing cell tower or Wi-Fi hotspots

with GPS, 170
comparing raw location values and cor-

rected location values, 194–196
configuring application to use Google

Maps, 183
creating list activity for trips, 209–212
creating WhereAmI class, 170–173
dealing with inaccuracies, 190–191
displaying current location, 186–187
displaying GPS data, 209
displaying GPS data in Google Maps,

214–215
displaying trip coordinates on Google

Maps, 218–220
displaying trips activities, 212–214
getting trip coordinates in proper order,

216–217
improving GPS, 178–181
inserting, updating, deleting GPS data,

197–199
options for displaying maps activities,

217–218
overview of, 165
placing markers and drawing on maps,

187–190
refactoring code, 165–169
setting up Google Play services, 181–183
storing GPS data, 196–197
storing route information, 201–205
summary, 218–220
testing GPS in virtual devices, 175–176

386 Index

Location awareness, continued
updating trip model, 200–201
ways for finding device location, 169

Location services
correcting issues with, 261–267
turning off GPS Satellites in, 180
turning on, 179

LocationListener interface, 171
LogCat

of activity lifecycle, 71
logging inside applications, 46–49
running application in AVD and, 33–34

Logging
changes to GPS status, 178
location-related, 172
LogCat view and, 33–34
using inside applications, 46–49

Longitude
battery use and, 275
changing calculation of, 191–194
comparing raw location values and cor-

rected location values, 194–196
default location for 0 longitude, 186
getLongitude method, 187
logging accuracy of location data, 172

M
Mac OSs

installing ADT on, 26–27
installing Android SDK on, 25–26
installing Eclipse IDE on, 25
installing JDK on, 24

MainActivity class, Java classes, 42–44
Manifest file

handling orientation changes, 251–252
obtaining device location and, 170
refactored activities in, 83
refactoring code for social network app,

223
themes and, 97
understanding, 49–50

Many to many relationships, between tables,
113

map activity, 187–190
adding map objects to application,

183–186
adding menu item for, 173–174

checking accuracy of GPS location,
176–177

constructor for, 184
placing markers and drawing on maps,

187–190
showing and starting, 174

MapActivity class, Java classes, 208
MapFragment class, Java classes, 359
Markers, placing on maps, 187–190
Marketing applications. See Selling

applications
MCC (mobile country code), 132
Media strategy, for selling application,

363–364
Menus

action bar replacing menu-style naviga-
tion, 94

adding item for taking photos, 233
adding items to, 118
creating, 95–96
creating for trip activity, 211
for sharing content, 244
starting PhotoActivity from, 233–234

Methods
adding lifecycle methods, 236–237
callbacks (methods) of activity lifecycle,

68–69
for checking battery, 276–278
correcting issues with vibrate and notifi-

cation methods, 252–253
fixing issues with activity lifecycle, 72
for formatting, 105
for input, 132
for latitude and longitude, 187, 191–194
modifying, 274–275
for new class, 85–88
overriding, 70–71, 99, 255
for simple menu, 95

Middle Eastern languages, 330
MNC (mobile network code), 132
Mobile country code (MCC), 132
Mock applications

creating, 302–305
testing timer activity, 309

Monkey
overview of, 313
testing applications, 313–315

387Index

N
Native applications

advantages of, 1
building, 2–3

Navigation
action bar replacing menu-style naviga-

tion, 94
configuration qualifiers, 132

Navigator view, Eclipse IDE, 18
NETWORK_PROVIDER, 170
Night mode

changing themes and, 153–157
configuration qualifiers, 132
dealing with erratic sensor values, 160–162
detecting light levels, 158–160
enabling, 151–153

Notification class, 101
notification methods, 252–253
Notifications

creating, 101–103
creating notification icons, 136–137
notifyCheck method, 252–253
options when using, 104
showing at regular intervals on, 104–107
what it consists of, 101

Notify class, Java classes, 137
Numbers, localization and, 346–348

O
On Your Bike application, creating

accessing TextView inside an activity,
45–46

best practices, 34–36
creating AVD for testing, 32–33
file types, 37–38
installing on devices, 36–37
layout XML files and, 38–39
logging, 46–49
overview of, 29
reference XML files and, 39–40
running in AVD, 33–34
steps in, 30–31
summary, 50
understanding activity files, 42–44
understanding activity lifecycles, 44–45
understanding manifest file, 49–50
using IDs with layout files, 40–42

On Your Bike application, customizing
back button for returning from settings

activity, 92–94
building Toast class and related helper

class, 89–92
checking table creation, 112–113
creating a toast, 88
creating action bars, 97–99
creating data model, 108
creating database and tables, 109–111
creating menus, 95–96
creating notifications, 101–103
creating relationships between tables,

113–117
creating routes ListView, 118–122
improving SettingsActivity, 88
overview of, 81
refactoring code and, 82–88
returning to home activity, 99–101
showing notifications at regular intervals,

104–107
summary, 118–122

On Your Bike application, getting onto
Google Play, 364–368

onClick event handler
adding to buttons, 62–63
adding to Toast class, 91

onCreate method
activity lifecycle and, 68–69
overriding, 255

onDestroy method
activity lifecycle and, 68–69
overriding, 71

One to many relationships, between tables,
113

One to one relationships, between tables,
113

onPause method
activity lifecycle and, 68–69
overriding, 70

onRestart method
activity lifecycle and, 68–69
overriding, 71

onResume method
activity lifecycle and, 68–69
fixing issues with activity lifecycle, 72
overriding, 70

388 Index

onStart method
activity lifecycle and, 68–69
fixing issues with activity lifecycle, 72
overriding, 70

onStartCommand method, 255
onStop method

activity lifecycle and, 68–69
fixing issues with activity lifecycle, 72
overriding, 70

OnYourBike class, Java classes, 120
Open Handset Alliance, 2–3
OpenGL ES 2, required for Google Maps, 183
Optimization

checking battery with AlarmManager,
276–278

correcting issues with location services,
261–267

correcting issues with vibrate and notifi-
cation methods, 252–253

creating services, 254–257
determining power usage, 268–270
handling orientation changes, 251–252
improving battery life, 267–268
overview of, 249
responding to power levels, 270–276
running application as a service, 250–251
speeding up databases with asynchronous

tasks, 280–284
speeding up databases with indexes,

278–280
summary, 284

Orientation
configuration qualifiers, 132
definitions of screen-related concepts,

126–127
handling orientation changes, 251–252
setting landscape orientation in relative

layout, 146
OSs (operating systems)

ANR (Application Not Responding) dia-
log, 65

comparing Android with other mobile
OSs, 2

Mac OSs. See Mac OSs
market share of Android OS versions, 324
Windows OSs. See Windows OSs

Overriding methods, 43–44

P
Package Explorer view, 18
PASSIVE_PROVIDER, 170
Paused state, of activity lifecycle, 68
Permissions, obtaining device location and,

170
Perspectives, Eclipse IDE, 18
Photo activity

adding activity lifecycle methods to,
236–237

adding takePhoto method, 237
creating, 232–234
displaying photos, 237–241
displaying screen for, 235
fixing bug in, 315
opening PhotoActivity class, 234–237
starting from button, 234
starting from menu, 233–234
testing activity lifecycle, 305–308
testing with Monkey, 314–315

Photographs
checking if device has camera and photo

app, 226–229
creating photo activity, 232–234
displaying, 237–241
hiding/disabling camera button, 229–231
opening PhotoActivity class, 234–237
sharing content with friends, 245–247
taking, 224–226

Pixels, converting dp to, 127–128
Platform version, configuration qualifiers,

133
Platforms, cross-platform frameworks, 2–3
PNG format

creating launcher icons, 364–365
distributing apps via Google Play,

364–365
nine-patch PNG for bitmaps, 149–150

polyline, drawing on maps, 189
Pop-ups

building Toast class and related helper
class, 89–92

creating a toast pop-up, 88
Portrait mode, 251–252
Power usage

determining, 268–270
responding to power levels, 270–276

389Index

Preferences
saving user preferences, 74
shared preferences for saving application

state, 79–80
Primary keys, speeding up databases with

indexes, 279–280
Promotional graphics, 365
Properties, adding to new class, 85
Providers, types of, 170
Public relations, in media strategy, 364

Q
Quick fix, 45–46

R
-r value, for locale settings (language and

region), 132
Ranking algorithm, in Google Play, 11
Refactoring code

for application styling exercise, 126
creating user interface and, 51–54
customizing On Your Bike application,

82–88
for localization exercise, 327–329
for location awareness activities, 165–169
for optimization exercise, 249–250
for social networking app, 223
for speeding up application testing, 297–299
for testing applications project, 285–286

Reference files, XML files, 39–40
Regions. See also Languages; Localization of

apps
adding language region codes, 342–343
configuration qualifiers, 132
dealing with regional word variations,

343–344
dialect support and, 342
handling variations in dates, numbers, and

currencies, 346–348
list of region codes, 331

Relationships, between tables, 113–117
Relative layout view

making apps look good on different
screen sizes, 137–139

positioning views, 55
setting landscape orientation, 146
specifying layout width and height, 55–56

Research in Motion (RIM), 1
Resolution

definitions of screen-related concepts,
126–127

distributing apps via Google Play and, 365
making applications resolution indepen-

dent, 129–131
Resource qualifiers

for language and regions, 330, 343
in resource XML file, 361
for screen sizes, 140, 352–353

Resources
adding suffixes to resource directory, 132
applying dimension values to, 140–141

Right-to-left layouts
handling language formats, 344–346
language support and, 330

RIM (Research in Motion), 1
Routes

creating dummy, 209
creating list activity for trips, 209–212
creating ListView, 118–122
displaying trips activity, 212
inserting, updating, deleting GPS data,

197–199
storing route information in trip database,

201–205
RoutesActivity class, Java classes, 120
Runnable interface, creating timer using,

66–67
Running state, of activity lifecycle, 68

S
Samsung testing labs, 324
Scale-independent pixels (Sp), for fonts, 129
Screen aspect, configuration qualifiers,

132–133
Screen density

definitions of screen-related concepts,
126–127

grouping by dpi, 127–128
launcher icons and, 134–136
notification icons and, 136

Screen size
applying dimension values to resources,

140–141
configuration qualifiers, 132

390 Index

Screen size, continued
definitions of screen-related concepts,

126–127
grouping into categories, 127
international support and, 352–354
knowing Android devices and, 128–129
testing applications on devices, 323
variables in Android application design,

10
Screens

battery use and, 267
differences in, 126–127
enabling night mode, 151–153
making apps look good on different

screen sizes, 137–139
sizes and densities, 127–128
testing applications on devices, 323

SDK (Software Development Kit)
Android SDK not thread safe, 65
device camera support, 231
expanding device support by setting SDK

at lower level, 349–352
installing on Mac computers, 25–26
installing on Windows computers, 19–21
selecting when building Android applica-

tion, 30
versions releases, 3–7

SDK Manager
downloading and installing Android SDK

versions, 351
implementing Google Licensing, 368–369
installing Google Play services, 181
updating Android SDK on Mac, 25–26
updating Android SDK on Windows,

19–22
uploading app to Amazon Appstore, 374

Searches, 11, 274–275
select command, for showing rows and fields

in tables, 116–117, 119–120
Selling applications

Amazon Appstore, 372–376
building media strategy, 363–364
employing advertising in application,

369–372
Google Licensing and, 368–369
Google Play services, 364–368

monetizing mobile apps via advertising,
11

overview of, 363
summary, 372–376

Sensor values, 160–162
ServiceConnection class

correcting issue with location services,
263–267

creating services, 254–257
Services

adding binding class to, 256
correcting issues with timers, 257–261
creating, 254–257
running application as, 250–251
testing, 310–313

Settings activity
back button for returning from, 92–94
displaying, 75–76
extending BaseActivity class, 169
improving, 88–92
overriding methods of, 99
refactoring code for customization exer-

cise, 82–83
Settings class, Java classes, 76, 82
Settings menu, in Gingerbread, 96
Share class

adding menus, 244
adding text and images, 243
building, 242–243

Shared preferences, for saving application
state, 79–80

Sharing content
creating/launching chooser control,

242–245
with friends, 242
text and photos, 245–247

Side-by-side views
creating, 146–148
in tablet landscape orientation, 359–361

Singleton pattern, 76
Smart phones

popularity of Android, 1
testing applications on, 324

Snapshots, creating AVDs and, 32–33
Social media, building media strategy for

selling apps, 363

391Index

Social networking
checking if device has camera and photo

app, 226–229
creating photo activity, 232–234
creating/launching chooser control,

242–245
displaying photos, 237–241
hiding/disabling camera button,

229–231
opening PhotoActivity class, 234–237
refactoring code and, 223
sharing content with friends, 242
sharing text and photos, 245–247
summary, 248
taking photographs, 224–226

Software requirements, distributing apps via
Google Play and, 367

Sp (scale-independent pixels), for fonts, 129
Spanish language support, 340–342
SQL (Structured Query Language), 107
SQLite database

Android support for, 107
applying trip database, 205–209
creating relationships between tables,

113–117
data types in, 109
delete command, 200–201
drop command, 112–113, 117
insert command, 116–117, 197–198,

200–201
inserting, updating, deleting GPS data,

197–199
select command, 119–120
speeding up with asynchronous tasks,

280–284
speeding up with indexes, 278–280
storing GPS data in, 196–197
storing route information in trip database,

201–205
update command, 200–201

SQLiteHelper class, Java classes, 204
SQLiteOpenHelper class

creating database with, 109
overview of, 107

startSearching method, 274–275
startTimer method, 257

State
saving application state, 76–79
shared preferences for saving application

state, 79–80
testing timer activity initial state,

300–302
Static properties, saving state and, 76–77
Status bar, in Android user interface, 9
Stopped state, of activity lifecycle, 68
stopTimer method, 257
Strict mode

actions, 54
setting up in application, 54–55

String format method, 105
Structured Query Language. See SQL

(Structured Query Language)
Styles

applying to buttons and checkboxes,
150–151

overview of, 149
Styling applications

applying dimension values to resources,
140–141

applying styles and themes, 149–151
changing layout for landscape mode,

144–145
changing layout for tablet devices, 145–146
changing text size, 142–144
changing themes, 153–157
configuration qualifiers, 132–134
creating launcher icons, 134–136
creating notification icons, 136–137
creating side-by-side views, 146–148
dealing with erratic sensor values,

160–162
detecting light levels, 158–160
enabling night mode, 151–153
knowing Android devices and, 128–129
making apps look good on different

screen sizes, 137–139
overview of, 125
refactoring in preparation for, 126
resolution independence and, 129–131
screen differences and, 126–127
screen sizes and densities, 127–128
summary, 162–163

392 Index

T
Tables

checking, 112–113, 207
creating, 109–111
relationships between, 113–117

Tablets
changing layout for, 145–146
side-by-side views in tablet landscape ori-

entation, 359–361
testing applications on, 323

Task Manager, viewing CPU usage, 268–270
Test app

creating, 286–291
running test, f ixing failed tests, and

 re-running, 291–292
TestDrive feature, Amazon Appstore, 373
Testing applications

with Android JUnit extensions,
299–300

automatically, 316
from command line, 316–318
creating AVD for, 32–33
creating mock application for testing

activities, 302–305
creating test app with JUnit, 286–291
improving tests by refactoring, 297–299
increasing test coverage, 292–293
with Jenkins, 318–319, 322–323
with JUnit, 286
with Lint, 37
with Monkey, 313–315
on range of devices, 323–325
refactoring code for test project,

285–286
running test, f ixing failed tests, and re-

running, 291–292
speeding up tests, 294–297
summary, 325
testing activity lifecycle, 305–308
testing by interacting with UI, 309–310
testing photo app in emulators and in

devices, 225
testing timer activity initial state,

300–302
testing timer activity with timer running,

308–309
version control with Git, 319–322

Testing services
overview of, 310–311
testing applications on devices, 324–325
testing GPS in virtual device, 175–176
testing if running, 311–312
testing start-up and shut-down, 312–313

Text
adding to Share class, 243
applying dimension values to resources,

140–141
changing size in Java, 142–144
sharing content with friends, 245–247

TextView, 45–46
Thai, 330
Themes

applying, 149–151
changing, 153–157
for consistent style, 97
styles compared with, 149

Threads
activities running inside main UI thread,

68
Android SDK not thread safe, 65
avoiding database access on main UI

thread, 280
detecting issues with UI thread, 54–55
pausing with sleep method, 291

Timer activity
adding start and stop buttons, 56–60
displaying running timer, 65–67
increasing test coverage, 292–293
refactoring as means of speeding up tests,

297–299
speeding up tests, 294–297
testing, 286–292
testing by interacting with UI, 309–310
testing initial state, 300–302
testing with timer running, 308–309
updating display, 63–65

Timer activity, optimizing
correcting issues with, 257–261
correcting issues with vibrate and notifi-

cation methods, 252–253
creating services, 254–257
handling orientation changes, 251–252
running application as a service, 250–251

TimerActivity class, Java classes, 225

393Index

TimerFragment class, Java classes, 355
TimerService class, 310–313
TimerState class, 294
Toast pop-up

building Toast class and related helper
class, 89–92

creating, 88
displaying, 90–91

Touches, for returning to Home screen, 99
Touchscreen, configuration qualifiers, 132
Translation

French, 332–334
German, 337–340
Google Translator Toolkit for machine

translation, 331–332
improving with user help, 335–337
Spanish, 340–342

Trips activity
applying trip database, 205–209
creating list activity for trips, 209–212
displaying, 212–214
displaying coordinates on Google Maps,

218–220
displaying GPS data, 209, 214–215
getting trip coordinates in proper order,

216–217
inserting, updating, deleting routes,

197–199
options for displaying, 217–218
storing route information in trip database,

201–205
updating trip model, 200–201

U
UI (user interface)

activity lifecycle and, 68–69
creating, 51
creating and showing new activity, 75–76
creating button event handlers, 60–63
displaying running timer, 65–67
exploring how activity lifecycle works,

70–71
fixing activity lifecycle issues, 72
indicating relative layout of views, 55
linear layout views, 56–60
overview of, 8–10
refactoring code and, 51–54

specifying layout width and height, 55–56
summary, 79–80
testing applications from, 309–310
updating timer display, 63–65

update command, updating trip model,
200–201

USB, enabling USB debugging on device,
36–37

User interface. See UI (user interface)
Users, improving language translation with

user help, 335–337

V
Vector images, vs. bitmaps, 131
Version checking

backward compatibility and, 349
viewing features by version releases, 348

Version control
Git GUI and Bash commands, 321–322
installing Git for, 320–321
overview of, 319–320

Vibration, making devices vibrate, 72–74
Views, Android UI controls

applying styles to, 149
creating side-by-side views, 146–148
graphical layout. See Graphical Layout

views
linear layout. See Linear layout views
relative layout, 55
side-by-side views in tablets, 359–361
specifying layout width and height, 55–56

Views, Eclipse
ImageView, 239–240, 247
ListView, 118–122, 211
LogCat view. See LogCat
TextView, 45–46
using, 18

Virtual devices, 175–176. See also AVD
(Android Virtual Device)

VServ.mobi, 370

W
Welsh, language support, 330
WhereAmI class, Java classes, 186, 191, 206

adding to device, 173–175
correcting issue with location services,

261

394 Index

WhereAmI class, Java classes, continued
creating, 170–173
power usage options, 273

Widgets, personalizing Android devices, 8–9
Width

configuration qualifiers, 132
making apps look good on different

screen sizes, 137–139
specifying layout width, 55–56

Wi-Fi
checking accuracy of GPS location and,

176–177
comparing ways of finding device loca-

tion, 170
dealing with inaccuracies of location data,

191
ways for finding device location, 169

Windows OSs
installing ADT on, 21–24
installing Android SDK on, 19–21
installing Eclipse IDE on, 16–19
installing Java JDK and JRE on,

14–15

X
XML

for action bar, 97
layout files, 38–39
reference files, 39–40
for simple menu, 95
types of Android project files, 37–38
understanding manifest file, 49–50
using IDs with layout files, 40–42

xUnit-testing, 286

395

This page begins the continuation of the copyright page.

The Android robot is reproduced or modified from work created and shared by Google and used
according to terms described in the Creative Commons 3.0 Attribution License.
http://creativecommons.org/licenses/by/3.0/

Some figures that appear in this book have been reproduced from or are modifications based
on work created and shared by Google and used according to terms described in the Creative
Commons 3.0 Attribution.
http://creativecommons.org/licenses/by/3.0/

Portions of this book are modifications based on work created and shared by the Android
Open Source Project and used according to terms described in the Creative Commons 2.5
Attribution License.
http://creativecommons.org/licenses/by/2.5/

The “On Your Bike” code and application is copyright 2013 Pearson Education, Inc., and is
licensed under the Apache License, Version 2.0 (the “License”); you may not use these files
except in compliance with the License. You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limita-
tions under the License.

This book includes software from The Android Open Source Project Copyright © 2005–2008,
The Android Open Source Project Licensed under the Apache License, Version 2.0 (the
“License”); you may not use this file except in compliance with the License. Unless required by
applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under
the License. Apache License Version 2.0, January 2004.
http://www.apache.org/licenses/

All art generated by the Android Asset Studio is licensed under a Creative Commons Attribution
3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

Trademark Notices

Google and the Google logo are registered trademarks of Google Inc., used with permission.

Android is a trademark of Google Inc.

The AdMob™ mobile advertising service, Dalvik™ virtual machine, Glass™ wearable computing
device, Google Analytics™ web analytics service, Google Checkout™ payment and billing service,
Google Maps™ mapping service, Google Translator Toolkit™ tools, Google Wallet™ payment ser-
vice, Google+™ social service, Open Handset Alliance™ business alliance, Picasa™ photo organiz-
ing software, YouTube™ video community are all trademarks of Google Inc.

Google Play is a trademark of Google Inc.

The Nexus One™ mobile phone, Nexus S™ mobile phone, and Nexus™ family of marks for mobile
devices and peripherals are all trademarks of Google Inc.

Apache is trademark of The Apache Software Foundation. Used with permission. No endorsement
by The Apache Software Foundation is implied by the use of these marks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/2.5/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://creativecommons.org/licenses/by/3.0/

396

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

Apple, Mac, and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Windows, Windows XP, Windows Visa, Windows 7, and Exchange are registered trademarks of
Microsoft Corporation in the United States and other countries.

“Eclipse” is a trademark of Eclipse Foundation, Inc.

IntelliJ® is a registered trademark owned by Jetbrains s.r.o.

SQLite is a registered trademark owned by Hwaci.

OpenGL is a registered trademark of Silicon Graphics International Corp. in the U.S. and/or other
countries worldwide.

Apache Ant, Apache Subversion, and Subversion are trademarks of The Apache Software
Foundation.

GitHub is a trademark of Github, LLC.

SourceTree by Atlassian is a trademark of Atlassian.

Twitter is a registered trademark of Twitter, Inc.

Facebook® and Instagram™ are trademarks and registered trademarks of Facebook Inc.

Apkudo is a trademark of Apkudo LLC.

Adobe and Flash are either registered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

PhoneGap is a trademark of Adobe Systems Incorporated.

Sencha Touch™ are registered trademarks of Sencha, Inc. 

Titanium™ is a trademark of Appcelerator, Inc., registered in the U.S and /or other countries and is
used under license.

Kendo UI is a trademark of Telerik AD.

All of the Tumblr trademarks displayed in this book are the property of Tumblr, Inc.

Amazon, Amazon Appstore for Android, Kindle, and Kindle Fire are trademarks of Amazon.com,
Inc., or its affiliates.

BlackBerry®, RIM®, Research In Motion® and related trademarks, names, and logos are the
property of Research In Motion Limited and are registered and/or used in the U.S. and countries
around the world. Used under license from Research In Motion Limited.

MOTOROLA and MOTOBLUR are trademarks or registered trademarks of Motorola Trademark
 Holdings, LLC.

HTC is a trademark of HTC Corporation.

LG is a registered trademark of LG Electronics, Inc.

Samsung, Galaxy S3, Galaxy S4, Galaxy Note, Galaxy Camera, Pocket, and TouchWiz are trade-
marks of Samsung Electronics Co., Ltd.

OUYA is a trademark of OUYA, Inc.

397

Verizon Wireless is a trademark of Verizon Trademark Services, LLC.

AT&T is a trademark of AT&T Intellectual Property or AT&T affiliated company (“AT&T Marks”).

T-Mobile is registered and/or unregistered trademark of Deutsche Telekom AG.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc.

Wi-Fi® is a registered trademark of Wi-Fi Alliance.

USB is a trademark or registered trademark of USB Implementers Forum corporation in the United
States and/or other countries.

SD is a trademark or registered trademark of SD-3C, LLC, in the United States, other countries,
or both.

	Contents
	Preface
	Acknowledgments
	About the Authors
	4 Going for Your First Ride: Creating an Android User Interface
	Refactoring Your Code
	Implementing Strict Mode
	Creating a Simple User Interface
	Using Linear Layouts
	Creating Button Event Handlers
	Updating the Timer Display
	Displaying a Running Timer

	Understanding the Activity Lifecycle
	Exploring the Android Activity Lifecycle
	Fixing Activity Lifecycle Issues

	Making an Android Device Vibrate
	Saving User Preferences
	Creating a New Activity
	Showing a New Activity
	Saving an Application’s State
	Using Shared Preferences

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

