
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321898654
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321898654
https://plusone.google.com/share?url=http://www.informit.com/title/9780321898654
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321898654
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321898654/Free-Sample-Chapter

Data Just Right

T he Addison-Wesley Data and Analytics Series provides readers with practical
knowledge for solving problems and answering questions with data. Titles in this series
primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end
systems for fighting spam; making recommendations; building personalization;
detecting trends, patterns, or problems; and gaining insight from the data exhaust of
systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Addison-Wesley Data and Analytics Series

Data Just Right

Introduction to Large-Scale
Data & Analytics

Michael Manoochehri

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Manoochehri, Michael.
 Data just right : introduction to large-scale data & analytics / Michael Manoochehri.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-89865-4 (pbk. : alk. paper)—ISBN 0-321-89865-6 (pbk. : alk. paper)
 1. Database design. 2. Big data. I. Title.
 QA76.9.D26M376 2014
 005.74’3—dc23
 2013041476

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-89865-4
ISBN-10: 0-321-89865-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2013

 ❖

This book is dedicated to my parents,
Andrew and Cecelia Manoochehri,

who put everything they had into making sure
that I received an amazing education.

 ❖

This page intentionally left blank

Contents

Foreword xv

Preface xvii

Acknowledgments xxv

About the Author xxvii

I Directives in the Big Data Era 1

1 Four Rules for Data Success 3

When Data Became a BIG Deal 3

Data and the Single Server 4

The Big Data Trade-Off 5

Build Solutions That Scale (Toward Infinity) 6

Build Systems That Can Share Data (On the
Internet) 7

Build Solutions, Not Infrastructure 8

Focus on Unlocking Value from Your Data 8

Anatomy of a Big Data Pipeline 9

The Ultimate Database 10

Summary 10

II Collecting and Sharing a Lot of Data 11

2 Hosting and Sharing Terabytes of Raw Data 13

Suffering from Files 14

The Challenges of Sharing Lots of Files 14

Storage: Infrastructure as a Service 15

The Network Is Slow 16

Choosing the Right Data Format 16

XML: Data, Describe Thyself 18

JSON: The Programmer’s Choice 18

Character Encoding 19

File Transformations 21

Data in Motion: Data Serialization Formats 21

Apache Thrift and Protocol Buffers 22

Summary 23

Contentsviii

3 Building a NoSQL-Based Web App to Collect
Crowd-Sourced Data 25

Relational Databases: Command and Control 25

The Relational Database ACID Test 28

Relational Databases versus the Internet 28

CAP Theorem and BASE 30

Nonrelational Database Models 31

Key–Value Database 32

Document Store 33

Leaning toward Write Performance: Redis 35

Sharding across Many Redis Instances 38

Automatic Partitioning with Twemproxy 39

Alternatives to Using Redis 40

NewSQL: The Return of Codd 41

Summary 42

4 Strategies for Dealing with Data Silos 43

A Warehouse Full of Jargon 43

The Problem in Practice 45

Planning for Data Compliance and Security 46

Enter the Data Warehouse 46

Data Warehousing’s Magic Words: Extract, Transform,
and Load 48

Hadoop: The Elephant in the Warehouse 48

Data Silos Can Be Good 49

Concentrate on the Data Challenge, Not the
Technology 50

Empower Employees to Ask Their Own
Questions 50

Invest in Technology That Bridges Data Silos 51

Convergence: The End of the Data Silo 51

Will Luhn’s Business Intelligence System Become
Reality? 52

Summary 53

Contents ix

III Asking Questions about Your Data 55

5 Using Hadoop, Hive, and Shark to Ask Questions
about Large Datasets 57

What Is a Data Warehouse? 57

Apache Hive: Interactive Querying for Hadoop 60

Use Cases for Hive 60

Hive in Practice 61

Using Additional Data Sources with Hive 65

Shark: Queries at the Speed of RAM 65

Data Warehousing in the Cloud 66

Summary 67

6 Building a Data Dashboard with Google
BigQuery 69

Analytical Databases 69

Dremel: Spreading the Wealth 71

How Dremel and MapReduce Differ 72

BigQuery: Data Analytics as a Service 73

BigQuery’s Query Language 74

Building a Custom Big Data Dashboard 75

Authorizing Access to the BigQuery API 76

Running a Query and Retrieving the Result 78

Caching Query Results 79

Adding Visualization 81

The Future of Analytical Query Engines 82

Summary 83

7 Visualization Strategies for Exploring Large
Datasets 85

Cautionary Tales: Translating Data into Narrative 86

Human Scale versus Machine Scale 89

Interactivity 89

Building Applications for Data Interactivity 90

Interactive Visualizations with R and ggplot2 90

matplotlib: 2-D Charts with Python 92

D3.js: Interactive Visualizations for the Web 92

Summary 96

Contentsx

IV Building Data Pipelines 97

8 Putting It Together: MapReduce Data
Pipelines 99

What Is a Data Pipeline? 99

The Right Tool for the Job 100

Data Pipelines with Hadoop Streaming 101

MapReduce and Data Transformation 101

The Simplest Pipeline: stdin to stdout 102

A One-Step MapReduce Transformation 105

Extracting Relevant Information from Raw NVSS Data:
Map Phase 106

Counting Births per Month: The Reducer
Phase 107

Testing the MapReduce Pipeline Locally 108

Running Our MapReduce Job on a Hadoop
Cluster 109

Managing Complexity: Python MapReduce Frameworks for
Hadoop 110

Rewriting Our Hadoop Streaming Example Using
mrjob 110

Building a Multistep Pipeline 112

Running mrjob Scripts on Elastic MapReduce 113

Alternative Python-Based MapReduce
Frameworks 114

Summary 114

9 Building Data Transformation Workflows with Pig and
Cascading 117

Large-Scale Data Workflows in Practice 118

It’s Complicated: Multistep MapReduce
Transformations 118

Apache Pig: “Ixnay on the Omplexitycay” 119

Running Pig Using the Interactive Grunt Shell 120

Filtering and Optimizing Data Workflows 121

Running a Pig Script in Batch Mode 122

Cascading: Building Robust Data-Workflow
Applications 122

Thinking in Terms of Sources and Sinks 123

Contents xi

Building a Cascading Application 124

Creating a Cascade: A Simple JOIN Example 125

Deploying a Cascading Application on a Hadoop
Cluster 127

When to Choose Pig versus Cascading 128

Summary 128

V Machine Learning for Large Datasets 129

10 Building a Data Classification System with
Mahout 131

Can Machines Predict the Future? 132

Challenges of Machine Learning 132

Bayesian Classification 133

Clustering 134

Recommendation Engines 135

Apache Mahout: Scalable Machine Learning 136

Using Mahout to Classify Text 137

MLBase: Distributed Machine Learning
Framework 139

Summary 140

VI Statistical Analysis for Massive Datasets 143

11 Using R with Large Datasets 145

Why Statistics Are Sexy 146

Limitations of R for Large Datasets 147

R Data Frames and Matrices 148

Strategies for Dealing with Large Datasets 149

Large Matrix Manipulation: bigmemory and
biganalytics 150

ff: Working with Data Frames Larger than
Memory 151

biglm: Linear Regression for Large Datasets 152

RHadoop: Accessing Apache Hadoop from R 154

Summary 155

Contentsxii

12 Building Analytics Workflows Using Python and
Pandas 157

The Snakes Are Loose in the Data Zoo 157

Choosing a Language for Statistical
Computation 158

Extending Existing Code 159

Tools and Testing 160

Python Libraries for Data Processing 160

NumPy 160

SciPy: Scientific Computing for Python 162

The Pandas Data Analysis Library 163

Building More Complex Workflows 167

Working with Bad or Missing Records 169

iPython: Completing the Scientific Computing Tool
Chain 170

Parallelizing iPython Using a Cluster 171

Summary 174

VII Looking Ahead 177

13 When to Build, When to Buy, When to
Outsource 179

Overlapping Solutions 179

Understanding Your Data Problem 181

A Playbook for the Build versus Buy Problem 182

What Have You Already Invested In? 183

Starting Small 183

Planning for Scale 184

My Own Private Data Center 184

Understand the Costs of Open-Source 186

Everything as a Service 187

Summary 187

14 The Future: Trends in Data Technology 189

Hadoop: The Disruptor and the Disrupted 190

Everything in the Cloud 191

The Rise and Fall of the Data Scientist 193

Contents xiii

Convergence: The Ultimate Database 195

Convergence of Cultures 196

Summary 197

Index 199

This page intentionally left blank

Foreword

The array of tools for collecting, storing, and gaining insight from data is huge and
getting bigger every day. For people entering the field, that means digging through
hundreds of Web sites and dozens of books to get the basics of working with data at
scale. That’s why this book is a great addition to the Addison-Wesley Data & Analytics
series; it provides a broad overview of tools, techniques, and helpful tips for building
large data analysis systems.

Michael is the perfect author to provide this introduction to Big Data analytics. He
worked on the Cloud Platform Developer Relations team at Google, helping develop-
ers with BigQuery, Google’s hosted platform for analyzing terabytes of data quickly.
He brings his breadth of experience to this book, providing practical guidance for
anyone looking to start working with Big Data or anyone looking for additional tips,
tricks, and tools.

The introductory chapters start with guidelines for success with Big Data systems
and introductions to NoSQL, distributed computing, and the CAP theorem. An intro-
duction to analytics at scale using Hadoop and Hive is followed by coverage of real-
time analytics with BigQuery. More advanced topics include MapReduce pipelines,
Pig and Cascading, and machine learning with Mahout. Finally, you’ll see examples
of how to blend Python and R into a working Big Data tool chain. Throughout all
of this material are examples that help you work with and learn the tools. All of this
combines to create a perfect book to read for picking up a broad understanding of Big
Data analytics.

—Paul Dix, Series Editor

This page intentionally left blank

Preface

Did you notice? We’ve recently crossed a threshold beyond which mobile technology
and social media are generating datasets larger than humans can comprehend. Large-
scale data analysis has suddenly become magic.

The growing fields of distributed and cloud computing are rapidly evolving to
analyze and process this data. An incredible rate of technological change has turned
commonly accepted ideas about how to approach data challenges upside down, forcing
companies interested in keeping pace to evaluate a daunting collection of sometimes
contradictory technologies.

Relational databases, long the drivers of business-intelligence applications, are
now being joined by radical NoSQL open-source upstarts, and features from both are
appearing in new, hybrid database solutions. The advantages of Web-based computing
are driving the progress of massive-scale data storage from bespoke data centers toward
scalable infrastructure as a service. Of course, projects based on the open-source
Hadoop ecosystem are providing regular developers access to data technology that has
previously been only available to cloud-computing giants such as Amazon and Google.

The aggregate result of this technological innovation is often referred to as Big
Data. Much has been made about the meaning of this term. Is Big Data a new trend,
or is it an application of ideas that have been around a long time? Does Big Data liter-
ally mean lots of data, or does it refer to the process of approaching the value of data in
a new way? George Dyson, the historian of science, summed up the phenomena well
when he said that Big Data exists “when the cost of throwing away data is more than
the machine cost.” In other words, we have Big Data when the value of the data itself
exceeds that of the computing power needed to collect and process it.

Although the amazing success of some companies and open-source projects asso-
ciated with the Big Data movement is very real, many have found it challenging to
navigate the bewildering amount of new data solutions and service providers. More
often than not, I’ve observed that the processes of building solutions to address data
challenges can be generalized into the same set of common use cases that appear over
and over.

Finding efficient solutions to data challenges means dealing with trade-offs. Some
technologies that are optimized for a specific data use case are not the best choice for
others. Some database software is built to optimize speed of analysis over f lexibility,
whereas the philosophy of others favors consistency over performance. This book will
help you understand when to use one technology over another through practical use
cases and real success stories.

Prefacexviii

Who This Book Is For
There are few problems that cannot be solved with unlimited money and resources.
Organizations with massive resources, for better or for worse, can build their own
bespoke systems to collect or analyze any amount of data. This book is not written
for those who have unlimited time, an army of dedicated engineers, and an infinite
budget.

This book is for everyone else—those who are looking for solutions to data chal-
lenges and who are limited by resource constraints. One of the themes of the Big Data
trend is that anyone can access tools that only a few years ago were available exclu-
sively to a handful of large corporations. The reality, however, is that many of these
tools are innovative, rapidly evolving, and don’t always fit together seamlessly. The
goal of this book is to demonstrate how to build systems that put all the parts together
in effective ways. We will look at strategies to solve data problems in ways that are
affordable, accessible, and by all means practical.

Open-source software has driven the accessibility of technology in countless ways,
and this has also been true in the field of Big Data. However, the technologies and
solutions presented in this book are not always the open-source choice. Sometimes,
accessibility comes from the ability of computation to be accessed as a service.

Nonetheless, many cloud-based services are built upon open-source tools, and in
fact, many could not exist without them. Due to the great economies of scale made
possible by the increasing availability of utility-computing platforms, users can pay for
supercomputing power on demand, much in the same way that people pay for central-
ized water and power.

We’ll explore the available strategies for making the best choices to keep costs low
while retaining scalability.

Why Now?
It is still amazing to me that building a piece of software that can reach everyone on the
planet is not technically impossible but is instead limited mostly by economic inequity
and language barriers. Web applications such as Facebook, Google Search, Yahoo! Mail,
and China’s Qzone can potentially reach hundreds of millions, if not billions, of active
users. The scale of the Web (and the tools that come with it) is just one aspect of why
the Big Data field is growing so dramatically. Let’s look at some of the other trends that
are contributing to interest in this field.

The Maturity of Open-Source Big Data
In 2004, Google released a famous paper detailing a distributed computing framework
called MapReduce. The MapReduce framework was a key piece of technology that
Google used to break humongous data processing problems into smaller chunks. Not
too long after, another Google research paper was released that described BigTable,
Google’s internal, distributed database technology.

Preface xix

Since then, a number of open-source technologies have appeared that implement
or were inspired by the technologies described in these original Google papers. At
the same time, in response to the inherent limits and challenges of using relational-
database models with distributed computing systems, new database paradigms had
become more and more acceptable. Some of these eschewed the core features of rela-
tional databases completely, jettisoning components like standardized schemas, guaran-
teed consistency, and even SQL itself.

The Rise of Web Applications
Data is being generated faster and faster as more and more people take to the Web.
With the growth in Web users comes a growth in Web applications.

Web-based software is often built using application programming interfaces, or
APIs, that connect disparate services across a network. For example, many applications
incorporate the ability to allow users to identify themselves using information from
their Twitter accounts or to display geographic information visually via Google Maps.
Each API might provide a specific type of log information that is useful for data-
driven decision making.

Another aspect contributing to the current data f lood is the ever-increasing amount
of user-created content and social-networking usage. The Internet provides a friction-
less capability for many users to publish content at almost no cost. Although there is a
considerable amount of noise to work through, understanding how to collect and ana-
lyze the avalanche of social-networking data available can be useful from a marketing
and advertising perspective.

It’s possible to help drive business decisions using the aggregate information col-
lected from these various Web services. For example, imagine merging sales insights
with geographic data; does it look like 30% of your unique users who buy a particular
product are coming from France and sharing their purchase information on Facebook?
Perhaps data like this will help make the business case to dedicate resources to target-
ing French customers on social-networking sites.

Mobile Devices
Another reason that scalable data technology is hotter than ever is the amazing explo-
sion of mobile-communication devices around the world. Although this trend primar-
ily relates to the individual use of feature phones and smartphones, it’s probably more
accurate to as think of this trend as centered on a user’s identity and device indepen-
dence. If you both use a regular computer and have a smartphone, it’s likely that you
have the ability to access the same personal data from either device. This data is likely
to be stored somewhere in a data center managed by a provider of infrastructure as a
service. Similarly, the smart TV that I own allows me to view tweets from the Twitter
users I follow as a screen saver when the device is idle. These are examples of ubiqui-
tous computing: the ability to access resources based on your identity from arbitrary
devices connected to the network.

Prefacexx

Along with the accelerating use of mobile devices, there are many trends in which
consumer mobile devices are being used for business purposes. We are currently at an
early stage of ubiquitous computing, in which the device a person is using is just a tool
for accessing their personal data over the network. Businesses and governments are
starting to recognize key advantages for using 100% cloud-based business-productivity
software, which can improve employee mobility and increase work efficiencies.

In summary, millions of users every day find new ways to access networked appli-
cations via an ever-growing number of devices. There is great value in this data for
driving business decisions, as long as it is possible to collect it, process it, and analyze it.

The Internet of . . . Everything
In the future, anything powered by electricity might be connected to the Internet,
and there will be lots of data passed from users to devices, to servers, and back. This
concept is often referred to as the Internet of Things. If you thought that the billions of
people using the Internet today generate a lot of data, just wait until all of our cars,
watches, light bulbs, and toasters are online, as well.

It’s still not clear if the market is ready for Wi-Fi-enabled toasters, but there’s a
growing amount of work by both companies and hobbyists in exploring the Internet
of Things using low-cost commodity hardware. One can imagine network-connected
appliances that users interact with entirely via interfaces on their smartphones or
 tablets. This type of technology is already appearing in televisions, and perhaps this
trend will finally be the end of the unforgivable control panels found on all microwave
ovens.

Like the mobile and Web application trends detailed previously, the privacy and
policy implications of an Internet of Things will need to be heavily scrutinized; who
gets to see how and where you used that new Wi-Fi-enabled electric toothbrush? On
the other hand, the aggregate information collected from such devices could also be
used to make markets more efficient, detect potential failures in equipment, and alert
users to information that could save them time and money.

A Journey toward Ubiquitous Computing
Bringing together all of the sources of information mentioned previously may provide
as many opportunities as red herrings, but there’s an important story to recognize
here. Just as the distributed-computing technology that runs the Internet has made
personal communications more accessible, trends in Big Data technology have made
the process of looking for answers to formerly impossible questions more accessible.

More importantly, advances in user experience mean that we are approaching a
world in which technology for asking questions about the data we generate—on a
once unimaginable scale—is becoming more invisible, economical, and accessible.

Preface xxi

How This Book Is Organized
Dealing with massive amounts of data requires using a collection of specialized tech-
nologies, each with their own trade-offs and challenges. This book is organized in
parts that describe data challenges and successful solutions in the context of common
use cases. Part I, “Directives in the Big Data Era,” contains Chapter 1, “Four Rules
for Data Success.” This chapter describes why Big Data is such a big deal and why the
promise of new technologies can produce as many problems as opportunities. The
chapter introduces common themes found throughout the book, such as focusing on
building applications that scale, building tools for collaboration instead of silos, wor-
rying about the use case before the technology, and avoiding building infrastructure
unless absolutely necessary.

Part II, “Collecting and Sharing a Lot of Data,” describes use cases relevant to col-
lecting and sharing large amounts of data. Chapter 2, “Hosting and Sharing Terabytes
of Raw Data,” describes how to deal with the seemingly simple challenge of hosting
and sharing large amounts of files. Choosing the correct data format is very important,
and this chapter covers some of the considerations necessary to make good decisions
about how data is shared. It also covers the types of infrastructure necessary to host a
large amount of data economically. The chapter concludes by discussing data serializa-
tion formats used for moving data from one place to another.

Chapter 3, “Building a NoSQL-Based Web App to Collect Crowd-Sourced Data,”
is an introduction to the field of scalable database technology. This chapter discusses
the history of both relational and nonrelational databases and when to choose one type
over the other. We will also introduce the popular Redis database and look at strate-
gies for sharding a Redis installation over multiple machines.

Scalable data analytics requires use and knowledge of multiple technologies, and
this often results in data being siloed into multiple, incompatible locations. Chapter 4,
“Strategies for Dealing with Data Silos,” details the reasons for the existence of data
silos and strategies for overcoming the problems associated with them. The chapter
also takes a look at why data silos can be beneficial.

Once information is collected, stored, and shared, we want to gain insight about
our data. Part III, “Asking Questions about Your Data,” covers use cases and technol-
ogy involved with asking questions about large datasets. Running queries over massive
data can often require a distributed solution. Chapter 5, “Using Hadoop, Hive, and
Shark to Ask Questions about Large Datasets,” introduces popular scalable tools for
running queries over ever-increasing datasets. The chapter focuses on Apache Hive,
a tool that converts SQL-like queries into MapReduce jobs that can be run using
Hadoop.

Sometimes querying data requires iteration. Analytical databases are a class of
software optimized for asking questions about datasets and retrieving the results very
quickly. Chapter 6, “Building a Data Dashboard with Google BigQuery,” describes
the use cases for analytical databases and how to use them as a complement for

Prefacexxii

batch-processing tools such as Hadoop. It introduces Google BigQuery, a fully man-
aged analytical database that uses an SQL-like syntax. The chapter will demonstrate
how to use the BigQuery API as the engine behind a Web-based data dashboard.

Data visualization is a rich field with a very deep history. Chapter 7, “Visualization
Strategies for Exploring Large Datasets,” introduces the benefits and potential pitfalls
of using visualization tools with large datasets. The chapter covers strategies for visual-
ization challenges when data sizes grow especially large and practical tools for creating
visualizations using popular data analysis technology.

A common theme when working with scalable data technologies is that different
types of software tools are optimized for different use cases. In light of this, a common
use case is to transform large amounts of data from one format, or shape, to another.
Part IV, “Building Data Pipelines,” covers ways to implement pipelines and workf lows
for facilitating data transformation. Chapter 8, “Putting It Together: MapReduce Data
Pipelines,” introduces the concept of using the Hadoop MapReduce framework for
processing large amounts of data. The chapter describes creating practical and accessi-
ble MapReduce applications using the Hadoop Streaming API and scripting languages
such as Python.

When data processing tasks become very complicated, we need to use workf low
tools to further automate transformation tasks. Chapter 9, “Building Data Transforma-
tion Workf lows with Pig and Cascading,” introduces two technologies for expressing
very complex MapReduce tasks. Apache Pig is a workf low-description language that
makes it easy to define complex, multistep MapReduce jobs. The chapter also intro-
duces Cascading, an elegant Java library useful for building complex data-workf low
applications with Hadoop.

When data sizes grow very large, we depend on computers to provide informa-
tion that is useful to humans. It’s very useful to be able to use machines to classify,
recommend, and predict incoming information based on existing data models. Part V,
“Machine Learning for Large Datasets,” contains Chapter 10, “Building a Data Clas-
sification System with Mahout,” which introduces the field of machine learning. The
chapter will also demonstrate the common machine-learning task of text classification
using software from the popular Apache Mahout machine-learning library.

Interpreting the quality and meaning of data is one of the goals of statistics. Part VI,
“Statistical Analysis for Massive Datasets,” introduces common tools and use cases for
statistical analysis of large-scale data. The programming language R is the most popu-
lar open-source language for expressing statistical analysis tasks. Chapter 11, “Using
R with Large Datasets,” covers an increasingly common use case: effectively working
with large data sets with R. The chapter covers R libraries that are useful when data
sizes grow larger than available system memory. The chapter also covers the use of R
as an interface to existing Hadoop installations.

Although R is very popular, there are advantages to using general-purpose lan-
guages for solving data analysis challenges. Chapter 12, “Building Analytics Work-
f lows Using Python and Pandas,” introduces the increasingly popular Python analytics
stack. The chapter covers the use of the Pandas library for working with time-series

Preface xxiii

data and the iPython notebook, an enhanced scripting environment with sharing and
collaborative features.

Not all data challenges are purely technical. Part VII, “Looking Ahead,” covers
practical strategies for dealing with organizational uncertainty in the face of data-
analytics innovations. Chapter 13, “When to Build, When to Buy, When to Out-
source,” covers strategies for making purchasing decisions in the face of the highly
innovative field of data analytics. The chapter also takes a look at the pros and cons
of building data solutions with open-source technologies.

Finally, Chapter 14, “The Future: Trends in Data Technology,” takes a look at
current trends in scalable data technologies, including some of the motivating factors
driving innovation. The chapter will also take a deep look at the evolving role of the
so-called Data Scientist and the convergence of various data technologies.

This page intentionally left blank

Acknowledgments

This book would not have been possible without the amazing technical and editorial
support of Robert P. J. Day, Kevin Lo, Melinda Rankin, and Chris Zahn. I’d espe-
cially like to thank Debra Williams Cauley for her mentorship and guidance.

I’d also like to thank my colleagues Wesley Chun, Craig Citro, Felipe Hoffa,
Ju-kay Kwek, and Iein Valdez as well as the faculty, staff, and students at the UC
Berkeley School of Information for help in developing the concepts featured in
this book.

This page intentionally left blank

About the Author

Michael Manoochehri is an entrepreneur, writer, and optimist. With the help of his
many years of experience working with enterprise, research, and nonprofit organiza-
tions, his goal is to help make scalable data analytics more affordable and accessible.
Michael has been a member of Google’s Cloud Platform Developer Relations team,
focusing on cloud computing and data developer products such as Google BigQuery.
In addition, Michael has written for the tech blog ProgrammableWeb.com, has spent time
in rural Uganda researching mobile phone use, and holds an M.A. in information
management and systems from UC Berkeley’s School of Information.

This page intentionally left blank

1
Four Rules for Data Success

The first rule of any technology used in a business is that automation
applied to an efficient operation will magnify the efficiency.

The second is that automation applied to an inefficient
operation will magnify the inefficiency.

—Bill Gates

The software that you use creates and processes data, and this data can provide value
in a variety of ways. Insights gleaned from this data can be used to streamline deci-
sion making. Statistical analysis may help to drive research or inform policy. Real-time
analysis can be used to identify inefficiencies in product development. In some cases,
analytics created from the data, or even the data itself, can be offered as a product.

Studies have shown that organizations that use rigorous data analysis (when they
do so effectively) to drive decision making can be more productive than those that do
not.1 What separates the successful organizations from the ones that don’t have a data-
driven plan?

Database technology is a fast-moving field filled with innovations. This chapter will
describe the current state of the field, and provide the basic guidelines that inform the
use cases featured throughout the rest of this book.

When Data Became a BIG Deal
Computers fundamentally provide the ability to define logical operations that act
upon stored data, and digital data management has always been a cornerstone of digital
computing. However, the volume of digital data available has never been greater than
at the very moment you finish this sentence. And in the time it takes you to read this
sentence, terabytes of data (and possibly quite a lot more) have just been generated by
computer systems around the world. If data has always been a central part of comput-
ing, what makes Big Data such a big deal now? The answer: accessibility.

1. Brynjolfsson, Erik, Lorin Hitt, and Heekyung Kim. “Strength in Numbers: How Does
Data-Driven Decisionmaking Affect Firm Performance?” (2011).

Chapter 1 Four Rules for Data Success4

The story of data accessibility could start with the IT version of the Cambrian
explosion: in other words, the incredible rise of the personal computer. With the launch
of products like the Apple II and, later, the Windows platform, millions of users gained
the ability to process and analyze data (not a lot of data, by today’s standards) quickly
and affordably. In the world of business, spreadsheet tools such as VisiCalc for the Apple
II and Lotus 1-2-3 for Windows PCs were the so-called killer apps that helped drive
sales of personal computers as tools to address business and research data needs. Hard
drive costs dropped, processor speeds increased, and there was no end to the amount
of applications available for data processing, including software such as Mathematica,
SPSS, Microsoft Access and Excel, and thousands more.

However, there’s an inherent limitation to the amount of data that can be processed
using a personal computer; these systems are limited by their amount of storage and
memory and by the ability of their processors to process the data. Nevertheless, the
personal computer made it possible to collect, analyze, and process as much data as
could fit in whatever storage the humble hardware could support. Large data systems,
such as those used in airline reservation systems or those used to process government
census data, were left to the worlds of the mainframe and the supercomputer.

Enterprise vendors who dealt with enormous amounts of data developed relational
database management systems (RDBMSs), such as those provided by Microsoft
SQL Server or Oracle. With the rise of the Internet came a need for affordable and
accessible database backends for Web applications. This need resulted in another wave
of data accessibility and the popularity of powerful open-source relational databases,
such as PostgreSQL and MySQL. WordPress, the most popular software for Web site
content management, is written in PHP and uses a MySQL database by default. In
2011, WordPress claimed that 22% of all new Web sites are built using WordPress.2

RDBMSs are based on a tried-and-true design in which each record of data is ide-
ally stored only once in a single place. This system works amazingly well as long as
data always looks the same and stays within a dictated size limit.

Data and the Single Server
Thanks to the constantly dropping price of commodity hardware, it’s possible to build
larger and beefier computers to analyze data and provide the database backend for Web
applications. However, as we’ve just seen, there is a limit to the amount of processing
power that can be built into a single machine before reaching thresholds of considerable
cost. More importantly, a single-machine paradigm provides other limitations that start
to appear when data volume increases, such as cases in which there is a need for high
availability and performance under heavy load or in which timely analysis is required.

By the late 1990s, Internet startups were starting to build some of the amazing,
unprecedented Web applications that are easily taken for granted today: software that

2. http://wordpress.org/news/2011/08/state-of-the-word/

http://wordpress.org/news/2011/08/state-of-the-word/

The Big Data Trade-Off 5

provides the ability to search the entire Internet, purchase any product from any seller
anywhere in the world, or provide social networking services for anyone on the planet
with access to the Internet. The massive scale of the World Wide Web, as well as the
constantly accelerating growth of the number of total Internet users, presented an
almost impossible task for software engineers: finding solutions that potentially could
be scaled to the needs of every human being to collect, store, and process the world’s
data.

Traditional data analysis software, such as spreadsheets and relational databases, as
reliable and widespread as it had been, was generally designed to be used on a single
machine. In order to build these systems to be able to scale to unprecedented size,
computer scientists needed to build systems that could run on clusters of machines.

The Big Data Trade-Off
Because of the incredible task of dealing with the data needs of the World Wide
Web and its users, Internet companies and research organizations realized that a new
approach to collecting and analyzing data was necessary. Since off-the-shelf, commod-
ity computer hardware was getting cheaper every day, it made sense to think about
distributing database software across many readily available servers built from com-
modity parts. Data processing and information retrieval could be farmed out to a col-
lection of smaller computers linked together over a network. This type of computing
model is generally referred to as distributed computing. In many cases, deploying
a large number of small, cheap servers in a distributed computing system can be more
economically feasible than buying a custom built, single machine with the same com-
putation capabilities.

While the hardware model for tackling massive scale data problems was being
developed, database software started to evolve as well. The relational database model,
for all of its benefits, runs into limitations that make it challenging to deploy in a
distributed computing network. First of all, sharding a relational database across mul-
tiple machines can often be a nontrivial exercise. Because of the need to coordinate
between various machines in a cluster, maintaining a state of data consistency at any
given moment can become tricky. Furthermore, most relational databases are designed
to guarantee data consistency; in a distributed network, this type of design can create
a problem.

Software designers began to make trade-offs to accommodate the advantages of
using distributed networks to address the scale of the data coming from the Internet.
Perhaps the overall rock-solid consistency of the relational database model was less
important than making sure there was always a machine in the cluster available to pro-
cess a small bit of data. The system could always provide coordination eventually. Does
the data actually have to be indexed? Why use a fixed schema at all? Maybe databases
could simply store individual records, each with a different schema, and possibly with
redundant data.

Chapter 1 Four Rules for Data Success6

This rethinking of the database for an era of cheap commodity hardware and the
rise of Internet-connected applications has resulted in an explosion of design philoso-
phies for data processing software.

If you are working on providing solutions to your organization’s data challenges,
the current era is the Era of the Big Data Trade-Off. Developers building new data-
driven applications are faced with all manner of design choices. Which database back-
end should be used: relational, key–value, or something else? Should my organization
build it, or should we buy it? How much is this software solution worth to me? Once I
collect all of this data, how will I analyze, share, and visualize it?

In practice, a successful data pipeline makes use of a number of different technolo-
gies optimized for particular use cases. For example, the relational database model is
excellent for data that monitors transactions and focuses on data consistency. This is
not to say that it is impossible for a relational database to be used in a distributed envi-
ronment, but once that threshold has been reached, it may be more efficient to use a
database that is designed from the beginning to be used in distributed environments.

The use cases in this book will help illustrate common examples in order to help
the reader identify and choose the technologies that best fit a particular use case. The
revolution in data accessibility is just beginning. Although this book doesn’t aim to
cover every available piece of data technology, it does aim to capture the broad use
cases and help guide users toward good data strategies.

More importantly, this book attempts to create a framework for making good deci-
sions when faced with data challenges. At the heart of this are several key principles to
keep in mind. Let’s explore these Four Rules for Data Success.

Build Solutions That Scale (Toward Infinity)
I’ve lost count of the number of people I’ve met that have told me about how they’ve
started looking at new technology for data processing because their relational database
has reached the limits of scale. A common pattern for Web application developers is
to start developing a project using a single machine installation of a relational database
for collecting, serving, and querying data. This is often the quickest way to develop
an application, but it can cause trouble when the application becomes very popular
or becomes overwhelmed with data and traffic to the point at which it is no longer
acceptably performant.

There is nothing inherently wrong with attempting to scale up a relational database
using a well-thought-out sharding strategy. Sometimes, choosing a particular technol-
ogy is a matter of cost or personnel; if your engineers are experts at sharding a MySQL
database across a huge number of machines, then it may be cheaper overall to stick
with MySQL than to rebuild using a database designed for distributed networks. The
point is to be aware of the limitations of your current solution, understand when a
scaling limit has been reached, and have a plan to grow in case of bottlenecks.

This lesson also applies to organizations that are faced with the challenge of hav-
ing data managed by different types of software that can’t easily communicate or share

The Big Data Trade-Off 7

with one another. These data silos can also hamper the ability of data solutions to
scale. For example, it is practical for accountants to work with spreadsheets, the Web
site development team to build their applications using relational databases, and finan-
cial to use a variety of statistics packages and visualization tools. In these situations, it
can become difficult to ask questions about the data across the variety of software used
throughout the company. For example, answering a question such as “how many of
our online customers have found our product through our social media networks, and
how much do we expect this number to increase if we improved our online advertis-
ing?” would require information from each of these silos.

Indeed, whenever you move from one database paradigm to another, there is an
inherent, and often unknown, cost. A simple example might be the process of mov-
ing from a relational database to a key–value database. Already managed data must be
migrated, software must be installed, and new engineering skills must be developed.
Making smart choices at the beginning of the design process may mitigate these prob-
lems. In Chapter 3, “Building a NoSQL-Based Web App to Collect Crowd-Sourced
Data,” we will discuss the process of using a NoSQL database to build an application
that expects a high level of volume from users.

A common theme that you will find throughout this book is use cases that involve
using a collection of technologies that deal with issues of scale. One technology may
be useful for collecting, another for archiving, and yet another for high-speed analysis.

Build Systems That Can Share Data (On the Internet)
For public data to be useful, it must be accessible. The technological choices made
during the design of systems to deliver this data depends completely on the intended
audience. Consider the task of a government making public data more accessible to
citizens. In order to make data as accessible as possible, data files should be hosted on
a scalable system that can handle many users at once. Data formats should be chosen
that are easily accessible by researchers and from which it is easy to generate reports.
Perhaps an API should be created to enable developers to query data programmatically.
And, of course, it is most advantageous to build a Web-based dashboard to enable ask-
ing questions about data without having to do any processing. In other words, making
data truly accessible to a public audience takes more effort than simply uploading a
collection of XML files to a privately run server. Unfortunately, this type of “solution”
still happens more often than it should. Systems should be designed to share data with
the intended audience.

This concept extends to the private sphere as well. In order for organizations to
take advantage of the data they have, employees must be able to ask questions them-
selves. In the past, many organizations chose a data warehouse solution in an attempt
to merge everything into a single, manageable space. Now, the concept of becoming a
data-driven organization might include simply keeping data in whatever silo is the best
fit for the use case and building tools that can glue different systems together. In this
case, the focus is more on keeping data where it works best and finding ways to share
and process it when the need arises.

Chapter 1 Four Rules for Data Success8

Build Solutions, Not Infrastructure
With apologies to true ethnographers everywhere, my observations of the natural
world of the wild software developer have uncovered an amazing finding: Software
developers usually hope to build cool software and don’t want to spend as much
time installing hard drives or operating systems or worrying about that malfunction-
ing power supply in the server rack. Affordable technology for infrastructure as a
 service (inevitably named using every available spin on the concept of “clouds”) has
enabled developers to worry less about hardware and instead focus on building Web-
based applications on platforms that can scale to a large number of users on demand.

As soon as your business requirements involve purchasing, installing, and adminis-
tering physical hardware, I would recommend using this as a sign that you have hit a
roadblock. Whatever business or project you are working on, my guess is that if you
are interested in solving data challenges, your core competency is not necessarily in
building hardware. There are a growing number of companies that specialize in pro-
viding infrastructure as a service—some by providing fully featured virtual servers run
on hardware managed in huge data centers and accessed over the Internet.

Despite new paradigms in the industry of infrastructure as a service, the mainframe
business, such as that embodied by IBM, is still alive and well. Some companies pro-
vide sales or leases of in-house equipment and provide both administration via the
Internet and physical maintenance when necessary.

This is not to say that there are no caveats to using cloud-based services. Just like
everything featured in this book, there are trade-offs to building on virtualized infra-
structure, as well as critical privacy and compliance implications for users. However,
it’s becoming clear that buying and building applications hosted “in the cloud” should
be considered the rule, not the exception.

Focus on Unlocking Value from Your Data
When working with developers implementing a massive-scale data solution, I have
noticed a common mistake: The solution architects will start with the technology first,
then work their way backwards to the problem they are trying to solve. There is noth-
ing wrong with exploring various types of technology, but in terms of making invest-
ments in a particular strategy, always keep in mind the business question that your data
solution is meant to answer.

This compulsion to focus on technology first is the driving motivation for people to
completely disregard RDBMSs because of NoSQL database hype or to start worrying
about collecting massive amounts of data even though the answer to a question can be
found by statistical analysis of 10,000 data points.

Time and time again, I’ve observed that the key to unlocking value from data is to
clearly articulate the business questions that you are trying to answer. Sometimes, the
answer to a perplexing data question can be found with a sample of a small amount
of data, using common desktop business productivity tools. Other times, the problem

Anatomy of a Big Data Pipeline 9

is more political than technical; overcoming the inability of admins across different
departments to break down data silos can be the true challenge.

Collecting massive amounts of data in itself doesn’t provide any magic value to your
organization. The real value in data comes from understanding pain points in your
business, asking practical questions, and using the answers and insights gleaned to sup-
port decision making.

Anatomy of a Big Data Pipeline
In practice, a data pipeline requires the coordination of a collection of different tech-
nologies for different parts of a data lifecycle.

Let’s explore a real-world example, a common use case tackling the challenge of
collecting and analyzing data from a Web-based application that aggregates data from
many users. In order for this type of application to handle data input from thousands
or even millions of users at a time, it must be highly available. Whatever database is
used, the primary design goal of the data collection layer is that it can handle input
without becoming too slow or unresponsive. In this case, a key–value data store,
examples of which include MongoDB, Redis, Amazon’s DynamoDB, and Google’s
Google Cloud Datastore, might be the best solution.

Although this data is constantly streaming in and always being updated, it’s useful
to have a cache, or a source of truth. This cache may be less performant, and per-
haps only needs to be updated at intervals, but it should provide consistent data when
required. This layer could also be used to provide data snapshots in formats that pro-
vide interoperability with other data software or visualization systems. This caching
layer might be f lat files in a scalable, cloud-based storage solution, or it could be a rela-
tional database backend. In some cases, developers have built the collection layer and
the cache from the same software. In other cases, this layer can be made with a hybrid
of relational and nonrelational database management systems.

Finally, in an application like this, it’s important to provide a mechanism to ask
aggregate questions about the data. Software that provides quick, near-real-time analy-
sis of huge amounts of data is often designed very differently from databases that are
designed to collect data from thousands of users over a network.

In between these different stages in the data pipeline is the possibility that data
needs to be transformed. For example, data collected from a Web frontend may need
to be converted into XML files in order to be interoperable with another piece of
software. Or this data may need to be transformed into JSON or a data serialization
format, such as Thrift, to make moving the data as efficient as possible. In large-scale
data systems, transformations are often too slow to take place on a single machine. As
in the case of scalable database software, transformations are often best implemented
using distributed computing frameworks, such as Hadoop.

In the Era of Big Data Trade-Offs, building a system data lifecycle that can scale to
massive amounts of data requires specialized software for different parts of the pipeline.

Chapter 1 Four Rules for Data Success10

The Ultimate Database
In an ideal world, we would never have to spend so much time unpacking and solving
data challenges. An ideal data store would have all the features we need to build our
applications. It would have the availability of a key–value or document-oriented data-
base, but would provide a relational model of storing data for the best possible consis-
tency. The database would be hosted as a service in the cloud so that no infrastructure
would have to be purchased or managed. This system would be infinitely scalable and
would work the same way if the amount of data under management consisted of one
megabyte or 100 terabytes. In essence, this database solution would be the magical,
infinitely scalable, always available database in the sky.

As of this publication, there is currently no such magic database in the sky—
although there are many efforts to commercialize cutting-edge database technology
that combine many of the different data software paradigms we mentioned earlier in
the chapter.

Some companies have attempted to create a similar product by providing each of
the various steps in the data pipeline—from highly available data collection to trans-
formation to storage caching and analysis—behind a unified interface that hides some
of these complexities.

Summary
Solving large-scale data challenges ultimately boils down to building a scalable strategy
for tackling well-defined, practical use cases. The best solutions combine technologies
designed to tackle specific needs for each step in a data processing pipeline. Provid-
ing high availability along with the caching of large amounts of data as well as high-
performance analysis tools may require coordination of several sets of technologies.
Along with this, more complex pipelines may require data-transformation techniques
and the use of specific formats designed for efficient sharing and interoperability.

The key to making the best data-strategy decisions is to keep our core data prin-
ciples in mind. Always understand your business needs and use cases before evaluating
technology. When necessary, make sure that you have a plan to scale your data solu-
tion—either by deciding on a database that can handle massive growth of data or by
having a plan for interoperability when the need for new software comes along. Make
sure that you can retrieve and export data. Think about strategies for sharing data,
whether internally or externally. Avoid the need to buy and manage new hardware.
And above all else, always keep the questions you are trying to answer in mind before
embarking on a software development project.

Now that we’ve established some of the ground rules for playing the game in the
Era of the Big Data Trade-Off, let’s take a look at some winning game plans.

A
Abstraction model. See Cascading
Access

authorization for BigQuery API, 76–78
running mrjob scripts on Elastic

MapReduce, 113–114
Access control lists (ACLs), in BigQuery, 74
Accessibility, data

with cloud computing, 25
current revolution in, 6
with Hadoop for large-scale processing,

191
machine learning challenges, 132–133
with MapReduce, 71
story of, 4

ACID (atomicity, consistency, isolation, and
durability) test

BASE alternative to, 31
for relational databases, 28
VoltDB compliance with, 41

ACLs (access control lists), in BigQuery, 74
Administrators, system, 145
Aesthetics

communicating visual information, 85,
88, 96

complex data visualizations with ggplot2
library, 91–92

statistical graphic of Charles Minard,
86–88

Aggregate queries
analytical databases for, 191
BigQuery speeding up, 74
for complex MapReduce jobs, 61, 67
on relational databases, 58–59
for specialized analytics systems, 53
speeding up with Dremel, 72

Alagappan, Muthu, 134–135
Algorithms, machine learning

k-means clustering, 135
naïve Bayesian classif ier, 134

overview of, 133
recommendation engines, 135–136

Amazon
Redshift. See Redshift
scalability of, 32
using mrjobs with Elastic MapReduce,

113–114
AMPLab

Shark project, 51, 65–66, 82
Spark project, 51, 65–66, 139

Analysis software
anatomy of big data pipelines, 9
decision making with, 44
developing with Python, 160

Analytics, data
adding to data processing pipeline, 60
convergence and end of data silos, 51
data silos useful for, 49–50
data warehouses designed for, 47
empowering employees for, 50–51
for aggregate queries, 69
future of query engines, 82–83
growth of new, 191
operational data stores for, 58
understanding, 69–71

Analytics workf lows
building more complex workf lows,

167–168
choosing language for statistical

computation, 158–159
extending existing code, 159–160
iPython, 170–174
overview of, 157
Pandas data analysis library, 163–167
Python libraries for data processing,

160–163
summary, 174–175
tools and testing, 160
working with bad or missing records,

169–170

Index

Index200

Andreessen, Marc, 43–44
Apache

Avro, 23
Cassandra, 33, 40–41
Derby, 60
Hadoop. See Hadoop
Hive. See Hive
Mahout, 136–139
Nutch Web crawler, Yahoo!, 71
Pig. See Pig
Thrift, 22–23

API (application programming interface)
BigQuery, 74–82
Dremel, 73

Apollo Guidance Computer, 147
Apple

data accessibility and Apple II, 4
iTunes Music Store, 44

Applications, cascading, 122–128
Arrays, NumPy, 161
ASCII (American Standard Code for Infor-

mation Interchange) characters, 20
Atomic data types, in R, 148, 152
Attributes, relational database, 26
Authorization, for BigQuery API, 76–78
Autocomplete, iPython, 171
Automation

of ETL processes, data warehousing, 48, 50
first rule of technology, 3
of parallelization, Hadoop/MapReduce,

104
of partitioning, with Twemproxy, 39–40
of predictive business value, 131

Availability
of big data pipelines, 9
CAP theorem of, 30–31
relational databases vs. Internet, 29–30
of ultimate database, 195

B
Bar charts, creating with D3.js, 94–96
BASE architecture, CAP theorem and, 30–31
BASH, MapReduce workf lows, 58
Batch processing

HDFS designed for, 60–61
hosted services for, 187

with MapReduce jobs, 57, 59, 73
running Pig in, 122

Bayesian classif ication
machine learning and, 133–134
of text, with Mahout, 137–139

BI (business intelligence), 43–45
Big Blue, 27. See also IBM
Big Data

accessibility of, 3–4
anatomy of pipeline, 9
build solutions, not infrastructure, 8
build solutions that scale, 6–7
build solutions to share data, 7–8
data and single server, 4–5
focus on unlocking value from data, 8–9
overview of, 3
sharing lots of files. See Formats
summary, 10
trade-offs, 5–9
ultimate database, 10–11
utility computing and, 190

Biglm, in R, 153–154
Big.matrix objects, in R, 150–151, 153–154
Bigmemory, in R, 150
BigQuery

authorizing access to, 76–78
bridging data silos, 51
building custom big data dashboard,

75–76
caching query results, 79–80
data analytics as a service and, 73–74
Dremel, 71–72
Dremel vs. MapReduce, 72–73
future of analytical query engines, 82–83
managed services for tasks in cloud, 187
not traditional database, 73
overview of, 69
query language, 74–75
running query/retrieving result, 78–79
summary, 83–84
understanding analytical databases, 69–71
use cases for iterative querying tasks

solved by, 73
visualization, 81–82

Billing model, BigQuery, 74
Bleeding-edge technologies, lacking support

options, 186

Index 201

Blogs, as document stores, 33–35
Bostock, Mike, 92
Bq command-line tool, 75
Brewer, Dr. Eric, 30
Broad Street pump, cholera map, 86–87
Broken data, Pandas for, 169–170
Bubble chart visualization, Trendalyzer, 89
Build vs. buy problem

costs of open-source, 186–187
evaluating current technology

investments, 183
everything as a service, 187
machines unable to predict, 132
“my own private data center,” 184–186
overlapping solutions and, 179–181
overview of, 179–188
planning for scale, 184
playbook for, 182–183
starting small, 183–184, 187–188
understanding your problem, 181–182

Business
applying rules in ETL process, 48
automation of predictive value, 131

C
Caching layer

anatomy of big data pipelines, 9
Redis database, 36

Caching query results, BigQuery, 79–80
Callback URL, BigQuery API access, 77
CAP (consistency, availability, and partition

tolerance) theorem, 30–31
Cascading

building application, 124–125
choosing Pig vs., 128–129
deploying application on Hadoop cluster,

127–128
JOIN example, 125–127
overview of, 122–123
sources and sinks, 123–124
summary, 128
use cases, 181
writing MapReduce workf lows, 58

Character encoding
file transformations, 21
overview of, 19–21

CitusDB, SQL on Hadoop project, 196
Cleaning raw data, ETL process, 48
Client ID, BigQuery API access, 77–78
Cloud computing

build vs. buy and, 179–180
changing systems administrator roles, 145
commonly used applications available

as, 73
data warehousing in, 52, 66–67
defined, 192
distributed-data applications using, 186
future trends, 191–192
mobile computing devices using, 189
“my own private data center” vs.,

184–186
present-time/future uses of, 187
rule of building/buying solutions hosted

in, 8
ultimate database, 195–196

Cloud Console, 77
Cloudera. See Impala
Cluster

machine learning analyzing, 134–135
parallelizing iPython using, 171–174
running MapReduce job on Hadoop. See

Hadoop
Codd, Edgar F.

Internet vs. database design of, 28–30
newSQL and, 41
relational database model of, 26–28

Code generator, Apache Thrift, 22–23
CoGroup process, Cascading, 125–126
Columnar formats

Dremel storing data on disk in, 72
loading data into Hive, 62

 Compatibility
CSV files for, 18
problems of, 118

Compliance
data warehousing challenges, 50
planning for security, 46

Components, Pig, 119
Conjars website, Cascading, 124
Consistency

BASE systems for, 31
CAP theorem of, 30–31
of Google’s Spanner database, 41

Index202

Consistency (continued)
limitations in Redis, 36–38
VoltDB ACID-compliance, 41

Consistency, relational database
ACID test, 28
Google’s new F1, 196
of transactions across systems, 70
Web availability vs., 30

Consistent hashing, 40
Convergence

of cultures, 196–197
data warehousing/distributed computing,

51
ultimate database and, 195–196

Coordinate system, SVG graphic files for
Web, 93–94

Coordinated Universal Time (UTC), Pandas,
165–167

Core competencies, 181–182
Corpora Collection, 137
Cost

build vs. buy. See Build vs. buy problem
IAAS storage model, 15–16
of moving data between systems, 22
of moving from one database to another

type, 7
of open-source, 186–187

CouchDB, 35
CPU-bound problems, 158
CRAN (Comprehensive R Archive

Network), 158–159
CSV (comma-separated value) format

sharing large numbers of files, 16–18
with text files, 20–21
time series manipulation of IBM, 165–167
XML and JSON compared to, 19

Cultures, trend for convergence of, 196–197
Customer-facing applications, 70
Customization, big data dashboard, 75–76

D
Data analytics. See also Statistical analysis

convergence and end of data silos, 51
data silos useful for, 49–50
data warehouses designed for, 47
empowering employees for, 50–51

future of query engines, 82–83
operational data stores for, 58
as a service, 73–74

Data compliance, 46
Data dashboards

adding visualization, 81–82
analytical databases, 69–71
authorizing access to BigQuery API,

76–78
BigQuery, query language, 74–75
BigQuery and data analytics as a service,

73–74
building custom, 75–76
caching query results, 79–80
Dremel, 71–72
Dremel vs. MapReduce, 72–73
future of analytical query engines, 82–83
overview of, 69
running query/retrieving result, 78–79
summary, 83–84

Data frames, R, 149, 151–152
Data inputs (sources), Cascading model,

123–124
Data integrity, 48, 70
Data outputs (sinks), Cascading model,

123–124
Data pipelines

building MapReduce. See MapReduce
data pipelines

combining tools for, 100–101
complexity of, 118
Hadoop streaming for, 101–105
need for, 99–100

Data processing as a service, 185–186, 192
Data replication, and Hive, 60
Data rules for success. See Big Data
Data scientists

current state of data technologies, 180
definitions of, 192–193
rise and fall of, 192–195

Data serialization formats
Apache Avro, 23
Apache Thrift and Protocol Buffers,

22–23
overview of, 21–22

Data silos
benefits of, 49–51

Index 203

data compliance and security, 46
data warehouse solution to, 46–48
data warehousing ETL, 48
data warehousing/distributed computing

convergence and, 51–52
Hadoop and, 48–49
hampering scalability, 7
jargon, 43–45
problems of, 45–46
summary, 53

Data transformation
MapReduce and, 101–102
one-step MapReduce, 105–109

Data types
Hive, 62
NumPy array, 161
Pandas, 164
R atomic, 148

Data warehouses
choosing over Hive, 60
cloud-based, 52, 66–67
convergence with distributed computing,

51–52
different meanings for, 57–59
distributed. See Hive; Spark project
ETL process, 48
negatives of, 50
overcoming data silos with, 46–48

Database(s)
anatomy of Big Data pipelines, 9
Big Data trade-offs, 6
document store, 33–35
for enormous amounts of data, 4
hierarchical manner of early, 26
key–value, 32–33
Redis. See Redis database
relational. See Relational databases
ultimate, 10, 195–196

Data-driven journalism, 92–93
Data-driven organizations, 50–51
DataFrames, Pandas

dealing with bad or missing records,
169–170

for more complex workf lows, 167–168
overview of, 164
time series manipulation, 165–167

Data-modeling, CSV challenges, 17

Datasets
asking questions. See Questions, asking

about large datasets
building data dashboard with BigQuery,

74, 76
machine learning for large. See ML

(machine learning)
statistical analysis for massive. See R

strategies for large datasets
visualization strategies for large. See

Visualization for large datasets
DB-Engines.com, 36
Debugging, Hadoop scripts locally, 154
Decision making

with analysis software, 44
applying computer input to, 131
machines able to report probability, 132

Denormalized data, star schema, 47
Device independence

cloud-based trends, 192
mobile computing, 189

DevOps engineer role, 145
Dimension tables, star schema in data

warehouse system, 47–48
Distributed computing

CAP theorem and BASE, 30–31
data warehousing convergence with,

51–52
file transformation process, 21
new software solutions for databases, 41
overview of, 5–6

Distributed data warehousing
Hive. See Hive
Spark project, 51, 65–66, 139

Distributed file system, 109–110
Distributed machine learning systems,

136–139
Distributed-software systems, 145
Document stores, 33–35
Documentation, BigQuery, 77
Dot-distribution map, 86–87
Dremel

vs. MapReduce, 72–73
as new analytical database, 191
overview of, 71–72

Drill, analytical database, 191
Drivers, interacting with Hive, 65

Index204

Dumbo, 114
Durability

BASE alternative to, 31
relational database ACID test, 28
VoltDB compliance, 41

DynamoDB, 73

E
Economies of scale, 15–16
EDW (enterprise data warehouse)

ETL process, 48
negatives of, 50
overcoming data silos with, 46–48

Elastic MapReduce (EMR) service, 113–114
Ellison, Larry, 27–28
Email, spam filtering, 133–134
Embarrassingly parallel problems, 102
Employees, empowering to ask own

questions, 50–51
EMR (Elastic MapReduce) service, 113–114
Engines, iPython, 171
Enron Corporation scandal, 46
Era of the Big Data Trade-Off, 6
Errors, Twemproxy handling, 39
ETL (Extract, Transform, and Load) process

building pipelines, 58
data warehousing, 48
Hive addressing challenges of, 60–61
solving data challenges without, 59

EXPLAIN statement, Hive performance, 64
Extensibility, Hive, 60
External tables, Hive, 62

F
F1 database, Google, 196
Facebook

Hadoop data process model, 59
interactive querying with Hive. See Hive
Thrift, 22–23
trends in data technology, 189–190

Fact table, 47
Fault tolerance, with HDFS, 59
Filtering

in Cascading, 124
in Pig workf low, 121–122
spam, with machine learning, 133–134

Financial reporting regulations, SOX, 46
Firebase database, 196
Flat data, CSV format, 17
Flow map example, 86–88
Formats

character encoding, 19–21
comparing JSON, CSV, and XML, 19
CSV, 16–18
data serialization, 21–23
file transformations, 21
incompatible, 118
JSON, 18–19
optimizing Hive performance, 64
shared data, 7
supported by Hive, 62
SVG graphic files for Web, 93–96
XML, 18

Four rules for data success
build solutions, not infrastructure, 8
build solutions that scale, 6–7
build solutions to share data, 7–8
focus on unlocking value from data, 8–9

Future
of analytical query engines, 82–83
trends in data technology. See

Technologies, future trends in data

G
Galton, Francis, 152
Gapminder Foundation, 89
Garbage collector, memory usage in R,

147–148
Gartner Hype Cycle curve, 190
General-purpose language, Python as, 159–

160, 180–181
GFS, indexing Internet with, 71
ggplot2 library, interactive visualizations,

91–92
Google

BigQuery. See BigQuery
Charts API, 81–82
Dremel, 191
F1 database, 196
Spanner database, 41

Governments, maximizing data accessibility,
15

Graphical user interface, of R, 146

Index 205

Grep command, text files, 20–21
Grunt shell, running Pig, 120–121

H
Hadoop

administrative overhead of running, 171
building multistep pipeline, 112–113
Cassandra integration with, 41
concepts behind, 60
connecting R with, 154–155
convergence and end of data silo, 51–52
data transformation with, 21
deficiencies of, 190–191
defined, 71
empowering users to store/process large

data, 191
for huge amounts of data, 59
interactive querying for. See Hive
negatives of, 49–50
Pig abstracting data workf lows for

MapReduce tasks, 120
Python MapReduce frameworks for,

110–111
running Cascading application on cluster,

127–128
running MapReduce jobs, 102, 109–110,

157–158
running Pig script with cluster, 122
starting small vs. using, 183–184
streaming utility, 102–105
summary, 66
support options, 186
as synonymous with Big Data, 190
traditional data warehousing vs., 48–49
using Apache Avro data serialization, 23
using Shark with, 66

Hadoop jar command, 127–128
Hadoop Sequence files, 62
Hadoop Streaming API, 154
Hardware

changing role of systems administrators,
145

IAAS providers handling failures of,
15–16

maintaining and building own, 186
off loading responsibilities to service

providers, 73

Hash tables, 32
Hashing

consistent, 40
Twemproxy support for, 40

HBase database, connecting R with, 154
HBase tables, 65, 66
HDFS (Hadoop Distributed File System)

concepts behind, 60
connecting R with, 154
creating Hive tables, 62–63
Hive metastore, 60
running MapReduce job on Hadoop

cluster, 109–110
running Pig script with, 122
splitting data tasks across different

machines, 58
summary, 66

Hive
additional data sources with, 65
concepts behind, 61
interactive querying for Hadoop, 60, 191
loading data into, 62–63
metastore, 62
optimizing query performance, 64–65
querying data with HiveQL, 63–64
summary, 66–67
use cases for, 60–61
using Shark in conjunction with, 66

HiveQL, querying data with, 63–64
Hosting

batch processing services, 187
collection of data in JSON format, 19

HTML5 APIs, storing local data, 79
Human readable files, challenges of CSV, 18

I
IAAS (infrastructure as a service)

industry of, 8
storage model for terabytes of raw data,

15–16
IBM

Big Blue, 27
developing relational database, 27
time series manipulation of, 165–167

Image data, using SciPy for, 163
Impala

future of analytical query engines, 82

Index206

Impala (continued)
as new analytical database, 191
overview of, 66
potential benefits of, 82
as visualization tool, 51

Infrastructure
avoiding overhead of managing, 185–186
building solutions rather than, 8
IAAS storage model avoiding, 16
managing scalable software services in

cloud, 187
In-memory databases

defined, 36
of next-generation systems, 41
Redis, 36–38
sharding across many Redis instances,

38–41
In-memory environment

avoiding memory limitations of R,
147–148

Spark, 65–66
Inserting data

in document stores, 34–35
using Redis command-line interface,

37–38
Interactive visualizations

2D charts using matplotlib in Python, 92
building applications for, 90
with D3.js for Web, 92–96
with ggplot2 in R, 90–92
of large datasets, 89

Internet
accessibility of open-source relational

databases, 4
aspect of BI system envisioned by Luhn, 52
big data trade-off, 5–6
building systems to share data, 7
global access to, 189
interactive visualizations with D3.js,

92–96
network latency issues, 16
relational databases vs., 28–29
single server and, 4–5
Web application development for, 4–5

IO-bound systems, 158
iPython

interactive shell, 92
notebook mode, 171

overview of, 170–171
parallelizing before using cluster, 171–174

Isolation
BASE alternative to, 31
relational database ACID test, 28
VoltDB compliance, 41

Iterative queries
Dremel speeding up, 71–72
Hive speeding up, 67
use cases for BigQuery, 73

iTunes Music Store, 44

J
JAR files, Cascading, 124, 127–128
Jargon

data silos, 43–45
data warehousing, 57–59

Java
Hadoop written in, 102
Mahout libraries, 137
Pig installation with, 120

Java Virtual Machine (JVM)-based API,
Cascading as, 128

JDBC drivers, interacting with Hive, 65
JOIN queries

creating Cascading applications, 125–127
OLAP systems avoiding excessive, 71

Journalism, data-driven, 92–96
JSON (JavaScript Object Notation) format

Avro using, 23
comparing to CSV and XML, 19
data serialization formats, 22
defined, 18
messages sent to BigQuery in, 78
sharing large numbers of files with,

18–19
Julia, numeric computations, 145

K
Ketama algorithm, Twemproxy, 40
Key–value data stores

Amazon.com, 32
anatomy of Big Data pipelines, 9
Cassandra, 40–41
Memcached, 39
Project Voldemort, 40

Index 207

Redis as most popular. See Redis database
using HBase with Hadoop, 65

Key–value pairs, MapReduce transformation,
106–108

K-means clustering algorithm, 135

L
Latency, global Internet data transfer speed,

16
Leipzig Corpora Collection, 137
Linear regression for large datasets, 153–154
Linear scalability

of MemSQL, 41
overview of, 39
of Project Voldemort, 40

LinkedIn, Project Voldemort, 33
Lists, Python, 160
Loading data

in ETL process. See ETL (Extract,
Transform and Load) process

into Hive, 62–63
notebook mode, 92

Log data, CSV format, 17
Luhn, H.P., 44, 52

M
Machine learning. See ML (machine

learning)
Mahout, 136–139
Managed tables, Hive, 62
Map phase, MapReduce

defined, 61, 101
one-step transformation, 106–107
testing pipeline locally, 108–109

MapR, Drill analytical database, 191
MapReduce data pipelines

alternative Python-based, 114
building multistep pipeline, 112–113
data transformation, 101–102
defining data pipelines, 99–101
with Hadoop streaming, 101–105
map phase, 106–107
one-step transformation, 105–109
overview of, 99
Python frameworks for Hadoop, 110–111
reducer phase, 107–108

running job on Hadoop cluster, 109–110
running mrjob scripts on Elastic

MapReduce, 113–114
stdin to stdout, 102–105
summary, 114–115
testing locally, 108–109
using workf low tools for, 118–119

MapReduce framework
Cascading. See Cascading
concepts behind, 60, 71–72
creating job in R with rmr, 154–155
data transformation, 101–102
deficiencies of Hadoop, 191
defined, 101
defining workf lows. See Workf lows
Dremel vs., 72–73
interactive querying. See Hive
as interface for Hadoop, 58
optimizing Hive, 64–65
Pig abstracting data workf lows for, 120
processing data, 52
querying data in HiveQL, 63–64
transforming data, 69
use cases for batch processing, 73
using Hadoop for long-running jobs, 66

Mathematical computing. See Numerical
data

Matplotlib, 2D charts with Python, 92
Matrices, in R, 148–149
Media, software revolution in, 44
Memory capacity, R

avoiding limitations of, 147–148
large matrix manipulation, 150–151
working with large data frames, 151–152

MemSQL, 41
Metastore, Hive, 60
Metrics, informing decision-making, 43–44
Miasma theory of cholera transmission,

86–87
Microsoft Excel, 51, 88
Minard, Charles Joseph, 86–88
Missing data, Pandas, 169–170
ML (machine learning)

Apache Mahout, 136–139
Bayesian classif ication, 133–134
challenges of, 132–133
clustering, 134–135
defined, 132

Index208

ML (machine learning) (continued)
MLBase as distributed framework for,

139–140
overview of, 131–132
prediction of future and, 132
recommendation engines, 135–136
summary, 140

Mobile computing devices, 189
Moneyball: The Art of Winning an Unfair Game

(Lewis), 134–135
MongoDB, 35, 186
Moore’s law, 147
Morse code, 19
Movie ratings, recommendation algorithms,

135–136
mrjob scripts

building multistep pipeline, 112–113
Dumbo vs., 114
rewriting Hadoop streaming example,

110–111
running MapReduce tasks on Hadoop

clusters, 110
using with Elastic MapReduce, 113–114

Multiple insertion query, HiveQL, 63
Multistep MapReduce pipeline, 112–113
Multistep MapReduce transformations,

118–119
MySQL

alternatives to using. See NoSQL-based
Web apps

building open-source databases with, 25
history of, 28
reasons for growth of, 29

N
Naïve Bayesian classif ier algorithm, 134
Naming conventions

Hadoop Distributed File System, 109
Hive tables, 62

Natural Language Toolkit (NLTK) library,
Python, 167–168

Netf lix Prize contest, 135–136
Network latency

global Internet data transfer speeds, 16
moving data between systems, 22
Spanner database limitations, 41

NewSQL, 41
N-grams study, Python, 167–168
NLTK (Natural Language Toolkit) library,

Python, 167–168
Nonrelational database models

creation of, 73
document store, 33–35
evolution of, 195–196
key–value databases, 32–33
managing data at scale, 69
overview of, 31–32

Non-Unicode data, 20
Normalization of data

building ETL pipelines, 58
data silo challenges, 45
in relational database model, 26

NoSQL-based Web apps
alternatives to Redis, 40–41
automatic partitioning with Twemproxy,

39–40
CAP theorem and BASE, 30–31
collecting crowd-sourced data, 25
document store, 33–35
evolution of, 195–196
key–value databases, 32–33
NewSQL, 41–42
nonrelational database models, 31–35
relational databases, ACID test, 28
relational databases, command and

control, 25–28
relational databases, vs. Internet, 28–31
sharding across many Redis instances,

38–41
summary, 42
write performance with Redis, 35–38

Notebook mode, iPython, 171
Numerical data

computing using Python and Julia, 145,
158

computing using R, 159
large matrix manipulation in R, 150–151
maturity of R for, 180
parallelizing iPython using cluster, 171–174
tools for computing, 158
visualization of. See Visualization for large

datasets
NumPy arrays, Python, 160–162, 164

Index 209

O
OAuth protocol, 76–77
ODBC drivers

interacting with Hive, 65
Shark accessing, 66

OLAP (online analytical processing) systems,
70–71

Old Faithful scatterplot depiction, 90–91
OLTP (online transactional processing)

systems, 70
ØMQ library, iPython, 171
One-step MapReduce transformation

map phase, 106–107
overview of, 105–106
reducer step, 107–108
testing locally, 108–109

Online analytical processing (OLAP)
systems, 70–71

Online transactional processing (OLTP)
systems, 70

Open-source BI projects, 44
Open-source software, costs of, 186–187
Operational data store

Hive not meant to be used as, 60
overview of, 58

Operational systems, 46
Organizational culture, 182

P
Pandas (Python Data Analysis Library)

data types, 164
dealing with bad or missing records,

169–170
overview of, 164
searching for information on, 164
time series data, 164–165

Parallelization
of iPython using a cluster, 171–174
using Hadoop, 104

Parent-child relationships, hierarchical early
databases, 26

Partition tolerance, CAP theorem, 30–31
Partitioning

automatic, with Twemproxy, 39–40
optimizing Hive performance, 64

Passwords
accessing network resources without

sharing, 76
BigQuery API access, 77

PBF (protocol buffer binary format), 23
PCs (personal computers), Big Data

directives, 4–6
Performance

optimizing Hive, 64–65
optimizing Spark, 65–66

Pig
Cascading vs., 122–123, 128
filtering/optimizing workf lows, 121–122
overview of, 119–120
running script in batch mode, 122–123
running using interactive Grunt shell,

120–121
use cases for, 181
writing MapReduce workf lows, 58

Pig Latin, 119
Pig Storage module, 120–121
PIL class, Python, 163
Pipe operator (|), Unix, 103
Pipe paradigm, Unix, 123
Pipelines

anatomy of Big Data, 9
building ETL, 58

Pipes, Cascading model, 123, 125–127
PostgreSQL

alternatives to using. See NoSQL-based
Web apps

Amazon’s Redshift based on, 66
building open-source databases, 25
creator of, 41
history of, 28

Predictions
automating business values, 131
machines making future, 132

Presentation, sharing lots of data files, 14–15
Primary keys, relational database model,

26–27
Primitive data types, Hive, 62
Probability

Bayesian classifier for spam, 134
machines able to report, 132
in statistical analysis, 150

Index210

Procedural model, Pig, 120
Professional sports, 134–135
Profile create command, iPython, 173
Programming languages, measuring

popularity, 159
Project ID, access to BigQuery API, 77–78
Project Voldemort, 40
Proof-of-concept projects

build vs. buy problem, 183–184
using cloud infrastructure, 186

Protocol buffer binary format (PBF), 23
Protocol Buffers, data serialization format,

22–23
Public clouds, 185
Pydoop, 114
PyPI (Python Package Index), 159
Python

2D charts with matplotlib, 92
building complex pipeline, 103–105
building complex workf lows, 167–168
extending existing code, 159–160
as general-purpose language of choice,

92, 158–159
iPython, 170–174
libraries for data processing, 160–164
lists, 160
MapReduce frameworks, using Dumbo,

114
MapReduce frameworks, using mrjob,

110–114
numeric computations using, 145, 158
NumPy arrays, 160–162
Pandas, 163–167
popularity ratings for, 159
SciPy, 162–163
tools and testing, 160
writing MapReduce workf lows, 58

Q
QlikView, 51
Quality, large data analysis and, 150
Queries, data. See also Aggregate queries

Hive supporting range of formats, 62
with HiveQL, 63–64
optimizing Hive, 64–65
Shark, 66

Query engine, BigQuery, 74
Query language, BigQuery, 74–75
Querying results

data silo challenges, 45–46
data warehouse reporting capabilities, 47
with Hive, 60

Questions, asking about large datasets
data warehousing in cloud, 66–67
definition of data warehousing, 57–59
Hadoop project and, 57
Hive, in practice, 61
Hive, loading data into, 62–63
Hive, optimizing query performance,

64–65
Hive, overview, 60–65
Hive, use cases for, 60–61
Hive metastore, 62
HiveQL, querying data with, 63–64
overview of, 57
Shark, 65–66
summary, 67–68
using additional data sources with Hive, 65

R
R

choosing language for data analysis,
158–159

for interactive visualizations, 90–91
popularity ratings for, 159
Python vs., 157

R strategies for large datasets
biglm, 152–154
data frames and matrices, 148–149
definition of, 146
large matrix manipulation, 150–151
limitations of, 147–148
original design for single-threaded

machine, 146
overview of, 145–146
RHadoop, 154–155
summary, 155–156

Raw data. See Sharing terabytes of raw data
RCFile (Record Columnar File) format, 62,

64–65
RDBMS (relational database management

systems). See Relational databases

Index 211

RDD (Resilient Distributed Datasets), 65–66
Read performance. See Redis database
Reading Hive files, in RCFiles, 62
Recommendation engines, machine learning,

135–136
Record Columnar File (RCFile) format, 62,

64–65
Redis database

alternatives to, 40–41
automatic partitioning with Twemproxy,

39–40
fast read/write performance of, 35–38
as key–value store, 33
sharding across many instances of, 38–41

Redshift
all-cloud architecture of, 52
managed services for tasks in cloud, 187
overview of, 66–67

Reducer phase, MapReduce
defined, 60, 101
one-step transformation, 107–108
overview of, 107–108
testing pipeline locally, 108–109

Redundancy
built into IAAS, 15–16
in relational database model, 26

Registration, accessing BigQuery API, 77
Regression analysis, 152–154, 165
Regression to the mean, 152
Regulations, financial reporting, 46
Relation, Pig, 120
Relational databases

ACID test, 28
asking questions about structured datasets,

58
best applications for, 31
challenges of large data sizes, 58–59
for customer-facing applications, 70
distributed computing limitations, 5
document stores vs., 33–35
in era of Big Data trade-off, 6
Google’s F1, 196
history and characteristics of, 26–28
Hive metastore as, 60
Internet vs., 28–31
non-ideal use-cases for, 32
nonrelational designs in, 196

online analytical processing systems for,
70

operational data stores as, 58
rules, 28
sharding, 5
SQL vs. HiveQL, 63–64
supporting SQL, 58

Relational queries, 26
Reporting, in data warehousing, 47
Research and Innovative Technology

Administration (RITA), 150–151
Resilient Distributed Datasets (RDD),

65–66
REST-based API, BigQuery API, 78–79
RethinkDB, 196
Retrieving data

in document stores, 34–35
using Redis command-line interface,

37–38
RITA (Research and Innovative Technology

Administration), 150–151
Rosling, Hans, 89
Rules of data success, 6–9

S
Sample size, in machine learning, 133
Sarbanes and Oxley Act (SOX) regulations,

46
Scalability

alternatives to Redis, 40–41
of Amazon.com, 32
build vs. buy problem and, 184
building collection of technologies for, 7
CAP theorem and BASE, 30–31
of Google’s Spanner database, 41
of Hive, 60
of IAAS storage model, 16
as key goal of high-throughput databases,

38
linear, 39
of machine learning tasks with Mahout,

136–139
new database systems for. See NoSQL-

based Web apps
relational databases vs. Internet for, 29–30
of ultimate database, 195

Index212

Scatterplots
creating with ggplot2 library, 92
creating with R graphics, 90–91

Scientific computing
Fortran for, 158
iPython for, 170–174
Julia for, 158
Python for, 170
R for, 158, 180
SciPy for, 162–163

SciPy tools, Python, 162–163
Scope, BigQuery API, 77–78
Security

data compliance and, 46
data warehousing and, 50

Sequential access of data, CSV format, 17
Servers

data and single, 4–5
distributed computing model, 5–6

Service providers, off loading hardware
responsibilities to, 73

Sharding
automatic partitioning with Twemproxy,

39–40
availability of software for, 41
defined, 38

Sharding relational databases
attempting to scale up, 6
as data sizes get larger and larger, 41
distributed computing limitations, 5
Internet vs., 29–30

Sharing datasets, BigQuery, 74
Sharing terabytes of raw data

challenges, 14–15
character encoding, 19–21
data serialization formats, 21–23
formats, 16–19
problems, 13
storage, infrastructure as a service, 15–16
summary, 23

Shark project
fast analytics capability, 51
future of analytical query engines, 82
queries at speed of RAM, 65–66
summary, 67

Shuff le step, MapReduce, 60, 101
Sicular, Svetlana, 190
Simple linear regression, 153–154

Single-machine paradigm, limitations, 4–5
Sinks (data outputs), Cascading model,

123–124
64-bit machine, memory usage in R, 147–148
SLF4J logging library, 124
Sloan Foundation grant, iPython, 171
Smartphones

archaic computing systems vs., 147
using differently than PCs, 189

Snapshots
data warehouse analysis, 47
operational data stores, 58

Snow, John, 86–87
Snytax, Pig’s workf low, 119
Social networks, 189
Software

building instead of infrastructure, 8
different projects addressing similar use

cases, 180
industries transitioning from physical

media to, 44
numerous packages affecting decision

making, 180
revolution in, 44
sharding, 41
specialized for big data pipelines, 9

Software Development Laboratories, Oracle,
27

Sources (data inputs), Cascading model,
123–124

SOX (Sarbanes and Oxley Act) regulations,
46

Spam filtering, machine learning for,
133–134

Spark project
fast analytics capability, 51
features of, 139
machine learning tasks of, 139
overview of, 65–66

Sparklines visualization concept, 89
Split command, text files, 20–21
SQL (Structured Query Language) query

HiveQL vs., 63–64
NewSQL, 41
Pig workf low statements vs., 119
in relational database model, 26–27, 58
Web apps not based on. See NoSQL-based

Web apps

Index 213

SQL on Hadoop project, CitusDB, 196
SQL-like interface

Dremel, 72
Hive, 60, 63–64

SQL-like syntax, BigQuery, 74
Standardization

ASCII encoding, 20
challenges of CSV files, 17
Unicode Standard, 20

Star schema
in data warehouse system, 47–48
solving data challenges without, 59

Statistical analysis
building analytics workf lows. See

Analytics workf lows
determining probability, 150
maturity of R for, 180
using R for. See R strategies for large

datasets
Statisticians

growing need for, 146
role of, 145

Stdin, complex pipeline in Python, 103–105
Stdin, simple pipeline in Unix, 102–103
Stdout, complex pipeline in Python, 103–105
Stdout, simple pipeline in Unix, 102–103
Storage

challenges of sharing lots of data files, 14
IAAS model for, 15–16

Streamgraph, 89
Streaming utility, Hadoop, 102–105
Structured documents, storing with XML, 18
Support, costs of open-source, 186
Survey data, working with, 150
SVG (Scalable Vector Graphics) format, Web,

93
Systems administrators, changing role, 145

T
Tableau, 51
Tables

BigQuery, 74, 76
in data warehouse system, 47
Hive, 62–65

Taps, Cascading model, 123–125
Technologies

anatomy of big data pipelines, 9
bridging data silos, 51
building core, 181–182
current state/organic growth of data, 180
evaluating current investment in, 182
for large-scale data problems, 69, 72
overcoming challenges of data silos, 50
unlocking value from data vs. focus on,

8–9
Technologies, future trends in data

cloud, 191–192
convergence and ultimate database,

195–196
convergence of cultures, 196–197
data scientists, 192–195
Hadoop, 190–191
summary, 197–198
utility computing pattern, 189–190

Testing
MapReduce pipeline locally, 108–109
Python scripts locally, 171
Python tools for, 160

Text
Bayesian classifier for spam, 134
classifying with Apache Mahout, 137–139
working with, 20

Time series data, Pandas, 164–165
TIOBE Programming Community Index,

159
Tools

evaluating what to build or buy, 75
Python, 160

TOP results, BigQuery, 74
Trade-offs

bias variance, in machine learning, 133
big data, 5–6
data analysis API, 75
IAAS storage model, 15–16

Transaction consistency, across systems, 70
Transformations

big data pipeline anatomy, 9
ETL process. See ETL (Extract,

Transform and Load) process
file, 21
multistep MapReduce, 118–119
one-step MapReduce, 105–109
Pig workf low, 122

Index214

Trendalyzer, 89
Tufte, Edward, 86, 89
Tuples

Pig, 120
in relational database model, 26

Turing Award, Edgar F. Dodd, 28
Twemproxy, 39–40
Twitter, 189–190
Twitter Streaming API statistics, 167–168
Twitter Tools module, Python, 167–168
2D charts with Python, 92

U
UDFs (user-defined functions), Hive, 60
Ultimate database, 10, 195–196
Unique keys, key–value stores, 32
Unix command line

building pipelines, 102–103
pipe paradigm, 123
text files, 20–21

Unlocking data
to get value, 8–9
as misleading metaphor, 118

Use cases
analytical databases, 69
batch processing with MapReduce, 73
big data pipelines, 9
BigQuery fast aggregate query results, 74
Cascading vs. Pig, 180
data warehousing, 58
different software projects addressing

similar, 180
Hive, 60–62
machine learning, 131–132
MapReduce frameworks, 69
nonrelational database models, 69

UTC (Coordinated Universal Time), Pandas,
165–167

UTF-8 standard, 20
UTF-16 standard, 20
Utility computing

adoption of technologies for, 189
Big Data and, 190
cloud-based trends, 192
sharing terabytes of raw data, 15–16
trend for convergence of cultures, 196–197

V
Value. See also Key–value data stores

automating predictive business, 131
focus on unlocking data, 8–9
MapReduce converting raw text files, 58

Vector data structure, in R, 148
VisiCalc, 4
Visualization for large datasets

building applications for data interactivity,
90–96

with D3.js, for Web, 92–96
with Google Charts API, 81–82
human scale vs. machine scale, 89
interactivity, 89
masterpieces of historical visualizations,

86–88
with matplotlib, 92
overview of, 85
with R and ggplot2, 90–92
summary, 96

VoltDB, 41

W
Wearable computers, 189
Web services

accessing, 76
BigQuery API as, 76
cloud-based trends, 192

Web-based dashboards, 7
Webmaster roles, in 1990s, 193
WordPress, data accessibility, 4
Workf lows

analytics. See Analytics workf lows
asking questions about data. See R
Cascading. See Cascading
Cascading vs. Pig, 128
large-scale, 118
multistep MapReduce transformations,

118–119
overview of, 117
Pig. See Pig
summary, 128
using Python to build more complex,

167–168
writing MapReduce, 58

Workhorse data types, Python lists, 160

Index 215

Write performance
Redis database excelling, 35–38
sharding across many Redis instances,

38–41

X
XML (Extensible Markup Language) format

comparing JSON, CSV to, 18–19
data serialization formats, 22
sharing large numbers of files with, 18

Y
Yahoo! distributed systems of commodity

hardware, 71
YAML format, configuring Twemproxy for

Redis, 40
Yelp, creating mrjob, 110

Z
Zero-based, tuples as, 26
ZeroMQ library, iPython, 171

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Four Rules for Data Success
	When Data Became a BIG Deal
	Data and the Single Server
	The Big Data Trade-Off
	Anatomy of a Big Data Pipeline
	The Ultimate Database
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

