
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321897534
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321897534
https://plusone.google.com/share?url=http://www.informit.com/title/9780321897534
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321897534
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321897534/Free-Sample-Chapter

Praise for The Android ™ Developer’s Cookbook, Second Edition

“The Android™ Developer’s Cookbook, Second Edition, contains the recipes for develop-
ing and marketing a successful Android application. Each recipe in the book contains
detailed explanations and examples of the right way to write your applications to
become a featured app in the Google Play Store. From understanding the basic fea-
tures of different versions of Android to designing and building a responsive UI, this
cookbook gives you the recipes for success. You will learn to work with Android on
every level—from hardware interfaces (like NFC and USB), to networking interfaces
that will show you how to use mobile data efficiently, and even how to take advantage
of Google’s powerful billing interface. The authors do an incredible job of provid-
ing useful and real-life code examples for every concept in the book that can easily be
built on and adapted to any situation and makes this book an essential resource for all
Android developers.”
— David Brown, information data manager and application developer, San Juan

School District

“Easy to read and easy to understand but not lacking features. This is one of the best
books I have read on Android development. If you have the basics down, the recipes in
the book will take you to mastery.”
—Casey Doolittle, lead Java developer, Icon Health and Fitness

“The Android ™ Developer’s Cookbook, Second Edition, provides a fantastic foundation
for Android development. It teaches core skills such as layouts, Android life cycle,
and responsiveness via numerous multi-threading techniques, which you need to be a
skilled Android chef.”
—Kendell Fabricius, freelance Android developer

“This book has something for everyone. I’ve been programming Android since 1.0
and I learned some things that are completely new to me.”
—Douglas Jones, senior software engineer, Fullpower Technologies

00_0321897534_FM.indd i Achorn International 06/12/2013 03:37AM

This page intentionally left blank

The Android™

Developer’s
Cookbook

Second Edition

00_0321897534_FM.indd iii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd ii Achorn International 06/12/2013 03:37AM

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

00_0321897534_FM.indd iv Achorn International 06/12/2013 03:37AM 00_0321897534_FM.indd v Achorn International 06/12/2013 03:37AM

The Android™

Developer’s
Cookbook

Building Applications with
the Android SDK

Second Edition

Ronan Schwarz

Phil Dutson

James Steele

Nelson To

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

00_0321897534_FM.indd iv Achorn International 06/12/2013 03:37AM 00_0321897534_FM.indd v Achorn International 06/12/2013 03:37AM

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the desig-
nations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales, which may include electronic ver-
sions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Ronan Schwarz,
 The Android developer’s cookbook : building applications with the Android
SDK / Ronan Schwarz, Phil Dutson, James Steele, Nelson To.—Second
edition.
 pages cm
 Includes index.
 ISBN 978-0-321-89753-4 (pbk. : alk. paper)
 1. Application software—Development. 2. Android (Electronic resource)
3. Operating systems (Computers) I. Schwarz, Ronan. II. Dutson, Phil,
1981– III. To, Nelson, 1976– IV. Title.

 QA76.76.A65S743 2013
 004.1675—dc23 2013014476

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

Google and the Google logo are registered trademarks of Google Inc., used
with permission.

Android is a trademark of Google, Inc.

ISBN-13: 978-0-321-89753-4
ISBN-10: 0-321-89753-6
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, June 2013

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development
Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Denise Wolber

Technical
Reviewers
Casey Doolittle
Douglas Jones
James Steele

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Achorn International

00_0321897534_FM.indd vi Achorn International 06/12/2013 03:37AM 00_0321897534_FM.indd vii Achorn International 06/12/2013 03:37AM

❖

To my beloved wife Susan and the OpenIntents Community:
Thank you for your support

—Ronan

To Martin Simonnet and the Niantic Project for all the fun they have provided

—Phil

To Wei with love

—Jim

To my dear mom

—Nelson

❖

00_0321897534_FM.indd vi Achorn International 06/12/2013 03:37AM 00_0321897534_FM.indd vii Achorn International 06/12/2013 03:37AM

This page intentionally left blank

Contents at a Glance

Preface xxi

About the Authors xxv

1 Overview of Android 1

2 Application Basics: Activities and Intents 21

3 Threads, Services, Receivers, and Alerts 51

4 Advanced Threading Techniques 89

5 User Interface Layout 109

6 User Interface Events 145

7 Advanced User Interface Techniques 177

8 Multimedia Techniques 199

9 Hardware Interface 221

10 Networking 251

11 Data Storage Methods 287

12 Location-Based Services 315

13 In-App Billing 343

14 Push Messages 349

15 Android Native Development 361

16 Debugging 371

A Using the OpenIntents Sensor Simulator 395

B Using the Compatibility Pack 401

C Using a Continuous Integration System 409

D Android OS Releases 411

Index 417

00_0321897534_FM.indd ix Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd viii Achorn International 06/12/2013 03:37AM

This page intentionally left blank

Table of Contents

Preface xxi

About the Authors xxv

 1 Overview of Android 1
The Evolution of Android 1

The Dichotomy of Android 2

Devices Running Android 2

HTC Models 3

Motorola Models 5

Samsung Models 5

Tablets 5

Other Devices 6

Hardware Differences on Android Devices 6

Screens 7

User Input Methods 7

Sensors 8

Features of Android 10

Multiprocess and App Widgets 10

Touch, Gestures, and Multitouch 10

Hard and Soft Keyboards 10

Android Development 11

Designing Applications Well 11

Maintaining Forward Compatibility 11

Ensuring Robustness 12

Software Development Kit (SDK) 12

Installing and Upgrading 12

Software Features and API Level 14

Emulator and Android Device Debug 14

Using the Android Debug Bridge 15

Signing and Publishing 16

Google Play 16

End User License Agreement 16

Improving App Visibility 17

Differentiating an App 18

Charging for an App 18

00_0321897534_FM.indd xi Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd x Achorn International 06/12/2013 03:37AM

xii Contents

Managing Reviews and Updates 19

Alternatives to Google Play 20

 2 Application Basics: Activities and Intents 21
Android Application Overview 21

Recipe: Creating a Project and an Activity 22

Directory Structure of Project and Autogenerated
Content 24

Android Package and Manifest File 26

Recipe: Renaming Parts of an Application 28

Recipe: Using a Library Project 29

Activity Lifecycle 31

Recipe: Using Activity Lifecycle Functions 31

Recipe: Forcing Single Task Mode 31

Recipe: Forcing Screen Orientation 34

 Recipe: Saving and Restoring Activity
Information 34

Recipe: Using Fragments 35

Multiple Activities 36

Recipe: Using Buttons and TextView 37

 Recipe: Launching a Second Activity from an
Event 38

 Recipe: Launching an Activity for a Result Using
Speech to Text 42

 Recipe: Implementing a List of Choices 44

 Recipe: Using Implicit Intents for Creating an
Activity 45

 Recipe: Passing Primitive Data Types between
Activities 46

 3 Threads, Services, Receivers, and Alerts 51
Threads 51

Recipe: Launching a Secondary Thread 52

Recipe: Creating a Runnable Activity 55

Recipe: Setting a Thread’s Priority 56

Recipe: Canceling a Thread 57

Recipe: Sharing a Thread between Two
Applications 57

Messages between Threads: Handlers 58

Recipe: Scheduling a Runnable Task from the Main
Thread 58

00_0321897534_FM.indd xiii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xii Achorn International 06/12/2013 03:37AM

xiii

Recipe: Using a Countdown Timer 60

Recipe: Handling a Time-Consuming
Initialization 61

Alerts 63

Recipe: Using Toast to Show a Brief Message on the
Screen 63

Recipe: Using an Alert Dialog Box 64

Recipe: Showing Notification in the Status Bar 65

Services 69

Recipe: Creating a Self-Contained Service 70

Recipe: Adding a WakeLock 74

Recipe: Using a Foreground Service 77

Recipe: Using an IntentService 80

Broadcast Receivers 82

Recipe: Starting a Service When the Camera Button Is
Pressed 83

App Widgets 85

Recipe: Creating an App Widget 85

 4 Advanced Threading Techniques 89
Loaders 89

Recipe: Using a CursorLoader 89

AsyncTasks 91

Recipe: Using an AsyncTask 92

Android Inter-Process Communication 94

Recipe: Implementing a Remote Procedure Call 94

Recipe: Using Messengers 99

Recipe: Using a ResultReceiver 105

 5 User Interface Layout 109
Resource Directories and General Attributes 109

Recipe: Specifying Alternate Resources 111

Views and ViewGroups 112

Recipe: Building Layouts in the Eclipse Editor 113

Recipe: Controlling the Width and Height of UI
Elements 115

Recipe: Setting Relative Layout and
Layout ID 119

Recipe: Declaring a Layout Programmatically 120

Recipe: Updating a Layout from a Separate
Thread 121

xiiiContents

00_0321897534_FM.indd xiii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xii Achorn International 06/12/2013 03:37AM

xiv

Text Manipulation 124

Recipe: Setting and Changing Text Attributes 124

Recipe: Providing Text Entry 127

Recipe: Creating a Form 129

Other Widgets: From Buttons to Seek Bars 130

Recipe: Using Image Buttons in a Table Layout 130

Recipe: Using Check Boxes and Toggle
Buttons 134

Recipe: Using Radio Buttons 137

Recipe: Creating a Spinner 138

Recipe: Using a Progress Bar 140

Recipe: Using a Seek Bar 141

 6 User Interface Events 145
Event Handlers and Event Listeners 145

Recipe: Intercepting a Physical Key Press 145

Recipe: Building Menus 148

Recipe: Defining Menus in XML 152

Recipe: Creating an Action Bar 154

Recipe: Using ActionBarSherlock 156

Recipe: Using the SEARCH Key 159

Recipe: Reacting to Touch Events 161

Recipe: Listening for Fling Gestures 163

Recipe: Using Multitouch 165

Advanced User Interface Libraries 168

Recipe: Using Gestures 168

Recipe: Drawing 3D Images 171

 7 Advanced User Interface Techniques 177
Android Custom View 177

Recipe: Customizing a Button 177

Android Animation 183

Recipe: Creating an Animation 184

Recipe: Using Property Animations 187

Accessibility 189

Recipe: Using Accessibility Features 189

Fragments 191

Recipe: Displaying Multiple Fragments at Once 191

Recipe: Using Dialog Fragments 196

Contents

00_0321897534_FM.indd xv Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xiv Achorn International 06/12/2013 03:37AM

xv

 8 Multimedia Techniques 199
Images 199

Recipe: Loading and Displaying an Image for
Manipulation 202

Audio 206

Recipe: Choosing and Playing Back Audio Files 207

Recipe: Recording Audio Files 210

Recipe: Manipulating Raw Audio 211

Recipe: Using Sound Resources Efficiently 215

Recipe: Adding Media and Updating Paths 217

Video 217

Recipe: Using the VideoView 217

Recipe: Video Playback Using the MediaPlayer 219

 9 Hardware Interface 221
Camera 221

Recipe: Customizing the Camera 222

Other Sensors 227

Recipe: Getting a Device’s Rotational Attitude 227

Recipe: Using the Temperature and Light
Sensors 230

Telephony 231

Recipe: Using the Telephony Manager 232

Recipe: Listening for Phone States 234

Recipe: Dialing a Phone Number 235

Bluetooth 236

Recipe: Turning on Bluetooth 237

Recipe: Discovering Bluetooth Devices 237

 Recipe: Pairing with Bonded Bluetooth Devices 238

 Recipe: Opening a Bluetooth Socket 238

Recipe: Using Device Vibration 241

 Recipe: Accessing the Wireless Network 241

Near Field Communication (NFC) 243

Recipe: Reading NFC Tags 243

Recipe: Writing NFC Tags 245

Universal Serial Bus (USB) 248

 10 Networking 251
Reacting to the Network State 251

Contents

00_0321897534_FM.indd xv Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xiv Achorn International 06/12/2013 03:37AM

xvi

Recipe: Checking for Connectivity 251

Recipe: Receiving Connectivity Changes 253

Using SMS 255

Recipe: Autosending an SMS Based on a Received
SMS 257

Using Web Content 263

 Recipe: Customizing a Web Browser 263

Recipe: Using an HTTP GET 264

Recipe: Using HTTP POST 267

Recipe: Using WebViews 269

Recipe: Parsing JSON 271

Recipe: Parsing XML 273

Social Networking 275

Recipe: Reading the Owner Profile 275

Recipe: Integrating with Twitter 275

Recipe: Integrating with Facebook 284

 11 Data Storage Methods 287
Shared Preferences 287

 Recipe: Creating and Retrieving Shared
Preferences 288

 Recipe: Using the Preferences Framework 288

 Recipe: Changing the UI Based on Stored
Data 290

 Recipe: Adding an End User License
Agreement 294

SQLite Database 297

 Recipe: Creating a Separate Database
Package 297

 Recipe: Using a Separate Database Package 300

Recipe: Creating a Personal Diary 303

Content Provider 306

 Recipe: Creating a Custom Content Provider 308

File Saving and Loading 312

 Recipe: Using AsyncTask for Asynchronous
Processing 313

 12 Location-Based Services 315
Location Basics 315

Recipe: Retrieving Last Location 317

Contents

00_0321897534_FM.indd xvii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xvi Achorn International 06/12/2013 03:37AM

xvii

 Recipe: Updating Location Upon Change 318

 Recipe: Listing All Enabled Providers 320

 Recipe: Translating a Location to an Address (Reverse
Geocoding) 322

 Recipe: Translating an Address to a Location
(Geocoding) 324

Using Google Maps 325

 Recipe: Adding Google Maps to an
Application 328

Recipe: Adding Markers to a Map 329

Recipe: Adding Views to a Map 333

 Recipe: Setting Up a Proximity Alert 336

Using the Little Fluffy Location Library 337

 Recipe: Adding a Notification with the Little Fluffy
Location Library 338

 13 In-App Billing 343
Google Play In-App Billing 343

 Recipe: Installing Google’s In-App Billing
Service 344

 Recipe: Adding In-App Billing to an Activity 345

 Recipe: Listing Items for In-App Purchase 346

 14 Push Messages 349
Google Cloud Messaging Setup 349

 Recipe: Preparing for Google Cloud Messaging 349

Sending and Receiving Push Messages 351

 Recipe: Preparing the Manifest 351

Receiving Messages 353

 Recipe: Adding the BroadcastReceiver Class 353

 Recipe: Adding the IntentService Class 354

 Recipe: Registering a Device 356

Sending Messages 356

 Recipe: Sending Text Messages 357

 Recipe: Sending Messages with AsyncTask 358

 15 Android Native Development 361
Android Native Components 361

Recipe: Using Java Native Interface 362

 Recipe: Using the NativeActivity 364

xviiContents

00_0321897534_FM.indd xvii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xvi Achorn International 06/12/2013 03:37AM

xviii

 16 Debugging 371
Android Test Projects 371

 Recipe: Creating a Test Project 371

 Recipe: Populating Unit Tests on Android 373

Recipe: Using Robotium 375

Eclipse Built-In Debug Tools 377

 Recipe: Specifying a Run Configuration 377

Recipe: Using the DDMS 377

 Recipe: Debugging through Breakpoints 380

Android SDK Debug Tools 380

 Recipe: Starting and Stopping the Android Debug
Bridge 380

Recipe: Using LogCat 381

 Recipe: Using the Hierarchy Viewer 384

Recipe: Using TraceView 385

Recipe: Using lint 388

Android System Debug Tools 390

 Recipe: Setting Up GDB Debugging 392

 A Using the OpenIntents Sensor Simulator 395
Setting Up the Sensor Simulator 395

 Adding the Sensor Simulator to an Application 398

 B Using the Compatibility Pack 401
Android Support Packages 401

Adding the Support Library to a Project 408

 C Using a Continuous Integration System 409

 D Android OS Releases 411
Cupcake: Android OS 1.5, API Level 3, Released
April 30, 2009 411

Donut: Android OS 1.6, API Level 4, Released
September 15, 2009 411

Eclair: Android OS 2.0, API Level 5, Released
October 26, 2009 412

Froyo: Android OS 2.2, API Level 8, Released
May 20, 2010 412

Gingerbread: Android OS 2.3, API Level 9, Released
December 6, 2010 412

Contents

00_0321897534_FM.indd xix Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xviii Achorn International 06/12/2013 03:37AM

 xix

Honeycomb: Android OS 3.0, API Level 11, Released
February 22, 2011 413

Ice Cream Sandwich: Android OS 4.0, API Level 14,
Released October 19, 2011 413

Jelly Bean: Android OS 4.1, API Level 16, Released
July 9, 2012 414

Index 417

00_0321897534_FM.indd xix Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xviii Achorn International 06/12/2013 03:37AM

This page intentionally left blank

Preface

Android is the fastest growing mobile operating system (OS). With more than
800,000 applications available in the Google Play store, the Android ecosystem is
growing as well. There is enough diversity in device features and wireless carriers to
appeal to just about anyone.

Netbooks have always been a natural platform to adopt Android, but the liveliness
behind Android has fed the growth further into tablets, televisions, and even automo-
biles. Many of the world’s largest corporations—from banks to fast food chains to air-
lines—have established a presence in Android and offer compatible services. Android
developers have many opportunities, and relevant apps reach more people than ever
before, increasing the satisfaction of creating a relevant app.

Why an Android Cookbook?
The Android OS is simple to learn, and Google provides many libraries to make it
easy to implement rich and complex applications. The only aspect lacking, as men-
tioned by many in the Android developer community, is clear and well-explained
documentation. The fact that Android is open source means anyone can dive in and
reverse engineer some documentation. Many developer bulletin boards have excellent
examples that were deduced using exactly this method. Still, a book that has a consis-
tent treatment across all areas of the OS is useful.

In addition, a clear working example is worth a thousand words of documentation.
Developers faced with a problem usually prefer to do a form of extreme programming;
that is, they find examples of working code that does something close to the solution
and modify or extend it to meet their needs. The examples also serve as a way to see
the coding style and help to shape other parts of the developer’s code.

This Android cookbook fills a need by providing a variety of self-contained recipes.
As each recipe is introduced, the main concepts of the Android OS are also explained.

Who Should Read This Book?
Users who are writing their own Android applications will get the most out of this
cookbook. Basic familiarity with Java and the Eclipse development environment is
assumed but not required for the majority of the book. Java is a modular language, and

00_0321897534_FM.indd xx Achorn International 06/12/2013 03:37AM 00_0321897534_FM.indd xxi Achorn International 06/12/2013 03:37AM

Prefacexxii

most (if not all) of the example recipes can be incorporated with minimal change into
the reader’s own Android project. The motivation and coverage of each topic in this
book make it usable as an Android course supplement.

Using the Recipes
In general, the code recipes in this cookbook are self-contained and include all the
information necessary to run a working application on an Android device. Chapters 1
and 2 give an introduction to the overall use of Android, but feel free to jump around
and start using whatever is necessary.

This book is written first as a reference, providing knowledge mostly by example
with the greatest benefits through implementation of the recipes of interest. The main
technique introduced in each recipe is specified in the section heading. However,
additional techniques are included in each recipe as needed to support the main recipe.

After reading this book, a developer should
nn Be able to write an Android Application from scratch
nn Be able to write code that works across multiple versions of Android
nn Be able to use the various Application Programming Interfaces (APIs) pro vided in

Android
nn Have a large reference of code snippets to quickly assimilate into applications
nn Appreciate the various ways to do the same task in Android and the benefits of

each
nn Understand the unique aspects of Android programming techniques

Book Structure
nn Chapter 1, “Overview of Android,” provides an introduction to all aspects of

Android outside of the code itself. It is the only chapter that doesn’t include reci-
pes, but it provides useful background material.

nn Chapter 2, “Application Basics: Activities and Intents,” provides an overview of
the four Android components and an explanation of how an Android project is
orga nized. It also focuses on the activity as a main application building block.

nn Chapter 3, “Threads, Services, Receivers, and Alerts,” introduces background
tasks such as threads, services, and receivers, as well as notification methods for
these background tasks using alerts.

nn Chapter 4, “Advanced Threading Techniques,” covers using AsyncTasks and
using loaders.

nn Chapter 5, “User Interface Layout,” covers the user interface screen layout and
views.

00_0321897534_FM.indd xxiii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xxii Achorn International 06/12/2013 03:37AM

Additional References xxiii

nn Chapter 6, “User Interface Events,” covers user-initiated events such as touch
events and gestures.

nn Chapter 7, “Advanced User Interface Techniques,” covers creating a custom view,
using ani mation, offering accessibility options, and working with larger screens.

nn Chapter 8, “Multimedia Techniques,” covers multimedia manipulation and
record and playback of audio and video.

nn Chapter 9, “Hardware Interface,” introduces the hardware APIs available on
Android devices and how to use them.

nn Chapter 10, “Networking,” discusses interaction outside of the Android device
with SMS, web browsing, and social networking.

nn Chapter 11, “Data Storage Methods,” covers various data storage techniques
available in Android, including SQLite.

nn Chapter 12, “Location-Based Services,” focuses on accessing the location through
various methods such as GPS and using services such as the Google Maps API.

nn Chapter 13, “In-App Billing,” provides an instruction set on including in-app
billing in your application using Google Play services.

nn Chapter 14, “Push Messages,” covers how to use GCM for handling push mes-
sages with an application.

nn Chapter 15, “Native Android Development,” discusses the components and struc-
ture used for native development.

nn Chapter 16, “Debugging,” provides the testing and debugging framework useful
throughout the development cycle.

Additional References
There are many online references for Android. A few essential ones are

nn Android Source Code: http://source.android.com/
nn Android Developer Pages: http://developer.android.com/
nn Open Source Directory: http://osdir.com/
nn Stack Overflow Discussion Threads: http://stackoverflow.com/
nn Talk Android Developer Forums: www.talkandroid.com/android-forums/

00_0321897534_FM.indd xxiii Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xxii Achorn International 06/12/2013 03:37AM

http://www.talkandroid.com/android-forums/
http://source.android.com/
http://developer.android.com/
http://osdir.com/
http://stackoverflow.com/

This page intentionally left blank

About the Authors

Ronan “Zero” Schwarz is cofounder of OpenIntents, a Europe-based open source
company specializing in Android development. Ronan has more than fifteen years
of programing experience in a wide variety of fields such as augmented reality, web,
robotics, and business systems, as well as different programing languages, including C,
Java, and Assembler. He has been working on the Android Platform since 2007 and,
among other things, has helped create SplashPlay and Droidspray, both top finalists of
the Google Android Developer Challenge I and II.

Phil Dutson is the lead UX and mobile developer for ICON Health and Fitness. He
has worked on projects and solutions for NordicTrack, ProForm, Freemotion, Sears,
Costco, Sam’s Club, and others. Through the years he has been using, tweaking,
and writing programs for mobile devices from his first Palm Pilot 5000 to his current
collection of iOS and Android devices. Phil has also authored jQuery, JQuery UI,
and jQuery Mobile; Sams Teach Yourself jQuery Mobile in 24 Hours; and Creating QR and
Tag Codes.

James Steele was doing postdoctoral work in physics at MIT when he decided to
join a start-up in Silicon Valley. Fifteen years later he continues to innovate, bringing
research projects to production in both the consumer and mobile markets. He ac tively
presents at and participates in various Silicon Valley new technology groups. Jim is VP
of Engineering at Sensor Platforms.

Nelson To has more than ten applications of his own in the Android Market. He has
also worked on enterprise Android applications for Think Computer, Inc. (PayPhone),
AOL (AIM), Stanford University (Education App), and Logitech (Google TV). He
also assists in organizing the Silicon Valley Android Meetup Community and teaches
Android classes in both the Bay Area and China.

00_0321897534_FM.indd xxv Achorn International 06/12/2013 03:37AM00_0321897534_FM.indd xxiv Achorn International 06/12/2013 03:37AM

This page intentionally left blank

10
Networking

Network-based applications provide increased value for a user, in that content
can be dynamic and interactive. Networking enables multiple features, from social
networking to cloud computing.

This chapter focuses on the network state, short message service (SMS), Internet
resource-based applications, and social networking applications. Knowing the net-
work state is important to applications that fetch or update information that is avail-
able through a network connection. SMS is a communication service component that
enables the exchange of short text messages between mobile phone devices. Internet
resource-based applications rely on web content such as HTML (HyperText Markup
Language), XML (eXtensible Markup Language), and JSON (JavaScript Object Nota-
tion). Social networking applications, such as Twitter, are important methods for
people to connect with each other.

Reacting to the Network State
Knowing how and if a device is connected to a network is a very important facet of
Android development. Applications that stream information from a network server
may need to warn users about the large amount of data that may be charged to their
accounts. Application latency issues may also be a concern. Making some simple que-
ries enables users to find out if they are currently connected through a network device
and how to react when the connection state changes.

Recipe: Checking for Connectivity
The ConnectivityManager is used for determining the connectivity of a device. This
recipe can be used to determine what network interfaces are connected to a network.
Listing 10.1 uses the ConnectivityManager to display if the device is connected via
Wi-Fi or Bluetooth.

10_0321897534_Ch10.indd 251 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking252

Listing 10.1 src/com/cookbook/connectivitycheck/MainActivity.java

package com.cookbook.connectivitycheck;

import android.app.Activity;
import android.content.Context;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {
 TextView tv;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 tv = (TextView) findViewById(R.id.tv_main);
 try {
 String service = Context.CONNECTIVITY_SERVICE;
 ConnectivityManager cm = (ConnectivityManager)getSystemService(service);
 NetworkInfo activeNetwork = cm.getActiveNetworkInfo();

 boolean isWiFi = activeNetwork.getType() == ConnectivityManager.TYPE_WIFI;
 boolean isBT = activeNetwork.getType() == ConnectivityManager.TYPE_BLUETOOTH;

 tv.setText("WiFi connected: "+isWiFi+"\nBluetooth connected: "+isBT);
 } catch(Exception nullPointerException) {
 tv.setText("No connected networks found");
 }
 }
}

Listing 10.1 uses the constants TYPE_WIFI and TYPE_BLUETOOTH to check for connec-
tivity on these networks. In addition to TYPE_WIFI and TYPE_BLUETOOTH, the follow-
ing constants can also be used to determine connectivity:

nn TYPE_DUMMY—For dummy data connections
nn TYPE_ETHERNET—For the default Ethernet connection
nn TYPE_MOBILE—For the default mobile data connection
nn TYPE_MOBILE_DUN—For DUN-specific mobile data connections
nn TYPE_MOBILE_HIPRI—For high-priority mobile data connections
nn TYPE_MOBILE_MMS—For an MMS-specific mobile data connection
nn TYPE_MOBILE_SUPL—For an SUPL-specific mobile data connection
nn TYPE_WIMAX—For the default WiMAX data connection

10_0321897534_Ch10.indd 253 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 252 Achorn International 06/12/2013 02:38AM

Reacting to the Network State 253

Figure 10.1 shows an application running with the code from Listing 10.1. Even
though Bluetooth has been enabled, it reports false for being connected because it does
not currently have an active connection.

Recipe: Receiving Connectivity Changes
A broadcast receiver can be used to check the status of network connectivity when it is
necessary to react to changes in connectivity status.

A broadcast receiver can be declared in the application manifest, or it can be a sub-
class inside the main activity. While both are accessible, this recipe uses a subclass in
conjunction with the onCreate() and onDestroy() methods to register and unregister
the receiver.

As this recipe checks for connectivity, the following permissions need to be added
to the application manifest:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Figure 10.1 Checking for device connectivity

10_0321897534_Ch10.indd 253 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 252 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking254

Listing 10.2 shows the code needed to check for connectivity changes. When a
change is detected, the application will display a toast message informing the user of
the change.

Listing 10.2 src/com/cookbook/connectivitychange/MainActivity.java

package com.cookbook.connectivitychange;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.widget.Toast;

public class MainActivity extends Activity {

 private ConnectivityReceiver receiver = new ConnectivityReceiver();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);
 receiver = new ConnectivityReceiver();
 this.registerReceiver(receiver, filter);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 if (receiver != null) {
 this.unregisterReceiver(receiver);
 }
 }

 public class ConnectivityReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 ConnectivityManager conn =
(ConnectivityManager)context.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = conn.getActiveNetworkInfo();

 if (networkInfo != null && networkInfo.getType() == ConnectivityManager.
➥TYPE_WIFI) {
 Toast.makeText(context, "WiFi is connected", Toast.LENGTH_SHORT).show();
 } else if (networkInfo != null) {
 Toast.makeText(context, "WiFi is disconnected", Toast.LENGTH_SHORT).show();

10_0321897534_Ch10.indd 255 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 254 Achorn International 06/12/2013 02:38AM

Using SMS 255

 } else {
 Toast.makeText(context, "No active connection", Toast.LENGTH_SHORT).show();
 }
 }
 }
}

Figure 10.2 When Wi-Fi is enabled, a
toast message appears informing

the user of the connection

Figure 10.3 Wi-Fi and mobile data are dis-
abled, so a toast informing the user of the
lack of network connectivity is displayed

Figure 10.2 shows the message that appears when Wi-Fi is connected. Figure 10.3
shows the message that appears when both Wi-Fi and mobile data have been
disconnected.

Using SMS
The Android Framework provides full access to SMS functionality using the
SmsManager class. Early versions of Android placed SmsManager in the
android.telephony.gsm package. Since Android 1.5, where SmsManager supports

10_0321897534_Ch10.indd 255 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 254 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking256

both GSM and CDMA mobile telephony standards, the SmsManager class is now
placed in the android.telephony package.

Sending an SMS through the SmsManager class is fairly straightforward:

 1. Set the permission in the AndroidManifest.xml file to send SMS:
<uses-permission android:name="android.permission.SEND_SMS" />

 2. Use the SmsManager.getDefault() static method to get an SMS manager
instance:
SmsManager mySMS = SmsManager.getDefault();

 3. Define the destination phone number and the message that is to be sent. Use
the sendTextMesssage() method to send the SMS to another device:
String destination = "16501234567";

String msg = "Sending my first message";

mySMS.sendTextMessage(destination, null, msg, null, null);

This is sufficient to send an SMS message. However, the three additional param-
eters in the previous call set to null can be used as follows:

nn The second parameter is the specific SMS service center to use. Set this to null
to use the default service center from the carrier.

nn The fourth parameter is a PendingIntent to track if the SMS message was sent.
nn The fifth parameter is a PendingIntent to track if the SMS message was

received.

To use the fourth and fifth parameters, a sent message and a delivered message
intent need to be declared:

String SENT_SMS_FLAG = "SENT_SMS";

String DELIVER_SMS_FLAG = "DELIVER_SMS";

Intent sentIn = new Intent(SENT_SMS_FLAG);

PendingIntent sentPIn = PendingIntent.getBroadcast(this,0,sentIn,0);

Intent deliverIn = new Intent(SENT_SMS_FLAG);

PendingIntent deliverPIn

 = PendingIntent.getBroadcast(this,0,deliverIn,0);

Then, a BroadcastReceiver class needs to be registered for each PendingIntent to receive the
result:

BroadcastReceiver sentReceiver = new BroadcastReceiver(){

 @Override public void onReceive(Context c, Intent in) {

 switch(getResultCode()){

 case Activity.RESULT_OK:

 //sent SMS message successfully;

10_0321897534_Ch10.indd 257 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 256 Achorn International 06/12/2013 02:38AM

Using SMS 257

 break;

 default:

 //sent SMS message failed

 break;

 }

 }

};

BroadcastReceiver deliverReceiver = new BroadcastReceiver(){

 @Override public void onReceive(Context c, Intent in) {

 //SMS delivered actions

 }

};

 registerReceiver(sentReceiver, new IntentFilter(SENT_SMS_FLAG));

 registerReceiver(deliverReceiver, new IntentFilter(DELIVER_SMS_FLAG));

Most SMSs are restricted to 140 characters per text message. To make sure the
message is within this limitation, use the divideMessage() method that divides
the text into fragments in the maximum SMS message size. Then, the method
sendMultipartTextMessage() should be used instead of the sendTextMessage()
method. The only difference is the use of an ArrayList of messages and pend-
ing intents:

ArrayList<String> multiSMS = mySMS.divideMessage(msg);

ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();

ArrayList<PendingIntent> deliverIns = new ArrayList<PendingIntent>();

for(int i=0; i< multiSMS.size(); i++){

 sentIns.add(sentIn);

 deliverIns.add(deliverIn);

}

mySMS.sendMultipartTextMessage(destination, null,

 multiSMS, sentIns, deliverIns);

Recipe: Autosending an SMS Based on a Received SMS
Because most SMS messages are not read by the recipient until hours later, this recipe
sends an autoresponse SMS when an SMS is received. This is done by creating an
Android service in the background that can receive incoming SMSs. An alternative
method is to register a broadcast receiver in the AndroidManifest.xml file.

The application must declare permission to send and receive SMSs in the
AndroidManifest.xml file, as shown in Listing 10.3. It also declares a main activity
SMSResponder that creates the autoresponse and a service ResponderService to send
the response when an SMS is received.

10_0321897534_Ch10.indd 257 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 256 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking258

Listing 10.3 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cookbook.SMSResponder"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".SMSResponder"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:enabled="true" android:name=".ResponderService">
 </service>
 </application>

 <uses-permission android:name="android.permission.RECEIVE_SMS"/>
 <uses-permission android:name="android.permission.SEND_SMS"/>
</manifest>

The main layout file shown in Listing 10.4 contains a LinearLayout with three
views: a TextView to display the message used for the autoresponse, Button used to
commit changes on the reply message inside the application, and EditText where the
user can enter a reply message.

Listing 10.4 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/display"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:textSize="18dp"
 />
 <Button android:id="@+id/submit"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Change my response"
 />
 <EditText android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
</LinearLayout>

10_0321897534_Ch10.indd 259 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 258 Achorn International 06/12/2013 02:38AM

Using SMS 259

The main activity is shown in Listing 10.5. It starts the service that listens and auto-
responds to SMS messages. It also allows the user to change the reply message and save
it in SharedPreferences for future use.

Listing 10.5 src/com/cookbook/SMSresponder/SMSResponder.java

package com.cookbook.SMSresponder;

import android.app.Activity;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class SMSResponder extends Activity {
 TextView tv1;
 EditText ed1;
 Button bt1;
 SharedPreferences myprefs;
 Editor updater;
 String reply=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 myprefs = PreferenceManager.getDefaultSharedPreferences(this);
 tv1 = (TextView) this.findViewById(R.id.display);
 ed1 = (EditText) this.findViewById(R.id.editText);
 bt1 = (Button) this.findViewById(R.id.submit);

 reply = myprefs.getString("reply",
 "Thank you for your message. I am busy now."
 + "I will call you later");
 tv1.setText(reply);

 updater = myprefs.edit();
 ed1.setHint(reply);
 bt1.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 updater.putString("reply", ed1.getText().toString());
 updater.commit();
 SMSResponder.this.finish();
 }
 });

 try {

10_0321897534_Ch10.indd 259 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 258 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking260

 // Start service
 Intent svc = new Intent(this, ResponderService.class);
 startService(svc);
 }
 catch (Exception e) {
 Log.e("onCreate", "service creation problem", e);
 }
 }
}

The majority of code is contained in the service, as shown in Listing 10.6. It
retrieves SharedPreferences for this application first. Then, it registers a broadcast
receiver for listening to incoming and outgoing SMS messages. The broadcast receiver
for outgoing SMS messages is not used here but is shown for completeness.

The incoming SMS broadcast receiver uses a bundle to retrieve the protocol
description unit (PDU), which contains the SMS text and any additional SMS meta-
data, and parses it into an Object array. The method createFromPdu() converts the
Object array into an SmsMessage. Then the method getOriginatingAddress() can
be used to get the sender’s phone number, and getMessageBody() can be used to get
the text message.

In this recipe, after the sender address is retrieved, the respond() method is called.
This method tries to get the data stored inside SharedPreferences for the auto-
respond message. If no data is stored, it uses a default value. Then, it creates two
PendingIntents for sent status and delivered status. The method divideMessage() is
used to make sure the message is not oversized. After all the data is managed, it is sent
using sendMultiTextMessage().

Listing 10.6 src/com/cookbook/SMSresponder/ResponderService.java

package com.cookbook.SMSresponder;

import java.util.ArrayList;

import android.app.Activity;
import android.app.PendingIntent;
import android.app.Service;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.os.IBinder;
import android.preference.PreferenceManager;
import android.telephony.SmsManager;
import android.telephony.SmsMessage;
import android.util.Log;
import android.widget.Toast;

public class ResponderService extends Service {

10_0321897534_Ch10.indd 261 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 260 Achorn International 06/12/2013 02:38AM

Using SMS 261

 //the action fired by the Android system when an SMS was received
 private static final String RECEIVED_ACTION =
 "android.provider.Telephony.SMS_RECEIVED";
 private static final String SENT_ACTION="SENT_SMS";
 private static final String DELIVERED_ACTION="DELIVERED_SMS";

 String requester;
 String reply="";
 SharedPreferences myprefs;

 @Override
 public void onCreate() {
 super.onCreate();
 myprefs = PreferenceManager.getDefaultSharedPreferences(this);

 registerReceiver(sentReceiver, new IntentFilter(SENT_ACTION));
 registerReceiver(deliverReceiver,
 new IntentFilter(DELIVERED_ACTION));

 IntentFilter filter = new IntentFilter(RECEIVED_ACTION);
 registerReceiver(receiver, filter);

 IntentFilter attemptedfilter = new IntentFilter(SENT_ACTION);
 registerReceiver(sender,attemptedfilter);
 }

 private BroadcastReceiver sender = new BroadcastReceiver(){
 @Override
 public void onReceive(Context c, Intent i) {
 if(i.getAction().equals(SENT_ACTION)) {
 if(getResultCode() != Activity.RESULT_OK) {
 String recipient = i.getStringExtra("recipient");
 requestReceived(recipient);
 }
 }
 }
 };
 BroadcastReceiver sentReceiver = new BroadcastReceiver() {
 @Override public void onReceive(Context c, Intent in) {
 switch(getResultCode()) {
 case Activity.RESULT_OK:
 //sent SMS message successfully;
 smsSent();
 break;
 default:
 //sent SMS message failed
 smsFailed();
 break;
 }
 }
 };

 public void smsSent() {
 Toast.makeText(this, "SMS sent", Toast.LENGTH_SHORT);
 }
 public void smsFailed() {
 Toast.makeText(this, "SMS sent failed", Toast.LENGTH_SHORT);

10_0321897534_Ch10.indd 261 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 260 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking262

 }
 public void smsDelivered() {
 Toast.makeText(this, "SMS delivered", Toast.LENGTH_SHORT);
 }

 BroadcastReceiver deliverReceiver = new BroadcastReceiver() {
 @Override public void onReceive(Context c, Intent in) {
 //SMS delivered actions
 smsDelivered();
 }
 };

 public void requestReceived(String f) {
 Log.v("ResponderService","In requestReceived");
 requester=f;
 }

 BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context c, Intent in) {
 Log.v("ResponderService","On Receive");
 reply="";
 if(in.getAction().equals(RECEIVED_ACTION)) {
 Log.v("ResponderService","On SMS RECEIVE");

 Bundle bundle = in.getExtras();
 if(bundle!=null) {
 Object[] pdus = (Object[])bundle.get("pdus");
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for(int i = 0; i<pdus.length; i++) {
 Log.v("ResponderService","FOUND MESSAGE");
 messages[i] =
 SmsMessage.createFromPdu((byte[])pdus[i]);
 }
 for(SmsMessage message: messages) {
 requestReceived(message.getOriginatingAddress());
 }
 respond();
 }
 }
 }
 };

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 }

 public void respond() {
 Log.v("ResponderService","Responding to " + requester);
 reply = myprefs.getString("reply",
 "Thank you for your message. I am busy now."
 + "I will call you later.");
 SmsManager sms = SmsManager.getDefault();
 Intent sentIn = new Intent(SENT_ACTION);
 PendingIntent sentPIn = PendingIntent.getBroadcast(this,
 0,sentIn,0);

10_0321897534_Ch10.indd 263 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 262 Achorn International 06/12/2013 02:38AM

Using Web Content 263

 Intent deliverIn = new Intent(DELIVERED_ACTION);
 PendingIntent deliverPIn = PendingIntent.getBroadcast(this,
 0,deliverIn,0);
 ArrayList<String> Msgs = sms.divideMessage(reply);
 ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();
 ArrayList<PendingIntent> deliverIns =
 new ArrayList<PendingIntent>();

 for(int i=0; i< Msgs.size(); i++) {
 sentIns.add(sentPIn);
 deliverIns.add(deliverPIn);
 }

 sms.sendMultipartTextMessage(requester, null,
 Msgs, sentIns, deliverIns);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 unregisterReceiver(receiver);
 unregisterReceiver(sender);
 }

 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }
}

Using Web Content
To launch an Internet browser to display web content, the implicit intent
ACTION_VIEW can be used as discussed in Chapter 2, “Application Basics: Activities
and Intents,” for example:

Intent i = new Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse("http://www.google.com"));

startActivity(i);

It is also possible for developers to create their own web browser by using WebView,
which is a View that displays web content. As with any view, it can occupy the full
screen or only a portion of the layout in an activity. WebView uses WebKit, the open
source browser engine used in Apple’s Safari, to render web pages.

Recipe: Customizing a Web Browser
There are two ways to obtain a WebView object. It can be instantiated from the
constructor:

WebView webview = new WebView(this);

10_0321897534_Ch10.indd 263 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 262 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking264

Alternatively, a WebView can be used in a layout and declared in the activity:

WebView webView = (WebView) findViewById(R.id.webview);

After the object is retrieved, a web page can be displayed using the loadURL()
method:

webview.loadUrl("http://www.google.com/");

The WebSettings class can be used to define the features of the browser. For
example, network images can be blocked in the browser to reduce the data loading
using the setBlockNetworkImage() method. The font size of the displayed web con-
tent can be set using the setDefaultFontSize() method. Some other commonly used
settings are shown in the following example:

WebSettings webSettings = webView.getSettings();

webSettings.setSaveFormData(false);

webSettings.setJavaScriptEnabled(true);

webSettings.setSavePassword(false);

webSettings.setSupportZoom(true);

Recipe: Using an HTTP GET
Besides launching a browser or using the WebView widget to include a WebKit-based
browser control in an activity, developers might also want to create native Internet-
based applications. This means the application relies on only the raw data from the
Internet, such as images, media files, and XML data. Just the data of relevance can be
loaded. This is important for creating social networking applications. Two packages
are useful in Android to handle network communication: java.net and android.net.

In this recipe, an HTTP GET is used to retrieve XML or JSON data (see www.json
.org/ for an overview). In particular, the Google search Representational State Trans-
fer (REST) API is demonstrated, and the following query is used:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=

To search for any topic, the topic just needs to be appended to the query. For
example, to search for information on the National Basketball Association (NBA), the
following query returns JSON data:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA

The activity needs Internet permission to run. So, the following should be added to
the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>

The main layout is shown in Listing 10.7. It has three views: EditText for user
input of the search topic, Button to trigger the search, and TextView to display the
search result.

10_0321897534_Ch10.indd 265 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 264 Achorn International 06/12/2013 02:38AM

http://www.json.org/
http://www.json.org/
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA

Using Web Content 265

Listing 10.7 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 />
 <Button
 android:id="@+id/submit"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Search"
 />
 <TextView
 android:id="@+id/display"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/hello"
 android:textSize="18dp"
 />
</LinearLayout>

The main activity is shown in Listing 10.8. It initiates the three layout ele -
ments in onCreate(). Inside the OnClickListener class for the button, it calls
searchRequest(). This composes the search item using the Google REST API URL
and then initiates a URL class instance. The URL class instance is then used to get an
HttpURLConnection instance.

The HttpURLConnection instance can retrieve the status of the connection. When
HttpURLConnection returns a result code of HTTP_OK, it means the whole HTTP
transaction went through. Then, the JSON data returned from the HTTP transaction
can be dumped into a string. This is done using an InputStreamReader passed to
a BufferReader to read the data and create a String instance. After the result
from HTTP is obtained, it uses another function processResponse() to parse the
JSON data.

Listing 10.8 src/com/cookbook/internet/search/GoogleSearch.java

package com.cookbook.internet.search;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;

10_0321897534_Ch10.indd 265 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 264 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking266

import java.net.URL;
import java.security.NoSuchAlgorithmException;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class GoogleSearch extends Activity {
 /** called when the activity is first created */
 TextView tv1;
 EditText ed1;
 Button bt1;
 static String url =
"http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 tv1 = (TextView) this.findViewById(R.id.display);
 ed1 = (EditText) this.findViewById(R.id.editText);
 bt1 = (Button) this.findViewById(R.id.submit);

 bt1.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 if(ed1.getText().toString()!=null) {
 try{
 processResponse(
 searchRequest(ed1.getText().toString()));
 } catch(Exception e) {
 Log.v("Exception Google search",
 "Exception:"+e.getMessage());
 }
 }
 ed1.setText("");
 }
 });
 }

 public String searchRequest(String searchString)
 throws MalformedURLException, IOException {
 String newFeed=url+searchString;
 StringBuilder response = new StringBuilder();
 Log.v("gsearch","gsearch url:"+newFeed);
 URL url = new URL(newFeed);

 HttpURLConnection httpconn
 = (HttpURLConnection) url.openConnection();

10_0321897534_Ch10.indd 267 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 266 Achorn International 06/12/2013 02:38AM

Using Web Content 267

 if(httpconn.getResponseCode()==HttpURLConnection.HTTP_OK) {
 BufferedReader input = new BufferedReader(
 new InputStreamReader(httpconn.getInputStream()),
 8192);
 String strLine = null;
 while ((strLine = input.readLine()) != null) {
 response.append(strLine);
 }
 input.close();
 }
 return response.toString();
 }

 public void processResponse(String resp) throws IllegalStateException,
 IOException, JSONException, NoSuchAlgorithmException {
 StringBuilder sb = new StringBuilder();
 Log.v("gsearch","gsearch result:"+resp);
 JSONObject mResponseObject = new JSONObject(resp);
 JSONObject responObject
 = mResponseObject.getJSONObject("responseData");
 JSONArray array = responObject.getJSONArray("results");
 Log.v("gsearch","number of results:"+array.length());
 for(int i = 0; i<array.length(); i++) {
 Log.v("result",i+"] "+array.get(i).toString());
 String title = array.getJSONObject(i).getString("title");
 String urllink = array.getJSONObject(i)
 .getString("visibleUrl");
 sb.append(title);
 sb.append("\n");
 sb.append(urllink);
 sb.append("\n");
 }
 tv1.setText(sb.toString());
 }
}

The detailed mechanism used requires an understanding of the incoming JSON
data structure. In this case, the Google REST API provides all the result data under
the results JSONArray. Figure 10.4 shows the search result for NBA.

Note that this recipe will run on Android projects only prior to API Level 11. This
is due to running network requests on the main thread. The next recipe, “Using HTTP
POST,” uses an AsyncTask to fix the NetworkOnMainThreadException that is thrown.

Recipe: Using HTTP POST
Sometimes, raw binary data needs to be retrieved from the Internet such as an image,
video, or audio file. This can be achieved with the HTTP POST protocol by using
setRequestMethod(), such as:

httpconn.setRequestMethod(POST);

10_0321897534_Ch10.indd 267 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 266 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking268

Accessing data through the Internet can be time-consuming and unpredictable.
Therefore, a separate thread should be spawned anytime network data is required.

In addition to the methods shown in Chapter 3, “Threads, Services, Receivers,
and Alerts,” there is a built-in Android class called AsyncTask that allows background
operations to be performed and publishes results on the UI thread without needing to
manipulate threads or handlers. So, the POST method can be implemented asynchro-
nously with the following code:

private class MyGoogleSearch extends AsyncTask<String, Integer, String> {

 protected String doInBackground(String... searchKey) {

 String key = searchKey[0];

 try {

 return searchRequest(key);

 } catch(Exception e) {

 Log.v("Exception Google search",

 "Exception:"+e.getMessage());

 return "";

 }

 }

Figure 10.4 The search result from the Google
REST API query

10_0321897534_Ch10.indd 269 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 268 Achorn International 06/12/2013 02:38AM

Using Web Content 269

 protected void onPostExecute(String result) {

 try {

 processResponse(result);

 } catch(Exception e) {

 Log.v("Exception Google search",

 "Exception:"+e.getMessage());

 }

 }

 }

This excerpt can be added to the end of the GoogleSearch.java activity in List-
ing 10.8. It provides the same result with one additional change to the code inside the
button OnClickListener to

new MyGoogleSearch().execute(ed1.getText().toString());

Recipe: Using WebViews
WebViews are useful for displaying content that may change on a semiregular basis, or
for data that may need to be changed without having to force an update to the applica-
tion. WebViews can also be used to allow web applications access to some client-side
features of the Android system such as using the toast messaging system.

To add a WebView to an application, the following should be added to the layout
XML:

<WebView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/webview"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

The following permission must also be added to the application manifest:

<uses-permission android:name="android.permission.INTERNET" />

To create a simple page without any user interaction, add the following to the
onCreate() method of the main activity:

WebView myWebView = (WebView) findViewById(R.id.webview);

myWebView.loadUrl("http://www.example.com/");

In order to enable JavaScript on the page inside of the WebView, the WebSettings
must be changed. This can be done using the following:

WebSettings webSettings = myWebView.getSettings();

webSettings.setJavaScriptEnabled(true);

To trigger native methods from JavaScript, a class that can be used as an inter-
face needs to be created. Listing 10.9 shows an activity with all of the pieces put
together.

10_0321897534_Ch10.indd 269 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 268 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking270

Listing 10.9 src/com/cookbook/viewtoaweb/MainActivity.java

package com.cookbook.viewtoaweb;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.webkit.JavascriptInterface;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.widget.Toast;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 WebView myWebView = (WebView) findViewById(R.id.webview);
 WebSettings webSettings = myWebView.getSettings();
 webSettings.setJavaScriptEnabled(true);
 myWebView.addJavascriptInterface(new WebAppInterface(this), "Android");
 myWebView.loadUrl("http://www.devcannon.com/androidcookbook/chapter10/webview/");
 }

 public class WebAppInterface {
 Context context;

 WebAppInterface(Context c) {
 context = c;
 }

 @JavascriptInterface
 public void triggerToast(String toast) {
 Toast.makeText(context, toast, Toast.LENGTH_SHORT).show();
 }
 }
}

The following HTML is used to trigger the code from Listing 10.9:

<input type="text" name="toastText" id="toastText" />

<button id="btn" onClick="androidToast()">Toast it</button>

The following JavaScript is used to trigger the code:

function androidToast() {

 var input = document.getElementById('toastText');

 Android.triggerToast(input.value);

}

Figure 10.5 displays the WebView with a toast that was launched from the page
being viewed.

10_0321897534_Ch10.indd 271 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 270 Achorn International 06/12/2013 02:38AM

Using Web Content 271

Recipe: Parsing JSON
JSON is a very popular format for data transfer, especially when used with web
services. Android has included a set of classes in the org.json package that can be
imported into code to allow manipulation of JSON data.

To get started parsing, first a JSON object needs to be created; this can be done like
so:

private JSONObject jsonObject;

Some data in JSON format is also needed. The following creates a string containing
some JSON data:

private String jsonString =

"{\"item\":{\"name\":\"myName\",\"numbers\":[{\"id\":\"1\"},{\"id\":\"2\"}]}}";

Because a string is not a JSON object, one will need to be created that contains the
value of the string. This can be done like so:

jsonObject = new JSONObject(jsonString);

Now that there is an object to manipulate, data can be gotten from it. If the
getString() method were used to pull data from an “object” that is inside the

Figure 10.5 Triggering a toast message from a
page inside a WebView

10_0321897534_Ch10.indd 271 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 270 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking272

jsonObject, a JSONException would be thrown. This is because it is not a string.
To pull a specific value, another object must be set up that contains the desired string,
like so:

JSONObject itemObject = jsonObject.getJSONObject("item");

The value of "name" can be gotten by using the following:

String jsonName = itemObject.getString("name");

A loop may be used to get the information stored in the "numbers" section of
jsonObject. This can be done by creating a JSONArray object and looping through it,
as follows:

JSONArray numbersArray = itemObject.getJSONArray("numbers");

for(int i = 0;i < numbersArray.length();i++){

 numbersArray.getJSONObject(i).getString("id");

}

Listing 10.10 shows how parsing may be put together inside an activity and dis-
played in a TextView. Note that when pulling JSON data from a remote location, such
as through a web service, a separate class or AsyncTask must be used so that the main
UI thread is not blocked.

Listing 10.10 src/com/cookbook/parsejson/MainActivity.java

package com.cookbook.parsejson;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {

 TextView tv;
 private JSONObject jsonObject;
 private String jsonString =
"{\"item\":{\"name\":\"myName\",\"numbers\":[{\"id\":\"1\"},{\"id\":\"2\"}]}}";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 tv = (TextView) findViewById(R.id.tv_main);

 try {
 jsonObject = new JSONObject(jsonString);
 JSONObject itemObject = jsonObject.getJSONObject("item");
 String jsonName = "name: " +itemObject.getString("name");

10_0321897534_Ch10.indd 273 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 272 Achorn International 06/12/2013 02:38AM

Using Web Content 273

 JSONArray numbersArray = itemObject.getJSONArray("numbers");
 String jsonIds = "";

 for(int i = 0;i < numbersArray.length();i++){
 jsonIds += "id: " +
 numbersArray.getJSONObject(i).getString("id").toString() + "\n";
 }

 tv.setText(jsonName+"\n"+jsonIds);

 } catch (JSONException e) {
 e.printStackTrace();
 }
 }

}

Recipe: Parsing XML
The official Android documentation recommends the use of XmlPullParser for pars-
ing XML data. You may use any method you prefer to get XML data; however, for
this recipe, a simple one-node XML string will be used. Listing 10.11 shows an activity
that will display the process of reading the XML document, including the node and
text value, into a TextView.

The XML data is processed one line at a time, with the next() method moving
to the next line. In order to parse for specific nodes inside the XML data, an if else
statement must be added for them in the while loop.

Listing 10.11 src/com/cookbook/parsexml/MainActivity.java

package com.cookbook.parsexml;

import java.io.IOException;
import java.io.StringReader;

import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;
import org.xmlpull.v1.XmlPullParserFactory;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {

 TextView tv;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 tv = (TextView) findViewById(R.id.tv_main);

10_0321897534_Ch10.indd 273 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 272 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking274

 String xmlOut = "";
 XmlPullParserFactory factory = null;
 try {
 factory = XmlPullParserFactory.newInstance();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 factory.setNamespaceAware(true);
 XmlPullParser xpp = null;
 try {
 xpp = factory.newPullParser();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }

 try {
 xpp.setInput(new StringReader("<node>This is some text</node>"));
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }

 int eventType = 0;
 try {
 eventType = xpp.getEventType();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }

 while (eventType != XmlPullParser.END_DOCUMENT) {
 if(eventType == XmlPullParser.START_DOCUMENT) {
 xmlOut += "Start of XML Document";
 } else if (eventType == XmlPullParser.START_TAG) {
 xmlOut += "\nStart of tag: "+xpp.getName();
 } else if (eventType == XmlPullParser.END_TAG) {
 xmlOut += "\nEnd of tag: "+xpp.getName();
 } else if (eventType == XmlPullParser.TEXT) {
 xmlOut += "\nText: "+xpp.getText();
 }
 try {
 eventType = xpp.next();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 xmlOut += "\nEnd of XML Document";

 tv.setText(xmlOut);
 }

}

10_0321897534_Ch10.indd 275 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 274 Achorn International 06/12/2013 02:38AM

Social Networking 275

Social Networking
Twitter is a social networking and microblogging service that enables its users to send
and read messages known as tweets. Twitter is described as the “SMS of the Internet,”
and indeed, each tweet cannot exceed 140 characters (although links are converted to
shorter links and not counted against the 140-character limit). Twitter users can follow
other people’s tweets or be followed by others.

Recipe: Reading the Owner Profile
Starting with API Level 14 (Ice Cream Sandwich), developers are able to access the
owner profile. This is a special contact that stores RawContact data. To read the owner
profile of a device, the following permission must be added to the AndroidManifest.
xml file:

<uses-permission android:name="android.permission.READ_PROFILE" />

The following enables access to profile data:

// sets the columns to retrieve for the owner profile - RawContact data

String[] mProjection = new String[]

 {

 Profile._ID,

 Profile.DISPLAY_NAME_PRIMARY,

 Profile.LOOKUP_KEY,

 Profile.PHOTO_THUMBNAIL_URI

 };

// retrieves the profile from the Contacts Provider

Cursor mProfileCursor =

 getContentResolver().query(Profile.CONTENT_URI,mProjection,null,null,null);

// Set the cursor to the first entry (instead of -1)

boolean b = mProfileCursor.moveToFirst();

for(int i = 0, length = mProjection.length;i < length;i++) {

 System.out.println("*** " +

 mProfileCursor.getString(mProfileCursor.getColumnIndex(mProjection[i])));

}

Note that where System.out.println() is used is the place where logic can be
inserted to process the profile information. It is also worth mentioning that the output
will be shown in LogCat, even though it is not a method from Log.*.

Recipe: Integrating with Twitter
Some third-party libraries exist to assist in integrating Twitter into Android applica-
tions (from http://dev.twitter.com/pages/libraries#java):

10_0321897534_Ch10.indd 275 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 274 Achorn International 06/12/2013 02:38AM

http://dev.twitter.com/pages/libraries#java

Chapter 10 Networking276

nn Twitter4J by Yusuke Yamamoto—An open source, Mavenized, and Google App
Engine-safe Java library for the Twitter API, released under the BSD license

nn Scribe by Pablo Fernandez—OAuth module for Java, Mavenized, and works with
Facebook, LinkedIn, Twitter, Evernote, Vimeo, and more

For this recipe, the Twitter4J library by Yusuke Yamamoto is used, which has doc-
umentation at http://twitter4j.org/en/javadoc/overview-summary.html. The recipe
enables users to log in to Twitter by using OAuth and make a tweet.

Twitter has made changes to its authentication system that now require applications
to register in order to access the public feed. To get started, an application has to be
registered at https://dev.twitter.com/apps/new. During the registration process, OAuth
public and private keys will be generated. They will be used in this recipe, so take
note of them.

As this application will be accessing the Internet, it will need the INTERNET per-
mission. There will also be a check to make sure that the device is connected to a
network, so the ACCESS_NETWORK_STATE permission is also required. This is done by
editing the AndroidManifest.xml file, as shown in Listing 10.12.

Listing 10.12 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cookbook.tcookbook"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="9"
 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.cookbook.tcookbook.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="oauth" android:host="tcookbook"/>

10_0321897534_Ch10.indd 277 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 276 Achorn International 06/12/2013 02:38AM

http://twitter4j.org/en/javadoc/overview-summary.html
https://dev.twitter.com/apps/new

Social Networking 277

 </intent-filter>
 </activity>
 </application>
</manifest>

For the layout of the application, everything will be put into the activity_main.
xml file. This file will contain a button that is visible on page load and then several
buttons, TextViews, and an EditText widget. Note that some of these will be hidden
with android:visibility="gone". Listing 10.13 shows the contents of the
activity_main.xml file.

Listing 10.13 res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 tools:context=".MainActivity" >

 <Button android:id="@+id/btnLoginTwitter"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Login with OAuth"
 android:layout_marginLeft="10dip"
 android:layout_marginRight="10dip"
 android:layout_marginTop="30dip"/>

 <TextView android:id="@+id/lblUserName"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="10dip"
 android:layout_marginTop="30dip"/>

 <TextView android:id="@+id/lblUpdate"
 android:text="Enter Your Tweet:"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="10dip"
 android:layout_marginRight="10dip"
 android:visibility="gone"/>

 <EditText android:id="@+id/txtUpdateStatus"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dip"
 android:visibility="gone"/>

 <Button android:id="@+id/btnUpdateStatus"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Tweet it!"
 android:layout_marginLeft="10dip"

10_0321897534_Ch10.indd 277 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 276 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking278

 android:layout_marginRight="10dip"
 android:visibility="gone"/>

 <Button android:id="@+id/btnLogoutTwitter"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Logout/invalidate OAuth"
 android:layout_marginLeft="10dip"
 android:layout_marginRight="10dip"
 android:layout_marginTop="50dip"
 android:visibility="gone"/>
</LinearLayout>

One activity is used in the application, and two classes are used: one to help with
connection detection and one to display an alert message when the wrong application
OAuth keys are used.

In the main activity, several constants are set up for use. These include the OAuth
Consumer key and Consumer secret. A connectivity check is run to make sure that
the user can reach Twitter. Several OnClickListener classes are also registered to trig-
ger logic such as login, logout, and update when clicked.

As Twitter handles authentication for the user, the information passed back is
saved in application preferences and is checked again when the user attempts to log
in to the application. An AsyncTask is also used to move any tweets made to a back-
ground thread.

Listing 10.14 shows the contents of the activity in full.

Listing 10.14 src/com/cookbook/tcookbook/MainActivity.java

package com.cookbook.tcookbook;

import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import twitter4j.User;
import twitter4j.auth.AccessToken;
import twitter4j.auth.RequestToken;
import twitter4j.conf.Configuration;
import twitter4j.conf.ConfigurationBuilder;
import android.app.Activity;
import android.app.ProgressDialog;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.content.pm.ActivityInfo;
import android.net.Uri;
import android.os.AsyncTask;
import android.os.Build;
import android.os.Bundle;
import android.os.StrictMode;
import android.text.Html;
import android.util.Log;

10_0321897534_Ch10.indd 279 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 278 Achorn International 06/12/2013 02:38AM

Social Networking 279

import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends Activity {

 // Replace the following value with the Consumer key
 static String TWITTER_CONSUMER_KEY = "01189998819991197253";
 // Replace the following value with the Consumer secret
 static String TWITTER_CONSUMER_SECRET =
 "616C6C20796F75722062617365206172652062656C6F6E6720746F207573";

 static String PREFERENCE_NAME = "twitter _ oauth";
 static final String PREF_KEY_OAUTH_TOKEN = "oauth_token";
 static final String PREF_KEY_OAUTH_SECRET = "oauth_token_secret";
 static final String PREF_KEY_TWITTER_LOGIN = "isTwitterLoggedIn";

 static final String TWITTER_CALLBACK_URL = "oauth://tcookbook";

 static final String URL_TWITTER_AUTH = "auth_url";
 static final String URL_TWITTER_OAUTH_VERIFIER = "oauth_verifier";
 static final String URL_TWITTER_OAUTH_TOKEN = "oauth_token";

 Button btnLoginTwitter;
 Button btnUpdateStatus;
 Button btnLogoutTwitter;
 EditText txtUpdate;
 TextView lblUpdate;
 TextView lblUserName;

 ProgressDialog pDialog;

 private static Twitter twitter;
 private static RequestToken requestToken;

 private static SharedPreferences mSharedPreferences;

 private ConnectionDetector cd;

 AlertDialogManager adm = new AlertDialogManager();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // used for Android 2.3+
 if (Build.VERSION.SDK_INT > Build.VERSION_CODES_GINGERBREAD) {
 StrictMode.ThreadPolicy policy =
 new StrictMode.ThreadPolicy.Builder().permitAll().build();
 StrictMode.setThreadPolicy(policy);
 }

 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

 cd = new ConnectionDetector(getApplicationContext());

10_0321897534_Ch10.indd 279 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 278 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking280

 if (!cd.isConnectingToInternet()) {
 adm.showAlertDialog(MainActivity.this, "Internet Connection Error",
 "Please connect to working Internet connection", false);
 return;
 }

 if(TWITTER_CONSUMER_KEY.trim().length() == 0 ||
 TWITTER_CONSUMER_SECRET.trim().length() == 0){
 adm.showAlertDialog(MainActivity.this,
 "Twitter OAuth tokens",
 "Please set your Twitter OAuth tokens first!", false);
 return;
 }

 btnLoginTwitter = (Button) findViewById(R.id.btnLoginTwitter);
 btnUpdateStatus = (Button) findViewById(R.id.btnUpdateStatus);
 btnLogoutTwitter = (Button) findViewById(R.id.btnLogoutTwitter);
 txtUpdate = (EditText) findViewById(R.id.txtUpdateStatus);
 lblUpdate = (TextView) findViewById(R.id.lblUpdate);
 lblUserName = (TextView) findViewById(R.id.lblUserName);

 mSharedPreferences = getApplicationContext().getSharedPreferences("MyPref", 0);

 btnLoginTwitter.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 // Call login Twitter function
 loginToTwitter();
 }
 });

 btnUpdateStatus.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 String status = txtUpdate.getText().toString();

 if (status.trim().length() > 0) {
 new updateTwitterStatus().execute(status);
 } else {
 Toast.makeText(getApplicationContext(),
 "Please enter status message", Toast.LENGTH_SHORT).show();
 }
 }
 });

 btnLogoutTwitter.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 // Call logout Twitter function
 logoutFromTwitter();
 }
 });

 if (!isTwitterLoggedInAlready()) {
 Uri uri = getIntent().getData();

10_0321897534_Ch10.indd 281 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 280 Achorn International 06/12/2013 02:38AM

Social Networking 281

 if (uri != null && uri.toString().startsWith(TWITTER_CALLBACK_URL)) {
 String verifier = uri.getQueryParameter(URL_TWITTER_OAUTH_VERIFIER);

 try {
 AccessToken accessToken = twitter.getOAuthAccessToken(requestToken,
➥verifier);

 Editor e = mSharedPreferences.edit();

 e.putString(PREF_KEY_OAUTH_TOKEN, accessToken.getToken());
 e.putString(PREF_KEY_OAUTH_SECRET,accessToken.getTokenSecret());
 e.putBoolean(PREF_KEY_TWITTER_LOGIN, true);
 e.commit();

// Log.e("Twitter OAuth Token", "> " + accessToken.getToken());

 btnLoginTwitter.setVisibility(View.GONE);

 lblUpdate.setVisibility(View.VISIBLE);
 txtUpdate.setVisibility(View.VISIBLE);
 btnUpdateStatus.setVisibility(View.VISIBLE);
 btnLogoutTwitter.setVisibility(View.VISIBLE);

 long userID = accessToken.getUserId();
 User user = twitter.showUser(userID);
 String username = user.getName();

 lblUserName.setText(Html.fromHtml("Welcome " + username + ""));
 } catch (Exception e) {
 Log.e("***Twitter Login Error: ",e.getMessage());
 }
 }
 }

 }

 private void loginToTwitter() {
 if (!isTwitterLoggedInAlready()) {
 ConfigurationBuilder builder = new ConfigurationBuilder();
 builder.setOAuthConsumerKey(TWITTER_CONSUMER_KEY);
 builder.setOAuthConsumerSecret(TWITTER_CONSUMER_SECRET);
 Configuration configuration = builder.build();

 TwitterFactory factory = new TwitterFactory(configuration);
 twitter = factory.getInstance();

 if(!(Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB)) {
 try {
 requestToken = twitter.getOAuthRequestToken(TWITTER_CALLBACK_URL);
 this.startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(requestToken.getAuthenticationURL())));
 } catch (TwitterException e) {
 e.printStackTrace();
 }
 } else {
 new Thread(new Runnable() {

10_0321897534_Ch10.indd 281 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 280 Achorn International 06/12/2013 02:38AM

Chapter 10 Networking282

 public void run() {
 try {
 requestToken = twitter.getOAuthRequestToken(TWITTER_CALLBACK_URL);
 MainActivity.this.startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(requestToken.getAuthenticationURL())));
 } catch (TwitterException e) {
 e.printStackTrace();
 }
 }
 }).start();
 }
 } else {
 Toast.makeText(getApplicationContext(),"Already logged into Twitter",
 Toast.LENGTH_LONG).show();
 }
 }

 class updateTwitterStatus extends AsyncTask<String, String, String> {
 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 pDialog = new ProgressDialog(MainActivity.this);
 pDialog.setMessage("Updating to Twitter...");
 pDialog.setIndeterminate(false);
 pDialog.setCancelable(false);
 pDialog.show();
 }

 protected String doInBackground(String... args) {
// Log.d("*** Text Value of Tweet: ",args[0]);
 String status = args[0];
 try {
 ConfigurationBuilder builder = new ConfigurationBuilder();
 builder.setOAuthConsumerKey(TWITTER_CONSUMER_KEY);
 builder.setOAuthConsumerSecret(TWITTER_CONSUMER_SECRET);

 String access_token =
 mSharedPreferences.getString(PREF_KEY_OAUTH_TOKEN, "");
 String access_token_secret =
 mSharedPreferences.getString(PREF_KEY_OAUTH_SECRET, "");

 AccessToken accessToken =
 new AccessToken(access_token, access_token_secret);
 Twitter twitter =
 new TwitterFactory(builder.build()).getInstance(accessToken);

 twitter4j.Status response = twitter.updateStatus(status);

// Log.d("*** Update Status: ",response.getText());
 } catch (TwitterException e) {
 Log.d("*** Twitter Update Error: ", e.getMessage());
 }
 return null;
 }

10_0321897534_Ch10.indd 283 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 282 Achorn International 06/12/2013 02:38AM

Social Networking 283

 protected void onPostExecute(String file_url) {
 pDialog.dismiss();
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(getApplicationContext(),
 "Status tweeted successfully", Toast.LENGTH_SHORT).show();
 txtUpdate.setText("");
 }
 });
 }

 }

 private void logoutFromTwitter() {
 Editor e = mSharedPreferences.edit();
 e.remove(PREF_KEY_OAUTH_TOKEN);
 e.remove(PREF_KEY_OAUTH_SECRET);
 e.remove(PREF_KEY_TWITTER_LOGIN);
 e.commit();

 btnLogoutTwitter.setVisibility(View.GONE);
 btnUpdateStatus.setVisibility(View.GONE);
 txtUpdate.setVisibility(View.GONE);
 lblUpdate.setVisibility(View.GONE);
 lblUserName.setText("");
 lblUserName.setVisibility(View.GONE);

 btnLoginTwitter.setVisibility(View.VISIBLE);
 }

 private boolean isTwitterLoggedInAlready() {
 return mSharedPreferences.getBoolean(PREF_KEY_TWITTER_LOGIN, false);
 }

 protected void onResume() {
 super.onResume();
 }

}

More information on using Twitter4j can be found in the following resources:
nn www.androidhive.info/2012/09/android-twitter-oauth-connect-tutorial/ by

Ravi Tamada
nn http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth

-android/ by Do-it-yourself Android
nn http://davidcrowley.me/?p=410 by David Crowley
nn https://tutsplus.com/tutorials/?q=true&filter_topic=90 by Sue Smith
nn http://blog.blundell-apps.com/sending-a-tweet/ by Blundell

10_0321897534_Ch10.indd 283 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 282 Achorn International 06/12/2013 02:38AM

http://www.androidhive.info/2012/09/android-twitter-oauth-connect-tutorial/
http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth-android/
http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth-android/
http://davidcrowley.me/?p=410
https://tutsplus.com/tutorials/?q=true&filter_topic=90
http://blog.blundell-apps.com/sending-a-tweet/

Chapter 10 Networking284

Recipe: Integrating with Facebook
Facebook has changed rapidly in the last couple of years, and it remains one of the top
social networking sites. One thing the Facebook team has done recently is to clean up
their documentation to help developers. The official documentation can be found at
https://developers.facebook.com/docs/getting-started/facebook-sdk-for-android/3.0/.

To get started with Facebook development, first download the Facebook SDK
and the Facebook android package (APK) from https://developers.facebook.com
/resources/facebook-android-sdk-3.0.zip. The APK is provided as a means of authen-
tication without having to use a WebView. If the Facebook application is already
installed on the phone, the APK file need not be installed.

Next, add the Facebook SDK as a library project to the Eclipse installation. This
is done by choosing File → Import and then General → Existing Projects into
Workspace. Note that Facebook warns against using the “Copy projects into work-
space” options, as this may build incorrect filesystem paths and cause the SDK to func-
tion incorrectly.

After the Facebook SDK has been imported, the sample projects are available for
experimentation. Note that most of the projects require the generation of a key hash
that will be used to sign applications and that developers can add to their Facebook
developer profile for quick SDK project access.

The key is generated by using the keytool utility that comes with Java. Open a
terminal or command prompt and type the following to generate the key:

OS X:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore |
[ccc]openssl sha1 -binary | openssl base64

Windows:

keytool -exportcert -alias androiddebugkey -keystore %HOMEPATH%\.android\debug.
keystore [ccc]| openssl sha1 -binary | openssl base64

The command should be typed in a single line, although terminals or command
prompt windows may show it breaking into multiple lines. When the command is
executed, a password prompt should appear. The password to enter is android. After
the key has been generated successfully, it will be displayed. Note that if a “'keytool'
is not recognized as an internal or external command . . .” error is
generated, move to the bin directory of the JRE installation directory and try again.
If there is a similar error for “openssl,” download OpenSSL from http://code.google
.com/p/openssl-for-windows/. If there are still errors, make sure that the bin directo-
ries have been added to the system path or that the exact directories are being used
instead of %HOMEPATH%.

If more than one computer will be used for development, a hash must be generated
for each one and added to the developer profile at https://developers.facebook.com/.

Once that is done, dig into the sample applications and log in with them. The
showcase example project, called HelloFacebookSample, demonstrates how to access
a profile, update a status, and even upload photos.

10_0321897534_Ch10.indd 285 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 284 Achorn International 06/12/2013 02:38AM

https://developers.facebook.com/docs/getting-started/facebook-sdk-for-android/3.0/
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
http://code.google.com/p/openssl-for-windows/
http://code.google.com/p/openssl-for-windows/
https://developers.facebook.com/

Social Networking 285

The last step in creating an application that integrates with Facebook is to create a
Facebook app that will then be tied to the Android application by using a generated
key hash. This will take care of integration and allow users to authenticate themselves
while using the application.

The developer site gives a terrific breakdown of all the pieces needed to get started.
Be sure to read the official Scrumptious tutorial, which can be found at http://
developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/.

10_0321897534_Ch10.indd 285 Achorn International 06/12/2013 02:38AM10_0321897534_Ch10.indd 284 Achorn International 06/12/2013 02:38AM

http://developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/
http://developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/

This page intentionally left blank

A
AAC ELD (enhanced low-delay AAC), 200

AAC LC audio format, 200

Accelerometers

accessibility of, 221

determining device rotational attitude,
227–230

screen orientation and, 34

three-axis accelerometers, 9–10, 227–
230

Accessibility

checklist for, 189–190

TalkBack and, 189–190

using features of, 189–191

Accessory mode, USB devices and, 248–249

Action bars

creating, 154–156

example on device running Gingerbread,
158–159

example on phone running Jelly Bean,
157

example on tablet running Ice Cream
Sandwich, 156

ActionBarSherlock

bridging API levels prior to ver. 11, 154,
156–159

using themes of, 158

Active-matrix organic LED (AMOLED) displays, 4, 7

Activities

creating runnable activities, 55–56

creating with Eclipse IDE, 22–24

fragments of, 35–36

multiple activities. see Multiple activities

restoring activity information, 34–35

saving relevant information, 34–35

using loaders, 89–91

Activity lifecycle functions

example of service lifecycle flowchart, 71

flowchart, 32

forcing screen orientation, 34

forcing single task mode, 31–34

restoring activity information, 34–35

saving activity information, 34–35

using fragments, 35–36

using functions, 31

using NativeActivity, 366–369

ADB. see Android Debug Bridge (ADB)

ADK. see Android Accessory Development Kit
(ADK)

AdMob, 18, 19

ADT. see Android Development Tools (ADT)

ADT Bundle, 12–13, 371, 377

AIDL. see Android Interface Definition Language
(AIDL)

AK8976A package (AKM), 9

Alert dialog boxes, for user options, 64–65

Alerts

big-picture style notification, 67–68

dialog boxes for user options, 64–65

example of message alert, 51

inbox-style notification, 69

proximity alerts and Google Maps, 336

Index

21_0321897534_Index.indd 417 Achorn International 06/12/2013 03:31AM

418 Alerts

Alerts (continued)

showing status bar pending notifications,
65–69

using Toast to show brief screen message,
63–64

Amazon, 6

Amazon Appstore, 6, 20

Amazon MP3, 6

Amazon Video, 6

AMOLED displays, 4, 7

AMR-NB audio format, 200

Android, Inc., 1

Android Accessory Development Kit (ADK), 249

Android Asset Packaging Tool (aapt), 26

Android Beam, 243, 267, 414, 438

Android Debug Bridge (ADB)

accessing devices with, 15–16

starting and stopping, 380–381

using over wireless connection, 249

Android Development Tools (ADT)

creating test suites, 2, 371

downloading ADT Bundle, 12–13

using lint tool with, 388–390

Android Interface Definition Language (AIDL)

bridging between applications, 94

data types supported by, 94

example of output, 97

implementing remote procedure call,
94–95

RPC between processes with different
user IDs, 99

Android Native Development Kit (NDK)

activity lifecycle, 366–369

app glue interfaces, 366–369

building native library, 363

downloading, 361

example of output, 364

initial steps, 361–362

type mapping between Java and Native,
362

using Java Native Interface, 362–364

using NativeActivity, 364–369

version 4, GDB debugging files, 363

Android operating system (OS), overview

application design, 11

aspects of SDK, 12–16

devices, 7–8

dichotomies of, 2

evolution of, 1–2

features of, 10–11

Google Play, 16–20

hardware differences, 6–10

maintaining forward compatibility, 11–12

robustness, 12

support packages, 401–408

types of devices, 2–6

Android OS Emulator Controls

within DDMS, 380

listing of, 15

Android OS releases, listing of

Cupcake (Android OS 1.5, API
Level 3, released 4/30/09), 411

Donut (Android OS 1.6, API Level 4,
released 9/15/09), 411

Eclair (Android OS 2.0, API Level 5,
released 10/26/09), 412

Froyo (Android OS 2.2, API Level 8,
released 5/20/10), 412

Gingerbread (Android OS 2.3, API Level
9, released 12/6/10), 412–413

Honeycomb (Android OS 3.0, API Level
11, released 2/22/11), 413

Ice Cream Sandwich (Android OS 4.0,
API Level 14, released 10/19/11),
413–414

Jelly Bean (Android OS 4.1, API Level 16,
released 7/9/12), 414–415

Android package, manifest file and, 26–28

Android Support Library, 156–157, 401–408

Android Virtual Devices (AVD)

emulator functions, 15

managing, 325, 395

ANDROID-MK.HTML file, 363

21_0321897534_Index.indd 419 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 418 Achorn International 06/12/2013 03:31AM

419Attributes

Android.support.v4.accessibilityservice package,
401

Android.support.v4.app package, 402–403

Android.support.v4.content package, 404

Android.support.v4.content.pm package, 404

Android.support.v4.database package, 404

Android.support.v4.net package, 405

Android.support.v4.os package, 405

Android.support.v4.util package, 405

Android.support.v4.view package, 405–407

Android.support.v4.view.accessibility package, 407

Android.support.v4.widget package, 408

Animation

advanced user interface techniques,
183–189

creating mail animation, 184–186

resource directories, 109

using property animations, 187–189

ANR-WB audio format, 200

Apache Ant, 30, 409–410

Apache Continuum, 410

Apache License, 294–297, 409–410

Apache Maven, 156, 409–410

API key, 349, 358

App glue interfaces, 366–369

App Widgets. see also Standard graphical widgets

and broadcast receivers, 85–87

creating text display on home screen,
85–87

Google’s design guidelines for, 11

minimum update time, 85

multiprocessing and, 10

Views and ViewGroups and, 112–113

AppBrain, 20

Apple, Inc., 1

Application basics

activity lifecycle functions, 31–36

alerts, 63–69

Android packages and manifest file,
26–28

App Widgets, 85–87

autogenerated content, 25–26

broadcast receivers, 82–87

components of application, 21, 22

creating projects and activities, 22–24

current context in anonymous inner class,
39

directory structure, 24–26

implementing list of choices, 44–45

implicit intents for creating activities,
45–46

launching activity for result using speech-
to-text functionality, 42–44

launching additional activity from event,
38–41, 42

multiple activities, 36–49

overview of, 21–22

passing primitive data types between
activities, 47–49

renaming parts of application, 28–29

services, 69–82

threads, 51–58

using buttons and TextView, 37–38

using library projects, 29–31

Application design, 11

Application settings. see Settings

Archos, 5–7

Asahi Kasei Microsystems (AKM), 9

Asus, 6

AsyncTask

advanced threading techniques,
91–93

background operations and, 268–269

pulling JSON data from remote locations,
272

sending push messages with, 358–360

using for asynchronous processing,
313–314

Attributes

colors, 110–111

dimensions, 110

21_0321897534_Index.indd 419 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 418 Achorn International 06/12/2013 03:31AM

420 Attributes

Attributes (continued)

EditText and text manipulation, 124,
127–128

fonts, 110, 124–127

string, 110

TextView and text manipulation, 125

Audio

adding media and updating paths, 217

choosing and playing back audio files,
207–209

frameworks for, 206

manipulating raw audio, 211–215

multimedia techniques, 206–217

recording audio files, 210

registering files to system, 217

supported media types (Android 4.1),
200–201

using HTTP POST to retrieve web data,
267–269

using sound resources efficiently, 215–
217

Auto-capitalization, text entry and, 129

Autogenerated content, project structure and,
25–26

Automobiles, Android systems and, 6

Autoresponse SMS, 257–263

AVD. see Android Virtual Devices (AVD)

AVD Manager, 13–15, 325, 395

B
BACK key, KeyEvent and, 145–148

Backward compatibility, 12, 147

The Baidu App store, 20

Bamboo (CI system), 410

Battery power

broadcast receivers and, 82

customer reviews and, 17

Little Fluffy Location Library and,
337–341

of Motorola phones, 5

multiprocessing and, 10

updating of widgets and, 85–87

WakeLocks and, 74

Berne Convention, 16

Big-picture style notification alert, 67–68

Billing integration. see In-app billing (Google Play)

BitMapFactory, 199, 202–205

Bluetooth (BT)

accessing wireless networks, 241–242

activating, 237

checking for device connectivity to,
251–253

discovering available devices, 237–238

opening sockets, 238–241

overview of API functionality and
permissions, 236

pairing with bonded Bluetooth devices,
238

for smartphones, 3

using device vibration, 241

BMP image format, 200

Bosch Sensortec, 10

Broadcast receivers

App Widgets, 85–87

checking status of network connectivity,
253–255

creating App Widgets and, 85–87

features of, 82–83

Little Fluffy Location Library
notifications, 338–340

push messages and, 351, 353

SMS functionality and, 257–263

starting service when camera button
pressed, 83–85

Browsers. see Web browsers

Button press

launching activity for result using speech-
to-text functionality, 42–44

as trigger event for multiple activities,
37–38

Buttons

aligned horizontally using LinearLayout,
116–119

21_0321897534_Index.indd 421 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 420 Achorn International 06/12/2013 03:31AM

421Custom views

customizing for custom views, 177–182

thumb buttons on seek bars, 141–143

using buttons and TextView, 37–38

using image buttons in table layout,
130–134

using property animations for, 187–189

using radio buttons, 130, 137–138

using toggle buttons, 136–137

widget, defined, 130

C
Calendar application, 191

Callback methods, 145–146. see also Event
handlers and event listeners

CallLog, 307

Camera key, KeyEvent and, 146–147

Cameras

customizing hardware interface, 222–226

hardware interface, 221–226

Capacitive touchscreen technology, 8

Capella Microsystems, Inc., 10

C/C++

building libraries using NDK, 361–370

integrating native C code with Java
Native Interface, 362–364

C/C++ Development Tooling (CDT) (Eclipse),
361–362

Check box widgets, 130, 134–137

Choices, creating list of, 44–45

CircleCI, 410

Client-side Bluetooth sockets, 238–241

Clock timers, 58–60

CMOS image sensor cameras, 3

Colors

possible values for UI attributes, 110–111

setting and changing text attributes,
124–127

Com.cookbook.data package

creating personal diary, 303–306

as separate SQLite database package,
297–300

using separate data storage, 300–303

Compatibility pack

adding support library to projects, 408

Android support packages, 401–408

Connectivity manager

determining network interfaces, 251–253

using to access wireless networks,
241–242

Contacts

fragments and screen displays, 191

types of objects for, 307

Content providers

accessing, 308, 310

creating custom content provider,
308–312

native Android databases as, 306–307

optional override methods, 308

unique URI, 308

using loaders, 89–91

Context menus

building of, 148–152

examples of, 153

Continuous integration (CI) systems

Apache Ant and, 30, 409–410

Apache Maven and, 156, 409–410

listing of common systems, 410

workflow steps, 409

Coordinated Universal Time (UTC) timestamp, 317

Copyright, 16–18

Countdown timers, 60–61

CruiseControl (CI system), 410

Cupcake (Android OS 1.5, API Level 3, released
4/30/09)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 411

mapping the SEARCH key, 159–161

CursorLoader, advanced threading techniques,
89–91

Custom views, 177–182

21_0321897534_Index.indd 421 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 420 Achorn International 06/12/2013 03:31AM

422 Daemon

D
Daemon, 381

Daemon threads, 57

Dalvik Debug Monitor Server (DDMS)

within Android Debug Monitor, 384

debugging through breakpoints, 380

example of Confirm Perspective Switch
dialog box, 381

example of control panel, 379

example of Debug perspective, 382

installing, 13

LogCat and, 381

tracking memory allocation, 12

types of debugging data, 380

using DDMS, 378–380

Data storage methods

content providers, 306–312

file saving and loading, 312–314

shared preferences, 287–297

SQLite Database, 297–306

Databases. see also SQLite Database

using AsyncTask, 91–93

using CursorLoader, 89–91

DataStorageTester, 310–311

DDMS. see Dalvik Debug Monitor Server (DDMS)

Debugging

Android SDK tools, 380–390

Android system tools, 390–393

Android test projects, 371–377

creating a test project, 371–373

Eclipse built-in tools, 377–380

leveraging Linux tools, 390–393

NDK-r4 and building native libraries, 363

populating unit tests on Android, 373–376

setting up GDB debugging, 391–393

starting and stopping Android Debug
Bridge, 380–381

using Hierarchy Viewer, 384–386

using lint, 388–390

using LogCat, 381, 383–384

using Robotium, 376–377

using TraceView, 386–388

when developing with USB device
plugged in, 249

Design, importance of, 11

Design guidelines (Google), 11

Developers

charging for applications, 18–19

in-field error reports from users to, 2

interactions with users via Google Play, 17

managing updates and reviews, 19

quality design, 11

Devices, running Android

common features, 2–3

hardware differences, 6–10

HTC models, 3, 5

Motorola models, 4, 5, 9

Samsung models, 4–6

tablets, 5–6, 7

Dialog fragments, 196–198

Diary entries, 300–306

Dimensions

controlling width/height of UI elements,
115–119

possible values for UI attributes, 110

of tablet screens, 112

Directory structure

autogenerated content, 25–26

user-generated files, 24–25

Donut (Android OS 1.6, API Level 4, released
9/15/09)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 411

mapping the SEARCH key, 159–161

DPAD, KeyEvent and, 146–147

Droid Incredible, 5

Droid RAZR MAXX, 4, 5

21_0321897534_Index.indd 423 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 422 Achorn International 06/12/2013 03:31AM

423EXtensible Markup Language (XML) files

Droid X, 5

Drop-down menus, 130, 138–140

E
Earth

gravitational field, 227–230

magnetic field, 227–230

Eclair (Android OS 2.0, API Level 5, released
10/26/09)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 412

introduction of separate callback method,
147

mapping the SEARCH key, 159–161

Eclipse, debugging processes

adding test case constructor, 374–375

with ADT Bundle installation, 371, 377

choosing test targets, 373, 374

creating test projects, 371–373

example of New Project wizard, 372

maintenance methods in testing, 375–376

naming test projects, 372, 373

specifying run configurations, 377–378

using DDMS, 378–380, 382

using lint, 388–390

using Robotium for executing tests,
376–377

Eclipse Integrated Development Environment (IDE)

adding Support Library, 156–157

with ADT Bundle installation, 13

Android SDK plugin for, 12

building layouts in graphical layout editor,
113–115

built-in debugging tools, 377–380

C/C++ Development Tooling (CDT),
361–362

creating projects and activities, 22–24

example of layout builder, 114

project directory structure, 25

renaming parts of application, 28–29

signing and publishing, 16

EditText

attributes, 127–128

autoresponse SMS and, 258–259

creating forms, 129–130

integrating with Twitter, 277–280

login page and, 291–293

RPCs and, 95–99

using HTTP GET and, 264–267

Emulator

ADB managing of, 381

changing rotation vector of, 397

configuring with SDK, 13–15

debugging and, 377–378, 380–381, 384,
390–391

drawbacks of, 221

as Eclipse plugin, 2

Emulator Controls, 15, 380

Hierarchy Viewer and, 115

using OpenIntents Sensor Simulator for
testing applications, 395–399

Enabled location providers, 320–321

End user license agreement (EULA), 16–17,
294–297

Engine control unit (ECU), 6

EULA (end user license agreement), 16–17,
294–297

Event handlers and event listeners

building menus, 148–152

creating action bars, 154–156

defining menus in XML, 152–154

intercepting physical key press, 145–
148

listening for fling gestures, 163–165

reacting to touch events, 161–163

using ActionBarSherlock, 154, 156–159

using multitouch, 165–168

using SEARCH key, 159–161

Evernote, 276

EXtensible Markup Language (XML) files. see XML

21_0321897534_Index.indd 423 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 422 Achorn International 06/12/2013 03:31AM

424 Facebook

F
Facebook

documentation, 284

integrating into Android applications,
284–285

Scribe and, 276

tutorial, 285

virtual goods sales, 18

Facebook Android PacKage (APK), 284

Fernandez, Pablo, 276

Filenames, formatting of, 93, 109, 185, 365

FLAC audio format, 201

Flash drives, 6

Flash memory, 3

Flat file manipulation

opening resource directories, 312–313

using AsyncTask for asynchronous
processing, 313–314

Fling gestures, 163–165

Fonts

attributes, 110, 124–127

dimensions attributes, 125

setting and changing in UI elements,
124–127

for web content, 264

Foreground services, activating, 77–80

Forms, creating and text manipulation, 129–130

Forward compatibility

rules for maintaining, 11–12

SDK versions and, 28

Fragments

of activities, 35–36

advanced user interface techniques,
191–198

displaying multiple fragments at once,
191–196

using bundles for serializing arguments,
36

using dialog fragments, 196–198

using loaders, 89–91

Frame-by-frame animation

advanced user interface techniques,
183–189

resource directories, 109

Free limited application versions (Google Play),
18–19

Froyo (Android OS 2.2, API Level 8, released
5/20/10)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 412

mapping the SEARCH key, 159–161

G
Galaxy Nexus, 4, 5

Galaxy Note, 5

Galaxy Note 2, 4, 5

Galaxy S3, 5

Galaxy Tab, 6

Gaming, 6, 315

GCM. see Google Cloud Messaging (GCM)

Geocoding, 324–325

Gesture Builder project, 168–171

Gestures

advanced user interface libraries and,
168–171

customizing, 10

using fling gestures, 163–165

Getjar, 20

GIF image format, 200

Gifting systems, 343

Gingerbread (Android OS 2.3, API Level 9,
released 12/6/10)

accessory mode, 248

adding notifications using Little Fluffy
Location Library, 339–340

creating action bars, 156, 158–159

creating and retrieving shared preferences,
288

features for developers, 412–413

21_0321897534_Index.indd 425 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 424 Achorn International 06/12/2013 03:31AM

425Handlers (messages between threads)

mapping the SEARCH key, 159–161

Global Positioning System (GPS) navigation

in automobiles, 6

battery power usage, 337

debugging and, 380

forward compatibility and, 11

proprietary software, 2

satellite-based, 316

simulation testing, 395

GNU C libraries, 2

GNU Project Debugger (GDB)

example of output, 392

installing, 392

within NDK-r4, 363

running, 392–393

setting up, 391–393

website address, 393

Google

acquisition of Android, Inc., 1

acquisition of Motorola Mobility, 5

Android SDK website links, 12–13

assistance to third-party developers, 2

design guidelines, 11

partnership with Asus, 6

Google API console, acquiring API key from, 327,
349

Google Checkout

Google Play requirement, 16

merchant accounts, 344

not available in some countries, 18

Google Chrome browser, 414–415

Google Cloud Messaging (GCM), 349. see also
Push messages, using Google Cloud Messaging
library

Google Maps

adding markers to map, 329–333

adding to applications, 328–329

adding views to map, 333–336

Android API version 2, 327–328

download and setup requirements,
325–326

location-based services and, 322, 325–336

maps library and permissions, 326–327

setting up proximity alert, 336

Google Nexus 4, 4

Google Now, 159, 415

Google Play

alternatives to, 20

in-app billing, 343–347

end user license agreements, 16–17

improving visibility of application, 17

managing reviews and updates, 19

market differentiation of application, 18

maxSdkVersion used as filter by, 28

merchant accounts, 344

monetizing applications, 18–19

signing requirement, 16

TalkBack download, 189

Google Play Billing Library, 344–345

Google search Representational State Transfer
(REST) API

example of search result, 268

using HTTP GET to retrieve data,
264–268

Google TV, 177, 199

Google Wallet, 18

GPS navigation. see Global Positioning System
(GPS) navigation

Graphic designers, 11

Graphviz dot utility, 388

Gravitational field of Earth, 227–230

Gyroscopes, 227

H
H.263 video format, 201

H.264 AVC video format, 201

Handlers (messages between threads)

push messages and, 355

running time-consuming initialization
and, 61–63

scheduling runnable task from main
thread, 58–60

21_0321897534_Index.indd 425 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 424 Achorn International 06/12/2013 03:31AM

426 Handlers (messages between threads)

Handlers (messages between threads) (continued)

using countdown timers, 60–61

using messengers in remote processes,
99–105

Hard keyboards, 10–11

Hardware interface

Bluetooth, 236–242

cameras, 221–226

getting device’s rotational attitude,
227–230

near field communication, 243–248

sensors, 227–231

telephony, 231–236

universal serial bus, 248–249

using temperature and light sensors,
230–231

HE-AACv1 (AAC+) audio format, 200

HE-AACv2 (enhanced AAC+) audio format, 200

Height, controlling dimensions of UI elements,
115–119

Hierarchy Viewer

for debugging, 381, 384–386

example of interface, 385

viewing layouts with, 115, 116, 386

Holo theme, 25, 154

HOME key, KeyEvent and, 146–147

Honeycomb (Android OS 3.0, API Level 11,
released 2/22/11)

adding notifications using Little Fluffy
Location Library, 339–340

animating buttons, 187

creating action bars, 154, 156

creating and retrieving shared preferences,
288–289

features for developers, 413

mapping the SEARCH key, 159–161

project directory structure, 24–25

using fragments, 36

Host mode, USB devices and, 248–249

HRC One, 4

HTC, 3–5

HTC Dream (G1), 3, 9

HTC EVO 3D, 3, 5

HTC EVO 4G, 5, 9

HTC Magic, 3

HTTP GET, 264–267

HTTP POST, 267–269

Hudson (CI system), 410

I
Ice Cream Sandwich (Android OS 4.0, API Level

14, released 10/19/11)

access to device owner profiles, 275

creating and retrieving shared preferences,
288–289

example of action bar, 156

features for developers, 413–414

mapping the SEARCH key, 159–161

project directory structure, 24

IEEE standard 802.14.1, 236

Image buttons, in table layout, 130–134

Image resource directories, 109

Images

example of scrambled image, 206

loading and displaying for manipulation,
202–206

multimedia techniques, 199–206

saving bitmap picture to PNG file, 312

supported media types (Android 4.1), 200

using HTTP POST to retrieve web data,
267–269

ImageView, using AsyncTask, 92–93

Implicit intents for creating activity, 45–46

In-app billing (Google Play)

adding to activities, 345–346

boilerplate code for, 346

completing purchase, 347

creating listener for inventory results,
346–347

installing, 344–345

listing items for in-app purchase in
developer console, 346–347

21_0321897534_Index.indd 427 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 426 Achorn International 06/12/2013 03:31AM

427Landscape screen mode

storing customer-identifying information,
347

versions of, 343

In-app purchases, 18–19

Inbox-style notification alert, 69

IntentService

for background tasks, 80–82

using with Result Receiver, 105

Internal pause flag, 53–55

Internet browsers. see Web browsers

Inter-process communication (IPC) protocol

AIDL interface functions, 94–95, 97

implementing remote procedure calls,
94–99

sharing threads between two applications
using binders vs., 57–58

using messengers, 99–105

using ResultReceiver, 105–107

IPad, 5, 6

IPC. see Inter-process communication (IPC)
protocol

IPhone, 1

IQon, 6

J
Java

capturing text entry at run-time, 129

colors of items, 111

fragments and, 193–196

OAuth module and integrating with
Twitter, 276–283

programmatic layout, drawbacks of,
120–121

referencing resources, 26–28

Relative Layout rules for possible
children, 120

TextView attributes, 125

Java Native Interface (JNI)

integrating native C code with, 362–364

type mapping between Java and Native,
362

Java Virtual Machine (JVM), 363

JavaScript Object Notation. see JSON (JavaScript
Object Notation)

Jelly Bean (Android OS 4.1, API Level 16, released
7/9/12)

adding notifications using Little Fluffy
Location Library, 340

creating and retrieving shared preferences,
288–289

example of action bar, 157

features for developers, 414–415

introduction of hard-coded SEARCH
key, 159

supported media types, 200–201

Jenkins (CI system), 410

JNI. see Java Native Interface (JNI)

JPEG image format, 200

JSON (JavaScript Object Notation)

defined, 251

parsing JSON data, 271–273

using HTTP GET to retrieve web data,
264–267

website address, 264–267

JUnit, 13, 371, 375–376

JVM (Java Virtual Machine), 363

K
Keyboards

KeyEvent and, 146

and screen orientation, 34

types of, 10–11

KeyEvents, physical keys for, 145–146

Kickstarter projects, 6

Kindle Fire, 6

L
Labels for resource directories, 110

Landscape screen mode

forcing to stay constant, 34

XML layouts for, 112

21_0321897534_Index.indd 427 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 426 Achorn International 06/12/2013 03:31AM

428 Language values directories

Language values directories, 111

Last location, retrieving, 317–318

Latitude-longitude coordinates. see also Location-
based services (LBS)

Little Fluffy Location Library and, 337

proximity alerts and Google Maps, 336

Layout. see User interface layout; Views and
ViewGroups

LBS. see Location-based services (LBS)

Libraries

advanced user interface libraries, 168–176

Android Support Library, 156–157,
401–408

Google Cloud Messaging library, 349–360

library projects, overview of, 29–31

Little Fluffy Location Library, 337–341

Open Graphics Library for Embedded
Systems (OpenGL ES), 171–176, 327,
366

third-party for integrating with Twitter,
275–276

Light sensors, 230–231

LinearLayout, 116–119

LinkedIn, 276

Lint, for debugging, 388–390

Linux OS systems

ADT Bundle for, 13

Android debugging processes and,
390–393

setting up GDB debugging, 391–393

using OpenIntents Sensor Simulator for
testing applications, 396

using top command, 390–391

Listeners. see Event handlers and event listeners

Little Fluffy Location Library

adding notifications, 338

downloading, 337

example of notification, 341

location-based services and, 337–341

LiveFolder, 307

Loader API, advanced threading techniques,
89–91

Location-based services (LBS)

accuracy and power requirements, 316

application requirements, 315

listing all enabled providers, 320–321

permission to use location information,
316–317

retrieving last location, 317–318

specifying location estimation technology,
316

translating a location to address (reverse
geocoding), 322–323

translating an address to location
(geocoding), 324–325

updating location upon change, 318–320

using Google Maps, 322, 325–336

using Little Fluffy Location Library,
337–341

LogCat

from DDMS control panel, 379, 380

for debugging, 381, 383–384

for listening for phone states, 234

owner profiles and, 275

when developing with USB device
plugged in, 249

Login page, 291–293

M
Mac OS systems

ADT Bundle for, 13

retina display, 6

using OpenIntents Sensor Simulator for
testing applications, 396

Magnetic field of Earth, 227–230

Magnetometers, 9, 221, 227–230, 252

Mail animation, 184–186

Make file format, 363

Manifest files, overview of, 26–28

Margins, UI elements and, 116

Market differentiation of application, 18

MaxSdkVersion used as filter by Google Play, 28

MD5 certificate fingerprints, 326

21_0321897534_Index.indd 429 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 428 Achorn International 06/12/2013 03:31AM

429Network-based applications

Media button, KeyEvent and, 146

Media playback, launching secondary threads and,
52–55

MediaPlayer

manipulating raw audio, 211

ringtone song as secondary thread and,
52–55

using for audio playback, 207–209

using for video playback, 217–219

MediaStore, 217, 307

Memory

activity lifecycle and, 32

audio files and, 215–216

flash drives, 6

flash memory, 3

foreground services and, 77

manipulating audio and, 206, 211–213

manipulating images and, 199, 202–204

tracking memory allocation, 12, 390–391

using sound resources efficiently and,
215–217

MENU key, KeyEvent and, 146–147

Menus

building of, 148–152

creating spinners, 113–114, 130, 138–140

defining menus in XML, 152–154

examples of, 153

resource directories, 109

Messengers, in remote processes, 99–105

Micro Secure Digital (microSD) card slot, 3

Micro-electro-mechanical systems (MEMS), 227

Microprocessor unit (MPU), 3

MIDI audio format, 201

MIT License, 410

Mobile advertisement, 18–19

Monetizing applications (Google Play), 18–19

Motion events, 165

Motorola

Android smartphones, 4, 5, 9

app market, 20

Motorola Droid, 9

MP3 audio format, 201

MPEG-4 SP video format, 201

Multimedia techniques

audio, 206–217

images, 199–206

supported media types (Android 4.1),
200–201

video, 217–219

Multiple activities

implementing list of choices, 44–45

implementing remote procedure call
between, 94–99

launching activity for result using speech-
to-text functionality, 42–44

launching additional activity from event,
38–41, 42

overview of, 36–37

passing primitive data types between
activities, 47–49

using buttons and TextView, 37–38

Multiprocessing, App Widgets and, 10

Multitouch, 10, 165–168

N
National Semiconductor, 9

NativeActivity, 364–369

NDEF (NFC Data Exchange Format messages),
243

NDK. see Android Native Development Kit (NDK)

Near field communication (NFC)

hardware interface, 243–248

reading NFC tags, 243–245

within Samsung smartphones, 5

writing to unprotected NFC tags,
245–248

Network-based applications

checking for connectivity, 251–253

reacting to network state, 251–255

receiving connectivity changes, 253–255

social networking, 275–285

21_0321897534_Index.indd 429 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 428 Achorn International 06/12/2013 03:31AM

430 Network-based applications

Network-based applications (continued)

using SMS, 255–263

using web content, 263–274

Nexus 7, 6

Nexus 10, 6

Nexus One, 3, 5

NFC. see Near field communication (NFC)

NFC Data Exchange Format (NDEF) messages,
243

O
OAuth module for Java, and integrating with

Twitter, 276–283

One X+, 3

Open Graphics Library for Embedded Systems
(OpenGL ES)

for drawing 3D images, 171–176

libraries for communication between C
code and Android Framework, 366

version 2, 327

Open Handset Alliance, 1

Open source, defined, 2

OpenIntents Sensor Simulator

adding to application, 398–399

downloading, 395

Initial Settings screen, 396

permissions, 398

setting up, 395–397

Opera Mobile Apps Store, 20

Option menus, 148–152

Opto Semiconductor, 9

OS releases and API level. see Android OS
releases, listing of

OUYA console, 6

Owner profiles of devices, 275

P
Padding, UI elements and, 116

Partial WakeLock, 74–75

Passwords

creating private key and, 16

NFC requirements and, 243

shared preferences and, 287, 289–293

Pay-to-win applications, 18, 343

PCM/WAVE audio format, 201

PDU (protocol description unit), 260

Pebble watch, 6

Pending notification alerts, 65–69

Phablets, 5

Phone numbers, dialing, 235–236

Phone state listener events, 234–235

Physical key press, intercepting, 145–148

Physical keyboards, 10–11

PNG image format, 200

Portrait screen mode

forcing to stay constant, 34

XML layouts for, 112

Power key, KeyEvent and, 146–147

Preferences framework, shared preferences
interface and, 288–291

Price, Kenton, 337

Pricing of applications (Google Play), 18–19

Private keys

for OAuth, 276

signing applications with, 16

Progress bar widget, 123, 130, 140–141

Projects. see also Test projects

Android Asset Packaging Tool (aapt), 26

autogenerated content, 25–26

creating with Eclipse IDE, 22–24

directory structure, 24–26

user-generated files, 24–26

Protocol description unit (PDU), 260

Proximity alerts

creating alerts without expiration time,
336

using Google Maps and, 336

Push messages, using Google Cloud Messaging
library

adding Broadcast receiver class, 353

21_0321897534_Index.indd 431 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 430 Achorn International 06/12/2013 03:31AM

431Screen orientation

adding IntentService class, 354–356

API Access page, 351

API service overview screen, 349–350,
350

boilerplate code for, 359–360

obtaining API key, 349

permissions, 351

preparing for setup, 349–351

preparing the manifest, 351–353

receiving messages, 353–356

registering a device, 356

sending messages, 351–353, 356–360

sending messages with AsyncTask,
357–360

sending text messages, 357–358

storing API key, 358

Q
Qualcomm, Snapdragon platform, 3–4

R
Radio button widgets, 130, 137–138

RAM, 3

Raw audio, manipulating, 211–215

RAZR MAXX HD, 5

Recording audio files, 210

Referencing resources

Java files, 26–28

XML files, 26–28

Relative Layout view, 119–120

Remote procedure calls. see RPCs (remote
procedure calls)

Renaming parts of application, 28–29

Research In Motion, 1

Resistive touchscreen technology, 7–8

Resource directories

language values directories, 111

listing of, 109

opening, 312

specifying alternate resources, 111–112

user interface layout attributes, 110–111

REST. see Google search Representational State
Transfer (REST) API

Restoring activity information, 34–35

ResultReceiver

holds IPC binders to direct calls across
multiple processes, 105–107

using IntentService with, 105

Reverse geocoding, 322–323

Reviews by users, managing (Google Play), 19

RFCOMM (Bluetooth transport protocol), 238

Robotium

downloading and tutorials, 377

for executing tests, 376–377

Robustness, 12

Roewe, 6

ROM. see Flash memory

Rotational attitude, expressing, 227–230

RPCs (remote procedure calls)

example of output of AIDL applica tion,
97

implementing between two activities,
94–99

using AIDL between processes with
different user IDs, 99

RTTTL files, launching secondary threads for
ringtone song, 52–55

Runnable activities

creating, 55–56

scheduling tasks from main thread using
handlers, 58–60

S
Saab, 6

Safari browser, 263

Samsung, 4–6

Satellite-based GPS, 316

Saving activity information, 34–35

Screen layout resource directories, 109

Screen orientation

21_0321897534_Index.indd 431 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 430 Achorn International 06/12/2013 03:31AM

432 Screen orientation

Screen orientation (continued)

forcing to stay constant, 34

keyboard slide-out events and, 34

XML layouts for, 112

Screen resolution, 111

Screens

AMOLED displays, 7

light sensors and, 230–231

specifications of, 8

of tablets, 112

TFT LCDs, 7

touchscreens, 7–8, 10

Scribe, 276

SDK. see Software Development Kit (SDK)

SDRAM/RAM (synchronous dynamic random
access memory), 3

SEARCH key

KeyEvent and, 146–148

using with event handlers and event
listeners, 159–161

SearchRecentSuggestions, 307

Secondary threads

launching ringtone song, 52–55

updating layouts from separate thread,
121–124

when accessing web data, 268

Seek bar widgets, 130, 141–143

Self-contained services

adding WakeLocks, 74

creating, 70–74

Sensors. see also OpenIntents Sensor Simulator

light sensors, 230–231

SDK supported sensors, listing, 227

smartphones as sensor hubs, 8–10

temperature sensors, 230–231

types of, 9

Server-side Bluetooth sockets, 238–241

Services

adding WakeLocks to self-contained
service, 74–77

creating self-contained, 70–74

defined, 69

lifecycle flowchart, 71

scenarios of, 70

using an IntentService, 80–82

using foreground services, 77–80

Settings

as content provider native database, 307

forward compatibility and, 11, 28

Hierarchy Viewer and, 115

shared preferences interface and, 287–
293

Shanghai Automotive Industry Corporation, 6

Shared preferences

adding an EULA, 294–297

changing the UI based on stored data,
290–293

creating and retrieving, 288

as data storage method, 287–297

login page, 290–293

using the preferences framework, 288–
290, 291

Short message service (SMS)

autoresponse SMS based on received
SMS, 257–263

located in android.telephony package,
257–263

networked-based applications and,
255–263

push messages and, 357–358

retrieving protocol description unit, 260

setting messages to 140 characters or less,
257, 275

Single task mode, forcing, 31–34

SlideMe, 20

Smartphones. see also Telephony

models of, 3, 4

sensors and, 8–10, 227–231

SMS. see Short message service (SMS)

Snapdragon platform, 3

Social networking

integrating with Facebook, 18, 276,
284–285

21_0321897534_Index.indd 433 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 432 Achorn International 06/12/2013 03:31AM

433Telephony

integrating with Twitter, 275–283

networked-based applications and,
275–285

reading owner profile of devices, 275

Soft keyboards, 10–11, 128–129

Software Development Kit (SDK)

Android Debug Bridge (ADB), 15–16

configuring emulators, 14–15

debugging tools, 14–16, 380–390

downloading support library, 408

installing, 12–13

OS releases and API level, 14, 411–415

release 14 includes library projects, 29

signing and publishing, 16

supported sensors in, 227

upgrading, 12–13

Spacing, UI elements and, 116–119

Speech-to-text functionality, 42–44

Spelling corrections, 129

Spinner widgets, 113–114, 130, 138–140

SQLite Database

creating personal diaries, 303–306

creating separate database packages,
297–300

ListView of diary entries, 307

using separate database packages, 300–303

ST Microelectronics, 9

Standard graphical widgets. see also App Widgets

creating spinners, 130, 138–140

using check boxes, 134–136

using image buttons in table layout,
130–134

using progress bars, 123, 130, 140–141

using radio buttons, 137–138

using seek bars, 130, 141–143

using toggle buttons, 136–137

Standby, adding WakeLocks, 74

Status bar pending notification alerts, 65–69

Storage. see Data storage methods

Strings, 110

Submenus

building of, 148–152

examples of, 153

Support packages

android.support.v4.accessibilityservice
package, 401

android.support.v4.app package, 402–
403

android.support.v4.content package, 404

android.support.v4.content.pm package,
404

android.support.v4.database package,
404

android.support.v4.net package, 405

android.support.v4.os package, 405

android.support.v4.util package, 405

android.support.v4.view package,
405–407

android.support.v4.view.accessibility
package, 407

android.support.v4.widget package, 408

Surface acoustic touchscreen technology, 8

Synchronous dynamic random access memory
(SDRAM/RAM), 3

SyncStateContract, 307

T
Table Layout, using image buttons in, 130–134

Tablets

Android, listing of, 7

fragments and screen displays, 191

overview of, 5–6

screen dimensions for, 112

using fragments, 35

TalkBack

downloading, 189

voice synthesis service, 189–190

Telephony

dialing phone numbers, 235–236

hardware interface, 231–236

listening for phone states, 234–235

21_0321897534_Index.indd 433 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 432 Achorn International 06/12/2013 03:31AM

434 Telephony

Telephony (continued)

permissions, 234

using telephony manager, 231–233

Telephony manager, 231–233

Temperature sensors, 230–231

Test projects

creating using Eclipse, 371–373

debugging and, 371–377

Text attributes, 124–127

Text entry

auto-capitalization, 129

spelling correction, 129

for user input, 127–129

using soft keyboards, 128–129

word suggestions, 129

Text manipulation, of UI elements

creating forms, 129–130

providing text entry, 127–129

setting and changing text attributes,
124–127

Text messages. see Short message service (SMS)

TextView

attributes, 125

showing results of multiple activities,
37–38

Thin-film transistor (TFT) LCDs, 7

Third-party application stores, 18, 20

Thread priorities, setting of, 56–57

Threading techniques, advanced

AxyncTask, 91–93

implementing remote procedure call,
94–99

inter-process communication (IPC)
protocol, 94–107

loaders, 89–91

using CursorLoader, 89–91

using messengers, 99–105

using ResultReceiver, 105–107

Threads

canceling, 57

creating runnable activities, 55–56

handlers, 58–63

launching secondary threads, 52–55

overview of, 51

setting thread priorities, 56–57

sharing between two applications, 57–58

updating layouts from separate thread,
121–124

3-bit TNF field, 243

3D images, 171–176

Three-axis accelerometers, 9–10, 227–230

Three-axis magnetometers, 9, 227–230

Thumb buttons, 141–143

Time-consuming initialization, using handlers and,
61–63

Toggle button widgets, 136–137

Top command for debugging, 390–391

Touch events, 10, 161–163

Touchscreen technology, 7–8, 10

TraceView

example of analysis screen, 388

for optimizing performance, 381,
386–388

specifying factorial method, 386–
387

trace log files and, 386–388

Trackball, KeyEvent and, 146

TV screens, using fragments, 35

Tween animation

advanced user interface techniques,
183–189

resource directories, 109

Twitter

features of, 275

integrating into Android applications,
275–283

registering applications with, 276

Scribe and, 276

third-party libraries for integrating with,
275–276

Twitter4J, 276, 283

21_0321897534_Index.indd 435 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 434 Achorn International 06/12/2013 03:31AM

435WakeLocks

U
Uniform resource identifier (URI)

implicit intents and, 45–46

NFC tags and, 243

requirement for content providers,
308–309

Universal serial bus (USB) devices

accessory mode, 248–249

ADB managing of, 248–249, 381

Android devices as emulators and, 14

hardware interface, 248–249

Updates, managing (Google Play), 19

URI. see Uniform resource identifier (URI)

User input methods, 7–8, 127–129

User interface events

advanced user interface libraries, 168–176

building menus, 148–152

creating action bars, 154–156

defining menus in XML, 152–154

event handlers and event listeners,
145–164

intercepting physical key press, 145–148

listening for fling gestures, 163–165

reacting to touch events, 161–163

using ActionBarSherlock, 156–159

using multitouch, 165–168

using SEARCH key, 159–161

User interface layout

general attributes, 110–111

resource directories, 109–112

text manipulation, 124–130

views and ViewGroups, 112–124

widgets. see Standard graphical widgets

User interface libraries, advanced

drawing 3D images, 171–176

using gestures, 168–171

User interface techniques, advanced

accessing accessibility features, 189–191

animation, 183–189

custom views, 177–182

fragments, 191–198

UserDictionary, 307–308

Username objects, 291–293

UUID (universally unique identifier), opening
Bluetooth sockets and, 239–240

V
Vibration, in Bluetooth devices, 241

Video

multimedia techniques, 217–219

playback using MediaPlayer, 219

supported media types (Android 4.1), 201

using HTTP POST to retrieve web data,
267–269

using VideoView, 217–219

VideoView, 217–219

Views and ViewGroups

building layouts in Eclipse editor, 113–115

controlling width/height of UI elements,
115–119

custom views, 177–182

declaring programmatic layout, 120–121

example of horizontally placed widgets,
113

setting Relative Layout and layout ID,
119–120

updating layouts from separate thread,
121–124

Vimeo, 276

Virtual goods sales, 18

Visibility of applications (Google Play), 17

Volume key, KeyEvent and, 146–147

Vorbis audio format, 201

VP8 video format, 201

W
WakeLocks

adding to self-contained services, 74–
77

21_0321897534_Index.indd 435 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 434 Achorn International 06/12/2013 03:31AM

436 WakeLocks

WakeLocks (continued)

comparison of types, 75

push messages and, 351

Web browsers

customizing, 263–264

Google Chrome browser, 414–415

Google Maps and, 325

incognito mode, 413

native Android databases as content
provider, 306

Safari browser, 263

Web content

customizing web browsers, 263–264

networked-based applications and,
263–274

parsing JSON data, 271–273

parsing XML data, 273–274

using an HTTP GET to retrieve web
data, 264–267

using HTTP POST to retrieve data,
267–269

using WebViews, 269–271

WebKit, 263–264

WEBP image format, 200

WebViews, 269–271

What-you-see-is-what-you-get (WYSIWYG) user
interface, 377

Widgets. see App Widgets; Standard graphical
widgets

Width, controlling dimensions of UI elements,
115–119

Wi-Fi (802.11)

cell tower identification, 316

checking for device connectivity to,
251–253, 255

debugging and, 249

smartphones and, 3

tablets and, 5

WiMAX (802.16e-2005), 5

Windows OS systems

ADT Bundle for, 13

integrating with Facebook, 284

SDK drivers for, 14

using lint tool with, 388–390

Wireless networks, 241–242

Word suggestions, text entry and, 129

Wrist watches, with Android systems, 6

X
X Windows, 2

XML

arbitrary filenames, 109

colors of items, 111

creating animation with, 187–189

defining layouts for screen types, 112

defining menus, 152–154

EditText attributes, 128

Google Maps and, 327

labels and text of items, 110

measurements and dimensions of items,
110

parsing XML data, 273–274

project user-generated files, 24–25

referencing resources, 26–28

Relative Layout rules for possible
children, 120

with resource descriptors, 109

resource directories, 109

shared preferences interface and, 287

TextView attributes, 125

using HTTP GET to retrieve web data,
264–267

Y
Yamamoto, Yusuke, 276

* Available to new subscribers only. Discount applies to the Safari Library and is valid for  rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

21_0321897534_Index.indd 437 Achorn International 06/12/2013 03:31AM21_0321897534_Index.indd 436 Achorn International 06/12/2013 03:31AM

