

Adobe® ColdFusion® 10
Web Application Construction Kit:
ColdFusion® 10 Enhancements and Improvements
Copyright © 2013 by Ben Forta

Adobe Press Editor: Victor Gavenda
Project Editor: Nancy Peterson
Production Editor: Tracey Croom
Development Editor: Judy Ziajka
Proofreaders: Liz Welch and Scout Festa
Technical Editor: Hemant Khandelwal
Compositor: Danielle Foster
Indexer: Jack Lewis
Cover Designer: Charlene Charles-Will
Cover Compositor: Mike Tanamachi

If this guide is distributed with software that includes an end-user license agreement, this guide, as well as the software described in it,
is furnished under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such
license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content
in this guide is protected under copyright law even if it is not distributed with software that includes an end-user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors
or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright
law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner.
Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample files are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe, the Adobe logo, and ColdFusion are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Apple, Mac OS, and Macintosh are trademarks of Apple, registered in the U.S. and other countries. Microsoft, Windows, and
Windows NT are trademarks of Microsoft Corporation registered in the U.S. and/or other countries. All other trademarks are the
property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110-2704, USA

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at
48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as
such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R.
§§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software
Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are
granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of
the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users,
Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order
11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503
of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The
affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

Adobe Press books are published by Peachpit, a division of Pearson Education located in San Francisco, California. For the latest
information about Adobe Press books, go to www.adobepress.com. To report errors, please send a note to errata@peachpit.com. For
information about getting permission for reprints and excerpts, contact permissions@peachpit.com.

Printed and bound in the United States of America

ISBN-13:	 978-0-321-89096-2
ISBN-10:	 0-321-89096-5

9  8  7  6  5  4  3  2  1

http://www.adobepress.com

Dedications

Charlie Arehart

I’d like to dedicate this volume with thanks to
the hundreds of speakers who’ve presented on
the Online ColdFusion Meetup (coldfusion-
metup.com), stepping up to the plate to share
their knowledge and experience in all things
ColdFusion.

Raymond Camden

To my wife, Jeanne. I love you.

Kenneth Fricklas

I dedicate this book to my wife and son, whom I
told I wouldn’t do this again, but here we are.

Hemant Khandelwal

To my wife, Meera, and my two kids, Tishya and
Tarush, who all have brought tremendous joy
into my life.

Chandan Kumar

To mom with love.

author biographies
Ben Forta has more than two decades of experience in the computer industry, in product develop-
ment, support, training, and marketing. As Adobe’s director of developer relations, he is respon-
sible for the company’s technical evangelism, community relations, and developer education
programs and is a primary liaison between the company and the Adobe developer community.
Ben is the author of more than 40 books, including best-selling titles on SQL and ColdFusion and
titles on Microsoft Windows development, Regular Expressions, and Java. Over half a million
Ben Forta books have been printed in English, and titles have been translated into 15 languages.
Ben continues to write and blog at http://forta.com/ and present on web and application develop-
ment topics worldwide. You can also find him on Twitter at @benforta.

A veteran ColdFusion developer and troubleshooter since 1997, with more than three decades
in enterprise IT, Charlie Arehart is a longtime contributor to the ColdFusion community and
has for several years been a recognized Adobe Community Professional, Adobe Forums MVP,
ColdFusion Customer Advisory Board member, and more. An independent consultant, he
provides short-term, remote, on-demand troubleshooting and tuning assistance for organizations
of all sizes and ColdFusion experience levels (carehart.org/consulting). Besides running the
2800-member Online ColdFusion Meetup (coldfusionmeetup.com, an online ColdFusion user
group), he hosts the UGTV repository for recorded presentations from hundreds of speakers
(carehart.org/ugtv), the CF411 site offering more than 1800 tools and resources for ColdFusion
users (cf411.com), and the CF911 site offering troubleshooting resources (cf911.com). A Certified
Advanced ColdFusion developer and instructor for each version since ColdFusion 4, Charlie has
spoken at nearly all the ColdFusion conferences worldwide and was a contributor to all three
volumes of the ColdFusion 8 and 9 ColdFusion Web Application Construction Kit books.

Rob Brooks-Bilson is a consultant and author and the director of architecture and application
development at Amkor Technology. He’s a frequent speaker at industry conferences and at local
user groups. He is also the author of two O’Reilly books: Programming ColdFusion and Programming
ColdFusion MX. Outside work, Rob is a technophile, blogger, photographer, bed jumper, world
traveler, hiker, mountain biker, and Adobe Community Professional for ColdFusion. You can
subscribe to Rob’s blog at rob.brooks-bilson.com and follow him on Twitter at @styggiti.

Raymond Camden is a senior developer evangelist for Adobe. His work focuses on web
standards, mobile development, and ColdFusion. He is a published author and presents
at conferences and user groups on a variety of topics. Raymond can be reached at his blog
(www.raymondcamden.com), at @cfjedimaster on Twitter, or by email at raymondcamden@gmail.com.

Kenneth Fricklas has been using ColdFusion since Version 1.5 and teaching it since Version 3.0.
A well-known speaker and author, he is currently the vice president of software engineering at
Placewise Media in Denver, Colorado.

http://forta.com/
http://www.raymondcamden.com

Hemant Khandelwal manages the ColdFusion products at Adobe and has built and shipped
ColdFusion Server 8, 9, and 10 and ColdFusion Builder 1 and 2. He has several years of R&D
experience in application-server internal design and Internet architecture and wrote the world’s
first EJB2.0 container. He was part of the expert group committee for the J2EE 1.4, EJB2.0, and
EJB3.0 specifications. He is a regular speaker at conferences and is passionate about ColdFusion
and the role it plays in making hard things easy. He can be reached on Twitter at @khandelwalh.

Chandan Kumar has been part of the core development team at Adobe for ColdFusion for almost
seven years and has been involved in managing its language and runtime application and keeping
it current with the latest trends, including closures, REST support, caching upgrades, and PDF
features. He has been a speaker at several conferences throughout the world, including Adobe
MAX, SOTR, WebDU, CFUnited, and CFUG conferences and many e-seminars. He is a gradu-
ate of the Indian Institute of Technology.

acknowledgments
Ben Forta: Thanks to my co-authors, Charlie Arehart, Rob Brooks-Bilson, Raymond Camden,
Kenneth Fricklas, Hemant Khandelwal, and Chandan Kumar, for their outstanding contribu-
tions. Although this book is affectionately known to thousands as “the Ben Forta book,” it is,
in truth, as much theirs as it is mine. An extra thank you to Hemant Khandelwal for his tech
review and for stepping up and taking on extra work when we needed additional contributing
authors. Thanks to Nancy Peterson and Judy Ziajka for so ably shepherding this book through the
publication process yet again. Thanks to the thousands of you who write to me with comments,
suggestions, and criticism (thankfully not too much of the latter)—I do read each and every mes-
sage (and even attempt to reply to them all, eventually), and all are appreciated. And last, but by
no means least, a loving thank you to my wife, Marcy, and our children for putting up with (and
allowing) my often hectic work schedule. Their love and support make all that I do possible.

Charlie Arehart: Where would we all be, in terms of our ColdFusion experiences, without Ben?!
Most of us learned ColdFusion from him and/or this series, or from the official ColdFusion train-
ing that he helped shape, or from his blog, etc. He’s been the rock of the ColdFusion world from
the beginning. (And he’s been a rock star, too. Those of us who saw him roll out on stage in the
Hummer at “Powered by Detroit” in 2005 will never forget that scene!) And I’ve had the sincere
pleasure and honor of contributing to the past seven volumes in this series and can attest to his
being the glue that holds it all together. Thanks also to my fellow authors, and indeed to all in
the community and at Adobe, who’ve contributed knowledge and experience that has helped all
of us learn and improve over the years and even decades. This book is just one more reflection of
the ColdFusion community’s continued, valuable support for one another. Finally, you see most
writers thank their spouses, and it’s not just a formality, as they lose us for long periods of time
during such projects, especially when we write on top of doing our other work. Kim, as I say daily
for some reason or another, “Thank you, my love.” I thank God for bringing you into my life, and
indeed for all I have and am.

Raymond Camden: I’d like to thank Ben for inviting me back to the book again and to thank the
ColdFusion team for their help and support in writing this book.

Hemant Khandelwal: I would like to thank Ben for giving me the opportunity to be part of this
book. A special thanks to Judy Ziajka for her help during chapter reviews and to my teammates
at the ColdFusion product team who are the real heroes in building these features. I also want to
thank my mom for what she has taught me. And finally, I want to thank my wife for her love.

Chandan Kumar: First, I would like to thank Ben Forta and Peachpit for believing in me and
giving me this great opportunity to write. Then I would like to thank my manager, Hemant
Khandelwal, for his continuous help and guidance throughout my career. I also want to thank
my family and friends for their love and support and, finally, my lovely wife, Sudha Singh, for
standing by me all along.

part I	 Web Technology Innovation	 1

chapter 1	 ColdFusion 10 and HTML5	 3
chapter 2	 Using WebSocket	 9
chapter 3	 Charting Revisited	 35
chapter 4	 Web Services	 55
chapter 5	 Using REST Web Services	 77
chapter 6	 Embedding Video	 93

part II	 Rapid Development	 105

chapter 7	 CFML Enhancements	 107
chapter 8	 CFScript Enhancements	 127
chapter 9	 Object Relational Mapping Enhancements	 149
chapter 10	 Enhanced Java Integration	 165
chapter 11	 XML Enhancements	 187

part III	 Enterprise Ready	 197

chapter 12	 ColdFusion in the Cloud	 199
chapter 13	 Improved Administration	 217
chapter 14	 Scheduling	 225
chapter 15	 Security Enhancements	 251
chapter 16	 Improving Performance	 265
chapter 17	 Improved Integration	 281
chapter 18	 Apache Solr	 297
chapter 19	 Miscellaneous Enhancements	 309

Index	 325

contents at a glance

This page intentionally left blank

contents

Introduction	 xvii

part I	 Web Technology Innovation	 1

chapter 1	 ColdFusion 10 and HTML5	 3
What’s New in HTML5?	 3

Can I Use the New HTML5 Features?	 4
ColdFusion 10 HTML 5 Support	 5

Geolocation and the <cfmap> Tag	 5
Getting a Google Maps API Key	 7

chapter 2	 Using WebSocket	 9
What Exactly Is WebSocket? 	 9

What About Browser Support?	 10
Getting Started	 11
Using the JavaScript API	 13
Working with CFC Handlers	 16
Using Server-Side Functions	 21
Filtering Messages	 22

Working with Subchannels	 23
Using Selectors	 25

Providing Security	 27
Using onWSAuthenticate	 27

Using Single Sign-On Mode	 30
Generating Messages with CFCs	 31

Point-to-Point WebSocket	 32
Error Handling and Unsupported Browsers	 34

ColdFusion Administrator Options	 34
chapter 3	 Charting Revisited	 35
Charting and ColdFusion 10	 35

Getting Started with <cfchart>	 35

Using Query Data in Charts	 38
Previewing and Zooming	 38

ColdFusion 10 Chart Types	 40
Styling a Chart	 42

Rendering Options and Fallback	 45
Plotting Multiple Series in a Chart	 45
Using Clickable URLs and JavaScript	 45
Highlighting Important Data	 49

Refreshing Data and Using Live Data	 50
Conclusion	 54

x contents

chapter 4	 Web Services	 55
What Are Web Services? 	 55

A Typical Web Service Invocation 	 56
Web Services Architecture	 57

ColdFusion Web Service Engine	 59
SOAP 1.2	 59
WSDL 2.0	 60

Building Your First Web Service	 60
Consuming a Web Service	 62
Refreshing Stubs	 63
Using Complex Data Types	 63
Passing Arguments	 64
Working with Multiple Arguments	 66

Securing Your Web Service	 67
Using ColdFusion to Control Access	 67

Working with SOAP Requests	 68
Application Settings	 70

Including ColdFusion Types in WSDL	 71
Deciding Which Web Service Engine to Use	 71
Specifying the Web Service Engine	 71
Choosing the WSDL Style	 72

Configuring Web Services in ColdFusion Administrator	 73
Best Practices	 73
Troubleshooting	 74
SOAP or REST?	 75
chapter 5	 Using REST Web Services	 77
What Is REST?	 77
Registering REST Services	 78
Building Your First REST CFC	 79

Testing Your First REST CFC	 80
Specifying Content Types	 82
Using XML Serialization	 84

Working with Subresources	 85
Putting It All Together	 87
Miscellaneous REST Functions	 92

Customizing Responses	 92
Dynamically Initializing REST Services	 92

chapter 6	 Embedding Video	 93
HTML5 and Video 	 93
HTML5 Video Support	 94
Fallback Plan	 95

xicontents

Skinning Player Control	 96
Callback Events and Error Logging	 97
Other Enhancements	 98

Loop Playback Support	 98
Poster Image Support	 99
Video Title Support	 99
Playlist Support	 100

Extending the Media Player	 101
Playing YouTube Video	 101
Streaming	 102
Digital Rights Management	 103

part II	 Rapid Development	 105

chapter 7	 CFML Enhancements	 107
Working with Closures 	 107

Arrays and Inline Functions	 112
Lists and Inline Functions	 116
Structs and Inline Functions	 116

Miscellaneous Language Enhancements	 118
<cfinclude> Gets More Intelligent	 118
Application.cfc and Abort Handling	 119
Handling Form Fields with the Same Name	 120
ColdFusion Component Updates	 121
Improvements to queryNew and queryAddRow	 124

chapter 8	 CFScript Enhancements	 127
Evolving Script-Based Development in CFML	 128

Support for Colon Separators in Structures (Key:Value Pairs)	 128
Enhanced Script Looping (for-in over Queries and Java Arrays)	 129

Using for-in Looping over Queries 	 129
Using for-in for Java Arrays	 130

Two New Tag Equivalents as Script Statements (setting and cookie)	 131
Using the setting Statement (for CFSETTING)	 131
Using the cookie Statement (for CFCOOKIE)	 132

One New Tag Equivalent as a Function (invoke)	 133
Using the invoke Function (for CFINVOKE)	 133
Invoking a Web Service Method	 136

Three New Tag Equivalents as CFCs (collection, index, and search)	 137
Using the collection CFC (for CFCOLLECTION) 	 137
Using the index CFC (for CFINDEX)	 141
Using the search CFC (for CFSEARCH)	 143
About These Adobe-Provided CFCs	 145

xii contents

chapter 9	 Object Relational Mapping Enhancements	 149
ORM Enhancements Summary 	 149
ORM Search Enhancements	 149

Enabling ORM Entities for Indexing	 151
Indexing an ORM Entity 	 152
Searching an ORM Entity	 152
Searching Multiple Entity Types	 154
Performing Offline Searches	 155
Searching Relationships	 157

Managing Indexes	 157
Explicit Indexing	 157
Implicit Indexing	 158
Purging	 158

Specifying Search Settings	 158
Server Level	 158
Application Level	 159
Component Level	 159
Property Level 	 160

HQL Logging Enhancements	 162
Improved Handling of the ORM Hierarchy	 163
chapter 10	 Enhanced Java Integration	 165
About CFML and Java Integration	 165

Simple Java Example: DNS Lookup	 166
Using Java Libraries and Classes	 167
More About CFML and Java Integration	 167

New: Dynamic Application-Specific Class Loading with this.javaSettings	 168

About Java Class Loading in ColdFusion	 168
Defining an Application-Specific Class Library	 169
Example: Naming a Load Path	 170
Example: Using a Better Reverse-DNS Java Library	 171
Reloading Changed Classes: reloadOnChange, watchInterval,

and watchExtensions Arguments	 172
Challenges Using Dynamic Class Loading	 173

Enhancement: Calling CFCs from Java with CFCProxy	 175

About the Long-Existent and Little-Known CFCProxy	 176

About the New directInvoke Argument	 181
New: Proxying CFCs as Java Objects with createDynamicProxy	 182

Step 1: Define an Interface	 182
Step 2: Create a CFC That Offers an Implementation	 183
Step 3: Create a Java Class to Work with the CFC	 183
Step 4: Create a CFML Page to Pass the CFC to the Java Class	 184

New: Looping over Java Arrays in CFML	 185
Conclusion	 186

xiiicontents

chapter 11	 XML Enhancements	 187
ColdFusion XML and XPath	 187

XPath and Variables	 192
ColdFusion XML and XSLT	 192

part III	 Enterprise Ready	 197

chapter 12	 ColdFusion in the Cloud	 199
What Is “The Cloud”?	 199

Cloud Technology 	 200
Advantages of the Cloud	 201
Cloud Service Models	 201
Cloud Deployment Models	 203

Amazon Web Services	 203
Registering with AWS	 204
Amazon Elastic Compute Cloud 	 204
Amazon Simple Storage Service 	 207
Other Notable AWS Components 	 210

Designing for the Cloud	 210
Main Differences Between Cloud and Traditional Designs	 210
Design Considerations	 212

ColdFusion AMI	 215
chapter 13	 Improved Administration	 217
What’s Not Covered	 217
The New Look: Shiny!	 217

Caching Updates	 219
Security Updates	 219

Automatic Logging of Administration Changes	 219
Password Reset Script	 220
Enable RDS (After Installation)	 220
Restrict Admin Access by IP Address	 221

Server Updates	 221
chapter 14	 Scheduling	 225
A Word About ColdFusion Standard versus Enterprise	 225
Introducing the Quartz Scheduling Engine	 226
Changes to CFSCHEDULE	 226

Setting the Stage	 226
Application-Level Tasks	 226
Grouping	 228
Deleting Tasks	 230
Running Tasks	 230
Task Prioritization	 230
Chaining	 231
Excluding Dates	 233

xiv contents

Repeating Tasks	 234
Cron Expressions	 235
Handling Exceptions	 237
Handling Misfires	 238
Event Handling	 239
Listing Scheduled Tasks	 243
Pausing and Resuming Tasks	 246

Changes to the ColdFusion Administrator	 247
Adding and Editing Tasks	 247
Clustering Scheduled Tasks	 248

Customizing the Quartz Scheduler	 250
chapter 15	 Security Enhancements	 251
ColdFusion Security Options	 251
The Secure Profile	 252
XSS Protection	 253
CSRF Protection	 257
File Upload Protection	 260
Session Improvements	 261
Miscellaneous Improvements	 262
chapter 16	 Improving Performance	 265
What Is Caching?	 265
Caching Enhancements	 266
Application-Specific Caching	 266
Cache Regions	 267
Changes to Built-in Functions	 269
New Cache Functions	 271
Enhanced Query Caching	 273
Ehcache Version Update	 275
Server Monitor Support for Caching	 275
Other Performance Improvements: JVM Tuning	 277
chapter 17	 Improved Integration	 281
Improved Integration with Microsoft Exchange Server 	 281
Microsoft Exchange Server 2010 Support	 281
Folder Operations Support	 283

Retrieving Folder Information	 283
Retrieving Additional Folder Information	 285
Retrieving Child Folder Information	 286
Creating Folders 	 287
Modifying Folders	 287
Copying Folders	 288
Moving Folders	 289
Deleting Folders	 289
Emptying Folders	 289

xvcontents

Conversation Operations	 290
Retrieving Conversations 	 290
Performing Actions on Conversation	 292

Availability Operations 	 293
Find User Availability 	 294
Get Room List	 294
Get Room 	 295

Improved Integration with Microsoft Office Documents	 295
chapter 18	 Apache Solr	 297
Say Goodbye to Verity	 297
Updates to <cfindex>	 297

Boosting Fields and Documents	 302
Ordering Results	 304

Data Import Handlers	 304
Setup	 305
Indexing Data	 307

chapter 19	 Miscellaneous Enhancements	 309
Each Release Brings Many Enhancements	 309
Architectural Enhancements	 310

Verity-Solr Migration	 310
ColdFusion 9.0.2 Replaces 9.0	 310
Multiserver Enhancements	 311

CFML Enhancements	 312
Administrator Enhancements	 314

Some Modest Administrator Enhancements	 314
Only One Administrator Logon at a Time	 315
Admin API Enhancements	 315

Security Enhancements	 315
Single-User CFLOGIN	 315
Sandbox Permissions for RDS	 315
Backward-Compatibility Issues	 316

Logging Enhancements	 317
Log Locations	 317
New Metrics Logging	 317
New Request Logging (Access Logs)	 318
Solr Access Logs	 318

Updated Embedded Libraries	 319
Web Services and Axis	 319
XML Support	 319
Underlying Java Architecture	 319
Other Libraries	 320

Other Enhancements	 320
Query-Caching Enhancements	 320

xvi contents

Virtual File System Enhancements	 320
Solr Enhancements	 321
Differences Between Enterprise and Standard Editions	 321
Developer Edition Restrictions Eased	 321
Licensing	 322

Other Resources	 322
Adobe ColdFusion 10 Documentation	 322
Adobe ColdFusion Blog	 322
Adobe ColdFusion Developer Center	 323
“Adobe ColdFusion 10 Tutorials and Resources”	 323

Index	 325

introduction

What Is This Book?
ColdFusion needs no introduction: It helped usher in the era of web-based applications over a
decade and a half ago, and it remains an innovator in this space to this day. With each update,
ColdFusion has further empowered us to build and create the ultimate online experiences, and
ColdFusion 10 is no exception.

ColdFusion 10 is indeed a very important release: one that builds on the success of ColdFusion 9
by adding invaluable new features and functions. And that is key: ColdFusion 10 does not change
much about the previous release; it adds features and functions. This means that ColdFusion 9
code and applications should run just as is in ColdFusion 10, and any books and tutorials on Cold-
Fusion 9 apply to ColdFusion 10 as well.

And this presented the publishers and authors with a dilemma. ColdFusion Web Application Con-
struction Kit (affectionately known as CFWACK) started off as a single volume, and then grew to
two volumes in ColdFusion 4, and has been three volumes since ColdFusion 8. Recognizing that
so much of the existing content for ColdFusion 9 applied as-is to ColdFusion 10, we could not
in good conscience justify updating all the books and making readers buy them all over again.
Plus, to make room to cover the new features in ColdFusion 10, we would have needed to remove
chapters from the existing books, and as ColdFusion’s breadth and scope has increased, removing
content has proven to be a difficult task.

After lengthy discussions with the publisher, the ColdFusion product team, and the authors, we
opted not to update the three CFWACK volumes for ColdFusion 10. Instead, we decided to create
a fourth volume to focus exclusively on what is new and improved in ColdFusion 10. And this is
the book you are now holding in your hands.

This book, and indeed the entire ColdFusion Web Application Construction Kit series, is written for
anyone who wants to create cutting-edge web-based applications.

If you are just starting creating your web presence, but know you want to serve more than just
static information, this book, in conjunction with the ColdFusion 9 books, will help get you
there. If you are a webmaster or web page designer and want to create dynamic, data-driven web
pages, this book is for you as well. If you are an experienced database administrator who wants
to take advantage of the web to publish or collect data, this book is for you, too. If you have used
ColdFusion before and want to learn what’s new in ColdFusion 10, this book is also for you. Even
if you are an experienced ColdFusion user, this book provides you with invaluable tips and tricks
and serves as a definitive ColdFusion developer’s reference.

This book teaches you how to create real-world applications that solve real-world problems.
Along the way, you acquire all the skills you need to design, implement, test, and roll out world-
class applications.

xviii introduction

How to Use This Book
As already noted, this book is designed to extend and enhance the three existing ColdFusion 9 Web
Application Construction Kit. The four books are organized as follows:

■■ Volume 1—Adobe ColdFusion 9 Web Application Construction Kit, Volume 1:
Getting Started (ISBN 0-321-66034-X) contains Chapters 1–21 and is targeted at
beginning ColdFusion developers.

■■ Volume 2—Adobe ColdFusion 9 Web Application Construction Kit, Volume 2:
Application Development (ISBN 0-321-67919-9) contains Chapters 22–45 and covers
the ColdFusion features and language elements that are used by most ColdFusion devel-
opers most of the time.

■■ Volume 3—Adobe ColdFusion 9 Web Application Construction Kit, Volume 3:
Advanced Application Development (ISBN 0-321-67920-2) contains Chapters 46–71
and covers the more advanced ColdFusion functions, including extensibility features,
as well as security and management features that will be of interest primarily to those
responsible for larger and more critical applications.

■■ Adobe ColdFusion 10 Web Application Construction Kit, ColdFusion 10
Enhancements and Improvements (ISBN 0-321-89096-5) contains 19 new chapters
focusing on what’s new in ColdFusion 10, and is intended to be used in conjunction with
the three other titles listed here.

These books are designed to serve two different, but complementary, purposes.

First, as the books used by most ColdFusion developers, they are a complete tutorial covering
everything you need to know to harness ColdFusion’s power. As such, the books are divided into
parts, or sections, and each section introduces new topics building on what has been discussed in
prior sections. Ideally, you will work through these sections in order, starting with ColdFusion
basics and then moving on to advanced topics. This is especially true for the first two books.

Second, the books are invaluable desktop references. The appendixes and accompanying website
contain reference chapters that will be of use to you while developing ColdFusion applications.
Those reference chapters are cross-referenced to the appropriate tutorial sections, so that step-by-
step information is always readily available to you.

The following sections describe the contents of this new volume

Part I: Web Technology Innovation
ColdFusion is predominantly used to power web applications, and so Part I of this book focuses on
ColdFusion web technology enhancements and innovations:

■■ Chapter 1, “ColdFusion 10 and HTML5,” introduces new HTML5 tags and features
and explains how these are supported by ColdFusion.

xixintroduction

■■ Chapter 2, “Using WebSocket,” introduces an additional HTML5 enhancement,
WebSocket, and explores the ways that it changes server-to-browser communication.

■■ Charting and graphing has long been a ColdFusion staple, and Chapter 3, “Charting
Revisited,” introduces new HTML5 charting options.

■■ In Chapter 4, “Web Services,” you learn how to implement and use the latest generation
of web services technologies.

■■ The web services discussion continues in Chapter 5, “Using REST Web Services,”
which introduces REST as an alternative to traditional web services.

■■ Extensive video support is new to ColdFusion 10, and Chapter 6, “Embedding Video,”
explains what you can do and provides useful tips and tricks.

Part II: (Even More) Rapid Development
ColdFusion has always been about productivity and rapid development, and ColdFusion 10
continues to innovate to help make developers even more productive:

■■ The CFML language is the magic that makes ColdFusion coding so productive and
simple, but that simplicity need not be at the expense of power and flexibility. Chapter 7,
“CFML Enhancements,” introduces closures and additional CFML enhancements.

■■ CFScript is the scripting alternative to CFML, and it too gains new features in Cold-
Fusion 10, as discussed in Chapter 8, “CFScript Enhancements.”

■■ Chapter 9, “Object Relational Mapping Enhancements,” focuses on what’s new in Cold-
Fusion’s ORM support, including new search options, HQL logging, and more.

■■ ColdFusion has been built on Java since ColdFusion MX (aka ColdFusion 6), and expe-
rienced ColdFusion developers quickly learn how to leverage the underlying Java engine
to build more powerful applications. Chapter 10, “Enhanced Java Integration,” teaches
you how to use custom class paths, dynamic proxies, and more.

■■ Chapter 11, “XML Enhancements,” explains the new and improved XPath support,
which provides greater XML processing flexibility.

Part III: Enterprise Ready
Some of the most significant enhancements in ColdFusion 10 focus on administration and security:

■■ In Chapter 12, “ColdFusion in the Cloud,” you learn how to take advantage of innova-
tions in cloud computing, and ColdFusion’s new support for simplified cloud deployment
and hosting.

■■ Chapter 13, “Improved Administration,” teaches you all you need to know about the
updated ColdFusion Administrator, including the critically important hotfix and
update installer.

xx introduction

■■ Chapter 14, “Scheduling,” introduces the new and improved scheduler and explains
grouping, prioritization, event chaining, and more.

■■ Chapter 15, “Security Enhancements,” introduces the latest security risks and concepts
and explains which you should worry about and why.

■■ Caching has always been an important part of performance optimization, and Chapter 16,
“Improving Performance,” presents the latest and greatest caching techniques.

■■ Microsoft Exchange and Microsoft Office are critical to most organizations, and
Chapter 17, “Improved Integration,” focuses on integration with the latest versions of
these applications.

■■ Apache Solr was introduced in ColdFusion 9 as an alternative to the existing full-text
search engine. In ColdFusion 10, Solr is the default engine, and Chapter 18, “Apache
Solr,” explains how to use this new technology.

■■ In addition to everything covered thus far, ColdFusion 10 offers a long list of smaller
(but no less useful) enhancements, as enumerated in Chapter 19, “Miscellaneous
Enhancements.”

The Website
This book’s accompanying website contains everything you need to start writing ColdFusion
applications, including:

■■ Links to obtain ColdFusion 10

■■ Links to obtain Adobe ColdFusion Builder

■■ Source code and databases for all the examples in this book

■■ An errata sheet, should one be required

■■ An online discussion forum

The book web page is at http://www.forta.com/books/0321890965/.

And with that, turn the page and start reading. In no time, you’ll be creating powerful applica-
tions powered by ColdFusion 10.

http://www.forta.com/books/0321890965/

in this chapter

What Are Web Services?   55

ColdFusion Web Service Engine   59

Building Your First Web Service   60

Securing Your Web Service   67

Working with SOAP Requests   68

Application Settings   70

Configuring Web Services in ColdFusion
Administrator   73

Best Practices   73

Troubleshooting   74

SOAP or REST?   75

chapter 4
Web Services

Integration has always been a key strength and an important focus for ColdFusion. ColdFusion
supports most of the messaging frameworks and protocols required to effectively communicate
with different platforms, and web services are no exception.

On the basis of architectural style, two primary categories of web services are available: tradi-
tional Simple Object Access Protocol (SOAP)–based services and Representational State Transfer
(REST)–complaint services. ColdFusion has long made it easy to create and consume SOAP-based
web services. ColdFusion 10 builds on this foundation by upgrading the underlying engine for
SOAP-based web services and supporting creation of REST-based web services. In this chapter we
focus primarily on SOAP-based web services. Chapter 5 covers REST-based web services in detail.

note

Web services support in ColdFusion 10 builds on that of prior versions. Basic web services support is covered extensively in
Adobe ColdFusion 9 Web Application Construction Kit, Volume 3: Advanced Application Development, in Chapter 59, “Creating
and Consuming Web Services.”

What Are Web Services?
A web service is a web-based application or a network-accessible interface that can communicate
and exchange data with other such applications over the Internet without regard for application,
platform, syntax, or architecture.

At its core, it’s a messaging framework built on open standards through which different applications
interact with each other over the Internet, abiding by a definite contract. As simple as it may sound,
it truly enabled disparate applications to seamlessly interact and provide integrated solutions. It
streamlined the integration of new applications among vendors, partners, and customers without
the need for the centralized or proprietary software of enterprise application integration (EAI).

56 chapter 4   Web Services

There are many reasons for the success of the web services framework, but these are the
most important:

■■ Standard communication: It is based on widely adopted open standards such as
Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML).

■■ Platform independence: It provides an unambiguous way of defining, invoking, and
consuming a service through Web Services Description Language (WSDL) and SOAP.

■■ Loose coupling: Web services components are loosely coupled. A web service requires
almost no knowledge of the definitions of other separate components.

■■ Effortless integration: It’s widely adopted and has great tooling support. Creating,
publishing, and consuming a web service on any platform is basically like creating any
other component, with no additional effort.

For now, don’t worry about all the acronyms referred to here; we will look at them closely in
subsequent sections.

A Typical Web Service Invocation
Let’s now look at the steps involved in a complete web service invocation and see how the process
works (Figure 4.1).

Client

Web

Service

Requester

Server

Web

Service

Provider

What is this service?

It is available here.

How do I invoke it?

Look at this WSDL.

SOAP request: Get me something.

SOAP response: Here you go.

	 1.	 (Optional) If a client has no knowledge of a web service it is going to invoke, it may ask a
discovery service (usually on a separate server) to provide a service registered with it that
meets the client’s requirements. However, in most cases, clients will know which service
they want to invoke; hence, this step is optional.

Figure 4.1

Typical web service
invocation.

57What Are Web Services?

	 2.	 (Optional) On receiving an inquiry, the discovery service will return the available
service details registered with it.

	 3.	 The client needs to know how to invoke the service. It asks the web service to
describe itself.

	 4.	 The web service replies with an XML document describing the methods, arguments,
and types in WSDL.

	 5.	 Now that the client knows where the service is located and how to invoke it, using the
WSDL provided the web service creates the artifacts necessary to invoke and consume
the web service. It then sends a request over HTTP with all the details required in its
body in SOAP format.

	 6.	 The web service returns the result of the operation in a response over HTTP, again in
SOAP format.

Web Services Architecture
Now let’s look at the web services architecture and the key technologies that make web services
possible. For completeness, Figure 4.2 shows the main components of the architecture.

Discovery	 Aggregation and so on

Description	 WSDL

Messaging	 XML and SOAP

Transport	 HTTP (most popular)

A web service uses a transport medium such as HTTP to send messages in SOAP format, which is
based on XML, abiding by the contract between a client and a server described using WSDL.

Several technologies are absolutely central to the distributed architecture of web services. Among
these are HTTP, XML, and SOAP. Additionally, WSDL, a descendent technology, standardizes
the syntax for describing a web service and its operations.

HTTP

HTTP is a communications protocol for exchanging information over the Internet. It is the com-
mon transport mechanism that allows web service providers and consumers to communicate.

XML

XML is similar to HTML in that it uses tags to describe and encode information for transmission
over the Internet. HTML has preset tags that define the way that information is displayed. XML
lets you create your own tags to represent not only data but also a multitude of data types, which
helps ensure accurate data transmission among web service providers and consumers.

Figure 4.2

Web services
architecture.

58 chapter 4   Web Services

SOAP

SOAP is a lightweight protocol for the exchange of information in a distributed environment. SOAP
can be used in messaging systems or for invoking remote procedure calls. It is based on XML and
consists of three logical parts:

■■ A framework for describing what is in a message and how to process it

■■ A set of encoding rules for interpreting application-defined data types

■■ A convention for representing remote procedure calls and responses

SOAP handles the onerous job of translating data and converting data types between consumers
and web service providers.

Currently, two versions of SOAP are available: Version 1.1, and Version 1.2, which was an upgrade
of Version 1.1. Both are World Wide Web Consortium (W3C) standards, and web services can
be deployed using either version. However, Version 1.2 offers some significant advantages over its
predecessor, as you will see in the coming section.

note

To learn more about the SOAP specification, see the W3C’s note about SOAP at http://www.w3.org/TR/soap.

WSDL

WSDL is an XML-based language specification that defines web services and describes how
to access them.

WSDL is used to explain the details needed to invoke a web service over the Internet. WSDL
defines XML syntax for describing services between a set of endpoints: usually a client and a
server that exchange messages. This documentation can then act as a road map for automating the
details of a web service. WSDL describes the service interaction rather than the formats or net-
work protocols used to communicate. It simply defines the endpoints and their data, regardless of
the implementation detail.

Thankfully, today’s ColdFusion developers do not need to concern themselves with such intrica-
cies, or with the need to write documentation by hand, because ColdFusion generates WSDL
automatically. To view the generated WSDL for a ColdFusion component deployed as a web ser-
vice, append the string ?wsdl to the component’s URL. The WSDL document is then displayed
in your web browser.

note

To learn more about the WSDL, see the W3C’s WSDL specification at http://www.w3.org/TR/wsdl.

The W3C’s Web Services Description Working Group has published a new specification, WSDL
Version 2.0, which is based on SOAP Version 1.2. It is significantly different and not compatible
with WSDL’s earlier specification (Version 1.1); hence, it is called Version 2.0, not Version 1.2. We
will look at the differences between the two versions and the advantages provided by WSDL 2.0 in
the next section.

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl

59ColdFusion Web Service Engine

ColdFusion Web Service Engine
ColdFusion uses Apache Axis, a proven and reliable implementation of SOAP, as its underlying
engine to implement SOAP-based web services. ColdFusion Version 9 uses Axis 1, which sup-
ports only WSDL 1.1 and SOAP 1.1. Therefore, ColdFusion 9 cannot create web services using
these specifications and cannot consume external web services that used newer versions of WSDL
and SOAP.

ColdFusion 10 has upgraded its web services support and includes implementation based on Axis 2
as well. ColdFusion now supports both versions of the WSDL and SOAP specifications simultane-
ously while maintaining backward compatibility.

We have already noted that support for newer specifications is important for ColdFusion to play
well with external web services that use these specifications. This support also provides other
benefits, discussed in upcoming sections.

In the subsequent sections, we will treat Apache Axis as a web service engine.

SOAP 1.2
SOAP 1.2 can do everything that SOAP 1.1 does and more. Among others the most notable dif-
ferences between the two versions are the following:

■■ SOAP 1.1 is based on XML 1.0, and SOAP 1.2 is based on XML Information Set
(XML Infoset). XML Infoset provides a way to describe the XML document with an
XSD schema but is not bound to serialize using XML 1.0 serialization. Thus, SOAP 1.2
places no restriction on the way that the Infoset data is transported.

■■ SOAP 1.2 provides a binding framework. You can use SOAP 1.2’s specification of a
binding to an underlying protocol to determine which XML serialization is used in the
underlying protocol data units, thus making SOAP truly protocol independent.

■■ SOAP 1.2 includes HTTP binding. It provides support for both HTTP GET and
POST operations and conforms better to web architectural principles. Thus, it uses
established web technologies for improved performance.

■■ SOAP 1.2 provides a clear processing model. SOAP 1.2 is more robust and less
ambiguous because it has resolved many of the interoperability issues that were concerns
with SOAP 1.1.

To conclude, SOAP 1.2 is truly protocol agnostic, extensible, unambiguous, and more
HTTP friendly than SOAP 1.1.

tip

To visually differentiate between SOAP 1.2 and SOAP 1.1, look for xmlns:soapenv in the soap message. SOAP 1.2 will use
http://www.w3.org/2003/05/soap-envelope, and SOAP 1.1 will use http://schemas.xmlsoap.org/soap/envelope/.

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/soap/envelope/

60 chapter 4   Web Services

WSDL 2.0
WSDL 2.0 is the newer version of WSDL and a W3C standard. It is significantly different
from WSDL 1.1 and provides additional benefits since it:

■■ Uses SOAP 1.2: WSDL 2.0 uses SOAP 1.2 to provide all the benefits of SOAP 1.2 such
as better extensibility.

■■ Supports interface inheritance: As with Object-Oriented Programming (OOP),
a WSDL document can inherit from another WSDL document, providing reusability
and component-based architecture.

■■ Supports additional schemas: Along with the XML schema, WSDL 2.0 supports the
use of RelaxNG and DTD as type definitions.

■■ Supports additional message patterns: WSDL 2.0 supports eight new patterns,
including only single messages.

Although it is an enhanced version, WSDL 2.0 is mainly used to create SOAP-based REST-
complaint web services. One reason for its lower rate of adoption is that WSDL 1.1 is sufficient
for most common needs of most applications.

To view the generated WSDL 2.0 for a ColdFusion component deployed as a web service, append
the string ?wsdl2 to the component’s URL. Note that WSDL 2.0 is available only with Web Ser-
vice Engine Version 2.

Building Your First Web Service
Now it’s time to get started building a web service with ColdFusion.

To build a web service in ColdFusion, all we need to do is to write a ColdFusion component
(CFC). CFCs take an object-like approach to the grouping of related functions and encapsulation
of business logic. They also play a pivotal role in defining and accessing a web service.

We can create or reuse a prebuilt CFC with the operations we want to expose as functions and
make the CFC accessible to remote calls by specifying access=”remote”. The CFC location then
becomes the endpoint for the web service, and its remote functions become operations that can be
invoked on this web service.

note

For more information about CFCs, read Chapter 24, “Creating Advanced ColdFusion Components,” in Adobe ColdFusion 9 Web
Application Construction Kit, Volume 2: Application Development.

Now let’s create our first web service. We’ll start with the component in Listing 4.1.

61Building Your First Web Service

Listing 4.1   /cfwack/4/hello.cfc
<cfcomponent>
 <cffunction name=”helloWorld” returnType=”string” access=”remote”>
 <cfreturn “Hello World!”>
 </cffunction>
</cfcomponent>

The hello CFC starts with a <cfcomponent> tag, which wraps the component’s content. Then the
<cffunction> tag with a name and return type defines a single function, which simply returns
a static string. The optional access attribute is set to remote, which exposes this CFC as a web
service. And now we have a simple CFC-based web service, which we can publish and allow to be
called by web service clients across the web.

To quickly verify that this web service works, open http://localhost:8500/cfwack/4/hello.cfc?wsdl
in a browser. It should output the generated WSDL. Listing 4.2 shows part of the generated
WSDL for this hello CFC.

Listing 4.2   Part of the WSDL Generated for hello.cfc
<!— Some attributes have been omitted to keep focus only on elements
➥relevant to our discussion later in this section-->
<wsdl:binding name=”cfwack.4.hello.cfcSoap12Binding” ...>
 <soap12:binding ... style=”document”/>
 <wsdl:operation name=”helloWorld”>
 <soap12:operation ... style=”document”/>
 <wsdl:input>
 <soap12:body use=”literal”/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body use=”literal”/>
 </wsdl:output>
 <wsdl:fault ...>
 <soap12:fault use=”literal” .../>
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name=”cfwack.4.hello.cfc”>
 <wsdl:port name=”cfwack.4.hello.cfcHttpSoap11Endpoint” ...>
 <wsdl:port name=”cfwack.4.hello.cfcHttpSoap12Endpoint” ...>
</wsdl:service>

Here are a few details that you will observe here:

■■ An operation “helloWorld” is listed with the same name as that of the <cffunction>
function.

■■ The WSDL has all the information such as types, endpoints, and message style required
to execute this operation.

■■ Both SOAP 1.1 and SOAP 1.2 endpoints are supported through the same WSDL.

■■ The default WSDL style generated is Document Literal. You can change this style,
as you will see later in this chapter.

http://localhost:8500/cfwack/4/hello.cfc?wsdl

62 chapter 4   Web Services

ColdFusion will additionally log the web service engine used to deploy and access this web service
on the console. This log can come in handy when you want to verify that the WSDL was refreshed
and identify which web service engine was used for that particular operation.

Consuming a Web Service
Next we will see how to invoke this web service from ColdFusion. There are several ways to
invoke any web service in ColdFusion, and we will look at them one by one.

Let’s start with the <cfinvoke> tag. This tag can be used to invoke a web service by specifying the
webservice attribute, as shown in Listing 4.3.

Listing 4.3   Calling a Web Service with <cfinvoke>
<cfset wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”>
<cfinvoke
 webservice = “#wsURL#”
 method = “helloWorld”
 returnVariable = “result”>
<cfoutput> <H1> #result# </H1></cfoutput>

Here we are trying to invoke the hello CFC that we wrote earlier, using the <cfinvoke> tag.
We specified the CFC’s WSDL using the webservice attribute, the method to be invoked as
“helloWorld” uses the same name as the function, and returnVariable is used to store the result
of this operation. Then we simply output the result using <cfoutput> wrapped with HTML <H1>
tags. If you run this code in a browser, you should get output similar to that in Figure 4.3.

Also, since web services are built on top of HTTP, you may need to provide other attributes such
as proxy details if you are using an HTTP proxy server to connect to the web service provider and
passwords similar to those for the <cfhttp> tag for calls using the <cfinvoke> tag.

Similarly, you can use the <cfobject> tag to create a web service proxy object. Then you can
invoke methods on this object, which will be delegated as web service calls to actual endpoints.
Listing 4.4 uses <cfobject> to call the same hello web service described earlier, by specifying the
type as webservice.

Listing 4.4   Calling a Web Service with <cfobject>
<cfset wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”>
<cfobject
 name = “ws”
 webservice= “#wsURL#”
 type = “webservice”>
<cfset result = ws.helloWorld()>
<H1><cfoutput>#result#</cfoutput></H1>

Figure 4.3

Output generated
from hello CFC.

63Building Your First Web Service

When in script mode—that is, within a <cfscript> block or when writing CFCs in script syntax—
you can use the CreateObject() method to invoke a web service. It is the script equivalent of the
<cfobject> tag. Listing 4.5 shows how to use CreateObject to invoke a web service.

Listing 4.5   Calling a Web Service with CreateObject
<cfscript>
 wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”;
 ws = CreateObject(“webservice”, wsURL);
 result = ws.helloWorld();
 writeoutput(result);
</cfscript>

Refreshing Stubs
Recall the steps we have discussed for calling a web service. Creation of a web service proxy with
<cfobject> or CreateObject() consists of steps 3 and 4 in Figure 4.1. Any call to a web service using
this proxy will be steps 5 and 6. A web service call using <cfinvoke> involves steps 3 through 6.

However, steps 3 and 4 are computationally heavy operations and should be performed only once
for a WSDL that is not changing. Hence, ColdFusion optimizes this operation significantly.
ColdFusion makes a call to get the WSDL and generates the required stubs and artifacts only for
the first call to the web service, using <cfinvoke> or <cfobject>. From the next call onward, it uses
the generated stubs themselves, eliminating the need for steps 3 and 4.

This optimization creates a challenge in a development environment in which CFCs are being
constantly modified. ColdFusion does not implicitly refresh the stubs for changed WSDL. The
clients themselves have to refresh these stubs every time the WSDL changes. This operation
can be accomplished by setting the refreshWSDL attribute as true with <cfinvoke> or <cfobject>.
Although in a production environment refreshWSDL should be false, this is its default value, too.

Using Complex Data Types
In this section, you will see how to work with different ColdFusion data types. For that purpose,
let’s look at another CFC, this one with several functions that take some complex data types, such
as a struct or query, as arguments (Listing 4.6). Here we will focus on two processes: how to pass
an argument to a web service call and how to work on the result.

Listing 4.6   /cfwack/4/complex.cfc
<cfcomponent hint=”echoes back the input specified”>

<!---
The purpose of these functions merely is to demo accepting
and returning a complex object
--->

 <cffunction name=”echoStruct” returntype=”struct” access=”remote”>
 <cfargument type=”struct” name=”argStruct”/>

 <!---

64 chapter 4   Web Services

Listing 4.6   (continued)
 outputs argument passed to this function to console
 good for debugging while developing the service
 --->
 <cfdump var=”#argStruct#” output=”console”>
 <!--- typically your logic goes here --->
 <cfreturn argStruct>
 </cffunction>

 <cffunction name=”echoQuery” returntype=”query” access=”remote”>
 <cfargument type=”query” name=”argQuery”/>

 <cfreturn argQuery>
 </cffunction>

 <cffunction name=”echoDocument” returntype=”xml” access=”remote”>
 <cfargument type=”xml” name=”argDocument”/>

 <cfreturn argDocument>
 </cffunction>

 <cffunction name=”echoAny” returntype=”any” access=”remote”>
 <cfargument type=”any” name=”argAny”/>

 <cfreturn argAny>
 </cffunction>

</cfcomponent>

Let’s analyze what’s going on here. We have created a complex CFC that isn’t actually very com-
plicated. As you can see, it simply takes native ColdFusion data types as arguments and returns
them back: the function echoStruct takes a struct as an argument, the function echoQuery takes
a query as an argument, and the function echoAny can take any type as an argument.

Note that no special treatment is required to handle web service calls, and this CFC can work
directly by creating its object and can also serve Ajax Remoting and Adobe Flash Remoting calls.
You get the same data types to work with. It is ColdFusion’s responsibility to internally serialize
the given data type to XML format before sending the web service call as a client, and to deseri-
alize this XML back to the desired data type and pass it as an argument to the invoked function
when it receives the web service to process it as a server.

Passing Arguments
Next, let’s see how to invoke this web service with ColdFusion. We have already talked about dif-
ferent ways to invoke web services, and for this example we will use <cfinvoke>. Let’s look at how to
pass an argument and work with the returned object (Listing 4.7).

65Building Your First Web Service

Listing 4.7   /cfwack/4/complex.cfm
<cfset wsURL = “http://localhost:8500/cfwack/4/complex.cfc?wsdl”>

<cfset varStruct = {key1:”value 1”, key2:”value 2”} >
<!-- Passing arguments with cfinvokeparam --->
<cfinvoke webservice = “#wsURL#”
 method = “echoStruct”
 returnVariable = “result”>
 <cfinvokeargument name=”argStruct” value=”#varStruct#” >
</cfinvoke>

<h2> Dumping struct </h2>
<cfdump var=”#result#”/>

<cfset varQuery = QueryNew(“column1,column2,column3”) >
<cfset QueryAddRow(varQuery,[“row 1”, “row 2”, “row 3”])>

<!-- Passing arguments inline as key value pair --->
<cfinvoke webservice = “#wsURL#”
 method = “echoQuery”
 argQuery = “#varQuery#”
 returnVariable = “result”>
</cfinvoke>

<h2> Dumping query </h2>
<cfdump var=”#result#”/>

<!-- Passing arguments as argument collection --->
<cfinvoke webservice = “#wsURL#”
 method = “echoAny”
 argumentcollection = “#{argAny:’passing a string’}#”
 returnVariable = “result”>
</cfinvoke>

<h2> Dumping String </h2>
<cfdump var=”#result#”/>

As shown here, there are three ways to pass arguments to web service calls. Let’s look at them
one by one.

First we will see how to pass an argument using the <cfinvokeparam> tag. We begin by creating the
WSDL URL to be passed with <cfinvoke>. We then create a struct with implicit notation. And in
case the syntax confuses you, ColdFusion also supports JavaScript-style syntax for declaring the
struct. Next we use <cfinvoke> to call the web service by using <cfinvokeparam> as its child tag and
passing the arguments specified as a key-value pair. This key will be matched with the arguments
declared in the function and will be populated likewise.

Alternatively, you can pass arguments as superfluous attributes in the <cfinvoke> tag itself, as
shown in next call to echoQuery. Again, the attribute name is the argument name, and its value is
the value that we want to pass to the call.

66 chapter 4   Web Services

Finally, you can also use argumentcollection to pass a struct with the argument name as the key
and the value to be passed as its corresponding value as shown for the call echoAny call.

Note that you cannot use positional arguments with <cfinvoke> because the key is a mandatory
attribute in all three scenarios described here. To use positional arguments, you can use
<cfobject> or CreateObject() to generate a web service proxy and call methods on it. This call
will behave similarly to any other method invocation for components and supports positional
arguments, key-value syntax, and argument collection.

Also note that we passed a simple string to echoAny. We did this because the type definition of
“any” in generated WSDL supports only simple data types. If you passed any complex object
instead, it would fail with the “unknown type cannot serialize” exception.

We have now seen various ways to pass complex objects as arguments and get back complex
objects as the result of that particular web service call. What’s interesting is that there is almost
no difference between calling a web service and calling a component locally. That is the beauty
of ColdFusion: the capability to abstract the hard wiring required to perform a complex task such
as a web service call and expose it as something simple that we already know such as calling a
component. This ease of use lets us focus on the actual business logic and not to be bothered with
the underlying technology or mundane boilerplate code.

Working with Multiple Arguments
So far in our examples, we have seen functions with only one argument. But your real-world
functions more likely will have more than one argument. And though the mechanism to call these
functions as web services remains the same, there are a few details that you need to take care of.

When your function has more than one argument, you may want to make a few arguments
required and the rest optional. However, the <cffunction> attribute Required is ignored when a
CFC is called as a web service; for a web service, all arguments are required. ColdFusion doesn’t
support method overloading, so in in cases in which you want to pass only a few arguments, you
need to use either of two approaches:

■■ You can make the function private and define different public methods for all parameter
combinations. These methods will internally invoke this private function within the
CFC, which performs the actual processing and also honors the defaults.

■■ The second possible solution is to use a special value for arguments that you don’t want
to pass: for example, NULL. Then within the function body, you can check IsNull() and
place default values instead. If you use <cfinvoke>, then you can set the <cfinvokeargument>
tag’s attribute omit as true. If you are using a proxy object created with <cfobject> or the
CreateObject() method, you can simply pass NULL.

tip

To create NULL in ColdFusion, you can either use javaCast(“null”, 0) or call a function that returns nothing: for
example, function null(){}.

67Securing Your Web Service

Securing Your Web Service
Security is a very important aspect to consider when developing your services. As more and more
business functions are exposed as web services, the boundary of interaction keeps expanding, and
so does your responsibility to address all security requirements such as authentication, access con-
trol, data integrity, and privacy. In this section, we explore some ways to secure your web services.

To begin, you can always publish your web service over HTTPS. This approach will guarantee
point-to-point security because SSL secures communications at the transport level. However,
these scheme has limitations such as scalability issues, and you may not be able to use it.

You can also use your web server to control access to the directories containing your web services,
or you can use ColdFusion security in the same way that you use it to control access to any Cold-
Fusion page. The <cfinvoke> tag includes the username and password attributes that let you pass
login information to a web server using HTTP basic authentication.

Using ColdFusion to Control Access
Let’s look at how to secure our web services from within ColdFusion. There are many possible
ways to do so, and we will discuss just some of them here. You can pick the approach best suited to
your particular needs.

One scheme that you can use uses <cflogin>. Rather than letting web servers handle authorization,
you can implement authentication at the application level with Application.cfm (Listing 4.8).

Listing 4.8   /cfwack/4/secure/Application.cfm
<cfapplication name=”wack4_secure”>

<cflogin>
 <cfset authorized = false>
 <!--- verify username and password --->
 <cfif isDefined(“cflogin”)
 and cflogin.name eq “foo”
 and cflogin.password eq “bar”>
 <cfset authorized = true>
 </cfif>
</cflogin>

<cfif not authorized>
 <cfsetting enablecfoutputonly=”yes”
 showdebugoutput=”no”>
 <cfheader statuscode=”401”>
 <cfheader name=”WWW-Authenticate”
 value=”Basic realm=””Web Services”””>
 <cfabort>
</cfif>

This Application.cfm example includes a <cflogin> tag. As you may know, the body of this tag
runs only if there is no logged-in user. Therefore, the example includes some logic to validate
the user in the body of the <cflogin> tag. In a real-world scenario, you would be validating users
against a data source, LDAP, and so on. If the check here fails, the request is simply aborted,

68 chapter 4   Web Services

with a few authentication headers set. The same logic can be placed in the Application.cfc file’s
method OnRequestStart. This method is executed for all types of requests and is invoked before
the actual call to the web service method is made.

You can also use <cfloginuser> from within the <cflogin> tag to identify an authenticated user
to ColdFusion and specify the user ID and roles. This approach lets you set allowed roles in
<cffunction>, which can invoke that function.

Next, we explore how to invoke the same old hello web service, using the code snippet shown
in Listing 4.9.

Listing 4.9   /cfwack/4/secureclient/basic.cfm
<cfset wsURL = “http://localhost:1234/cfwack/4/secure/hello.cfc?wsdl”>

<cfinvoke webservice=”#wsURL#”
 method=”helloWorld”
 returnvariable=”result”
 username=”foo”
 password=”bar”>

<h1> <cfoutput>#result#</cfoutput> </h1>

As you can see, we are using the same <cfinvoke> tag that we have been using to additionally pass
username and password information. This information will be populated in the cflogin struct,
accessible within the <cflogin> tag as the name and password that we will use to validate our user.

Another approach is to use Open Standard for Authorization (OAuth) authentication. This
authentication protocol allows applications to access a user’s data in a secure way. Several good
libraries for both publishing and consuming OAuth integrations are available in ColdFusion for
you to investigate.

Finally, you can use SOAP headers for authorization purposes: for example, you can set Web Ser-
vice Security (WSS) headers and validate them either at the application level or the component
level, as described in the next section.

Working with SOAP Requests
ColdFusion offers a variety of ways to work with the SOAP requests and responses involved in
web services. Let’s look at them closely with an example.

We have already talked about CFCs and how the same components can be used to serve different
types of requests such as Adobe Flash Remoting and Ajax Remoting calls. When you want to han-
dle SOAP requests differently and to know whether the call originated as a web service call, you
can use the function IsSOAPRequest(). This function will return true if the CFC is being called as
a web service.

Also we have talked about how SOAP requests for web services use HTTP as the transport
medium. You also may know that HTTP uses headers to pass additional workable information
about the request and its response. So depending on the use case, you may need to read SOAP

69Working with SOAP Requests

request headers—for example, to get the username—or add headers to your SOAP responses—for
example, an authorization header. ColdFusion provides functions that let you read and add headers
to your SOAP request or SOAP response. Listing 4.10 provides an example.

Listing 4.10   /cfwack/4/soap.cfc
<cfcomponent hint=”Test for SOAP headers”>

 <cffunction name=”test” returntype=”string” access=”remote”>

 <cfset isSOAP = isSOAPRequest()>
 <cfif isSOAP>
 <!--- Get the first header as a string. --->
 <cfset username = getSOAPRequestHeader(“http://somenamespace/”,
 ➥“username”)>
 <cfset result = “username: “ & username>

 <!--- Get the second header as a string. --->
 <cfset password = getSOAPRequestHeader(“http://somenamespace/”,
 ➥“password”)>
 <cfset result = result & “ and password: “ & password>

 <!--- Add a header as a string. --->
 <cfset addSOAPResponseHeader(“http://somenamespace/”,
 “returnheader”, “AUTHORIZED”, false)>
 <cfelse>
 <cfset result = “Not invoked as a web service”>
 </cfif>

 <cfreturn result>
 </cffunction>

</cfcomponent>

As you can see, we have a simple soap CFC that has only one function test. Within this function,
we check whether the call is a SOAP request with isSOAPRequest(). If the result is true, we get the
headers from the request—that is, username and password—using getSOAPRequestHeader() and set
a returnheader header in the response using addSOAPResponseHeader(). If the result is false, then
we send back the result “Not invoked as a web service.” This example is very simple, but you can
see how different logic can be applied to perform various operations such as actual authentication.

Now let’s see this CFC in action by invoking the CFC once as a web service and for a second time
as a local method on a component (Listing 4.11).

Listing 4.11   /cfwack/4/soap.cfm
<cfscript>
 wsURL = “http://localhost:8500/cfwack/4/soap.cfc?wsdl”;
 ws = CreateObject(“webservice”, wsURL);

 // Set the username and passwordheader as a string.
 addSOAPRequestHeader(ws, “http://somenamespace/”, “username”, “user”);
 addSOAPRequestHeader(ws, “http://somenamespace/”, “password”, “pass”);

70 chapter 4   Web Services

Listing 4.11   (continued)
 // Invoke the web service operation.
 result = ws.test();

 // Get the first header as an object (string) and as XML.
 header = getSOAPResponseHeader(ws, “http://somenamespace/”, “returnheader”);
</cfscript>

<cfoutput>
 SOAP Return value: #result#

 SOAP Header value: #header#

</cfoutput>

<cfinvoke component=”soap” method=”test” returnvariable=”result”>
</cfinvoke>
<cfoutput>The cfinvoke tag returned: #result#</cfoutput>

Here we created a proxy for the SOAP web service using CreateObject(). Then we added two head-
ers, username and password, for this proxy. These headers will be added to the SOAP request when
the actual call is made, which is when the test method is called. We get back the result of this web
service call in result. Additionally, we extract the response header that was set in the CFC from
the proxy object. Next, we call a function on the SOAP CFC directly and output its results.

The output of this template when executed in a browser is obvious. For the SOAP request, the
output will return the username and password that were sent as headers, and it will also return
returnheader as “AUTHORIZED”. For a local call, it would simply return “Not invoked as a web service.”

Application Settings
Four application-level web service settings can be used to apply certain properties related to web ser-
vices across a given application. These settings are defined in Application.cfc in the this.wssettings
struct, shown in Listing 4.12, which we will discuss one by one. Note that these application settings
are introduced in ColdFusion 10 and are not available in previous ColdFusion versions.

Listing 4.12   /cfwack/4/Application.cfc
<cfcomponent>

 <cfset this.name=”cfwack_4”>

 <cfset this.wssettings.version.publish = 2>
 <cfset this.wssettings.version.consume = 2>
 <cfset this.wssettings.style = “wrapped”>
 <cfset this.wssettings.includeCFTypesInWSDL = false>

</cfcomponent>

71Application Settings

Including ColdFusion Types in WSDL
In our discussion of complex data types, we looked at the use of ColdFusion native data types with
web services. These data types are similar to a number of data types in C++ and Java, but they do
not exactly match any of the data types defined in the XML schema used by WSDL and SOAP for
data-type representation and conversion.

This lack of a match is fine if a web service is published and consumed within ColdFusion because
ColdFusion expects and understands its own data types and can serialize or deserialize them.
However, when clients other than ColdFusion call this web service, they will need additional
information to convert arguments to be sent with the web service call to data types that
ColdFusion expects and understands.

Here is where this.wssettings.includeCFTypesInWSDL comes to our rescue. It tells ColdFusion
whether to include ColdFusion’s native type information as an XML schema defined in the
WSDL itself. Using this schema, other platforms can understand the arguments and result types.

If your web services will be used only with ColdFusion clients, there is no need to include this
type information as it will increase the WSDL size. By default, it is set to false.

Deciding Which Web Service Engine to Use
Let’s step back a bit from our original topic of application settings. We said earlier that there
are two web service engines available to us with ColdFusion 10. You can choose the web service
engine to use according to your requirements:

■■ Web Service Engine Version 1: Use this version if you want to publish WSDL in RPC
style, or if you do not want all your existing web service clients to refresh their gener-
ated stubs. You should also use this version when you have web service clients on Cold-
Fusion 9 and you use complex data types.

■■ Web Service Engine Version 2: Use this version if you want to consume any web service
that is based on WSDL 2.0, or if you want to publish WSDL in wrapped style. With
ColdFusion 10, this is the default engine for publishing a web service.

■■ Either engine: For all other scenarios, you can use either of the web service engines.

Specifying the Web Service Engine
ColdFusion uses Web Service Engine Version 2 by default to publish any component as a web ser-
vice. However, you can override this behavior and tell ColdFusion which engine to use. You can
specify the web service engine used to publish your ColdFusion components in any of three places:

■■ Component level: You can specify wsversion with <cfcomponent> to declare the web ser-
vice engine to use to publish that particular component. The possible values are 1 and 2.
This setting takes the precedence over application- and server-level version declarations.

72 chapter 4   Web Services

■■ Application level: You can specify this.wssettings.version.publish in your Application.
cfm file to declare the web service engine at the application level. All the components in
the application will then be published using this setting. This setting takes precedence
over the server-level setting.

■■ Server level: You can specify the web service engine to be used across the server. Select
the version on the Web Services page in the Data and Services section of ColdFusion
Administrator, shown in Figure 4.4.

While consuming a web service, ColdFusion will try to understand the WSDL style. If the style
is Document Literal or Document Literal Wrapped, ColdFusion automatically uses Web Service
Engine Version 2, and if the style is RPC Literal, ColdFusion automatically uses Web Service
Engine Version 1. However, the caller can override this behavior by specifying the web service
engine to be used while consuming web services. There are two places to provide this option:

■■ While consuming a service: You can provide wsversion with <cfinvoke> to tell Cold-
Fusion which web service engine to use to consume the web service. The possible values
are 1 and 2, and this setting takes precedence over the application-level setting.

■■ Application level: You can specify this.wssettings.version.consume in your Application.
cfm file. Any call to consume web services will now use the specified version of the web
service engine.

Choosing the WSDL Style
ColdFusion can publish WSDL and consume web services that publish WSDL in the following styles:

■■ RPC Encoded: Specified with the <cfcomponent> attribute style=”rpc”, this style con-
siders web services as XML-based forms of Remote Procedure Calls (RPCs). Here the
SOAP message body contains only one element, which is named after the operation, and
all parameters must be represented as subelements of this wrapper element. This style is
available only with Web Service Engine Version 1.

■■ Document Literal: Specified with the <cfcomponent> attribute style=”document”, this
style considers web services as a means of moving XML information from one place to
another. Here, the SOAP message body must follow the XML schema defined in WSDL
as types. This style is available with both web service engine versions.

■■ Document Literal Wrapped: Specified with the <cfcomponent> attribute
style=”wrapped”, this style is similar to the Document Literal style, except that the
SOAP message body is wrapped within a root element. This style is available only
with Web Service Engine Version 2.

Figure 4.4

Changing the web
service version
in ColdFusion
Administrator.

73Best Practices

Alternatively, you can specify the WSDL style to use at the application level as this.wssettings.style.
ColdFusion will use this information to generate WSDL in the specified style for all the CFCs in
this application. You can individually override this setting with the <cfcomponent> attribute style,
which takes precedence over application-level settings.

Configuring Web Services in ColdFusion Administrator
The ColdFusion Administrator lets you register a web service with a name. You can do so by adding
a web service on the Web Services page in the ColdFusion Administrator in the Data and Services
section. When you reference that web service in your code with this name, you won’t have to specify
the URL or any other details for the web service call. For example, any time you invoke a web ser-
vice registered as ZipCodeWS on a particular server, you can refer to it as WebService=”ZipCodeWS”.
The URL can then be changed to point to another URL without the need to modify the invocation
code throughout the application. This approach represents a type of code encapsulation, which you
could also implement using application or request scope variables.

With ColdFusion 10, you can also specify proxy settings such as the proxy server, proxy port,
proxy username, and proxy password, and a server-level setting to cause any web service request
to time out at a particular time. When you call this web service by its name at the time of regis-
tration, you need not specify these settings again. However, settings provided at the time of the
actual web service call, such as a <cfinvoke> call, will override server-level settings.

Note that just accessing any web service from user code will not autoregister or change that web
service in ColdFusion Administrator, which used to happen until ColdFusion 9. With ColdFusion
10, to register a web service in ColdFusion Administrator you need to add or modify it from the
Administrator only.

note

To learn more about ColdFusion Administrator changes, visit http://www.adobe.com/devnet/coldfusion/articles/
axis2-web-services.html.

Best Practices
Web services have been around for a while and have generated significant hype. Along with the
advantages of cross-platform compatibility are some drawbacks. Although the distributed comput-
ing environment of web services is widely recognized as the way of the future, it carries the baggage
of network latency and additional translation time. The actual overhead of running a web service is
not as bad as perceived, but it is a factor to consider when selecting parts of systems to expose to the
world. Careful testing and optimization can reduce this potential problem significantly. Here are
several general principles to consider when programming and designing web services:

■■ Use coarse-grained web services. Network latency can be the biggest performance
bottleneck. Try to reduce calls to the server. Call a web service once and use a query of
queries to return the detailed information for display.

http://www.adobe.com/devnet/coldfusion/articles/axis2-web-services.html
http://www.adobe.com/devnet/coldfusion/articles/axis2-web-services.html

74 chapter 4   Web Services

■■ Secure your services. Never publish your web service without proper security in place.
See the discussion about securing your web services earlier in this chapter for details.

■■ Use a server-level timeout. Aim for a timeout value of 1 to 3 seconds; waiting for a web
service from a busy server to return can eat up all threads on your server and potentially
can bring it down.

■■ Preferably, call long running web services from a scheduler or <cfthread> and look for
caching possibilities. See Chapter 14 for information about schedulers and Chapter 16
for information about caching.

■■ Use stateless web services whenever possible.

■■ Include ColdFusion types in WSDL and limit the use of complex data types in web ser-
vices that interact with other platforms. Other platforms may not be able to understand
deeply nested types.

■■ Monitor your web service calls to understand their use. You can use ColdFusion server
monitoring, which monitors web service calls separately from other types of request.
With just the basic monitoring enabled, you can get valuable information about web ser-
vice requests, running or queued. And on the basis of this information, you can tweak
your server settings and also change the application code.

Troubleshooting
No matter how carefully you code, you can always end up with unexpected results. In such cases,
you will want to see what is happening and to pinpoint the code that is causing the problem.
Debugging can be difficult when there is client-server communication as in the case of web ser-
vices. Here are a few tips to help you identify and fix common problems that you may face:

■■ Check the WSDL. As explained earlier, append ?wsdl to the CFC URL and run the
URL in a browser to see whether the CFC has any compilation problems and whether
the generated WSDL is correct and accessible.

■■ Use <cfdump> to output to the console to check whether the call is coming to your appli-
cation and see what arguments are being passed. Remember to remove this function
when implementing your application for production.

■■ Use refreshWSDL. It is possible that the CFC you are accessing through the web service
has changed. Use this attribute with <cfinvoke> to regenerate the stubs. Remember to
remove it when implementing your application for production.

■■ If wsversion is not defined while consuming a web service, ColdFusion checks the
WSDL to determine which web service engine it should use to consume that particular
web service. You can force ColdFusion to use a specific web service engine by specifying
wsversion with <cfinvoke>.

75SOAP or REST?

■■ You can use the GetSOAPRequest function to get the actual SOAP request sent and the
GetSOAPResponse function to get the actual response received. This information can help
you determine whether correct information is being sent and whether you are receiving
the correct response.

■■ You can use a TCP monitor such as TCPMon to track exactly what is being sent and
received over the wire. The monitor acts like a proxy between the client and the server
and shows you the communication that occurred in between them.

SOAP or REST?
If you have ever wondered which form of web services you should use, you are not alone. However,
there is no easy answer. In this section, we list the key differences between SOAP and REST ser-
vices to help you decide which style to choose for your particular case.

■■ SOAP-based web services are object oriented, and REST-based web services are repre-
sentation oriented. Without going into detail, this distinction means that you can get
started easily with a SOAP-based solution, but a REST-based solution will need addi-
tional planning to create a logical hierarchy.

■■ SOAP-based web services are declarative, use the standard WSDL format to describe
them, and have great tooling support. REST-based web services do not yet have a stan-
dard for describing services.

■■ SOAP-based web services support only XML, and REST-based web services can sup-
port numerous content types, including JavaScript Object Notation (JSON), and can be
accessed directly from JavaScript.

■■ SOAP 1.1–based solutions do not conform to the HTTP model and hence cannot take
advantage of HTTP caching, security, and so on. REST is fully HTTP complaint.

■■ XML use makes the SOAP format verbose and its performance slower than REST using
JSON. However, REST clients may take a longer time when using XML.

■■ REST generates search-engine optimization (SEO)–friendly endpoints.

As a general rule, REST benefits web services directly accessed from web pages as in the case of
XMLHTTPRequests (XHR) , and SOAP benefits web services accessed by an intermediate server
or middleware.

This page intentionally left blank

This page intentionally left blank

Symbols and Numbers

: (colon separator), in structures, 128–129
= (equals), for assignment, 129
[] (square braces), for use with arrays, 129
{} (curly braces), use around structure keys, 129
2D graphics, what’s new in HTML5, 3

A
Access control

resource and sandbox security, 251
restricting by IP address, 221
web services, 67–68

Action attribute, <cfschedule>
with “List” value for listing tasks, 243–245
with “pause” or “resume” values, 246

Add/Edit scheduled tasks, 247
Admin API enhancements, 315
Administration enhancements. see also ColdFusion

Administrator
caching updates, 219
logging changes, 219–220
new theme, 217–218
overview of, 217
password reset script, 220
RDS configuration, 220
restricting access by IP address, 221
security updates, 219
server updates, 221–224

Adobe ColdFusion Developer Center, 323
Adobe Flash

automatic fallback for browsers that do not support
WebSocket, 10, 96

error handling and unsupported browsers and, 34
formats supported by Flash Player, 93
playing video with, 93
playlist support, 100
remoting, 64
rendering charts and, 36, 45
secure profiles, 252
video support in ColdFusion, 94–95

afterUnsubscribe method, in news handler
example, 18

Ajax
building detail page for chart, 46–48
new file and directory control, 218
remoting, 64

allowSubscribe method, in news handler example, 18

Alman, Ben, 107
Amazon CloudFront, 210
Amazon Elastic Beanstalk, 210
Amazon Machine Images. see AMIs (Amazon

Machine Images)
Amazon Web Services. see AWS (Amazon Web Services)
AMIs (Amazon Machine Images)

publishing a public, 215–216
safely publishing, 215
selecting predefined, 205–206

Anklam, Ryan, 107
Apache Axis

SOAP implementation used by ColdFusion, 59
updating embedded libraries, 319

Apache Solr
access logs, 318
adding/maintaining collection data, 141
boosting fields and documents, 302–303
collection use in ColdFusion, 145
DIH (DataImportHandler), 304–308
enhancements, 321
filtering custom data, 300–302
managing collections, 137–140
ordering index results, 304
processing text indexes, 137
specifying custom fields, 297–300
updates to ColdFusion support, 295–296
updates to embedded libraries, 320
Verity-Solr migration, 310

Apple iTunes, 100
Apple Safari. see Safari
Application state, managing in cloud computing, 212
Application.cfc file

application-specific caching, 266–267
handling form fields with same name, 120–121
implicit notation and, 123
javaSettings property, 169
onAbort event added to, 119–120
ORM searches at application level, 159

Applications
advantages of cloud, 201
caching, 266–267
getApplicationMetaData() function, 313
ORM searches at application level, 159
scheduling tasks at application level, 226–228
securing, 252
web services at application level, 70

Index

326 Index

Architecture
enhancements in ColdFusion release 9.0.2, 310–311
multiserver deployments, 311–312
Verity-Solr migration, 310
of web services, 57–58

Arguments
accepting Java arguments, 180
creating functions as, 110–111
event handling, 241
passing, 134
passing between web services, 64–66
passing complex, 134–135
working with multiple, 66

Arrays
arrayEach example, 112
arrayFilter example, 113–114
arrayFind example, 112–113
arraySort example, 114–115
looping over Java arrays, 185–186
for-in loops applied to Java arrays, 130
serialization, 84
square braces in syntax of, 129

Audio embedding, in HTML5, 3, 5
Audit logs, 219–220
Authenticate, JavaScript API function, 14
Authentication
onWSAuthenticate method, 27–29
securing web services, 67–68
single sign-on, 30–31

Availability
advantages of cloud, 201
Microsoft Exchange Server, 293–295

avg function, XPath example, 189–190
AWS (Amazon Web Services)

components of, 210
EC2 (Elastic Cloud Compute), 204–207
IaaS service model for, 202
overview of, 203–204
public cloud deployment, 203
registering with, 204
S3 (Simple Storage Service), 207–209
service levels, 211–212

Axis. see Apache Axis

B
Backups, cloud computing and, 214
Backward-compatibility issues, 316–317
Bar charts

example, 36
types of, 41

beforeanSendMessage method, in news handler
example, 18

beforePublish method, in news handler example, 18
Bitmaps, in HTML5, 3
Blogs, ColdFusion, 322–323
Builder, ColdFusion, 220
Built-in functions, cache regions and, 269–271

C
Cache regions

built-in functions and, 269–271
overview of, 267–268

Caching
application-specific, 266–267
built-in cache functions, 269–271
cache regions, 267–268
EhCache version update, 275
new cache functions, 271–272
query caching, 273–275, 320
Server Monitor support for, 275–277
updates, 219
what it is, 265–266

Calendars, Microsoft Exchange Server, 293–295, 313
Call stacks, debugging and, 313
Callback events, video embedding and, 97–98
canSendMessage method, in news handler example, 18
Canvas elements

chart support and, 35
rendering charts and, 45
what’s new in HTML5, 4–5

Capability elasticity, features of cloud computing, 200
<cfabort>, onAbort events, 119–120, 313
<cfcache>. see also Caching

caching functions, 270–271
EhCache and, 265

<cfchart>. see also Charts/charting
chart types, 40–41
getting started with, 35–37
overview of, 35
plot attribute, 49–50
previewing and zooming charts, 38–39
renderer attribute, 45
tags required for creating charts, 36
updating, 37

<cfchartdata>, 36
<cfchartseries>

plotting multiple series in charts, 45
querying data in charts, 38
tags required for creating charts, 36

<cfcollection>. see also Collections
collection function in place of, 137–141
creating collections, 305
listing current collections, 298

327Index

<cfcomponent>. see also CFCs (ColdFusion components)
application-level settings for web services, 70
building web services, 61
event handling, 240
ORM searches at component level, 159

<cfcookie>, 132–133. see also Cookies
CFCProxy class

calling CFCs from Java, 175–176
constructors, 176–177
directInvoke argument of, 181
importing, 177–178
invoke method, 177
overview of, 176
reasons for using proxy features, 185

CFCs (ColdFusion components)
building REST CFCs, 79–80
building web services, 60–62
calling from Java, 175–176
collection component in place of CFCOLLECTION

tag, 137–140
community-contributed tags, 146–147
CreateDynamicProxy function, 182–185
creating functions for, 111
documentation of, 145
errors returned from script-based tag-equivalents,

140–141
implicit constructors, 121–122
implicit notation, 123–124
index component in place of CFINDEX tag, 141–143
Invoking CFC methods from Java, 179
metadata, 146
method chaining, 122–123
newsHandler example, 17–19
ORM searches, 159
proxying as Java objects, 182–185
reasons for using REST services and, 77
reusing CFC instances, 135–136
search component in place of CFSEARCH tag,

143–145
serialization, 84
source code for, 146
tag equivalents, 147
testing REST CFCs, 80–82
updates to, 121
what you can do with CFC handlers, 16

<cfdump>
show attribute, 144
troubleshooting web services, 74

<cfexchangecalendar>, 294–295, 313. see also
Calendars, Microsoft Exchange Server

<cfexchangeconversation>, 290–293, 313. see also
Conversations, Microsoft Outlook

<cfexchangefolder>. see also Folders, Microsoft
Exchange Server

copy action, 288
create action for creating folders, 287
enhancements, 313
findSubFolders action for retrieving child folder

information, 286
getInfo action for retrieving folder information,

283–285
modify action, 287
move, delete, and empty actions, 289

<cffile>. see also files
strict attribute for file upload protection, 260
support for output content within tag body, 313

<cffunction>, specifying content types in REST, 82.
see also functions

<cfimage>, resize option, 312
<cfinclude>, runOnce attribute, 118–119, 312
<cfindex>. see also Indexes

DIH (DataImportHandler) features, 307–308
docboost and fieldboost attributes, 302–303
index component in place of, 141–143
orderby attribute, 304
specifying custom fields, 297–298

<cfinvoke>
authenticating web services and, 67–68
consuming web services, 62–63
passing arguments to web services, 64–66

<cflogin>
login security, 30–31
securing web services, 67–68
single user restriction in, 315

<cfloop>, looping over queries, 314
<cfmap>

attributes, 6
Cold Fusion 10 support for geolocation features of

HTML5, 5–7
ShowUser attribute, 312

<cfmediaplayer>
callback functions, 97–98
DRM (digital rights management), 103
playing YouTube video, 101–102
repeat attribute, 98–99
style attribute, 97
title attribute, 99–100
type attribute for video support, 94–95

CFML (ColdFusion Markup Language)
arrays and inline functions, 112–115
calling Java program with CFML page, 180–181
closures, 107–112
component updates, 121
enhancements, 312–314

328 Index

CFML (continued)
handling form fields with same name, 120–121
implicit constructors, 121–122
implicit notation, 123–124
Java integration, 165–168
lists and inline functions, 116
method chaining, 122–123
onAbort event added to Application.cfc file, 119–120
overview of, 107
passing CFCs to Java class, 184–185
queryNew and queryAddRow improvements, 124–125
runOnce attribute of <cfinclude>, 118–119
script-based development in, 128
source code for CFCs, 146
structs and inline functions, 116–118
syntax and behavior improvements, 118
WebSocket message integration, 16

<cfobject>
consuming web services, 62–63
loading Java classes, 167–168

<cfparam>, MAXLENGTH validation attribute, 313
<cfpop>, SECURE attribute for SSL processing, 313
<cfquery>, 273. see also Queries
<cfschedule>. see also Scheduling
Action attribute with “List” value for listing tasks,

243–245
application-level tasks, 227
chaining tasks, 231–233
changes to scheduling, 226
clustering scheduled tasks, 249–250
cronTime attribute, 236–237
deleting tasks, 230
event handling, 239–243
Exclude attribute, 233–234
FIRE_NOW option for handling task misfires, 238–239
Group attribute, 228–229
onException attribute, 237–238
pausing/resuming tasks, 246
prioritizing tasks, 230–231
Repeat attribute, 234–235
running tasks, 230

<cfscript>
approaches to CFC tag equivalents, 147
calling Java program with CFML page, 180–181
collection component in place of CFCOLLECTION

tag, 137–140
colon separator in structures, 128–129
community-contributed CFC-based tags, 146–147
consuming web services, 63
cookie statement in place of CFCOOKIE tag, 132–133
defining CFCs with, 179
documentation and source code of CFCs, 146

errors returned from script-based tag-equivalent
CFCs, 140–141

evolution of script-based development in CFML, 128
index component in place of CFINDEX tag, 141–143
invoke function in place of CFINVOKE tag, 133–136
looping, 129–130
looping over Java arrays, 185
overview of, 127
resources for, 147–148
search component in place of CFSEARCH tag,

143–145
setting statement in place of CFSETTING tag,

131–132
<cfsearch>

full-text searches, 150
performing basic search, 143–144
search component in place of, 143
search enhancements, 300–302

<cfsetting>, 131–132
Cfstat utility, secure profiles, 252
<cfthrow>, customizing responses in REST, 92
<cfwebsocket>. see WebSocket
Chaining scheduled tasks, 231–233
Channels, CFC handlers and, 17
Channels, WebSocket

defining, 11
subchannels for message filtering, 23–25

Chart object, ZingChart, 45
Charts/charting

clickable URLs in, 45–48
getting started, 35–37
highlighting important data in, 49–50
overview of, 35
plotting multiple series in, 44
previewing and zooming, 38–39
querying data in, 38
refreshing, 51–53
rendering, 44
styles, 42–44
types, 40–41
updating, 37, 50–51

Checkboxes, handling form fields with same name,
120–121

Chrome
HTML5 support, 4
video support, 94

Classes, Java
benefits of dynamic loading, 172
challenges of adding .class files to loadPaths,

174–175
challenges of dynamic loading, 173–175
creating class for CFCs, 183–184
defining application-specific class libraries, 169

329Index

example of dynamic loading of Java classes, 171–172
loading, 168–169
naming load paths, 169–170
passing CFCs to, 184–185
reloading changed classes, 169, 172–173
unexpected class or version loaded, 175
using, 167

Clickjacking, 263
closeConnection() function, JavaScript API, 14
Closures

arrays and, 112–115
benefits of, 111–112
creating functions as arguments, 110–111
defined, 107
defining functions within existing functions,

108–109
lists and, 116
structs and, 116–118
UDF (user-defined function) example, 108

Cloud
advantages of, 201
Amazon Web Services. see AWS (Amazon Web

Services)
cost model for, 211
deployment models, 203
design considerations, 212
designing for, 210
licensing and, 210–211
managing application state and transactions, 212
managing databases, 213–214
monitoring, 215
overview of, 199
publishing a public AMI, 215–216
security of, 214
service levels offered, 211–212
service models, 201–202
technologies of, 200–201
what it is, 199–200

CloudFront, Amazon, 210
Clustering scheduled tasks, 248–250
Code-level security, 251
ColdFusion Administrator

configuring web services, 73
DIH (DataImportHandler) configuration, 305
enhancements. see Administration enhancements
refreshing REST services, 92
registering REST services, 78, 92
scheduling in, 247
secure profiles, 252
securing, 251
Server Monitor option, 275
WebSocket options, 34–35

ColdFusion Builder, 220

collection component
approaches to CFC tag equivalents, 147
creating/manipulating collections, 139–140
deleting collections, 140
listing collections with, 138
methods, 140
in place of CFCOLLECTION tag, 137

collections, Solr
adding/maintaining collection data, 141
collection use in ColdFusion, 145
managing collections, 137–140
processing text indexes, 137

Colon separator (:), in structures, 128–129
Communication standards, 56
Community cloud, 203
Compiling Java programs, 178–179
Complex data types, web services, 63–64
Components. see CFCs (ColdFusion components)
Constructors
CFCProxy class, 176–177
implicit, 121–122

Content types, REST services, 82–83
Conversations, Microsoft Outlook

enhancements, 313
overview of, 290
performing actions, 292–293
retrieving, 290–291

cookie statement
approaches to CFC tag equivalents, 147
in place of <cfcookie>, 132–133

Cookies
secure profiles, 252
session management and, 261

Cost model, cloud computing, 211
CPUs

Amazon instance types and, 206
licensing and, 211

createDynamicProxy CFC function, 182–185
createObject() function, loading Java classes,

167–168
CreateObject() method

consuming web services, 62–63
creating proxy for SOAP web service, 70

Cron expressions, for Quartz scheduler, 235–237
cronTime attribute, <cfschedule>, 236–237
Cross-site scripting (XSS) protection, 252, 253–257
CSRF (cross-site request forgery) protection, 257–259
CSS3, what’s new in HTML5, 4
Curly braces ({}), use around structure keys, 129
Custom fields

boosting, 302–303
in indexes, 297–300

Customizing responses, with REST, 92

330 Index

D
Data types

complex in web services, 63–64
including ColdFusion types in WSDL, 71
specifying content types, 82–83

Databases
creating shared tables when clustering scheduled

tasks, 248–249
managing in cloud computing, 213

DataImportHandler. see DIH (DataImportHandler)
Dates
dateTimeFormat() function, 313
in task scheduling, 233–234

Debugging, call stacks and, 313
Deployment models, cloud computing, 203
Derby, updates to embedded libraries, 320
Design considerations, cloud computing, 212
detail method, in REST application, 89
Developer edition, 321
Digital rights management (DRM), 103
DIH (DataImportHandler)

indexing data, 307–308
overview of, 304–305
setting up, 305–306

directInvoke argument, of CFCProxy class, 181
Directories

controlling access to, 251
DirectoryCopy() function, 313

DNS lookup, example of CFML/Java integration,
166–167

docboost attribute, <cfindex>, 302
Document Literal Wrapped, WSDL styles, 72
Document Literal, WSDL styles, 72
Documentation

of CFCs, 146
ColdFusion 10, 322

Documents
docboost attribute, 302
Microsoft Office. see Microsoft Office documents

DRM (digital rights management), 103
DTD, WSDL support for type definitions, 60

E
EAI (enterprise application integration), 55
EAR files, 312
EBS (elastic block storage), 206
EC2 (Elastic Cloud Compute)

AMIs (Amazon Machine Images), 205–206
instance types, 206
overview of, 204
public cloud deployment, 203
purchasing model, 205

region and availability zone, 205
security types, 207
service levels, 211–212

EhCache
ColdFusion caching engine based on, 265
ehcache.xml file, 266–267
enhanced query caching and, 273–275
updates to embedded libraries, 320
version update, 275

Elastic Beanstalk, Amazon, 210
Elastic block storage (EBS), 206
Elastic Cloud Compute. see EC2 (Elastic Cloud

Compute)
ELB (Elastic Load Balancer), from Amazon, 213
Email, notification of server updates, 224
Embedded libraries, updating

Apache Solr, 320
Derby, 320
EhCache, 320
Java, 319
Lucene, 320
overview of, 319
Web services, 319
XML (Extensible Markup Language), 319

Embedding video. see Video embedding
Encoding functions, for XSS protection, 254–257
End-user license agreement (EULA),

cloud computing and, 211
Enterprise edition

application-level tasks, 226–227
compared with Standard edition, 321
scheduling in, 225

Ephemeral storage, EC2 storage options, 206
Equals (=), for assignment, 129
Error handling

video embedding and, 97–98
WebSocket, 34

EULA (end-user license agreement), cloud computing
and, 211

Event handling
arguments, 241
<cfcomponent>, 240
<cfschedule>, 239–240
stubs, 240
using, 241–243

EWS (Exchange Web Services), 281–282
Excel, Microsoft, 295–296
Exception handling, scheduled tasks and, 237–238
Exchange Server. see Microsoft Exchange Server
Exchange Web Services (EWS), 281–282
Exclude attribute, <cfschedule>, 233–234
Excluding dates, in task scheduling, 233–234
Explicit indexing, in ORM, 157–158

331Index

Extensible Markup Language. see XML (Extensible
Markup Language)

Extensible Stylesheet Language Transformations.
see XSLT (Extensible Stylesheet Language
Transformations)

F
fieldboost attribute, <cfindex>, 302
Fielding, Roy, 77
Files
Expandpath() function, 313
location and arrangement in multiserver

deployments, 311
upload protection, 260–261

FileZilla, 207
Filtering custom data, in indexes, 300–302
Filtering WebSocket messages

overview of, 22
selectors, 25–27
subchannels, 23–25

FIRE_NOW option, <cfschedule>, 238–239
Firefox

HTML5 support, 4
video types supported, 94

Flash. see Adobe Flash
Flexibility, advantages of cloud, 201
folderPath attribute, <cfexchangefolder>, 285
Folders, Microsoft Exchange Server

creating, 287
enhancements, 313
modifying, 287–288
retrieving folder information, 283–286

for-in loops
looping over Java arrays, 130
looping over queries, 129–130

Forms, handling form fields with same name, 120–121
Full-text searches

with Apache Solr. see Apache Solr
of ORM entities. see ORM (object relational

mapping)
Functions. see also by individual type

built-in, 269–271
caching functions, 270–272
creating as arguments, 110–111
for CSRF protection, 257–259
defining functions within existing functions,

108–109
encoding functions for XSS protection, 254–257
for extending SQL queries to ORM, 150
implementing tags as, 133
returning system-level information, 313
secure profiles, 252
uses of, 111

G
Garbage collection (GC), JVM tuning and, 277–279
GC (garbage collection), JVM tuning and, 277–279
Geolocation API, HTML5, 4–7
GetSOAPRequest function, troubleshooting web

services, 75
getSubscriberCount, JavaScript API function, 14
getSubscriptions, JavaScript API function, 14
Google API key, 7–8
Google Chrome

HTML5 support, 4
video support, 94

Google maps
accessing, 7–8
Geolocation API and <cfmap> tag and, 5–7

Group attribute, <cfschedule>, 228–229
Grouping scheduled tasks, 228–229

H
Hash() function, for password security, 262
Heap, JVM tuning and, 278
Hibernate, ORM and, 149
Hibernate Query Language (HQL)

extending SQL queries to ORM, 150
logging, 162

Hierarchy management, in ORM, 163
Highlighting chart data, 49–50
HMAC() function, for hash-based message

authentication, 262
Hotfixes, managing from Administrator, 221
HQL (Hibernate Query Language)

extending SQL queries to ORM, 150
logging, 162

HTML5
accessing Google maps, 7–8
automatic fallback for browsers that do not support

WebSocket, 96
browser support, 4
building REST application in, 91–92
Cold Fusion 10 support, 5
Geolocation API and <cfmap> tag, 5–7
video embedding support, 93–94
what’s new, 3–4

HTTP (Hypertext Transfer Protocol)
connecting to Exchange mailboxes, 281
cookie values used by session management, 261
invoking web services and, 57
overview of, 57
REST closely tied to, 77
standardization of communication, 56
as transport medium for SOAP requests, 68–69

332 Index

HTTPS (Secure HTTP)
connecting to Exchange mailboxes, 281
securing cloud computing, 214
securing web services, 67

Hybrid cloud, 203
Hypertext Transfer Protocol. see HTTP (Hypertext

Transfer Protocol)

I
IaaS (Infrastructure as a Service), 202
IE (Internet Explorer)

HTML5 support, 4
video types supported, 94

IIS (Internet Information Services), 214
Implicit constructors, 121–122
Implicit indexing, in ORM, 158
Implicit notation, 123–124
index component

methods, 143
in place of CFINDEX tag, 141
querying data source with, 142–143

Indexes, Apache Solr
boosting custom fields and documents, 302–303
DIH (DataImportHandler) and, 304–308
filtering custom data, 300–302
ordering results, 304
specifying custom fields, 297–300

Indexes, ORM
enabling entities for, 151–152
of entities, 152
explicit and implicit, 157–158
purging, 158

Infrastructure as a Service (IaaS), 202
init(), initializing Java class constructors, 167
Inline (or inner) functions. see Closures
Installer, ColdFusion 10, 311
Instance types, EC2 (Elastic Cloud Compute), 206
Integration

benefits of web services, 56
copying Exchange folders, 288
creating Exchange folders, 287
as focus of ColdFusion, 55
with Java. see Java integration
for Microsoft Exchange Server 2010, 281–283
for Microsoft Office documents, 295–296
modifying Exchange folders, 287–288
moving, deleting, or emptying Exchange folders, 289
overview of, 281
performing Exchange availability operations,

293–295
performing Exchange conversation actions, 292–293
retrieving Exchange conversations, 290–291

retrieving information about Exchange folders,
283–286

Interface, defining Java interface, 182
Internet Explorer (IE)

HTML5 support, 4
video types supported, 94

Internet Information Services (IIS), 214
invoke function

approaches to CFC tag equivalents, 147
invoking web service methods, 136
JavaScript API function, 14
for passing arguments, 134–135
in place of <cfinvoke>, 133
for reusing CFC instances, 135–136

invoke method, CFCProxy class, 177
invokeAndPublish function

JavaScript API function, 14
publishing messages, 31–32

Invoking web services, 56–57, 136
IP addresses, restricting access by, 221
IsSOAPRequest() function, 68–69
iTunes, playlist support, 100

J
.jar (Java archives)

challenges of adding to loadPaths, 174–175
loading Java classes, 168–169

Java
disabling access to Java components, 252
for-in loops applied to Java arrays, 130
updates to embedded libraries, 319

Java Development Kit (JDK), 178–179
Java Enterprise Edition (JEE)

ColdFusion running on JEE application server, 277
deployment option, 311

Java integration
accepting arguments, 180
calling CFCs from Java, 175–176
calling Java program with CFML page, 180–181
CFCProxy class and, 176–178
challenges of dynamic loading of classes, 173–175
compiling Java program, 178–179
createDynamicProxy CFC function, 182–185
defining application-specific class libraries, 169
directInvoke argument of CFCProxy class, 181
DNS lookup example, 166–167
invoking CFC methods, 179
load path example, 170
loading Java classes, 168–169
looping over Java arrays, 185–186
overview of, 165
reloading changed classes, 172–173

333Index

reverse-DNS java library example of dynamic class
loading, 171–172

this.javaSettings for application-specific class
loading, 168

using Java libraries and classes, 167
Java Server Pages (JSPs), 168
Java Virtual Machine (JVM)

loading Java classes, 168
tuning, 277–279

javac command, compiling Java programs, 178–179
JavaScript, 102

API for setting source on media players, 95
HTML5 compatibility plug-ins, 4
messageHandler function, 12–13
playerOperation function, 102
WebSocket requiring, 10
what’s new in HTML5, 4
working with JavaScript API, 13–16

JavaScript API function, 12–13
JavaScript Object Notation. see JSON (JavaScript

Object Notation)
javaSettings property, application.cfc file, 169–170
JDK (Java Development Kit), 178–179
JEE (Java Enterprise Edition)

ColdFusion running on JEE application server, 277
deployment option, 311

jQuery, creating functions as arguments, 110
JRun Metrics logging, 317
JSON (JavaScript Object Notation)

refreshing charts, 51
SOAP vs. REST and, 75
specifying content types in REST, 82–83
styling charts, 42–43
XML compared with, 187

JSPs (Java Server Pages), 168
JVM (Java Virtual Machine)

loading Java classes, 168
tuning, 277–279

jvm.config file, 279, 312

K
Key:value pairs, support for colon separators in

structures, 128–129
Kumar, Rupesh, 162

L
Layouts, templates for, 118–119
Libraries, Java

defining application-specific class libraries, 169
reverse-DNS java library example of dynamic class

loading, 171–172
using, 167

Libraries, updates to embedded, 319

Licensing
changes to, 322
cloud computing and, 210–211

list method, in REST application, 89
listFilter example, inline functions in, 116
listLen function, handling form fields with same

name, 120–121
Lists

inline functions and, 116
of scheduled tasks, 243–245

Load paths
challenges of adding .jar or .class files to loadPaths,

174–175
Java integration and, 170

Logging
access requests, 318
administrative changes, 219–220
enhancements to, 317–318
execution of scheduled tasks, 226
HQL logging, 162

Logon, limited to single administrator at a time, 315
Loop playback, video, 98–99
Looping

over Java arrays, 185–186
over queries, 129–130

Loose coupling, benefits of web services, 56
Lucene, updates to embedded libraries, 320

M
m3u playlist format, support in media players, 100
MathML (Mathematical Markup Language), 3
MAXLENGTH validation attribute, <cfparam>, 313
Measure service, features of cloud computing, 200
Media players

callback functions, 97–98
extending, 101
loop playback support, 98–99
playlist support, 100
poster image support, 99
setting source on, 95
style attribute for skinning, 97
title support, 99–100
type attribute for video support, 94–95

Memory allocation, JVM heap and, 278
Message handlers

JavaScript messageHandler function, 12–13
in news handler example, 20

Messages, WebSocket
filtering, 22
generating with CFCs, 31–32
JavaScript messageHandler function, 12–13
selectors, 25–27
subchannels, 23–25

334 Index

Metadata
applications and sessions, 313
CFCs, 146

Methods
CFCs, 146
chaining method calls, 122–123
collection component, 140
index component, 143
invoking CFC methods from Java, 179
invoking web service methods, 136

Metrics logging, 317
Microdata, what’s new in HTML5, 4
Microsoft Excel, integration with ColdFusion,

295–296
Microsoft Exchange Server 2010

creating folders, 287
integration with ColdFusion, 281–283
modifying folders, 287–288
performing availability operations, 293–295
performing conversation actions, 292–293
retrieving additional folder information, 285–286
retrieving basic folder information, 283–285
retrieving child folder information, 286
retrieving conversations, 290–291

Microsoft Internet Explorer. see IE (Internet
Explorer)

Microsoft Office documents
adding/maintaining data in Solr collections, 141
integration improvements, 295–296

Microsoft Outlook. see Conversations, Microsoft
Outlook

Microsoft PowerPoint, 295–296
Microsoft Windows Media Player, 100
Microsoft Word, 295–296
MIME types

checking MIME values of files, 260–261
specifying for video, 94
what’s new in HTML5, 4

Monitoring cloud, 215
Mozilla Firefox

HTML5 support, 4
video types supported, 94

MP4s
playing using <cfmediaplayer>, 94–95
playing using Adobe Flash, 97
playing using HTML5, 96
video types, 94

Multiserver deployments, architecture enhancements,
311–312

N
National Institute of Standards and Technology

(NIST), 199
Network access, features of cloud computing, 200
Nielsen, Lasse, 107
NIST (National Institute of Standards and

Technology), 199
Notation, implicit, 123–124
NULL values, in ColdFusion, 66

O
OAuth (Open Standard for authentication), 68
Object relational mapping. see ORM (object relational

mapping)
Object-Oriented Programming (OOP), 60
Office documents. see Microsoft Office documents
Offline searches, ORM and, 155–157
Offline storage, what’s new in HTML5, 4
Ogg video type, 94
onAbort event

added to Application.cfc file, 119–120
<cfabort>, 313

On-demand self-service, features of cloud
computing, 200

onError, callback function, 97–98
onException attribute, <cfschedule>, 237–238
onPause, callback function, 97–98
onWSAuthenticate method, WebSocket, 27–29
OOP (Object-Oriented Programming), 60
Open Source Media Framework (OSMF), 101
Open Standard for authentication (OAuth), 68
openConnection, JavaScript API function, 14
Opera

HTML5 support, 4
video types supported, 94

orderby attribute, <cfindex>, 304
ORM (object relational mapping)

explicit and implicit indexing, 157–158
hierarchy management, 163
HQL logging, 162
indexes, 151–152
indexing ORM entities, 151–152
overview of, 149
purging indexes, 158
searches, 149–150
searching by level, 158–161
searching multiple entity types, 154–155
searching offline, 155–157
searching ORM entities, 152–154
searching relationships, 157

OSMF (Open Source Media Framework), 101

335Index

P
PaaS (Platform as a Service), 202
Parent-child relationships, in ORM hierarchy, 163
Passwords
hash() function for securing, 262
reset script, 220
secure profiles, 252

PDFs, in Solr collections, 141
Performance improvements

application-specific caching, 266–267
built-in functions and, 269–271
cache regions, 267–268
caching and, 265–266
EhCache version update, 275
JVM tuning, 277–279
new cache functions, 271–272
overview of, 265
query caching, 273–275
Server Monitor support for caching, 275–277

Pie charts, 36–37, 41
Platform independence, web services and, 56
Player controls, video embedding and, 96–97
playerOperation, JavaScript, 102
Playlists, video embedding and, 100
plot attribute, <cfchart>, 49–50
Plotting multiple series, in charts, 44
Point-to-point applications, WebSocket, 32–34
POST operations, secure profiles, 252
Poster images, video embedding, 99
PowerPoint, integration with ColdFusion, 295–296
Previewing charts, 38–39
Prioritization, of scheduled tasks, 230–231
Private cloud, cloud deployment models, 203
Properties

ORM searches at property level, 160–161
Outlook conversations, 291
Quartz scheduler, 250

Public cloud, cloud deployment models, 203
Publish, JavaScript API function, 14

Q
Quartz scheduler

clustering tasks, 248
Cron expressions, 235–237
customizing, 250
overview of, 226

Queries
caching, 273–275, 320
chart data, 38
clearing query cache, 219
of data sources, 142–143
looping, 129–130
script-based, 130

queryAddRow, improvements to CFML, 124–125
queryNew, improvements to CFML, 124–125

R
RDP (Remote Desktop Protocol), 207
RDS (Remote Development Services)

administrative changes, 220
sandbox permissions for, 315–316
secure profiles, 252

Real Time Messaging Protocol (RTMP)
extending media players, 101
streaming video, 102–103

Recovery planning, cloud computing and, 214
Redundancy, cloud computing and, 214
Refreshing chart data

with random chart type, 51
in real time, 52–53
updating entire chart, 50–51

RefreshWSDL, troubleshooting web services, 74
Registration, of REST services, 78–79
Relationships of ORM entities, searching, 157
RelaxNG type definitions, WSDL, 60
Reliability, advantages of cloud, 201
reloadOnChange, Java classes, 172–173
Remote Desktop Protocol (RDP), 207
Remote Development Services. see RDS (Remote

Development Services)
renderer attribute, <cfchart>, 45
Rendering charts, 44–45
repeat attribute, <cfmediaplayer>, 98–99
Repeat attribute, <cfschedule>, 234–235
Representational State Transfer. see REST

(Representational State Transfer)
Resource pooling, cloud computing and, 200
Resources, securing, 251
REST (Representational State Transfer)

Axis 2 support, 319
building REST CFCs, 79–80
cloud technologies and, 201
customizing responses with, 92
dynamically initializing REST services, 92–93
registering REST services, 78–79
sample application, 87–92
SOAP compared with, 75–76
specifying content types, 82–83
testing REST CFCs, 80–82
types of web services, 55
what it is, 77–78
working with subresources, 85–86
XML search filtering results of REST service call, 191
XML serialization and, 84–85

restInitApplication, REST services, 92–93
restSetResponse, REST services, 92

336 Index

Reverse-DNS lookup
example of CFML/Java integration, 166–167
example of dynamic loading of Java classes, 171–172

Robust Exception Information, secure profiles, 252
Rooms, Microsoft Exchange Server

retrieving available, 295
viewing list of, 294

Root Path, REST services, 78
RPC Encoded, WSDL styles, 72
RTMP (Real Time Messaging Protocol)

extending media players, 101
streaming video, 102–103

runOnce attribute, <cfinclude>, 118–119, 312

S
S3 (Simple Storage Service)

accessing with ColdFusion, 207–209
EC2 storage options, 206
overview of, 207
public cloud deployment, 203
service levels, 211–212

SaaS (Software as a Service), 202
Safari

HTML5 support, 4
video support, 94

Sandboxes
access rules, 251
RDS permissions, 315–316
secure profiles, 252

Scalable vector graphics (SVG), 3, 45
Scheduling

adding and editing tasks, 247–248
application-level tasks, 226–228
chaining tasks, 231–233
changes to, 226
clustering scheduled tasks, 248–250
ColdFusion Administrator and, 247
comparing Standard and Enterprise editions, 225
Cron expressions for Quartz scheduler, 235–237
customizing Quartz scheduler, 250
deleting tasks, 230
excluding dates, 233–234
grouping tasks, 228–229
handling events, 239–243
handling exceptions, 237–238
handling misfires, 238–239
listing scheduled tasks, 243–245
logging task execution, 226
overview of, 225
pausing/resuming tasks, 246
prioritizing tasks, 230–231
Quartz engine for, 226
repeating tasks, 234–235
running tasks, 230

sClosure() function, 117–118
Scripts. see <cfscript>
Scripts, cross-site, 252, 253–257
search component

basic search, 143–144
crawling web sites and, 145
in place of <cfsearch>, 143

Search engine optimization (SEO), 75
Searches. see <cfsearch>
Searches, Apache Solr

boosting custom fields and documents, 302–303
DIH (DataImportHandler) and, 304–308
filtering custom data, 300–302
ordering results, 304
specifying custom fields, 297–300

Searches, ORM
by level, 158–161
offline searches, 155–157
overview of, 149–150
searching entities, 152–154
searching multiple entities by type, 154–155
searching relationships, 157

SECURE attribute, <cfpop>, 313
Secure File Transfer Protocol (SFTP), 207
Secure HTTP. see HTTPS (Secure HTTP)
Secure profiles, 252–253
Secure Shell (SSH), 207
Secure Sockets Layer (SSL), 67, 313
Security

backward-compatibility issues, 316–317
clickjacking and, 263
of cloud, 214
CSRF (cross-site request forgery) protection,

257–259
file upload protection, 260–261
Hash() function and, 262
HMAC() function and, 262
overview of, 251
sandbox permissions for RDS, 315–316
secure profiles, 252–253
securing WebSocket applications, 27–30
Session feature improvements, 261
single sign-on authentication, 30–31
single user restriction in <cflogin>, 315
updates, 219
web services, 67–68
XSS (cross-site scripting) protection, 253–257

Security groups, EC2 (Elastic Cloud Compute), 207
Selectors, for filtering WebSocket messages, 25–27
SEO (search engine optimization), 75
Serialization, XML, 84–85
Server deployment option, 311
Server Monitor, 275–277
Server Settings, Scheduled Tasks link, 227

337Index

Servers
adding to clustered scheduled tasks, 249
managing updates, 221–224
ORM searches at server level, 158
securing, 252
serverVersion attribute, 282–283
WebSocket server-side functions, 21–22

Service level agreements (SLAs), 211
Service levels, cloud computing, 211–212
Service Mapping, REST services, 78
Service models, cloud computing, 201–202
Sessions

security enhancements, 261
session fixation protection, 316–317
sessionGetMetaData() function, 313

Set as Default Application, REST services, 79
SetSource on media players, JavaScript API, 95
setting statement

approaches to CFC tag equivalents, 147
in place of <cfsetting>, 131–132

SFTP (Secure File Transfer Protocol), 207
showuser attribute, <cfmap>, 5, 312
Simple Storage Service. see S3 (Simple Storage Service)
Single sign-on authentication, 30–31
SLAs (service level agreements), 211
SOAP (Simple Object Access Protocol)

Apache Axis implementation, 59, 319
authorization by using SOAP headers, 68
cloud technologies and, 201
invoking web services and, 57
overview of, 58
platform independence and, 56
requests, 68–70
REST compared with, 75–76
types of web services, 55
web service engine options, 59–60
WSDL support, 61

Software as a Service (SaaS), 202
Solr. see Apache Solr
Source code, of CFCs, 146
Special characters, in Cron expressions, 235–236
SQL (Structured Query Language)

enabling SQL logging by ORM, 162
searching databases with, 149–150
secure profiles, 252

Square braces ([]), for use with arrays, 129
SSH (Secure Shell), 207
SSL (Secure Sockets Layer), 67, 313
Standard edition

compared with Enterprise edition, 321
scheduling in, 225

Statements, within scripts
cookie statement in place of CFCOOKIE tag, 132–133
setting statement in place of CFSETTING tag, 131–132

Statistics tab, Server Monitor, 275
Storage

EC2 (Elastic Cloud Compute), 206
temporary. see Caching
what’s new in HTML5, 4

Streaming video, 102–103
strict attribute, <cffile>, 260
Strobe Media Playback

DRM (digital rights management), 103
extending media players, 101
streaming video, 102–103

structFilter example, inline functions in, 116–117
Structs/structures

colon separator in, 128–129
inline functions and, 116–118
serialization, 84

Structured Query Language. see SQL (Structured
Query Language)

Stubs
event handling, 240
web services, 63

Styles, chart, 42–44
Subresources, REST services, 85–86
SVG (scalable vector graphics), 3, 45
Syntax improvements, 118–121
System-level information, functions returning, 313

T
Tasks

application-level vs. server level, 227–228
scheduling. see Scheduling

TCO (total cost of ownership), cloud computing
and, 201

TCPMon, troubleshooting web services, 75
Technologies, cloud computing, 200–201
Templates

for layouts, 118–119
secure profiles, 252

Themes, 217–218
This scope, CFCs (ColdFusion components), 123
this.javaSettings, for application-specific class

loading, 168
Time, dateTimeFormat() function, 313
Time to market, advantages of cloud, 201
Titles, video embedding and, 99–100
Tokens, for setting attribute values, 49–50
Tomcat, as default server engine, 277
Total cost of ownership (TCO), cloud computing

and, 201
Transactions, managing in cloud computing, 212
Trusted cache, 219
Tutorials, ColdFusion, 323

338 Index

U
UDFs (user-defined functions)

building utilities with, 111
creating functions as arguments, 110–111
defining functions within existing functions,

108–109
example, 108

Uniform resource locators. see URLs (uniform
resource locators)

Universally unique IDs (UUIDs), 213, 252
Unix, password reset script, 220
update method, in REST application, 89
Updates

caching, 219
chart, 50–51
component, 121
security, 219
server, 221–224

URLs (uniform resource locators)
adding clickable URLs to charts, 45–48
benefits of using REST services, 77
for JSON and XML responses, 84–85
REST subresources and, 85–86

User-defined functions. see UDFs (user-defined
functions)

Users, finding user availability for calendar events,
294–295

UUIDs (universally unique IDs), 213, 252

V
Variables, XPath, 192
Variables scope, CFCs (ColdFusion components), 123
Verity

deprecated support, 297
Verity-Solr migration, 310

VFS (virtual file system), 320–321
video element, HTML5, 93
Video embedding

callback events and error logs, 97–98
<cfmediaplayer>, 94–95
DRM (digital rights management), 103
enhancements to, 98
extending media players, 101
fallback plan for browsers not supporting, 95–96
HTML5 and, 93–94
loop playback support, 98–99
overview of, 93
player controls and, 96–97
playing YouTube video, 101–102
playlist support, 100
poster image support, 99
streaming, 102–103
title support, 99–100
what’s new in HTML5, 3, 5

Virtual file system (VFS), 320–321
Virtual Private Cloud (VPC), 210
Virtual private networks (VPNs), 210
Virtualization, cloud technologies, 200
VML, rendering charts and, 45
VPC (Virtual Private Cloud), 210
VPNs (virtual private networks), 210

W
W3C, Web Services Description Working Group, 58
WAR files, 312
watchExtensions, Java classes, 172–173
watchInterval, Java classes, 172–173
WDDX, XML style, 84
WDSL, Axis 2 support, 319
Web browsers

fallback plan for browsers not supporting video
embedding, 95–96

HTML5 support, 4
video support, 94
WebSocket support, 10, 34

Web pages, in Solr collections, 141
Web servers, securing cloud computing, 214
Web service engines

choosing, 71
options, 59–60
specifying, 71–72

Web Service Security (WSS), 68
Web services

access control, 67–68
application-level settings, 70
architecture of, 57–58
best practices, 73–74
building, 60–62
cloud technologies, 201
comparing SOAP with REST, 75–76
complex data types, 63–64
configuring, 73
consuming, 62–63
including ColdFusion types in WSDL, 71
invoking, 56–57
invoking methods, 136
overview of, 55
passing arguments to, 64–66
securing, 67
service engine options, 59–60
specifying service engines for, 71–72
stubs, 63
troubleshooting, 74–75
updates to embedded libraries, 319
what they are, 55–56
working with multiple arguments, 66
working with SOAP requests, 68–70
WSDL styles, 72–73

339Index

Web Services Description Language. see WSDL
(Web Services Description Language)

Web Services Description Working Group, W3C, 58
WebDAV, 281–282
WebM, 94
WebSocket

browser support, 10
<cfwebsocket>, 11–12
channel definitions, 11
ColdFusion Administrator options, 34–35
error handling and unsupported browsers, 34
filtering messages, 22
generating messages with CFCs, 31–32
JavaScript messageHandler function, 12–13
point-to-point applications, 32–34
secure profiles, 252
securing applications, 27–30
security groups for EC2, 207
selectors, 25–27
server-side functions, 21–22
single sign-on authentication, 30–31
subchannels, 23–25
what it is, 9–10
what’s new in HTML5, 4–5
working with CFC (ColdFusion component)

handlers, 16–21
working with JavaScript API, 13–16

WHERE clause, SQL, 149–150
Windows Media Player, 100
Windows OSs

AMIs (Amazon Machine Images), 215
password reset script, 220

Word, Microsoft, 295–296
wschannels, defining WebSocket channels, 10
WSDL (Web Services Description Language)

building web services, 61
choosing and specifying web service engines, 71–72
choosing styles, 72–73
including ColdFusion types in, 71
invoking web services and, 57
overview of, 58
platform independence and, 56
refreshing stubs, 63
SOAP vs. REST and, 75
troubleshooting web services, 74
web service engine options, 60

wsGetAllChannels function, WebSocket, 21–22
wsGetSubscribers function, WebSocket, 21–22
wsPublish function, WebSocket, 17–18
WSS (Web Service Security), 68
wsversion, troubleshooting web services, 74

X
XML (Extensible Markup Language)

enhancements to, 187
mapping to XPath variables, 192
overview of, 57
REST support for XML serialization, 84–85
SOAP vs. REST and, 75
specifying content types in REST, 82
standardization of communication, 56
updates to embedded libraries, 319
WSDL support, 60
XPath and, 187–191
XSLT and, 192–195

XPath
benefits of XPath searches, 189–191
comparing versions of, 189
examples, 187–188
mapping to XPath variables, 192

XSLT (Extensible Stylesheet Language
Transformations)

examples, 192–194
new features in version 2.0, 194–195
overview of, 192

XSS (cross-site scripting) protection, 252, 253–257
X-Y charts, 41

Y
YouTube video, 101–102

Z
ZingChart

as charting engine, 40
Cold Fusion Builder and, 42–44
exposing events from, 45
highlighting important data in, 49–50
updating <cfchart>, 37
updating entire chart, 50–51

Zooming charts, 38–39

	Contents
	Introduction
	CHAPTER 4 Web Services
	What Are Web Services?
	ColdFusion Web Service Engine
	Building Your First Web Service
	Securing Your Web Service
	Working with SOAP Requests
	Application Settings
	Configuring Web Services in ColdFusion Administrator
	Best Practices
	Troubleshooting
	SOAP or REST?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

