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introduction

What Is This Book?
ColdFusion needs no introduction: It helped usher in the era of web-based applications over a 
decade and a half ago, and it remains an innovator in this space to this day. With each update, 
ColdFusion has further empowered us to build and create the ultimate online experiences, and 
ColdFusion 10 is no exception.

ColdFusion 10 is indeed a very important release: one that builds on the success of ColdFusion 9 
by adding invaluable new features and functions. And that is key: ColdFusion 10 does not change 
much about the previous release; it adds features and functions. This means that ColdFusion 9 
code and applications should run just as is in ColdFusion 10, and any books and tutorials on Cold-
Fusion 9 apply to ColdFusion 10 as well.

And this presented the publishers and authors with a dilemma. ColdFusion Web Application Con-
struction Kit (affectionately known as CFWACK ) started off as a single volume, and then grew to 
two volumes in ColdFusion 4, and has been three volumes since ColdFusion 8. Recognizing that 
so much of the existing content for ColdFusion 9 applied as-is to ColdFusion 10, we could not 
in good conscience justify updating all the books and making readers buy them all over again. 
Plus, to make room to cover the new features in ColdFusion 10, we would have needed to remove 
chapters from the existing books, and as ColdFusion’s breadth and scope has increased, removing 
content has proven to be a difficult task.

After lengthy discussions with the publisher, the ColdFusion product team, and the authors, we 
opted not to update the three CFWACK volumes for ColdFusion 10. Instead, we decided to create 
a fourth volume to focus exclusively on what is new and improved in ColdFusion 10. And this is 
the book you are now holding in your hands.

This book, and indeed the entire ColdFusion Web Application Construction Kit series, is written for 
anyone who wants to create cutting-edge web-based applications.

If you are just starting creating your web presence, but know you want to serve more than just 
static information, this book, in conjunction with the ColdFusion 9 books, will help get you 
there. If you are a webmaster or web page designer and want to create dynamic, data-driven web 
pages, this book is for you as well. If you are an experienced database administrator who wants 
to take advantage of the web to publish or collect data, this book is for you, too. If you have used 
ColdFusion before and want to learn what’s new in ColdFusion 10, this book is also for you. Even 
if you are an experienced ColdFusion user, this book provides you with invaluable tips and tricks 
and serves as a definitive ColdFusion developer’s reference.

This book teaches you how to create real-world applications that solve real-world problems. 
Along the way, you acquire all the skills you need to design, implement, test, and roll out world-
class applications.
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How to Use This Book
As already noted, this book is designed to extend and enhance the three existing ColdFusion 9 Web 
Application Construction Kit. The four books are organized as follows:

■■ Volume 1—Adobe ColdFusion 9 Web Application Construction Kit, Volume 1: 
Getting Started (ISBN 0-321-66034-X) contains Chapters 1–21 and is targeted at 
beginning ColdFusion developers.

■■ Volume 2—Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: 
Application Development (ISBN 0-321-67919-9) contains Chapters 22–45 and covers 
the ColdFusion features and language elements that are used by most ColdFusion devel-
opers most of the time.

■■ Volume 3—Adobe ColdFusion 9 Web Application Construction Kit, Volume 3: 
Advanced Application Development (ISBN 0-321-67920-2) contains Chapters 46–71 
and covers the more advanced ColdFusion functions, including extensibility features, 
as well as security and management features that will be of interest primarily to those 
responsible for larger and more critical applications.

■■ Adobe ColdFusion 10 Web Application Construction Kit, ColdFusion 10 
Enhancements and Improvements (ISBN 0-321-89096-5) contains 19 new chapters 
focusing on what’s new in ColdFusion 10, and is intended to be used in conjunction with 
the three other titles listed here.

These books are designed to serve two different, but complementary, purposes.

First, as the books used by most ColdFusion developers, they are a complete tutorial covering 
everything you need to know to harness ColdFusion’s power. As such, the books are divided into 
parts, or sections, and each section introduces new topics building on what has been discussed in 
prior sections. Ideally, you will work through these sections in order, starting with ColdFusion 
basics and then moving on to advanced topics. This is especially true for the first two books.

Second, the books are invaluable desktop references. The appendixes and accompanying website 
contain reference chapters that will be of use to you while developing ColdFusion applications. 
Those reference chapters are cross-referenced to the appropriate tutorial sections, so that step-by-
step information is always readily available to you.

The following sections describe the contents of this new volume

Part I: Web Technology Innovation
ColdFusion is predominantly used to power web applications, and so Part I of this book focuses on 
ColdFusion web technology enhancements and innovations:

■■ Chapter 1, “ColdFusion 10 and HTML5,” introduces new HTML5 tags and features 
and explains how these are supported by ColdFusion.
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■■ Chapter 2, “Using WebSocket,” introduces an additional HTML5 enhancement, 
WebSocket, and explores the ways that it changes server-to-browser communication.

■■ Charting and graphing has long been a ColdFusion staple, and Chapter 3, “Charting 
Revisited,” introduces new HTML5 charting options.

■■ In Chapter 4, “Web Services,” you learn how to implement and use the latest generation 
of web services technologies. 

■■ The web services discussion continues in Chapter 5, “Using REST Web Services,” 
which introduces REST as an alternative to traditional web services.

■■ Extensive video support is new to ColdFusion 10, and Chapter 6, “Embedding Video,” 
explains what you can do and provides useful tips and tricks.

Part II: (Even More) Rapid Development
ColdFusion has always been about productivity and rapid development, and ColdFusion 10 
continues to innovate to help make developers even more productive:

■■ The CFML language is the magic that makes ColdFusion coding so productive and 
simple, but that simplicity need not be at the expense of power and flexibility. Chapter 7, 
“CFML Enhancements,” introduces closures and additional CFML enhancements.

■■ CFScript is the scripting alternative to CFML, and it too gains new features in Cold-
Fusion 10, as discussed in Chapter 8, “CFScript Enhancements.”

■■ Chapter 9, “Object Relational Mapping Enhancements,” focuses on what’s new in Cold-
Fusion’s ORM support, including new search options, HQL logging, and more.

■■ ColdFusion has been built on Java since ColdFusion MX (aka ColdFusion 6), and expe-
rienced ColdFusion developers quickly learn how to leverage the underlying Java engine 
to build more powerful applications. Chapter 10, “Enhanced Java Integration,” teaches 
you how to use custom class paths, dynamic proxies, and more.

■■ Chapter 11, “XML Enhancements,” explains the new and improved XPath support, 
which provides greater XML processing flexibility.

Part III: Enterprise Ready
Some of the most significant enhancements in ColdFusion 10 focus on administration and security:

■■ In Chapter 12, “ColdFusion in the Cloud,” you learn how to take advantage of innova-
tions in cloud computing, and ColdFusion’s new support for simplified cloud deployment 
and hosting.

■■ Chapter 13, “Improved Administration,” teaches you all you need to know about the 
updated ColdFusion Administrator, including the critically important hotfix and 
update installer.
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■■ Chapter 14, “Scheduling,” introduces the new and improved scheduler and explains 
grouping, prioritization, event chaining, and more.

■■ Chapter 15, “Security Enhancements,” introduces the latest security risks and concepts 
and explains which you should worry about and why.

■■ Caching has always been an important part of performance optimization, and Chapter 16, 
“Improving Performance,” presents the latest and greatest caching techniques.

■■ Microsoft Exchange and Microsoft Office are critical to most organizations, and 
Chapter 17, “Improved Integration,” focuses on integration with the latest versions of 
these applications.

■■ Apache Solr was introduced in ColdFusion 9 as an alternative to the existing full-text 
search engine. In ColdFusion 10, Solr is the default engine, and Chapter 18, “Apache 
Solr,” explains how to use this new technology.

■■ In addition to everything covered thus far, ColdFusion 10 offers a long list of smaller 
(but no less useful) enhancements, as enumerated in Chapter 19, “Miscellaneous 
Enhancements.”

The Website
This book’s accompanying website contains everything you need to start writing ColdFusion 
applications, including:

■■ Links to obtain ColdFusion 10

■■ Links to obtain Adobe ColdFusion Builder

■■ Source code and databases for all the examples in this book

■■ An errata sheet, should one be required

■■ An online discussion forum

The book web page is at http://www.forta.com/books/0321890965/.

And with that, turn the page and start reading. In no time, you’ll be creating powerful applica-
tions powered by ColdFusion 10.

http://www.forta.com/books/0321890965/
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chapter 4
Web Services

Integration has always been a key strength and an important focus for ColdFusion. ColdFusion 
supports most of the messaging frameworks and protocols required to effectively communicate 
with different platforms, and web services are no exception. 

On the basis of architectural style, two primary categories of web services are available: tradi-
tional Simple Object Access Protocol (SOAP)–based services and Representational State Transfer 
(REST)–complaint services. ColdFusion has long made it easy to create and consume SOAP-based 
web services. ColdFusion 10 builds on this foundation by upgrading the underlying engine for 
SOAP-based web services and supporting creation of REST-based web services. In this chapter we 
focus primarily on SOAP-based web services. Chapter 5 covers REST-based web services in detail. 

note

Web services support in ColdFusion 10 builds on that of prior versions. Basic web services support is covered extensively in 
Adobe ColdFusion 9 Web Application Construction Kit, Volume 3: Advanced Application Development, in Chapter 59, “Creating 
and Consuming Web Services.”

What Are Web Services? 
A web service is a web-based application or a network-accessible interface that can communicate 
and exchange data with other such applications over the Internet without regard for application, 
platform, syntax, or architecture. 

At its core, it’s a messaging framework built on open standards through which different applications 
interact with each other over the Internet, abiding by a definite contract. As simple as it may sound, 
it truly enabled disparate applications to seamlessly interact and provide integrated solutions. It 
streamlined the integration of new applications among vendors, partners, and customers without 
the need for the centralized or proprietary software of enterprise application integration (EAI). 
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There are many reasons for the success of the web services framework, but these are the 
most important:

■■ Standard communication: It is based on widely adopted open standards such as 
Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML).

■■ Platform independence: It provides an unambiguous way of defining, invoking, and 
consuming a service through Web Services Description Language (WSDL) and SOAP. 

■■ Loose coupling: Web services components are loosely coupled. A web service requires 
almost no knowledge of the definitions of other separate components.

■■ Effortless integration: It’s widely adopted and has great tooling support. Creating, 
publishing, and consuming a web service on any platform is basically like creating any 
other component, with no additional effort. 

For now, don’t worry about all the acronyms referred to here; we will look at them closely in 
subsequent sections.

A Typical Web Service Invocation 
Let’s now look at the steps involved in a complete web service invocation and see how the process 
works (Figure 4.1).

Client

Web 

Service 

Requester

Server

Web 

Service 

Provider

What is this service?

It is available here.

How do I invoke it?

Look at this WSDL.

SOAP request: Get me something.

SOAP response: Here you go.

	 1.	 (Optional) If a client has no knowledge of a web service it is going to invoke, it may ask a 
discovery service (usually on a separate server) to provide a service registered with it that 
meets the client’s requirements. However, in most cases, clients will know which service 
they want to invoke; hence, this step is optional.

Figure 4.1

Typical web service 
invocation. 
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	 2.	 (Optional) On receiving an inquiry, the discovery service will return the available 
service details registered with it.

	 3.	 The client needs to know how to invoke the service. It asks the web service to 
describe itself.

	 4.	 The web service replies with an XML document describing the methods, arguments, 
and types in WSDL.

	 5.	 Now that the client knows where the service is located and how to invoke it, using the 
WSDL provided the web service creates the artifacts necessary to invoke and consume 
the web service. It then sends a request over HTTP with all the details required in its 
body in SOAP format.

	 6.	 The web service returns the result of the operation in a response over HTTP, again in 
SOAP format.

Web Services Architecture
Now let’s look at the web services architecture and the key technologies that make web services 
possible. For completeness, Figure 4.2 shows the main components of the architecture. 

Discovery	 Aggregation and so on

Description	 WSDL

Messaging	 XML and SOAP

Transport	 HTTP (most popular)

A web service uses a transport medium such as HTTP to send messages in SOAP format, which is 
based on XML, abiding by the contract between a client and a server described using WSDL.

Several technologies are absolutely central to the distributed architecture of web services. Among 
these are HTTP, XML, and SOAP. Additionally, WSDL, a descendent technology, standardizes 
the syntax for describing a web service and its operations.

HTTP

HTTP is a communications protocol for exchanging information over the Internet. It is the com-
mon transport mechanism that allows web service providers and consumers to communicate.

XML

XML is similar to HTML in that it uses tags to describe and encode information for transmission 
over the Internet. HTML has preset tags that define the way that information is displayed. XML 
lets you create your own tags to represent not only data but also a multitude of data types, which 
helps ensure accurate data transmission among web service providers and consumers.

Figure 4.2

Web services 
architecture. 
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SOAP

SOAP is a lightweight protocol for the exchange of information in a distributed environment. SOAP 
can be used in messaging systems or for invoking remote procedure calls. It is based on XML and 
consists of three logical parts:

■■ A framework for describing what is in a message and how to process it 

■■ A set of encoding rules for interpreting application-defined data types

■■ A convention for representing remote procedure calls and responses 

SOAP handles the onerous job of translating data and converting data types between consumers 
and web service providers. 

Currently, two versions of SOAP are available: Version 1.1, and Version 1.2, which was an upgrade 
of Version 1.1. Both are World Wide Web Consortium (W3C) standards, and web services can 
be deployed using either version. However, Version 1.2 offers some significant advantages over its 
predecessor, as you will see in the coming section.

note

To learn more about the SOAP specification, see the W3C’s note about SOAP at http://www.w3.org/TR/soap.

WSDL

WSDL is an XML-based language specification that defines web services and describes how 
to access them. 

WSDL is used to explain the details needed to invoke a web service over the Internet. WSDL 
defines XML syntax for describing services between a set of endpoints: usually a client and a 
server that exchange messages. This documentation can then act as a road map for automating the 
details of a web service. WSDL describes the service interaction rather than the formats or net-
work protocols used to communicate. It simply defines the endpoints and their data, regardless of 
the implementation detail.

Thankfully, today’s ColdFusion developers do not need to concern themselves with such intrica-
cies, or with the need to write documentation by hand, because ColdFusion generates WSDL 
automatically. To view the generated WSDL for a ColdFusion component deployed as a web ser-
vice, append the string ?wsdl to the component’s URL. The WSDL document is then displayed 
in your web browser.

note

To learn more about the WSDL, see the W3C’s WSDL specification at http://www.w3.org/TR/wsdl.

The W3C’s Web Services Description Working Group has published a new specification, WSDL 
Version 2.0, which is based on SOAP Version 1.2. It is significantly different and not compatible 
with WSDL’s earlier specification (Version 1.1); hence, it is called Version 2.0, not Version 1.2. We 
will look at the differences between the two versions and the advantages provided by WSDL 2.0 in 
the next section.

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
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ColdFusion Web Service Engine
ColdFusion uses Apache Axis, a proven and reliable implementation of SOAP, as its underlying 
engine to implement SOAP-based web services. ColdFusion Version 9 uses Axis 1, which sup-
ports only WSDL 1.1 and SOAP 1.1. Therefore, ColdFusion 9 cannot create web services using 
these specifications and cannot consume external web services that used newer versions of WSDL 
and SOAP.

ColdFusion 10 has upgraded its web services support and includes implementation based on Axis 2 
as well. ColdFusion now supports both versions of the WSDL and SOAP specifications simultane-
ously while maintaining backward compatibility. 

We have already noted that support for newer specifications is important for ColdFusion to play 
well with external web services that use these specifications. This support also provides other 
benefits, discussed in upcoming sections. 

In the subsequent sections, we will treat Apache Axis as a web service engine.

SOAP 1.2
SOAP 1.2 can do everything that SOAP 1.1 does and more. Among others the most notable dif-
ferences between the two versions are the following:

■■ SOAP 1.1 is based on XML 1.0, and SOAP 1.2 is based on XML Information Set 
(XML Infoset). XML Infoset provides a way to describe the XML document with an 
XSD schema but is not bound to serialize using XML 1.0 serialization. Thus, SOAP 1.2 
places no restriction on the way that the Infoset data is transported. 

■■ SOAP 1.2 provides a binding framework. You can use SOAP 1.2’s specification of a 
binding to an underlying protocol to determine which XML serialization is used in the 
underlying protocol data units, thus making SOAP truly protocol independent.

■■ SOAP 1.2 includes HTTP binding. It provides support for both HTTP GET and 
POST operations and conforms better to web architectural principles. Thus, it uses 
established web technologies for improved performance.

■■ SOAP 1.2 provides a clear processing model. SOAP 1.2 is more robust and less 
ambiguous because it has resolved many of the interoperability issues that were concerns 
with SOAP 1.1.

To conclude, SOAP 1.2 is truly protocol agnostic, extensible, unambiguous, and more 
HTTP friendly than SOAP 1.1.

tip

To visually differentiate between SOAP 1.2 and SOAP 1.1, look for xmlns:soapenv in the soap message. SOAP 1.2 will use  
http://www.w3.org/2003/05/soap-envelope, and SOAP 1.1 will use http://schemas.xmlsoap.org/soap/envelope/.

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/soap/envelope/
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WSDL 2.0
WSDL 2.0 is the newer version of WSDL and a W3C standard. It is significantly different 
from WSDL 1.1 and provides additional benefits since it:

■■ Uses SOAP 1.2: WSDL 2.0 uses SOAP 1.2 to provide all the benefits of SOAP 1.2 such 
as better extensibility.

■■ Supports interface inheritance: As with Object-Oriented Programming (OOP), 
a WSDL document can inherit from another WSDL document, providing reusability 
and component-based architecture.

■■ Supports additional schemas: Along with the XML schema, WSDL 2.0 supports the 
use of RelaxNG and DTD as type definitions.

■■ Supports additional message patterns: WSDL 2.0 supports eight new patterns, 
including only single messages.

Although it is an enhanced version, WSDL 2.0 is mainly used to create SOAP-based REST-
complaint web services. One reason for its lower rate of adoption is that WSDL 1.1 is sufficient 
for most common needs of most applications.

To view the generated WSDL 2.0 for a ColdFusion component deployed as a web service, append 
the string ?wsdl2 to the component’s URL. Note that WSDL 2.0 is available only with Web Ser-
vice Engine Version 2.

Building Your First Web Service
Now it’s time to get started building a web service with ColdFusion.

To build a web service in ColdFusion, all we need to do is to write a ColdFusion component 
(CFC). CFCs take an object-like approach to the grouping of related functions and encapsulation 
of business logic. They also play a pivotal role in defining and accessing a web service. 

We can create or reuse a prebuilt CFC with the operations we want to expose as functions and 
make the CFC accessible to remote calls by specifying access=”remote”. The CFC location then 
becomes the endpoint for the web service, and its remote functions become operations that can be 
invoked on this web service.

note

For more information about CFCs, read Chapter 24, “Creating Advanced ColdFusion Components,” in Adobe ColdFusion 9 Web 
Application Construction Kit, Volume 2: Application Development.

Now let’s create our first web service. We’ll start with the component in Listing 4.1. 
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Listing 4.1    /cfwack/4/hello.cfc
<cfcomponent>
   <cffunction name=”helloWorld” returnType=”string” access=”remote”>
      <cfreturn “Hello World!”>
   </cffunction>
</cfcomponent>

The hello CFC starts with a <cfcomponent> tag, which wraps the component’s content. Then the 
<cffunction> tag with a name and return type defines a single function, which simply returns 
a static string. The optional access attribute is set to remote, which exposes this CFC as a web 
service. And now we have a simple CFC-based web service, which we can publish and allow to be 
called by web service clients across the web.

To quickly verify that this web service works, open http://localhost:8500/cfwack/4/hello.cfc?wsdl 
in a browser. It should output the generated WSDL. Listing 4.2 shows part of the generated 
WSDL for this hello CFC.

Listing 4.2    Part of the WSDL Generated for hello.cfc
<!— Some attributes have been omitted to keep focus only on elements  
➥relevant to our discussion later in this section-->
<wsdl:binding name=”cfwack.4.hello.cfcSoap12Binding” ...>
  <soap12:binding ... style=”document”/>
  <wsdl:operation name=”helloWorld”>
    <soap12:operation ... style=”document”/>
    <wsdl:input>
      <soap12:body use=”literal”/>
    </wsdl:input>
    <wsdl:output>
      <soap12:body use=”literal”/>
    </wsdl:output>
    <wsdl:fault ...>
      <soap12:fault use=”literal” .../>
    </wsdl:fault>
  </wsdl:operation>
</wsdl:binding>
<wsdl:service name=”cfwack.4.hello.cfc”>
  <wsdl:port name=”cfwack.4.hello.cfcHttpSoap11Endpoint” ...>
  <wsdl:port name=”cfwack.4.hello.cfcHttpSoap12Endpoint” ...>
</wsdl:service>

Here are a few details that you will observe here:

■■ An operation “helloWorld” is listed with the same name as that of the <cffunction> 
function.

■■ The WSDL has all the information such as types, endpoints, and message style required 
to execute this operation.

■■ Both SOAP 1.1 and SOAP 1.2 endpoints are supported through the same WSDL. 

■■ The default WSDL style generated is Document Literal. You can change this style, 
as you will see later in this chapter. 

http://localhost:8500/cfwack/4/hello.cfc?wsdl
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ColdFusion will additionally log the web service engine used to deploy and access this web service 
on the console. This log can come in handy when you want to verify that the WSDL was refreshed 
and identify which web service engine was used for that particular operation. 

Consuming a Web Service
Next we will see how to invoke this web service from ColdFusion. There are several ways to 
invoke any web service in ColdFusion, and we will look at them one by one. 

Let’s start with the <cfinvoke> tag. This tag can be used to invoke a web service by specifying the 
webservice attribute, as shown in Listing 4.3.

Listing 4.3    Calling a Web Service with <cfinvoke>
<cfset wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”>
<cfinvoke 
  webservice = “#wsURL#” 
  method = “helloWorld” 
  returnVariable = “result”>
<cfoutput> <H1> #result# </H1></cfoutput>

Here we are trying to invoke the hello CFC that we wrote earlier, using the <cfinvoke> tag. 
We specified the CFC’s WSDL using the webservice attribute, the method to be invoked as 
“helloWorld” uses the same name as the function, and returnVariable is used to store the result 
of this operation. Then we simply output the result using <cfoutput> wrapped with HTML <H1> 
tags. If you run this code in a browser, you should get output similar to that in Figure 4.3.

Also, since web services are built on top of HTTP, you may need to provide other attributes such 
as proxy details if you are using an HTTP proxy server to connect to the web service provider and 
passwords similar to those for the <cfhttp> tag for calls using the <cfinvoke> tag.

Similarly, you can use the <cfobject> tag to create a web service proxy object. Then you can 
invoke methods on this object, which will be delegated as web service calls to actual endpoints. 
Listing 4.4 uses <cfobject> to call the same hello web service described earlier, by specifying the 
type as webservice.

Listing 4.4    Calling a Web Service with <cfobject>
<cfset wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”>
<cfobject 
  name = “ws” 
  webservice= “#wsURL#” 
  type = “webservice”>
<cfset result = ws.helloWorld()>
<H1><cfoutput>#result#</cfoutput></H1>

Figure 4.3

Output generated 
from hello CFC. 
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When in script mode—that is, within a <cfscript> block or when writing CFCs in script syntax—
you can use the CreateObject() method to invoke a web service. It is the script equivalent of the 
<cfobject> tag. Listing 4.5 shows how to use CreateObject to invoke a web service.

Listing 4.5    Calling a Web Service with CreateObject
<cfscript> 
  wsURL = “http://localhost:8500/cfwack/4/hello.cfc?wsdl”;
  ws = CreateObject(“webservice”, wsURL); 
  result = ws.helloWorld(); 
  writeoutput(result); 
</cfscript>

Refreshing Stubs
Recall the steps we have discussed for calling a web service. Creation of a web service proxy with 
<cfobject> or CreateObject() consists of steps 3 and 4 in Figure 4.1. Any call to a web service using 
this proxy will be steps 5 and 6. A web service call using <cfinvoke> involves steps 3 through 6. 

However, steps 3 and 4 are computationally heavy operations and should be performed only once 
for a WSDL that is not changing. Hence, ColdFusion optimizes this operation significantly. 
ColdFusion makes a call to get the WSDL and generates the required stubs and artifacts only for 
the first call to the web service, using <cfinvoke> or <cfobject>. From the next call onward, it uses 
the generated stubs themselves, eliminating the need for steps 3 and 4.

This optimization creates a challenge in a development environment in which CFCs are being 
constantly modified. ColdFusion does not implicitly refresh the stubs for changed WSDL. The 
clients themselves have to refresh these stubs every time the WSDL changes. This operation 
can be accomplished by setting the refreshWSDL attribute as true with <cfinvoke> or <cfobject>. 
Although in a production environment refreshWSDL should be false, this is its default value, too.

Using Complex Data Types
In this section, you will see how to work with different ColdFusion data types. For that purpose, 
let’s look at another CFC, this one with several functions that take some complex data types, such 
as a struct or query, as arguments (Listing 4.6). Here we will focus on two processes: how to pass 
an argument to a web service call and how to work on the result. 

Listing 4.6    /cfwack/4/complex.cfc
<cfcomponent hint=”echoes back the input specified”>

<!--- 
The purpose of these functions merely is to demo accepting
and returning a complex object
--->

    <cffunction name=”echoStruct” returntype=”struct” access=”remote”>
    <cfargument type=”struct” name=”argStruct”/>
    
        <!--- 
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Listing 4.6    (continued)
        outputs argument passed to this function to console 
        good for debugging while developing the service     
        --->
        <cfdump var=”#argStruct#” output=”console”>
        <!--- typically your logic goes here --->
        <cfreturn argStruct>
    </cffunction>
    
    <cffunction name=”echoQuery” returntype=”query” access=”remote”>
    <cfargument type=”query” name=”argQuery”/>
    
    <cfreturn argQuery>
    </cffunction>
    
    <cffunction name=”echoDocument” returntype=”xml” access=”remote”>
    <cfargument type=”xml” name=”argDocument”/>
    
    <cfreturn argDocument>
    </cffunction>
    
    <cffunction name=”echoAny” returntype=”any” access=”remote”>
    <cfargument type=”any” name=”argAny”/>
    
    <cfreturn argAny>
    </cffunction>

</cfcomponent>

Let’s analyze what’s going on here. We have created a complex CFC that isn’t actually very com-
plicated. As you can see, it simply takes native ColdFusion data types as arguments and returns 
them back: the function echoStruct takes a struct as an argument, the function echoQuery takes 
a query as an argument, and the function echoAny can take any type as an argument. 

Note that no special treatment is required to handle web service calls, and this CFC can work 
directly by creating its object and can also serve Ajax Remoting and Adobe Flash Remoting calls. 
You get the same data types to work with. It is ColdFusion’s responsibility to internally serialize 
the given data type to XML format before sending the web service call as a client, and to deseri-
alize this XML back to the desired data type and pass it as an argument to the invoked function 
when it receives the web service to process it as a server.

Passing Arguments
Next, let’s see how to invoke this web service with ColdFusion. We have already talked about dif-
ferent ways to invoke web services, and for this example we will use <cfinvoke>. Let’s look at how to 
pass an argument and work with the returned object (Listing 4.7). 
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Listing 4.7    /cfwack/4/complex.cfm
<cfset wsURL = “http://localhost:8500/cfwack/4/complex.cfc?wsdl”>

<cfset varStruct = {key1:”value 1”, key2:”value 2”} >
<!-- Passing arguments with cfinvokeparam --->
<cfinvoke webservice = “#wsURL#” 
          method = “echoStruct” 
          returnVariable = “result”>
   <cfinvokeargument name=”argStruct” value=”#varStruct#” >
</cfinvoke>

<h2> Dumping struct </h2>
<cfdump var=”#result#”/>

<cfset varQuery = QueryNew(“column1,column2,column3”) >
<cfset QueryAddRow(varQuery,[“row 1”, “row 2”, “row 3”])>

<!-- Passing arguments inline as key value pair --->
<cfinvoke webservice = “#wsURL#” 
          method = “echoQuery” 
          argQuery = “#varQuery#”
          returnVariable = “result”>
</cfinvoke>

<h2> Dumping query </h2>
<cfdump var=”#result#”/>

<!-- Passing arguments as argument collection --->
<cfinvoke webservice = “#wsURL#” 
          method = “echoAny” 
          argumentcollection = “#{argAny:’passing a string’}#”
          returnVariable = “result”>
</cfinvoke>

<h2> Dumping String </h2>
<cfdump var=”#result#”/>

As shown here, there are three ways to pass arguments to web service calls. Let’s look at them 
one by one.

First we will see how to pass an argument using the <cfinvokeparam> tag. We begin by creating the 
WSDL URL to be passed with <cfinvoke>. We then create a struct with implicit notation. And in 
case the syntax confuses you, ColdFusion also supports JavaScript-style syntax for declaring the 
struct. Next we use <cfinvoke> to call the web service by using <cfinvokeparam> as its child tag and 
passing the arguments specified as a key-value pair. This key will be matched with the arguments 
declared in the function and will be populated likewise.

Alternatively, you can pass arguments as superfluous attributes in the <cfinvoke> tag itself, as 
shown in next call to echoQuery. Again, the attribute name is the argument name, and its value is 
the value that we want to pass to the call.
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Finally, you can also use argumentcollection to pass a struct with the argument name as the key 
and the value to be passed as its corresponding value as shown for the call echoAny call.

Note that you cannot use positional arguments with <cfinvoke> because the key is a mandatory 
attribute in all three scenarios described here. To use positional arguments, you can use 
<cfobject> or CreateObject() to generate a web service proxy and call methods on it. This call 
will behave similarly to any other method invocation for components and supports positional 
arguments, key-value syntax, and argument collection.

Also note that we passed a simple string to echoAny. We did this because the type definition of 
“any” in generated WSDL supports only simple data types. If you passed any complex object 
instead, it would fail with the “unknown type cannot serialize” exception.

We have now seen various ways to pass complex objects as arguments and get back complex 
objects as the result of that particular web service call. What’s interesting is that there is almost 
no difference between calling a web service and calling a component locally. That is the beauty 
of ColdFusion: the capability to abstract the hard wiring required to perform a complex task such 
as a web service call and expose it as something simple that we already know such as calling a 
component. This ease of use lets us focus on the actual business logic and not to be bothered with 
the underlying technology or mundane boilerplate code.

Working with Multiple Arguments
So far in our examples, we have seen functions with only one argument. But your real-world 
functions more likely will have more than one argument. And though the mechanism to call these 
functions as web services remains the same, there are a few details that you need to take care of.

When your function has more than one argument, you may want to make a few arguments 
required and the rest optional. However, the <cffunction> attribute Required is ignored when a 
CFC is called as a web service; for a web service, all arguments are required. ColdFusion doesn’t 
support method overloading, so in in cases in which you want to pass only a few arguments, you 
need to use either of two approaches: 

■■ You can make the function private and define different public methods for all parameter 
combinations. These methods will internally invoke this private function within the 
CFC, which performs the actual processing and also honors the defaults.

■■ The second possible solution is to use a special value for arguments that you don’t want 
to pass: for example, NULL. Then within the function body, you can check IsNull() and 
place default values instead. If you use <cfinvoke>, then you can set the <cfinvokeargument> 
tag’s attribute omit as true. If you are using a proxy object created with <cfobject> or the 
CreateObject() method, you can simply pass NULL.

tip

To create NULL in ColdFusion, you can either use javaCast( “null”, 0 ) or call a function that returns nothing: for 
example, function null(){}.
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Securing Your Web Service
Security is a very important aspect to consider when developing your services. As more and more 
business functions are exposed as web services, the boundary of interaction keeps expanding, and 
so does your responsibility to address all security requirements such as authentication, access con-
trol, data integrity, and privacy. In this section, we explore some ways to secure your web services.

To begin, you can always publish your web service over HTTPS. This approach will guarantee 
point-to-point security because SSL secures communications at the transport level. However, 
these scheme has limitations such as scalability issues, and you may not be able to use it.

You can also use your web server to control access to the directories containing your web services, 
or you can use ColdFusion security in the same way that you use it to control access to any Cold-
Fusion page. The <cfinvoke> tag includes the username and password attributes that let you pass 
login information to a web server using HTTP basic authentication.

Using ColdFusion to Control Access
Let’s look at how to secure our web services from within ColdFusion. There are many possible 
ways to do so, and we will discuss just some of them here. You can pick the approach best suited to 
your particular needs. 

One scheme that you can use uses <cflogin>. Rather than letting web servers handle authorization, 
you can implement authentication at the application level with Application.cfm (Listing 4.8).

Listing 4.8    /cfwack/4/secure/Application.cfm
<cfapplication name=”wack4_secure”>

<cflogin>
    <cfset authorized = false>
    <!--- verify username and password --->
    <cfif isDefined(“cflogin”)
          and cflogin.name eq “foo”
          and cflogin.password eq “bar”>
       <cfset authorized = true>
    </cfif>
</cflogin>

<cfif not authorized>
    <cfsetting enablecfoutputonly=”yes”
               showdebugoutput=”no”>
    <cfheader statuscode=”401”>
    <cfheader name=”WWW-Authenticate”
              value=”Basic realm=””Web Services”””>
    <cfabort>
</cfif>

This Application.cfm example includes a <cflogin> tag. As you may know, the body of this tag 
runs only if there is no logged-in user. Therefore, the example includes some logic to validate 
the user in the body of the <cflogin> tag. In a real-world scenario, you would be validating users 
against a data source, LDAP, and so on. If the check here fails, the request is simply aborted, 
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with a few authentication headers set. The same logic can be placed in the Application.cfc file’s 
method OnRequestStart. This method is executed for all types of requests and is invoked before 
the actual call to the web service method is made.

You can also use <cfloginuser> from within the <cflogin> tag to identify an authenticated user 
to ColdFusion and specify the user ID and roles. This approach lets you set allowed roles in 
<cffunction>, which can invoke that function.

Next, we explore how to invoke the same old hello web service, using the code snippet shown 
in Listing 4.9.

Listing 4.9    /cfwack/4/secureclient/basic.cfm
<cfset wsURL = “http://localhost:1234/cfwack/4/secure/hello.cfc?wsdl”>

<cfinvoke webservice=”#wsURL#” 
          method=”helloWorld” 
          returnvariable=”result” 
          username=”foo”
          password=”bar”>

<h1> <cfoutput>#result#</cfoutput> </h1>

As you can see, we are using the same <cfinvoke> tag that we have been using to additionally pass 
username and password information. This information will be populated in the cflogin struct, 
accessible within the <cflogin> tag as the name and password that we will use to validate our user. 

Another approach is to use Open Standard for Authorization (OAuth) authentication. This 
authentication protocol allows applications to access a user’s data in a secure way. Several good 
libraries for both publishing and consuming OAuth integrations are available in ColdFusion for 
you to investigate.

Finally, you can use SOAP headers for authorization purposes: for example, you can set Web Ser-
vice Security (WSS) headers and validate them either at the application level or the component 
level, as described in the next section.

Working with SOAP Requests
ColdFusion offers a variety of ways to work with the SOAP requests and responses involved in 
web services. Let’s look at them closely with an example. 

We have already talked about CFCs and how the same components can be used to serve different 
types of requests such as Adobe Flash Remoting and Ajax Remoting calls. When you want to han-
dle SOAP requests differently and to know whether the call originated as a web service call, you 
can use the function IsSOAPRequest(). This function will return true if the CFC is being called as 
a web service.

Also we have talked about how SOAP requests for web services use HTTP as the transport 
medium. You also may know that HTTP uses headers to pass additional workable information 
about the request and its response. So depending on the use case, you may need to read SOAP 
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request headers—for example, to get the username—or add headers to your SOAP responses—for 
example, an authorization header. ColdFusion provides functions that let you read and add headers 
to your SOAP request or SOAP response. Listing 4.10 provides an example.

Listing 4.10    /cfwack/4/soap.cfc
<cfcomponent hint=”Test for SOAP headers”>

    <cffunction name=”test” returntype=”string” access=”remote”>
    
        <cfset isSOAP = isSOAPRequest()>
        <cfif isSOAP>
        <!--- Get the first header as a string. --->
            <cfset username = getSOAPRequestHeader(“http://somenamespace/”,  
            ➥“username”)>
            <cfset result = “username: “ & username>
            
            <!--- Get the second header as a string. --->
            <cfset password = getSOAPRequestHeader(“http://somenamespace/”,  
            ➥“password”)>
            <cfset result = result & “ and password: “ & password>
            
            <!--- Add a header as a string. --->
            <cfset addSOAPResponseHeader(“http://somenamespace/”, 
            “returnheader”, “AUTHORIZED”, false)>
        <cfelse>
            <cfset result = “Not invoked as a web service”>
        </cfif>
        
        <cfreturn result>
    </cffunction>

</cfcomponent>

As you can see, we have a simple soap CFC that has only one function test. Within this function, 
we check whether the call is a SOAP request with isSOAPRequest(). If the result is true, we get the 
headers from the request—that is, username and password—using getSOAPRequestHeader() and set 
a returnheader header in the response using addSOAPResponseHeader(). If the result is false, then 
we send back the result “Not invoked as a web service.” This example is very simple, but you can 
see how different logic can be applied to perform various operations such as actual authentication.

Now let’s see this CFC in action by invoking the CFC once as a web service and for a second time 
as a local method on a component (Listing 4.11).

Listing 4.11    /cfwack/4/soap.cfm
<cfscript>
 wsURL = “http://localhost:8500/cfwack/4/soap.cfc?wsdl”;
 ws = CreateObject(“webservice”, wsURL);
 
 // Set the username and passwordheader as a string.
 addSOAPRequestHeader(ws, “http://somenamespace/”, “username”, “user”);
 addSOAPRequestHeader(ws, “http://somenamespace/”, “password”, “pass”);
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Listing 4.11    (continued)
 // Invoke the web service operation.
 result = ws.test();
 
 // Get the first header as an object (string) and as XML.
 header = getSOAPResponseHeader(ws, “http://somenamespace/”, “returnheader”);
</cfscript>

<cfoutput>
   SOAP Return value: #result#<br>
   SOAP Header value: #header#<br>
</cfoutput>

<cfinvoke component=”soap” method=”test” returnvariable=”result”>
</cfinvoke>
<cfoutput>The cfinvoke tag returned: #result#</cfoutput>

Here we created a proxy for the SOAP web service using CreateObject(). Then we added two head-
ers, username and password, for this proxy. These headers will be added to the SOAP request when 
the actual call is made, which is when the test method is called. We get back the result of this web 
service call in result. Additionally, we extract the response header that was set in the CFC from 
the proxy object. Next, we call a function on the SOAP CFC directly and output its results.

The output of this template when executed in a browser is obvious. For the SOAP request, the 
output will return the username and password that were sent as headers, and it will also return 
returnheader as “AUTHORIZED”. For a local call, it would simply return “Not invoked as a web service.”

Application Settings
Four application-level web service settings can be used to apply certain properties related to web ser-
vices across a given application. These settings are defined in Application.cfc in the this.wssettings 
struct, shown in Listing 4.12, which we will discuss one by one. Note that these application settings 
are introduced in ColdFusion 10 and are not available in previous ColdFusion versions.

Listing 4.12    /cfwack/4/Application.cfc
<cfcomponent>

   <cfset this.name=”cfwack_4”>

   <cfset this.wssettings.version.publish = 2>
   <cfset this.wssettings.version.consume = 2>
   <cfset this.wssettings.style = “wrapped”>
   <cfset this.wssettings.includeCFTypesInWSDL = false>

</cfcomponent>
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Including ColdFusion Types in WSDL
In our discussion of complex data types, we looked at the use of ColdFusion native data types with 
web services. These data types are similar to a number of data types in C++ and Java, but they do 
not exactly match any of the data types defined in the XML schema used by WSDL and SOAP for 
data-type representation and conversion. 

This lack of a match is fine if a web service is published and consumed within ColdFusion because 
ColdFusion expects and understands its own data types and can serialize or deserialize them. 
However, when clients other than ColdFusion call this web service, they will need additional 
information to convert arguments to be sent with the web service call to data types that 
ColdFusion expects and understands. 

Here is where this.wssettings.includeCFTypesInWSDL comes to our rescue. It tells ColdFusion 
whether to include ColdFusion’s native type information as an XML schema defined in the 
WSDL itself. Using this schema, other platforms can understand the arguments and result types. 

If your web services will be used only with ColdFusion clients, there is no need to include this 
type information as it will increase the WSDL size. By default, it is set to false.

Deciding Which Web Service Engine to Use
Let’s step back a bit from our original topic of application settings. We said earlier that there 
are two web service engines available to us with ColdFusion 10. You can choose the web service 
engine to use according to your requirements: 

■■ Web Service Engine Version 1: Use this version if you want to publish WSDL in RPC 
style, or if you do not want all your existing web service clients to refresh their gener-
ated stubs. You should also use this version when you have web service clients on Cold-
Fusion 9 and you use complex data types.

■■ Web Service Engine Version 2: Use this version if you want to consume any web service 
that is based on WSDL 2.0, or if you want to publish WSDL in wrapped style. With 
ColdFusion 10, this is the default engine for publishing a web service.

■■ Either engine: For all other scenarios, you can use either of the web service engines.

Specifying the Web Service Engine
ColdFusion uses Web Service Engine Version 2 by default to publish any component as a web ser-
vice. However, you can override this behavior and tell ColdFusion which engine to use. You can 
specify the web service engine used to publish your ColdFusion components in any of three places:

■■ Component level: You can specify wsversion with <cfcomponent> to declare the web ser-
vice engine to use to publish that particular component. The possible values are 1 and 2. 
This setting takes the precedence over application- and server-level version declarations.
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■■ Application level: You can specify this.wssettings.version.publish in your Application.
cfm file to declare the web service engine at the application level. All the components in 
the application will then be published using this setting. This setting takes precedence 
over the server-level setting.

■■ Server level: You can specify the web service engine to be used across the server. Select 
the version on the Web Services page in the Data and Services section of ColdFusion 
Administrator, shown in Figure 4.4.

While consuming a web service, ColdFusion will try to understand the WSDL style. If the style 
is Document Literal or Document Literal Wrapped, ColdFusion automatically uses Web Service 
Engine Version 2, and if the style is RPC Literal, ColdFusion automatically uses Web Service 
Engine Version 1. However, the caller can override this behavior by specifying the web service 
engine to be used while consuming web services. There are two places to provide this option:

■■ While consuming a service: You can provide wsversion with <cfinvoke> to tell Cold-
Fusion which web service engine to use to consume the web service. The possible values 
are 1 and 2, and this setting takes precedence over the application-level setting.

■■ Application level: You can specify this.wssettings.version.consume in your Application.
cfm file. Any call to consume web services will now use the specified version of the web 
service engine. 

Choosing the WSDL Style
ColdFusion can publish WSDL and consume web services that publish WSDL in the following styles:

■■ RPC Encoded: Specified with the <cfcomponent> attribute style=”rpc”, this style con-
siders web services as XML-based forms of Remote Procedure Calls (RPCs). Here the 
SOAP message body contains only one element, which is named after the operation, and 
all parameters must be represented as subelements of this wrapper element. This style is 
available only with Web Service Engine Version 1.

■■ Document Literal: Specified with the <cfcomponent> attribute style=”document”, this 
style considers web services as a means of moving XML information from one place to 
another. Here, the SOAP message body must follow the XML schema defined in WSDL 
as types. This style is available with both web service engine versions.

■■ Document Literal Wrapped: Specified with the <cfcomponent> attribute 
style=”wrapped”, this style is similar to the Document Literal style, except that the 
SOAP message body is wrapped within a root element. This style is available only 
with Web Service Engine Version 2.

Figure 4.4

Changing the web 
service version 
in ColdFusion 
Administrator. 
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Alternatively, you can specify the WSDL style to use at the application level as this.wssettings.style. 
ColdFusion will use this information to generate WSDL in the specified style for all the CFCs in 
this application. You can individually override this setting with the <cfcomponent> attribute style, 
which takes precedence over application-level settings.

Configuring Web Services in ColdFusion Administrator
The ColdFusion Administrator lets you register a web service with a name. You can do so by adding 
a web service on the Web Services page in the ColdFusion Administrator in the Data and Services 
section. When you reference that web service in your code with this name, you won’t have to specify 
the URL or any other details for the web service call. For example, any time you invoke a web ser-
vice registered as ZipCodeWS on a particular server, you can refer to it as WebService=”ZipCodeWS”. 
The URL can then be changed to point to another URL without the need to modify the invocation 
code throughout the application. This approach represents a type of code encapsulation, which you 
could also implement using application or request scope variables.

With ColdFusion 10, you can also specify proxy settings such as the proxy server, proxy port, 
proxy username, and proxy password, and a server-level setting to cause any web service request 
to time out at a particular time. When you call this web service by its name at the time of regis-
tration, you need not specify these settings again. However, settings provided at the time of the 
actual web service call, such as a <cfinvoke> call, will override server-level settings.

Note that just accessing any web service from user code will not autoregister or change that web 
service in ColdFusion Administrator, which used to happen until ColdFusion 9. With ColdFusion 
10, to register a web service in ColdFusion Administrator you need to add or modify it from the 
Administrator only.

note

To learn more about ColdFusion Administrator changes, visit http://www.adobe.com/devnet/coldfusion/articles/ 
axis2-web-services.html.

Best Practices
Web services have been around for a while and have generated significant hype. Along with the 
advantages of cross-platform compatibility are some drawbacks. Although the distributed comput-
ing environment of web services is widely recognized as the way of the future, it carries the baggage 
of network latency and additional translation time. The actual overhead of running a web service is 
not as bad as perceived, but it is a factor to consider when selecting parts of systems to expose to the 
world. Careful testing and optimization can reduce this potential problem significantly. Here are 
several general principles to consider when programming and designing web services: 

■■ Use coarse-grained web services. Network latency can be the biggest performance 
bottleneck. Try to reduce calls to the server. Call a web service once and use a query of 
queries to return the detailed information for display.

http://www.adobe.com/devnet/coldfusion/articles/axis2-web-services.html
http://www.adobe.com/devnet/coldfusion/articles/axis2-web-services.html
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■■ Secure your services. Never publish your web service without proper security in place. 
See the discussion about securing your web services earlier in this chapter for details.

■■ Use a server-level timeout. Aim for a timeout value of 1 to 3 seconds; waiting for a web 
service from a busy server to return can eat up all threads on your server and potentially 
can bring it down.

■■ Preferably, call long running web services from a scheduler or <cfthread> and look for 
caching possibilities. See Chapter 14 for information about schedulers and Chapter 16 
for information about caching.

■■ Use stateless web services whenever possible.

■■ Include ColdFusion types in WSDL and limit the use of complex data types in web ser-
vices that interact with other platforms. Other platforms may not be able to understand 
deeply nested types. 

■■ Monitor your web service calls to understand their use. You can use ColdFusion server 
monitoring, which monitors web service calls separately from other types of request. 
With just the basic monitoring enabled, you can get valuable information about web ser-
vice requests, running or queued. And on the basis of this information, you can tweak 
your server settings and also change the application code.

Troubleshooting
No matter how carefully you code, you can always end up with unexpected results. In such cases, 
you will want to see what is happening and to pinpoint the code that is causing the problem. 
Debugging can be difficult when there is client-server communication as in the case of web ser-
vices. Here are a few tips to help you identify and fix common problems that you may face: 

■■ Check the WSDL. As explained earlier, append ?wsdl to the CFC URL and run the 
URL in a browser to see whether the CFC has any compilation problems and whether 
the generated WSDL is correct and accessible.

■■ Use <cfdump> to output to the console to check whether the call is coming to your appli-
cation and see what arguments are being passed. Remember to remove this function 
when implementing your application for production.

■■ Use refreshWSDL. It is possible that the CFC you are accessing through the web service 
has changed. Use this attribute with <cfinvoke> to regenerate the stubs. Remember to 
remove it when implementing your application for production.

■■ If wsversion is not defined while consuming a web service, ColdFusion checks the 
WSDL to determine which web service engine it should use to consume that particular 
web service. You can force ColdFusion to use a specific web service engine by specifying 
wsversion with <cfinvoke>.
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■■ You can use the GetSOAPRequest function to get the actual SOAP request sent and the 
GetSOAPResponse function to get the actual response received. This information can help 
you determine whether correct information is being sent and whether you are receiving 
the correct response.

■■ You can use a TCP monitor such as TCPMon to track exactly what is being sent and 
received over the wire. The monitor acts like a proxy between the client and the server 
and shows you the communication that occurred in between them.

SOAP or REST?
If you have ever wondered which form of web services you should use, you are not alone. However, 
there is no easy answer. In this section, we list the key differences between SOAP and REST ser-
vices to help you decide which style to choose for your particular case. 

■■ SOAP-based web services are object oriented, and REST-based web services are repre-
sentation oriented. Without going into detail, this distinction means that you can get 
started easily with a SOAP-based solution, but a REST-based solution will need addi-
tional planning to create a logical hierarchy.

■■ SOAP-based web services are declarative, use the standard WSDL format to describe 
them, and have great tooling support. REST-based web services do not yet have a stan-
dard for describing services.

■■ SOAP-based web services support only XML, and REST-based web services can sup-
port numerous content types, including JavaScript Object Notation (JSON), and can be 
accessed directly from JavaScript.

■■ SOAP 1.1–based solutions do not conform to the HTTP model and hence cannot take 
advantage of HTTP caching, security, and so on. REST is fully HTTP complaint.

■■ XML use makes the SOAP format verbose and its performance slower than REST using 
JSON. However, REST clients may take a longer time when using XML.

■■ REST generates search-engine optimization (SEO)–friendly endpoints.

As a general rule, REST benefits web services directly accessed from web pages as in the case of 
XMLHTTPRequests (XHR) , and SOAP benefits web services accessed by an intermediate server 
or middleware.  
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attributes, 6
Cold Fusion 10 support for geolocation features of 

HTML5, 5–7
ShowUser attribute, 312

<cfmediaplayer>
callback functions, 97–98
DRM (digital rights management), 103
playing YouTube video, 101–102
repeat attribute, 98–99
style attribute, 97
title attribute, 99–100
type attribute for video support, 94–95

CFML (ColdFusion Markup Language)
arrays and inline functions, 112–115
calling Java program with CFML page, 180–181
closures, 107–112
component updates, 121
enhancements, 312–314
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CFML (continued )
handling form fields with same name, 120–121
implicit constructors, 121–122
implicit notation, 123–124
Java integration, 165–168
lists and inline functions, 116
method chaining, 122–123
onAbort event added to Application.cfc file, 119–120
overview of, 107
passing CFCs to Java class, 184–185
queryNew and queryAddRow improvements, 124–125
runOnce attribute of <cfinclude>, 118–119
script-based development in, 128
source code for CFCs, 146
structs and inline functions, 116–118
syntax and behavior improvements, 118
WebSocket message integration, 16

<cfobject>
consuming web services, 62–63
loading Java classes, 167–168

<cfparam>, MAXLENGTH validation attribute, 313
<cfpop>, SECURE attribute for SSL processing, 313
<cfquery>, 273. see also Queries
<cfschedule>. see also Scheduling
Action attribute with “List” value for listing tasks, 

243–245
application-level tasks, 227
chaining tasks, 231–233
changes to scheduling, 226
clustering scheduled tasks, 249–250
cronTime attribute, 236–237
deleting tasks, 230
event handling, 239–243
Exclude attribute, 233–234
FIRE_NOW option for handling task misfires, 238–239
Group attribute, 228–229
onException attribute, 237–238
pausing/resuming tasks, 246
prioritizing tasks, 230–231
Repeat attribute, 234–235
running tasks, 230

<cfscript>
approaches to CFC tag equivalents, 147
calling Java program with CFML page, 180–181
collection component in place of CFCOLLECTION 

tag, 137–140
colon separator in structures, 128–129
community-contributed CFC-based tags, 146–147
consuming web services, 63
cookie statement in place of CFCOOKIE tag, 132–133
defining CFCs with, 179
documentation and source code of CFCs, 146

errors returned from script-based tag-equivalent 
CFCs, 140–141

evolution of script-based development in CFML, 128
index component in place of CFINDEX tag, 141–143
invoke function in place of CFINVOKE tag, 133–136
looping, 129–130
looping over Java arrays, 185
overview of, 127
resources for, 147–148
search component in place of CFSEARCH tag, 

143–145
setting statement in place of CFSETTING tag, 

131–132
<cfsearch>

full-text searches, 150
performing basic search, 143–144
search component in place of, 143
search enhancements, 300–302

<cfsetting>, 131–132
Cfstat utility, secure profiles, 252
<cfthrow>, customizing responses in REST, 92
<cfwebsocket>. see WebSocket
Chaining scheduled tasks, 231–233
Channels, CFC handlers and, 17
Channels, WebSocket

defining, 11
subchannels for message filtering, 23–25

Chart object, ZingChart, 45
Charts/charting

clickable URLs in, 45–48
getting started, 35–37
highlighting important data in, 49–50
overview of, 35
plotting multiple series in, 44
previewing and zooming, 38–39
querying data in, 38
refreshing, 51–53
rendering, 44
styles, 42–44
types, 40–41
updating, 37, 50–51

Checkboxes, handling form fields with same name, 
120–121

Chrome
HTML5 support, 4
video support, 94

Classes, Java
benefits of dynamic loading, 172
challenges of adding .class files to loadPaths, 

174–175
challenges of dynamic loading, 173–175
creating class for CFCs, 183–184
defining application-specific class libraries, 169
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example of dynamic loading of Java classes, 171–172
loading, 168–169
naming load paths, 169–170
passing CFCs to, 184–185
reloading changed classes, 169, 172–173
unexpected class or version loaded, 175
using, 167

Clickjacking, 263
closeConnection() function, JavaScript API, 14
Closures

arrays and, 112–115
benefits of, 111–112
creating functions as arguments, 110–111
defined, 107
defining functions within existing functions, 

108–109
lists and, 116
structs and, 116–118
UDF (user-defined function) example, 108

Cloud
advantages of, 201
Amazon Web Services. see AWS (Amazon Web 

Services)
cost model for, 211
deployment models, 203
design considerations, 212
designing for, 210
licensing and, 210–211
managing application state and transactions, 212
managing databases, 213–214
monitoring, 215
overview of, 199
publishing a public AMI, 215–216
security of, 214
service levels offered, 211–212
service models, 201–202
technologies of, 200–201
what it is, 199–200

CloudFront, Amazon, 210
Clustering scheduled tasks, 248–250
Code-level security, 251
ColdFusion Administrator

configuring web services, 73
DIH (DataImportHandler) configuration, 305
enhancements. see Administration enhancements
refreshing REST services, 92
registering REST services, 78, 92
scheduling in, 247
secure profiles, 252
securing, 251
Server Monitor option, 275
WebSocket options, 34–35

ColdFusion Builder, 220

collection component
approaches to CFC tag equivalents, 147
creating/manipulating collections, 139–140
deleting collections, 140
listing collections with, 138
methods, 140
in place of CFCOLLECTION tag, 137

collections, Solr
adding/maintaining collection data, 141
collection use in ColdFusion, 145
managing collections, 137–140
processing text indexes, 137

Colon separator (:), in structures, 128–129
Communication standards, 56
Community cloud, 203
Compiling Java programs, 178–179
Complex data types, web services, 63–64
Components. see CFCs (ColdFusion components)
Constructors
CFCProxy class, 176–177
implicit, 121–122

Content types, REST services, 82–83
Conversations, Microsoft Outlook

enhancements, 313
overview of, 290
performing actions, 292–293
retrieving, 290–291

cookie statement
approaches to CFC tag equivalents, 147
in place of <cfcookie>, 132–133

Cookies
secure profiles, 252
session management and, 261

Cost model, cloud computing, 211
CPUs

Amazon instance types and, 206
licensing and, 211

createDynamicProxy CFC function, 182–185
createObject() function, loading Java classes, 

167–168
CreateObject() method

consuming web services, 62–63
creating proxy for SOAP web service, 70

Cron expressions, for Quartz scheduler, 235–237
cronTime attribute, <cfschedule>, 236–237
Cross-site scripting (XSS) protection, 252, 253–257
CSRF (cross-site request forgery) protection, 257–259
CSS3, what’s new in HTML5, 4
Curly braces ({}), use around structure keys, 129
Custom fields

boosting, 302–303
in indexes, 297–300

Customizing responses, with REST, 92
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D
Data types

complex in web services, 63–64
including ColdFusion types in WSDL, 71
specifying content types, 82–83

Databases
creating shared tables when clustering scheduled 

tasks, 248–249
managing in cloud computing, 213

DataImportHandler. see DIH (DataImportHandler)
Dates
dateTimeFormat() function, 313
in task scheduling, 233–234

Debugging, call stacks and, 313
Deployment models, cloud computing, 203
Derby, updates to embedded libraries, 320
Design considerations, cloud computing, 212
detail method, in REST application, 89
Developer edition, 321
Digital rights management (DRM), 103
DIH (DataImportHandler)

indexing data, 307–308
overview of, 304–305
setting up, 305–306

directInvoke argument, of CFCProxy class, 181
Directories

controlling access to, 251
DirectoryCopy( ) function, 313

DNS lookup, example of CFML/Java integration, 
166–167

docboost attribute, <cfindex>, 302
Document Literal Wrapped, WSDL styles, 72
Document Literal, WSDL styles, 72
Documentation

of CFCs, 146
ColdFusion 10, 322

Documents
docboost attribute, 302
Microsoft Office. see Microsoft Office documents

DRM (digital rights management), 103
DTD, WSDL support for type definitions, 60

E
EAI (enterprise application integration), 55
EAR files, 312
EBS (elastic block storage), 206
EC2 (Elastic Cloud Compute)

AMIs (Amazon Machine Images), 205–206
instance types, 206
overview of, 204
public cloud deployment, 203
purchasing model, 205

region and availability zone, 205
security types, 207
service levels, 211–212

EhCache
ColdFusion caching engine based on, 265
ehcache.xml file, 266–267
enhanced query caching and, 273–275
updates to embedded libraries, 320
version update, 275

Elastic Beanstalk, Amazon, 210
Elastic block storage (EBS), 206
Elastic Cloud Compute. see EC2 (Elastic Cloud 

Compute)
ELB (Elastic Load Balancer), from Amazon, 213
Email, notification of server updates, 224
Embedded libraries, updating

Apache Solr, 320
Derby, 320
EhCache, 320
Java, 319
Lucene, 320
overview of, 319
Web services, 319
XML (Extensible Markup Language), 319

Embedding video. see Video embedding
Encoding functions, for XSS protection, 254–257
End-user license agreement (EULA), 

cloud computing and, 211
Enterprise edition

application-level tasks, 226–227
compared with Standard edition, 321
scheduling in, 225

Ephemeral storage, EC2 storage options, 206
Equals (=), for assignment, 129
Error handling

video embedding and, 97–98
WebSocket, 34

EULA (end-user license agreement), cloud computing 
and, 211

Event handling
arguments, 241
<cfcomponent>, 240
<cfschedule>, 239–240
stubs, 240
using, 241–243

EWS (Exchange Web Services), 281–282
Excel, Microsoft, 295–296
Exception handling, scheduled tasks and, 237–238
Exchange Server. see Microsoft Exchange Server
Exchange Web Services (EWS), 281–282
Exclude attribute, <cfschedule>, 233–234
Excluding dates, in task scheduling, 233–234
Explicit indexing, in ORM, 157–158
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Extensible Markup Language. see XML (Extensible 
Markup Language)

Extensible Stylesheet Language Transformations. 
see XSLT (Extensible Stylesheet Language 
Transformations)

F
fieldboost attribute, <cfindex>, 302
Fielding, Roy, 77
Files
Expandpath() function, 313
location and arrangement in multiserver 

deployments, 311
upload protection, 260–261

FileZilla, 207
Filtering custom data, in indexes, 300–302
Filtering WebSocket messages

overview of, 22
selectors, 25–27
subchannels, 23–25

FIRE_NOW option, <cfschedule>, 238–239
Firefox

HTML5 support, 4
video types supported, 94

Flash. see Adobe Flash
Flexibility, advantages of cloud, 201
folderPath attribute, <cfexchangefolder>, 285
Folders, Microsoft Exchange Server

creating, 287
enhancements, 313
modifying, 287–288
retrieving folder information, 283–286

for-in loops
looping over Java arrays, 130
looping over queries, 129–130

Forms, handling form fields with same name, 120–121
Full-text searches

with Apache Solr. see Apache Solr
of ORM entities. see ORM (object relational 

mapping)
Functions. see also by individual type

built-in, 269–271
caching functions, 270–272
creating as arguments, 110–111
for CSRF protection, 257–259
defining functions within existing functions, 

108–109
encoding functions for XSS protection, 254–257
for extending SQL queries to ORM, 150
implementing tags as, 133
returning system-level information, 313
secure profiles, 252
uses of, 111

G
Garbage collection (GC), JVM tuning and, 277–279
GC (garbage collection), JVM tuning and, 277–279
Geolocation API, HTML5, 4–7
GetSOAPRequest function, troubleshooting web 

services, 75
getSubscriberCount, JavaScript API function, 14
getSubscriptions, JavaScript API function, 14
Google API key, 7–8
Google Chrome

HTML5 support, 4
video support, 94

Google maps
accessing, 7–8
Geolocation API and <cfmap> tag and, 5–7

Group attribute, <cfschedule>, 228–229
Grouping scheduled tasks, 228–229

H
Hash() function, for password security, 262
Heap, JVM tuning and, 278
Hibernate, ORM and, 149
Hibernate Query Language (HQL)

extending SQL queries to ORM, 150
logging, 162

Hierarchy management, in ORM, 163
Highlighting chart data, 49–50
HMAC() function, for hash-based message 

authentication, 262
Hotfixes, managing from Administrator, 221
HQL (Hibernate Query Language)

extending SQL queries to ORM, 150
logging, 162

HTML5
accessing Google maps, 7–8
automatic fallback for browsers that do not support 

WebSocket, 96
browser support, 4
building REST application in, 91–92
Cold Fusion 10 support, 5
Geolocation API and <cfmap> tag, 5–7
video embedding support, 93–94
what’s new, 3–4

HTTP (Hypertext Transfer Protocol)
connecting to Exchange mailboxes, 281
cookie values used by session management, 261
invoking web services and, 57
overview of, 57
REST closely tied to, 77
standardization of communication, 56
as transport medium for SOAP requests, 68–69
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HTTPS (Secure HTTP)
connecting to Exchange mailboxes, 281
securing cloud computing, 214
securing web services, 67

Hybrid cloud, 203
Hypertext Transfer Protocol. see HTTP (Hypertext 

Transfer Protocol)

I
IaaS (Infrastructure as a Service), 202
IE (Internet Explorer)

HTML5 support, 4
video types supported, 94

IIS (Internet Information Services), 214
Implicit constructors, 121–122
Implicit indexing, in ORM, 158
Implicit notation, 123–124
index component

methods, 143
in place of CFINDEX tag, 141
querying data source with, 142–143

Indexes, Apache Solr
boosting custom fields and documents, 302–303
DIH (DataImportHandler) and, 304–308
filtering custom data, 300–302
ordering results, 304
specifying custom fields, 297–300

Indexes, ORM
enabling entities for, 151–152
of entities, 152
explicit and implicit, 157–158
purging, 158

Infrastructure as a Service (IaaS), 202
init(), initializing Java class constructors, 167
Inline (or inner) functions. see Closures
Installer, ColdFusion 10, 311
Instance types, EC2 (Elastic Cloud Compute), 206
Integration

benefits of web services, 56
copying Exchange folders, 288
creating Exchange folders, 287
as focus of ColdFusion, 55
with Java. see Java integration
for Microsoft Exchange Server 2010, 281–283
for Microsoft Office documents, 295–296
modifying Exchange folders, 287–288
moving, deleting, or emptying Exchange folders, 289
overview of, 281
performing Exchange availability operations, 

293–295
performing Exchange conversation actions, 292–293
retrieving Exchange conversations, 290–291

retrieving information about Exchange folders, 
283–286

Interface, defining Java interface, 182
Internet Explorer (IE)

HTML5 support, 4
video types supported, 94

Internet Information Services (IIS), 214
invoke function

approaches to CFC tag equivalents, 147
invoking web service methods, 136
JavaScript API function, 14
for passing arguments, 134–135
in place of <cfinvoke>, 133
for reusing CFC instances, 135–136

invoke method, CFCProxy class, 177
invokeAndPublish function

JavaScript API function, 14
publishing messages, 31–32

Invoking web services, 56–57, 136
IP addresses, restricting access by, 221
IsSOAPRequest() function, 68–69
iTunes, playlist support, 100

J
.jar ( Java archives)

challenges of adding to loadPaths, 174–175
loading Java classes, 168–169

Java
disabling access to Java components, 252
for-in loops applied to Java arrays, 130
updates to embedded libraries, 319

Java Development Kit ( JDK), 178–179
Java Enterprise Edition (JEE)

ColdFusion running on JEE application server, 277
deployment option, 311

Java integration
accepting arguments, 180
calling CFCs from Java, 175–176
calling Java program with CFML page, 180–181
CFCProxy class and, 176–178
challenges of dynamic loading of classes, 173–175
compiling Java program, 178–179
createDynamicProxy CFC function, 182–185
defining application-specific class libraries, 169
directInvoke argument of CFCProxy class, 181
DNS lookup example, 166–167
invoking CFC methods, 179
load path example, 170
loading Java classes, 168–169
looping over Java arrays, 185–186
overview of, 165
reloading changed classes, 172–173
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reverse-DNS java library example of dynamic class 
loading, 171–172

this.javaSettings for application-specific class 
loading, 168

using Java libraries and classes, 167
Java Server Pages (JSPs), 168
Java Virtual Machine (JVM)

loading Java classes, 168
tuning, 277–279

javac command, compiling Java programs, 178–179
JavaScript, 102

API for setting source on media players, 95
HTML5 compatibility plug-ins, 4
messageHandler function, 12–13
playerOperation function, 102
WebSocket requiring, 10
what’s new in HTML5, 4
working with JavaScript API, 13–16

JavaScript API function, 12–13
JavaScript Object Notation. see JSON (JavaScript 

Object Notation)
javaSettings property, application.cfc file, 169–170
JDK (Java Development Kit), 178–179
JEE (Java Enterprise Edition)

ColdFusion running on JEE application server, 277
deployment option, 311

jQuery, creating functions as arguments, 110
JRun Metrics logging, 317
JSON (JavaScript Object Notation)

refreshing charts, 51
SOAP vs. REST and, 75
specifying content types in REST, 82–83
styling charts, 42–43
XML compared with, 187

JSPs (Java Server Pages), 168
JVM (Java Virtual Machine)

loading Java classes, 168
tuning, 277–279

jvm.config file, 279, 312

K
Key:value pairs, support for colon separators in 

structures, 128–129
Kumar, Rupesh, 162

L
Layouts, templates for, 118–119
Libraries, Java

defining application-specific class libraries, 169
reverse-DNS java library example of dynamic class 

loading, 171–172
using, 167

Libraries, updates to embedded, 319

Licensing
changes to, 322
cloud computing and, 210–211

list method, in REST application, 89
listFilter example, inline functions in, 116
listLen function, handling form fields with same 

name, 120–121
Lists

inline functions and, 116
of scheduled tasks, 243–245

Load paths
challenges of adding .jar or .class files to loadPaths, 

174–175
Java integration and, 170

Logging
access requests, 318
administrative changes, 219–220
enhancements to, 317–318
execution of scheduled tasks, 226
HQL logging, 162

Logon, limited to single administrator at a time, 315
Loop playback, video, 98–99
Looping

over Java arrays, 185–186
over queries, 129–130

Loose coupling, benefits of web services, 56
Lucene, updates to embedded libraries, 320

M
m3u playlist format, support in media players, 100
MathML (Mathematical Markup Language), 3
MAXLENGTH validation attribute, <cfparam>, 313
Measure service, features of cloud computing, 200
Media players

callback functions, 97–98
extending, 101
loop playback support, 98–99
playlist support, 100
poster image support, 99
setting source on, 95
style attribute for skinning, 97
title support, 99–100
type attribute for video support, 94–95

Memory allocation, JVM heap and, 278
Message handlers

JavaScript messageHandler function, 12–13
in news handler example, 20

Messages, WebSocket
filtering, 22
generating with CFCs, 31–32
JavaScript messageHandler function, 12–13
selectors, 25–27
subchannels, 23–25
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Metadata
applications and sessions, 313
CFCs, 146

Methods
CFCs, 146
chaining method calls, 122–123
collection component, 140
index component, 143
invoking CFC methods from Java, 179
invoking web service methods, 136

Metrics logging, 317
Microdata, what’s new in HTML5, 4
Microsoft Excel, integration with ColdFusion, 

295–296
Microsoft Exchange Server 2010

creating folders, 287
integration with ColdFusion, 281–283
modifying folders, 287–288
performing availability operations, 293–295
performing conversation actions, 292–293
retrieving additional folder information, 285–286
retrieving basic folder information, 283–285
retrieving child folder information, 286
retrieving conversations, 290–291

Microsoft Internet Explorer. see IE (Internet 
Explorer)

Microsoft Office documents
adding/maintaining data in Solr collections, 141
integration improvements, 295–296

Microsoft Outlook. see Conversations, Microsoft 
Outlook

Microsoft PowerPoint, 295–296
Microsoft Windows Media Player, 100
Microsoft Word, 295–296
MIME types

checking MIME values of files, 260–261
specifying for video, 94
what’s new in HTML5, 4

Monitoring cloud, 215
Mozilla Firefox

HTML5 support, 4
video types supported, 94

MP4s
playing using <cfmediaplayer>, 94–95
playing using Adobe Flash, 97
playing using HTML5, 96
video types, 94

Multiserver deployments, architecture enhancements, 
311–312

N
National Institute of Standards and Technology 

(NIST), 199
Network access, features of cloud computing, 200
Nielsen, Lasse, 107
NIST (National Institute of Standards and 

Technology), 199
Notation, implicit, 123–124
NULL values, in ColdFusion, 66

O
OAuth (Open Standard for authentication), 68
Object relational mapping. see ORM (object relational 

mapping)
Object-Oriented Programming (OOP), 60
Office documents. see Microsoft Office documents
Offline searches, ORM and, 155–157
Offline storage, what’s new in HTML5, 4
Ogg video type, 94
onAbort event

added to Application.cfc file, 119–120
<cfabort>, 313

On-demand self-service, features of cloud 
computing, 200

onError, callback function, 97–98
onException attribute, <cfschedule>, 237–238
onPause, callback function, 97–98
onWSAuthenticate method, WebSocket, 27–29
OOP (Object-Oriented Programming), 60
Open Source Media Framework (OSMF), 101
Open Standard for authentication (OAuth), 68
openConnection, JavaScript API function, 14
Opera

HTML5 support, 4
video types supported, 94

orderby attribute, <cfindex>, 304
ORM (object relational mapping)

explicit and implicit indexing, 157–158
hierarchy management, 163
HQL logging, 162
indexes, 151–152
indexing ORM entities, 151–152
overview of, 149
purging indexes, 158
searches, 149–150
searching by level, 158–161
searching multiple entity types, 154–155
searching offline, 155–157
searching ORM entities, 152–154
searching relationships, 157

OSMF (Open Source Media Framework), 101
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P
PaaS (Platform as a Service), 202
Parent-child relationships, in ORM hierarchy, 163
Passwords
hash() function for securing, 262
reset script, 220
secure profiles, 252

PDFs, in Solr collections, 141
Performance improvements

application-specific caching, 266–267
built-in functions and, 269–271
cache regions, 267–268
caching and, 265–266
EhCache version update, 275
JVM tuning, 277–279
new cache functions, 271–272
overview of, 265
query caching, 273–275
Server Monitor support for caching, 275–277

Pie charts, 36–37, 41
Platform independence, web services and, 56
Player controls, video embedding and, 96–97
playerOperation, JavaScript, 102
Playlists, video embedding and, 100
plot attribute, <cfchart>, 49–50
Plotting multiple series, in charts, 44
Point-to-point applications, WebSocket, 32–34
POST operations, secure profiles, 252
Poster images, video embedding, 99
PowerPoint, integration with ColdFusion, 295–296
Previewing charts, 38–39
Prioritization, of scheduled tasks, 230–231
Private cloud, cloud deployment models, 203
Properties

ORM searches at property level, 160–161
Outlook conversations, 291
Quartz scheduler, 250

Public cloud, cloud deployment models, 203
Publish, JavaScript API function, 14

Q
Quartz scheduler

clustering tasks, 248
Cron expressions, 235–237
customizing, 250
overview of, 226

Queries
caching, 273–275, 320
chart data, 38
clearing query cache, 219
of data sources, 142–143
looping, 129–130
script-based, 130

queryAddRow, improvements to CFML, 124–125
queryNew, improvements to CFML, 124–125

R
RDP (Remote Desktop Protocol), 207
RDS (Remote Development Services)

administrative changes, 220
sandbox permissions for, 315–316
secure profiles, 252

Real Time Messaging Protocol (RTMP)
extending media players, 101
streaming video, 102–103

Recovery planning, cloud computing and, 214
Redundancy, cloud computing and, 214
Refreshing chart data

with random chart type, 51
in real time, 52–53
updating entire chart, 50–51

RefreshWSDL, troubleshooting web services, 74
Registration, of REST services, 78–79
Relationships of ORM entities, searching, 157
RelaxNG type definitions, WSDL, 60
Reliability, advantages of cloud, 201
reloadOnChange, Java classes, 172–173
Remote Desktop Protocol (RDP), 207
Remote Development Services. see RDS (Remote 

Development Services)
renderer attribute, <cfchart>, 45
Rendering charts, 44–45
repeat attribute, <cfmediaplayer>, 98–99
Repeat attribute, <cfschedule>, 234–235
Representational State Transfer. see REST 

(Representational State Transfer)
Resource pooling, cloud computing and, 200
Resources, securing, 251
REST (Representational State Transfer)

Axis 2 support, 319
building REST CFCs, 79–80
cloud technologies and, 201
customizing responses with, 92
dynamically initializing REST services, 92–93
registering REST services, 78–79
sample application, 87–92
SOAP compared with, 75–76
specifying content types, 82–83
testing REST CFCs, 80–82
types of web services, 55
what it is, 77–78
working with subresources, 85–86
XML search filtering results of REST service call, 191
XML serialization and, 84–85

restInitApplication, REST services, 92–93
restSetResponse, REST services, 92
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Reverse-DNS lookup
example of CFML/Java integration, 166–167
example of dynamic loading of Java classes, 171–172

Robust Exception Information, secure profiles, 252
Rooms, Microsoft Exchange Server

retrieving available, 295
viewing list of, 294

Root Path, REST services, 78
RPC Encoded, WSDL styles, 72
RTMP (Real Time Messaging Protocol)

extending media players, 101
streaming video, 102–103

runOnce attribute, <cfinclude>, 118–119, 312

S
S3 (Simple Storage Service)

accessing with ColdFusion, 207–209
EC2 storage options, 206
overview of, 207
public cloud deployment, 203
service levels, 211–212

SaaS (Software as a Service), 202
Safari

HTML5 support, 4
video support, 94

Sandboxes
access rules, 251
RDS permissions, 315–316
secure profiles, 252

Scalable vector graphics (SVG), 3, 45
Scheduling

adding and editing tasks, 247–248
application-level tasks, 226–228
chaining tasks, 231–233
changes to, 226
clustering scheduled tasks, 248–250
ColdFusion Administrator and, 247
comparing Standard and Enterprise editions, 225
Cron expressions for Quartz scheduler, 235–237
customizing Quartz scheduler, 250
deleting tasks, 230
excluding dates, 233–234
grouping tasks, 228–229
handling events, 239–243
handling exceptions, 237–238
handling misfires, 238–239
listing scheduled tasks, 243–245
logging task execution, 226
overview of, 225
pausing/resuming tasks, 246
prioritizing tasks, 230–231
Quartz engine for, 226
repeating tasks, 234–235
running tasks, 230

sClosure() function, 117–118
Scripts. see <cfscript>
Scripts, cross-site, 252, 253–257
search component

basic search, 143–144
crawling web sites and, 145
in place of <cfsearch>, 143

Search engine optimization (SEO), 75
Searches. see <cfsearch>
Searches, Apache Solr

boosting custom fields and documents, 302–303
DIH (DataImportHandler) and, 304–308
filtering custom data, 300–302
ordering results, 304
specifying custom fields, 297–300

Searches, ORM
by level, 158–161
offline searches, 155–157
overview of, 149–150
searching entities, 152–154
searching multiple entities by type, 154–155
searching relationships, 157

SECURE attribute, <cfpop>, 313
Secure File Transfer Protocol (SFTP), 207
Secure HTTP. see HTTPS (Secure HTTP)
Secure profiles, 252–253
Secure Shell (SSH), 207
Secure Sockets Layer (SSL), 67, 313
Security

backward-compatibility issues, 316–317
clickjacking and, 263
of cloud, 214
CSRF (cross-site request forgery) protection, 

257–259
file upload protection, 260–261
Hash() function and, 262
HMAC() function and, 262
overview of, 251
sandbox permissions for RDS, 315–316
secure profiles, 252–253
securing WebSocket applications, 27–30
Session feature improvements, 261
single sign-on authentication, 30–31
single user restriction in <cflogin>, 315
updates, 219
web services, 67–68
XSS (cross-site scripting) protection, 253–257

Security groups, EC2 (Elastic Cloud Compute), 207
Selectors, for filtering WebSocket messages, 25–27
SEO (search engine optimization), 75
Serialization, XML, 84–85
Server deployment option, 311
Server Monitor, 275–277
Server Settings, Scheduled Tasks link, 227
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Servers
adding to clustered scheduled tasks, 249
managing updates, 221–224
ORM searches at server level, 158
securing, 252
serverVersion attribute, 282–283
WebSocket server-side functions, 21–22

Service level agreements (SLAs), 211
Service levels, cloud computing, 211–212
Service Mapping, REST services, 78
Service models, cloud computing, 201–202
Sessions

security enhancements, 261
session fixation protection, 316–317
sessionGetMetaData() function, 313

Set as Default Application, REST services, 79
SetSource on media players, JavaScript API, 95
setting statement

approaches to CFC tag equivalents, 147
in place of <cfsetting>, 131–132

SFTP (Secure File Transfer Protocol), 207
showuser attribute, <cfmap>, 5, 312
Simple Storage Service. see S3 (Simple Storage Service)
Single sign-on authentication, 30–31
SLAs (service level agreements), 211
SOAP (Simple Object Access Protocol)

Apache Axis implementation, 59, 319
authorization by using SOAP headers, 68
cloud technologies and, 201
invoking web services and, 57
overview of, 58
platform independence and, 56
requests, 68–70
REST compared with, 75–76
types of web services, 55
web service engine options, 59–60
WSDL support, 61

Software as a Service (SaaS), 202
Solr. see Apache Solr
Source code, of CFCs, 146
Special characters, in Cron expressions, 235–236
SQL (Structured Query Language)

enabling SQL logging by ORM, 162
searching databases with, 149–150
secure profiles, 252

Square braces ([]), for use with arrays, 129
SSH (Secure Shell), 207
SSL (Secure Sockets Layer), 67, 313
Standard edition

compared with Enterprise edition, 321
scheduling in, 225

Statements, within scripts
cookie statement in place of CFCOOKIE tag, 132–133
setting statement in place of CFSETTING tag, 131–132

Statistics tab, Server Monitor, 275
Storage

EC2 (Elastic Cloud Compute), 206
temporary. see Caching
what’s new in HTML5, 4

Streaming video, 102–103
strict attribute, <cffile>, 260
Strobe Media Playback

DRM (digital rights management), 103
extending media players, 101
streaming video, 102–103

structFilter example, inline functions in, 116–117
Structs/structures

colon separator in, 128–129
inline functions and, 116–118
serialization, 84

Structured Query Language. see SQL (Structured 
Query Language)

Stubs
event handling, 240
web services, 63

Styles, chart, 42–44
Subresources, REST services, 85–86
SVG (scalable vector graphics), 3, 45
Syntax improvements, 118–121
System-level information, functions returning, 313

T
Tasks

application-level vs. server level, 227–228
scheduling. see Scheduling

TCO (total cost of ownership), cloud computing 
and, 201

TCPMon, troubleshooting web services, 75
Technologies, cloud computing, 200–201
Templates

for layouts, 118–119
secure profiles, 252

Themes, 217–218
This scope, CFCs (ColdFusion components), 123
this.javaSettings, for application-specific class 

loading, 168
Time, dateTimeFormat() function, 313
Time to market, advantages of cloud, 201
Titles, video embedding and, 99–100
Tokens, for setting attribute values, 49–50
Tomcat, as default server engine, 277
Total cost of ownership (TCO), cloud computing 

and, 201
Transactions, managing in cloud computing, 212
Trusted cache, 219
Tutorials, ColdFusion, 323
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U
UDFs (user-defined functions)

building utilities with, 111
creating functions as arguments, 110–111
defining functions within existing functions, 

108–109
example, 108

Uniform resource locators. see URLs (uniform 
resource locators)

Universally unique IDs (UUIDs), 213, 252
Unix, password reset script, 220
update method, in REST application, 89
Updates

caching, 219
chart, 50–51
component, 121
security, 219
server, 221–224

URLs (uniform resource locators)
adding clickable URLs to charts, 45–48
benefits of using REST services, 77
for JSON and XML responses, 84–85
REST subresources and, 85–86

User-defined functions. see UDFs (user-defined 
functions)

Users, finding user availability for calendar events, 
294–295

UUIDs (universally unique IDs), 213, 252

V
Variables, XPath, 192
Variables scope, CFCs (ColdFusion components), 123
Verity

deprecated support, 297
Verity-Solr migration, 310

VFS (virtual file system), 320–321
video element, HTML5, 93
Video embedding

callback events and error logs, 97–98
<cfmediaplayer>, 94–95
DRM (digital rights management), 103
enhancements to, 98
extending media players, 101
fallback plan for browsers not supporting, 95–96
HTML5 and, 93–94
loop playback support, 98–99
overview of, 93
player controls and, 96–97
playing YouTube video, 101–102
playlist support, 100
poster image support, 99
streaming, 102–103
title support, 99–100
what’s new in HTML5, 3, 5

Virtual file system (VFS), 320–321
Virtual Private Cloud (VPC), 210
Virtual private networks (VPNs), 210
Virtualization, cloud technologies, 200
VML, rendering charts and, 45
VPC (Virtual Private Cloud), 210
VPNs (virtual private networks), 210

W
W3C, Web Services Description Working Group, 58
WAR files, 312
watchExtensions, Java classes, 172–173
watchInterval, Java classes, 172–173
WDDX, XML style, 84
WDSL, Axis 2 support, 319
Web browsers

fallback plan for browsers not supporting video 
embedding, 95–96

HTML5 support, 4
video support, 94
WebSocket support, 10, 34

Web pages, in Solr collections, 141
Web servers, securing cloud computing, 214
Web service engines

choosing, 71
options, 59–60
specifying, 71–72

Web Service Security (WSS), 68
Web services

access control, 67–68
application-level settings, 70
architecture of, 57–58
best practices, 73–74
building, 60–62
cloud technologies, 201
comparing SOAP with REST, 75–76
complex data types, 63–64
configuring, 73
consuming, 62–63
including ColdFusion types in WSDL, 71
invoking, 56–57
invoking methods, 136
overview of, 55
passing arguments to, 64–66
securing, 67
service engine options, 59–60
specifying service engines for, 71–72
stubs, 63
troubleshooting, 74–75
updates to embedded libraries, 319
what they are, 55–56
working with multiple arguments, 66
working with SOAP requests, 68–70
WSDL styles, 72–73
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Web Services Description Language. see WSDL 
(Web Services Description Language)

Web Services Description Working Group, W3C, 58
WebDAV, 281–282
WebM, 94
WebSocket

browser support, 10
<cfwebsocket>, 11–12
channel definitions, 11
ColdFusion Administrator options, 34–35
error handling and unsupported browsers, 34
filtering messages, 22
generating messages with CFCs, 31–32
JavaScript messageHandler function, 12–13
point-to-point applications, 32–34
secure profiles, 252
securing applications, 27–30
security groups for EC2, 207
selectors, 25–27
server-side functions, 21–22
single sign-on authentication, 30–31
subchannels, 23–25
what it is, 9–10
what’s new in HTML5, 4–5
working with CFC (ColdFusion component) 

handlers, 16–21
working with JavaScript API, 13–16

WHERE clause, SQL, 149–150
Windows Media Player, 100
Windows OSs

AMIs (Amazon Machine Images), 215
password reset script, 220

Word, Microsoft, 295–296
wschannels, defining WebSocket channels, 10
WSDL (Web Services Description Language)

building web services, 61
choosing and specifying web service engines, 71–72
choosing styles, 72–73
including ColdFusion types in, 71
invoking web services and, 57
overview of, 58
platform independence and, 56
refreshing stubs, 63
SOAP vs. REST and, 75
troubleshooting web services, 74
web service engine options, 60

wsGetAllChannels function, WebSocket, 21–22
wsGetSubscribers function, WebSocket, 21–22
wsPublish function, WebSocket, 17–18
WSS (Web Service Security), 68
wsversion, troubleshooting web services, 74

X
XML (Extensible Markup Language)

enhancements to, 187
mapping to XPath variables, 192
overview of, 57
REST support for XML serialization, 84–85
SOAP vs. REST and, 75
specifying content types in REST, 82
standardization of communication, 56
updates to embedded libraries, 319
WSDL support, 60
XPath and, 187–191
XSLT and, 192–195

XPath
benefits of XPath searches, 189–191
comparing versions of, 189
examples, 187–188
mapping to XPath variables, 192

XSLT (Extensible Stylesheet Language 
Transformations)

examples, 192–194
new features in version 2.0, 194–195
overview of, 192

XSS (cross-site scripting) protection, 252, 253–257
X-Y charts, 41

Y
YouTube video, 101–102

Z
ZingChart

as charting engine, 40
Cold Fusion Builder and, 42–44
exposing events from, 45
highlighting important data in, 49–50
updating <cfchart>, 37
updating entire chart, 50–51

Zooming charts, 38–39
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