
http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780321888945
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780321888945
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780321888945
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780321888945
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780321888945/Free-Sample-Chapter

Model-Based Engineering
with AADL

The SEI Series in Software Engineering represents is a collaborative
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and

Addison-Wesley to develop and publish books on software engineering and
related topics. The common goal of the SEI and Addison-Wesley is to provide
the most current information on these topics in a form that is easily usable by
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems, or
delivering services more effectively. Other books focus on software and system
architecture and product-line development. Still others, from the SEI’s CERT
Program, describe technologies and practices needed to manage software
and network security risk. These and all books in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.

The SEI Series in
Software Engineering

Model-Based
Engineering
with AADL
An Introduction to the SAE
Architecture Analysis &
Design Language

Peter H. Feiler

David P. Gluch

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and
CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE;
EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line
Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability
Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP; Product Line
Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG;
Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce in this book two figures from Feiler, Peter; Hansson, Jörgen; de Niz,
Dionisio; & Wrage, Lutz. System Architecture Virtual Integration: An Industrial Case Study (CMU/
SEI-2009-TR-017), Copyright © 2009 by Carnegie Mellon University; a variant of a figure from an arti-
cle and conference presentation: Peter H. Feiler, “Model-based Validation of Safety-Critical Embedded
Systems,” Proceedings of IEEE Aerospace Conference, March 2010; and three figures from the SEI course:
“Modeling System Architectures using the Architecture Analysis and Design Language (AADL)” is
granted by the Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88894-5
ISBN-10: 0-321-88894-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, September 2012

v

Contents

Preface xv

Introduction 1

PART I Model-Based Engineering and the AADL 3

Chapter 1 Model-Based Software Systems Engineering 5

1.1 MBE and Software System Engineering 6
1.1.1 MBE for Embedded Real-Time Systems 6
1.1.2 Analyzable Models and MBE 8
1.1.3 MBE and the AADL 10

1.2 AADL and Other Modeling Languages 12
1.2.1 AADL, MDA, and UML 14
1.2.2 AADL and SysML 15

Chapter 2 Working with the SAE AADL 17

2.1 AADL Models 19
2.1.1 Component Categories 19
2.1.2 Language Syntax 20
2.1.3 AADL Classifiers 21
2.1.4 Summary of AADL Declarations 22
2.1.5 Structure of AADL Models 25

2.2 System Specification and System Instances 26
2.2.1 Creating System Instance Models 26
2.2.2 AADL Textual and Graphical Representation 27
2.2.3 Analyzing Models 30

Contentsvi

Chapter 3 Modeling and Analysis with the AADL: The Basics 31

3.1 Developing a Simple Model 31
3.1.1 Defining Components for a Model 32
3.1.2 Developing a Top-Level Model 36
3.1.3 Detailing the Control Software 38
3.1.4 Adding Hardware Components 40
3.1.5 Declaring Physical Connections 41
3.1.6 Binding Software to Hardware 43
3.1.7 Conducting Scheduling Analyses 45
3.1.8 Summary 47

3.2 Representing Code Artifacts 47
3.2.1 Documenting Source Code and Binary Files 48
3.2.2 Documenting Variable Names 49
3.2.3 Modeling the Source Code Structure 50

3.3 Modeling Dynamic Reconfigurations 51
3.3.1 Expanded PBA Model 51
3.3.2 Specifying Modes 53

3.4 Modeling and Analyzing Abstract Flows 55
3.4.1 Specifying a Flow Model 55
3.4.2 Specifying an End-to-End Flow 57
3.4.3 Analyzing a Flow 57

3.5 Developing a Conceptual Model 58
3.5.1 Employing Abstract Components in a PBA Model 58
3.5.2 Detailing Abstract Implementations 61
3.5.3 Transforming into a Runtime Representation 63
3.5.4 Adding Runtime Properties 65
3.5.5 Completing the Specification 67

3.6 Working with Component Patterns 69
3.6.1 Component Libraries and Reference Architectures 69
3.6.2 Establishing a Component Library 70
3.6.3 Defining a Reference Architecture 72
3.6.4 Utilizing a Reference Architecture 74

Contents vii

Chapter 4 Applying AADL Capabilities 77

4.1 Specifying System Composition 77
4.1.1 Component Hierarchy 77
4.1.2 Modeling Execution Platform Resources 78
4.1.3 Execution Platform Support of Communication 80
4.1.4 System Hierarchy 81
4.1.5 Creating a System Instance Model 81
4.1.6 Working with Connections in System Instance

Models 82
4.1.7 Working with System Instance Models 83

4.2 Component Interactions 84
4.2.1 Modeling Directional Exchange of Data and

Control 85
4.2.2 Modeling Shared Data Exchange 86
4.2.3 Modeling Local Service Requests or Function

Invocation 87
4.2.4 Modeling Remote Service Requests and Function

Invocations 90
4.2.5 Modeling Object-Oriented Method Calls 92
4.2.6 Modeling Subprogram Parameters 95
4.2.7 Interfacing to the External World 97

4.3 Modeling Data and Its Use 97
4.3.1 Defining a Simple Data Type 98
4.3.2 Representing Variants of a Data Type 99
4.3.3 Detailing a Data Type 100

4.4 Organizing a Design 101
4.4.1 Using Packages 102
4.4.2 Developing Alternative Implementations 104
4.4.3 Defining Multiple Extensions 105

Contentsviii

PART II Elements of the AADL 109

Chapter 5 Defining AADL Components 113

5.1 Component Names 113
5.2 Component Categories 114
5.3 Declaring Component Types 114
5.4 Declaring a Component’s External Interfaces 118
5.5 Declaring Component Implementations 121
5.6 Summary 125

Chapter 6 Software Components 127

6.1 Thread 128
6.1.1 Representation 130
6.1.2 Properties 131
6.1.3 Constraints 132

6.2 Thread Group 133
6.2.1 Representations 133
6.2.2 Properties 134
6.2.3 Constraints 134

6.3 Process 135
6.3.1 Representations 136
6.3.2 Properties 137
6.3.3 Constraints 137

6.4 Data 138
6.4.1 Representations 138
6.4.2 Properties 140
6.4.3 Constraints 140

6.5 Subprogram 141
6.5.1 Representations 143
6.5.2 Properties 143
6.5.3 Constraints 144

6.6 Subprogram Group 144
6.6.1 Representations 145

Contents ix

6.6.2 Properties 146
6.6.3 Constraints 146

Chapter 7 Execution Platform Components 147

7.1 Processor 148
7.1.1 Representations 148
7.1.2 Properties 150
7.1.3 Constraints 150

7.2 Virtual Processor 151
7.2.1 Representations 151
7.2.2 Properties 152
7.2.3 Constraints 152

7.3 Memory 153
7.3.1 Representations 153
7.3.2 Properties 154
7.3.3 Constraints 155

7.4 Bus 156
7.4.1 Representations 156
7.4.2 Properties 157
7.4.3 Constraints 157

7.5 Virtual Bus 158
7.5.1 Representations 158
7.5.2 Properties 159
7.5.3 Constraints 159

7.6 Device 160
7.6.1 Representations 160
7.6.2 Properties 161
7.6.3 Constraints 161

Chapter 8 Composite and Generic Components 163

8.1 System 163
8.1.1 Representations 164
8.1.2 Properties 165
8.1.3 Constraints 165

Contentsx

8.2 Abstract 165
8.2.1 Representations 166
8.2.2 Properties 168
8.2.3 Constraints 168

Chapter 9 Static and Dynamic Architecture 169

9.1 Subcomponents 169
9.1.1 Declaring Subcomponents 170
9.1.2 Using Subcomponent Declarations 170
9.1.3 Declaring Subcomponents as Arrays 172

9.2 Modes 173
9.2.1 Declaring Modes and Mode Transitions 174
9.2.2 Declaring Modal Component Types and

Implementations 175
9.2.3 Using Modes for Alternative Component

Configurations 177
9.2.4 Inheriting Modes 180
9.2.5 Mode-Specific Properties 181
9.2.6 Modal Configurations of Call Sequences 182

Chapter 10 Component Interactions 185

10.1 Ports and Connections 186
10.1.1 Declaring Ports 186
10.1.2 Declaring Port to Port Connections 189
10.1.3 Using Port to Port Connections 189
10.1.4 Constraints on Port to Port Connections 193
10.1.5 Port Communication Timing 196
10.1.6 Sampled Processing of Data Streams 198
10.1.7 Deterministic Sampling 199
10.1.8 Mixed Port-Based and Shared Data

Communication 203
10.1.9 Port and Port Connection Properties 207
10.1.10 Aggregate Data Communication 207

Contents xi

10.2 Data Access and Connections 210
10.3 Bus Access and Connections 213
10.4 Feature Groups and Connections 217

10.4.1 Declaring Feature Group Types 218
10.4.2 Declaring a Feature Group as a Feature of a

Component 220
10.4.3 Declaring Feature Group Connections 221

10.5 Abstract Features and Connections 225
10.5.1 Declaring Abstract Features 226
10.5.2 Refining Abstract Features 226

10.6 Arrays and Connections 227
10.6.1 Explicitly Specified Array Connections 228
10.6.2 Array Connection Patterns 229
10.6.3 Using Array Connection Properties 230

10.7 Subprogram Calls, Access, and Instances 232
10.7.1 Declaring Calls and Call Sequences 233
10.7.2 Declaring Remote Subprogram Calls as

Bindings 234
10.7.3 Declaring Remote Subprogram Calls as

Access Connections 236
10.7.4 Modeling Subprogram Instances 237

10.8 Parameter Connections 240
10.8.1 Declaring Parameters 240
10.8.2 Declaring Parameter Connections 241

Chapter 11 System Flows and Software Deployment 245

11.1 Flows 245
11.1.1 Declaring Flow Specifications 246
11.1.2 Declaring Flow Implementations 249
11.1.3 Declaring End-to-End Flows 253
11.1.4 Working with End-to-End Flows 256

11.2 Binding Software to Hardware 256
11.2.1 Declaring Bindings with Properties 257
11.2.2 Processor Bindings 259

Contentsxii

11.2.3 Memory Bindings 259
11.2.4 Connection Bindings 260
11.2.5 Binding Remote Subprogram Calls 260

Chapter 12 Organizing Models 263

12.1 Naming and Referencing Model Elements 263
12.1.1 Naming and Referencing with Packages 263
12.1.2 Naming and Referencing Classifiers 264
12.1.3 References to Model Elements 265
12.1.4 Naming and Referencing with Property Sets 266

12.2 Organizing Models with Packages 266
12.2.1 Declaring Packages 267
12.2.2 Referencing Elements in Packages 269
12.2.3 Aliases for Packages and Type References 271

12.3 Evolving Models by Classifier Refinement 273
12.3.1 Declaring Classifier Extensions 274
12.3.2 Declaring Model Element Refinements 275
12.3.3 Classifier Substitution Rules for Refinements 277
12.3.4 Refining the Category 280

12.4 Prototypes as Classifier Parameters 281
12.4.1 Declaring Prototypes 281
12.4.2 Using Prototypes 283
12.4.3 Providing Prototype Actuals 284
12.4.4 Properties 287

Chapter 13 Annotating Models 289

13.1 Documenting Model Elements 289
13.1.1 Comments and Description Properties 289
13.1.2 Empty Component Sections 290

13.2 Using Properties 291
13.2.1 Assigning Property Values 292
13.2.2 AADL Property Types and Values 294
13.2.3 Determining a Property Value 297

Contents xiii

13.2.4 Contained Property Associations 299
13.2.5 Determining the Property Value: An Example 300

Chapter 14 Extending the Language 303

14.1 Property Sets 303
14.1.1 Declaring Property Sets 304
14.1.2 Property Type Declarations 305
14.1.3 Property Definitions 309
14.1.4 Property Constant Declarations 311

14.2 Annex Sublanguages 312
14.2.1 Declaring Annex Concepts in Libraries 313
14.2.2 Using Annex Concepts in Subclauses 314

Chapter 15 Creating and Validating Models 317

15.1 Model Creation 317
15.2 Model Creation Tools 319
15.3 System Validation and Generation 321
15.4 System Validation and Generation Tools 322

Appendixes 325

Appendix A Syntax and Property Summary 327

A.1 AADL Syntax 327
A.2 Component Type and Implementation Elements 342
A.3 Basic Property Types and Type Constructors 347
A.4 AADL Reserved Words 348
A.5 AADL Properties 349

A.5.1 Deployment Properties 350
A.5.2 Thread-Related Properties 364
A.5.3 Timing Properties 371
A.5.4 Communication Properties 384
A.5.5 Memory-Related Properties 391
A.5.6 Programming Properties 398

Contentsxiv

A.5.7 Modeling Properties 408
A.5.8 Project-Specific Constants and Property Types 410

A.6 Runtime Services 418
A.6.1 Application Runtime Services 418
A.6.2 Runtime Executive Services 421

A.7 Powerboat Autopilot System 425
A.7.1 Description 425
A.7.2 Enhanced Versions of the PBA System 426
A.7.3 AADL Components of the PBA System 427
A.7.4 An Alternative AADL Representation 428

Appendix B Additional Resources 429

B.1 Modeling System Architectures 429
B.2 Cases Studies 431

Appendix C References 435

Index 441

xv

Preface

In this book, we introduce readers to the concepts, structure, and use of
the SAE Architecture Analysis & Design Language (AADL) and dem-
onstrate how AADL is an effective tool for Model-Based Engineering
(MBE) of software system architectures. If you are just learning about
AADL, we provide sufficient detail to enable you to develop and ana-
lyze basic system models. The core skills acquired by mastering the
material in this book will provide you a foundation upon which to
build your AADL and MBE expertise. Even when you are an accom-
plished AADL user, we anticipate you will find this book to be a valu-
able reference.

What and Why: MBE and AADL

Model-based engineering is the creation and analysis of models of your
system such that you can predict and understand its capabilities and
operational quality attributes (e.g., its performance, reliability, or secu-
rity). By doing so throughout the lifecycle, you can discover system-
level problems—those usually not found until system integration and
acceptance testing—and avoid costly rework late in development and
maintenance. In the past, separate models have been created for vari-
ous system components and for each of the different analyses. A sys-
tematic and less fragmented approach is an architecture-centric one.
Architecture-centric approaches address system-level issues and main-
tain a self-consistent set of analytical views of a system such that indi-
vidual analyses retain their validity amidst architectural changes
within the set.

The Architecture Analysis & Design Language (AADL) is an SAE
International (formerly known as the Society of Automotive Engineers)

Prefacexvi

standard [AS5506A1]. The AADL is a unifying framework for model-
based software systems engineering that you use to capture the static
modular software architecture, the runtime architecture in terms of
communicating tasks, the computer platform architecture on which the
software is deployed, and any physical system or environment with
which the system interacts. You capture both the static structure and
the dynamics in a single architecture model and annotate it with infor-
mation that is relevant to the analysis of various operational character-
istics. The concepts provided by AADL, such as threads, processes, or
devices, have well-defined execution semantics that allow you to con-
duct both lightweight and formal analyses of systems. In addition,
using its extensibility constructs, you as well as tool developers can
blend custom analysis and specification techniques with core AADL
capabilities to create a complete engineering environment for architec-
tural modeling and analysis.

In developing an AADL model, you represent the architecture of
your system as a hierarchy of interacting components. You organize
interface specifications and implementation blueprints of software,
hardware, and physical components into packages to support large-
scale and team-based development.

As a standard, AADL provides you with the stability often not
found in propriety technologies and allows you to participate in defin-
ing enhancements to the language. Additional elements of the standard
suite that extend the AADL framework are found in the SAE Architecture
Analysis and Design Language (AADL) Annex Volume 1 [AS5506/1] and
SAE Architecture Analysis and Design Language (AADL) Annex Volume 2
[AS5506/2]. Released as a standard in June 2006, SAE AS-5506/1
defines annexes for the AADL graphical Notation, AADL Meta-Model
and Interchange Formats, Language Compliance and Application
Program Interface, and Error Model Language. Released as a standard
in January 2011, SAE AS-5506/2 defines annexes for Behavior Modeling,
for guidance on incorporating Data Modeling with AADL, and for
ARINC653 Partitioned Architecture modeling.2

1. The standard AS5506A was originally published in November 2004. The book covers
its revision published in January 2009, as well as errata corrections approved in 2012.
For more information on the AADL, go to the Web site www.aadl.info. To purchase a
copy of the standard, go to the Web site www.sae.org/technical/standards/AS5506A.

2. Additional annexes are in development for ballot in late 2012: a revision of the Error
Model Annex standard, a Requirements Definition and Analysis Annex, and a Code
Generation Annex.

http://www.aadl.info
http://www.sae.org/technical/standards/AS5506A

Preface xvii

Who Will Benefit from Reading This Book

You benefit from this book if you are a developer of software-reliant
systems, whether a system or software architect, a system engineer, or
an embedded software system developer. This book provides a foun-
dation to enable you to apply the AADL and model-based engineering
directly in your work. If you are a technical leader or project manager,
the core principles and examples discussed in this book provide you
with the knowledge required to guide technical personnel in the appli-
cation of the AADL.

For graduate and advanced undergraduate software engineering
students, this book offers a basis to understand and apply the AADL
and MBE in your learning experiences. This book can be used as part of
the material for a course on software architecture or software systems
engineering of embedded real-time applications.

What You Need to Know to Get the Most Value from
This Book

A basic knowledge of core software engineering practices (e.g., soft-
ware architecture, software design), real-time systems (e.g., concur-
rency, scheduling, communications), and knowledge of computer
runtime concepts (e.g., threads, execution semantics) will help you
benefit most from this book. As a minimum, the level of expertise you
should have in these areas is that commensurate with an advanced
undergraduate student in computer science or software engineering. If
you are a software developer with a degree in a technical discipline
with two to three years’ experience in developing embedded real-time
software systems, you will find this book especially valuable in model-
ing software system architectures.

Structure of the Book

We have organized the material in the book into two parts, plus three
appendixes. Part I is an overview of both the AADL language and MBE
practices. It presents basic software systems modeling and analysis
using the AADL in the context of an example system, including

Prefacexviii

guidelines for effectively applying the AADL. Part II describes the
characteristics of the elements of the AADL including representations,
applicability, and constraints on their use. The appendixes include
comprehensive listings of AADL language elements, properties that
are defined as part of the AADL standard, a description of the example
system used in the book, a list of references, and an index.

Terminology

AADL is a component-based modeling language that distinguishes
between component interface specifications (component type declara-
tions), component implementation blueprints (component implementa-
tion declarations), and component instances (subcomponent declarations).
Component types and implementations are referred to as component
classifiers. AADL also distinguishes between component categories
with specific semantics to model the application software (e.g., thread,
process, data), the execution platform (e.g., processor, bus, device), and
composite components (system). The AADL standard document uses
terms such as system type declaration or system implementation declaration.
In this book, we use abbreviated terms such as system type or system
where the context makes the meaning clear.

Example Application System

We use a powerboat autopilot (PBA) control system as the basis for
most of the examples throughout this book. The PBA is an embedded
real-time system for the speed, navigational, and guidance control of a
maritime vessel. However, the PBA is an invention created to provide a
backdrop for demonstrating the AADL and does not represent any spe-
cific commercial, military, or research system. While the PBA is a mari-
time application, it represents key elements of vehicle control for a
wide range of applications including aircraft, spacecraft, and automo-
tive and other land vehicles.3

3. Details of the PBA system are provided in Appendix A.

Preface xix

About the Authors

Dr. Peter Feiler is a Senior Member of Technical Staff in the Research
Technology and Systems Solutions (RTSS) program at the Software
Engineering Institute (SEI). He is a 27-year veteran of the SEI. His
interests include architecture-centric engineering of safety-critical
embedded real-time systems. He is collaborating with researchers at
Carnegie Mellon University and other research institutions to develop
model-based architecture technology and is investigating its practical-
ity with commercial industry. He is the author and editor of the SAE
International (formerly known as Society of Automotive Engineers)
Architecture Analysis & Design Language (AADL) standard. Peter has
a Ph.D. in computer science from Carnegie Mellon University and is a
senior member and member of ACM, IEEE, and SAE International. He
recently received the Carnegie Science Award for Information
Technology.

Dr. David P. Gluch is a professor in the Department of Electrical,
Computer, Software, and Systems Engineering at Embry-Riddle
Aeronautical University and a visiting scientist at the Software
Engineering Institute (SEI). His research interests are technologies and
practices for model-based software engineering of complex systems,
with a focus on software verification. Prior to joining the faculty at
Embry-Riddle, he was a senior member of the technical staff at the SEI
where he participated in the development and transition of innovative
software engineering practices and technologies. His industrial
research and development experience has included fault-tolerant com-
puter, fly-by-wire aircraft control, Space Shuttle software modeling,
and automated process control systems. He has co-authored a book on
real-time UNIX systems and authored numerous technical reports and
professional articles. Dave has a Ph.D. in physics from Florida State
University and is a senior member of IEEE.

Acknowledgments

We would like to thank a number of people for helping make this book
a reality.

We would like to thank Bruce Lewis as the chair of the SAE AADL
committee in making AADL a reality. The quarterly standards meet-
ings provided a forum for user feedback on the use of AADL. We would

Prefacexx

also like to thank the members of the committee, especially those from
industry, in helping to shape AADL into a language that meets a practi-
cal need. It was in this setting that the idea for a book on the use of
AADL in model-based engineering came about.

We also appreciate the efforts of the research and advanced technol-
ogy community from various universities and industry in using AADL
as a platform for a wide range of formal software-reliant system analy-
sis and demonstrating the feasibility of model-based engineering with
AADL. Their tools and technology to drive the analysis of architectures
allows AADL to show off its strength.

At the Software Engineering Institute (SEI), we are thankful to
Tricia Oberndorf and Linda Northrop, our program managers for
allowing us to invest time and effort into the endeavor of writing this
book and encouraging us to bring it to completion. The other SEI AADL
team members, Lutz Wrage, Aaron Greenhouse, John Hudak, Joseph
Seibel, Dio DeNiz, and Craig Meyers, contributed in various form to
the body of knowledge on the use of AADL, a small portion of which is
reflected in this book. They led and contributed to the creation and use
of the OSATE tool set, the development and presentation of tutorials
and two courses on AADL, and the use of AADL on customer projects.
We also received feedback on various drafts of the book.

We appreciate the feedback from external reviewers of book drafts,
in particular Bruce Lewis, Jérôme Hugues, and Oleg Sokolsky. Finally,
we want to thank Peter Gordon and Kim Boedigheimer from Addison-
Wesley for the production of the book.

31

Chapter 3

Modeling and
Analysis with the
AADL: The Basics

In this chapter, we illustrate the development of basic AADL models
and present general guidance on the use of some of the AADL’s core
capabilities. With this, we hope to provide a basic understanding of
architectural modeling and analysis and start you on your way in
applying the AADL to more complex software-dependent systems.

While reading the first part of this chapter, you may want to use an
AADL development tool to create the specifications and conduct the
analyses described. OSATE supports all of the modeling and analyses
discussed in this chapter.

 3.1 Developing a Simple Model

In this section, we present a step-by-step development and analysis of
an AADL model. Specifically, we model a control system that provides
a single dimension of speed control and demonstrate some of the anal-
yses that can be conducted on this architectural model. The speed con-
trol functionality is part of a powerboat autopilot (PBA) system that is

Chapter 3 Modeling and Analysis with the AADL: The Basics32

detailed in Appendix A. While specialized to a powerboat, this model
exemplifies the use of the AADL for similar control applications such
as aeronautical, automotive, or land vehicle speed control systems.

The approach we use is introductory, demonstrating the use of
some of the core elements and capabilities of the AADL. We do not
include many of the broader engineering capabilities of the language.
For example, we do not address packages, prototypes, or component
extensions in developing this simple model. These are discussed later
in this chapter. Instead, we proceed through the generation of a basic
declarative model and its instance and show a scheduling analysis of
the system instance. During your reading of this section, you may want
to reference Part II for details on specific AADL elements or analyses
used in the example.

Initially we create a high-level system representation using AADL
system, process, and device components. Building on this initial repre-
sentation, we detail the runtime composition of all of the elements;
allocate software to hardware resources; and assign values to proper-
ties of elements to a level that is required for analysis and for the crea-
tion of an instance of the system. In these steps, we assume that
requirements are sufficiently detailed to provide a sound basis for the
architectural design decisions and trade-offs illustrated in the example.
In addition, while we reference specific architectural development and
design approaches that put the various steps into a broader context, we
do not advocate one approach over another.

 3.1.1 Defining Components for a Model

A first step is to define the components that comprise the system and
place their specification in packages. The process of defining and cap-
turing components is similar to identifying objects in an object-oriented
methodology. It is important to realize that components may include
abstract encapsulations of functionality as well as representations of
tangible things in the system and its environment. The definition of
components is generally an iterative and incremental process, in that
the first set of components may not represent a complete set and some
components may need to be modified, decomposed, or merged with
others.

First, we review the description of the speed controller for the PBA
and define a simplified speed control model. In this model, we include
a pilot interface unit for input of relevant PBA information, a speed

3.1 Developing a Simple Model 33

sensor that sends speed data to the PBA, the PBA controller, and a
throttle actuator that responds to PBA commands.

For each of the components identified, we develop type definitions,
specifically defining the component’s name, runtime category, and
interfaces. Since we are initially developing a high-level (conceptual)
model, we limit the component categories to system, process, and
device.

The initial set of components is shown in Table 3-1, where both the
AADL text and corresponding graphical representations are included.
For this example, the textual specifications of all of the components
required for the model are contained in a single package and no refer-
ences to classifiers outside the package are required. Thus, a package
name is not needed when referencing classifiers. For the graphical rep-
resentations, the implementation relationship is shown explicitly. Note
that the icon for an implementation has a bold border when compared
to the border of its corresponding type icon.

The speed sensor, pilot interface, and throttle actuator are modeled
as devices and the PBA control functions are represented as a process.
We use the devices category for components that are interfaces to the
external environment that we do not expect to decompose extensively
(e.g., a device can only have a bus as a subcomponent).

Devices in AADL can represent abstractions of complex compo-
nents that may contain an embedded processor and software. With a
device component, you represent only those characteristics necessary
for analysis and an unambiguous representation of a component. For
example, in modeling a handheld GPS receiver, we may only be inter-
ested in the fact that position data is available at a communication port.
The fact that the GPS receiver has an embedded processor, memory,
touch screen user interface, and associated software is not required for
analysis or modeling of the system. Alternatively, a device can repre-
sent relatively simple external components, such as a speed sensor,
whose only output is a series of pulses whose frequency is proportional
to the speed being sensed. If you require a complex interface to the
external environment, you can use a system component. In this case,
you can detail its composition and as needed include an uncomplicated
device subcomponent to represent the interface to the environment.

The use of a process component for the control functions reflects
the decision that the core control processing of the PBA is to be imple-
mented in software. The software runtime components will be con-
tained within an implementation of this process type. The
implementation declarations in Table 3-1 do not include any details. As

Chapter 3 Modeling and Analysis with the AADL: The Basics34

Table 3-1: Component Type and Implementations for the Speed Control Example

sensor

sensor_data

sensor.speed

sensor_data

interface

set_speed

disengage

interface.pilot

set_speed

disengage

control

set_speed

sensor_data

command_data

disengage

control.speed

set_speed

sensor_data

command_data

disengage

actuator

cmd

cmd

actuator.speed

device sensor
 features
 sensor_data: out data port;
end sensor;

device implementation sensor.speed
end sensor.speed;

device interface
 features
 set_speed: out data port;
 disengage: out event port;
end interface;

device implementation interface.pilot
end interface.pilot;

process control
 features
 command_data: out data port;
 sensor_data: in data port;
 set_speed: in data port;
 disengage: in event port;
end control;

process implementation control.speed
end control.speed;

device actuator
 features
 cmd: in data port;
end actuator;

device implementation actuator.speed
end actuator.speed;

3.1 Developing a Simple Model 35

the design progresses, we will add to these declarations (i.e., adding
subcomponents and properties as appropriate).

The interfaces for the PBA components are port features declared
within a component type and are reflected in each implementation of
that type. For example, the type sensor outputs a value of the speed via
a data port sensor_data. The pilot interface type interface provides a
value for the set speed via a data port set_speed and generates a signal
to disengage the speed control via an event port disengage.

Notice that we have used explicit as well as abbreviated naming for
the ports and other elements of the model (e.g., command_data and cmd
for the command data at input and output ports). The specificity of
names is up to you, provided they comply with AADL naming con-
straints for identifiers (e.g., the initial character cannot be a numeral).
Note that naming is case insensitive and Control is the same name as
control.

In the PBA example, we have chosen to assign specific runtime
component categories to each of the components (e.g., the speed sensor
is a device). However, in real-world development as a design matures,
the definition of these components may change (e.g., a component that
computes the PBA speed control laws may initially be represented as a
system and later modified to a process or thread). Using the approach
we outline here, these changes are done manually within the AADL
model (i.e., changing a system declaration to a process category decla-
ration). An alternative approach is to use the generic abstract compo-
nent category (i.e., not defining a specific runtime essence). Then later
in the development, converting this abstract category into a specific
runtime category employing the AADL extends capability (e.g., con-
verting an abstract component to a thread). We have chosen to use the
former approach to simplify the presentation and focus on decisions
and issues related to representations of the system as concrete runtime
components. A discussion of the use of the abstract component cate-
gory is provided in Section 3.5.

 For each of the component types we define a single implementa-
tion. These declarations are partial, in that we omit substantial details
needed for a complete specification of the architecture. For example,
we do not define the type of data that is associated with the ports. We
will address these omissions as required in later steps. However, we
can conduct a number of analyses for our simple example without
including many of these details.

Chapter 3 Modeling and Analysis with the AADL: The Basics36

 3.1.2 Developing a Top-Level Model

In the next step, we integrate the individual component implementa-
tions into a system by declaring subcomponents instances and their
connections. We do this by defining an enclosing system type and
implementation as shown in Listing 3-1, where we define a system type
Complete and its implementation Complete.PBA_speed_control. There is
nothing special about our choice of naming for this enclosing system.
Another naming scheme, such as a type of PBA and an implementation
of PBA.speed, would work as well.

Within the implementation, we declare four subcomponents. The
three device subcomponents represent the speed sensor, throttle, and
the pilot interface unit. The process subcomponent speed_control repre-
sents the software that provides the speed control for the PBA. Notice
that there are no external interfaces for the system type Complete. All of
the interactions among the system’s subcomponents are internal to the
implementation Complete.PBA_speed_control, with the devices that
comprise the system providing the interfaces to the external environ-
ment (e.g., sensors determining speed information from the vehicle).

Within the implementation, we define connections for each of the
ports of the subcomponents. For example, connection DC2 is the data
connection between the command_data port on the process speed_control
and the cmd data port on the device throttle. Each of the connections is
labeled in the graphical representation shown in Listing 3-1 by the
nature of the connection.1 For example, connection EC4 between the
event port disengage on the interface_unit device and the event port disen-
gage on the speed_control process is labeled as <<Event>>. It is our choice
to match most of the port names. It is not required that connected ports
have the same name. However, they must have matching data classifi-
ers if specified (they are omitted in this initial representation).

 Listing 3-1: Subcomponents of the Complete PBA System
system Complete
end Complete;

system implementation Complete.PBA_speed_control
 subcomponents
 speed_sensor: device sensor.speed;

1. The detailed graphical representation of the implementation Complete.PBA_speed_
control is taken from the OSATE environment.

3.1 Developing a Simple Model 37

 throttle: device actuator.speed;
 speed_control: process control.speed;
 interface_unit: device interface.pilot;
 connections
 DC1: port speed_sensor.sensor_data ->
 speed_control.sensor_data;
 DC2: port speed_control.command_data -> throttle.cmd;
 DC3: port interface_unit.set_speed ->
 speed_control.set_speed;
 EC4: port interface_unit.disengage ->
 speed_control.disengage;
end Complete.PBA_speed_control;

cmd

throttle

<<Data>>

<<Data>>

<<Data>>

<<Event>>

Complete

Complete.PBA_speed_control

speed_sensor

sensor_data

interface_unit

set_speed

disengage

control.speed

set_speed

sensor_data

command_data

disengage

Depending upon your development environment the graphical por-
trayals may differ from those shown in Listing 3-1. For example, within
OSATE you cannot display the containment explicitly. Rather, the inter-
nal structure of an implementation is presented in a separate diagram
that can be accessed hierarchically through the graphical icon repre-
senting the implementation Complete.PBA_speed_control.

Chapter 3 Modeling and Analysis with the AADL: The Basics38

3.1.3 Detailing the Control Software

At this point, we begin to detail the composition of the process speed_
control. This involves decisions relating to partitioning the functionality
and responsibilities required of the PBA system to provide speed con-
trol. Since we have treated the speed control as an autonomous capabil-
ity, we have implicitly assumed that there are no interactions between
the directional or other elements of the PBA and the speed control sys-
tem. This may not be the case in advanced control systems. In addition,
for the purposes of this example, we partition the functions of the speed
control process into two subcomponents. The first is a thread that
receives input from speed sensor; scales and filters that data; and deliv-
ers the processed data to the second thread. The second is a thread that
executes the PBA speed control laws and outputs commands to the
throttle actuator. Again, this simplification may not be adequate for a
realistic speed control system (e.g., the control laws may involve exten-
sive computations that for efficiency must be separated into multiple
threads or may involve complex mode switches that are triggered by
various speed or directional conditions)2.

Since the interfaces for the two threads are different, we define a
type and implementation for each, as shown in Listing 3-2. We have
used property associations to assign execution characteristics to the
threads. Each is a periodic thread (assigned using the Dispatch Protocol
property association) with a period of 50ms (assigned using the Period
property association).

The assignment of periodic execution and the values for the period
of the threads reflect design decisions. Generally, these are based upon
the input of application domain and/or control engineers. The assign-
ments we use here are not necessarily optimal but are chosen to pro-
vide specific values to enable analysis of system performance. They do
not reflect the values for any specific control system.

 Listing 3-2: PBA Control Threads Declarations
thread read_data
 features
 sensor_data: in data port;
 proc_data: out data port;

2. In the next section we will demonstrate the addition of operational modes.

3.1 Developing a Simple Model 39

 properties
 Dispatch_Protocol => Periodic;
 Period => 50 ms;
end read_data;

thread implementation read_data.speed
end read_data.speed;

thread control_laws
 features
 proc_data: in data port;
 cmd: out data port;
 disengage: in event port;
 set_speed: in data port;
 properties
 Dispatch_Protocol => Periodic;
 Period => 50 ms;
end Control_laws;

thread implementation control_laws.speed
end control_laws.speed;

We detail the declaration of the process implementation control.speed
that is presented in Table 3-1 to include the two thread subcomponents
and their interactions (connections), as shown in Listing 3-3. There
are five connections declared. Four of these connect ports on the bound-
ary of the process with ports on the threads (i.e., DC1, DC3, DC4, and
EC1). The fifth connects the out data port proc_data on the thread scale_
speed_data to the in data port proc_data on the thread speed_control_laws.

 Listing 3-3: The Process Implementation control.speed
process implementation control.speed
 subcomponents
 scale_speed_data: thread read_data.speed;
 speed_control_laws: thread control_laws.speed;
 connections
 DC1: port sensor_data -> scale_speed_data.sensor_data;
 DC2: port scale_speed_data.proc_data ->
 speed_control_laws.proc_data;
 DC3: port speed_control_laws.cmd -> command_data;
 EC1: port disengage -> speed_control_laws.disengage;
 DC4: port set_speed -> speed_control_laws.set_speed;
end control.speed;

continues

Chapter 3 Modeling and Analysis with the AADL: The Basics40

cmd

<<Data>>

<<Data>>

<<Data>>

command_data

<<Data>>
<<Event>>

sensor_data

set_speed

disengage
scale_speed_data

proc_data

proc_data

sensor_data

speed_control_laws

set_speed

disengage

3.1.4 Adding Hardware Components

At this point, we have defined the software components of the speed
control system. We now define the execution hardware required to
support the software. In modeling the hardware and binding the con-
trol software to that hardware, we can analyze the execution timing
and scheduling aspects of the system.

In Listing 3-4, we define a processor, memory, and bus. The proces-
sor will execute the PBA control code (threads) and the memory will
store the executable code (process) for the system. In addition, we have
declared that the processor type Real_Time and the memory type RAM
require access to an instance of the bus implementation Marine.Standard.
This bus will provide the physical pathway for the system. We will add
properties to these declarations later in the modeling process.

 Listing 3-4: Execution Platform Declarations
processor Real_Time
 features
 BA1: requires bus access Marine.Standard;
end Real_Time;
processor implementation Real_Time.one_GHz
end Real_Time.one_GHz;

memory RAM
 features
 BA1: requires bus access Marine.Standard;
end RAM;

3.1 Developing a Simple Model 41

memory implementation RAM.Standard
end RAM.Standard;

bus Marine
end Marine;

bus implementation Marine.Standard
end Marine.Standard;

3.1.5 Declaring Physical Connections

To continue the integration of the system, we add instances of the
required execution platform components into the system implementa-
tion Complete.PBA_speed_control by declaring subcomponents for the
implementation. In addition, we declare that these components are
attached to the bus. This is done by connecting the requires interfaces
on the processor and memory components to the bus component.

Since the PBA control software executing on the processor must
receive data from the sensors and pilot interface unit as well as send
commands to the throttle actuator, we declare that these sensing and
actuator devices are connected to the bus as well. To do this, we add
requires bus access declarations in the type declarations for these three
devices and connect them to the bus. The updated declarations for the
three devices are shown in Listing 3-5 and the graphical representation
of the system with the declaration of the physical (bus access) connec-
tions is shown in Listing 3-6.

 Listing 3-5: Updated Device Declarations
device interface
 features
 set_speed: out data port;
 disengage: out event port;
 BA1: requires bus access Marine.Standard;
end interface;

device sensor
 features
 sensor_data: out data port;
 BA1: requires bus access Marine.Standard;
end sensor;

continues

Chapter 3 Modeling and Analysis with the AADL: The Basics42

device actuator
 features
 cmd: in data port;
 BA1: requires bus access Marine.Standard;
end actuator;

In Listing 3-6, we have defined a processor RT_1GHz3, bus Standard_
Marine_Bus, and memory Stand_Memory as subcomponents. In addi-
tion, we have declared the connections for the bus Standard_Marine_Bus
to the requires bus access features of each of the physical components
(e.g., from Standard_Marine_Bus to RT_GHz.BA1 and to the requires
bus access feature on the processor RT_1GHz.BA1). The requires access
features and the bus access connections are shown in the graphical rep-
resentation in the lower portion of Listing 3-6.

 Listing 3-6: Integrated Software and Hardware System
system implementation Complete.PBA_speed_control
 subcomponents
 speed_sensor: device sensor.speed;
 throttle: device actuator.speed;
 speed_control: process control.speed;
 interface_unit: device interface.pilot;
 RT_1GHz: processor Real_Time.one_GHz;
 Standard_Marine_Bus: bus Marine.Standard;
 Stand_Memory: memory RAM.Standard;
 connections
 DC1: port speed_sensor.sensor_data ->
 speed_control.sensor_data;
 DC2: port speed_control.command_data -> throttle.cmd;
 DC3: port interface_unit.set_speed ->
 speed_control.set_speed;
 EC4: port interface_unit.disengage ->
 speed_control.disengage;
 BAC1: bus access Standard_Marine_Bus <-> speed_sensor.BA1;
 BAC2: bus access Standard_Marine_Bus <-> RT_1GHz.BA1;
 BAC3: bus access Standard_Marine_Bus <-> throttle.BA1;
 BAC4: bus access Standard_Marine_Bus <-> interface_unit.BA1;
 BAC5: bus access Standard_Marine_Bus <-> Stand_Memory.BA1;
end Complete.PBA_speed_control;

3. Since it is not the first character in the name, the numeric 1 can be used within the
processor subcomponent name RT_1GHz. However, an implementation name Real_
Time.1_GHz is not legal, since the numeric is the first character in the implementation
identifier.

3.1 Developing a Simple Model 43

cmd

throttle

<<Data>>

<<Data>>

<<Data>>

<<Event>>

<<BusAccess>>

<<BusAccess>>

<<BusAccess>>

<<BusAccess>>

RT_MHz350
Stand_Memory

<<BusAccess>>

Complete.PBA_speed_control

speed_sensor

sensor_data

interface_unit

set_speed

disengage

speed_controlBA1

BA1

BA1
BA1

BA1

set_speed

sensor_data

command_data

disengage

Standard_Marine_Bus

3.1.6 Binding Software to Hardware

In addition to specifying the physical connections, we bind software
components to the appropriate physical hardware using contained
property associations, as shown in Listing 3-7. These property associa-
tions are added to the system implementation declaration Complete.
PBA_speed_control. The first two declarations allow the threads speed_
control_laws and scale_speed_data to be bound to the processor rt_mhz500.
The reference part of the property association identifies the specific
processor instance rt_mhz500 and the applies to identifies the specific
thread in the hierarchy (e.g., applies to speed_control.scale_speed_data
identifies the thread scale_speed_data that is located in the process speed_
control). In this notation, a period separates the elements in the
hierarchy.

We could have specified a specific binding using the Actual_
Processor_Binding property. However, the Allowed_Processor_Binding
property permits scheduling tools to assign the threads to processors.
For example, the resourced allocation and scheduling analysis plug-in

Chapter 3 Modeling and Analysis with the AADL: The Basics44

that is available in the OSATE environment4 binds threads to proces-
sors taking into consideration the threads’ period, deadline, and execu-
tion time; processor(s) speed and scheduling policies; and the
constraints imposed by the actual and allowed binding properties5.
Specifically, if only allowed processor bindings are defined (i.e., the
Allowed_Processor_Binding property), the plug-in schedules the thread
onto processors and reports back the actual thread to processor bind-
ings and the resulting processor utilizations. If actual processor bind-
ings are defined (i.e., the Actual_Processor_Binding property) the plug-in
reports processor utilization based upon those bindings; allocates
threads to processors; and runs a scheduling analysis to determine
whether the bindings are acceptable.

Generally, a scheduling analysis or scheduling tool does scheduling analysis such
that given a set of threads and their binding to processors (allowed or actual bind-
ings), requisite attributes of the threads and processors (e.g., period, worst case
execution time, processor cycle time, etc.), and defined scheduling policy, it deter-
mines if the set of threads meets the system’s timing requirements. Typical schedul-
ing policies include round-robin (RR), shortest job first (SJF), earliest deadline first
(EDF), and rate monotonic (RM). The specific information required by and output
from scheduling analysis tools vary.

The OSATE resource allocation and scheduling analysis plug-in makes binding deci-
sions and in that process runs a scheduling analysis determining whether the binding
is acceptable. This can be based on earliest deadline first (EDF) and rate monotonic
scheduling (RMS) for periodic threads. In addition, it can conduct a rate monotonic
analysis for periodic threads. This is useful for control system applications where all
tasks are periodic, such as the PBA speed control example. In cases where threads
are already bound to processors (i.e., using the Actual_Processor_Binding property),
the plug-in determines schedulability for that specific deployment configuration.

If priority is assigned by hand and rate monotonic scheduling is used, another OSATE
plug-in (priority inversion checker) enables the determination of whether the system
has potential priority inversion. More sophisticated schedulability analysis tools are
available for analyzing AADL models. A listing of these is available at https://wiki.sei.
cmu.edu/aadl.

4. The resource allocation and scheduling analysis OSATE plug-in combines a bin-
packing algorithm with scheduling algorithms. The OSATE tool is available for
download from www.aadl.info.

5. Some scheduling policies may require additional properties, such as explicit priority
assignment. The scheduling tool in OSATE assumes all periodic tasks without shared
logical resources; other scheduling tools, such as Cheddar, accommodate the full set of
tasks in AADL including tasks with shared data components.

https://wiki.sei.cmu.edu/aadl
https://wiki.sei.cmu.edu/aadl
http://www.aadl.info

3.1 Developing a Simple Model 45

The third entry in Listing 3-7, binds the code and data within the pro-
cess speed_control to the memory component Standard_Memory. We
chose to use the actual rather than the allowed memory binding prop-
erty, since there is only one memory component in the system and,
while an additional processor might be added, we do not anticipate
additional memory components to be added.

 Listing 3-7: Binding Property Associations
properties
 Allowed_Processor_Binding => (reference(RT_1GHz))
 applies to speed_control.speed_control_laws;
 Allowed_Processor_Binding => (reference(RT_1GHz))
 applies to speed_control.scale_speed_data;
 Actual_Memory_Binding => (reference(Stand_Memory))
 applies to speed_control;

 3.1.7 Conducting Scheduling Analyses

Having defined the threads and established their allowed bindings to
processors, we can begin to assess processor loading and analyze the
schedulability of the system.

Before we proceed with a scheduling analysis, we define the requi-
site execution characteristics for the threads as they relate to the capa-
bilities of the processors to which they may be bound. We specify this
information through properties of the threads and processors. In this
case, there is only one processor with an execution speed of 1GHz, as
shown in Listing 3-8. Both threads are declared as Periodic with a period
of 50ms. The default value in the AADL standard for the Deadline is the
value of the Period. This value can be overridden by assigning a value
to the Deadline using a property association. The execution time of the
read_data thread ranges from 1 millisecond (ms) to 2 milliseconds (ms),
whereas the control_laws thread’s execution time ranges from 3ms to
5ms (as assigned using the Compute_Execution_Time property associa-
tions). These execution times are relative to the processor Real_Time.
one_GHz declared in the model6.

6. If an AADL model has a single type of processor (i.e., only one processor speed) then
the execution time is with respect to that processor. If there are multiple processors
with different speeds, you can specify an execution time for each processor type (using
in binding) or specify an execution time with respect to one of the other processors (the
reference processor) using a scaling factor that is associated with each processor type.
There is a Reference_Processor property and a Scaling_Factor property for this purpose.

Chapter 3 Modeling and Analysis with the AADL: The Basics46

Execution time estimates for the threads can be based upon timing
measurements from prototype code or historical data for similar sys-
tems (e.g., systems with the same or comparable processors). By con-
ducting the analysis early in the development process, you can get
quantitative predictions of a system’s performance. This information
can be updated and re-evaluated as the design progresses. These early
and continuing predictions can help to avoid last minute problems
during code implementation and system integration (e.g., during test-
ing when deadlines are not met because the processor loading exceeds
the capability of the processor).

 Listing 3-8: Updated Declarations for Analysis
thread read_data
 features
 sensor_data: in data port;
 proc_data: out data port;
 properties
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 1 ms .. 2 ms;
 Period => 50 ms;
end read_data;

thread control_laws
 features
 proc_data: in data port;
 cmd: out data port;
 disengage: in event port;
 set_speed: in data port;
 properties
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 3 ms .. 5 ms;
 Period => 50 ms;
end Control_laws;

At this point, we have defined a declarative model for a simple speed
control system including all of the components, properties, and bind-
ings to describing a deployment configuration. From the top-level sys-
tem implementation of this declarative model you create a system
instance model and analyze it with the OSATE scheduler and schedul-
ing analysis plug-in.

In Figure 3-1, we show the results of that analysis. It shows that the
two threads in the system only use 14% of the processor capabilities.
The worst case execution time for the two threads is 7ms, which is 14%
of their 50 millisecond period.

3.2 Representing Code Artifacts 47

Notice the information provided by the plug-in, including the
actual binding for the threads determined by the plug-in (as shown in
the cropped output of Figure 3-2).

3.1.8 Summary

At this point, we have developed a basic architectural model of the
PBA speed control system. In so doing, we have demonstrated some of
the core capabilities of the AADL. For this relatively simple model, we
analyzed the execution environment and made predictions of schedul-
ability of the system. In subsequent sections, we describe additional
capabilities of the AADL and discuss alternative modeling approaches
that can be applied in this simple example.

3.2 Representing Code Artifacts

Within a comprehensive AADL architectural specification, source code
files and related information needed for specifying and developing the

 Figure 3-1: Processor Capacities of the Speed Control System Instance

 Figure 3-2: Bindings from the OSATE Scheduler and Scheduling Analysis Plug-in

Chapter 3 Modeling and Analysis with the AADL: The Basics48

software within a system are documented using standard properties.
These properties capture information for documenting architectural
views such as code views [Hofmeister 00] and implementation views
of allocation view types [Clements 10].

In this section, we document information relating to the PBA appli-
cation software contained within the process control.speed. This excludes
software that may be resident in the sensors, actuators, and interface
devices as well as the operating system within the processor. First, we
assume the application software has been written in a programming
language, such as C or Java or in a modeling language, such as Simulink.
We also assume that the software has been organized using the capa-
bilities of the source language (e.g., by organizing Java classes and
methods into packages with public and private elements). In this case,
we can focus on specifying a mapping of the source files into the pro-
cesses and threads of the application runtime architecture. Section 3.2.1
illustrates this mapping, which can be used to generate build scripts
from the AADL model. Section 3.2.2 discusses how you can map identi-
fier names used in AADL to identifier names that are acceptable in the
source language. For larger systems, we may want to reflect not only
the application runtime architecture in AADL, but also the modular
source code structure. Section 3.2.3 illustrates how we utilize AADL
packages for that purpose.

 3.2.1 Documenting Source Code and Binary Files

A modified excerpt of the PBA specification is shown in Listing 3-9.
This includes a properties section within the implementation control.
speed, where the property association for the property Source_Language
declares that the source code language for the implementation is C.
This property is of type Supported_Source_Languages, which is defined
in the property set AADL_Project and has the enumeration values
(Ada95, C, Simulink_6_5 are some examples). Property types and con-
stants in the AADL_Project property set can be tailored for specific proj-
ects. For example, languages such as Java can be added to the
Supported_Source_Languages property type.

Using a property association for the newly defined property Source_
Language, the C language is declared as the programming language for
all of the source code involved in the process control.speed. Two con-
tained property associations for the property Source_Text identify the
source and object code files for the threads speed_control_laws and scale_
speed_data. Two other contained property associations for the property

3.2 Representing Code Artifacts 49

Source_Code_Size define the size of the compiled, linked, bound, and
loaded code used in the final system.

In Listing 3-9, the data type sampled_speed_data is declared with a
property association for the property Source_Data_Size. This property
specifies the maximum size required for an instance of the data type.
This data type is the classifier for the ports associated with the data that
originates at the speed sensor.

 Listing 3-9: PBA Specification with Code Properties
process implementation control.speed
 subcomponents
 scale_speed_data: thread read_data.speed;
 speed_control_laws: thread control_laws.speed;
 connections
 DC1: port sensor_data -> scale_speed_data.sensor_data;
 DC2: port scale_speed_data.proc_data ->
 speed_control_laws.proc_data;
 DC3: port speed_control_laws.cmd -> command_data;
 EC1: port disengage -> speed_control_laws.disengage;
 DC4: port set_speed -> speed_control_laws.set_speed;
 properties
 Source_Language => (C);
 Source_Text => ("ControlLaws.cc", "ControlLaws.obj")
 applies to speed_control_laws;
 Source_Text => ("ScaleData.cc", "ScaleData.obj")
 applies to scale_speed_data;
 Source_Code_Size => 4 KByte applies to scale_speed_data;
 Source_Code_Size => 10 KByte applies to speed_control_laws;
end control.speed;

 3.2.2 Documenting Variable Names

A data port maps to a single variable in the application code. For exam-
ple, the variable name for a data port can be specified using the Source_
Name property. This is shown in Listing 3-10, for the in data port
set_speed whose data classifier is the data type set_speed_value. The vari-
able name for this port in the source code is SetValue.

We can use this mechanism to map data type and other component
identifiers in an AADL model into the corresponding name in the
source code. This is useful if the syntax of the source language allows
characters in identifiers that are not allowed in AADL. We may also use
this if we want to introduce more meaningful names in the AADL
model for cryptic source code names.

Chapter 3 Modeling and Analysis with the AADL: The Basics50

 Listing 3-10: Example of Documenting Variable Names
thread control_laws
 features
 proc_data: in data port;
 cmd: out data port;
 disengage: in event port;
 set_speed: in data port set_speed_value
 {Source_Name => "SetValue";};
 properties
 Dispatch_Protocol => Periodic;
 Period => 50 ms;
end control_laws;

data set_speed_value
end set_speed_value;

 3.2.3 Modeling the Source Code Structure

Source code expressed in programming languages typically consists of
data types and functions. They may take the form of subprograms and
functions, classes and methods, or operations on objects. These source
code elements are typically organized into libraries and modular pack-
ages. Some of the library or package content is considered public (i.e.,
it can be used by others), whereas other parts are considered private
(i.e., can only be used locally). In the case of modeling languages such
as Simulink, block libraries play a similar role.

Sometimes it is desirable to represent this modular source code
structure in the AADL model. We can do so by making use of the AADL
package concept. For example, we can model the functions making up
a Math library by placing the subprogram type declarations represent-
ing the function signatures into an AADL package together with the
subprogram group declaration representing the library itself, as shown
in Listing 3-11.

We can place data component types that represent classes within
the same source code package, into one AADL package. We can place
the data component type and the subprogram types representing the
operations on the source code data type in the same package. The meth-
ods of classes can be recorded as subprogram access features of the
data component type (see Section 4.2.5). Any module hierarchy in the
source code can be reflected in the AADL package naming hierarchy.
For more on the use of AADL packages to organize component declara-
tions into packages, see Section 4.4.1.

3.3 Modeling Dynamic Reconfigurations 51

 Listing 3-11: Example of Modular Structure
package MathLib
 public
 with Base_Types;
 subprogram group Math_Library
 features
 sqrt: provides subprogram access SquareRoot;
 log: provides subprogram access;
 pow: provides subprogram access;
 end Math_Library;

 subprogram SquareRoot
 features
 input: in parameter Base_Types::float;
 result: out parameter Base_Types::float;
 end SquareRoot;

end MathLib;

3.3 Modeling Dynamic Reconfigurations

Modes can be used to model various operational states and the dynamic
reconfiguration of a system or component. In this section, we present
the use of modes to represent the operation of the PBA speed control
system. In this section, we develop another, slightly expanded model of
the PBA speed control system.

3.3.1 Expanded PBA Model

We modify the PBA speed control model to include a display_unit. In
addition, we add an out event port control_on to the interface_unit.
Figure 3-3 shows the implementation of the expanded system includ-
ing its subcomponents and their interconnections.

The type classifiers used in the expanded PBA model are shown in
Listing 3-12. In this table, we define a process type control_ex that
includes the additional features required for interfacing to the display_
unit and interface_unit. We could have declared this process type as an
extension of the process type control, as shown in the comment. We also
define the device type interface_unit as the device type interface with an
additional port. Finally, we have added a new device type display_unit.
The event port control_on is the trigger for a mode transition from moni-
toring to controlling and the event port disengage is the trigger for the
reverse transition.

Chapter 3 Modeling and Analysis with the AADL: The Basics52

 Listing 3-12: Type Classifiers for the Expanded PBA Model
-- Type classifiers for the expanded PBA control system model --
process control_ex
 features
 sensor_data: in data port;
 command_data: out data port;
 status: out data port; -- added port
 disengage: in event port;
 set_speed: in data port;
 control_on: in event port; -- added port
 properties
 Period => 50 Ms;
end control_ex;

device interface_unit
 features
 disengage: out event port;
 set_speed: out data port;
 control_on: out event port; -- added port
end interface_unit;

device display_unit -- new device
 features
 status: in data port;
end display_unit;

thread monitor -- new thread
features
sensor_data: in data port;
status: out data port;
end monitor;

cmd

throttle

<<Data>>

<<Data>>

<<Event>>

<<Event>>

speed_sensor

sensor_data

interface_unit

set_speed

control_on

disengage

speed_control

set_speed

sensor_data
status

command_data

control_on

disengage

status

display_unit

<<Data>><<Data>>

 Figure 3-3: Expanded PBA Control System

3.3 Modeling Dynamic Reconfigurations 53

thread control_laws_ex
 features
 proc_data: in data port;
 set_speed: in data port;
 disengage: in event port;
 control_on: in event port; -- added port
 status: out data port; -- added port
 cmd: out data port;
end control_laws_ex;

Listing 3-12 also includes the new thread type monitor, and the modi-
fied thread type control_laws with an extra port, now called control_
laws_ex. These are the thread types of the subcomponents of the process
implementation control_ex.speed. A graphical representation of the sub-
components and connections for the process implementation control_
ex.speed is shown in Figure 3-4. The process speed_control, shown in
Figure 3-3, is an instance of control_ex.speed.

3.3.2 Specifying Modes

The textual specification for the implementation control_ex.speed is
shown in Listing 3-13. In this implementation, two modes monitoring
and controlling are declared in the modes section of the implementation.
In the declarations for the subcomponents, the in modes declarations

status

<<Data>> <<Data>>

<<Data>>

<<Data>>

status

<<Data>>

<<Data>><<Event>>

<<Event>>

sensor_data

set_speed

control_on

scale_speed_data

proc_data

proc_data

sensor_data

speed_control_laws

set_speed

control_on

disengage

<<Data>>

monitor

status

sensor_data

disengage

cmd

command_data

 Figure 3-4: Process Implementation control_ex.speed

Chapter 3 Modeling and Analysis with the AADL: The Basics54

constrain the thread monitor to execute only in the monitoring mode and
the threads scale_speed_data and speed_control_laws execute only in the
controlling mode. Similarly, in the connection declarations are mode
dependent such that the connections to the monitor thread are only
active in the monitoring mode. The transitions between modes are trig-
gered by the in event ports control_on and disengage. These are declared
in the modes section of the implementation. If the modes are observable
or are controlled from outside a component, then you may want to
declare the modes in the component type.

A graphical representation for the mode transitions is shown in the
lower portion of Listing 3-13. Modes are represented as dotted hexa-
gons. The short arrow terminating at the monitoring mode denotes that
the initial state is monitoring. The arrows connecting modes represent
transitions. The input events are associated with the transitions that
they trigger with a dotted line.

 Listing 3-13: Process Implementation of control_ex.speed with Modes
process implementation control_ex.speed
 subcomponents
 scale_speed_data: thread read_data in modes (controlling);
 speed_control_laws: thread control_laws_ex
 in modes (controlling);
 monitor: thread monitor in modes (monitoring);
 connections
 DC1: port sensor_data -> scale_speed_data.sensor_data
 in modes (controlling);
 DC2: port scale_speed_data.proc_data ->
 speed_control_laws.proc_data in modes (controlling);
 DC3: port speed_control_laws.cmd -> command_data
 in modes (controlling);
 DC4: port set_speed -> speed_control_laws.set_speed
 in modes (controlling);
 DC5: port monitor.status -> status in modes (monitoring);
 DC6: port sensor_data -> monitor.sensor_data
 in modes (monitoring);
 DC8: port speed_control_laws.status -> status
 in modes (controlling);
 EC1: port disengage -> speed_control_laws.disengage
 in modes (controlling);
 modes
 monitoring: initial mode ;
 controlling: mode ;
 monitoring -[control_on]-> controlling;
 controlling -[disengage]-> monitoring;
end control_ex.speed;

3.4 Modeling and Analyzing Abstract Flows 55

disengage

control.speed

monitoring

control_on

controlling

3.4 Modeling and Analyzing Abstract Flows

One of the important capabilities of the AADL is the ability to model
and analyze flow paths through a system. For example within the PBA
system, it is possible to analyze the time required for a signal to travel
from the interface unit, through the control system, to the throttle actu-
ator, and result in a throttle action.

3.4.1 Specifying a Flow Model

For this section, we add flow specifications to the expanded PBA speed
control system shown in Figure 3-3. We investigate a flow path (the
end-to-end flow) involving a change of speed via set_speed that extends
from the pilot’s interface unit to the throttle. In specifying the flow, we
define each element of the flow (i.e., a flow source, flow path(s), flow
sink), using on_flow as a common prefix for each flow specification
name. In addition, we allocate transport latencies for each of these ele-
ments. Listing 3-14 presents an abbreviated version of the specification
for the PBA speed control system that includes the requisite flow
declarations.

The flow source is named on_flow_src that exits the interface unit
through the port set_speed. The flow proceeds through the speed_control
process via the flow path on_flow_path that enters through the port set_
speed and exits through the port command_data. The flow sink occurs

Chapter 3 Modeling and Analysis with the AADL: The Basics56

through the data port cmd in the throttle component. Note that a flow
path can go from any kind of incoming port to a port of a different kind,
for example from an event port to a data port.

Each flow specification is assigned a latency value. For example,
the worst case time for the new speed to emerge from the interface unit
after the pilot initiates the set_point request is 5ms. The worst case tran-
sit time through the speed_control process is 20ms and the time for the
throttle to initiate an action is 8ms.7

 Listing 3-14: Flow Specifications for the Expanded PBA
-- flow specifications are added to type declarations for this analysis ---

device interface_unit
 features
 set_speed: out data port;
 disengage: out event port;
 control_on: out event port;
 flows
 on_flow_src: flow source set_speed {latency => 5 ms .. 5 ms;};
end interface_unit;

process control_ex
 features
 sensor_data: in data port;
 command_data: out data port;
 status: out data port;
 disengage: in event port;
 set_speed: in data port;
 control_on: in event port;
 flows
 on_flow_path: flow path set_speed -> command_data
 {latency => 10 ms .. 20 ms;};
 properties
 Period => 50 Ms;
end control_ex;

device actuator
 features
 cmd: in data port;
 BA1: requires bus access Marine.Standard;
 flows
 on_flow_snk: flow sink cmd {latency => 8 ms .. 8 ms;};
end actuator;

7. These latency values are illustrative and do not reflect the performance of any
particular device or speed control system.

3.4 Modeling and Analyzing Abstract Flows 57

3.4.2 Specifying an End-to-End Flow

The complete path, the end-to-end flow, for this example runs from the
source component interface_unit through to the component throttle. This
is declared in the system implementation PBA.expanded, as shown in
Listing 3-15. The declaration originates at the source component and its
source flow interface_unit.on_flow_src and the connection EC4. It contin-
ues through speed_control.on_flow_path, the connection DC2, and termi-
nates at the sink throttle.on_flow_snk. In addition, we have specified a
latency of 35ms for the flow. This value is drawn from the requirements
for the system.

 Listing 3-15: An End-to-End Flow Declaration
system implementation PBA.expanded
 subcomponents
 speed_sensor: device sensor.speed;
 throttle: device actuator.speed;
 speed_control: process control _ex.speed;
 interface_unit: device interface_unit;
 display_unit: device display_unit;
 connections
 DC1: port speed_sensor.sensor_data ->
 speed_control.sensor_data;
 DC2: port speed_control.command_data -> throttle.cmd;
 DC3: port interface_unit.set_speed ->
 speed_control.set_speed;
 EC4: port interface_unit.disengage ->
 speed_control.disengage;
 EC5: port interface_unit.control_on->
 speed_control.control_on;
 DC6: port speed_control.status -> display_unit.status;
 flows
 on_end_to_end: end to end flow
 interface_unit.on_flow_src -> EC5 ->
 speed_control.on_flow_path -> DC2 ->
 throttle.on_flow_snk {Latency => 35 ms .. 35 ms;};
end PBA.expanded;

3.4.3 Analyzing a Flow

At this point, we have defined a top-level end-to-end flow, assigned an
expected (required) latency value to this flow, and defined latencies for
each of the elements that comprise the flow. OSATE includes a flow
latency analysis tool that automatically checks to see if end-to-end
latency requirements are satisfied. For example, the tool will trace the
path and total the latencies for the individual elements of the flow.

Chapter 3 Modeling and Analysis with the AADL: The Basics58

This total is compared to the latency expected for an end-to-end flow.
Figure 3-5 presents the results of this analysis for the PBA system we
have specified. The total latency for the three elements of the flow at
33ms is less than the expected 35ms.

We could have manually determined, through a separate calcula-
tion, that the cumulative latency for the end-to-end flow would not
violate the 35ms latency requirement. However, for very large systems,
these calculations are difficult to do manually and it is difficult to
ensure that latency values are correctly connected through the elements
that comprise an architecture. The automated capabilities that can be
included within an AADL tool facilitate easy calculation and re-calcu-
lation of these values. Moreover, having this data integral to the archi-
tecture provides a reliable way to manage the information and ensure
consistency with updates to the data and the architecture.

 3.5 Developing a Conceptual Model

It is possible to defer identifying the runtime nature of components
until late in the development process. As noted earlier, you can do this
by using system components and later manually changing the category
in the relevant type, implementation, and subcomponent declarations
for these components. In the next few sections, we present an alterna-
tive approach where you declare components as abstract and build an
architectural component hierarchy. Then you use component exten-
sions to create multi-view architectural representations. For example,
in using the Siemens architecture approach [Hofmeister 00], you can
include abstract components in a conceptual (runtime neutral) view
and later extend these into runtime specific components, creating an
execution view of the architecture.

3.5.1 Employing Abstract Components in a PBA Model

In declaring components for the PBA system, rather than using the
device category for the pilot interface and the system category for the

 Figure 3-5: Top Level End-to-End Flow Analysis Results

3.5 Developing a Conceptual Model 59

 Table 3-2: Abstract Component Declarations for the PBA

sensor

sensor_data

sensor.speed

sensor_data

interface
set_speed

disengage

interface.pilot
set_speed

disengage

control

control.speed

command_data

command_data

set_speed

sensor_data

disengage

set_speed

sensor_data

disengage

device sensor
 features
 sensor_data: out data port;
end sensor;

device implementation sensor.speed
end sensor.speed;

abstract interface
 features
 set_speed: out data port;
 disengage: out event port;
end interface;

abstract implementation interface.pilot
end interface.pilot;

abstract control
 features
 command_data: out data port;
 sensor_data: in data port;
 set_speed: in data port;
 disengage: in event port;
end control;

abstract implementation control.speed
end control.speed;

control components as we did in Table 3-1, we declare them as abstract.
For this example, we assume there is a potential for decomposing the
pilot interface into a complex interface unit. We could have made the
sensor and actuator components abstract as well. However, to simplify
the example and to demonstrate that you can mix abstract with runtime-
specific categories, we maintain these components as devices. The decla-
rations for this approach are shown in Table 3-2, where we have used the
same partitioning and naming convention that is used in Table 3-1.
Abstract components are represented graphically by dashed rectangles.

continues

Chapter 3 Modeling and Analysis with the AADL: The Basics60

A complete system implementation using abstract components is
shown in Listing 3-16. We have used an enclosing system, since we
plan on instantiating it. However, we could have modeled the enclos-
ing system as abstract as well, converting it to a system model later for
instantiation. We have not included the hardware components or their
relevant connections in this specification. We add these later in this
discussion.

 Listing 3-16: Complete PBA System Using Abstract Components
system Complete
end Complete;

system implementation Complete.PBA_speed_control_ab
 subcomponents
 speed_sensor: device sensor.speed;
 throttle: device actuator.speed;
 speed_control: abstract control.speed;
 interface_unit: abstract interface.pilot;
 connections
 DC1: port speed_sensor.sensor_data ->
 speed_control.sensor_data;
 DC2: port speed_control.command_data -> throttle.cmd;
 DC3: port interface_unit.set_speed ->
 speed_control.set_speed;
 EC4: port interface_unit.disengage ->
 speed_control.disengage;
end Complete.PBA_speed_control_ab;

 Table 3-2: Abstract Component Declarations for the PBA (continued)

actuator

cmd

cmd

actuator.speed

device actuator
 features
 cmd: in data port;
end actuator;

device implementation actuator.speed
end actuator.speed;

3.5 Developing a Conceptual Model 61

cmd
throttle

Complete

Complete.PBA_speed_control_ab

speed_sensor
sensor_data

sensor_data

command_data

interface_unit

set_speed
set_speed

speed_control

disengage

disengage

3.5.2 Detailing Abstract Implementations

In this section, we define the implementation control.speed for the speed_
control subcomponent. This is shown in Listing 3-17. We detail this com-
ponent by partitioning it into two subcomponents, as we did earlier in
Listing 3-3. We declare the components read_data and control as abstract
and include them as abstract subcomponents in the abstract implemen-
tation control.speed. In these declarations we have not included any
property associations, specifically no runtime related properties. We
will defer these until we generate the execution (run time) representa-
tion. The interfaces and connections for data and control flow are
included, since this information is nominally included in a conceptual
(runtime neutral) representation. As before, no data types are defined
for these interfaces8.

8. Although we do not demonstrate this in the PBA example, the specific data types
and data implementations can be added when the runtime categories are defined or
even later in the process.

Chapter 3 Modeling and Analysis with the AADL: The Basics62

Listing 3-17: Abstract Subcomponents for the control.speed Implementation
abstract read_data
 features
 sensor_data: in data port;
 proc_data: out data port;
end read_data;

abstract implementation read_data.speed
end read_data.speed;

abstract control_laws
 features
 proc_data: in data port;
 cmd: out data port;
 disengage: in event port;
 set_speed: in data port;
end control_laws;

abstract implementation control_laws.speed
end control_laws.speed;

abstract control
 features
 command_data: out data port;
 sensor_data: in data port;
 set_speed: in data port;
 disengage: in event port;
end control;

abstract implementation control.speed
 subcomponents
 scale_speed_data: abstract read_data.speed;
 speed_control_laws: abstract control_laws.speed;
 connections
 DC1: port sensor_data -> scale_speed_data.sensor_data;
 DC2: port scale_speed_data.proc_data ->
 speed_control_laws.proc_data;
 DC3: port speed_control_laws.cmd -> command_data;
 EC1: port disengage -> speed_control_laws.disengage;
 DC4: port set_speed -> speed_control_laws.set_speed;
end control.speed;

3.5 Developing a Conceptual Model 63

cmd

proc_data

proc_data

control.speed

sensor_data

sensor_data

command_data
speed_control_lawsset_speed

set_speed

scale_speed_data

disengage
disengage

3.5.3 Transforming into a Runtime Representation

We transform abstract representations into runtime representations by
extending implementations. In so doing, we change the category of an
implementation and its corresponding type and transform the catego-
ries of the subcomponents that reference those classifiers. We start at
the lowest level of the component hierarchy, extending implementa-
tions that have subcomponents. We progress upward until we reach
the complete system. For this example, we use the same runtime cate-
gories as those in the previous section (i.e., those shown in Table 3-1).

First, we extend the implementation control.speed, since it is the low-
est level abstract implementation with subcomponents.9 This is shown
in Listing 3-18, where a process type control_rt and a process imple-
mentation control_rt.speed are declared. The declaration of the type con-
trol_rt simply extends the type control, changing the category from
abstract to process. There are no other refinements to the type. For the
implementation control_rt.speed, the declaration changes the category
of the implementation to process and refines (refined to) the category
of both subcomponent to threads. Note that all of the characteristics
(e.g., features, properties) of their ancestors are inherited by the compo-
nents defined in an extension declaration (extends). Therefore, only
modified elements of an implementation are included in an extension

9. We could have developed an abstract implementation for the pilot interface compo-
nent interface_pilot that included subcomponents and a complex internal structure. In
that case, we would refine it to a system or other runtime category.

Chapter 3 Modeling and Analysis with the AADL: The Basics64

declaration of that implementation. It is not necessary to extend the
type or implementation declarations for the abstract implementations
read_data.speed and control_laws.speed, since there are no subcompo-
nents in either of these implementations.10

In changing a category, it is important that the features, subcompo-
nents, modes, properties, etc. declared for an abstract component are
consistent with the semantics of the new category. For example, an
abstract component with a processor subcomponent cannot be extended
into a thread component.

Next, we extend the enclosing system type Complete to create
Complete_rt and its implementation Complete.PBA_speed_control_ab to
create Complete_rt.PBA_speed_control_ab, as shown in Listing 3-18. In
the declaration of Complete_rt.PBA_speed_control_ab, we also refine the
subcomponents speed_control and interface_unit, changing their cate-
gory from abstract to a runtime specific category. These choices parallel
the categories of the simplified model developed earlier.

 Listing 3-18: Transforming the Generic PBA System into a Runtime
Representation

process control_rt extends control
end control_rt;

process implementation control_rt.speed extends control.speed
 subcomponents
 scale_speed_data: refined to thread read_data.speed;
 speed_control_laws: refined to thread control_laws.speed;
end control_rt.speed;

device interface_rt extends interface
end interface_rt;

device implementation interface_rt.pilot extends interface.pilot
end interface_rt.pilot;

system Complete_rt extends Complete
end Complete_rt;

10. In some cases, you may use abstract components that you decide should become
processes, leaving them incomplete and detailing their implementation later (e.g., by
adding subcomponents).

3.5 Developing a Conceptual Model 65

system implementation Complete_rt.PBA_speed_control_ab extends
Complete.PBA_speed_control_ab
 subcomponents
 speed_control: refined to process control_rt.speed;
 interface_unit: refined to device interface_rt.pilot;
end Complete_rt.PBA_speed_control_ab;

3.5.4 Adding Runtime Properties

At this point, we have refined the PBA model to include runtime com-
ponents and subcomponents. However, we have not included runtime
properties. For example, values for the timing properties required for a
scheduling analysis are not assigned (e.g., the execution time for
threads). We can do this in a number of ways. We could add local prop-
erty associations to the individual abstract declarations, as shown in
Listing 3-19 for the abstract types that are refined into threads. For
properties that are declared as inheritable, we could modify compo-
nents that are higher in the component hierarchy, relying on the inheri-
tance of values to subcomponents (e.g., putting the values in the
declarations for the abstract component type control).

 Listing 3-19: Modifying Declarations with Local Property Associations
abstract read_data
 features
 sensor_data: in data port;
 proc_data: out data port;
 properties
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 1 ms .. 2 ms;
 Period => 50 ms;
end read_data;

abstract control_laws
 features
 proc_data: in data port;
 cmd: out data port;
 disengage: in event port;
 set_speed: in data port;
 properties
 Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 3 ms .. 5 ms;
 Period => 50 ms;
end Control_laws;

Chapter 3 Modeling and Analysis with the AADL: The Basics66

We could adopt a policy where we assign relevant properties by extend-
ing an abstract component (extends) and adding the property associa-
tions into the extension. This allows us to create multiple variants of the
component parameterized with different property values. We can also
parameterize individual subcomponents with different property val-
ues as part of a subcomponent refinement (refined to). An example of
adorning the subcomponent refinements is shown in Listing 3-20.

 Listing 3-20: Property Associations Adorning Subcomponent Refinements
process implementation control_rt.speed extends control.speed
 subcomponents
 scale_speed_data: refined to thread read_data.speed
 {Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 1 ms .. 2 ms;
 Period => 50ms;};
 speed_control_laws: refined to thread control_laws.speed
 {Dispatch_Protocol => Periodic;
 Compute_Execution_Time => 3 ms .. 5 ms;
 Period => 50ms;};
end control_rt.speed;

Another approach to centralizing property associations is to include
all property declarations for the extended system in the highest system
implementation declaration or for a very large system in a limited
number of system implementations. To do this we use contained prop-
erty associations. This is useful when different instances of the same
component need to have different property values. We effectively con-
figure an instance of the model through properties and place this con-
figuration information (property associations) in one place instead of
modifying different parts of the model. An example is shown in Listing
3-21. We assign values to the Period and Compute_Execution_Time prop-
erties for the thread subcomponents using individual property associa-
tions. We use a single property association to apply the value Periodic to
the Dispatch_Protocol property for both threads.

 Listing 3-21: Contained Property Associations within a System
Implementation

system implementation Complete_rt.PBA_speed_control_ab extends
 Complete.PBA_speed_control_ab
 subcomponents
 speed_control: refined to process control_rt.speed;
 interface_unit: refined to device interface_rt.pilot;

3.5 Developing a Conceptual Model 67

 properties
 Period => 50ms applies to speed_control.scale_speed_data;
 Compute_Execution_Time => 1 ms .. 2 ms
 applies to speed_control.scale_speed_data;

 Period => 50ms applies to speed_control.speed_control_laws;
 Compute_Execution_Time => 3 ms .. 5 ms
 applies to speed_control.speed_control_laws;

 Dispatch_Protocol => Periodic
 applies to speed_control.scale_speed_data,
 speed_control.speed_control_laws;
end Complete_rt.PBA_speed_control_ab;

3.5.5 Completing the Specification

In order to complete the specification for the PBA system to the level of
the model we developed in the previous section, we need to include
hardware components, their relevant interfaces, and their interconnec-
tions. For this purpose, we simply use the updated hardware compo-
nent declarations as shown in Listing 3-4.

In addition, we need to add a bus access feature to the abstract com-
ponent interface.pilot. A completed PBA speed control system imple-
mentation is shown in Listing 3-22. In the table, we have highlighted
the portions of Complete.PBA_speed_control_ab that were modified in
the extension to Complete_rt.PBA_speed_control_ab.

By adding the hardware subcomponents into the system imple-
mentation Complete.PBA_speed_control_ab, we have a system imple-
mentation Complete_rt.PBA_speed_control_ab that is comparable to the
one we generated in the previous section. That is, with this representa-
tion, we can add binding properties and conduct a scheduling analysis
as we did in Section 0.

 Listing 3-22: A Complete PBA System Implementation
abstract interface
 features
 set_speed: out data port;
 disengage: out event port;
 BA1: requires bus access Marine.Standard;
end interface;

device sensor
 features
 sensor_data: out data port;

continues

Chapter 3 Modeling and Analysis with the AADL: The Basics68

 BA1: requires bus access Marine.Standard;
end sensor;

device actuator
 features
 cmd: in data port;
 BA1: requires bus access Marine.Standard;
end actuator;

system implementation Complete.PBA_speed_control_ab
 subcomponents
 speed_sensor: device sensor.speed;
 throttle: device actuator.speed;
 speed_control: abstract control.speed;
 interface_unit: abstract interface.pilot;
 RT_1GHz: processor Real_Time.one_GHz;
 Standard_Marine_Bus: bus Marine.Standard;
 Stand_Memory: memory RAM.Standard;
 connections
 DC1: port speed_sensor.sensor_data ->
 speed_control.sensor_data;
 DC2: port speed_control.command_data -> throttle.cmd;
 DC3: port interface_unit.set_speed ->
 speed_control.set_speed;
 EC4: port interface_unit.disengage ->
 speed_control.disengage;
 BAC1: bus access Standard_Marine_Bus <-> speed_sensor.BA1;
 BAC2: bus access Standard_Marine_Bus <-> RT_1GHz.BA1;
 BAC3: bus access Standard_Marine_Bus <-> throttle.BA1;
 BAC4: bus access Standard_Marine_Bus <-> interface_unit.BA1;
 BAC5: bus access Standard_Marine_Bus <-> Stand_Memory.BA1;
end Complete.PBA_speed_control_ab;

system implementation Complete_rt.PBA_speed_control_ab extends
Complete.PBA_speed_control_ab
 subcomponents
 speed_control: refined to process control_rt.speed;
 interface_unit: refined to device interface_rt.pilot;
 properties
 Period => 50ms applies to speed_control.scale_speed_data;
 Compute_Execution_Time => 1 ms .. 2 ms
 applies to speed_control.scale_speed_data;

 Period => 50ms applies to speed_control.speed_control_laws;
 Compute_Execution_Time => 3 ms .. 5 ms
 applies to speed_control.speed_control_laws;

 Dispatch_Protocol => Periodic
 applies to speed_control.scale_speed_data,
 speed_control.speed_control_laws;
end Complete_rt.PBA_speed_control_ab;

3.6 Working with Component Patterns 69

3.6 Working with Component Patterns

As you use the AADL for multiple projects, you will find it convenient
to reuse such things as data sensors, processors, buses, control soft-
ware, and layered control architecture that have been successfully used
in other projects. This is especially true if you are working in a product-
line development environment.

In previous examples, we have seen how AADL can be used to
define component templates (i.e., component descriptions that are
completed and refined later through extension). In some cases, it is
desirable to explicitly specify the placeholders (i.e., parameters) and
what must be provided within a template. For example, we may have
a template that is an abstract component defining a dual redundancy
pattern. In that case, a user is expected to supply a single classifier that
is used for both redundant instances in the pattern.

In this section, we discuss the use of parameterized component
templates patterns. In so doing, we declare incomplete component
types and implementations; explicitly specify what is needed to com-
plete a pattern by declaring a prototype as a pattern parameter; and
illustrate how such parameterized templates are used.

3.6.1 Component Libraries and Reference Architectures

With the AADL, it is possible to archive components and proven sys-
tem solutions and reuse them through extension declarations. For this
purpose, we suggest partitioning archival elements into two sets: a
component library and reference architecture archive. The partitioning
separates concerns such that individual, relatively simple elements are
archived separately from elements involving a complex component
hierarchy.

A component library is a collection of component types and compo-
nent implementations with limited subcomponents that represent indi-
vidual elements of a system architecture. These may be generic or
runtime specific. For example, in a component library you may have a
processor type marine_certified and a collection of implementations that
have different processor speeds, manufacturers, and internal memory
sizes. Similarly, you may have an abstract type PID_controller and its
implementations that represent proportional-integral-derivative con-
trol with varying capabilities. The abstract components can be extended
into runtime specific components such as a process or thread. For

Chapter 3 Modeling and Analysis with the AADL: The Basics70

software components, this is the most flexible category for archiving in
a library.

In your work, you may have identified a number of proven archi-
tecture solutions that have been useful. You can compile these solu-
tions (reference architectures) into an archive that can be used in other
projects. These reference architectures define common building blocks
and reflect a common topology and are common throughout embed-
ded systems development. Examples include layered control and triple
modular redundant reference architectures that can be used for high
dependability control avionics as well as space systems. Reference
architectures can be defined at different levels of abstraction. Reference
architectures can be defined using runtime-specific categories or
abstract components and prototypes.

As a third approach to modeling the PBA speed control system, we
use a generic component library, a reference architecture archive, pro-
totypes, extensions, refinements, and multiple packages as demonstra-
tions of reusing generic patterns for components and system
architectures. We refine the generic components into runtime specific
components in developing the PBA-specific architecture.

A library and archive can be developed without using prototypes
(i.e., using only extensions and refinements). However, using proto-
types makes explicit the elements (e.g., port and subcomponent classi-
fiers) that are being refined.

3.6.2 Establishing a Component Library

Listing 3-23 shows an example generic component library that consists
of two packages: interfaces_library and controller_library. In these pack-
ages, we define generic application components as abstract compo-
nents. The packages are partitioned based upon a separation of concerns
(e.g., the interfaces_library package has generic representations for sen-
sors, actuators, and user interfaces). Another generic package could
include only execution hardware with standard processors, memory,
and bus components.

For this example, only the generic_control type has an implementa-
tion with subcomponents. In this implementation, prototypes are used
in defining the subcomponents. Note that the property Prototype_
Substitution_Rule is assigned the value Type_Extension. This allows
within refinements, the substitution of classifiers for prototypes that
are of the same type or are an extension of the original type used for the
prototype. Although most of the components in this library are abstract,

3.6 Working with Component Patterns 71

runtime-specific categories can be used. For example, in the abstract
type declaration for generic_interface, we define a data prototype out_
data that is used to define the data type in the declaration of the out
data port output.

 Listing 3-23: Generic Component Library
--- generic component library ---

package interfaces_library
public

abstract generic_sensor
 features
 output: out data port;
end generic_sensor;

abstract generic_interface
 prototypes
 out_data: data;
 features
 output: out data port out_data;
 disengage: out event port;
end generic_interface;

abstract generic_actuator
 features
 input: in data port;
end generic_actuator;

end interfaces_library;

package controller_library
public

abstract generic_control
 features
 input: in data port;
 output: out data port;
 set_value: in data port;
 disengage: in event port;
end generic_control;

abstract implementation generic_control.partitioned
 prototypes
 rd: abstract generic_read_data;
 cl: abstract generic_control_laws;
 subcomponents
 r_data: abstract rd;
 c_laws: abstract cl;

continues

Chapter 3 Modeling and Analysis with the AADL: The Basics72

 connections
 DC1: port input -> r_data.input;
 DC2: port r_data.output -> c_laws.input;
 DC3: port c_laws.output-> output;
 EC1: port disengage -> c_laws.disengage;
 DC4: port set_value -> c_laws.set_value;
 properties
 Prototype_Substitution_Rule => Type_Extension;
end generic_control.partitioned;

abstract generic_read_data
features
input: in data port;
output: out data port;
end generic_read_data;

abstract implementation generic_read_data.impl
end generic_read_data.impl;

abstract generic_control_laws
 features
 input: in data port;
 set_value: in data port;
 disengage: in event port;
 output: out data port;
end generic_control_laws;

abstract implementation generic_control_laws.impl
end generic_control_laws.impl;

end controller_library;

3.6.3 Defining a Reference Architecture

A sample reference architecture archive is shown in Listing 3-24, in
which we have defined a generic speed control implementation
Complete.basic_speed_control_ref. This implementation uses prototypes.
The prototypes used here are abstract. However, prototypes can be
runtime specific. In this reference architecture, we use the prototypes as
classifier placeholders for the subcomponent classifiers of the imple-
mentation. For example, the prototype ssg represents the generic_sensor
type that is defined in the package interfaces_library. This prototype is
used in the declaration of the subcomponent ss. In using the reference
architecture for the PBA, we refine the prototype into a specific runtime
implementation. In this case, since we have assigned the value Type_
Extension to the Prototype_Substitution_Rule property, we can substitute
implementations of extensions of the component type declared in the
prototype bindings.

3.6 Working with Component Patterns 73

 Listing 3-24: Reference Architectures
--- reference architecture archive ---
package reference_arch
public
with interfaces_library, controller_library;
system Complete
end Complete;

system implementation Complete.basic_speed_control_ref
 prototypes
 ssg: abstract interfaces_library::generic_sensor;
 csg: abstract controller_library::generic_control;
 iug: abstract interfaces_library::generic_interface;
 acg: abstract interfaces_library::generic_actuator;
 subcomponents
 ss: abstract ssg;
 ac: abstract acg;
 cs: abstract csg;
 iu: abstract iug;
 connections
 DC1: port ss.output -> cs.input;
 DC2: port cs.output -> ac.input;
 DC3: port iu.output -> cs.set_value;
 EC4: port iu.disengage-> cs.disengage;
 properties
 Prototype_Substitution_Rule => Type_Extension;
end Complete.basic_speed_control_ref;

end reference_arch;

input

Complete

Complete.basic_speed_control_ref

output

input

output

iu

output
set_value

ss

ac

cs

disengage

disengage

Chapter 3 Modeling and Analysis with the AADL: The Basics74

3.6.4 Utilizing a Reference Architecture

We use the reference architecture described in the previous section to
define a PBA architecture. This is shown in Listing 3-25, where the first
declaration extends the abstract type Complete found in the package
reference_arch. In this extension, the system category is substituted for
abstract. Similarly, the abstract implementation Complete.basic_speed_
control_ref is extended creating the system Complete.PBA_speed_control.
In this extension, the prototypes for the subcomponents are bound to
an actual classifier using a prototype binding (e.g., acg => device actua-
tor.speed). In our example, we have fixed the classifier to be a device
called actuator.speed, which will be used in the subcomponent declara-
tion that refers to the prototype.

In the second part of Listing 3-25, each of the type and some imple-
mentation classifiers used in the prototype refinements are extended
from the component library. In these extensions, PBA specific refine-
ments can be made. For example, the data classifier speed_data is added
to the out port of the sensor in the sensor type and to the input of the
process type control. In addition, property associations are added in the
control.speed implementation. One is the period for the threads in the pro-
cess control.speed and the other is a contained property association,
assigning a compute execution time to the control laws thread cl within
the process control.speed.

 Listing 3-25: Using a Reference Architecture
package mysystem
public
with reference_arch, interfaces_library, controller_library;
system Complete extends reference_arch::Complete
end Complete;
system implementation Complete.PBA_speed_control
 extends reference_arch::Complete.basic_speed_control_ref
 (acg => device actuator.speed,
 ssg => device sensor.speed,
 csg => process control.speed,
 iug => device interface.pilot)
end Complete.PBA_speed_control;

-- defining subcomponent substitutions ---

device sensor extends interfaces_library::generic_sensor
features
output: refined to out data port speed_data;
end sensor;
data speed_data
end speed_data;

3.6 Working with Component Patterns 75

device implementation sensor.speed
end sensor.speed;

device actuator extends interfaces_library::generic_actuator
features
input: refined to in data port cmd_data;
end actuator;

data cmd_data
end cmd_data;

device implementation actuator.speed
end actuator.speed;

device interface extends interfaces_library::generic_interface
end interface;

device implementation interface.pilot
end interface.pilot;

process control extends controller_library::generic_control
features
input: refined to in data port speed_data;
end control;

process implementation control.speed extends controller_
library::generic_control.partitioned
(
 rd => thread read_speed_data.impl,
 cl => thread speed_control_laws.impl)
properties
Period => 20 ms;
Compute_Execution_Time => 2ms..5ms applies to cl;
end control.speed;

thread read_speed_data
extends controller_library::generic_read_data
end read_speed_data;

thread implementation read_speed_data.impl extends controller_
library::generic_read_data.impl
end read_speed_data.impl;

thread speed_control_laws
 extends controller_library::generic_control_laws
end speed_control_laws;

thread implementation speed_control_laws.impl
 extends controller_library::generic_control_laws.impl
end speed_control_laws.impl;

end mysystem;

This page intentionally left blank

441

Index

Symbols
. (period)

use in component names, 114, 264
use in feature identifi ers, 265

: (colon), use in declarations, 170, 174,
186, 309

:: (double colon)
in package names, 268
in property set names, 266

_ (underscore), in identifi er syntax, 263
-- (double hyphen), in comment syntax,

289
-> (hyphen and angle bracket),

directional connection, 189
<-> (hyphen between angle brackets),

bidirectional connections, 189
=> (equal sign and angle bracket),

property association, 292
+=> (plus sign, equal sign, and angle

bracket), property additive
association, 293

A
AADL (Architecture Analysis & Design

Language)
benefi ts of, 3–4
binding software to hardware. see

Software deployment
components. see Components
data modeling. see data modeling
declarative model, 26
design organization. see Design

organization
elements of, 110–111

as foundation for model-based
engineering, 1–2

MBE (model-based engineering) and,
10–12

models. see Models
modes. see Modes
other modeling languages and, 14–15
powerboat autopilot system example.

see PBA (powerboat autopilot)
system

properties. see Properties
reserved words, 348
runtime services. see Runtime

services
SAE AADL. see SAE AADL
syntax of, 20–21, 327–342
SysML used with, 15–16
system composition. see System

composition
system fl ows. see Flows

AADL extensions. see also Annex
sublanguages

declaring property constants, 311–312
declaring property sets, 304–305
declaring property types, 305–309
defi ning properties, 309–311
overview of, 303
property sets, 303–304

AADL Inspector, 320
AADL Web, 435
aadlboolean property type, 308–310
aadlinteger property type, 308–309
AADLSimulink. see Simulink
Abort_Process, runtime executive

service, 424

Index442

Abort_Processor, runtime executive
service, 425

Abort_System, runtime executive service,
425

Abort_Virtual_Processor, runtime
executive service, 425

Abstract components
constraints on, 168
declaring, 58–59
employing in PBA system model,

58–61, 428
overview of, 166–167
properties of, 167–168
representation of, 167

Abstract features
for component interactions, 185
connections and, 225–226
declaring, 226
refi ning, 226–227

Abstract fl ows
analyzing, 57–58
overview of, 54
specifying, 55–57

Abstract implementation, in PBA system
model, 61–63

Abstraction
conceptual modeling. see Conceptual

modeling
principles for managing complexity

in software, 6
transforming abstract representation

into runtime representation, 63–65
Acceptable_Array_Size, modeling

property, 409
Access

component feature category, 118–121
data, 210–213
subprograms, 231–233

Access connections
bus access, 156
data access, 210–212
declaring remote calls as, 236–237
overview of, 210–213

Access_Right, memory-related property,
391–392

Access_Time, memory-related property,
392

Actions, thread, 129
Activate_Deadline, timing property, 372
Activate_Entrypoint, programming

property, 398
Activate_Entrypoint_Call_Sequence,

programming property, 398–399
Activate_Entrypoint_Source_Text,

programming property, 399
Activate_Execution_Time, timing prop-

erty, 372
Active_Thread_Handling_Protocol,

thread-related property, 369
Active_Thread_Queue_Handling_Protocol,

thread-related property, 370
Actual_Connection_Binding, connection

binding property, 260
Actual_Latency, communication prop-

erty, 390
Actual_Memory_Binding, deployment

property, 259, 352
Actual_Processor_Binding, deployment

property, 257–259, 353
Actual_Subprogram_Call, deployment

property, 355
Actual_Subprogram_Call_Binding,

deployment property, 261, 356
Ada language, 152
Aggregate data communication, 207–209
Aliases, package, 271–273
Allowed_Connection_Binding, deploy-

ment property, 351
Allowed_Connection_Binding_Class,

deployment property, 351
Allowed_Connection_Type, deployment

property, 359–360
Allowed_Dispatch_Protocol, deployment

property, 360
Allowed_Memory_Binding, deployment

property, 352
Allowed_Memory_Binding_Class, deploy-

ment property, 353
Allowed_Message_Size, memory-related

property, 393

Index 443

Allowed_Period property, deployment
property, 360–361

Allowed_Physical_Access, deployment
property, 361

Allowed_Physical_Access_Class, deploy-
ment property, 361

Allowed_Processor_Binding, deployment
property, 258, 354

Allowed_Processor_Binding_Class,
deployment property, 354–355

Allowed_Subprogram_Call, deployment
property, 355

Allowed_Subprogram_Call_Binding,
deployment property, 261, 356

Analysis
in AADL model, 30
benefi ts of model-based approach to, 1

Analyzable architectural models,
benefi ts of MBE, 8–10

Annex libraries
declaring annex concepts in, 313–314
declaring classifi ers, 312

annex reserved word, in component
implementation declaration, 122

Annex subclauses
in AADL component declaration,

23–24
referencing annex classifi ers, 312
using annex concepts in, 314–315

Annex sublanguages
declaring annex concepts in libraries,

313–314
overview of, 312–313
using annex concepts in subclauses,

314–315
Annotation, of models

AADL semantics and, 321
assigning property values, 292–294
comments and description proper-

ties, 289–290
contained property associations,

299–300
creating models and, 318
determining property values,

297–299, 300–302

empty component sections and, 290
overview of, 289
properties in, 291–292
property types and values, 294–297

Aperiodic threads, 129
Application runtime architecture, in

embedded software systems, 7
Application runtime services

Get_Count, 420
Get_Value, 420
Next_Value, 420
Put_Value, 419
Receive_Input, 419
Send_Output, 418
Updated, 421

Application Specifi c I/O Integration
Support Tool for Real-Time Bus
Architecture Designs (ASIIST),
323, 436

Applications. see also Software
components

application software component
category, 19

case studies in modeling application
systems, 430–433

control applications, 31–32
applies to statement, for assigning

property values, 265
Architecture

abstract component and, 166
analyzable architectural models as

benefi t of MBE, 8–10
application runtime architecture, 7
component use in system architec-

ture, 6
modeling system architectures,

429–430
reference architectures. see Reference

architectures
static vs. dynamic, 169
validating system architecture, 321–322
working with architectural descrip-

tions in AADL, 17–18
Architecture-centric approach, to

model-based engineering, 9–10

Index444

Ariane 5 Flight 501, 435
ARINC653, 136, 151
Arrays

connection patterns, 229–230
connection properties, 230–231
connections and, 227–228
declaring subcomponents as, 172–173
explicitly specifi ed connections, 228

AS5506, 436
ASIIST (Application Specifi c I/O

Integration Support Tool for
Real-Time Bus Architecture
Designs), 323, 436

Assign_Time, memory-related property,
393

Assignment operator, assigning prop-
erty values, 292–293

Await_Dispatch, runtime executive
service, 422–423

Await_Result, runtime executive service,
424

B
Background threads, 129
BAnnex (Behavior Annex)

describing thread behavior, 232
extensions to AADL, 11
modeling subprogram calls, 88
reference to, 436
for representing functional behavior

of application components, 174
as sublanguage, 313
system validation and generation

tools, 323
Base_Address, memory-related property,

394
Base_Types package, DAnnex (Data

Modeling Annex), 100
Behavioral Language for Embedded

Systems with Software (BLESS),
323, 436

Bell LaPadula, 324

Bidirectional access connections, 210
Binary fi le, documenting, 48–49
Bindings

for component interactions, 185–186
connection bindings, 260
mapping software to execution

platform, 81
memory bindings, 259–260
processor bindings, 259
properties in declaration of, 257–259
remote calls declared as, 234–236
remote subprogram call bindings,

260–262
software to hardware, 256–257

Binpacker tool, 322
BLESS (Behavioral Language for

Embedded Systems with Soft-
ware), 323, 436

Buses
access features, 156
adding hardware components for

PBA system, 40–42
communication support in execution

platform, 80–81
connections and, 213–217
constraints on, 157–158
description of, 147
modeling execution platform

resources, 78–80
overview of, 156
properties of, 157
representation of, 156–157
working with hardware in AADL, 18

Byte_Count, memory-related property,
396

C
C language, 48–49
Call sequences

declaring for subprogram, 233–234
modes for specifying, 174, 182–183
symbol representing, 242

Index 445

Calls
for component interactions, 185–186
declaring remote calls as access

connections, 236–237
declaring remote calls as bindings,

234–236
declaring subprogram calls, 233–234
subprogram, 231–233
symbol representing, 242

calls reserved word, in component
implementation declaration, 122

CAN bus, 199
Case studies, in modeling application

systems, 430–433
Casteres 09, 437
CAT (Consumption Analysis Toolbox),

436
Categories

component categories, 19–20, 114–115
component feature categories, 118–121
refi ning, 280–281

Cheddar, 437
Chinese Wall, 324
Classifi er_Matching_Rule, modeling

property, 224–225, 409
Classifi er_Substitution_Rule, modeling

property, 277, 409–410
Classifi ers

aliases, 272
constraints on data classifi er declara-

tions, 140–141
constraints on process classifi er

declarations, 138
constraints on subprogram classifi er

declarations, 144
constraints on subprogram group

classifi er declarations, 146
constraints on thread classifi er

declarations, 132
constraints on thread group classifi er

declarations, 135
declaring classifi er extensions, 274
declaring subcomponents by

omitting, 171–172

defi ning components and, 113
defi ning data types and, 97–98
in expanded PBA model, 51–52
naming and referencing, 264
organizing component classifi ers into

packages, 114
overview of, 21–22
prototypes as classifi er parameters,

281
providing prototype actuals, 284–287
referencing package elements,

269–270
for refi ning models, 273–274
substitution rules, 277–279
using prototypes, 283–284

Client_Subprogram_Execution_Time,
timing property, 374

Clock_Jitter, timing property, 380
Clock_Period, timing property, 380–381
Clock_Period_Range, timing property, 381
Code artifacts

documenting source code and binary
fi les, 48–49

documenting variable names, 49–50
modeling source code structure,

50–51
representing, 47–48

Collocated, deployment property, 357
Comments, in annotation of models,

289–290
Communication properties

Actual_Latency, 390
Connection_Pattern, 384
Connection_Set, 385
Fan_Out_Policy, 384
Input_Rate, 387–388
Input_Time, 388
Latency, 391
Output_Rate, 388–389
Output_Time, 389
Overfl ow_Handling_Protocol, 385
Queue_Processing_Protocol, 385–386
Queue_Size, 386
Required_Connection, 386

Index446

Communication properties (continued)
Subprogram_Call_Rate, 389
Timing, 386–387
Transmission_Time, 390
Transmission_Type, 387

Communication protocols
bus support for, 156
processors supporting, 149
virtual bus representing, 158

COMPASS (Correctness, Modeling and
Performance of Aerospace
Systems), 324, 437

Component libraries
establishing, 70–72
organizing classifi ers into packages,

114
overview of, 69–70

Components
categories, 19–20, 114–115
composite, 20, 163
constraints on application software

components, 342–347
declaring, 23–24
declaring abstract components, 58–59
declaring abstract components in

PBA system model, 58–61
declaring component types, 114–118
declaring external interfaces, 118–121
declaring implementations, 121–125
defi ning for PBA system, 32–35
detailing abstract implementations

for PBA system, 61–63
dynamic reconfi guration of, 51–54
empty component sections, 290
execution platform. see Execution

platform components
fl ow specifi cation for, 245
generic, 20, 163
hierarchy of, 77–78
mapping to source code, 48–49
modeling, 13–14
modes for applying alternative

component confi gurations,
177–179

names, 113–114, 264
overview of, 113
port communication timing and, 196
properties differing from mode to

mode, 173
software. see Software components
subcomponents. see Subcomponents
summary, 125–126
transforming abstract representation

into runtime representation, 63–65
Components, interactions

abstract features and connections,
225–226

aggregate data communication,
207–209

array connection patterns, 229–230
array connection properties, 230–231
arrays and connections, 227–228
bus access and connections, 213–217
combining port-based communica-

tion with shared data communica-
tion, 203–206

constraints on port to port connec-
tions, 193–196

data access and connections, 210–213
declaring abstract features, 226
declaring calls and call sequences,

233–234
declaring feature group connections,

221–225
declaring feature group types,

218–220
declaring feature groups, 220–221
declaring parameter connections,

241–243
declaring parameters, 240–241
declaring port to port connections, 189
declaring ports, 186–187
declaring remote subprogram calls as

access connections, 236–237
declaring remote subprogram calls as

bindings, 234–236
deterministic sampling of data

streams between ports, 199–203

Index 447

explicitly specifi ed array connections,
228

feature groups and connections,
217–218

interfacing to external world, 97
modeling directional exchange of

data and control, 85–86
modeling local service requests or

function invocation, 87–89
modeling object-oriented method

calls, 92–95
modeling remote service requests or

function invocation, 90–92
modeling shared data exchange,

86–87
modeling subprogram instances,

237–240
modeling subprogram parameters,

95–97
overview of, 84–85, 185–186
parameter connections, 240
ports as interfaces, 188
properties of port to port connec-

tions, 207
refi ning abstract features, 226–227
sampled processing of data streams

between ports, 198–199
subprogram calls, access, and

instances, 231–233
timing port to port connections,

196–198
using port to port connections,

189–193
Components, pattern reuse

component libraries, 69–72
overview of, 69
reference architectures, 72–75

Components, type declaration
aliases in, 271–273
fl ow declarations, 246, 248
interface declarations, 118–121
modal types and, 175
overview of, 114, 116–118

Composite components
component categories in AADL, 20
overview of, 163
system. see System component

Compute_Deadline, timing property,
372–373

Compute_Entrypoint, programming
property, 399–400

Compute_Entrypoint_Call_Sequence,
programming property, 400

Compute_Entrypoint_Source_Text,
programming property, 400–401

Compute_Execution_Time, timing
property, 373

Computer Architectures: Readings and
Examples (Bell and Newell), 12

Conceptual modeling
adding hardware components to

specifi cation, 67–68
adding runtime properties, 65–67
detailing abstract implementations,

61–63
employing abstract components,

58–61
overview of, 58
transforming abstract representation

into runtime representation, 63–65
Concurrency control, for shared data

access, 210
Concurrency_Control_Protocol property,

thread-related property, 366
Confi guration, modes for alternative

component confi guration, 173,
177–179

Connection_Pattern, communication
property, 229–230, 384

Connection_Set, communication prop-
erty, 385

Connections
array, 227–231
bindings, 260
bus access and, 213–217
component interactions and, 185

Index448

Connections (continued)
data access and, 210–213
feature group, 221–225
parameters, 240–243
working with connection instances in

system instance models, 82–83
Connections, port to port

constraints on, 193–196
declaring, 189
deterministic sampling of data

streams, 199–203
properties of, 207
sampled processing of data streams,

198–199
timing, 196–198
using, 189–193

connections reserved word, in compo-
nent implementation declaration,
122

Consistency checking, AADL standard
and, 321

constant keyword, assigning property
values with, 292

Constants
assigning property values, 292
declaring property constants, 311–312
project-specifi c, 410

Constructors, property type, 307–308
Consumption Analysis Toolbox (CAT),

436
Context-free syntax, in AADL language,

20–21
Control data, persistent data store for,

133
Controls

detailing control software for PBA
System, 38–40

directional control system, 171
exchange of. see Exchange of control

and data
modeling directional exchange of,

85–86
using AADL for, 31–32

Correctness, Modeling and Performance
of Aerospace Systems (COM-
PASS), 324, 437

Criticality property, thread-related
property, 366

Current_System_Mode, runtime executive
service, 424

D
DAnnex (Data Modeling Annex)

defi ning data component properties,
291–292

reference to, 437
standard, 195

Data
access, 210–213
classifi ers, 97–98
component types, 99
constraints on, 140–141
description of, 127
exchange. see Exchange of control

and data
overview of, 138
properties of, 140
representation of, 138–140
sampled processing of data streams

between ports, 198–199
working with runtime software

abstractions in AADL, 18
Data Distribution Service (DDS), 208, 437
Data modeling

defi ning simple data types, 98–99
detailing data types, 100–101
overview of, 97–98
representing variants on data types,

99
Data Modeling Annex. see DAnnex

(Data Modeling Annex)
data port reserved word, 186
Data ports

aggregate data communication and,
208–209

Index 449

combining port-based communica-
tion with shared data communi-
cation, 203–206

description of, 188
port communication timing and,

197–198
port to port connections and, 194
properties of port to port connec-

tions, 207
Data types

defi ning simple, 97–99
detailing, 100–101
mapping to source code, 48–49
modeling source code structure, 50–51
representing variants on, 99

Data_Representation, DAnnex property,
100

Data_Volume, project property, 415
DDS (Data Distribution Service), 208, 437
Deactivate_Deadline, timing property, 374
Deactivate_Entrypoint, programming

property, 401
Deactivate_Entrypoint_Call_Sequence,

programming property, 401
Deactivate_Entrypoint_Source_Text,

programming property, 402
Deactivate_Execution_Time, timing

property, 374–375
Deactivation_Policy property, thread-

related property, 370
Deadline, timing property, 375
Declarations, summary of AADL

declarations, 22–24
Declarative models

for component hierarchy, 77–78
for system composition, 77

Delayed connections, deterministic
sampling and, 199–201

DeNiz, 437–438
Deploying software on hardware. see

Software deployment
Deployment properties

Actual_Memory_Binding property, 352
Actual_Processor_Binding property, 353

Actual_Subprogram_Call property, 355
Actual_Subprogram_Call_Binding

property, 356
Allowed_Connection_Binding property,

351
Allowed_Connection_Binding_Class

property, 351
Allowed_Connection_Type property,

359–360
Allowed_Dispatch_Protocol property,

360
Allowed_Memory_Binding property,

352
Allowed_Memory_Binding_Class

property, 353
Allowed_Period property, 360–361
Allowed_Physical_Access property, 361
Allowed_Physical_Access_Class

property, 361
Allowed_Processor_Binding property,

354
Allowed_Processor_Binding_Class

property, 354–355
Allowed_Subprogram_Call property, 355
Allowed_Subprogram_Call_Binding

property, 356
Collocated property, 357
Memory_Protocol property, 362
Not_Collocated property, 356–357
Preemptive_Scheduler property, 362
Priority_Map property, 363
Priority_Range property, 363
Provided_Connection_Quality_Of_Ser-

vice property, 358–359
Provided_Virtual_Bus_Class property,

358
Required_Connection_Quality_Of_Ser-

vice property, 359
Required_Virtual_Bus_Class property,

358
Scheduling_Protocol property, 362
Thread_Limit property, 363

Dequeue_Protocol, thread-related
property, 367–368

Index450

Dequeued_Items, thread-related property,
368

Description properties, 290
Design organization

defi ning multiple extensions, 105–107
developing alternative implementa-

tions, 104–105
overview of, 101
packages in, 102–104

Deterministic sampling, of data streams
between ports, 199–203

Device_Register_Address, memory-related
property, 394

Devices
bus access and, 213
communication support in execution

platform, 80–81
constraints on, 161–162
defi ning components for PBA system,

33
defi ning connections for PBA system,

41–42
defi ning subcomponents for PBA

system, 36
description of, 147
deterministic sampling of data

streams between ports, 199–203
as interface to external world, 97
modeling execution platform

resources, 78–80
overview of, 160
port communication timing and, 196
properties of, 161
representation of, 160–161
sampled processing of data streams

between ports, 198–199
working with hardware in AADL, 18

Dimensions, array specifi cation and, 172
Directional access connections, 210
Directional control system, 171
Directional transfer, ports for, 186
Dispatch protocol

port communication timing and,
196–197

for threads, 129

Dispatch_Able, thread-related property,
367

Dispatch_Jitter, timing property,
375–376

Dispatch_Offset, timing property, 376
Dispatch_Protocol, thread-related

property, 364
Dispatch_Trigger, thread-related prop-

erty, 364
Dynamic architecture, 169. see also

Modes
Dynamic reconfi guration, of systems or

components, 51–54

E
EAnnex (Error Model Annex)

as example of sublanguage, 312
extensions to AADL, 11
reference to, 438
as standard for sublanguages, 303
system validation and generation

tools, 323
Eclipse, 315, 317, 319, 438
EDF (earliest deadline fi rst), scheduling

policy, 44
Embedded systems

applications of, 6
co-engineering with system engineer-

ing, 13
as engineering challenge, 1
key elements of, 7–8

Encapsulation, managing complexity in
software, 6

end reserved word, in component
implementation declaration, 122

End-to-end fl ows, 253–255
Equivalence/complement rule, using

with feature groups, 224
Error Model Annex. see EAnnex (Error

Model Annex)
ErrorData subcomponent, in modeling

object-oriented method calls, 93
ESA (European Space Agency), 320, 324
event data port reserved word, 186

Index 451

Event data ports
combining port-based communica-

tion with shared data communica-
tion, 203

description of, 188
port communication timing and, 197
port to port connections and, 194
properties of port to port connec-

tions, 207
event port reserved word, 186
Event ports

description of, 188
port communication timing and, 197
port to port connections and, 193
properties of port to port connec-

tions, 207
Exchange of control and data

consistency checks on port connec-
tions, 195

logical interactions between applica-
tion components, 84

modeling directional exchange, 85–86
modeling shared data exchange,

86–87
Execution platform. see also Hardware

communication support in, 80–81
component categories in AADL, 20
mapping software to, 81
modifying resources, 78–80
system abstraction for composite that

includes, 163
Execution platform components. see also

Hardware components
bus, 156–158
device, 160–162
memory, 153–156
overview of, 147–148
processors, 148–150
virtual bus, 158–159
virtual processors, 150–153

Execution_Time, timing property, 376
extends clause

declaring classifi ers, 274
declaring components, 22–24
defi ning extension declaration, 63–64

prototype use as classifi er param-
eters, 281

refi ning component categories, 280
extends reserved word

adding runtime properties, 66
in component implementation

declaration, 122
Extensions. see also AADL extensions

declaring classifi er extensions, 274
declaring model refi nements,

275–277
defi ning multiple in design organiza-

tion, 105–107

F
Failure Mode and Effect Analysis

(FMEA), 323
Fan_Out_Policy, communication

property, 384
Feature groups

aggregate data communication and,
208–209

in component declaration, 23–24
for component interactions, 185
declaring component features,

220–221
declaring connections, 221–225
declaring model refi nements, 275
declaring types of, 218–220
empty component sections and, 290
names, 264
overview of, 217–218
prototypes for, 283–284

Features section
in AADL component declaration,

22–24
declaring component interfaces,

118–121
Feiler 07 and 07A, 438
FHA (Functional Hazard Assessment), 323
FIACRE, 323, 438
Finalize_Deadline, timing property, 376
Finalize_Entrypoint, programming

property, 402

Index452

Finalize_Entrypoint_Call_Sequence,
programming property, 402–403

Finalize_Entrypoint_Source_Text, pro-
gramming property, 403

Finalize_Execution_Time:Time, timing
property, 377

First_Dispatch_Time, timing property, 375
Flow latency analysis tool, OSATE, 57
Flow path, 247
Flow sink, 247
Flow source, 247
Flows

analyzing, 57–58
declaring end-to-end, 253–255
declaring implementations, 249–253
declaring specifi cations, 246–248
overview of, 54, 245–246
specifying end-to-end, 57
specifying fl ow model, 55–56
working with end-to-end, 255

fl ows reserved word, in component
implementation declaration, 122

fl ows section
in AADL component declaration,

22–24
component type declaration, 246
declaring end-to-end fl ows, 254–255
declaring fl ow implementations,

249–253
FMEA (Failure Mode and Effect

Analysis), 323
Frame_Period, timing property, 383
Function invocation

modeling local, 87–89
modeling remote, 90–92

Functional Hazard Assessment (FHA), 323
Functions, modeling source code

structure and, 50–51

G
Generic components

abstract. see Abstract component
component categories in AADL, 20
overview of, 163

Generic features. see Abstract features
Get_Count, application runtime service,

420
Get_Error_Code, runtime executive

service, 423
Get_Resource, runtime executive service,

421
Get_Value, application runtime service,

420
Global variables, 96–97
Graphical languages

AADL as, 11
overview of, 17
SysML as, 15
UML as, 14–15

Graphical representation
in AADL, 27–29
of abstract components, 167
of bus, 156–157
comments included in, 289
of data, 138–140
of devices, 160–161
of feature groups, 220
of memory, 153–154
of models, 317
of modes, 176–177
of parameters, 243
of processes, 136–137
of processors, 148–149
of subprogram calls, 233–234
of subprogram groups, 145–146
of subprograms, 143
of system components, 164
of threads, 130
of virtual bus, 158–159
of virtual processor, 151–152

H
Hansson 08, 438
Hardware, deploying software on

hardware. see Software deployment
Hardware components. see also Execu-

tion platform components
adding to PBA system model, 40–41

Index 453

binding to software in PBA system
model, 43–45

bus access and, 213
bus and, 156
modeling execution platform

resources, 78–80
working with in AADL, 17–18

Hardware_Description_Source_Text,
programming property, 407–408

Hardware_Source_Language, program-
ming property, 408

Hofmeister 00, 439
Hybrid threads, 129

I
Identifi ers. see also Names

classifi er, 264
component, 113–114
property set, 304
subcomponent, 170
syntax of, 263

IEEE (Institute of Electrical and Elec-
tronics Engineers)

Systems and Software Engineering-
Architecture Descriptions (42010), 5,
439

VHDL (VHSIC Hardware Descrip-
tion Language), 12

IMA (integrated modular avionics), 10
Immediate connections, deterministic

sampling and, 202–203
Implementations

declaring component implementa-
tions, 121–125

declaring fl ow implementations,
249–253

declaring modal implementations,
175–177

detailing abstract implementations,
61–63

developing alternative implementa-
tions in design organization,
104–105

top-level model for PBA system,
36–37

Implemented_As, modeling property, 410
in binding statement, 293
in modes statement

assigning property values, 293
declaring subcomponents, 170

In ports
description of, 188
port to port connections and, 195

inherit reserved word, 310
Inheritance

modes and, 180–181
property inheritance, 310

Initialize_Deadline, timing property, 377
Initialize_Entrypoint, programming

property, 403
Initialize_Entrypoint_Call_Sequence,

programming property, 403–404
Initialize_Entrypoint_Source_Text,

programming property, 404
Initialize_Execution_Time, timing

property, 377
Input_Rate, communication property,

387–388
Input_Time, communication property,

388
Instance models

modeling subprogram instances,
237–240

modeling system instances. see
System instance models

Instances, subprogram, 231–233
Institute of Electrical and Electronics

Engineers. see IEEE (Institute of
Electrical and Electronics
Engineers)

Integers, in property value summary,
296

Integrated modular avionics (IMA), 10
Interfaces

for components of PBA system, 34
declaring external component

interfaces, 118–121

Index454

Interfaces (continued)
to outside application system, 97
ports as, 188

Inverse of statement, in declaring
feature group types, 219

J
Java VM (virtual machine), 151

L
Languages

Ada language, 152
annex sublanguages. see Annex

sublanguages
C language, 48–49
graphical. see Graphical languages
MDA. see MDA (model-driven

architecture)
modeling languages. see Modeling

languages
SysML. see SysML
textual, 11
UML. see UML (Unifi ed Modeling

Language)
Latency, communication property, 391
Libraries

annex libraries. see Annex libraries
component libraries, 69–72
modeling source code structure

and, 50
Load_Deadline, timing property, 378
Load_Time, timing property, 378
Logical fl ows. see Flows
Logical interface, between embedded

application software and physical
systems, 7–8

M
MARTE (Modeling and Analysis of

Real-time and Embedded Sys-
tems), 12–13, 439

Mathworks Simulink. see Simulink
Max_Aadlinteger, project property, 415
Max_Base_Address, project property, 415
Max_Byte_Count, project property, 417
Max_Memory_Size, project property, 416
Max_Queue_Size, project property, 416
Max_Target_Integer, project property, 415
Max_Thread_Limit, project property, 416
Max_Time, project property, 416
Max_Urgency, project property, 416
Max_Word_Space, project property, 417
MBE (model-based engineering)

AADL and, 10–12
AADL used with MDA and UML,

14–15
AADL used with SysML, 15–16
analyzable models and, 8–10
benefi ts of, 1–2
for embedded real-time systems,

6–8
modeling languages and, 12–14
overview of, 5

MCD (model-centered development), 5
MDA (model-driven architecture)

AADL used with MDA and UML,
14–15

OMG initiatives in model-based
engineering, 12

reference to, 439
software applications of model-based

engineering, 5
MDD (model-driven development), 5
Mean Time To Failure (MTTF), 323
Memory

adding hardware components for
PBA system, 40–42

bindings, 259–260
constraints on, 155
description of, 147
modeling execution platform

resources, 78–80
overview of, 153
processor access to, 149
properties, 154–155, 391–397

Index 455

representation of, 153–154
working with hardware in AADL, 18

Memory_Protocol property, deployment
property, 362

Memory-related properties
Access_Right, 391–392
Access_Time, 392
Allowed_Message_Size, 393
Assign_Time, 393
Base_Address, 394
Byte_Count, 396
Device_Register_Address, 394
overview of, 154–155
Read_Time, 394–395
Source_Code_Size, 395
Source_Data_Size, 395
Source_Heap_Size, 395–396
Source_Stack_Size, 396
Word_Size, 396–397
Word_Space, 397
Write_Time, 397

Meta models
annex sublanguages and, 312
limiting property ownership via

Meta model class, 310
standardization of, 317

META toolset. see Rockwell Collins
META toolset

MetaH, AADL patterned after, 10
Method calls, modeling object-oriented,

92–95
MIL-STD 1553 bus, 199
Mission Data System reference architec-

ture, NASA, 319
Mode_Transition_Response property,

thread-related property, 368–369
Model-based engineering. see MBE

(model-based engineering)
Model-centered development (MCD), 5
Model-driven development (MDD), 5
Modelica, component models in, 14
Modeling and Analysis of Real-time and

Embedded Systems (MARTE),
12–13, 439

Modeling languages
AADL used with MDA and UML,

14–15
AADL used with SysML, 15–16
overview of, 12–14
state-based languages for represent-

ing functional behavior of
application components, 174

Modeling properties
Acceptable_Array_Size, 409
Classifi er_Matching_Rule, 409
Classifi er_Substitution_Rule, 409–410
Implemented_As, 410
Prototype_Substitution_Rule, 410

Modeling system architectures,
resources related to, 429–430

Models
aliases for package and type refer-

ences, 271–273
analysis of, 30
annotating. see Annotation, of models
case studies in modeling application

systems, 430–433
category refi nement, 280–281
classifi er substitution rules for

refi ning, 277–279
classifi ers for naming and referencing

elements in, 264
classifi ers for refi ning, 273–274
component categories of, 19–20
creating, 317–319
declaring classifi er extensions, 274
declaring packages, 267–269
declaring prototypes, 281–283
declaring refi nements, 275–277
naming and referencing elements

with packages, 263–264
naming and referencing elements

with property sets, 266
overview of, 19, 263
packages in, 266–267
property substitution and, 287
prototypes as classifi er parameters,

280–281

Index456

Models (continued)
providing prototype actuals, 284–287
referencing model elements, 265–266
referencing package elements,

269–271
structure of, 25–26
subprogram instances, 237–240
system instances, 26–27
system validation and generation

tools, 322–324
tools for creating, 319–320
using prototypes, 283–284
validation of system architecture,

321–322
Modes

for alternative call sequences, 182–183
for alternative component confi gura-

tions, 177–179
declaring component types and

implementations, 175–177
declaring modes and mode transi-

tions, 174–175
dynamic reconfi guration of PBA

system with, 51–53
inheriting, 180–181
overview of, 173–174
properties associated with, 181–182
specifying, 53–54

modes reserved word, in component
implementation declaration, 122

Modes section
in AADL component declaration,

22–24
mode transition declaration in, 175

MTTF (Mean Time To Failure), 323

N
Names

aliases for package and type refer-
ences, 271–273

classifi er, 264
component, 113–114
model elements, 263–264
package, 263–264, 268

property set, 266, 303–304
subcomponent, 170

NASA, 319, 439
Next_Value, application runtime service,

420
none statement, empty component

sections and, 290
Not_Collocated property, deployment

property, 356–357
N-Version redundancy, 282

O
Object Constraint Language (OCL), 313
Object-orientation, modeling object-

oriented method calls, 92–95
Ocarina, 323–324, 439
OCL (Object Constraint Language), 313
OMG (Object Management Group)

DDS (Data Distribution Service), 208,
437

model-based engineering and, 12–13
One-dimensional arrays, 227–228
Open Source AADL Tool Environment.

see OSATE (Open Source AADL
Tool Environment)

Operational states, modes for represent-
ing, 173

OSATE (Open Source AADL Tool
Environment)

downloading, 28
fl ow latency analysis tool, 57
generating instance models with, 27
graphical and textual representation

with, 29
handling of packages and property

sets by, 26
model creation tools, 319–320
reference to, 439
resource allocation and scheduling

plug-in, 44, 47
system validation and generation

tools, 322
user interface, 317–318

out feature command, 227

Index 457

Out ports
description of, 188
port to port connections and, 195

Output_Rate, communication property,
388–389

Output_Time, communication property,
389

Overfl ow_Handling_Protocol, communica-
tion property, 385

P
Packages

aliases, 271–273
in component declaration, 23–24
declaring, 267–269
in design organization, 102–104
empty component sections and, 290
in model organization, 266–267
modeling source code structure and,

50
for naming and referencing model

elements, 263–264
organizing component classifi ers

into, 114
referencing elements in, 269–271
structure of AADL models and, 25–26

Parameters
component feature categories,

118–121
for component interactions, 185
connections, 240
declaring, 240–241
declaring connections for, 241–243
modeling subprogram parameters,

95–97
Passing by reference, pseudocode, 95–97
Patterns

abstract component and, 166
array connection patterns, 229–230
component libraries and, 69–72
redundancy patterns, 282
reference architectures, 72–75

PBA (powerboat autopilot) system
AADL components of, 427–428

with abstract components, 58–61, 428
abstract fl ows and, 54
adding hardware components, 40–41,

67–68
adding runtime properties, 65–67
analyzing fl ows, 57–58
binding software to hardware, 43–45
component libraries and, 69–72
conceptual modeling, 58
conducting scheduling analyses,

45–47
defi ning components, 32–35
defi ning physical connections, 41–43
description of, 425–426
detailing abstract implementations,

61–63
detailing control software, 38–40
developing simple model, 31–32
developing top-level model, 36–37
documenting source code and binary

fi les, 48–49
documenting variable names, 49–50
dynamic reconfi guration of, 51–54
enhanced versions of, 426–427
modeling source code structure,

50–51
overview of, 425
reference architectures and, 72–75
representing code artifacts, 47–48
specifying fl ows, 55–57
summary, 47
transforming abstract representation

into runtime representation, 63–65
PCI bus, 213
Period, timing property, 128, 378
Periodic threads, 129
Permanent storage, memory compo-

nents and, 153
Persistent data store, for control data,

133
Physical connections, defi ning for PBA

system, 41–43
Physical environment, logical interface

with embedded application
software, 7–8

Index458

Physical system components, modeling,
78–80

PIMs (platform independent models),
14–15

Platform independent models (PIMs),
14–15

Platform specifi c models (PSMs), 14–15
PMS (Processor Memory Switch), 12
Ports

aggregate data communication,
207–209

combining port-based communica-
tion with shared data communica-
tion, 203–206

component feature categories,
118–121

component interactions and, 185
constraints on port to port connec-

tions, 193–196
declaring, 186–187
declaring port to port connections,

189
deterministic sampling of data

streams between, 199–203
as interface, 188
properties of port to port connec-

tions, 207
sampled processing of data streams

between, 198–199
timing port to port connections,

196–198
using port to port connections,

189–193
POSIX_Scheduling_Policy property,

thread-related property, 365
Powerboat autopilot system. see PBA

(powerboat autopilot) system
Predeclared properties, 291
Preemptive_Scheduler, deployment

property, 362
Priority, thread-related property, 365
Priority_Map, deployment property, 363
Priority_Range, deployment property,

363

Private section, of packages, 266, 268
Process_Swap_Execution_Time, timing

property, 381
Processes

in AADL, 11
constraints on, 137–138
defi ning components for PBA system,

33–34
description of, 127
detailing control software for PBA

system, 39–40
overview of, 135–136
properties of, 137
representation of, 136–137
working with runtime software

abstractions in AADL, 18
Processor Memory Switch (PMS), 12
Processors

adding for PBA system, 40–42
binding to software, 44, 259
communication support in execution

platform, 80–81
constraints on, 150
defi ning execution characteristics,

45–46
description of, 147
modeling execution platform

resources, 78–80
overview of, 148
properties of, 150
representation of, 148–149
threads assigned to, 128
working with hardware in AADL, 18

Programming properties
Activate_Entrypoint, 398
Activate_Entrypoint_Call_Sequence,

398–399
Activate_Entrypoint_Source_Text, 399
Compute_Entrypoint, 399–400
Compute_Entrypoint_Call_Sequence,

400
Compute_Entrypoint_Source_Text,

400–401
Deactivate_Entrypoint, 401

Index 459

Deactivate_Entrypoint_Call_Sequence,
401

Deactivate_Entrypoint_Source_Text,
402

Finalize_Entrypoint, 402
Finalize_Entrypoint_Call_Sequence,

402–403
Finalize_Entrypoint_Source_Text, 403
Hardware_Description_Source_Text,

407–408
Hardware_Source_Language, 408
Initialize_Entrypoint, 403
Initialize_Entrypoint_Call_Sequence,

403–404
Initialize_Entrypoint_Source_Text, 404
Recover_Entrypoint, 404
Recover_Entrypoint_Call_Sequence, 405
Recover_Entrypoint_Source_Text, 405
Source_Language, 405–406
Source_Name, 406
Source_Text, 406–407
Supported_Source_Language, 407

Project properties
Data_Volume, 415
Max_Aadlinteger, 415
Max_Base_Address, 415
Max_Byte_Count, 417
Max_Memory_Size, 416
Max_Queue_Size, 416
Max_Target_Integer, 415
Max_Thread_Limit, 416
Max_Time, 416
Max_Urgency, 416
Max_Word_Space, 417
Size_Units, 417
Supported_Active_Thread_Handling_

Protocols, 411
Supported_Classifi er_Substitutions, 414
Supported_Concurrency_Control_Proto-

cols, 412
Supported_Connection_Patterns, 411
Supported_Connection_QoS, 413
Supported_Dispatch_Protocols, 412
Supported_Distributions, 414

Supported_Hardware_Source_Lan-
guages, 413

Supported_Queue_Processing_Protocols,
412–413

Supported_Scheduling_Protocols,
413–414

Supported_Source_Languages, 414
Time_Units, 417

Properties
abstract component, 167–168
adding runtime properties, 65–67
in annotation of models, 289–292
array connection, 230–231
assigning property values, 292–294
built-in property types, 306
bus properties, 157
communication properties. see

communication properties
contained property associations,

299–300
of data components, 140
declaring bindings with, 257–259
declaring property constants, 311–312
declaring property sets, 304–305
declaring property types, 305–309
defi ning, 309–311
deployment properties. see deploy-

ment properties
description properties, 290
determining property values, 297–299
device, 161
example of determining property

value, 300–302
list of AADL property types, 347–348
memory-related. see Memory-related

properties
modeling properties. see Modeling

properties
mode-specifi c, 181–182
predeclared, 291
of processes, 137
of processors, 150
programming properties. see Pro-

gramming properties

Index460

Properties (continued)
project-specifi c constants and

property types. see Project
properties

for source code documentation, 48
of subprogram groups, 146
of subprograms, 143
substitution in model organization,

287
system component, 165
of thread groups, 134
thread-related. see Thread-related

properties
timing properties. see Timing

properties
types and values, 294–297
of virtual bus, 159
of virtual processor, 152

properties reserved word, in component
implementation declaration, 122

Properties sections, in AADL component
declaration, 22–24

Property associations
assigning property values, 292–293
contained, 299–300

Property sets
in AADL component declaration,

23–24
declaring, 304–305
for naming and referencing elements,

266
overview of, 303–304
structure of AADL models and, 25–26

prototype reserved word, in component
implementation declaration, 122

Prototype_Substitution_Rule, modeling
property, 287, 410

Prototypes
as classifi er parameters, 280–281
declaring, 281–283
libraries and archives and, 70
providing prototype actuals, 284–287
substitution rules, 287
using, 283–284

Prototypes section, in AADL component
declaration, 22–24

Provided_Connection_Quality_Of_Service,
deployment property, 358–359

Provided_Virtual_Bus_Class, deployment
property, 358

provides bus access feature, 81
provides data access feature, 137
provides subprogram access feature,

131, 232
Pseudocode, passing by reference, 95–97
PSMs (platform specifi c models), 14–15
Public section, of packages, 266, 268
Put_Value, application runtime service,

419

Q
Quantitative analysis, 8–10
Queue_Processing_Protocol, communica-

tion property, 385–386
Queue_Size, communication property, 386

R
Raise_Error, runtime executive service,

423
RAM (random access memory), 153. see

also Memory
Rate monotonic (RM), types of schedul-

ing policies, 44
RC META. see Rockwell Collins META

toolset
Read_Time, memory-related property,

394–395
Read-only memory (ROM), 153. see also

Memory
Real numeric values, property values,

296
Receive_Input, application runtime

service, 419
Recover_Deadline, timing property, 379
Recover_Entrypoint, programming

property, 404

Index 461

Recover_Entrypoint_Call_Sequence,
programming property, 405

Recover_Entrypoint_Source_Text, pro-
gramming property, 405

Recover_Execution_Time, timing property,
379

Redundancy patterns, 282
Reference architectures

abstract component and, 166
defi ning, 72–73
utilizing, 74–75

Reference_Processor, timing property,
381–382

References
aliases for package and type refer-

ences, 271–273
classifi er, 264
model element, 263–266
package, 263–264, 269–271
property set, 266, 304

refi ned to
adding runtime properties, 66
declaring model refi nements,

275–277
refi ning abstract features, 227
refi ning component categories, 280
refi ning declarations, 63–64

Refi nements, model
abstract feature refi nement, 227
adding runtime properties, 66
category refi nement, 280–281
classifi er substitution rules for,

277–279
declaration refi nement, 63–64
declaring, 275–277

Refl ective memory, 153
Release_Resource, runtime executive

service, 422
Remote calls

declaring as access connections,
236–237

declaring as bindings, 234–236
remote subprogram call bindings,

260–262

renames statement
declaring aliases, 271–273
for visibility declarations, 268

Required_Connection, communication
property, 386

Required_Connection_Quality_Of_Service,
deployment property, 359

Required_Virtual_Bus_Class, deployment
property, 358

requires bus access feature, 215
requires data access (this) option, 93,

131
Requires modes section, mode inherit-

ance and, 175
requires modes statement

mode inheritance and, 180
using modes for alternative compo-

nent confi gurations, 178
requires subprogram access feature, 233
Reserved words, list of, 348–349
Resources, supporting this book

case studies, 430–433
modeling system architectures, 429–430

Resumption_Policy property, thread-
related property, 368–369

RM (rate monotonic), types of schedul-
ing policies, 44

Rockwell Collins META toolset
extending OSATE, 320
reference to, 439
system validation and generation

tools, 324
ROM (read-only memory), 153. see also

Memory
Round-robin (RR), types of scheduling

policies, 44
RR (round-robin), types of scheduling

policies, 44
Runtime components

adding runtime properties, 65–67
defi ning components for PBA system,

34
transforming abstract representation

into runtime representation, 63–65

Index462

Runtime executive services
Abort_Process, 424
Abort_Processor, 425
Abort_System, 425
Abort_Virtual_Processor, 425
Await_Dispatch, 422–423
Await_Result, 424
Current_System_Mode, 424
Get_Error_Code, 423
Get_Resource, 421
Raise_Error, 423
Release_Resource, 422
Set_System_Mode, 424
Stop_Process, 424
Stop_Processor, 425
Stop_System, 425
Stop_Virtual_Processor, 425

Runtime services
application runtime services. see

Application runtime services
overview of, 418
runtime executive services. see

Runtime executive services
Runtime states, of threads, 129–130
Runtime_Protection, thread-related

property, 370

S
SAE AADL

classifi ers, 21–22
component categories, 19–20
language syntax, 20–21
model analysis, 30
model structure, 25–26
models, 19
software, hardware, and architectural

descriptions and operations, 17–18
summary of AADL declarations,

22–24
system instance models, 26–27
textual and graphical representation,

27–29

Sampling communication
deterministic sampling of data

streams between ports, 199–203
processing data streams between

ports, 198–199
SAVI (System Architecture Virtual

Integration), 320–323, 438
Scaling_Factor, timing property, 382
Scheduler_Quantum, timing property, 382
Scheduling analyses

conducting for PBA system, 45–47
types of scheduling policies, 44

Scheduling threads, 150
Scheduling_Protocol property, deploy-

ment property, 362
Send_Output, application runtime

service, 418
Service requests

modeling local, 87–89
modeling remote, 90–92

Set_System_Mode, runtime executive
service, 424

Shared data exchange
combining port-based communica-

tion with, 203–206
modeling, 86–87

Shortest job fi rst (SJF), types of schedul-
ing policies, 44

Simulink
component models in, 14
component use in system architec-

ture, 6
documenting source code and binary

fi les, 48–49
extracting AADL models from

Simulink models, 320
modeling source code structure and,

50
modeling subprogram calls, 88
overview of, 12
reference to, 435
system validation and generation

tools, 323

Index 463

Size_Units, project property, 417
SJF (shortest job fi rst), types of schedul-

ing policies, 44
Slot_Time, timing property, 383
Software components

constraints on, 342–347
constraints on data components,

140–141
constraints on processes, 137–138
constraints on subprogram groups,

146
constraints on subprograms, 144
constraints on thread groups,

134–135
constraints on threads, 132–133
data component instances and, 138
mapping to memory, 154
overview of, 127–128
processes, 135–136
properties of data components, 140
properties of processes, 137
properties of subprogram groups, 146
properties of subprograms, 143
properties of thread groups, 134
properties of threads, 131–132
representation of data components,

138–140
representation of processes, 136–137
representation of subprogram

groups, 145–146
representation of subprograms, 143
representation of thread groups,

133–134
representation of threads, 130–131
scheduling and executing with

virtual processors, 151
subprogram groups, 144–145
subprograms, 141–142
system abstraction for composite that

includes, 163
thread groups, 133
threads, 128–130
working with in AADL, 17–18

Software deployment
binding to hardware in PBA system

model, 43–45
connection bindings, 260
declaring bindings with properties,

257–259
memory bindings, 259–260
overview of, 256–257
processor bindings, 259
remote subprogram call bindings,

260–262
Source code, documenting, 48–51
Source_Code_Size, memory-related

property, 395
Source_Data_Size, memory-related

property, 395
Source_Heap_Size, memory-related

property, 395–396
Source_Language, programming prop-

erty, 405–406
Source_Name, programming property, 406
Source_Stack_Size, memory-related

property, 396
Source_Text, programming property,

406–407
Sporadic threads, 129
Startup_Deadline, timing property,

379–380
Startup_Execution_Time, timing property,

380
State, modes and, 174
State-based modeling language, 174
Static architecture, 169. see also

Subcomponents
STOOD, 320, 438
Stop_Process, runtime executive service,

424
Stop_Processor, runtime executive

service, 425
Stop_System, runtime executive service,

425
Stop_Virtual_Processor, runtime execu-

tive service, 425

Index464

Structure, AADL model, 25–26
Subclauses. see Annex subclauses
Subcomponents

in component hierarchy, 77
declaring, 170
declaring as arrays, 172–173
modes for defi ning alternative

confi gurations of, 177–179
overview of, 169
port to port connections and, 194
using subcomponent declarations,

170–172
subcomponents reserved word, in

component implementation
declaration, 122

Sublanguages. see Annex sublanguages
Subprogram calls, modeling, 142
Subprogram groups

constraints on, 146
description of, 127
overview of, 144–145
properties of, 146
representation of, 145–146

Subprogram_Call_Rate, communication
property, 389

Subprogram_Call_Type, thread-related
property, 371

Subprograms
calls, access, and instances, 231–233
for component interactions, 186
constraints on, 144
declaring calls and call sequences,

233–234
declaring remote calls as access

connections, 236–237
declaring remote calls as bindings,

234–236
description of, 127
modeling local service requests or

function invocation, 87–89
modeling object-oriented method

calls, 92–95
modeling remote service requests or

function invocation, 90–92

modeling subprogram instances,
237–240

modeling subprogram parameters,
95–97

overview of, 141–142
properties of, 143
remote subprogram call bindings,

260–262
representation of, 143
symbol representing subprogram

calls, 242
Subset rule, using with feature groups,

224–225
Substitution rules

classifi ers, 277–279
prototypes, 287

Supported_Active_Thread_Handling_Pro-
tocols, project property, 411

Supported_Classifi er_Substitutions, project
property, 414

Supported_Concurrency_Control_Protocols,
project property, 412

Supported_Connection_Patterns, project
property, 411

Supported_Connection_QoS, project
property, 413

Supported_Dispatch_Protocols, project
property, 412

Supported_Distributions, project property,
414

Supported_Hardware_Source_Languages,
project property, 413

Supported_Queue_Processing_Protocols,
project property, 412–413

Supported_Scheduling_Protocols, project
property, 413–414

Supported_Source_Language, program-
ming property, 407

Supported_Source_Languages, project
property, 414

Synchronized_Component, thread-related
property, 371

Syntax, AADL language, 20–21,
327–342

Index 465

SysML (System Modeling Language)
AADL used with, 15–16
component use in system architec-

ture, 6
model creation tools, 320
OMG initiatives in model-based

engineering, 12–14
reference to, 438

System architecture
component use in, 6
modeling, 429–430
validating, 321–322

System Architecture Virtual Integration
(SAVI), 320, 321–323, 438

System components
constraints on, 165–166
overview of, 163
properties of, 165
representation of, 164
system abstraction for composite that

includes, 163
System composition

communication support in execution
platform, 80–81

component hierarchy in, 77–78
creating system instance model, 81
modeling execution platform

resources, 78–80
overview of, 77
system hierarchy in, 81
working with connections in system

instance model, 82–83
working with system instance model,

83–84
System engineering, 13
System fl ows. see Flows
System hierarchy, 81
System instance models

connections in, 82–83
creating, 26–27, 81
overview of, 26
working with, 83–84

System Modeling Language. see SysML
(System Modeling Language)

Systems, dynamic reconfi guration of,
51–54

Systems and Software Engineering-Archi-
tecture Descriptions (IEEE 42010), 5,
439

T
TASTE (The ASSERT Set of Tools for

Engineering), 320, 324, 438
Templates, abstract component and,

166
Textual languages, AADL as, 11
Textual representation

in AADL, 27–29
of abstract components, 167
of bus, 156–157
comments included in, 289
of data, 138–140
of devices, 160–161
of memory, 153–154
of models, 317
of modes, 176–177
of parameters, 243
of processes, 136–137
of processors, 148–149
of subprogram groups, 145–146
of subprograms, 143
of system components, 164
of threads, 130
of virtual bus, 158–159
of virtual processors, 151–152

The ASSERT Set of Tools for Engineer-
ing (TASTE), 320, 324, 438

Thread groups
constraints on, 134–135
description of, 127
overview of, 133
properties of, 134
representation of, 133–134

Thread_Limit property, deployment
property, 363

Thread_Swap_Execution_Time, timing
property, 382–383

Index466

Thread-related properties
Active_Thread_Handling_Protocol

property, 369
Active_Thread_Queue_Handling_Proto-

col property, 370
Concurrency_Control_Protocol

property, 366
Criticality property, 366
Deactivation_Policy property, 370
Dequeue_Protocol property, 367–368
Dequeued_Items property, 368
Dispatch_Able property, 367
Dispatch_Protocol property, 364
Dispatch_Trigger property, 364
Mode_Transition_Response property,

368–369
overview of, 131–132
POSIX_Scheduling_Policy property,

365
Priority property, 365
Resumption_Policy property, 368–369
Runtime_Protection property, 370
Subprogram_Call_Type property, 371
Synchronized_Component property,

371
Time_Slot property, 366
Urgency property, 367

Threads
in AADL, 11
binding software to hardware in PBA

system model, 44
constraints on, 132–133
defi ning execution characteristics,

45–46
describing behavior using BAnnex,

232
description of, 127
detailing control software for PBA

system, 38–39
deterministic sampling of data

streams between ports, 199–203
mapping software to execution

platform, 81

modeling directional exchange of
data and control, 85–86

overview of, 128–130
port communication timing and,

196–197
port to port connections and, 192–193
properties of, 131–132, 364–371
representation of, 130–131
runtime states of, 129–130
sampled processing of data streams

between ports, 198–199
scheduling, 150
virtual processors representing, 152
working with connections in system

instance model, 82–83
working with runtime software

abstractions in AADL, 18
Time_Slot property, thread-related

property, 366
Time_Units, project property, 417
Timed threads, 129
Time-deterministic data exchange, 85
Timing, communication property,

386–387
Timing properties

Activate_Deadline, 372
Activate_Execution_Time, 372
Client_Subprogram_Execution_Time,

374
Clock_Jitter, 380
Clock_Period, 380–381
Clock_Period_Range, 381
Compute_Deadline, 372–373
Compute_Execution_Time, 373
Deactivate_Deadline, 374
Deactivate_Execution_Time, 374–375
Deadline, 375
Dispatch_Jitter, 375–376
Dispatch_Offset, 376
Execution_Time, 376
Finalize_Deadline, 376
Finalize_Execution_Time:Time, 377
First_Dispatch_Time, 375

Index 467

Frame_Period, 383
Initialize_Deadline, 377
Initialize_Execution_Time, 377
Load_Deadline, 378
Load_Time, 378
Period, 378
Process_Swap_Execution_Time, 381
Recover_Deadline, 379
Recover_Execution_Time, 379
Reference_Processor, 381–382
Scaling_Factor, 382
Scheduler_Quantum, 382
Slot_Time, 383
Startup_Deadline, 379–380
Startup_Execution_Time, 380
Thread_Swap_Execution_Time, 382–383

TOPCASED, 321, 438
Transmission_Time, communication

property, 390
Transmission_Type, communication

property, 387

U
UML (Unifi ed Modeling Language)

AADL used with MDA and UML,
14–15

component use in system architec-
ture, 6

features of, 14–15
MARTE (Modeling and Analysis of

Real-time and Embedded Sys-
tems), 12

model creation tools, 320
OMG initiatives in model-based

engineering, 12–13
reference to, 438

Updated, application runtime service, 421
Urgency, thread-related property, 367
USB bus, communicating with camera

via, 157
User interface, OSATE, 317–318

V
Validation

of system architecture, 321–322
tools for, 322–324

Values
assigning property values, 292–294
example of determining property

value, 300–302
rules for determining property

values, 297–299
summary of property values, 294–296

Variables
documenting names of, 49–50
global, 96–97

VHDL (VHSIC Hardware Description
Language), 12, 14

VHSICs (Very High Speed Integrated
Circuits), 12

Virtual bus
constraints on, 159
description of, 147
overview of, 158
properties of, 159
representation of, 158–159

Virtual channels, virtual bus represent-
ing, 158

Virtual processors
constraints on, 152–153
description of, 147
overview of, 151
properties of, 152
representation of, 151–152
threads assigned to, 128

W
W3C 04, 438
with statement

accessing property sets, 304
for visibility declarations, 268

Word_Size, memory-related property,
396–397

Index468

Word_Space, memory-related property,
397

Write_Time, memory-related property,
397

X
XMI (XML interchange)

format specifi cation for AADL, 317
included in AADL standard, 12

	Contents
	Preface
	Chapter 3 Modeling and Analysis with the AADL: The Basics
	3.1 Developing a Simple Model
	3.2 Representing Code Artifacts
	3.3 Modeling Dynamic Reconfigurations
	3.4 Modeling and Analyzing Abstract Flows
	3.5 Developing a Conceptual Model
	3.6 Working with Component Patterns

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

