

Peachpit Press

V I S U A L Q U I C K s ta r t G U I D E

CSS3
Sixth Edition

Jason Cranford Teague

Visual QuickStart Guide
CSS3
Sixth Edition

Jason Cranford Teague

Peachpit Press
www.peachpit.com

Find us on the Web at www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2013 by Jason Cranford Teague

Project Editor: Nancy Peterson
Development Editor: Bob Lindstrom
Copyeditors: Liz Merfeld and Darren Meiss
Production Editor: Katerina Malone
Compositor: David Van Ness
Indexer: Jack Lewis
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means—electronic,
mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher. For
information on obtaining permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in preparation of this book, neither the author nor Peachpit shall have any liability to any person
or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Other trademarks are the property of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of the trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout the book are used in an editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN 13:	 978-0-321-88893-8
ISBN10:	 0-321-88893-6

9  8  7  6  5  4  3  2   1

Printed and bound in the United States of America

www.peachpit.com
www.peachpit.com
www.minesf.com

Dedication
For Jocelyn and Dashiel, the two most dynamic forces in my life.

Special Thanks to:
Tara, my soul mate and best critic.

Dad and Nancy who made me who I am.

Uncle Johnny, for his unwavering support.

Pat and Red, my two biggest fans.

Nancy P., who kept the project going.

Bob, Darren, and Liz, who dotted my i’s and made sure that everything
made sense.

Thomas, who was always there when I needed help.

Heather, who gave me a chance when I needed it most.

Judy, Boyd, Dr. G and teachers everywhere who care. Keep up the
good work.

Charles Dodgson (aka Lewis Carroll), for writing Alice’s Adventures in
Wonderland.

John Tenniel & Arthur Rackham, for their incredible illustrations of
Alice’s Adventures in Wonderland.

Douglas Adams, H.P. Lovecraft, Neil Gaiman, Philip K. Dick, and Carl
Sagan whose teachings and writings inspire me every day.

BBC 6 Music, The Craig Charles Funk and Soul Show, Rasputina,
Electric Six, Cake, Client, Jonathan Coulton, Cracker, Nine Inch Nails,
Bitter:Sweet, Metric, Captain Sensible, HIDE, Origa, Richard Hawley,
the Pogues, New Model Army, Cocteau Twins, Dead Can Dance, the
Sisters of Mercy, the Smiths, Mojo Nixon, Bauhaus, Lady Tron, David
Bowie, Bad Religion, The Black Belles, T. Rex, Bad Religion, Dr. Rub-
berfunk, Smoove and Turell, Dury, The Kinks, This Mortal Coil, Rancid,
Monty Python, the Dead Milkmen, New Order, Regina Spektor, The
Sex Pistols, Beethoven, Bach, Brahms, Handel, Mozart, Liszt, Vivaldi,
Holst, Synergy, and Garrison Keillor (for The Writer’s Almanac) whose
noise helped keep me from going insane while writing this book.

Contents at a Glance  v

Contents at a Glance

	 Introduction xiii

Chapter 1	 Understanding CSS3 . 1

Chapter 2	 HTML5 Primer . 17

Chapter 3	 CSS Basics . 35

Chapter 4	 Selective Styling . 69

Chapter 5	 Font Properties . . 123

Chapter 6	 Text Properties . 157

Chapter 7	 Color and Background Properties 183

Chapter 8	 List and Table Properties 219

Chapter 9	 User Interface and Generated
Content Properties 235

Chapter 10	 Box Properties . 247

Chapter 11	 Visual Formatting Properties 283

Chapter 12	 Transformation and Transition Properties 307

Chapter 13	 Essential Design and Interface Techniques 327

Chapter 14	 Responsive Web Design 349

Chapter 15	 CSS Best Practices 375

Appendix A	 CSS Quick Reference 409

Appendix B	 HTML and UTF Character Encoding 423

	 Index . 429

This page intentionally left blank

Table of Contents  vii

Table of Contents

	 Introduction . xiii

Chapter 1	 Understanding CSS3 . 1

What Is a Style? . 2
What Are Cascading Style Sheets? 3
The Evolution of CSS . 6
CSS and HTML . . 8
Types of CSS Rules . 9
The Parts of a CSS Rule 11
CSS Browser Extensions 12
New in CSS3 . 14

Chapter 2	 HTML5 Primer . 17

What Is HTML? . 18
Types of HTML Elements 21
The Evolution of HTML5 24
What’s New in HTML5? . 27
How Does HTML5 Structure Work? 28
Using HTML5 Structure Now 29

Chapter 3	 CSS Basics . 35

The Basic CSS Selectors 36
Inline: Adding Styles to an HTML Tag 37
Embedded: Adding Styles to a Web Page 40
External: Adding Styles to a Web Site 43
(Re)Defining HTML Tags 50
Defining Reusable Classes 53
Defining Unique IDs . 57
Defining Universal Styles 61
Grouping: Defining Elements That Are Using

the Same Styles . 64
Adding Comments to CSS 67

viii  Table of Contents

Chapter 4	 Selective Styling . 69

The Element Family Tree 70
Defining Styles Based on Context 71
★Working with Pseudo-Classes 82
Working with Pseudo-Elements 96
Defining Styles Based on Tag Attributes 100
★Querying the Media 104
Inheriting Properties from a Parent 115
Making a Declaration !important 117
Determining the Cascade Order 119

Chapter 5	 Font Properties . 123

Getting Started . 124
Understanding Typography on the Web 125
Setting a Font-Stack . 130
★Using Web Fonts . 133
Setting the Font Size . 144
★Adjusting Font Size for Understudy Fonts 146
Making Text Italic . 147
Setting Bold, Bolder, Boldest 149
★Using Condensed and Expanded Fonts 150
Creating Small Caps . . 151
Setting Multiple Font Values at the Same Time 152
Putting It All Together 155

Chapter 6	 Text Properties . . 157

Getting Started . 158
Adjusting Text Spacing 159
Setting Text Case . 164
★Adding a Text Drop Shadow 166
★Aligning Text Horizontally 171
Aligning Text Vertically 174
Indenting Paragraphs 176
Controlling White Space 177
Decorating Text . 179
★Coming Soon! . 181
Putting It All Together 182

Table of Contents  ix

Chapter 7	 Color and Background Properties 183

Getting Started . 184
Choosing Color Values 185
★Creating Color Gradients 191
Choosing Your Color Palette 196
Setting Text Color . 202
Setting a Background Color 204
★Setting Background Images 205
Using Background Shorthand to Add

Multiple Background Images and Gradients 212
Putting It All Together 217

Chapter 8	 List and Table Properties 219

Getting Started . 220
Setting the Bullet Style 223
Creating Your Own Bullets 224
Setting Bullet Positions 225
Setting Multiple List Styles 226
Setting the Table Layout 228
Setting the Space Between Table Cells 229
Collapsing Borders Between Table Cells 230
Dealing with Empty Table Cells 232
Setting the Position of a Table Caption 233
Putting It All Together 234

Chapter 9	 User Interface and Generated
Content Properties . 235

Getting Started . 236
Changing the Mouse Pointer Appearance 238
Adding Content Using CSS 240
Teaching the Browser to Count 242
Specifying the Quote Style 244
Putting It All Together 246

Chapter 10	 Box Properties . 247

Understanding an Element’s Box 250
Displaying an Element 252
Setting the Width and Height of an Element 255

x  Table of Contents

★Controlling Overflowing Content 259
Floating Elements in the Window 262
Setting an Element’s Margins 265
Setting an Element’s Outline 268
Setting an Element’s Border 269
★Rounding Border Corners 272
★Setting a Border Image 274
Setting an Element’s Padding 276
★Creating a Multi-Column Text Layout 278
Coming Soon! . 280
Putting It All Together 281

Chapter 11	 Visual Formatting Properties 283

Getting Started . 284
Understanding the Window and Document 286
Setting the Positioning Type 288
Setting an Element’s Position 292
Stacking Objects in 3D 294
Setting the Visibility of an Element 296
Clipping an Element’s Visible Area 298
★Setting an Element’s Opacity 300
★Setting an Element’s

Shadows . 302
Putting It All Together 305

Chapter 12	 Transformation and Transition Properties 307

Getting Started . 308
★Transforming an Element 311
★Adding Transitions Between Element States 320
Putting It All Together 325

Chapter 13	 Essential Design and Interface Techniques 327

Getting Started . 328
Creating Multicolumn Layouts with Float 330
Fixing the Float . 334
Styling Links vs. Navigation 339
Using CSS Sprites . 342
Creating a CSS Drop-Down Menu 345
Putting It All Together 347

Table of Contents  xi

Chapter 14	 Responsive Web Design 349

Getting Started . 350
What Is Responsive Design? 352
Designing with Progressive Enhancements 354
Resetting Browser Default Styles 358
Adjusting CSS for Internet Explorer 363
Adapting to the Environment 366

Chapter 15	 CSS Best Practices . 375

Create Readable Style Sheets 376
Have a Style Sheet Strategy 381
Troubleshoot Your CSS Code 386
View CSS in Firebug or Web Inspector 390
Validate Your CSS Code 395
Minify Your CSS . 396
33 CSS Best Practices 399

Appendix A	 CSS Quick Reference 409

Basic Selectors . 410
Pseudo-Classes . 411
Pseudo-Elements . 411
Font Properties . 412
Text Properties . 413
Color and Background Properties 414
List Properties . 415
Table Properties . 415
User Interface and Generated

Content Properties . 416
Box Properties . 417
Visual Formatting Properties 420
Transform Properties . 421
Transition Properties . 422

Appendix B	 HTML and UTF Character Encoding 423

HTML and UTF Character Encoding 424

	 Index . 429

This page intentionally left blank

Introduction  xiii

Introduction

These days, everyone is a Web designer.
Whether you are adding a comment to a
Facebook page, creating your own blog,
or building a Fortune 50 Web site, you are
involved in Web design.

As the Web expands, everyone from PTA
presidents to presidents of multinational
corporations is using this medium to get
messages out to the world because the
Web is the most effective way to commu-
nicate your message to the people around
you and around the world.

Knowing how to design for the Web isn’t
always about designing complete Web
sites. Many people are creating simple
Web pages for auction sites, their own
photo albums, or their blogs. So, whether
you are planning to redesign your corpo-
rate Web site or place your kid’s gradua-
tion pictures online, learning Cascading
Style Sheets (CSS) is your next step into
the larger world of Web design.

What Is This Book About?
HTML is how Web pages are structured.
CSS is how Web pages are designed. This
book deals primarily with how to use CSS
to add a visual layer to the HTML structure
of your Web pages.

CSS is a style sheet language; that is, it
is not a programming language. Instead,
it’s code that tells a device (usually a Web
browser) how the content in a file should
be displayed. CSS is meant to be easily
understood by anyone, not just “computer
people.” Its syntax is straightforward, basi-
cally consisting of rules that tell an element
on the screen how it should appear.

This book also includes the most recent
additions to the CSS language, commonly
referred to as CSS3 (or CSS Level 3). CSS3
builds on and extends the previous version
of CSS. For the time being, it’s important to
understand what is new in CSS3 because
some browsers (most notably Internet
Explorer) have incomplete support or no
support for these new features.

xiv  Introduction

CSS3 Visual QuickStart Guide has three
parts:

n	 CSS Introduction and Syntax (Chapters
1–4)—This section lays the foundation
you require to understand how to
assemble basic style sheets and apply
them to a Web page. It also gives you
a crash course in HTML5.

n	 CSS Properties (Chapters 5–12)—This
section contains all the styles and val-
ues that can be applied to the elements
that make up your Web pages.

n	 Working with CSS (Chapters 13–15)—
This section gives advice and explains
best practices for creating Web pages
and Web sites using CSS.

Who is this book for?
To understand this book, you need to be
familiar with HTML (Hypertext Markup Lan-
guage). You don’t have to be an expert, but
you should know the difference between a
<p> element and a
 tag. That said, the
more knowledge of HTML you bring to this
book, the more you’ll get out of it.

Chapter 2 deals briefly with HTML5, bring-
ing you up to date on the latest changes.
If you are already familiar with HTML, this
chapter has everything you will need to
get going.

What tools do you need
for this book?
The great thing about CSS is that, like
HTML, it doesn’t require any special or
expensive software. Its code is just text,
and you can edit it with programs as
simple as TextEdit (Mac OS) or Notepad
(Windows).

Introduction  xv

Why Standards (Still) Matter
The idea of a standard way to communicate over the Internet was the principle behind the creation
of the World Wide Web: You should be able to transmit information to any computer anywhere in
the world and display it in the way the author intended. In the beginning, only one form of HTML
existed, and everyone on the Web used it. This situation didn’t present any real problem because
almost everyone used Mosaic, the first popular graphics-based browser, and Mosaic was the stan-
dard. That, as they say, was then.

Along came Netscape Navigator and the first HTML extensions were born. These extensions
worked only in Netscape, however, and anyone who didn’t use that browser was out of luck.
Although the Netscape extensions defied the standards of the World Wide Web Consortium
(W3C), most of them—or at least some version of them—eventually became part of those very
standards. According to some people, the Web has gone downhill ever since.

The Web is a very public form of discourse, the likes of which has not existed since people lived in
villages and sat around the campfire telling stories every night. The problem is that without stan-
dards, not everyone in the global village can make it to the Web campfire. You can use as many
bleeding-edge techniques as you like. You can include Flash, JavaScript, QuickTime video, Ajax,
HTML5, or CSS3, but if only a fraction of browsers can see your work, you’re keeping a lot of fellow
villagers out in the cold.

When coding for this book, I spent 35 to 45 percent of my time trying to get the code to run as
smoothly as possible in Internet Explorer, Firefox (and related Mozilla browsers), Opera, Safari, and
Chrome. This timeframe holds true for most of my Web projects; much of the coding time is spent on
cross-browser inconsistencies. If the browsers stuck to the standards, this time would be reduced to
almost nothing. Your safest bet as a designer, then, is to know the standards of the Web, try to use
them as much as possible, and demand that the browser manufacturers use them as well.

xvi  Introduction

Values and Units
Used in This Book
Throughout this book, you’ll need to enter
various values to define properties. These
values take various forms, depending on
the needs of the property. Some values are
straightforward—a number is a number—
but others have special units associated
with them.

Values in angle brackets (< >) represent
one type of value (Table i.1) that you will
need to choose, such as <length> (a length
value like 12px) or <color> (a color value).
Words that appear in code font are literal
values and should be typed exactly as
shown, such as normal, italic, or bold.

Length values
Length values come in two varieties:

n	 Relative values, which vary depending
on the computer being used (Table i.2).

n	 Absolute values, which remain constant
regardless of the hardware and soft-
ware being used (Table i.3).

I generally recommend using ems to
describe font sizes for the greatest stability
between operating systems and browsers.

Table i.1  Value Types

Value Type What It Is Example

<number> A number 1, 2, 3

<length> A measurement
of distance or
size

1in

<color> A chromatic
expression

red

<percentage> A proportion 35%

<URL> The absolute
or relative path
to a file on the
Internet

http://www.
mySite.net/
images/01.jpg

Table i.2  Relative Length Values

Unit Name What It Is Example

em Em Relative to the
current font
size (similar to
percentage)

3em

ex x-height Relative to the
height of lowercase
letters in the font

5ex

px Pixel Relative to the
monitor’s resolution

125px

Table i.3  Absolute Length Values

Unit Name What It Is Example

pt Point 72pt = 1inch 12pt

pc Picas 1pc = 12pt 3pc

mm Millimeters 1mm = .24pc 25mm

cm Centimeters 1cm = 10mm 5.1cm

in Inches 1in = 2.54cm 8.25in

http://www.mySite.net/images/01.jpg
http://www.mySite.net/images/01.jpg
http://www.mySite.net/images/01.jpg

Introduction  xvii

Color values
You can describe color on the screen in a
variety of ways, but most of these descrip-
tions are just different ways of telling the
computer how much red, green, and blue
are in a particular color.

Chapter 7 provides an extensive explana-
tion of color values.

Percentages
Many of the properties in this book have a
percentage as their values. The behavior
of each percentage value depends on the
property in use.

URLs
A Uniform Resource Locator (URL) is the
unique address of something on the Web.
This resource could be an HTML docu-
ment, a graphic, a CSS file, a JavaScript
file, a sound or video file, a CGI script, or
any of a variety of other file types. URLs
can be local—describing the location of
the resource relative to the current docu-
ment—or global—describing the absolute
location of the resource on the Web and
beginning with http://.

xviii  Introduction

Reading This Book
For the most part, the text, tables, figures,
code, and examples should be self-explan-
atory. But you need to know a few things in
advance to understand this book.

CSS value tables
Each section that explains a CSS property
includes a quick-reference table of the
values that the property can use, as well
as the browsers compatible with those
values A. Table i.4 lists the browser icons
and abbreviations used in this book.

Table i.4  Browser Abbreviations

Icon Abbreviation Browser

IE Microsoft Internet
Explorer

FF Mozilla Firefox

Op Opera

Sa Apple Safari

Ch Google Chrome

Text-Overflow Values

Value

clip ♦ ●9 ● ● ♦

ellipsis ♦ ● ● ● ♦

inherit ♦ ● ● ♦

A The property tables show you the values available with a property, the earliest browser version in
which the value is available, and with which version of CSS the value was introduced.

A blank entry indicates no support.

If a number is added, indicates
support is recent since that version.

A circle indicates browser support.

Values supported
by this property.

A diamond indicates support
with browser extension
(-moz-, -webkit-, -o-, or -e-).

Introduction  xix

The Code
For clarity and precision, this book uses
several layout techniques to help you see
the difference between the text of the
book and the code.

Code looks like this:

<style type="text/css">

p { font-size: 12pt; }

</style>

All code in this book is presented in
lowercase. In addition, quotes in the code
always appear as straight quotes (" or '),
not curly quotes (“ or ’). There is a good
reason for this distinction. Curly quotes
(also called smart quotes) will cause the
code to fail.

When you type a line of code, the com-
puter can run the line as long as needed;
but in this book, lines of code have to
be broken to make them fit on the page.
When that happens, you’ll see a gray
arrow ➝ , indicating that the line of code
is continued from above, like this:

.title { font: bold 28pt/26pt times,
➝ serif; color: #FFF; background
➝ color: #000; background-image:
➝ url(bg_title.gif); }

A numbered step often includes a line of
code in red from the main code block:

p { color: red; }

This is a reference to help you pinpoint
where that step applies in the larger code
block that accompanies the task. This code
will be highlighted in red in the code listing
to help you more easily identify it.

xx  Introduction

Web Site for This Book
I hope you’ll be using a lot of the code from
this book in your Web pages, and you are
free to use any code in this book without
asking my permission (although a men-
tion of the book is always appreciated).
However, be careful—retyping information
can lead to errors. Some books include a
CD-ROM containing all the code from the
book, and you can copy it from that disc.
But guess who pays for that CD? You do.
And CDs aren’t cheap.

But if you bought this book, you already
have access to the largest resource of
knowledge that ever existed: the Web. And
that’s exactly where you can find the code
from this book.

My support site for this Visual QuickStart
Guide is at www.jasonspeaking.com/
css3vqs.

This site includes all the code you see in
the book, as well as quick-reference charts.
You can download the code and any
important updates and corrections from
this site.

www.jasonspeaking.com/css3vqs
www.jasonspeaking.com/css3vqs

4
Selective Styling

In This Chapter
The Element Family Tree	 70

Defining Styles Based on Context	 71

★Working with Pseudo-Classes	 82

Working with Pseudo-Elements	 96

Defining Styles Based on Tag Attributes	 100

★Querying the Media	 104

Inheriting Properties from a Parent	 115

Making a Declaration !important	 117

Determining the Cascade Order	 119

It’s not enough to style a Web page ele-
ment. The art of CSS—and thus the art of
Web design—is the ability to style elements
based on their context. You must consider
where an element is in the document;
which elements surround it; its attributes,
content, and dynamic state; and even the
platform displaying the element (screen,
handheld device, TV, and so on).

Selective styling is the closest that CSS
gets to traditional computer programming,
allowing you to style elements if they meet
certain criteria. This level of styling can get
increasingly complex, so it’s important, at
least in this chapter, to start out as simply
as possible and build a firm foundation of
understanding.

70  Chapter 4

The Element
Family Tree
When a tag is surrounded by another tag—
one inside another—the tags are nested.

<h2>Chapter 2 The
➝ Pool of Tears<h2>

In a nested set, the outer element in this
example (<h2>) is called the parent, and
the inner element () is the child.
The child tag and any children of that child
tag are the parents’ descendents. Two
tags in the same parent are called siblings,
and two tags immediately next to each
other are adjacent siblings A.

n	 Parent elements contain other ele-
ments (children). Child elements will
often inherit styles from a parent
element.

n	 Descendent elements are any elements
within another element.

n	 Child elements are first-generation
descendent elements in relation to the
parent. Second generation and higher
elements are sometimes referred to as
grandchildren.

n	 Adjacent or preceding sibling elements
are child elements of the same genera-
tion that are immediately next to each
other in the HTML code.

In Chapter 3, you learned ways to specify
the styles of an individual element regard-
less of where it is placed in the HTML
code. However, CSS also lets you specify
the element’s style depending on its con-
text. Using contextual selectors, you can
specify styles based on a tag’s relationship
to other tags, classes, or IDs on the page.

A The article element is the parent to the
elements created by the paragraph, strong, and
emphasis tags, which are its descendents. Only
the paragraph tag is a direct child. The elements
created by the emphasis and strong tags are
the children of the paragraph tag, and each
other’s siblings.

Parent

Preceding sibling Adjacent sibling

Descendent child

Selective Styling  71

Defining Styles
Based on Context
Contextual styles allow you to specify how
a particular element should appear based
on its parents and siblings. For example,
you may want an emphasis tag to appear
one way when it’s in the main header of
the page and differently when it appears in
the sub-header. You may want still another
appearance in a paragraph of text. These
combinatory selectors (Table 4.1) are
among the most used and useful in CSS.

Styling descendents
You can style individual descendent ele-
ments depending on their parent selector
or selectors in a space-separated list. The
last selector will receive the style if and
only if it is the descendent of the preceding
selectors A.

When you want to indicate that the exact
selector does not matter at any given
level, you can use the universal selector (*)
described in Chapter 3 B.

A The general syntax for the descendent selector.

Declaration list

Space-separated list of selectors

Table 4.1  Combinatory Selectors

Format Selector Name Elements Are Styled If…

a b c Descendent c descendent of b descendent of a ● ● ● ● ●

a * b Universal b within a regardless of b’s parents ● ● ● ● ●

a > b Direct child b direct child of a ● ● ● ● ●

a + b Adjacent sibling sibling b immediately after a ● ● ● ● ●

a ~ b General sibling sibling b anywhere after a ● ● ● ● ●

B The general syntax for the descendent selector
using the universal selector.

Universal selector

Space-separated
list of selectors

Declaration list

72  Chapter 4

To style descendent elements:
1.	 Set up a list of descendent selectors.

Type the HTML selector of the parent
tag, followed by a space, and then the
final child or another parent (Code 4.1).

article.chaptertext p strong em
➝ {...}

You can type as many HTML selectors
as you want for as many parents as the
nested tag will have, but the last selec-
tor in the list is the one that receives
all the styles in the rule.

2.	 Styles will be used only if the pattern is
matched.

<article class="chaptertext"><p>
➝ ...
➝ </p></article>

The style will be applied if and only if the
final selector occurs as a descendent
nested within the previous selectors. So,
in this example, the emphasis tag (em) is
styled only if it is in a paragraph (strong)
that is within a paragraph tag (p), that
is in an article tag using the class
chaptertext (article.chaptertext).

The emphasis tag would not be styled
by the code in Step 1 in the following
case, because it is not in a strong tag:

<article class="chaptertext"><p>
➝ ...</p></article>

And emphasis will not be styled by the
code in Step 1 in the following case
because the article tag does not have
the chaptertext class:

<article><p>...
➝ </p></article>

It is important to note, though, that
although the selectors do not style the
emphasis tag in these last two cases,
it does not mean that styles from other
declarations will not do so.

Selective Styling  73

Code 4.1  The style is set for the emphasis tag if its parents are the h1 tag and the article tag using the
copy class C.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.chaptertext p strong em {
 color: red;
 font-weight: normal;
 font-size: 2em;
 font-style: normal; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank,	
➝ and of having nothing to do: once or twice she had peeped into the 	
➝ book her sister was reading, but it had no pictures or conversations in it, <q>and 	
➝ what is the use of a book,</q> thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

C The results of Code 4.1. The only text that
meets the selective criteria is in red, which is only
the emphasis tag in the h1, in this example.

74  Chapter 4

To style descendents universally:
1.	 Set up a list of descendent selectors

including a universal selector. Type the
HTML selector of the parent tag, fol-
lowed by a space, and then an asterisk
(*) or other selectors (Code 4.2).

article.chaptertext p * em {...}

2.	 Styles will be used only if the pattern is
matched. Generally, the universal selec-
tor is used at the end of a list of selec-
tors so that the style is applied explicitly
to all of a parent’s direct descendents
(children). However, the styles will not
be directly applied to those children’s
descendents.

In this example, the style is applied to
the emphasis tag inside any parent
tag (such as strong) in a paragraph,
such as:

<article class="chaptertext"><p>
➝ ...
➝ </p></article>

Or:

<article class="chaptertext"><p>
➝ <q>...</q></p></article>

However, an emphasis tag that is not in
another tag in the paragraph will not be
styled.

<article class="chaptertext"><p>
➝ ...</p></article>

  Like grouped selectors, contextual selec-
tors can include class selectors (dependent
or independent), ID selectors in the list, and
HTML selectors.

Selective Styling  75

Code 4.2  The style is set for the emphasis tag with any parent that’s in an article tag using the copy class D.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.chaptertext p * em {
 border: 1px double red;
 font-size: 2em;
 font-weight: normal; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank,	
➝ and of having nothing to do: once or twice she had peeped into the 	
➝ book her sister was reading, but it had no pictures or conversations in it, <q>and 	
➝ what is the use of a book,</q> thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

D The results of Code 4.2. The text in red
matches the selective criteria with the universal
selector. In this case, all emphasis tags match.

76  Chapter 4

Styling only the children
If you want to style only a parent’s child
elements (not a grandchild descendent),
you must specify the parent selector and
child selector, separated by a right angle
bracket (>) E.

To define child selectors:
1.	 Set up a list of direct child selectors.

Type the selector for the parent ele-
ment (HTML, class, or ID), followed by
a right angle bracket (>) and the child
selector (HTML, class, or ID).

article.chaptertext > p > em {...}

You can repeat this as many times as
you want with the final selector being
the target to which you apply the styles
(Code 4.3). You can have one space
between the selector and the greater-
than sign or no spaces.

2.	 Styles are used only if the pattern is
matched.

<article class="chaptertext"><p>
➝ ...</p></article>

The styles from Step 1 are applied if and
only if the final selector is an immediate
child element nested in the preced-
ing element. Placing the tag within any
other HTML tags will disrupt the pattern.
In this example, the emphasis tag (em)
is styled only if it is in a paragraph (p)
within an article (article).

However, any emphasis tag that is in
another tag will not be styled:

<article class="chaptertext"><p>
➝ <q>...</q><p></article>

E The general syntax of the direct child selector.

Declaration listGreater-than sign

Selectors

Selective Styling  77

Code 4.3  The style is applied to the emphasis tag only if it is a child of a paragraph that is in turn the child of
an article tag using the copy class F.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.chaptertext > p > em {
 color: silver;
 background: red;
 font-size: 2em;
 font-weight: normal; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank,	
➝ and of having nothing to do: once or twice she had peeped into the 	
➝ book her sister was reading, but it had no pictures or conversations in it, <q>and 	
➝ what is the use of a book,</q> thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

F The results of Code 4.3. The text in red
matches the direct child criteria. In this case the
emphasis tags match within the paragraphs but
not within the headers.

78  Chapter 4

Styling siblings
Siblings are elements that have the same
parent. You can style a sibling that is imme-
diately adjacent to another G or occurs
anywhere after that sibling H.

To define adjacent sibling selectors:
1.	 Set up a list of adjacent sibling selec-

tors. Type the selector for the first
element (HTML, class, or ID), a plus sign
(+), and then the selector (HTML, class,
or ID) for the adjacent element to which
you want the style applied (Code 4.4).

strong + em {...}

2.	 Styles will be used only if the pattern is
matched.

.........

The styles will be applied to any sibling
that occurs immediately after the pre-
ceding selector with no other selec-
tors in the way. Placing any element
between them (even a break tag) will
disrupt the pattern. The following pat-
tern will not work:

......<q>...</q>...
➝ ...

G The general syntax for the adjacent sibling
selector.

Declaration listPlus sign

Selectors

H The general syntax for the general sibling
selector.

Declaration listTilde

Selectors

Selective Styling  79

Code 4.4  The style is applied to the emphasis tag only if it is in a paragraph that is immediately after another
paragraph I.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 strong + em {
 color: red;
 background: silver;
 font-size: 2em; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank,	
➝ and of having nothing to do: once or twice she had peeped into the 	
➝ book her sister was reading, but it had no pictures or conversations in it, <q>and 	
➝ what is the use of a book,</q> thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

I The results of Code 4.4. The text in red
matches the adjacent sibling criteria—the emphasis
tags within the second and third paragraphs in this
case—but does not match the fourth paragraph
because a block quote is in the way.

80  Chapter 4

To define general sibling selectors:
1.	 Set up a list of general sibling selec-

tors. Type the selector for the first
sibling element (HTML, class, or ID), a
tilde sign (~), and then another selector
(HTML, class, or ID) (Code 4.5).

strong ~ em {...}

You can repeat this as many times as
necessary, but the last selector in the
list is the one you are targeting to be
styled.

2.	 Styles are used only if the pattern is
matched.

.........
➝...<q>...</q>......

The styles are applied to any sib-
lings that occur after the first sibling
selector, not just the first one. Unlike
the adjacent sibling, this is true even
when other types of tags are located
in between. In the case above, this
includes both the second and third
strong tags

  Although the universal selector shown
in this section is used with the combinatory
selectors, it can be used with any selector
type. Table 4.2 shows how you can apply it.

Table 4.2  Universal Selector Examples

Format Elements Are Styled If…

a * b b within a regardless of b’s
parents

a > * > b b is the direct child of any
element that is the direct child
of a

a + * + b sibling b immediately after any
element that is immediately
after a

*:hover mouse pointer over any element

*:disabled any element that is disabled

*:first-child first child of any element

*:lang() any element using specified
language code

*:not(s) any element that is not the using
indicated selectors

*::first-letter any element’s first letter

Selective Styling  81

Code 4.5  The style is applied to the emphasis tag if it is in a paragraph with any preceding sibling that is a
paragraph J.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 strong ~ em {
 color: red;
 background: gray;
 font-size: 2em; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank,	
➝ and of having nothing to do: once or twice she had peeped into the 	
➝ book her sister was reading, but it had no pictures or conversations in it, <q>and 	
➝ what is the use of a book,</q> thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

J The results of Code 4.5. The text in red
matches the general sibling criteria—in this case
the emphasis tags within the second, third, and
fourth paragraphs.

82  Chapter 4

★Working with
Pseudo-Classes
Many HTML elements have special states
or uses associated with them that can be
styled independently. One prime example
of this is the link tag, <a>, which has link
(its normal state), a visited state (when the
visitor has already been to the page repre-
sented by the link), hover (when the visitor
has the mouse over the link), and active
(when the visitor clicks the link). All four of
these states can be styled separately.

A pseudo-class is a predefined state
or use of an element that can be styled
independently of the default state of the
element A.

n	 Links (Table 4.3)—Pseudo-classes are
used to style not only the initial appear-
ance of the anchor tag, but also how it
appears after it has been visited, while
the visitor hovers the mouse over it, and
when visitors are clicking it.

n	 Dynamic (Table 4.3)—Pseudo-classes
can be applied to any element to define
how it is styled when the user hovers
over it, clicks it, or selects it.

n	 Structural (Table 4.4)—Pseudo-classes
are similar to the sibling combinatory
selectors but allow you to specifically
style elements based on an exact or
computed numeric position.

n	 Other (Table 4.4)—Pseudo-classes are
available to style elements based on
language or based on what tag they
are not.

A General syntax of a pseudo-class.

Declaration listColon

Selector

Selective Styling  83

Table 4.3  Link and Dynamic Pseudo-Classes

Format Selector Name Elements Are Styled If…

:link Link the value of href is not in history ● ● ● ● ●

:visited Visited link the value of href is in history ● ● ● ● ●

:target Targeted link a targeted anchor link ● ● ● ● ●

:active Active the element is clicked ● ● ● ● ●

:hover Hover the pointer is over the element ● ● ● ● ●

:focus Focus the element has screen focus ● ● ● ● ●

Table 4.4  Structural/Other Pseudo-Classes

Format Selector Name Elements Are Styled If…

:root Root is the top level element in a document ●9 ● ● ● ●

:empty Empty has no children ●9 ● ● ● ●

:only-child Only child has no siblings ●9 ● ● ● ●

:only-of-type Only of type has its unique selector among its
siblings

●9 ● ● ● ●

:first-child First-child is the first child of another element ●9 ● ● ● ●

:nth-of-type(n) Nth of type is the nth element with that selector ●9 ● ● ● ●

:nth-last-of-type(n) Nth from last of
type

is the nth element with that selector
from the last element with that selector

●9 ● ● ● ●

:last-child Last child is the last child in the parent element ●9 ● ● ● ●

:first-of-type First of type is the first of its selector type in the
parent element

●9 ● ● ● ●

:last-of-type Last of type is the last of its selector type in the
parent element

●9 ● ● ● ●

:lang() Language has a specified language code defined ●8 ● ● ● ●

:not(s) Negation is not using specific selectors ●9 ● ● ● ●

84  Chapter 4

Styling links
Although a link is a tag, its individual states
are not. To set properties for these states,
you must use the pseudo-classes associ-
ated with each state that a link can have (in
this order):

n	 :link lets you declare the appearance
of hypertext links that have not yet
been selected.

n	 :visited lets you set the appearance
of links that the visitor selected previ-
ously—that is, the URL of the href
attribute in the tag that is part of the
browser’s history.

n	 :hover lets you set the appearance of
the element when the visitor’s pointer is
over it.

n	 :active sets the style of the element
when it is clicked or selected by the
visitor.

For ideas on which styles to use with links,
see the sidebar “Picking Link Styles.”

To set contrasting link appearances:
1.	 Style the anchor tag.

a {...}

Although not required, it’s best to
first define the general anchor style
(Code 4.6). This differs from setting
the :link pseudo-class in that these
styles are applied to all the link pseudo-
classes. So, you want to declare any
styles that will remain constant or are
changed in only one of the states.

continues on page 86

B The results of Code 4.6 show the links styled
for each state to help the user understand what’s
going on.

Link
Visited
Hover
Active

Selective Styling  85

Code 4.6  The link styles are set for the default and then all four link states, creating color differentiation B.
Notice also that I’ve turned off underlining with text decoration but added an underline effect using
border bottom.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 a {
 text-decoration: none;
 font-size: 2em; }
 a:link {
 color: darkred;
 border-bottom: 1px solid red; }
 a:visited {
 color: darkred;
 border-bottom: 1px dashed red; }
 a:hover {
 color: red;
 border-bottom: 1px solid pink; }
 a:active {
 color: pink;
 border-bottom: 1px solid pink; }
</style>
</head>
<body>
<nav>
<h2>TOC:</h2>

Down the Rabbit-hole
The Pool of Tears
A Caucus-race and a Long Tale
The Rabbit sends in a Little Bill
Advice from a Caterpillar
Pig and Pepper
A Mad Tea-party
The Queen's Croquet-ground
The Mock Turtle's Story
The Lobster Quadrille
Who Stole the Tarts?
Alice’s Evidence

</nav>
</body>
</html>

86  Chapter 4

2.	 Style the default link state. Type the
selector (anchor tag, class, or ID) of the
element you want to style, followed by
a colon (:), and then link.

a:link {...}

You can override styles set for the
anchor tag, but this rule should
always come before the :visited
pseudo-class.

3.	 Style the visited link style. Type the
selector (anchor, class, or ID) of the ele-
ment you want to style, followed by a
colon (:), and then visited.

a:visited {...}

4.	 Style the hover link state. Type the
selector (anchor, class, or ID) of the ele-
ment you want to style, followed by a
colon (:), and then hover.

a:hover {...}

5.	 Style the active link state. Type the
selector (anchor, class, or ID) of the ele-
ment you want to style, followed by a
colon (:), and then active.

a:active {...}

6.	 Style is applied to the link state as
needed.

...

All links on the page will obey the
rules you lay down here when styling
the various link states. You can—and
should—use selective styling to differ-
entiate link types.

In this example, the pseudo-classes are
applied directly to the anchor tag, but
any class or ID could have been used
as long as it was then applied to an
anchor tag.

Picking Link Styles
Most browsers default to blue for unvis-
ited links and red or purple for visited
links. The problem with using two differ-
ent colors for visited and unvisited links
is that visitors may not remember which
color applies to which type of link. The
colors you choose must distinguish links
from other text on the screen and dis-
tinguish among the states (link, visited,
hover, and active) without dominating the
screen and becoming distracting.

I recommend using a color for unvisited
links that contrasts with both the page’s
background color and the text color.
Then, for visited links, use a darker or
lighter version of the same color that
contrasts with the background but is dim-
mer than the unvisited link color. Brighter
not-followed links will then stand out
dramatically from the dimmer followed
links.

For example, on a page with a white
background and black text, I might use
bright red for links (rgb(255,0,0)) and
pale red (rgb(255,153,153)) for visited
links. The brighter version stands out; the
paler version is less distinctive, but still
obviously a link.

Selective Styling  87

  You can apply the dynamic pseudo-
classes :hover,:active, and :focus to any
element, not just links.

  The general anchor link styles will be
inherited by the different states and between
states. The font you set for the :link appear-
ance, for example, will be inherited by the
:active, :visited, and :hover states.

  The Web is a hypertext medium, so it
is important that users be able to distinguish
among text, links, and visited links. Because
users don’t always have their Underline Links
option turned on, it’s a good idea to set the
link appearance for every document.

  If you use too many colors, your visitors
may not be able to tell which words are links
and which are not.

  The link styles are set for the entire page
in this example, but links can be used for a
variety of purposes. For example, links might
be used for global navigation, in a list of article
titles, or even as a dynamic control. To that
end, it’s a good idea to style links depending
on their usage:

nav a {...}
nav a:link {...}
nav a:visited {...}

  The preceding styles would be applied
only to links in the navigation element.

88  Chapter 4

Styling for interaction
Once loaded, Web pages are far from
static. Users will start interacting with the
page right away, moving their pointers
across the screen and clicking hither and
yon. The dynamic pseudo-classes allow
you to style elements as the user interacts
with them, providing visual feedback:

n	 :hover—Same as for links, but sets the
appearance of the element when the
pointer is hovering over it.

n	 :focus—Applied to elements that can
receive focus, such as form text fields.

n	 :active—Same as for links, but sets the
style of the element when it is clicked
or selected.

To define a dynamic pseudo-class:
1.	 Style the default element.

input {...}

Although optional, it’s generally a good
idea to set the default, non-dynamic
style for the elements receiving
dynamic styles (Code 4.7).

2.	 Style the hover state of the element.
Type the selector (HTML, class, or ID), a
colon (:), and then hover.

input:hover {...}

As soon as the pointer enters the ele-
ment’s box (see Chapter 10 for details
about the box model), the style change
will occur.

Code 4.7  The input elements, with a special style
for the button type, are set to change style when
the user interacts with them by hovering, selecting
(focus), or clicking (active) C.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in
Wonderland</title>
<style type="text/css" media="all">
 input {
 border: 3px solid gray;
 background-color: silver;
 color: gray;
 padding: 0 5px;
 font-size: 1.5em; }
 input[type="button"] {
 border-radius: 1em;
 color: silver;
 background-color: gray; }
 input:hover {
 background-color: white;
 border-color: pink;
 color: silver; }
 input:focus {
 border-color: red;
 background-color: white;
 color: black;
 outline: none; }
 input:active {
 color: red;
 border-color: pink;
 background-color: silver; }
</style>
</head>
<body>
<footer>
 <label>Mailing List:</label>
 �<input type="text" value="email" 	

➝ placeholder="enter your eMail">
 �<input type="button" class="active" 	

➝ value="submit">
</footer>
</body>
</html>

Selective Styling  89

3.	 Style the focus state of the element.
Type the selector (HTML, class, or ID), a
colon (:), and then focus.

input:focus {...}

As soon as the element receives focus
(is clicked or tabbed to), the style
change occurs and then reverts to the
hover or default style when the element
loses focus (called blur).

4.	 Style the active state of the element.
Type the selector (HTML, class, or ID), a
colon (:), and then active.

input:active {...}

As soon as the user clicks within the
element’s box (explained in Chapter 10),
the style change will occur and then
revert to either the hover or default
style when released.

5.	 The styles are applied to the elements’
states as necessary in reaction to the
user.

<input type="button" value=
➝"Submit">

All the tags using the specific selector
will have their states styled.

  The order in which you define your
link and dynamic pseudo-classes makes a
difference. For example, placing the :hover
pseudo-class before the :visited pseudo-
class keeps :hover from working after a link
has been visited. For best results, define your
styles in this order: link, visited, hover, focus,
and active.

  One way to remember the pseudo-
element order is the meme LoVe HAte: Link
Visited Hover Active.

  You will want to always set :focus if
you’re setting :hover. Why? Hover is applied
only to non-keyboard (mouse) interactions
with the element. For keyboard-only Web
users, :focus will apply.

C The results of Code 4.7. This shows a simple
form field in the four dynamic states. Providing
this visual feedback can help users know which
form field is ready for use or that they have clicked
a button.

Default

Hover

Active

Focus

  I recommend caution when chang-
ing some attributes for :hover. Changing
typeface, font size, weight, and other proper-
ties may make the text grow larger or smaller
than the space reserved for it in the layout
and force the whole page to reflow its content,
which can really annoy visitors.

  In this example, input is used to show
the dynamic states. The input has one styling
drawback in that all input types use the same
tag. Later in this chapter, you will see how
to use tag attributes to set styles, which will
allow you to set different styles for text fields
and buttons.

90  Chapter 4

★Styling specific children
with pseudo-classes
Designers often want to apply a style to an
element that is the first element to appear
within another element, such as a parent’s
first child.

The first-child pseudo-element has been
available since CSS2; however, CSS3
offers an assortment of new structural
pseudo-elements for styling an element’s
child element exactly (Table 4.4):

n	 :first-child—Sets the appearance of
the first instance of a selector type if it
is the first child of its parent.

n	 :first-of-type—Sets the appearance
of an element the first time its selector
type appears within the parent.

n	 :nth-child(#)—Sets the appearance of
the specific occurrence of the specified
child element. For example, the third
child element of a paragraph would be
p:nth-child(3).

n	 :nth-of-type(#)—Sets the appearance
of the specific occurrence of a selector
type within the parent. For example,
the seventh paragraph would be
p:nth-of-type(7).

n	 :nth-last-of-type(#)—Sets the
appearance of the specific occurrence
of a selector type within the parent, but
from the bottom. For example, the third
paragraph from the bottom would be
p:nth-last-of-type(3).

n	 :last-child—Sets the appearance of
the element of the indicated selector
type if it is the last child of the parent.

n	 :last-of-type—Sets the appearance
of the last instance of a particular selec-
tor type within its parent.

Text Decoration:
To Underline or Not
Underlining is the standard way of indi-
cating a hypertext link on the Web. How-
ever, the presence of many underlined
links turns a page into an impenetrable
mass of lines, and the text becomes dif-
ficult to read. In addition, if visitors have
underlining turned off, they cannot see
the links, especially if the link and text
colors are the same.

CSS allows you to turn off underlining for
links, overriding the visitor’s preference.
I recommend this practice and prefer to
rely on clear color choices to highlight
hypertext links or to rely on the alterna-
tive underlining method of border-bot-
tom, which allows you better control over
the style of the underline. See Chapter 14
for more information.

Selective Styling  91

To style the children of an element:
1.	 Style the children based on their posi-

tions in the parent. Type the selector
(HTML, class, or ID) of the element you
want to style, a colon (:), and one of
the structural pseudo-elements from
Table 4.4 (Code 4.8).

li:first-child {...}

li:first-of-type {...}

li:nth-of-type(3) {...}

li:nth-last-of-type(2) {...}

li:last-child {...}

li:last-of-type {...}

2.	 Elements will be styled if they match
the pattern.

...

Set up your HTML with the selectors
from Step 1 in mind.

Code 4.8  The list has styles set based on the
location within the list D.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in
Wonderland</title>
<style type="text/css" media="all">
 li {
 font-size: 1.5em;
 margin: .25em; }
 li:first-child { color: red; }
 �li:first-of-type { border-bottom: 1px 	

➝ solid orange; }
 li:nth-child(2) { color: yellow; }
 li:nth-of-type(6) { color: green; }
 �li:nth-last-of-type(2) { color: blue; }
 �li:last-of-type { border-bottom: 1px 	

➝ solid indigo; }
 li:last-child { color: violet; }
</style>
</head>
<body>
<nav>

 Down the Rabbit-hole
 The Pool of Tears
 A Caucus-race and a Long Tale
 �The Rabbit sends in a Little Bill	

➝
 Advice from a Caterpillar
 Pig and Pepper
 The Queen's Croquet-ground
 The Mock Turtle's Story
 The Lobster Quadrille
 Who Stole the Tarts?
 Alice’s Evidence

</nav>
</body>
</html>

D The results of Code 4.8 show the items in the
list styled separately. In this case, the first child
and first of type are the same element as the last
element and last of type.

92  Chapter 4

Styling for a particular language
The World Wide Web is just that—all
around the world—which means that
anyone, anywhere can see your pages. It
also means that Web pages are created in
many languages.

The :lang() pseudo-class lets you specify
styles that depend on the language speci-
fied by the language property.

To set a style for a specific language:
1.	 Style an element based on its language

code. Type the selector (HTML, class,
or ID) of the element you want to style,
a colon (:), lang, and enter the letter
code for the language you are defining
within parentheses (Code 4.9).

p:lang(fr) {...}

2.	 The element is styled if it has a match-
ing language code. Set up your tag in
the HTML with the language attributes
as necessary.

<p lang="fr">...</p>

If the indicated selector has its lan-
guage attribute equal to the same value
that you indicated in parentheses in
Step 1, the style is applied.

You can use any string as the language
letter code, as long as it matches the
value in the HTML. However, the W3C
recommends using the codes from
RFC 3066 or its successor. For more
on language tags, visit www.w3.org/
International/articles/language-tags.

  Language styles can go far beyond
simple colors and fonts. Many languages have
specific symbols for quotes and punctuation,
which CSS can add. In Chapter 9, you will
find information on how to style quotes for a
particular language.

www.w3.org/International/articles/language-tags
www.w3.org/International/articles/language-tags

Selective Styling  93

Code 4.9  Styles are set to turn paragraphs red if they are in French (fr) E.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 q:lang(fr) {
 quotes: '«''»';
 color: red; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank, and of having 	
➝ nothing to do: once or twice she had peeped into the book her sister was reading, but it had no 	
➝ pictures or conversations in it, <q>and what is the use of a book,</q> thought Alice, <q>without 	
➝ pictures or conversations?</q></p>
<p class="translation" lang="fr">Alice commençait à être très fatigué d'être assis par sa sœur sur 	
➝ la rive, et de n'avoir rien à faire: une fois ou deux, elle avait regarda dans le livre de sa sœur 	
➝ lisait, mais il n'avait pas d'images ni dialogues en elle, <q>et ce qui est l'utilisation d'un 	
➝ livre,</q> pensait Alice, <q>sans images ni dialogues?</q></p>
</article>
</body>
</html>

E The results of Code 4.9 show the paragraph
in French rendered in red (with my apologies to
French speakers).

94  Chapter 4

★Not styling an element
So far you’ve looked at ways to style a tag
if it is something. The negation selector,
:not, allows you to not style something for
a particular selector.

To not set a style for a
particular element:
1.	 Style elements to exclude certain

selectors. Type the selector (HTML,
class, or ID) of the element you want
to style, a colon (:), not, and enter the
selectors you want excluded from this
rule in parentheses (Code 4.10).

p:not(.dialog) {...}

2.	 The element is not styled if it contains
the indicated selector.

<p class='dialog'>...</p>
➝ <p>...</p>

The styles are applied to elements that
match the initial selector but not the
selector in parentheses.

Selective Styling  95

Code 4.10  When the element is a paragraph that does not use the dialog class, it will be displayed in red and
italics F.

<! DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in Wonderland</title>
<style type="text/css" media="all">
 q:lang(fr) {
 quotes: '«''»'; }
 p:not(.translation) {
 color: red; }
</style>
</head>
<body>
<article class="chaptertext">
<p>Alice was beginning to get very tired of sitting by her sister on the bank, and of 	
➝ having nothing to do: once or twice she had peeped into the book her sister was reading, 	
➝ but it had no pictures or conversations in it, <q>and what is the use of a book,</q> 	
➝ thought Alice, <q>without pictures or conversations?</q></p>
<p class="translation" lang="fr">Alice commençait à être très fatigué d'être assis par sa sœur 	
➝ sur la rive, et de n'avoir rien à faire: une fois ou deux, elle avait regarda dans le livre de sa 	
➝ sœur lisait, mais il n'avait pas d'images ni dialogues en elle, <q>et ce qui est l'utilisation d'un 	
➝ livre,</q> pensait Alice, <q>sans images ni dialogues?</q></p>
</article>
</body>
</html>

F The results of Code 4.10. This shows that the
paragraph that does use the dialog class does not
receive the style.

96  Chapter 4

Working with
Pseudo-Elements
A pseudo-element is a specific, unique
part of an element—such as the first letter
or first line of a paragraph—that can be
styled independently of the rest of the ele-
ment. (For a list of other pseudo-elements,
see Table 4.5.)

Working with first letters and lines
You can access the first letter of any block
of text directly using the :first-letter
pseudo-element. The first line of any block
of text can be isolated for style treatment
using the :first-line pseudo-element A.

To highlight the beginning
of an article:
1. 	 Style the default version of the

element.

article p {...}

Although not required, it’s generally a
good idea to set the default style of the
selector for which you will be styling
the :first-letter pseudo-element
(Code 4.11).

Table 4.5  Pseudo-Elements

Format Selector Name Elements Are Styled If…

:first-letter, ::first-letter the first letter first letter in text ● ● ● ● ●

:first-line, ::first-line the first line of text they are the first line
of text

● ● ● ● ●

:after, ::after After space immediately
before element

●8 ● ● ● ●

:before, ::before Before space immediately after
element

●8 ● ● ● ●

A The general syntax for pseudo-elements.
Pseudo-elements can have either a single or
double colon, but use a single colon at present for
increased browser compatibility.

Declaration listColon

Colon×2

Pseudo-elementSelectors

B The results of Code 4.11. A common
typographic trick to draw the reader’s eye to the
beginning of a paragraph is to use a drop cap and
to bold the first line of text, as shown here.

Selective Styling  97

2.	 Style the first letter of the element if it
is the first of its type. Type the selec-
tor you want to style the first letter
of (article p), a colon (:), and then
first-letter.

article p:first-of-type::
➝ first-letter {...}

To affect only the first paragraph in an
article, you can add the :first-of-type
pseudo-class, as in this example.

3.	 Style the first line of the element’s
text if it is the first of its type. Type the
selector (article p) for which you want
to style the first letter, a colon (:), and
then first-line.

article p:first-of-type::
➝ first-line {...}

In this example, the first-of-type
pseudo-class is added so that only the
first paragraph in an article is styled.

4.	 The element’s first letter and first line
of text is styled if it is the first of its
type in the parent element. Add the
class attribute to the relevant HTML tag.

<p>...</p>

Although you do not have to use a
class, you generally will want to selec-
tively style the first letter of elements
rather than style them all universally.

  Drop-cap styled letters are a time-hon-
ored way to start a new section or chapter by
making the first letter of a paragraph larger
than subsequent letters and moving several
lines of text to accommodate the larger letter.
Medieval monks used drop caps with illumi-
nated manuscripts. Now you can use them on
the Web.

Code 4.11  Styles are set for the first letter and first
line of the first paragraph in an article B.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in 	
➝ Wonderland</title>
<style type="text/css" media="all">
 article p {
 color: gray;
 font-size: 1em;
 line-height: 1.5;
 margin: .875em 2em;
 }
 article p:first-of-type::first-letter {
 color: red;
 font-size: 3em;
 float: left;
 margin: -.25em .05em 0 0; }
 article p:first-of-type::first-line {
 color: black;
 font-size: 1.25em;
 font-weight: bold; }
</style>
</head>
<body>
<article class="chaptertext">
<h2>Chapter I
Down the 	
➝ Rabbit-Hole
</h2>
<p>Alice was beginning to get very tired 	
➝ of sitting by her sister on the bank, 	
➝ and of having nothing to do: once or 	
➝ twice she had peeped into the book 	
➝ her sister was reading, but it had 	
➝ no pictures or conversations in it, 	
➝ <q>and what is the use of a book,</q> 	
➝ thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

98  Chapter 4

Setting content before
and after an element
The :before and :after pseudo-elements
can be used to generate content that
appears above or below a selector. Gener-
ally, these pseudo-classes are used with
the content property. (See “Adding Con-
tent Using CSS” in Chapter 9.) The pseudo-
elements let you add and style repetitive
content to the page in a consistent way.

To set content before and
after an element:
1.	 Style the element.

h2 {...}

Although not required, it’s generally a
good idea to set the default style of the
selector for which you will be styling the
:before and:after pseudo-elements.
(See Code 4.12.)

2.	 Add content before the element. Type
the selector (HTML, class, or ID) you
want to add content before, a colon (:),
and then the keyword before.

h2:before { content:... }

Next, declare the content property and
define what generated content goes
before the element and how it should
be styled.

Code 4.12  Before and after pseudo-elements are
used to add content—images C in this case—to
the page header D.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in 	
➝ Wonderland</title>
<style type="text/css" media="all">
 h2 {
 font-size: 2em;
 color: red; }
 h2::before {
 content: url('bullet-01.png'); }
 h2::after {
 content: url('bullet-02.png'); }
</style>
</head>
<body>
<article class="chaptertext">
<h2> Chapter I
Down the 	
➝ Rabbit-Hole
</h2>
<p>Alice was beginning to get very tired 	
➝ of sitting by her sister on the bank, 	
➝ and of having nothing to do: once or 	
➝ twice she had peeped into the book 	
➝ her sister was reading, but it had 	
➝ no pictures or conversations in it, <q>	
➝ and what is the use of a book,</q> 	
➝ thought Alice, <q>without pictures or 	
➝ conversations?</q></p>
</article>
</body>
</html>

Selective Styling  99

3.	 Add content after the element. Type
the selector (HTML, class, or ID) you
want to add content after, a colon (:),
and then the keyword after.

h2:after { content:... }

Next, declare the content property
and define what generated content
goes after the element and how it
should be styled.

The pseudo-element syntax in CSS3
has undergone a slight change from the
CSS2 syntax (which is rare). Pseudo-
elements now have a double colon to
distinguish them from pseudo-classes.
Existing pseudo-elements can use
either single or double colons. New
and future pseudo-elements should
use double colons, but will work with a
single colon.

  Since IE8 does not support double
colon syntax for CSS2 pseudo-elements, it’s
a good idea to use single colon syntax for
older pseudo-elements until all browsers have
adopted the syntax. Double colon will not
work in IE8 anyway.

  Be careful when using before and
after to add content to your page. This
content will not appear to search engines or
screen readers, so do not rely on it for any-
thing vital.

C bullet-01.png &
bullet-02.png will be
used as flourishes
around titles.

D The header now has a bit of flourish added
before and after by the CSS. These images take
up space as if they were in an image tag, but do
not show up in the HTML code.

100  Chapter 4

Defining Styles Based
on Tag Attributes
Although style attributes should all be
handled by CSS, many HTML tags still have
attributes that define how they behave.
For example, the image tag, img, always
includes the src attribute to define the
source for the image file to be loaded.

Styles can be assigned to an HTML element
based on an attribute or an attribute value,
allowing you to set styles if the attribute
has been set, is or is not a specific value, or
contains a specific value (Table 4.6).

To set styles based on an
element’s attributes:
1.	 Set styles if the element has a spe-

cific property. To set styles based on
the existence of an attribute, type the
selector you want to style (HTML, class,
or ID), a left bracket ([), the name of the
attribute you want to check for, and a
right bracket (]) (Code 4.13) A.

a[title] {...}

Table 4.6  Attribute Selectors

Format Name Elements Are Styled If That Element:

[attr] Attribute has specified attribute ● ● ● ● ●

[attr="value"] Exact value has specified attribute equal to exact value ● ● ● ● ●

[attr~="value"] Spaced list has specified attribute equal to exact value
within space-separated list

● ● ● ● ●

[attr|="value"] Hyphenated list has specified attribute equal to exact value
within hyphen-separated list

● ● ● ● ●

[attr^="value"] Begins with has specified attribute equal to exact value
at beginning

● ● ● ● ●

[attr$="value"] Ends with has specified attribute equal to exact value
at end

● ● ● ● ●

[attr*="value"] Contains has specified attribute equal to exact value
anywhere

● ● ● ● ●

Attribute Value (optional)Selector

A The general syntax of an attribute selector.

DeclarationSquare
bracket

Square
bracket

B The results of Code 4.13. This shows how
styles are applied to elements based on their
properties.

Selective Styling  101

This will assign the styles you declare
only if the tag has this attribute
assigned to it regardless of the value.

2.	 Set styles if a string exactly matches
the property’s value. To set styles
based on an attribute’s exact value,
type the selector you want to style
(HTML, class, or ID), a left bracket ([),
the name of the attribute you want to
check for, an equals sign (=), the value
you are testing for in quotes ('...'), and
a right bracket (]). The value is case
sensitive.

a[title='home'] {...}

This will assign the styles you declare
only if the tag has this attribute
assigned to it with the exact assigned
value.

3.	 Set styles if a string is in a space-sepa-
rated list of values. To set styles based
on an attribute’s value that is within a list
of space-separated values (for example,
a particular word in a sentence), type
the selector you want to style (HTML,
class, or ID), a left bracket ([), the name
of the attribute you want to check for, a
tilde (~), an equals sign (=), the value you
are testing for in quotes ('...'), and a
right bracket (]).

a[title~="email"] {...}

This will assign the styles you declare
only if the tag has the attribute assigned
to it with a value that contains the
string as part of a space-separated list.
Generally, this means that it is a word in
a sentence. Partial words do not count.
So in this example, testing for 'mail'
would not work.

continues on next page

Code 4.13  HTML tags can have different
attributes, and you can add styles to an element
based on its attributes B.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in 	
➝ Wonderland</title>
<style type="text/css" media="all">
 a { display: block; font-size: 2em;}
 a[title] { color: red; }
 a[title="Author"] {color: orange; }
 a[title~="white"] { color: yellow; }
 �a[title|="illustrations"] { color: 	

➝ green; }
 a[href^="http://"] {color: blue; }
 a[href*="order"] {color: indigo; }
 a[href$="css3-vqs"] {color: violet; }

</style>
</head>
<body>
<article class="chaptertext">
<h1>About The Book:</h1>

 �<a href="index.html" title="Alice's 	

➝ Adventures in Wonderland">	
➝ Alice’s Adventures in 	
➝ Wonderland

 �<a href="index.html" 	
➝ title="Author">Lewis Carroll

 �<a href="index.html" title=	
➝ "illustrations black white">John 	
➝ Tenniel

 �<a href="index.html" title=	
➝ "illustrations-full-color">Arthur 	
➝ Rackham

 �<a href="http://www.jasonspeaking	
➝.com">Download Examples

 �<a href="http://www.jasonspeaking	
➝.com/css3-vqs/order">More Info	
➝

 �<a href="http://www.jasonspeaking	
➝.com/css3-vqs">Order The Book

</article>
</body>
</html>

102  Chapter 4

4.	 Sets the style if the string is in a
hyphenated list of values assigned to
the property. To set styles based on
an attribute’s value being the first in
a list separated by hyphens, type the
selector you want to style (HTML, class,
or ID), a left bracket ([), the name of the
attribute you want to check for, a bar
(|), an equals sign (=), the value you are
testing for in quotes ('...'), and a right
bracket (]).

a[title|="resume"]

This will assign the styles you declare
only if the tag has this attribute
assigned to it with a value that contains
the string at the beginning of a hyphen-
separated list. Generally, this is used for
styling languages as an alternative to
using the language pseudo-class.

5.	 ★Set styles if a string is the value’s
prefix. To set styles based on the value
at the beginning of an attribute, type
the selector you want to style (HTML,
class, or ID), a left bracket ([), the name
of the attribute you want to check for,
a carat (^), an equals sign (=), the value
you are testing for in quotes ('...'), and
a right bracket (]).

a[href^="http://"]

This will assign the styles you declare
only if the value string occurs exactly
as it is in the quotes at the beginning of
the attribute value.

Selective Styling  103

6.	 ★Set styles if a string is the property
value’s suffix. To set styles based on
an attribute’s value being the first in a
hyphen-separated list, type the selector
you want to style (HTML, class, or ID), a
left bracket ([), the name of the attribute
you want to check for, a dollar sign ($),
an equals sign (=), the value you are
testing for in quotes ('...'), and a right
bracket (]).

a[href$=".info"]

This will assign the styles you declare
only if the value occurs at the end of the
attribute’s value.

7.	 Set styles if a string is anywhere in the
property value. To set styles based on
an attribute’s value being the first in a
hyphen-separated list, type the selector
you want to style (HTML, class, or ID), a
left bracket ([), the name of the attribute
you want to check for, an asterisk (*),
an equals sign (=), the value you are
testing for in quotes ('...'), and a right
bracket (]).

a[href*="speakinginstyles"]

This will assign the styles you declare
if the value occurs anywhere in the
attribute’s value.

Values are case sensitive. In other
words, “Alice” and “alice” are two differ-
ent values.

104  Chapter 4

★Querying the Media
In Chapter 3 you learned how to specify
style sheets for a particular media type,
allowing you to set styles depending on
whether the HTML is output to a screen,
print, TV, or a handheld or other device
(Table 4.7). CSS3 adds an important new
capability that allows you to set styles
based on common interface properties
such as width, height, aspect ratio, and
number of available colors.

Media queries and the @media rule can be
used to tailor your page, not just to a gen-
eral device type but to the specific device
your site visitor is using. This includes siz-
ing for print, for mobile devices, or to best
fit the size of the open browser window.

Media queries
If you want to know the current size of
the browser window, why not just ask the
browser? JavaScript gives you the ability to
do this, but it’s a cumbersome way to get
some basic facts about the Webbed envi-
ronment your design is trying to fit into.

Media queries provide you with several
common media properties that you can
test A and then deliver the style sheet that
best suits the environment.

Although media queries have many prop-
erties (Table 4.8), they come in five basic
flavors:

n	 Aspect-ratio looks for the relative
dimensions of the device expressed as
a ratio: 16:9, for example.

n	 Width and height looks for the dimen-
sions of the display area. These can
also be expressed as maximum and
minimum values.

continues on page 106

A The general syntax for media queries.

Table 4.7  Media Values

Value Intended for

screen Computer displays

tty Teletypes, computer terminals,
and older portable devices

tv Television displays

projection Projectors

handheld Portable phones and PDAs

print Paper

braille Braille tactile readers

speech Speech synthesizers

all All devices

Selective Styling  105

Table 4.8  Media Query Properties

Property Value

aspect-ratio <ratio> ●9 ● ● ● ●

max-aspect-ratio <ratio> ●9 ● ● ● ●

min-aspect-ratio <ratio> ●9 ● ● ● ●

device-aspect-ratio <ratio> ●9 ● ● ● ●

max-device-aspect-ratio <ratio> ●9 ● ● ● ●

min-device-aspect-ratio <ratio> ●9 ● ● ● ●

color <integer> ●9 ● ● ● ●

max-color <integer> ●9 ● ● ● ●

min-color <integer> ●9 ● ● ● ●

color-index <integer> ●9 ● ● ● ●

max-color-index <integer> ●9 ● ● ● ●

min-color-index <integer> ●9 ● ● ● ●

device-height <length> ●9 ● ● ● ●

max-device-height <length> ●9 ● ● ● ●

min-device-height <length> ●9 ● ● ● ●

device-width <length> ●9 ● ● ● ●

max-device-width <length> ●9 ● ● ● ●

min-device-width <length> ●9 ● ● ● ●

height <length> ●9 ● ● ● ●

max-height <length> ●9 ● ● ● ●

min-height <length> ●9 ● ● ● ●

monochrome <integer> ●9 ● ● ● ●

max-monochrome <integer> ●9 ● ● ● ●

min-monochrome <integer> ●9 ● ● ● ●

orientation portrait, landscape ●9 ● ● ● ●

resolution <resolution> ●9 ● ● ● ●

max-resolution <resolution> ●9 ● ● ● ●

min-resolution <resolution> ●9 ● ● ● ●

scan progressive, interlaced ●9 ● ● ● ●

width <length> ●9 ● ● ● ●

max-width <length> ●9 ● ● ● ●

min-width <length> ●9 ● ● ● ●

106  Chapter 4

n	 Orientation looks for landscape (height
greater than width) or portrait (width
greater than height) layout. This allows
you to tailor designs for devices that
can flip.

n	 Color, color-index, and monochrome
finds the number of colors or bits per
color. These allow you to tailor your
design for black-and-white mobile
devices.

n	 Resolution looks at the density of pixels
in the output. This is especially useful
when you want to take advantage of
display devices that have a higher reso-
lution than 72 dpi.

By default, media queries are for the
viewport (see Chapter 11 for details on the
viewport) with the exception of those that
specify device, in which case they are
for the entire screen or output area. For
example, width is the width of the vis-
ible browser viewport within the screen,
whereas device-width is the width of the
entire screen.

Selective Styling  107

Using media queries
to specify styles:
1.	 Create your style sheets. Create a

default media style sheet that cap-
tures all the general styles for your
design and save it. I like to call mine
default.css (Code 4.14).

Create style sheets for the various
media or specific devices for which
you will be designing. Print is generally
good to include (Code 4.17). You can
call the sheet print.css, but you might
also want to create style sheets spe-
cifically for tablets (Code 4.15) and for
desktop computers (Code 4.16).

continues on next page

Code 4.14  default.css—These styles are applied
regardless of the screen size; but we are tailoring
the styles for small devices, most likely mobile
devices such as smart phones. We start with the
small sizes first, and then tailor for larger sizes in
the next two CSS files.

/*** Default Screen Styles ***/
body {
 color: charcoal;
 �font: normal 1.5em/1 helvetica, arial, 	

➝ sans-serif;
 �background: silver url('alice23c.gif') 	

➝ no-repeat center 0;
 padding: 120px 20px; }
h1 { color: purple; font-size: 1.5em; }
h2 { color: black; font-size: 1.25em; }
p { line-height: 2; font-size: 1em; }

Code 4.15  medium.css—A custom view for
medium-size screens. Generally, these styles will
be used by tablet devices.

/*** Medium Device Styles ***/

body {
 color: dimgray;
 background-color: gray;
 font-size: 1.25em;
 padding: 200px 2em; }
h1 { color: gold; }
h2 { color: silver; }

Code 4.16  large.css—The final style sheet will be
used to serve a page tailored to larger computer
screens.

/*** Large Device Styles ***/

body {
 color: silver;
 font: normal 1.1em/2 georgia,times,serif;
 �background: black url('alice23b.gif') 	

➝ no-repeat 0 0;
 padding: 200px 175px; }
h1 {
 color: red;
 font-style: italic; }
h2 { color: gray; }

Code 4.17  print.css—These styles are tailored
for the printed page, changing the background
to white (assuming white paper), serif fonts, black
text, and a different background image.

/*** For Print ***/

body {
 color: rgb(0,0,0);
 �background: white url('alice23a.gif') 	

➝ no-repeat 0 0;
 padding: 200px 0 0 175px;
}
h1 { color: gray; }
p { font: normal 12pt/2 Constantia, palatino, 	
➝ times, "times new roman", serif; }

108  Chapter 4

2.	 Add the viewport meta tag. In the head
of your HTML document (Code 4.18),
add a meta tag with a name equal to
viewport and content, as shown.

<meta name="viewport"
➝ content="width=device-width,
➝ initial-scale=1, maximum-
➝ scale=1, minimum-scale=1,
➝ user-scalable=no" />

This will prevent devices with smaller
screens, most notably the iPhone, from
resizing the page, overriding your styles
to be set in Step 5.

3.	 Link to your default style sheet. In the
head of your HTML document (Code
4.18), type a <link> tag that references
the default version of the CSS and
define media as all.

<link rel="stylesheet" media="all"
➝ href="default.css" >

continues on page 110

B Code 4.18 output to a computer screen.
This version uses a dark background and an
inverted version of the Alice’s Adventures in
Wonderland illustration. On an LCD screen,
the lightly colored text will look fine.

C Code 4.18 on a tablet device, in this
case an iPad.

Selective Styling  109

Code 4.18  The HTML code links to all three of the style sheets, which are displayed in default B, tablet C,
smart phone D, and print E. The iPhone style sheet uses media queries to set a device’s width range in
keeping with the iPhone. Notice that I used screen for the media type because the iPhone identifies itself as
a screen, not a handheld device.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, 	
➝ minimum-scale=1, user-scalable=no" />
<title>Alice’s Adventures in Wonderland</title>
<link rel="stylesheet" media="screen" href="14.css">
<link rel="stylesheet" media="screen and (min-width: 740px) and (min-device-width: 740px), 	
➝ (max-device-width: 800px) and (min-width: 740px) and (orientation:landscape)" 	
➝ href="15.css">
<link rel="stylesheet" media="screen and (min-width: 980px) and (min-device-width: 980px)" 	
➝ href="16.css">
<link rel="stylesheet" media="print" href="17.css">
</head>
<body>
<hgroup>
<h1>Alice’s Adventures In Wonderland</h1>
<h2 id="ch01">Chapter 1 Down the Rabbit-Hole</h2>
</hgroup>
<article>
<p>Alice was beginning to get very tired of sitting by her sister on the bank, and of having 	
➝ nothing to do: once or twice she had peeped into the book her sister was reading, but it had no 	
➝ pictures or conversations in it, <q>and what is the use of a book,</q> thought Alice, <q>without 	
➝ pictures or conversations?</q></p>
</article>
<footer><nav> Next:
The Pool of Tears
</nav></footer>
</body>
</html>

D Code 4.18 on a
mobile device, in
this case an iPhone.
A specially tailored
version to fit the
width of smaller
devices uses a
custom header of
the Cheshire cat.

E Code 4.18
output to a
printer. The
background is
white, and the
background
image is no
longer inverted.
This works
better in print.

110  Chapter 4

4.	 Use a media query to link to a style
sheet. Immediately after the previous
<link> tag, add more <link> tags that
reference the style sheets for a specific
media type and then add media queries
(Table 4.8) in parentheses connecting
multiple queries with and.

<style type="text/css" media=
➝"screen and (min-width: 740px)
➝ and (min-device-width: 740px),
➝ (max-device-width: 800px)
➝ and (min-width: 740px) and
➝ (orientation:landscape)">@import
➝ url("css/medium.css");</style>

<style type="text/css" media=
➝"screen and (min-width: 980px)
➝ and (min-device-width: 980px)">
➝ @import url("css/medium.css");
➝ @import url("css/large.css");
➝ </style>

Selective Styling  111

5.	 Link to your print style sheet. Immedi-
ately after the <link> tag, add another
<link> tag that references the print
version of the CSS and define media
as print.

<link rel="stylesheet" media=
➝"print" href="print.css">

  Before media queries were introduced,
Web developers used JavaScript to detect
browser dimensions and colors. Media queries
render those techniques obsolete, at least for
styling purposes.

  In this example, media queries are
applied to the media property value of
the <link> tag, but you can just as eas-
ily apply them to the media property of the
<style> tag.

112  Chapter 4

Using the @media rule
Media queries allow you specify styles in
the media property of <link> and <style>
tags, but the @media rule F allows you to
embed media queries directly into a style
sheet.

Using @media to specify styles:
1.	 Create your style sheets. Create an

external style sheet or embed a style
sheet in the body of your document
(Code 4.19).

2.	 Use the @media rule to specify styles
with media queries. In the head of your
HTML document, type @ and media.
Then specify the media type (Table 4.7)
and any media queries (Table 4.8) for
the styles.

@media screen and
➝ (max-device-width: 480px) {...}

For example, you might specify that
these styles are for screens with a width
up to 480px wide. Finish with curly
brackets. Add any media-specific styles
between the curly brackets.

3.	 Add other styles as necessary.

body {...}

You can add more @media rules or other
nonmedia-specific rules. However,
all CSS rules that are not in @rules
(@media, @font-face, @import, and so
on) must come after the @rules.

  Remember that @media rules can go in
external or embedded style sheets.

G Code 4.19 on a computer screen.

H Code 4.19 on a mobile device screen.
The styles and background have been
modified based on the device width.

F The general syntax of the @media rule.

CSS rules

@media rule Media queries

Selective Styling  113

Code 4.19  The HTML code links to the various style sheets for different media types G and H.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, minimum-scale=1, 	
➝ user-scalable=no" />
<title>Alice’s Adventures in Wonderland</title>

<style type="text/css">
 body {
 font: normal 12pt/2 times, "times new roman", serif;
 background: white url('alice23a.gif') no-repeat 0 0;
 padding: 200px 175px; }
 h1 { color: gray; }
 h2 { color: silver; }
 p { color: black; }
 @media screen and (max-width: 480px) {
 /*** Small screen Styles ***/
 body {
 -webkit-text-size-adjust:none;
 color: red;
 background: gray url('alice23c.gif') no-repeat center 0;
 padding: 120px 20px 20px 20px; }
 h1 {
 color: red;
 text-shadow: 0 0 5px black; }
 h2 { color: silver; }
 p {
 font-size: 1.5em;
 color: white; }
 }
</style>
</head>
<body>
<hgroup>
<h1>Alice’s Adventures In Wonderland</h1>
<h2 id="ch01">Chapter 1 Down the Rabbit-Hole</h2>
</hgroup>
<article>
<p>Alice was beginning to get very tired of sitting by her sister on the bank, and of having 	
➝ nothing to do: once or twice she had peeped into the book her sister was reading, but it had no 	
➝ pictures or conversations in it, <q>and what is the use of a book,</q> thought Alice, <q>without 	
➝ pictures or conversations?</q></p>
</article>
<footer><nav> Next:
The Pool of Tears
</nav></footer>
</body>
</html>

114  Chapter 4

Styling for Print
With the advent of laser and inkjet printers, we seem to be buried under mounds of perfectly
printed paper. Even the Web seems to have increased the amount of paper we use. If an article on
the Web is longer than a couple of scrolls, many people print it.

But the Web was created to display information on the screen, not on paper. Web graphics look
blocky when printed, and straight HTML lacks much in the way of layout controls. That said, you
can take steps to improve the appearance of printed Web pages. Looking good in print and on the
Web may take a little extra effort, but your audience will thank you in the long run.

Here are six simple things you can do to improve the appearance of your Web page when it
is printed:

.. Use page breaks before page headers to keep them with their text.

.. Separate content from navigation. Try to keep the main content—the part your audience is
interested in reading—in a separate area of the design from the site navigation. You can then
use CSS to hide navigation in the printed version with a

nav { display: none }

included in the print style sheet.

.. Avoid using transparent colors in graphics. This is especially true if the graphic is on a back-
ground color or a graphic other than white. The transparent area of a GIF image usually prints
as white regardless of the color behind it in the window. This situation is not a problem if the
graphic is on a white background to begin with, but the result is messy if the graphic is sup-
posed to be on a dark background.

.. Avoid using text in graphics. The irony of printing content from the Web is that text in graphics,
which may look smooth in the window, can look blocky when printed; but regular HTML text,
which may look blocky on some PC screens, can print smoothly on any decent printer. Try to
stick with HTML text as much as possible.

.. Avoid dark-colored backgrounds and light-colored text. Generally you want to keep white as
your background color for most of the printed page, and black or dark gray for the text.

.. Do not rely on color to convey your message when printed. Although color printers are quite
common these days, many people are still printing with black-and-white printers or printing in
black and white on color printers to save money.

Selective Styling  115

Inheriting Properties
from a Parent
No, this book hasn’t suddenly become the
Visual QuickStart Guide to Real Estate.
Child and descendent HTML tags generally
assume the styles of their parents—inherit
them—whether the style is set using CSS
or is inherited from a browser style. This is
called inheritance of styles.

A The final result of the styles applied and inherited is bold, red,
and italicized text in Times font. Styles in parentheses are inherent
styles applied by the browser for the particular HTML tag.

For example, if you set an ID called copy
and give it a font-family value of Times, all
of its descendents would inherit the Times
font style. If you set a bold tag to red with
CSS, all of its descendents will inherit both
the applied red and the inherent bold
style A.

In some cases, a style property is not inher-
ited from its parent—obvious properties
such as margins, width, and borders. You
will probably have no trouble figuring out

116  Chapter 4

which properties are inherited and which
are not. For example, if you set a padding
of four pixels for the paragraph tag, you
would not expect bold tags within the para-
graph to also add a padding of four pixels.
If you have any doubts, see Appendix A,
which lists all the CSS properties and how
they are inherited.

If you did want to force an element to
inherit a property of its parent, many CSS
properties include the inherit value. So,
in the previous example, to force all the
bold tags in a paragraph to take on the 4px
padding, you could set their padding value
to inherit.

Managing existing or
inherited property values
When defining the styles for a selector, you
do not cause it to lose any of its inherited
or inherent attributes unless you specifi-
cally override those styles. All those prop-
erties are displayed unless you change the
specific existing properties that make up its
appearance.

In addition to overriding the relevant prop-
erty with another value, many CSS proper-
ties have values that allow you to override
inheritance:

n	 inherit—Forces a property to be inher-
ited that would normally not be inher-
ited, or overrides other applied style
values and inherits the parent’s value.

n	 none—Hides a border, image, or other
visual element.

n	 normal—Forces the default style to be
applied.

n	 auto—Allows the browser to determine
how the element should be displayed
based on context.

Selective Styling  117

Making a Declaration
!important
You can add the !important declaration
to a property-value declaration to give it
the maximum weight when determining the
cascade order A. Doing so ensures that
a declaration is applied regardless of the
other rules in play. (See “Determining the
Cascade Order” in this chapter.)

To force use of a declaration:
1.	 Add your CSS rule (Code 4.20).

h2 {...}

You can use an HTML, class, or ID
selector. CSS rules can be defined
within the <style> tags in the head of
your document (see “Embedded: Add-
ing Styles to a Web Page” in Chapter 3)
or in an external CSS file that is then
imported or linked to the HTML docu-
ment (see “External: Adding Styles to a
Web Site” in Chapter 3).

2.	 Make it important. Type a style dec-
laration, a space, !important, and a
semicolon (;) to close the declaration.

color: green !important;

continues on next page

A The general syntax for !important.

Selector

Declaration !important

B The result of Code 4.20. The style that is most
important wins the day, so the text is green rather
than red, despite the fact that the red declaration
comes later in the cascade.

Code 4.20  The !important value has been
added to the color property in the first h2, but not
in the second B. Typically, the second h2 would
override the first, but not in this case.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Alice’s Adventures in 	
➝ Wonderland</title>
<style type="text/css" media="all">
 h2 {
 color: green !important;
 font-size: 3em; }
 h2 {
 color: red;
 font-size: 2em; }
</style>
</head>
<body>
<article class="chaptertext">
<h2> Chapter I
Down the 	
➝ Rabbit-Hole
</h2>
<p>Alice was beginning to get very tired of 	
➝ sitting by her sister on the bank, and of 	
➝ having nothing to do: once or twice 	
➝ she had peeped into the book her sister 	
➝ was reading, but it had no pictures or 	
➝ conversations in it, <q>and what is the 	
➝ use of a book,</q> thought Alice, <q>	
➝ without pictures or conversations?</q></p>
</article>
</body>
</html>

118  Chapter 4

3.	 Add other styles.

font-size: 3em;

Add any other declarations you wish for
this rule, making them !important or
not, as you desire.

!important is a powerful tool, second
only to inline styles for determining
style cascade. !important is great for
debugging your CSS; but, because it
can interfere with making changes later,
it should never be used in the final Web
site code.

Setting a shorthand property to
!important (background, for example)
is the same as setting each sub-property
(such as background-color) to be
!important.

  A common mistake is to locate !impor-
tant after the semicolon in the declaration.
This causes the browser to ignore the declara-
tion and, possibly, the entire rule.

  If you are debugging your style sheet
and can’t get a particular style to work, try
adding !important to it. If it still doesn’t
work, the problem is most likely a typo rather
than another overriding style.

  Many browsers allow users to define
their own style sheets for use by the browser.
Most browsers follow the CSS 2.1 specification
in which a user-defined style sheet overrides
an author-defined style sheet.

Selective Styling  119

Determining the
Cascade Order
Within a single Web page, style sheets may
be linked, imported, or embedded. Styles
may also be declared inline in the HTML.

In addition, many browsers allow visitors
to have their own style sheets that can
override yours. It’s guaranteed, of course,
that simultaneous style sheets from two or
more sources will have conflicting declara-
tions. Who comes out on top?

The cascade order refers to the way styles
begin at the top of the page and, as they
cascade down, collect and replace each
other as they are inherited. The general
rule of thumb is that the last style defined
is the one that is used.

However, at times, two or more styles will
conflict. Use the following procedure to
determine which style will come out on top
and be applied to a given element.

120  Chapter 4

To determine the cascade-
order value for an element:
Collect all styles that will be applied to the
element. Find all the inherent, applied, and
inherited styles that will be applied to the
element, and then use the following criteria
to determine which styles are applied in
the cascade order, with the criteria at the
top being most important A.

1.	 User styles

Most Web browsers allow users to
specify their own default style sheets.
In principle, these always have prece-
dence over other styles.

2.	 Inline styles

If the style is inline (see Chapter 3), it is
always applied regardless of all other
factors. That’s why you should never
use them in your final HTML code.

3.	 Media type

Obviously, if the media type is set for
a style and element that is not being
displayed in that media type, the style
will not be used.

4.	 Importance

Including !important with a declaration
gives it top billing when displayed. (See
“Making a Declaration !important” in this
chapter.)

Many browsers let users define their
own style sheets for use by the browser.
If both the page author and the visitor
have included !important in their dec-
larations, the user’s declaration wins.

In theory, an author’s style sheets over-
ride a visitor’s style sheets unless the
visitor uses the !important value. In
practice, however, most browsers favor
a user’s style sheet when determining
which declarations are used for a tag.

A The cascade order from most important to least
important.

Selective Styling  121

5.	 Specificity

The more contextually specific a rule is,
the higher its cascade priority. So the
more HTML, class, and ID selectors a
particular rule has, the more important it
is. In determining this priority, ID selec-
tors count as 100, classes count as 10,
and HTML selectors are worth only 1.
Thus,

#copy p b { color: red; }

is worth 102, whereas

b { color : lime; }

is worth only 1. So, the first rule would
have higher specificity and the color
would be red.

This priority setting may seem a bit silly
at first, but it allows context-sensitive
and ID rules to carry more weight,
ensuring that they will be used.

6.	 Order

If the conflicting declarations applied
to an element are equal at this point,
CSS gives priority to the last rule listed,
in order. Remember that inline styles
always win.

7.	 Inherited

These styles are inherited from the
parent.

8.	 Inherent

These styles are applied by the
browser to HTML tags and are the least
important.

This page intentionally left blank

Index  429

Symbols
"…" (double quotation marks), declaration lists, 39
'…' (single quotation marks), 39
/ (slash), comments, 67
& (ampersand), character entities, 129, 424
* (asterisk), universal selector, 61–63
{ } curly brackets. See curly brackets { }, CSS rules

Numbers
2D transformations, 312–315
3D

stacking objects in, 294–295
text shadow effect, 168
transformations, 316–319

8-bit Unicode Transformation Format (UTF-8)
character set, 126, 423–428

A
absolute positioning, 289–291
absolute values

font size, 143–144
transforming length value, 311
vertical text alignment, 174–175

accessibility
access keys for, 339
color and, 201
content in <body> for, 240
CSS2 emphasis on, 7

accesskey attribute, 339
:active pseudo-class, 84–89
adaptive design

large.css, 368–369
with media queries, 370–373
medium.css, 366–368
print.css, 368–369
responsive Web design, 353
small.css, 366–367

adjacent sibling selector, 78–79
adjacent siblings, family tree, 70
Adobe’s Kuler tool, online color scheme, 200
:after pseudo-element, 96, 98–99
Aggregate method, style sheets, 384
alpha values

color transparency, 190
element opacity, 301
text color, 203

alphabetical order, selectors, 378
ampersand (&), character entities, 129, 424
analogous color-combination scheme, 198
angle quotation marks, 244
angle value

2D transforms, 314
3D transforms, 318–319
linear gradients, 191–192
transformations, 311

ANI images, 239
animations, in CSS3, 14
apps, mobile, 357
<article> tag, 28–29, 31
<aside> tag, 28–29, 31, 332
aspect-ratio, media queries, 104–105
asterisk (*), universal selector, 61–63
attachment property, background image,

205–206, 208
attributes, assigning to styles, 2, 100–103
Audio and Video Timed media playback, 27
author styles, 118
auto value

background-image, 205
background-size, 209
clip, 298–299
column-count, 278–279
cursor, 238
margin, 265–267
overflow, 260–261, 336
overriding inheritance, 116
position, 292–293
table-layout, 228
text-align, 171–172
text-align-last, 172
text-justify, 173
width and height, 256
z-index, 294–295

automatic method, table-layout, 228
Available symbol, browsers, 410

B
backface-visibility property, 3D

transformations, 318
background, specifying gradient as, 195
background color

choosing, 196–197
differentiating hypertext from text, 340

Index

430  Index

choosing background color for body, 196
HTML document setup, 30
HTML document structure, 19
keeping content within, 240
margin setup, 266, 291
specifying styles with @media, 112

bold, bolder, boldest, for text, 149
border property, 190, 251, 269–270
border-bottom property, 340, 359
border-collapse property, 230–231
border-image property, 274–275
border-radius properties, 272–273
borders

background image for, 208, 211, 274–275
collapsing between table cells, 230–231
colors, 197
CSS resets for, 359
element edge within, 287
of element’s box, 251
fixing box model for older versions of IE, 338
multiple, 304
new in CSS3, 14
rounding corners, 272–273
setting, 269–271
setting how box sizes, 258
setting image, 274–275
setting padding, 276–277

border-spacing property, 229
border-style values, 270–271
border-width values, 270–271
both keyword, clear, 264
box properties

border image, 274–275
coming soon, 280
controlling overflow content, 259–261
displaying element, 252–254
element’s border, 269–271
element’s margin, 265–267
element’s outline, 268
element’s padding, 276–277
element’s width and height, 255–258
floating elements in window, 262–264
multicolumn text layout, 278–279
overview of, 247–249
putting it all together, 281–282
quick reference, 417–419
rounding border corners, 272–273
setting how box sizes, 258
understanding element’s box, 250–251

box shadows, 302–304
boxes

fixing for older IE versions, 333, 337–338
new features in CSS3, 15
understanding, 250–251

box-resize property, 251
box-shadow property, 190, 302–303
box-sizing property, 258, 338
break points, 352–353, 366–367
break tag clearfix, fixing float problem, 335

background color (continued)
setting, 204–205
specifying with background image, 211
styling for print, 114
text and, 203
using CSS sprites, 344

background images
best practices, 404
border, 274–275
differentiating hypertext from text, 340
gradients and multiple, 212–216
new in CSS3, 14
setting, 205–211
using CSS sprites, 343–344

background properties
adding multiple images and gradients, 212–216
getting started, 184
overview of, 183
putting it all together, 217–218
quick reference, 414
setting background color, 204
setting background images, 205–211
setting text color, 202–203

background property, 204, 251
background shorthand property, 212–216
background-color property

setting background color, 204
text shadow effects, 168–170
transitions, 321
values, 212

background-image property
setting background images, 206
setting gradients in background, 195
transitions, 321
values, 212

backward compatibility, XHTML2 and, 25
:before pseudo-element, 96, 98–99
best practices

CSS libraries and frameworks, 376
minify CSS, 396–398
overview of, 375
readable style sheets, 376–380
style sheet strategy, 381–385
summary of, 399–407
troubleshooting CSS code, 386–389
validating CSS code, 395
viewing CSS with Firebug, 390–392
viewing CSS with Web Inspector, 390, 393–394

billing systems, Web font service bureaus, 143
blink value, obsolete for text, 180
block level elements, 22, 330
block value, display property, 252, 254
Blueprint CSS framework, 376
blur

setting element’s shadow, 302–303
text drop shadow, 166
text shadow effect, 168

<body> tag
adding unique name or ID to each, 401

Index  431

classes
defining reusable, 53–56
generic names for, 401
mixing and matching, 402
setting up float, 264

clear property, 264
clearfix class, 335
clip property

setting background images, 205–206, 210
text-overflow, 261
visibility area, 298–299

clipping, defined, 288
colon (:), CSS declarations, 39
color

best practices, 404–405
emotional associations of color, 196
gradients. See gradients, color
links, 86–87
new in CSS3, 14
for readable style sheets, 378–379
shadows, 302
text drop shadows, 166–167
transitioning CSS properties, 320–324

color palette, 196, 200
color properties

accessibility for visually impaired, 201
choosing color palette, 196–201
choosing color values, 185–190
creating color gradients, 191–195
getting started, 184
other ways to add color, 190
overview of, 183
putting it all together, 217–218
quick reference, 414

color property, 106, 202
Color Scheme Designer tool, 200
color stop, 192, 194
color values

alpha values for transparency, 190
backgrounds, 204
borders, 270–271
for color keywords, 185–187
color wheel, 198
HSL, 189
multiple background images, 213
overview of, 185
RGB, 188–189
shadows, 303
text, 202

color wheel
basics, 198–200
online tool for advanced, 200

color-index property, media queries, 106
Colour Contrast Check tool, 203
ColRD: Palette Creator tool, 200
column-count property, 278
column-gap property, 279
column-rule property, 279
columns. See multicolumn layouts

brightness, using color wheel to choose, 198
browser extensions, CSS3, 12–13
browsers

default margin issues, 267
default styles, 20, 358–362
defining style sheets, 118
displaying documents, 286
evolution of CSS, 6–7
how CSS works, 4–5
inherited styles, 20
mouse pointer appearance and, 238
responsive design for multiple. See responsive

Web design
symbols indicating values available for use by.

See quick reference
teaching to count, 242–243
using HTML5, 29
Web font formats for, 134–135
Web font support, 134
z-index order determined by, 295

bullets, 223–227

C
cache, font file, 139
Canvas element, new in HTML5, 27
capitalize value, text-transform, 164–165
caption keyword, mimicking visitor’s font

style, 152
caption-side property, tables, 233–234
cascade order

!important declaration and, 117–118
best practices, 403
determining, 119–121
grouped selectors and, 66
troubleshooting CSS code, 386
typeface overrides and, 132

case, setting text, 164–165
characters

encoding HTML, 129
encoding HTML and UTL, 423–428
specifying character set, 126

child elements
box model, 250
of element’s box, 250
family tree, 70
floating elements in window, 263
in nested tags, 250
pseudo-classes for styling, 90–91
setting position of, 293

child selectors, 76–77, 346
choke, setting shadows, 302
Chrome, 393
circle shape value, radial gradients, 193
class selectors

CSS rules, 9
defining, 53–56
elements styled by, 36
troubleshooting CSS code, 386

432  Index

reusable classes, 53–56
unique IDs, 57–60
universal styles, 61–63

CSS resets
Eric Meyer’s, 362
overriding browser default styles with,

358–359
with universal selectors, 63
using universal selector for simple, 360
what you should reset, 359
Yahoo’s Reset CSS, 361

CSS sprites
adding CSS image rollovers to Web page,

342–344
best practices using RGB for, 405
creating using background images, 211
origin of, 344
overview of, 342

CSS Validator, 395
CSS1 (CSS Level 1), 7
CSS2 (CSS Level 2), 7
CSS2.1 (CSS Level 2.1), 118
CSS3 (CSS Level 3), 7, 14–15, 29
CSS3 Gradient Generator, 195
CSS4 (CSS Level 4), working draft, 15
CUR images, 239
curly brackets { }, CSS rules

class selectors, 53
embedded styles, 41
external CSS file, 45
HTML tags, 50–52
troubleshooting CSS code, 386

currentcolor keyword, 188, 204
cursive fonts, 128
cursors, mouse pointer appearance, 238–239

D
debugging CSS, 118
decimal values, color, 185–187, 189
decimals, setting bullet style, 223
declarations

colons in, 39
CSS rules and, 11
grouped selectors receiving same, 64–66
HTML tags and, 38–39, 52
making !important, 117–118
quotation marks in, 39
reusable classes and, 54
troubleshooting CSS code, 386, 389
unique IDs and, 58
universal styles and, 61
viewing CSS, 392, 394

default styles, browser, 20, 358–362
DeGraeve’s Color Palette Generator tool, 200
 tag, text strikethrough vs., 180
dependent class selector, 36, 54
dependent ID selector, 36, 60
descendants, 70–71, 115–116

combinatory selectors, 71
comments

adding to CSS, 67–68
best practices, 406
grouping selectors with, 64–66
section headers as, 378–379
setting up conditional styles for IE, 364–365

compact property, 254
complementary color-combination scheme, 199
compound color-combination scheme, 199
compression, CSS code, 396–398
condensed fonts, 150
conditional styles, Internet Explorer

fixing box model for older versions, 338
overview of, 363–365
responsive Web design, 353, 370–373

content. See also generated content properties
adding using CSS, 240–241
background color, 196–197
controlling overflow, 259–260
defining background image, 208, 211
of element’s box, 250
new features in CSS3, 15
progressive enhancement and, 355
setting how box sizes, 258
styling for print, 114

content property, 240, 242–243, 250–251
content-box value, box-sizing, 258
contextual selectors, 70
contextual styles

descendants, 71–75
only children, 76–77
overview of, 71
siblings, 78–81

converting licensed fonts, 140
copy, color(s) for, 197
counter lists, multiple, 242–243
couplet values, RGB hex, 188
CSS (Cascading Style Sheets), overview

browser extensions, 12–13
defined, 1
evolution of, 6–7
HTML and, 8
libraries and frameworks, 376
rule parts, 11
styles, 2
types of rules, 9–10
understanding, 3–5
what’s new in CSS3, 14–15
word processor styles vs., 3

CSS basics
basic selectors, 36
comments, 67–68
embedded styles, 40–42
external styles, 43–49
grouping, 64–66
HTML tags, 50–52
inline styles, 37–39
overview of, 35

Index  433

understanding box of, 250–251
visual formatting properties. See visual

formatting properties
ellipsis, text-overflow property, 261
elliptical corners, borders, 273
elliptical shape value, radial gradients, 193
 tag, 20, 72–81, 144–145, 160, 174
Emastic CSS framework, 376
Embedded OpenType (EOT) Web font format,

134–135, 137–138, 140
embedded style sheets

adding, 40–42
making declaration !important, 117–118
not placing in final code, 42
using @media rule to specify styles, 112

emboss text, text shadows, 168
emotional associations, color, 196
empty-cells property, 232
encoding

HTML and UTL character, 423–428
HTML character entities, 129

End User License Agreements (EULA), Web fonts,
140

EOT (Embedded OpenType) Web font format,
134–135, 137–138, 140

EULA (End User License Agreements), Web fonts,
140

evolution, of CSS, 6–7
expanded fonts, 150
extensions, CSS browser

creating color gradients, 191
defined, 12
importance of coding with, 326

external CSS files
adding styles to Web sites, 43–49
defining CSS rules in, 52, 57

external style sheets
best practices, 400
making declaration !important, 117–118
placing all styles in, 381
progressive enhancement and, 355
using @media rule to specify styles, 112

F
fantasy fonts, 128
<figcaption> tag, HTML5, 28
<figure> tag, HTML5, 28
fire effect text, text shadows, 168
Firebug, 390–392, 394
:first-child pseudo-class, 90–91
:first-letter pseudo-element, 96–99
:first-line pseudo-element, 96–99
:first-of-type pseudo-class, 90–91
fixed design, multicolumn layout, 332–333
fixed method, table-layout, 228
fixed positioning, 290–291
Flash, 20
float property, 262–264, 330–336
:focus pseudo-class, 88–89

design and interface techniques
creating CSS drop-down menu, 345–346
creating multicolumn layouts with float,

330–333
fixing box model for older versions of IE,

337–338
fixing float problem, 334–336
getting started, 328–330
putting it all together, 347–348
styling links vs. navigation, 339–341
using CSS sprites, 342–344

dingbats, 129
display area, browser, 287
display property, 252–254, 297
<div> tag, 27, 56, 332
Divide and Conquer method, style sheet

strategy, 383
doctype (<!DOCTYPE>)

browser modes set by, 363
HTML document structure, 19, 30–31, 399
for markup languages, 29
reasons to include, 32–33

document type definition (DTD), 337–338
documents

basic HTML, 30–31
browser windows displaying, 286
editing in HTML5, 27
parts of, 286–287
structure of HTML, 20

double quotation marks ("…"), declaration lists, 39
drag-and-drop, 27
drop shadows, 166–168, 302–303
drop-down menus, CSS, 345–346
DTD (document type definition), 337–338
Dynamic method, style sheet strategy, 385
dynamic pseudo-classes, 82–83, 88–89,

320–324
dynamic styles, 402

E
editing declarations, 392, 394
element edge, 287
element family tree, 70
elements, HTML

applying CSS properties to specific, 23
block-level, 22
controlling overflow, 259–261
displaying, 252–254
floating in window, 262–264
including default styles for, 401
inspecting, 392–394
not setting style for particular, 94–95
setting border, 269–270
setting margins of, 265–267
setting outline, 268
setting padding, 276–277
setting positions, 290–291
setting width and height, 255–258, 287
types of, 21–23

434  Index

formats
visual. See visual formatting properties
Web font, 134–135

forms, background color for, 197
frame effect, box shadows, 304
frame tags, eliminated in HTML5, 27
frameworks, CSS libraries and, 376
functionality

organizing style sheets by, 378
progressive enhancement guidelines, 355

G
general sibling selector, 78, 80–81
generated content properties

adding content using CSS, 240–241
getting started, 236–237
overview of, 235
putting it all together, 246
quick reference, 416
specifying quote style, 244–245
teaching browser to count, 242–243

generic class names, 401
generic font families, 127–128, 131
glyphs

encoding HTML and UTL characters, 423–428
encoding HTML characters, 129
overview of, 125–126

graceful degradation, 356
gradients, color

adding to backgrounds, 206, 216
best practices, 405
creating, 191–195

graphics
as bullets, 223
CSS Sprites. See CSS Sprites

grids, page layout using column, 330–333
grouping selectors, 64–66, 402

H
hanging indents, bulleted lists, 225
hanging punctuation, 181
<head>

defining class selector in, 53
defining CSS rules in, 52, 57
embedded styles in, 40–42
HTML document structure, 19, 30
linking to external CSS files, 46
specifying character set in, 126
using @media rule to specify styles, 112
using links to add styles in, 400

<header> tag
background color for, 197
conditional styles for IE, 365
defined, 28–29
HTML document structure, 31

height
browser, 286
CSS resets for line, 359

font families
defined, 125
fonts vs., 130
generic, 127–128
naming, 137
setting font-stack, 130–132

font properties
condensed and expanded fonts, 150
dingbats, 129
encoding HTML character entities, 129
generic font families, 127–128
getting started, 124
making text italic, 147–148
overview of, 123
putting it all together, 155–156
quick reference, 412
setting bold, bolder, boldest, 149
setting font-stacks. See font-stacks
setting multiple font values at same time,

152–154
setting size, 144–145
sizing understudy fonts, 146
small caps, 151
specifying character set, 126
understanding Web typography, 125
using Web fonts, 133

font property, 152–154
Font Squirrel Web site, 140
@font-face Kit Generator, Font Squirrel, 140
@font-face rule

italic text, 147
placing at top of CSS code, 378
small caps, 151
Web font service bureaus using, 142–143
Web fonts using, 136–140

font-family property, 154
fonts. See also Web fonts

applied to styles, 2
new features in CSS3, 15
for readable style sheets, 378
word processor styles vs. CSS, 3–4

font-size property, 143–145, 153, 175
font-size-adjust property, 146
font-stacks

readable style sheets, 378–379
setting, 130–132
setting with Web fonts, 135–139

font-stretch property, 138–139, 150
font-style property

defining Web font to font stack, 138–139
making text italic, 147–148
mimicking visitor’s font style, 152
setting multiple font values, 152, 404

font-variant property, 151, 153
font-weight property, 138–139, 149, 153
<footer> tag, HTML5, 28–29, 31
footnotes, hyperlinking, 175
foreground color, 201–203

Index  435

ID selectors
adding to body tag of page, 401
CSS rules, 10
defining unique IDs, 57–60
determining cascade order, 121
elements styled by, 36
troubleshooting CSS code, 386
using specific ID names, 401

IE Conditional, 32–33
iframes, 286
image rollovers, 342–344
images

resizing using width and height properties,
257

setting background, 205–211
setting border, 274–275
setting bullet style using, 223
using as custom cursor, 239

 tag, 174, 404
@import rule

adding styles with, 400
best practices, 381
discouraged due to browser issues, 49
favoring <link> over, 406
importing external CSS files, 48–49
importing style sheets, 48
placing at top of CSS code, 378
style sheet methods using, 384–385

!important declaration
avoiding, 403
cascade order and, 117–118, 120
troubleshooting CSS code, 389

importing external styles, to site, 43–44, 48–49
indented paragraphs, 176
indented text, bulleted lists, 225
inherent styles, 115–116, 120–121
inherit keyword, 291, 296
inherit value

clip, 298
display, 253
inheritance of styles, 116
opacity, 301

inheritance of styles, 115–116, 119–121
inline elements, 21
inline styles, 37–40, 120
inline value, display, 252
inline-block value, display, 253
inset, shadows, 302–304
interaction, styling Web page, 88
Internet Explorer

adjusting CSS for, 363–365
best practices, 405
converting OTF/TFF files to, 140
defining Web font to font stack, 135–139
fixing box model for older versions of, 337
fixing code in, 405
HTML5 for older versions of, 32–33
quirks mode, 363
resetting browser default styles, 360

document, 287
element, 287
of element’s box, 250
fixing box model for older versions of IE,

337–338
viewport, 287

height property, 106, 250–251, 255–257
hex values, 185–189
<hgroup> tag, HTML5, 28
hidden keyword, 260, 296
horizontal alignment, centering numbers in

blocks, 336
horizontal text alignment, 171–173
hotspot, mouse pointer, 239
:hover pseudo-class, 84–89, 167
HSL (hue, saturation, and lightness) values,

189–190, 198
HSVA value, adding text color with, 203
HTML (HyperText Markup Language)

basic document structure, 19
browser inherited styles and, 20
CSS and, 3–5, 8
CSS vs., 1
defined, 17
properties, 19–20
selectors vs. attributes, 11
types of elements, 21–23
understanding, 18
UTL character encoding and, 423–428

HTML selectors
CSS browser extensions working with, 13
CSS rules, 9–11
determining cascade order by specificity, 121
redefining HTML tags, 50–52
styling HTML elements, 21–23, 36

HTML4, 24
HTML5

elements, 21–23
evolution of, 24–26
new features, 27
overview of, 17
structure of, 28–33
understanding, 18–20

HTML5 Shiv, 32–33
hue, HSL values, 189–190, 198
hyperlinks

setting negative margins, 266
turning off underlining on, 180
using color change to show states of, 203
using with footnotes, 174

I
icon: keyword, 152
icons

CSS sprites for, 342–344
dingbats, 129
Web fonts for. See Web fonts

id attribute, unique IDs, 58

436  Index

libraries and frameworks, CSS, 376
licensed fonts, 140–143
lightness, HSL values, 189–190, 198
line height, CSS resets for, 359
linear gradients, 191–192, 195
line-height property, 153, 162–163
line-through, text, 179
link pseudo-classes

adding transitions between states, 320–324
importance of order, 89
overview of, 82–83
styling links, 84–87

link states
add CSS image rollovers to Web page, 344
contrasting link appearances, 86
styling all, 406

<link> tag
best practices, 381, 400
conditional styles for IE, 364
connecting external CSS and HTML files, 43,

45
favoring over @import, 406
linking to style sheets with, 46–47
media queries, 108–111
specifying styles with @media rule, 112
WFSBs using, 142

links
color for, 197
contrasting appearances for, 84–87
to external CSS file, 43, 46–47
minimizing, 47
navigation vs. styling, 406
states, 82
to style sheet, 46
styling, 84–87
styling documents in <head>, 400
styling navigation, 339–341
text shadows for, 167
troubleshooting CSS code, 386

list properties
bullets, 223–225
getting started, 220–222
multiple list styles, 226–227
quick reference, 415

list-item value, display, 253
lists

background color for, 197
sequentially numbered, 242–243

list-style shorthand property, 226–227
list-style-image property, 224, 226
list-style-position property, 225, 227
list-style-type property, 223, 227
Little Trouble Girl font, 139
local versions, Web font service bureau, 143
logical operators, conditional styles for IE, 364
LoVe HAte mnemonic, pseudo-element order, 89
lowercase text, 164

Intuit CSS framework, 376
iPhone, 107–110
ISO 8859-1 character set, 126
italicized text, 147–148, 340

J
JavaScript, 8, 32–33
justified text, 173

K
kerning, 160, 181
keywords

color, 185–187
linear gradients, 191
overflowing content, 260
radial gradients, 193
shadow, 302–303
transformation origin, 315

L
:lang() pseudo-class, 92–93
language, styling for specific, 92–93
large.css, 368–369
:last-child pseudo-class, 90–91
:last-of-type pseudo-class, 90–91
layouts

multicolumn, 278–279, 330–333
Web design. See responsive Web design

leading, adjusting, 162–163
left keyword, 263–264
legal issues, Web fonts, 140
legibility, and font size, 144
length value

adjusting leading, 162–163
background images, 208–209
borders, 270, 272
clipping visibility area, 299
defined, 311
element width or height, 256
indenting paragraphs, 176
letter spacing, 159
margins, 266
multicolumn text layout, 278
multiple background images, 215
padding, 276
positioned elements, 292
shadows, 302–303
spacing table cells, 229
text drop shadows, 166
transformations, 311
transitions, 320–324
word spacing, 161

letterforms. See fonts
letterpress text, text shadows, 168
letters

adjusting space between, 159–160
bullet style for, 223

letter-spacing property, 159–160

Index  437

multiple backgrounds
adding with background shorthand, 212–216
layering images, 205

multi-screens, 357

N
naming conventions

class and ID selectors, 60
defining Web font to font stack, 137
external CSS files styling HTML pages, 45
generic class names, 401
reusable classes, 53–56
unique IDs, 57

<nav> tag, 28–29, 31
navigation

choosing color for links, 197
preventing noise, 345–346
styling for print, 114
styling links, 339–341

negative margins, 266
neon glow text effect, 168
nested comments, not allowed, 67
nested tags, 70, 250
“New in CSS3” mark, in this book, 14
newspaper style, horizontal text alignment, 171
noise, reducing navigation, 345–346
none value

clear property, 264
display property, 254–255, 297
float property, 263
inheritance of styles, 116

normal flow, 287
normal text, 147–148
normal value, inheritance of styles, 116
Not available symbol, browsers, 410
nowrap value, controlling white space, 177–178
:nth-child(#) pseudo-class, 90–91
:nth-last-of-type(#) pseudo-class, 90–91
:nth-of-type(#) pseudo-class, 90–91
number sign (#), ID rules, 57–58
numbers

adjusting font size for understudy fonts, 146
bullet style, 223
centering in blocks horizontally, 336
font-weight, 149
multiple counter lists, 242–243
positioning in browsers, 291
stacking elements in 3D, 294–295
transformations, 311

O
-o- extension, CSS, 12–13
oblique text, 147–148
offset, shadows, 166, 302
One for All method, style sheet strategy, 382
online references

color and accessibility, 201
Colour Contrast Check tool, 203

M
Mac fonts, online resource, 139
margin property, 251, 265–267
margins

collapse of, 267
CSS resets for, 359
of element’s box, 251
favoring padding over, 405
indenting paragraphs and, 176
setting element’s, 265–267
setting in body tag, 291
table cells not using, 229

markup languages, 19, 29
matrix() value, 2D transforms, 314
matrix3d() value, 3D transforms, 319
max-width property, 257
media queries

best practices, 402
embedding into style sheets, 112–113
multi-screens with, 357
new in CSS3, 15
overview of, 104–106
in responsive Web design, 352, 370–373
specifying styles, 107–111

@media rule
best practices, 402
placing at top of CSS code, 378
specifying styles with, 112–113

media type
determining cascade order value, 120
specifying style sheets for particular, 47
values, 104

medium.css, 366–368
menu: keyword, 152
message-box: keyword, 152
Meyer’s CSS reset, 362
mid-width property, 257
Minify CSS Compressor, 396–398
minifying your CSS code, 396–398, 407
mobile devices

adapting to environment, 366–373
CSS not accommodated by many browsers, 5
media queries specifying styles for, 107–110,

370–373
multi-screen strategy for, 357
progressive enhancement across multiple,

354–356
monochromatic color schemes, 198
monochrome color schemes, 198
monochrome property, media queries, 106
monospace fonts, 127–128
mouse pointer, changing appearance, 238–239
-moz- extension, CSS, 12–13
-ms- extension, CSS, 12–13
multicolumn layouts

with float, 330–333
for text, 278–279

438  Index

indenting paragraphs and, 176
multicolumn layouts and, 333

padding property, 276–277
page breaks, styling for print, 114
page structure, style sheets by, 378
paragraphs

indenting, 176
justifying last line of text in, 172

parent elements
centering element within, 267
family tree, 70
floating elements in window, 263
in nested tags, 250
positioning, 293
styling descendants, 71

parent selector, 71, 76–77
percentage values, RGB, 189
perspective property, 3D transformations, 317
perspective-origin property, 3D

transformations, 317
picture fonts, 129
pixel perfection, 354
position property, background images,

205–206, 208–209, 215
positioned elements, 291–295
positioning

bullets, 225
radial gradients, 193
table captions, 233
transitioning CSS properties, 320–324
types of, 288–291

pre value, white space, 177–178
preceding sibling elements, family tree, 70
presentation tags, eliminated in HTML5, 27
primary font, 130
print

indenting paragraphs for, 176
specifying styles with media queries, 107,

109–111
styling for, 114

print.css, responsive Web design, 368–369, 373
progressive enhancements, 352, 354–356
properties

CSS rules and, 11
giving transitions to, 320–321
inheritance of styles, 115–116
media queries, 104–105
overview of CSS, 4
redefining HTML tag, 50–52
styling based on HTML tags, 20, 23, 38–39,

100–103
troubleshooting CSS code typos, 386

pseudo-classes
defining dynamic, 88–89
not styling elements with, 94–95
overview of, 82–83
quick reference, 411
setting bullet type, 223
styling children, 90–91

online references (continued)
CSS frameworks, 376
CSS3 development, 7
CSS3 Gradient Generator, 195
CSS4 working draft, 15
development of new text properties, 181
Eric Meyer’s CSS reset, 362
Firebug, 391
Font Squirrel Web site, 140
Mac and Windows fonts, 139
online color scheme, 200
Scalable Vector Graphics, 20
Web font service bureaus, 142
Web font stores, 142
Web Inspector, 393
Web Typography NOW, 143
Web-safe fonts, 133
World Wide Web Consortium, 10
Yahoo’s Reset CSS, 361

opacity
alpha values for color transparency, 190
new features in CSS3, 15
setting element’s, 300–301
transitioning CSS properties, 320–324

opacity property, 190, 300–301
OpenType (OTF) Web font format, 134, 138, 140
optimization, creating minified version of CSS

code, 396–398
organization scheme, readable style sheets,

378–379
orientation property, media queries, 106
origin property, background images, 205–206,

211
OTF (OpenType) Web font format, 134, 138, 140
outline property, 268
outlines

CSS resets for, 359
defining color with, 190
of element’s box, 251, 268
text, 181

overflow property
controlling content, 257, 259–260
fixing float problem with, 335
setting for text, 261

overlapping text, 266
overlines, text, 179–180
overrides

float property, 263
font size, 144
font-stack, 132
mouse pointer, 238

P
padding

background images, 208, 211
CSS resets for, 359
of element’s box, 251
favoring margins over, 405
fixing older versions of Internet Explorer, 338

Index  439

rel property, troubleshooting CSS code, 386
relationship, link, 46, 386
relative positioning, 175, 289–291
relative values

aligning text vertically, 174–175
font sizes, 143–144
transforming length value, 311

rendering engine, 4–5, 12–13
repeat property, background images,

205–207, 214
repeating gradients, 195
repetition, avoiding unnecessary code, 403
Reset CSS, Yahoo, 361
resetting styles, responsive Web design, 352
resolution property, media queries, 106
responsive Web design

adapting to environment, 366–373
adjusting CSS for Internet Explorer, 363–365
developing multi-screen strategy, 357
getting started, 350–351
overview of, 349
with progressive enhancements, 354–356
resetting browser default styles, 358–362
understanding, 352–353

reusable classes, 53–56, 401
RGB (red, green, blue)

best practices, 404
decimal values, 189
hex values, 188
percentage values, 189
setting alpha channels for decimal values, 190

RGBA value, adding text color, 203
right keyword, 263–264
rotate(), rotateX(), or rotate(Y) value, 2D

transforms, 314–315
rotate3d() value, 3D transforms, 319
rotateZ() value, 3D transforms, 319
rounded corners, borders, 272–273
rules, CSS

adding embedded style to Web page, 41–42
applying with CSS selectors, 36
class selector, 9
combining into selector lists, 402
defining Web font to font stack, 137
external CSS file, 45
HTML selector, 9
ID selector, 10
multicolumn layout, 332–333
parts of, 11
placing @rules at top of CSS code, 378
separating chunks of content, 197
syntax of, 11
tips for, 42
troubleshooting CSS code, 389
types of, 9–10
universal selector, 10
using specificity for hierarchy of, 380

@rules, placing at top of CSS code, 378
run-in value, display, 253

styling contrasting links, 84–87
styling for interaction, 88
styling for languages, 92–93
styling links, 84

pseudo-elements
defined, 96
highlighting beginning of article, 96–97
quick reference, 411
setting content before and after element,

98–99
working with first letters and lines, 96

pt (point) size, print media, 144

Q
<q> tag (quotation), 236–237, 244–245
quick reference

basic selectors, 410
box properties, 417–419
color and background properties, 414
font properties, 412
list properties, 415
pseudo-classes, 411
pseudo-elements, 411
text properties, 413
transform properties, 421
transition properties, 422
user interface and generated content

properties, 416
visual formatting properties, 420

quirks mode, Internet Explorer
defined, 363
fixing box model for older versions of Internet

Explorer, 337
quotation (<q> tag), 236–237, 244–245
quotation marks

specifying quote style with <q> tag, 236–237,
244–245

tips for using, 39
quotes property, 244–245

R
radial gradients

available in all browsers, 191
overview of, 193–194
repeating, 195

readable style sheets, best practices
@rules at top of CSS code, 378
colors, fonts, and other constants, 378
introduction and TOC, 376–377
organization scheme, 378–379
overview of, 376
section headers, 378
specificity, 380

Recently available symbol, browsers, 410
rect value, clip, 298–299
references

online. See online references
for subjects in this book. See quick reference

440  Index

best practice to use, 404
font, 152–154, 163
list-style, 226–227
matrix(), 314
matrix3d(), 319
overriding value set by, 154
transition, 322–324

sibling selector, 78–79
siblings, family tree, 70
single quotation marks ('…'), 39
size, file

best practices, 381
drawbacks of single master style sheet, 382
reducing, 381
setting font-stack and, 132

size property, background images,
205–206, 209

size values, radial gradients, 193
skew(), skewX(), or skew(Y) value, 2D

transforms, 314
slash (/), comments, 67
small-caps, 151
small-caption: keyword, 152
small.css, 366–367, 370–372
smart quotes, 39
spacing

horizontal text alignment, 171–173
between table cells, 229

 tag, 56
specificity

best practices, 402–403, 406
cascade order determined by, 121
hierarchy of CSS rules, 380

stacking order, 288, 294–295
Standard Generalized Markup Language

(SGML), 19
states

adding transitions between element, 320–324
link, 82, 84
styling navigation and link, 339–341
using CSS sprites, 342–344

static positioning, 288, 290–291
status-bar: keyword, 152
stretched images, borders, 275
strict mode, browsers, 363
strikethrough, text, 180
 tag

aligning text vertically, 174
defining font size, 145
as nested tag, 70
redefining in CSS, 8, 50–52
styling descendants, 72–75
styling siblings, 78–81

structural elements
CSS rules, 11
new features in HTML5, 27–28
placing before designing, 399
using, 29

structural pseudo-classes, 82–83

S
Safari, 393
sans-serif fonts, 127
saturation, HSL values, 189–190, 198
Scalable Vector Graphics (SVG) Web fonts, 20,

135, 139
scale(), scaleX(), or scale(Y) value, 2D

transforms, 314–315
scale3d() value, 3D transforms, 319
scaleZ() value, 3D transforms, 319
scientific notation, 175
scroll, 205, 208, 215
scroll keyword, overflow, 260
search engines, content property and, 241
section headers, readable style sheets, 378–379
<section> tag, 28–29, 336
selective styling

!important declaration, 117–118
@media rule, 112–113
based on context. See contextual styles
based on tag attributes, 100–103
cascade order, 119–121
element family tree, 70
inheritance of styles, 115–116
media queries, 104–111
overview of, 69
for print, 114
with pseudo-classes. See pseudo-classes
with pseudo-elements, 96–99

selectors
attribute, 100
basic CSS, 36
combinatory, 71
grouping, 64–66
HTML. See HTML selectors
organizing style sheets by types of, 378
pseudo-class, 83
pseudo-element, 96
quick reference to, 410
styling elements to exclude certain, 94–95
troubleshooting CSS code, 386

semicolons (;)
character entities beginning with, 129
defining styles directly in HTML tag, 38
locating in !important declaration, 118
separating multiple declarations, 11
troubleshooting CSS code, 386

separate value, border-collapse, 230–231
serif fonts, 127
SGML (Standard Generalized Markup

Language), 19
shadows

adding text drop, 166–170
setting element’s, 302–303

shape value, radial gradients, 193
shorthand properties

!important, 404
background, 212–216

Index  441

technology, Web font service bureaus, 142–143
testing

best practices, 405
minified version of CSS code, 398
troubleshooting CSS code, 389
using inline styles, 39

text. See also font properties
adding HTML tags to, 18
controlling overflow, 261
CSS resets for underlining, 359
decorating, 179–181
design limitations of, 125
in graphics or Flash vs., 125
multicolumn layout, 278–279
new features in CSS3, 14
positioning overlapping, 266
styling for print by avoiding in graphics, 114
wrapping and bullets, 225

text properties
aligning horizontally, 171–173
aligning vertically, 174–175
coming soon, 181
decorating, 179–180
drop shadows, 166–170
getting started, 158
indenting paragraphs, 176
overview of, 157
putting it all together, 182
quick reference, 413
setting case, 164–165
spacing, 159–163
white space control, 177–178

text-align property, 171–173
text-align-last property, 172
text-decoration property, 179–181
text-indent property, 176
text-justify property, 173
text-overflow property, 261
text-shadow property, 166–170, 190
text-transform property, 164–165
tiled images, borders, 275
titles, small caps for, 151
TOC (table of contents), section headers

mimicking, 378–379
tracking, 159–160
transform properties

2D transformations, 312–315
3D transformations, 316–319
getting started, 308–310
new features in CSS3, 14
overview of, 307
putting it all together, 325–326
quick reference, 421
transforming elements, 311

transform property, 311, 313–315
transform value, 324
transform-origin keywords, 315
transform-style property, 316–319

style sheet strategies
Aggregate method, 384
best practices, 381
Divide and Conquer method, 383
Dynamic method, 385
One for All method, 382

<style> tag
adding embedded styles, 40–42
applying media queries, 111
responsive design with media queries, 373
troubleshooting CSS code, 386

styles
browser default, 20
horizontal text alignment, 171–172
making text italic, 147–148
progressive enhancement honoring user, 355
resetting browser default, 358–362
text justification, 173
word processor, 2
word processor vs. CSS, 3–4

subscript, vertical text alignment, 175
sub-settings, Web font service bureaus, 143
superscript, hyperlinking footnotes, 175
SVG (Scalable Vector Graphics) Web fonts, 20,

135, 139
symbol fonts, 129
syntax

!important declaration, 117–118
@media rule, 112
CSS rules, 11
defining styles in HTML tag, 37–39
older gradient, 195

T
table of contents (TOC), section headers

mimicking, 378–379
table properties

collapsing borders between table cells,
230–231

getting started, 220–222
setting space between table cells, 229
setting table caption position, 233
setting table layout, 228
showing/hiding empty table cells, 232

table value, display property, 253
table-layout property, 228
tables, background color, 197
tags, HTML

adding inline style to, 36
associated with browser inherited styles, 20
CSS files should not contain, 45
defining styles based on attributes of, 100–103
HTML document setup, 30–31
HTML properties and, 19–20
HTML5 in older versions of IE, 32–33
HTML5 structure and, 28
redefining, 50–52
understanding, 18

<td> tag, 174

442  Index

user interface
designing. See design and interface

techniques
inline styles, 39

user interface properties
getting started, 236–237
mouse pointer appearance, 238–239
overview of, 235
putting it all together, 246
quick reference, 416

UTF-8 (8-bit Unicode Transformation Format)
character set, 126, 423–428

V
validation, CSS code, 395
values

2D transform, 311, 313–315
3D transform, 318–319
clip, 298–299
color, 185–190
content, 241
CSS browser extensions working with, 13
cursor, 238–239
defining styles based on tag attributes,

100–103
defining styles in HTML tag, 38
display type, 252–254
font-stretch, 150
grouped selector changing, 66
indenting paragraphs, 176
letter-spacing, 159–160
linear gradient, 191
line-height, 162–163
media type, 104
multiple font, 152–154
placing at top of CSS code in comments,

67–68
position, 292–293
radial gradient, 192
specifying units for, 399
structural elements of CSS rules, 11
text decorations, 179–180
text transform, 164–165
transformations, 311, 316
transitions, 323–324
troubleshooting CSS code, 386
vertical text alignment, 174–175
word-spacing, 161

vertical alignment
centering numbers in blocks, 336
CSS resets for text, 359
text, 174–175

vertical-align property, 174–175
viewport

browser, 286
responsive design with media queries,

370–372

transition properties
3D transformations, 316–319
adding transitions between element states,

320–324
getting started, 308–310
new features in CSS3, 14
overview of, 307
putting it all together, 325–326
quick reference, 422

transition property, 322–324
transition-delay values, 323–324
transition-duration values, 323–324
transition-property value, 323–324
transition-timing-function values, 323–324
translate(), translateX(), or translate(Y)

value, 2D transforms, 314
translate3d() value, 3D transforms, 319
translateZ() value, 3D transforms, 319
transparency

creating border with, 304
setting alpha values for color, 190
styling for print by avoiding color, 114

transparent keyword, 204, 213
triad color-combination scheme, 199
troubleshooting CSS code, 386–389
TrueType (TTF) Web font, 134, 138, 140
TTF (TrueType) Web font, 134, 138, 140
type families. See font families
typeface overrides, 132
typography

affecting how text appears, 157
understanding on Web, 125
using Web fonts for. See Web fonts

U
undecorating text, 179–180
underlines

differentiating hypertext from text, 340
text decorations, 179–180
using border-bottom for text, 359

understudy fonts, 131, 133, 146
universal selector

adding default transitions to, 324
CSS resets using, 360, 362
CSS rules, 10
defining universal styles, 61–63
elements styled by, 36
styling descendants universally, 74–75

unvisited links, setting appearance, 86–87
uppercase, setting text case, 164–165
URL

adding multiple background images, 214
changing mouse pointer appearance, 239
defining background image, 206
defining own graphic bullets, 224
setting border image, 275

Index  443

Web sites
adding external CSS file to, 43–49
for multi-screen strategy, 357

Webdings, 129
Webkit browser extensions, 13
-webkit extension, CSS, 12–13
weights, setting bold/bolder/boldest, 149
WFSB (Web font service bureaus),

141–143
WHATWG (Web HyperText Application

Technology Working Group), HTML5,
25–26

white-space property, text, 177–178
width

browser windows and documents,
286–287

defining element, 255–257
of element’s box, 250
fixing older versions of IE, 337–338
floating elements in window, 263
media queries and, 104–105
multicolumn layouts and, 332–333
viewport, 287

width property, 255–257
windows, browser, 286–287
Windows fonts, online resource, 139
WOFF (Web Open Font Format), 135, 138, 140
word-processor styles, 2–4
word-spacing property, 161
World Wide Web Consortium. See W3C (World

Wide Web Consortium)
wrapped text, bullet positions, 225

X
XHTML, 24, 29
XHTML2, 24–26
XHTML5, 26, 29
XML, 24–26

Y
Yahoo’s Reset CSS, 361
Yahoo’s YUI Grids framework, 376

Z
z-index property, 294–295

visibility
clipping element’s area of, 298–299
setting element’s, 296–297

visibility property, 254, 288
visible keyword, overflow, 260
visited links, setting appearance of, 86–87
:visited pseudo-class, 84–87
visitor styles, determining cascade order, 120
visual formatting properties

clipping visibility area, 298–299
getting started, 284–285
opacity, 300–301
overview of, 283
position, 292–293
positioning type, 288–291
putting it all together, 305
quick reference, 420
shadows, 302–304
stacking objects in 3D, 294–295
visibility, 296–297
window and document, 286–287

W
W3C (World Wide Web Consortium)

browser specifications for rendering Web
code, 5

CSS Validator for CSS code, 395
evolution of CSS under, 6–7
evolution of HTML5 under, 24–25
understanding, 10

Web design. See responsive Web design
Web fonts

converting using Font Squirrel, 140
defining to font stack, 137–139
formats, 134–135
overview of, 133–134
setting better stack font with, 135–136
using dingbats as, 129
using for icons, 408
Web-safe fonts, 133

Web forms, 27
Web Inspector, viewing CSS with, 390, 393–394
Web Open Font Format (WOFF), 135, 138, 140
Web page

adding embedded styles to, 40–42
as document. See documents

Unlimited online access to all Peachpit, Adobe
Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

Sign up today
peachpit.com/creativeedge

	Table of Contents
	Introduction
	Chapter 4 Selective Styling
	The Element Family Tree
	Defining Styles Based on Context
	Working with Pseudo-Classes
	Working with Pseudo-Elements
	Defining Styles Based on Tag Attributes
	Querying the Media
	Inheriting Properties from a Parent
	Making a Declaration !important
	Determining the Cascade Order

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

